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ABSTRACT

MODELING AND CONTROL OF A FULLY ACTUATED UNMANNED
SURFACE VEHICLE

Kılınç, Mustafa

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Mustafa Mert Ankaralı

April 2023, 79 pages

This thesis presents a mathematical model and control strategies for a fully actuated

unmanned surface vehicle (USV). We aim to control the body velocity of the robot

with a model-based time-varying linear quadratic regulator (TV-LQR) and operate

the control algorithm from the ground station of the robot with low-frequency remote

communication signals. As TV-LQR computes the optimal control policy by consid-

ering a mathematical model, the 3 degrees of freedom (3DoF) decoupled model is

derived from the Newton-Euler equations and Fossen’s low-speed USV assumptions.

MATLAB’s constrained nonlinear optimization function estimates the parameters of

this model by using experimental data. The k-fold cross-validation method is imple-

mented to see the distributions of the parameters between randomly chosen validation

datasets. The conventional PI control algorithm is chosen as a baseline method for

comparison with our controller approach. The main contributions of this study are

developing a mathematical model of a novel USV and performance analysis of the

model-based TV-LQR controller in actual experiments. Results show that fully actu-

ated velocity control with TV-LQR and quadratic programming based control alloca-

tion improves the robot’s velocity tracking performances in each DoF. Also, quadratic
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programming allocates the robot’s actuator inputs according to the thrusters’ physical

limits and optimizes power consumption during the control allocation.

Keywords: Unmanned Surface Vehicle, Mathematical Modelling, System Identifica-

tion, Velocity Control, TV-LQR, PI, Control Allocation
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ÖZ

TAM TAHRİKLİ BİR İNSANSIZ YÜZEY ARACININ MODELLENMESİ VE
KONTROLÜ

Kılınç, Mustafa

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Mustafa Mert Ankaralı

Nisan 2023 , 79 sayfa

Bu tez, tam tahrikli yeni bir insansız su üstü aracı (İSA) için matematiksel bir model

ve kontrol stratejileri sunmaktadır. Biz, model tabanlı zamanla değişen ikinci derece-

den düzenleyici (TV-LQR) ile robotun kendi hızını kontrol etmeyi ve düşük frekanslı

uzaktan iletişim sinyalleri ile kontrol algoritmasını kontrol algoritmasını yer istasyo-

nundan çalıştırmayı amaçladık. TV-LQR, matematiksel bir modeli göz önünde bu-

lundurarak optimum kontrol algoritmasını hesapladığı için 3 serbestlik derecesinde

ayrıştırılmış model, Newton-Euler denklemlerinden ve Fossen’in düşük hızlı İSA var-

sayımlarından türetilmiştir. MATLAB’ın kısıtlı doğrusal olmayan optimizasyon fonk-

siyonu deneysel verileri kullanarak bu modelin parametrelerini tahmin etmiştir. Rast-

gele seçilen doğrulama veri setleri arasındaki parametre dağılımlarını görmek için

k-katlı çapraz doğrulama yöntemi uygulanmıştır. Kendi kontrolcü yaklaşımımızı kar-

şılaştırmak için geleneksel PI kontrol algoritması dayanak yöntem olarak seçilmiştir.

Bu çalışmanın ana katkıları, yeni bir İSA’nın matematiksel modelinin geliştirilmesi

ve model tabanlı TV-LQR kontrolcüsünün gerçek deneylerdeki performans analizidir.

Sonuçlar, TV-LQR ve ikinci dereceden programlama tabanlı kontrol ataması ile tam
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tahrikli hız kontrolünün robotun hız takip performansını iyileştirdiğini göstermiştir.

Ayrıca ikinci dereceden programlama, robotun çalıştırıcı girdilerini iticilerin fiziksel

limitlerine göre tahsis eder ve itici tahsisi sırasında güç tüketimini optimize eder.

Anahtar Kelimeler: İnsansız Yüzey Aracı, Matematiksel Modelleme, Sistem Tanı-

lama, Hız Kontrolü, TV-LQR, PI, Kontrol Ataması
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I am grateful to Oğuz Özdemir, with whom we carried out our thesis work in the

same period, for the fun times we had together. During this time, we always tried to

motivate each other.

My friends Atakan Durmaz and Ferhat Gölbol contributed significantly to the exper-

imental robot’s preparation process and test activities.

Turkish Scientific and Technological Research Council (TÜBİTAK) provided the
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

The civil and military industries require research in Unmanned Surface Vehicles

(USVs) due to their potential to accomplish security missions, path following, ve-

locity tracking, object detection, and obstacle avoidance tasks in marine areas. USVs

can utilize navigation and guidance algorithms to perform autonomous tasks in the

port area. As a result, USVs require high control capabilities to be effective in these

application areas.

As there is a growing interest in specialized applications of USVs, it is necessary to

establish regulations for their autonomous operations. To this end, levels indicating

the autonomy of uncrewed autonomous vehicles have been determined, and regula-

tions have been developed to classify them [2]. The International Maritime Organiza-

tion (IMO) has identified four levels of ship automation: entirely autonomous, fully

remotely controlled, partially remote and partially crew-controlled, and partially au-

tonomous [3]. The existence of international standards for crewless autonomous sea

vehicles underscores the significance of work in this field, which can lead to the de-

velopment of more systematic USV technologies. Thus, it is imperative to address

these regulatory issues to promote the effective and safe operation of USVs in marine

areas.

The closed-loop control algorithm can operate in the ground station and the robot’s

embedded hardware. The disadvantage of controlling from a host computer is that

it works at low frequencies, and communication delays can affect the robot’s per-

formance. However, by completing the control loop using a ground station, more

1



computationally demanding algorithms can be implemented, enabling the execution

of sophisticated control algorithms without affecting the robot’s performance. We

aim to control the robot from the ground station by compensating for the round trip

time of the robot’s telemetry messages and motor commands.

At low frequencies, USVs control should prioritize velocity control over position

control. This is because the transfer function with position output at low frequencies

has a phase angle of -90 degrees and decreasing gain. In comparison, the transfer

function with velocity output has a constant gain and a phase angle of 0 degrees. As a

result, a velocity controller is better suited for delays that may occur in low-frequency

controllers and is more robust and smooth than a position controller. Furthermore,

using velocity control, the USV can achieve its control objectives with less energy

consumption. A study by Zelenak highlights the advantages of velocity control for

low-frequency controllers and its potential benefits for USV control [4].

The PI controller can operate without a dynamic model of the robot, while the TV-

LQR controller requires the linearization of the robot’s dynamic model. The dynamic

model information enhances the robustness of the TV-LQR controller and enables

tuning the robot’s feedback gains efficiently. The robot’s dynamics can be obtained

through an optimization algorithm applied to a specific mathematical model. This

study aims to obtain the best robot model by comparing optimization methods. The

mathematical model derived from this study can be utilized in various model-based

motion controllers.

Fully actuated systems have equal or more actuators than the robot’s degrees of free-

dom. When the number of actuators exceeds the degrees of freedom, the control

allocation matrix becomes non-square, causing the inverse of the matrix to be un-

defined. Typically, the pseudo-inverse method is used in such cases. However, this

method does not consider the robot’s constraints and energy efficiency. Alternatively,

quadratic programming can address the control allocation problem and enhance robot

performance by accounting for the constraints of robot thrusters and energy consump-

tion [5]. The present study aims to improve the robot’s performance by considering

these factors in control allocation.
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1.2 Problem Statement

This study examines the control and modeling of an innovative uncrewed surface

robot. The primary challenge lies in determining the dynamic and kinematic prop-

erties of the robot, which is remotely controlled wirelessly. Increasing the number

of parameters in the dynamic model complicates system identification. Optimizing

with fewer parameters may result in a dynamic model that does not accurately repre-

sent the robot’s dynamic characteristics. Another issue involves developing a control

algorithm tailored to the robot to follow a reference velocity accurately. Achiev-

ing velocity tracking with a low-frequency control loop presents a significant chal-

lenge. Factors influencing trajectory tracking performance include the observation of

the robot’s state vector at a constant frequency, consistent and noise-free GPS data

measurements, and the environmental noise generated by water currents. This study

compares the performance of model-based and classical PI controllers in trajectory

tracking. Another challenge is allocating control signals across three axes to four

motor inputs, considering both motor limits and energy consumption. The constraint-

unaware nature of the pseudo-inverse method may hinder the robot’s controller from

operating at the suitable motor inputs.

1.3 Literature Review

USVs have become a prominent research topic, with advancements in both hardware

and simulation environments. Uncrewed sea vehicle technologies began with Nikola

Tesla’s work on a floating robot in 1898 [6], and numerous robot models have since

addressed the challenges in USV technology. USV models can be classified as un-

deractuated or fully actuated based on their number of motors and positioning. An

underactuated robot has a rank of less than the robot’s DoF number in its transfor-

mation matrix, which converts motor forces into the robot’s body axes [7], [8], [9].

At the same time, fully actuated systems are easier to control and enable the robot to

perform high-resistance maneuvers on each degree of freedom [10], [11].

In Unmanned Surface Vehicles, communication, and computational systems facilitate

the robot’s interaction with its environment and ground station. Tethered communi-
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cation, Wi-Fi, and Radio Frequency can be alternatives to transfer data between the

uncrewed vehicles and ground station [12], [13], [14]. A study by Ge et al. [15] high-

lights that Wi-Fi is a fast and cost-effective method for short-range robots, enabling

continuous transmission of images or videos. Meanwhile, the computational system

of a USV typically employs two distinct hardware structures: microcontrollers serve

as autopilots and translate communication signals into meaningful servo commands

such as the Pixhawk [16], or Ardupilot Mega flight controllers [17], and single-board

computers used for the algorithms requiring high processing power and onboard ex-

ecution such as image processing methods. The onboard computation system and

ground station communicate using a specific middleware, such as the Micro Air Vehi-

cle Link (MAVlink) protocol [18], selected for its compatibility with the PyMAVlink

python library and Robot Operating System (ROS) software packages [19]. In sum-

mary, advances in wireless communication and computational systems have driven

the development of more efficient and capable USVs, enabling further communica-

tion with ground stations and practical onboard computation.

In order to establish a mathematical model for a robotic system, it is essential to

identify a suitable representation for the variables constituting the robot’s state space.

The derivation of the kinetic and dynamic equations for a crewless surface vehicle

necessitates the employment of the SNAME notation to represent the position, ve-

locity, force, angle, angular velocity, force, and momentum vectors across three axes

[20]. The axes defining the robot’s motion on a two-dimensional maritime surface

plane consist of surge, sway, and yaw motion. These notations facilitate the mod-

eling of both the kinematic and kinetic aspects of the robot. The kinematic model

serves to convert the robot’s motion from a global reference frame, such as the North-

East-Down (NED) coordinate frame, Earth-Centered Earth-Fixed (ECEF), and Earth-

Centered Inertial Frame (ECI), to the robot’s body frame [21]. The sideslip angle

effect can be added to the kinematic model to obtain a more realistic robot model

[9]. However, the development of advanced control algorithms necessitates the im-

plementation of a dynamic model.

Utilizing Newton’s Second Law and the Newton-Euler formulation, it becomes possi-

ble to examine the relationship between a robot’s acceleration and the forces affecting

the system dynamics through a differential equation. Derived from these principles
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are the motion equations for underwater robots with a 6 DoF vector representation

[22]. This study employs the equations in a reduced form, incorporating only 3 DoF.

These equations show that Coriolis, hydrodynamic damping, gravitational, and buoy-

ancy forces impact a robot floating in the water. This dynamic equation and its nu-

merous simplified versions are applied in various USV studies, depending on specific

needs [9], [23], [24].

System identification is a method that estimates a dynamic model’s mathematical

representation and constructs the predicted model for the robot. It solves linear and

nonlinear black and gray box models [25]. Modeling the USV with Artificial Neural

Networks (ANN) without theoretical knowledge can exemplify the black-box prob-

lem [26]. Estimating parameters in the Newton-Euler model of USV is a gray-box

problem. In research from Sonnenburg and Woolsey, the dynamic model of the USV

is identified by parameter estimation [9].

As outlined in the study [27], USV technology research can be categorized under

guidance, navigation, and control headings. Control of the USV has four different

applications; set-point regulation, trajectory tracking, path following, and path ma-

neuvering. Velocity control methods try to minimize the error between the actual and

desired velocity of the robot. Model-based optimal control and conventional PID con-

trol methods can solve the velocity control problem by tracking the desired velocity

trajectories.

PID controllers are still used in the control of many industrial robots today. The PID

velocity controller looks at the error signal in velocity tracking, the derivative of the

error, and the accumulated error amount as decoupled without needing a dynamic

system model [28]. Since each error type is multiplied by a separate coefficient,

three coefficients must be tuned in a Single-Input Single-Output (SISO) system. In

order to tune these coefficients, the step responses of the system can be analyzed

by performing experimental studies, or the Ziegler-Nichols type theoretical methods

can choose coefficients [29], [30]. At the same time, coefficients can be scheduled

by applying fuzzy gain scheduling [31], or PID gains can be generated with neural

networks [32]. PID controller is preferred for controlling chemical processes [30].

Many motor and uncrewed vehicles can be controlled with PID controllers or their
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variations, such as PI and P controllers [33].

Optimal control methods can be applied to the USVs as well as model-free methods.

A nonlinear optimal control policy can be solved by nonlinear programming tools

[34]. As Tedrake studied TV-LQR-based optimal control for the perching maneuvers

[35], it is possible to implement TV-LQR for the USVs to obtain robust trajectory

tracking performances. In reinforcement learning algorithms, a robot can be viewed

as an agent, and the deep deterministic policy gradient method can be employed for

its control [36]. Model predictive control is another alternative for optimal control

methods. With additional Lypunav function constraints, Lyapunov-based MPC can

be obtained with improved trajectory tracking performance [37].

Our contributions are as follows:

• A mathematical model of a novel uncrewed surface vehicle is derived, and the

model parameters are estimated with nonlinear constrained optimization. Dis-

tributions of the parameters are evaluated with the k-fold cross-validation tech-

nique.

• Reference trajectory tracking with conventional PI controller and model-based

TV-LQR controller are compared. Software in the Loop (SITL) and the actual

robot tests are considered with some performance metrics.

• Control allocation of the fully actuated USV is improved with quadratic pro-

gramming. Constraints-aware control allocation is applied as an alternative to

the pseudo-inverse method.

1.4 Experimental Setup

In this section, we delineate the distinctive design of an uncrewed surface vehicle, em-

phasizing its functional mechanical characteristics. We elucidate the technical char-

acteristics of this fully actuated robotic system, which features 3 degrees of freedom

motion and remote wireless control capabilities. Particular attention is given to the

mechanical design elements and selecting electronic components, such as sensors,

actuators, control, and communication units. Furthermore, we explicate the software
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elements that facilitate the robot’s remote operation. Finally, some experiments are

held to understand measurement noise, sampling rate, and communication latency.

1.4.1 Mechanical Design

Figure 1.1: Real experimental setup: USV robot

The USV has a watertight structure. It uses a black frame made of water-resistant

High-Density Polyethylene material. The robot is a modified version of the BlueRov2

underwater vehicle [12]. BlueRov 2 is a suitable platform for underwater vehicle de-

velopments [38] [39] [40]. However, its hardware and mechanical structure must be

modified to operate this robot as a surface vehicle. Mechanical changes aim to keep

the robot on the surface of the water. As seen in Figure 1.1, the USV is supported by

Catamaran type floats. Diving motors are replaced with additional floating sponges

to decrease the density of the robot. Figure 1.2 shows the remaining motors’ config-

uration. T200 thrusters are placed on this frame with 45-degree angles as in figure

1.2. Four motors are positioned to create force in the surge, sway, and yaw axis. The

battery unit used for wireless communication is housed in an IP65 standard enclosure.

The total mass of the robot is 12.40 kg. The width and length measurements are 54

cm and 88 cm, respectively. On the upper surface of the robot, a GPS antenna and a

Wi-Fi module are placed in a visible area.
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1 2

3 4

Figure 1.2: Thruster configuration of the robot. ArduSub framework controls each

motor with given id numbers. Each motor’s thrust vector makes π/2 rad angle with

the sway axis of the robot. The positive surge axis direction is indicated with a red

arrow.

1.4.2 Hardware Components

The hardware equipment of the robot consists of 2 classes: the ground station and the

USV platform. Real-Time Kinematic (RTK) positioning sensor connection is made

with a computer at the ground station to obtain a more accurate GPS signal. Real-

Time Kinematic positioning represents a relative positioning technique that facilitates

centimeter-level positioning accuracy for a station by incorporating satellite correc-

tions from auxiliary stations. RTK methodologies mandate communication between

the Ground station and the robot to exchange satellite correction data effectively. The

QGroundControl software (fig. 1.4) automatically detects the RTK sensor plugged

into the USB port of the ground station. It sends GPS correction messages obtained

from the USB port to the USV by MAVLink protocol. The USV can operate manu-

ally with the remote control commands sent from the ground station computer via a

joystick. Autonomous control algorithms are run on the ground computer and gen-

erate desired remote control inputs for the motor. The motor input commands on the
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ground computer are transmitted to the robot on the water surface via Wi-Fi signals.

The motor commands sent from the ground computer to the robot are transmitted to

the T200 Thrusters with Electronic speed control (ESC) motor drivers. The Inertial

measurement unit (IMU) and GPS sensors on the USV are used to obtain the robot’s

navigation information. The body velocity estimation algorithms run on the Pixhawk

module, and the estimated velocity messages are sent to the ground station via the

Wi-Fi module. The hardware diagram of the robot is shown in figure 1.3.

PWMDataWi-Fi

Thrusters

CameraServo

ESC

PixhawkRaspberry Pi

Unmanned Surface Vehicle
Ground Station

Host Computer

Wi-Fi Unit

Wi-Fi Unit

GPSIMU

Figure 1.3: Block Diagram of the USV’s hardware components. Data has two types;

remote control inputs from the ground station and velocity estimation messages ob-

tained by the Pixhawk.

In order to provide wireless communication between the robot and the ground station,

Unifi UAP-AC-M Wi-Fi modules belonging to the Ubiquiti Network Company are

integrated into the robot and the ground station. Message packets are sent to the

IP address specified for the robot over a local network created at the ground station.

More than one computer can connect to the robot and send messages at the same time.

Message packets reaching the access point device on the robot with IEEE 802.11ac

standard are transferred to Raspberry Pi via ethernet connection. The Pixhawk device

communicates serially with the Raspberry Pi and sends the motor commands to the

robot’s motors according to the incoming message packets.
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1.4.3 Software Components

The QGroundControl software shown in figure 1.4 can control the robot with the

joystick device and communicate with the robot and the RTK sensor in the ground

station. The QGroundControl software reads MAVLink messages over ethernet and

displays the robot’s position on the global earth map. It checks the battery and con-

nection status of the robot with the message packets it reads. In an emergency, the

robot can be disarmed by cutting off its power to the motors. With these advantages,

it is used during experiments at the ground station.

Figure 1.4: QGroundControl Software

A Conda environment has been prepared at the ground station for the robot to work

effortlessly in the Python environment. Python version 3.9 is installed for the environ-

ment. Another environment module Jupyter-notebook executes modular code blocks

and visualizes collected data quickly. Different controllers were tested, and experi-

mental data were collected by running Python code blocks with the Jupyter-Notebook

interface.

MAVLink protocol is used to communicate between the ground station and the robot.

The advantage of this protocol is that it can work in the ROS environment with the

mavros ROS package. It also supports algorithms written in Python with the Py-

MAVLink Python library. In this study, a Python class is prepared for sending motor
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commands to the robot and receiving sensor data from the robot.

When the Python class is initialized on the ground station, a connection with the

robot is defined via ethernet. Then, the frequency of the MAVLink data packets

"MAV_DATA_STREAM_POSITION" and "MAV_DATA_STREAM_EXTRA1" is

set to 20 Hz. A state vector with six elements is obtained with the information from

the "LOCAL_POSITION_NED" and "ATTITUDE" messages.

Vector operations in the Python class are performed using the Numpy library. Sympy

library, which enables symbolic variable operations, is preferred to linearize the state

space around a trajectory. In the control allocation part, the CVXOPT python library

performs quadratic optimization. The "solve_ivp" function of the Scipy library is

used to obtain numerical solutions of differential equations.


ch1

ch2

ch3

ch4

 =


1.0 0 0 0

0 1.0 0 0

0 0 1.0 0

0 0 0 1.0

x

motor1

motor2

motor3

motor4

 (1.1)

When we look at the software on the USV, we can give an example of the Ardupilot

autopilot software running inside Pixhawk. The firmware has been uploaded to Pix-

hawk by selecting the supported ArduSub configuration for underwater and surface

vehicles. As one can understand, the ArduSub configuration sends inputs to the mo-

tors via remote control channels. Each channel is set to move a different degree of

freedom. In order to try methods such as control allocation, it is necessary to send

direct inputs to the motors rather than the body’s motion axes. This situation has been

solved with a tricky solution. As seen in equation 1.1, each motor input is assigned

to a single channel by creating a custom frame.

1.4.4 Software in the Loop

The ArduSub software-in-the-loop (SITL) toolbox enables researchers to conduct

robotic experiments on a computer. Assuming a uniform spherical object, the SITL’s

mathematical model derives its inertia and mass parameters from the BlueROV2 un-
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derwater vehicle [12]. However, our robot has additional mechanical components,

and the added mass effect of water is more complex than that of a spherical ob-

ject. Consequently, the robot exhibits distinct rigid body and added mass coefficients.

While the SITL models a 6-DoF vehicle, the studied USV operates as a 3-DoF ve-

hicle, leading to variations in system parameters and control performances. Due to

the high costs associated with actual experiments, the SITL toolbox is a preparatory

environment for real-world testing. An additional benefit is the direct extraction of 3-

DoF dynamic model parameters from the SITL source code, eliminating the need for

identification steps. This approach allows for analyzing model-based controller per-

formances without considering parameter estimation accuracy. Notably, the source

code employs a quadratic function for drag force, resulting in the absence of linear

damping coefficients in the SITL vehicle model. The parameters of this mathematical

model are presented below.

• mx = 16.75 kg (Mass coefficient of the x-axis)

• my = 16.75 kg (Mass coefficient of the y-axis)

• Iψ = 0.268 kgm2 (Inertia coefficient around z-axis)

• dnl1 = 48.28 Ns2/m2 (Nonlinear damping coefficient of x-axis)

• dnl2 = 62.08 Ns2/m2 (Nonlinear damping coefficient of y-axis)

• dnl3 = 7.08 Ns2/rad2 (Nonlinear damping coefficient of yaw-axis)

The SITL toolbox acquires desired motor inputs through MAVLink messages and

maps the desired PWM gains to the motor thrusts. Employing the inertia, mass, and

damping coefficients solves the system dynamics and updates the robot’s states. The

robot’s current state information can be accessed using the same MAVLink messages

employed during the experiments. This implies that the same control algorithm block

in the Python environment can be utilized for both the SITL and the actual robot

without any code modifications.
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Ground Station

Wi-Fi Unit

Unmanned Surface Vehicle

Wi-Fi Unit

Robot's StatesRC-CommandWi-Fi

Delay

Delay

Figure 1.5: Control loop for the system. Communication delay distribution has a 9.98

ms mean value. The control algorithm runs in the ground station with a constant 20

Hz frequency.

1.4.5 Communication Latency and Rate

The robot in this study communicates with the ground station via a Wi-Fi mod-

ule, which can introduce latencies. Figure 1.5 presents the communication diagram

for the control loop. Latencies may occur when receiving velocity states from the

ground station and transmitting motor inputs to the USV. To measure the latency of

MAVLink messages, one can utilize the ’TIMESYNC’ message type. Upon sending

the ’TIMESYNC’ message from the ground station, the message package stores the

host computer’s current time information. When the Pixhawk returns the signal to the

ground station, the time difference between the current time and the stored time pa-

rameter yields the signal’s round trip time (RTT). Half of the RTT value corresponds

to the communication latency.

Figure 1.6 demonstrates that the 95% confidence value is 29.998 ms, less than the

controller’s sampling time. The standard deviation of the latencies amounts to 9.36

ms. Out of 1000 samples, only 9 exhibit a latency exceeding the controller’s sam-

pling time. These findings indicate that using this communication method, a 20 Hz
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Figure 1.6: Communication Latency Histogram. The latency (RTT/2) of the 1000

message packages has 9.98 seconds mean value. 0.9% of the messages’ latency values

are above the sampling time of the control algorithm, which is 50 ms.

sampling rate for the control loop is reasonable. This experimental outcome justifies

the sampling rate selection for the present study.

The frequency of MAVLink messages can be configured from the host computer.

However, since the MavLink protocol does not operate on a real-time operating sys-

tem, the sampling rate may vary due to internal operations within the Raspberry Pi.

Additionally, as depicted in Figure 1.6, the Wi-Fi module can introduce latency into

the system. For this experiment, the frequency of MAVLink messages is set to 20 Hz.

The host computer receives messages without any wait command, and the delivery

time of the messages is recorded to determine the robot’s sampling rate distribution.

Figure 1.7 displays the distribution of the sampling times. The host computer mon-

itors 1,000 messages, with 900 of them falling within the range of 42 ms to 57 ms.

These results demonstrate that a considerable amount of data is received within the

50 ms sampling time. To enhance the sampling rate’s robustness against latencies,
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Figure 1.7: a : Sampling time changes in each step. b : Sampling time histogram.

Pixhawk is set to send MAVLink messages at 20 Hz. frequency. 96% confidence

parameters finds 5% outliers for both minimum and maximum sampling times. 90%

of the total messages are sent in [42, 57] ms time interval

the control algorithm loop in the host computer is fixed to 20 Hz, in addition to the

MAVLink data stream frequency settings.
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1.4.6 Velocity Measurements
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Figure 1.8: a : Linear velocity measurements of the robot during the stationary case

without RTK b : Linear velocity measurements of the robot during the stationary case

with RTK

In this section, the robot’s measurement signals are studied. As the USV moves in 3

DoF, body frame positions and velocities for these axes are assumed to be the system’s
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Figure 1.9: a : Linear velocity measurements of the robot after the square motion

without RTK b : Linear velocity measurements of the robot after the square motion

with RTK

states. ArduSub measures the states by applying Extended Kalman Filter to GPS

(NEO-M8P GNSS module) and IMU (Invensense MPU 6000 3-axis accelerometer

and gyroscope) measurements. Pixhawk updates each state and transfers the most
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Figure 1.10: a : Angular velocity measurement of the robot during the stationary case

without RTK b : Angular velocity measurement of the robot during the stationary

case with RTK
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Figure 1.11: a : Angular velocity measurements of the robot after the rotational mo-

tion without RTK b : Angular velocity measurements of the robot after the rotational

motion with RTK

recent measurements to the ground station with the MAVLink protocol.

Measurement noise plays a crucial role in implementing stable control strategies. The

characteristics of measurement noise can vary between stationary and moving cases,

as the robot’s motion can influence sensor measurements. Both scenarios can be an-

alyzed by employing a ground truth sensor and examining the discrepancies between
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the ground truth and the actual robot’s measurements. As stated in [41], measure-

ments taken with the RTK module can serve as ground truth information. Nonethe-

less, we utilize the measurements from the RTK module in actual experiments. In

this study, we conduct several measurement performance experiments to infer the de-

viations in the robot’s state measurements. We consider three cases during the exper-

iment: the robot in a stationary position, the robot moving in a rectangular trajectory,

and the robot undergoing rotational motion.

As depicted in Figure 1.8, utilizing the RTK module enhances the accuracy of lin-

ear velocity measurements. Without the RTK module, the standard deviation of the

surge and sway velocities are 0.0154 and 0.0156, respectively. However, with the

RTK module, these values decrease to 0.0045 and 0.0060. Figures 1.8 and 1.9 il-

lustrate the impact of the robot’s excitation on the measurement unit. In Figure 1.9,

t0 represents the point at which the excitation ended. The mean and standard devi-

ation are computed from t0 to the final time. Figures 1.8 and 1.9 demonstrate that

the robot’s movement in the surge and sway axes does not contribute to accumulated

measurement errors in the velocity states.

Figures 1.10 and 1.11 present the angular velocity measurements for the yaw axis

when the system is stationary and when it experiences rotational motion, respectively.

A slight change is observed in the mean and standard deviation. Notably, the orders

of magnitude for these parameters are smaller than those in the linear velocity mea-

surements. Furthermore, the robot’s rotation does not lead to an accumulation of

biased errors in yaw rate measurements. The RTK’s enhancement of the yaw rate

measurements is not substantial, given its role as a correction sensor for GPS. This

experiment was conducted in collaboration with another student focusing on feed-

back motion planning methods for this USV. The impact of positional measurement

noises on the robot is discussed further in his work [42].

1.5 Organization of The Thesis

Chapter 1 delineates the motivation and background of this study, specifying the prob-

lems addressed. It includes a literature review of the strategies implemented and
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provides a succinct overview of the technical features of the robot used in the exper-

iments. Further, it involves an analysis of the robot’s communication latency and an

examination of the noise distribution for the velocity signals.

Chapter 2 develops a mathematical model of a USV with 3 DoF based on the Newton-

Euler equations. It explicates the linear and nonlinear terms in the model and outlines

the assumptions made to simplify the model. The process of linearizing the derived

model around a reference trajectory as a time-varying system is also detailed.

Chapter 3 describes the data collection phase to acquire the parameters constituting

the robot’s mathematical model. It explains the system identification method applied

to the collected experimental data and describes the constrained cost function used

for parameter estimation. The application of the k-fold cross-validation method to

procure parameter distributions for different evaluation datasets is detailed. The re-

sults from the cross-validation are presented along with a selected parameter set for

the robot, complete with their evaluation costs.

Chapter 4 elucidates the velocity control methods devised for the robot to adhere to

specified reference trajectories and details the mathematical formulas and implemen-

tation techniques of the PI and TV-LQR algorithms.

Chapter 5 presents the test results of the robot, based on both the SITL and actual

experiments, the latter of which were conducted with the robot in the METU Yalıncak

DSI lake.

Chapter 6 outlines the conclusions drawn from this study and discusses planned future

endeavors.

Finally, the appendix includes TV-LQR derivations for the finite horizon continuous-

time cost function.
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CHAPTER 2

MATHEMATICAL MODEL

2.1 Approach

Figure 2.1: Three-dimensional representation of the robot and each body axis of the

USV. 3-DoF USV model included the surge, sway, and yaw axes.

This section elucidates the mathematical modeling of the USV. As shown in Figure

2.1, despite the USV’s body frame having the potential for six degrees of freedom

(DoF), the robot effectively moves in three DoF: surge, sway, and yaw. The subscript

’b’ denotes the body frame, while ’n’ stands for the global NED frame. To promote

clarity, we first define the notations used in the equations. The rotation matrix of the

robot, which serves to transform between the body and NED frames, is discussed

subsequently. We then derive the system’s equations of motion and expound upon

the physical meanings of the coefficients within these equations. We finalize the

dynamic model by applying simplification methods to the robot model. Linearization

of the dynamic model around a trajectory ultimately yields a time-varying state-space

model. The derivation of this time-varying system is explained in this section.
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When we look at environmental forces, hydrodynamic, Coriolis and centripetal, grav-

itational, and buoyancy forces can be given as examples [1]. Besides, the force of the

airflow and the wave forces were used as disturbances. Forces and the torque created

by motor inputs are modeled in the equations.

2.2 Notations

3-DoF USV robot can move in the surge, sway, and yaw direction. The surge axis

(x-axis) denotes the robot’s motion in a forward or backward direction. Transverse

movements take place in the sway axis (y-axis). The yaw axis (ψ-axis) indicates

the robot’s rotation around the z-axis. These 3 DoFs can be represented in a vector

form with SNAME standard symbolic representations [20]. Table 2.1 describes each

axis’s position, velocity, and force parameters. ψ-axis has an angle interval between

[−π, π).

Table 2.1: 3 DoF SNAME notations

3-DoF Force / Torque Velocity Position / Angle

1-Surge X u x

2-Sway Y v y

3-Yaw N r ψ

The vector representation of the robot’s motion offers several advantages. For in-

stance, the skew-symmetry and positive definiteness of the coefficient matrices pro-

vide insights into the robot’s stability, and vector operations expedite algebraic oper-

ations. The position vector of the robot is denoted as η = [x, y, ψ]T , according to the

notation in Table 2.1. The velocity vector can be represented as v = [u, v, r]T , and

the forces and torque vector can be depicted as τ = [X, Y,N ]T . For instance, the

robot’s position in the body frame is symbolically represented as ηb = [xb, yb, ψb]
T ,

while its position in the NED frame is given by ηn = [xn, yn, ψn]
T .

Nine parameters are used to represent the unknown coefficients of the mathematical
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model. The physical meanings of these parameters are given below,

• mx (kg) : Mass coefficient of the x-axis

• my (kg) : Mass coefficient of the y-axis

• Iψ (kgm2) : Inertia coefficient around z-axis

• dl1 (Ns/m) : Linear damping coefficient of x-axis

• dl2 (Ns/m) : Linear damping coefficient of y-axis

• dl3 (Ns/rad) : Linear damping coefficient of yaw-axis

• dnl1 (Ns2/m2) : Nonlinear damping coefficient of x-axis

• dnl2 (Ns2/m2) : Nonlinear damping coefficient of y-axis

• dnl3 (Ns2/rad2) : Nonlinear damping coefficient of yaw-axis

These coefficients feature prominently in the matrices of the dynamic equations. As

discussed later in Chapter 3, the system identification method is employed to estimate

the robot’s unknown coefficients. Each degree of freedom necessitates the estimation

of three parameters: mass or inertia, linear damping, and nonlinear damping coeffi-

cients.

2.3 Euler Angle Transformation

In this section, the kinematic properties of the USV are discussed. Motion vectors

of the robot can be written in different reference frame forms. Dynamic equations

of the robot are generally written in the body frame. However, the velocity data sent

from the robot uses the NED frame. The body frame chooses an arbitrary point on the

robot as the origin, and axes are defined according to the robot’s body shape (Figure

2.1). NED frame covers the tangent plane on Earth’s surface. The origin of the NED

frame can be an arbitrary point on this surface. The direction through the Earth’s

north pole defines the positive direction of the surge axis. The sway axis is parallel

to the equator line. The yaw axis is the rotation axis of the z-axis which increases
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down to the center of the Earth. The right-hand rule can find the positive direction

of the yaw axis. It is necessary to transform two frames. Euler-angle transformation

can rotate vectors from one frame to another according to the rotation axis. The surge

and sway axes describe the translational motion of the USV, yaw axis is the rotational

axis of the robot. One can see that Rz(ψ) Euler angle rotation matrix is necessary for

the transformation.

Operating as a planar vehicle, the robot rotates exclusively around the z-axis, resulting

in the angle transformation between the NED and body frames, as illustrated below.

vn = Rn
b (Θ)vb

Rn
b (Θ) = Rz(Ψ) =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (2.1)

Rz(ψ) is an orthogonal matrix. Any vector can be transferred from the NED frame

to the body frame by multiplying with the transpose of this rotation matrix (Rz(ψ)
T ).

Normally, the last column of the Rz(ψ) converts the z-axis in 6-DoF representation.

In this case, it is used to transform the yaw axis, which is identical in both frames.

2.4 Differential Equations

Equation 2.1 provides the general form of the differential equation for all velocity

components of each body axis of the robot, as delineated in [1]. This equation in-

corporates three distinct matrix forms for the coefficients. The M matrix accounts

for mass and inertia coefficients, while the C(v) matrix embodies the Coriolis and

centripetal terms. The D(v) matrix contains both linear and nonlinear damping coef-

ficients, addressing the water’s drag forces. The vectors g(η) and τ represent hydro-

static forces and motor forces, respectively.

M v̇ + C(v)v +D(v)v + g(η) = τ (2.2)
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2.4.1 Mass matrix

It is assumed that mass matrix is diagonal as given below,

M =


mx 0 0

0 my 0

0 0 Iψ

 (2.3)

M is the mass and inertia matrix of the robot. The robot’s rotation in the NED frame

creates a hydrodynamic added mass. ThisM matrix is the sum of added mass and the

rigid body mass of the USV. Since the magnitudes of the diagonal elements dominate

the system, non-diagonal elements are neglected.

2.4.2 Coriolis and Centripetal Matrix

C(v) represents Coriolis and centripetal matrix. It has two components, such as rigid

body matrix CRB(v) and added mass matrix CA(v) (Eqn. 2.4). Let us assume that

the origin of the body frame is the center of gravity. Hence the C(v) matrix can be

calculated using the M matrix terms as given below.

C(v) = CRB(v) + CA(v)

C(v) =


0 0 −myv

0 0 mxu

myv −mxu 0

 (2.4)

In the context of low-speed operations, the Coriolis and centripetal effects become

negligible. Given that the USV falls within the Semi-displacement vehicles cate-

gory according to the Froude number, it is reasonable to disregard the C(v) matrix.

Notably, the C(v) matrix is the sole matrix with non-zero off-diagonal elements,

resulting in coupled system dynamics. By modeling the system with decoupled equa-

tions of motion, we significantly reduce the complexity inherent to system identifi-

cation. Consequently, the system dynamics are modeled such that each axis’ differ-

ential equation contains two parameters: the velocity of the corresponding axis and

25



the external force acting on that axis. Furthermore, three unknown coefficients are

considered: mass/inertia, linear damping, and nonlinear damping coefficients.

2.4.3 Hydrodynamic Damping Matrix

The hydrodynamic damping matrix has two components: linear damping coefficients

and nonlinear damping coefficients. Wave excitation can create linear potential damp-

ing. Friction between the robot’s surface and the water causes linear and quadratic

damping effects. Especially at the corner points of the robot, vortex shedding may oc-

cur. In this case, vortex shedding damping exposes the robot to a nonlinear dumping

effect. Considering these damping effects, one can model the damping matrix below.

D(v) =


dl1u+ dnl1|u|u 0 0

0 dl2v + dnl2|v|v 0

0 0 dl3r + dnl3|r|r

 (2.5)

2.4.4 Hydrostatic Matrix

Hydrostatic forces contain buoyancy force and gravitational force. These forces are

called restoring forces. In equilibrium, these two forces cancel each other on the z-

axis (Eqn. 2.6). If the robot is exposed to a positive external force on the z-axis,

the buoyancy will increase as the floating body’s sinking volume increases. One can

see in Equation 2.7 that a spring force is applied to the robot because the (W − B)

becomes a function of the displacement in the z-axis. Hence, the spring structure of

mass-spring-damper models and the effect of hydrostatic coefficients are similar.

B = ρg∇

W = mg (2.6)

In Equation 2.6, ρ is the density of the water. ∇ shows the total volume of the sub-

merged part of the robot, and g is the gravitational acceleration. m indicates the total

26



mass of the USV.

Z ≃ −ρAxyz (2.7)

In Equation 2.7, Axy represents the surface area of the robot in the xy plane. Figure

2.2 represents the metacentric stability of the hydrostatic forces on the zy plane [1].

G is the center of the mass point of the robot, and B is the center of the buoyancy

force. A line passes between these two points. A new line is formed when the roll

angle changes with the effect of hydrostatic force. The intersection point of these two

lines is called MT . The intersection point formed by the pitch angle change is called

ML.

Figure 2.2: Metacentric stability of the robot in xy plane [1]

According to Fossen [1], g(η) can be written as given in Equation 2.8. Since the

robot’s velocity is small, the USV makes small angles in the roll and pitch axis. Hence

the 3-DoF USV model does not have rotation around the x and y axis in the math-

ematical model. The g(η) coefficients converge to zero in this situation. GMT is

calculated by roll angle displacement, described in Figure 2.2. GML vector can be

calculated with pitch angle displacement in xz planar coordinate system by applying

the similar steps for the GMT vector.
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g(η) =


(W −B)sin(θ)

−(W −B)cos(θ)sin(ϕ)

ρg∇(−GMLcos(θ) +GMT )sin(ϕ)sin(θ)

 ≃

0

0

0

 (2.8)

Upon integrating the specified modeling operations and simplifications, we can derive

the decoupled equations of motion for the three axes along which the robot moves.

As detailed below, the differential equations for the x-axis, y-axis, and the ψ angle

serve as the cornerstone for the physical modeling of the real robot. The following

system identification method relies heavily on this dynamic model.

mxu̇+ dl1u+ dnl1|u|u = Fx

myv̇ + dl2v + dnl2|v|v = Fy

Iψṙ + dl3r + dnl3|r|r = τψ
(2.9)

2.5 Thruster Model

The motors, by default, interpret inputs as PWM signals ranging from 1200 to 1900,

where any integer within this range modulates the duty cycle of the PWM signal. For

the sake of simplicity, we eliminate the offset term and posit that the robot’s motor

inputs accept values between -400 and 400. The motor achieves maximum velocity

in both forward and reverse directions with 400 and -400, respectively, while a dead-

zone region exists between the [−25, 25]. This motor input structure translates into

torque values, yielding a scaling factor between PWM gains and motor thrust value.

This relationship approximates a linear function as indicated in Equation 2.10, where

Fm represents the motor force and um signifies the motor input PWM gain.

Fm = 0.1023um
(2.10)
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
Fx

Fy

τψ

 =


−0.7070 −0.7070 0.7070 0.7070

−0.7070 0.7070 −0.7070 0.7070

−0.1888 0.1888 0.1888 −0.1888



Fm1

Fm2

Fm3

Fm4

 (2.11)

The motors, mounted on the robot at 45-degree angles as depicted in Figure 1.2, gen-

erate thrust transformed into force and torque parameters within the robot’s body axis

through angle transformations. A transformation matrix (Equation 2.11) is obtained

by considering the robot orientations. Given that the robot possesses more motors

than its three degrees of freedom, the resulting matrix is non-square and does not

have a defined inverse. This necessitates the use of control allocation to convert ref-

erence force and torque values into corresponding motor inputs for each degree of

freedom.

2.6 State Space Model

The conversion of the differential equations into a state-space model provides a crit-

ical step in the system linearization process around a reference trajectory. The state

vector of the USV, situated within the body frame, comprises six elements. These

elements encompass the surge and sway positions and the yaw angle as positional

attributes. Additionally, the surge and sway velocity, along with the yaw axis’s angu-

lar rate, constitute the velocity components. As delineated in Section 2.4, the robot

commands two force inputs for translational motion and one torque input for the rota-

tional axis. Consequently, the state vector, input vector, and state equation are defined

as presented in Equations 2.12 and 2.13.

x =
[
x y ψ u v r

]T
and u =

[
Fx Fy τψ

]T
(2.12)
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f(x,u) =



u

v

r

1
mx

(Fx − dl1u− dnl1u|u|)
1
my

(Fy − dl2v − dnl2v|v|)
1
Iψ
(τψ − dl3r − dnl3r|r|)


ẋ = f(x,u)

(2.13)

2.7 Linearization

There are two types of linearization. The system can be linearized around an arbitrary

equilibrium point or a time domain reference signal. Linearizing around an equilib-

rium point approximates the nonlinear model as a linear time-invariant system. The

linear model gives erroneous results as the robot moves away from the equilibrium

point. This method ignores the time-dependent variation of the trajectory followed by

the robot. The robot’s trajectory is sampled discretely, and the nonlinear model must

be linearized again at each sample point. When we linearize the system around a

trajectory, the nonlinear model turns into a linear time-varying model. In this model,

the state matrices of the system, A(t) and B(t), change over time. Once the reference

trajectory is determined, it is sufficient to linearize the system once. Thus, the model

of the robot is linearized at each time step on the reference signal. At the same time,

the computational power in the loop of the robot’s control algorithm is reduced.

ẋ = f(x(t),u(t), t) (2.14)

The nonlinear model provided above allows for deriving a linearized system model

along the trajectory for each time step. By linearizing around a nominal trajectory

[43], we can generate a linear time-varying state-space model for the USV. This

model, in turn, facilitates the design of a TV-LQR controller, enabling the USV to

follow the intended trajectory effectively.

By using the nonlinear state space model in the equations 2.12 and 2.13, one can
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define a new state vector δx(t) = x(t)−xd(t) such that the xd(t) is the time-varying

desired trajectory. A similar change of variables approach can be used for the input

vector such that δu(t) = u(t)−ud(t). ud(t) represents the reference input trajectory.

The reference input signal is calculated using the system dynamics and the reference

state vector. It is aimed to find A(t) and B(t) matrices of these changed input and

state vectors for the equation 2.15.

˙δx(t) = A(t)δx(t) +B(t)δu(t) (2.15)

One can find the A(t) and B(t) as given in the equation 2.16 below by calculating

the Jacobian matrix of the state function. Evaluating the Jacobian matrix on reference

signals gives the A(t) and B(t) matrices.

A(t) =
∂f

∂x

∣∣∣∣
x(t)=xd(t),u(t)=ud(t)

B(t) =
∂f

∂u

∣∣∣∣
x(t)=xd(t),u(t)=ud(t)

(2.16)

As a result, the linear time-varying state-space model of the USV can be obtained as

given in Equations 2.17 and 2.18, respectively.

A(t) =



0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 −1
mx

(dl1 + dnl1
ud(t)

2

|ud(t)|
+ dnl1|ud(t)|)

0 0 0 0

0 0 0 0

,

0 0

1 0

0 1

0 0

−1
my

(dl2 + dnl2
vd(t)

2

|vd(t)|
+ dnl2|vd(t)|) 0

0 −1
Iψ
(dl3 + dnl3

rd(t)
2

|rd(t)|
+ dnl3|rd(t)|)



(2.17)
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B(t) =



0 0 0

0 0 0

0 0 0

1
mx

0 0

0 1
my

0

0 0 1
Iψ


(2.18)
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CHAPTER 3

SYSTEM IDENTIFICATION

3.1 Approach

Figure 3.1: The USV’s view during the experiments in METU Yalıncak Lake.

Several methods are available for identifying underwater and surface vehicles, as dis-

cussed in studies by [40], [44], and [38]. The primary objective of such identification

is to facilitate the application of model-based control algorithms to the USV. Chap-

ter 2 elaborates on how the USV embodies three independent differential equations

for each axis—surge, sway, and yaw. These equations comprise three parameters:

mass, linear damping, and nonlinear damping coefficients. Data gathered from the

METU Yalıncak Lake (see Figure 3.2) inform the estimation of these nine parameters.

For a duration of 20 seconds, constant motor inputs ranging from %62.5 to %-62.5

PWM gains are applied to each axis to ascertain the vehicle’s constant input response.

Subsequently, three types of sinusoidal signals (M.sin(2π.0.1t), M.sin(2π.0.075t),

M.sin(2π.0.05t)), each bearing different frequencies, are employed to stimulate the
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system with varying input types. Here, ’M’ signifies the gain corresponding to %62.5

of the maximum PWM gain. In addition, some closed-loop control experiments con-

tribute data for parameter estimation. Despite the inclusion of the controller algorithm

in these experiments, it is possible to estimate the USV parameters by considering

the controller output as an arbitrary input signal for the robot during the closed-loop

experiment. Integrating data from closed-loop, constant input, and sinusoidal exper-

iments enhances the diversity of data available for the parameter estimation phase.

The process of estimating the robot’s unknown parameters involves the amalgama-

tion of three types of experiments, selecting 30 sets of experiments. These sets are

subsequently divided into ten folds to implement a k-fold cross-validation algorithm.

Implementing the cross-validation algorithm ensures the separate training and valida-

tion datasets provision. The parameter estimation is facilitated through the creation of

a constrained nonlinear cost function. The function is minimized using the "fmincon"

algorithm, a method of nonlinearly constrained optimization [45].

3.2 System Identification Experiments

Applying constant force input to the system cancels out the derivative terms of the

velocity. Linear and nonlinear damping coefficients are effective during these exper-

iments’ settling times. The mass or inertia coefficient is only effective during the

transient response time of these experiments.

Figure 3.2 presents the yaw axis’s open-loop constant velocity responses. Notably,

the yaw axis experiments are minimally affected by lake current and wind noise,

attributable to the USV’s rotational motion during these tests. As constant wind and

current forces exert their influence in the robot’s xy-plane, the rotation around the

z-axis experiences the least disturbance.

Sinusoidal signals excite the system with periodically changing thrust inputs. Figure

3.3 shows the USV’s response for different sinusoidal PWM gain inputs with different

frequencies. For each axis, PWM gains are applied for one direction only, and the

other two motion axes’ inputs are assumed to be zero.

Closed-loop experiments, integral to this study, are conducted during the robot’s tra-
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Figure 3.2: Velocity signals for the open-loop constant motor gain experiments for

the heading axis. Any controller type is not applied during the constant input experi-

ments. Labels indicate the percentage of the applied gain over maximum gain value

ratio.

jectory tracking tests. These tests necessitate data collection from sinusoidal and

piecewise constant velocity signal tracking experiments for both TV-LQR and PI con-

troller algorithms. In this setup, the controller output is assumed to be an input signal

for the system dynamics. Given that the control algorithms are designed to track ref-

erence velocity signals across all motion axes, the inputs for these three motion axes

might not always be zero. This implies that the same experimental result could be

employed to estimate the unknown system dynamics for each motion axis.

Drawing from a pool of 30 distinct experiments for each motion axis, we assemble

the dataset for the optimization algorithm. We employ the k-fold cross-validation

algorithm to partition the data into k groups or folds. Each group is designated as

validation data once, while the remaining k-1 groups serve as training data for the

optimization algorithm. This approach ensures that each parameter is estimated k

times, and each estimation progression is evaluated with different experiments. In
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Figure 3.3: Velocity signals for the open-loop sinusoidal motor gain experiments for

the heading axis. Any controller type is not applied during the this experiments.

Labels indicate the frequency of the applied motor inputs. Amplitude of the motor

inputs is 62.5% of the maximum gain limit of the motors.

Exp-1 Exp-2 Exp-3 Exp-30

Fold-1 Fold-2 Fold-3 Fold-10

Exp
Exp
Exp

Exp
Exp
Exp

Exp
Exp
Exp

Exp
Exp
Exp

Figure 3.4: Fold generation with all experiments. 30 experiments are randomly split

into 10 folds

this study, we set k at 10, and randomly divide the 30 experiments into ten folds. Each

fold encompasses three randomly selected experimental data, as Figure 3.4 depicts.

We fix the random function seed parameter to ensure reproducible results.

36



3.3 Cost Function

Predicted
state vector

iteration

Actual
state vector

Actual   
input vector

iteration

ODE45
MSE

ODE45
MSE

Figure 3.5: Block diagram for the cost calculation as first and second iterations. The

prediction horizon is 100, and the mean squared error (MSE) calculates the error

between the actual experiment and the prediction horizon.

Nonlinear optimization methods can be used to determine the parameters of the math-

ematical model using a cost function that compares real-world models and the esti-

mated numerical solution of the mathematical model obtained by the ordinary dif-

ferential equation solver. The general form of the cost function is given below. n is

the number of estimated parameters. In this study, n is assumed to be three for each

motion axis.

min
x∗

f(x)

x = (x1, x2, x3, ..., xn) ∈ Rn
(3.1)
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Constraints for each parameter are given below. All parameters are considered posi-

tive, as the negative model parameters are physically meaningless.

1000 > x > 0 (3.2)

Given the decoupled nature of the differential equations for each axis, we can esti-

mate the system parameters of the surge, sway, and yaw axes independently. These

parameters include the mass coefficient, linear damping coefficient, and nonlinear

damping coefficients. Once estimated, these differential equations are solved via nu-

merical calculations. We then compare the predicted and actual models using the

mean squared error (MSE).

The algorithm for the cost function is outlined below. Here, τ represents the number

of steps needed to form a window in all samples, serving as a prediction horizon for

each selected actual data point (see Figure 3.5). The cost function solves the system

dynamics for each selected sampling point, considering the corresponding sampling

point xactual(j) as the initial point and τ as the number of time steps. xactual and

xprediction denote the actual experiment samples and the numerical solution of the

predicted model, respectively. Jexp(j) is the mean squared error between the actual

and the prediction samples. x0 represents the initial point for the ODE solver.

As shown in Figure 3.6, each prediction horizon is applied to every ten sampling

points of the experiment. Increasing the selected sampling point frequency requires

more computational power to evaluate the cost function. Adjusting the prediction

horizon affects the noise factors—increasing it dominates the initial point noises

while decreasing it dominates environmental noises.

MATLAB "fmincon" optimization function is used for the parameter estimation. This

built-in function optimizes nonlinear constrained cost functions by applying Interior-

Point algorithm. Interior-Point method obtains Barrier functions for the constrains

of the optimization function. This Barrier functions approaches to the infinity as

parameters approaches to the constrains.
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Algorithm 1 Cost function
1: τ ← fixed time step number

2: for i = 1: Number of experiments do

3: xactual← Real experiment states s.t xactual ∈ R2×m

4: uactual← Real experiment inputs s.t uactual ∈ Rm

5: for j 1 : 10 : m do

6: for k 1 : τ do

7: x0 ← xactual(j)

8: xprediction(k)← ode45(x0, uactual(k))

9: end for

10: Jexp(j)← mse(xprediction, xactual(j : j + τ))

11: end for

12: costi ← mean(Jexp)

13: end for

14: return mean(cost)

iteration

Total CostCost

ODE45
MSE

Figure 3.6: General form of the cost calculation and mean operation.
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Figure 3.7: Training and the evaluation process for the k-fold cross validation
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Figure 3.8: a : x component of the mass (mx) parameter distribution by 10-fold cross-

validation b : the surge axis linear damping (dlx) parameter distribution by 10-fold

cross-validation

3.4 k-fold cross-validation

Our optimization method makes gradient-based calculations to update the parameters.

As it is not a stochastic global search algorithm such as Particle Swarm Optimization

(PSO) [46] and Genetic algorithm, the optimal solution can stick in the local minima.

We applied a k-fold cross-validation algorithm to solve this problem for our opti-

mization procedure. K-fold cross-validation splits the identification experiments into

k groups randomly. Each group’s cost function is trained with the other k-1 groups,
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Figure 3.9: a : x component of the nonlinear damping (dnlx) parameter distribution

by 10-fold cross-validation b : 10-fold cross-validation costs distribution for the surge

axis in MSE.
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Figure 3.10: a : y component of the mass (my) parameter distribution by 10-fold

cross-validation b : the sway axis linear damping (dly) parameter distribution by 10-

fold cross-validation

and optimal parameters are evaluated with the corresponding group. This system

makes different dataset groups for the evaluation and training phases (fig. 3.7). The

cross-validation method provides a parameter distribution as the training is done for

k times. This distribution can help us understand the optimization parameter devi-

ations in randomly selected experiment groups. This study selects constant input,
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Figure 3.11: a : y component of the nonlinear damping (dnly) parameter distribution

by 10-fold cross-validation b : 10-fold cross-validation costs distribution for the sway

axis in MSE.

sinusoidal input, and closed-loop experiments for each robot axis. These experiments

are divided into ten groups randomly.

Table 3.1: Parameter Estimation results. The median value for each parameter is

considered as the best parameter. Cost indicates the evaluation performances of the

median values. The Max iterations value is the maximum iteration limit of the opti-

mizer for each fold. The mass, linear damping, and nonlinear damping coefficients

contain added water effects.

Parameter Estimation

Parameter Surge Sway Yaw

Mass 103.6370 kg 157.1003 kg 3.8175 kgm2/rad

Linear Damping 24.4238 Ns/m 118.2121 Ns/m 3.9443 Ns/rad

Nonlinear Damp. 64.1989 Ns2/m2 5.4556 Ns/m 1.8720 Ns2/rad2

Max Iterations 400 400 400

Cost (MSE) 8.2911 10−4 4.1113 10−4 1.5428 10−3

According to the figures 3.8, 3.9, 3.10 and 3.11, the surge and the sway axis parame-

ter distributions are obtained, and the evaluation metrics are shown. The robot’s rigid

body mass is measured as 12.4 kg. The surge and the sway mass component estima-
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Figure 3.12: a : yaw component of the inertia (Iψ) parameter distribution by 10-fold

cross-validation b : the heading axis linear damping (dlψ) parameter distribution by

10-fold cross-validation
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Figure 3.13: a : yaw component of the nonlinear damping (dnlψ) parameter distribu-

tion by 10-fold cross-validation b : 10-fold cross-validation costs distribution for the

heading axis in MSE.

tions are 103.64 kg and 157.10 kg (Table 3.1), respectively. Water has an added mass

effect, so finding more extensive mass components for both axes is reasonable. Ver,

we must make a computational fluid dynamics analysis to validate the added mass

effect of the water. As the catamaran-type floatings aggravate the sway motion in the

water, the added mass component of the sway axis is more significant than the surge
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axis’ added mass coefficient.

According to the figures 3.12 and 3.13, the heading axis parameter distributions and

the evaluation metric deviations can be analyzed. As we know the volume of the

robot, we can calculate the inertia term around the heading axis as 0.61 kgm2 by as-

suming that the volume is uniform. The heading axis inertia estimation of the robot

is 3.8175 kgm2. The difference between the approximate rigid body inertia and the

inertia estimation is accepted as added inertia effect of the water. We do not have

a chance to validate the parameter estimation with more accurate analytical parame-

ter calculations. As the parameter deviations of the heading axis have a reasonable

magnitude, we can use these parameters to test the model-based TV-LQR controller.
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Figure 3.14: Prediction of an example sinusoidal input experiment and actual velocity

measurements for the surge axis.

In figure 3.14, the dynamic model is simulated with the selected parameters. The red

line indicates the numerical solution of the dynamical system with 250sin(2π.0.1t)

input PWM signal for the surge axis. The blue line indicates the real robot’s response

to the same input signal.
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CHAPTER 4

CONTROL OF THE ROBOT

4.1 PI Controller

PI Controller Control
Allocation

+

-

Figure 4.1: The USV PI controller block diagram

PI control is a closed-loop control technique with negative feedback. The PI controller

takes the plant’s output as a controlled variable and feeds it back to the controller by

subtracting it from a reference signal (Figure 4.1). The reference signal and controlled

variable assign the controller type. In this case, the velocity vector of the USV is used

as a controlled signal and velocity control is aimed. The input of the PI, an error

signal between the robot’s body velocities and the reference velocities, is given in

Equation 4.1. vb and vd indicate the body and desired velocity, respectively.

vb =


ub

vb

rb

vd =


ud

vd

rd


eb = vd − vb st. eb ∈ R3

(4.1)

The PI controller manipulates the error signal in two decoupled forms (Equation 4.2.

It scales the current error signal with a constant coefficient KP to obtain a propor-
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tional term, and the PI controller calculates the accumulated error in the experiment

by taking the integral of the eb(t). This integral term is also scaled with a constant

coefficient KI . Accumulating the error signal decreases the steady-state error. Since

the USV is Multi Input Multi Output (MIMO) system, three decoupled PI controllers

are designed for each axis. As the inputs of the closed-loop systems are desired ve-

locities in 3-DoF, Manipulated variables of the robot become forces and torque values

in 3-DoF. Mapping these force/torque values into motor commands is the task of the

control allocation block. The control allocation block converts the three-dimensional

vector into a four-dimensional motor command using Equation 2.11 and motor input

constraints. The conventional PI controller needs a parameter search of the PI coef-

ficients for better control performances. In this study, the nonlinear MIMO robot’s

PI tuning is done with many experimental trials, and the best parameter results are

analyzed.

τPI = Kpeb(t)+KI

∫ t

0

eb(t̂)dt̂ (4.2)

4.2 TV-LQR

LQR, Linear Quadratic Regulator, is a model-based optimal control method widely

used in industry and scientific research. As with other optimal control problems, LQR

tries to minimize a cost function of a dynamic system. It is suitable for linear systems,

and the cost function is quadratic (Equation 4.4). Increasing the Q matrix maximizes

tracking performances of the reference state trajectories. Decreasing the R matrix

penalizes the USV’s input signals less. Hence the power consumed by the motors

increased. One must choose the most suitable Q and R matrices for the requirements.

The solution of the cost function is a gain matrix, K, that takes the full-state feedback

from the robot to control.

ẋ = A(t)x+B(t)u (4.3)

The USV’s linear time-varying dynamic model is obtained. Assuming that the system

is completely controllable for every time t [47], one can use the time-varying model
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(Equation 4.3) in LQR as TV-LQR. State feedback gain matrix becomes a time series

signal in time-varying cases. Since our system is fully actuated and the rank of the

transformation matrix between motor inputs and the robot’s body axes is equal to the

DoF number, we can assume that the USV is completely controllable.

The finite horizon continuous-time cost of the LQR is given in Equation 4.4. Finding

the u∗(t) for t ∈ [t0, T ] is the goal of this cost function [48].

J =

∫ T

t0

[xTQx+ uTRu]dt+ xT (T )Qfx(T ) (4.4)

The optimal control input and the K(t) gain matrix of the TV-LQR is given in Equa-

tion 4.5. The negative sign of the control signal indicates the negative feedback of

the closed loop system. The x(t) term of the input signal shows that this feedback

is full-state feedback of the USV. The row number of the gain matrix is equal to the

input size of the robot, and the column number indicates the state vector dimension.

u∗(t) = −R−1B(t)TP (t)x(t)

K(t) = R−1B(t)TP (t)
(4.5)

u(t) = −K(t)(x(t)− xd(t)) + ud(t) (4.6)

The control input in Equation 4.5 can be directly applied when the system has zero

reference signal. Most of the time, desired trajectories are not zero. One can remem-

ber that the change of variable operation is done in the Section 2.7. This change of

variable operation should be reversed as given in Equation 4.6. The ud is desired

input signal, and the xd is desired trajectory vector for all states of the robot.

4.3 Control Allocation

Control allocation aims to map the USV’s desired torque values into motor com-

mands. Manipulated variables of both PID and TV-LQR are a vector with elements

containing expected thrust values in the surge, sway, and yaw axis. The allocator
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distributes these thrust values to the motors. Although the system is decoupled in

3 axes, the robot can simultaneously have a desired nonzero trajectory in more than

one axes. In this case, the allocator must distribute the signal in 3 axes to the motors,

considering the motor constraints.

T+ = T T (TT T )−1 (4.7)

u(t) = K−1T+τ (4.8)

As is known, one of the simple and frequently used control allocation methods is the

Moore-Penrose pseudo-inverse method. As mentioned, a T matrix (Equation 2.11)

distributes motor commands over 3 degrees of freedom. T matrix is a transformation

matrix between motor thrusts and the forces and torques for each body axis. Since T

is not a square matrix, its inverse is not defined. However, the pseudo-inverse matrix

of the T matrix can be calculated (Equation 4.7). This matrix is used in calculating

motor inputs as in Equation 4.8. TheK matrix of the equation is the matrix that scales

the motor command to the torque value. There is no unique solution to distribute the

thrust in 3 axes to four motors. Without constraints, the pseudo-inverse matrix can fit

three torque parameters into four motor variables as a linear least squares technique.

Motor inputs are clipped after the control allocation is finished. Since the constraints

are not considered during the allocation, clipping the motor inputs later would result

in failures when multiple nonzero reference signals are tested simultaneously.

Another method for control allocation is solving the allocation problem as an opti-

mization problem by quadratic programming. Quadratic programming optimizes a

quadratic cost function by considering the constraints.

In this study, CVXOPT [49] python library is used to implement the quadratic pro-

gramming in the control allocation problem. A standard quadratic optimization prob-

lem is given in Equation 4.9. The control allocation problem should be transformed

into the standard quadratic programming format. A new state variable ξ is defined to

find the best motor inputs that minimize the error between the desired and predicted

torque vector (Equation 4.10). An additional ξ parameter helps us modify the control
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allocation problem as a linear program. Quadratic cost terms minimize the squared of

the motor inputs to find the least squared optimal solutions. Increasing these quadratic

terms results in less power consumption but slow response time.

minimize
1

2
xTPx+ qTx

s.t Gx≤h

Ax = b

(4.9)

minimize
[
0 0 0 0 −1

]T
x = −ξ

s.t x =
[
u1 u2 u3 u4 ξ

]T
−400≤ui≤400 for i ∈ [1, 2, 3, 4]

0≤ξ≤1
−0.7070 −0.7070 0.7070 0.7070 −τx
−0.7070 +0.7070 −0.7070 0.7070 −τy
−0.1888 0.1888 0.1888 −0.1888 −τψ

x =


0.0

0.0

0.0



(4.10)
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CHAPTER 5

RESULTS

5.1 Performance Metrics

5.1.1 Sinusoidal Velocity Tracking Performances

• Tracking Error: Tracking error measures the average error between the de-

sired and the actual velocity signals. There are different calculation methods

for tracking errors. Mean Absolute Percentage Error (MAPE) is chosen for this

study. MAPE value gives the absolute error ratio between the error and desired

parameter for each sample. Equation 5.1 shows the MAPE calculation. N is

the number of samples. vref and vact are desired and actual velocity signals

for the robot. One of the disadvantageous of this method is MAPE value di-

verges when the reference signal sample is too small. Hence, it is unsuitable

for tracking error analysis around the zero value.

1

N

N∑
i=1

∣∣∣∣vref − vactvref

∣∣∣∣× 100% (5.1)

• Phase Lag: The difference in phase between the reference and the system re-

sponse is considered phase lag. It is calculated using the Fast Fourier Transform

(FFT) algorithm. The FFT algorithm provides the phase of the signal in the fre-

quency domain. As we know the frequency of the reference and the actual

velocity signals, phase lag can be calculated by subtracting the reference veloc-

ity phase angle of the FFT outputs around the corresponding frequency value

from the actual velocity signal’s phase angle.

• Control effort: Integral of the squared motor thrust signals provides us a metric
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for energy usage of the robot during the experiments. Motor PWM gain can be

transformed into thrust by multiplying with a constant scaling factor. Using the

thrust (N) parameter, control effort can have a physical unit (N2s), and some

physical inferences can be made.

• Maximum Tracking Error: Since percentage overshoot is well-defined for

the system’s step response, one can consider the maximum tracking error of the

robot as a measurement for the deviation of the tracking performances. Since

the initial velocity of the desired velocity and the robot’s initial velocity can

be different, tracking error from the initial point to the settling point is not

considered for the maximum tracking error.

5.1.2 Step Response Performances

• Tracking Error: MAPE is unsuitable for the step functions as the desired

velocity might be zero for some time intervals. Normalized mean square er-

ror (NMSE) is suitable for these reference signals. The main advantage of

the NMSE from mean square error is its normalization term. In this way, we

can compare the performance of experiments with different amplitudes using

NMSE. In equation 5.2, the NMSE formula is given for the desired and the

actual velocities.

NMSE =
1

N

∑N
i=1(vref − vact)2∑N

i=1 v
2
ref

(5.2)

• Percentage Overshoot: This metric is practical for transient time performance

measurement. It is a ratio between the tracking error during the peak velocity

of the robot and the steady-state value.

• Control Effort: Control effort is calculated with the same method for the si-

nusoidal velocity tracking experiments. The energy consumption of PI and

TV-LQR controller can be deduced from this metric.

• Settling Time: Settling time is the time interval that the transient response of

the robot is completed. Settling time is assumed to be when the tracking error

remains in the 5% steady-state value band.
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5.2 Sinusoidal Tracking Responses

In this section, The USV’s simulation and experimental results are explained for the

sinusoidal velocities. Since the USV uses Ardupilot Framework, one can simulate

the dynamics of the USV with the ArduSub module of the ArduPilot’s Software in

the Loop (SITL) toolbox [50]. Sinusoidal experiments cover velocity tracking per-

formances of PI and TV-LQR controllers when sinusoidal reference velocities (Eqn.

5.5) are applied to the surge and the heading axes at the same time. The sway axis

velocity is tried to be fixed at the zero velocity. Sinusoidal signals also have an ar-

bitrary constant velocity term. This term is given to make sure that robot moves in

the positive direction of the heading and the surge axes. The constant velocity term

provides the robot to make an elliptic motion.

KP =


1000

1000

10

 , KI =


2000

2000

200

 , (5.3)

Assume that Q and R matrices are chosen as below,

Q =



10000 0 0 0 0 0

0 10000 0 0 0 0

0 0 1000 0 0 0

0 0 0 10000 0 0

0 0 0 0 10000 0

0 0 0 0 0 50


, R =


0.01 0 0

0 0.01 0

0 0 0.01



(5.4)

TV-LQR controller is computed with constant Q and R matrices as described in chap-

ter 2. Each experiment is performed in multiple replicates, and the parameters that

give the most optimal result are used. Using any optimization algorithm in parameter

selection is excluded from this study’s content. The robot’s nonlinear effects required

different parameters for each experiment. Hence, these parameters are determined
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by repeating each experiment a sufficient number of times. Equation 5.4 shows the

example Q and R matrices configuration, which is used during the sinusoidal velocity

tracking experiments of the SITL. As the system is spherical in the SITL environ-

ment, the same parameters are selected for the surge and sway axes. Since the yaw

axis has a faster response than the x and y axes, small values are chosen for the yaw

axis. A similar procedure is applied for the PI controller gains. Equation 5.3 gives

the proportional (KP ) and the Integral (KI) term coefficients of the PI controller for

the SITL.

u = 0.3sin(2π0.04t) + 0.5

v = 0

r = 0.2sin(2π0.04t) + 0.6

(5.5)
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Figure 5.1: a : x velocity vs. time for sinusoidal reference velocities in the equation

5.5. "-SITL" suffix indicates the SITL results. PI and TV-LQR are real experiment

results. b : x velocity error vs time for sinusoidal reference velocities in the equation

5.5. Difference between the robot’s surge velocity and the desired surge velocity for

each sampling point.

In figure 5.1 and 5.2, the robot’s surge and heading velocity responses are observed

with respect to time steps.The USV’s motor inputs during this experiment are shown

in figure 5.3. Time-varying gain of the TV-LQR. "-SITL" suffix indicates the SITL

results. PI and TV-LQR are actual experiment results. Each figure is obtained from
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Figure 5.2: a : yaw rate response of the system with 0.04 Hz sinusoidal reference

signal (Eqn. 5.5). b : yaw rate error vs time for PI and TV-LQR controllers. Differ-

ence between the robot’s heading velocity and the desired heading velocity for each

sampling point.

the same experiment logs. Table 5.1 and 5.1 indicate the performance metrics of the

sinusoidal tracking experiment. "-S" suffix indicates the SITL results. Controller

types without a suffix are the actual robot experiments.

Table 5.1: Performance metrics for the surge axis during the sinusoidal velocity track-

ing (Eqn. 5.5). The control effort is the total control effort applied for three axes’

velocity tracking missions simultaneously. Tracking errors are not considered for the

maximum calculation until the settling time of the experiments.

Surge Velocity Tracking Performances of PI and TV-LQR

Controller
Tracking Phase Lag Control effort Max. Tracking

Type Error (MAPE) (rad) (N2s) Error

TV-LQR-S 2.6799 % 0.0420 2.4382× 104 0.0356m/s

PI-S 3.7340 % 0.0896 2.5651× 104 0.0979m/s

TV-LQR 7.2272 % 0.0564 3.1886× 104 0.0527m/s

PI 7.7090 % 0.1732 4.4365× 104 0.0720m/s

According to table 5.1, tracking error is smoothly decreased by TV-LQR in both SITL

and actual robot. Since the integral term of the PI controller causes a phase lag in the
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Figure 5.3: Sinusoidal velocity tracking in the x and yaw-axis (Eqn. 5.5), motor input

signals for PI and TV-LQR.

Table 5.2: Performance metrics for the heading axis during the sinusoidal velocity

tracking (Eqn. 5.5). Phase lag approximately converges to the zero for PI-S. Control

effort is the total control effort to track three reference velocity signals in Equation

5.5

Yaw Rate Tracking Performances of PI and TV-LQR

Controller
Tracking Phase Lag Control effort Max. Tracking

Type Error (MAPE) (rad) (N2s) Error

TV-LQR-S 1.7347 % −0.0769 2.4382× 104 0.0359 rad/s

PI-S 1.7961 % ≈ 0.00 2.5651× 104 0.0335 rad/s

TV-LQR 3.9007 % 0.1641 3.1886× 104 0.0471 rad/s

PI 2.9584 % 0.1026 4.4365× 104 0.0644 rad/s
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system actual robot’s phase lag for the surge axis is calculated as 0.1732 rad, which is

three times bigger than the phase lag of the TV-LQR. Since the real robot has a higher

mass coefficient in the surge axis, experiments need more control efforts for the same

desired velocity signals. Maximum tracking error helps find the most deviated point

of the experiments after the transient response of the robot. For all experiments, the

maximum tracking error is less than 0.1 m/s. TV-LQR outperforms the PI controller

in terms of the maximum tracking error.

According to table 5.2, TV-LQR performs less tracking error than PI in the simula-

tor experiments. However, the yaw velocity tracking of the TV-LQR controller has

more tracking errors in actual experiments. While we know the exact model parame-

ters of the SITL USV, one can see that system identification is applied for the actual

robot’s parameter estimation. This result shows that obtaining more accurate model

parameters improves the TV-LQR performances. When the phase lag is considered

TV-LQR-S experiment’s phase lag is negative. Since the TV-LQR is an optimal con-

trol policy, velocity response might lead to the reference signal. The PI controller

might increase the robot’s output phase as it has only one pole at the origin.

u = 0.15sin(2π0.04t) + 0.25

v = 0

r = 0.1sin(2π0.04t) + 0.3

(5.6)

Figure 5.4 and 5.5 show low-velocity sinusoidal tracking experiments. The peak

values for the surge and heading velocities are reduced by half as given in the equation

5.6. By performing this type of experiment, small velocity elliptic maneuvers of the

surface vehicles are represented. As our USV has a dead zone region for the motor

inputs between the PWM gain interval, [−25, 25], minor disturbances might happen

around this region (fig. 5.5). Figure 5.5 indicates that this problem is seen in the SITL

experiments as motors 2 and 4 go into the dead zone at the same time. Since these two

motors are located on the same side of the robot, they affect the symmetrical structure

of the heading force components of the motors.

In table 5.3, all controller types performed less control effort than the high-speed si-

nusoidal tracking case (Eqn. 5.5). As the MAPE value is a normalized value with
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Figure 5.4: a : x velocity vs. time for sinusoidal reference velocities in the equation

5.6. LQR-SITL indicates TV-LQR controller experiment in the SITL. b : x veloc-

ity error vs time for sinusoidal reference velocities in the equation 5.6. Difference

between the robot’s surge velocity and the desired surge velocity for each sampling

point.
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Figure 5.5: a : yaw rate response of the system with 0.04 Hz sinusoidal reference

signal (Eqn. 5.6). b : yaw rate error vs time for PI and TV-LQR controllers. Differ-

ence between the robot’s heading velocity and the desired heading velocity for each

sampling point.

respect to the reference signal, one can compare the MAPE results of the same con-

trol types between high and low-velocity experiments. As the peak velocity of the
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Figure 5.6: Sinusoidal velocity tracking in the x and yaw-axis (Eqn. 5.6), motor input

signals for PI and TV-LQR.

Table 5.3: Performance metrics for the surge axis during the sinusoidal velocity track-

ing (Eqn. 5.6). The control effort is the total control effort applied for three axes’

velocity tracking missions simultaneously. Tracking errors are not considered for the

maximum calculation until the settling time of the experiments.

Surge Velocity Tracking Performances of PI and TV-LQR

Controller
Tracking Phase Lag Control effort Max. Tracking

Type Error (MAPE) (rad) (N2s) Error

TV-LQR-S 3.2823 % 0.0756 6.3283× 103 0.0193m/s

PI-S 3.9340 % 0.0948 6.6432× 103 0.0206m/s

TV-LQR 6.3483 % 0.0560 8.4124× 103 0.0183m/s

PI 5.1140 % 0.1197 8.5634× 103 0.0227m/s
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Table 5.4: Performance metrics for the heading axis during the sinusoidal velocity

tracking (Eqn. 5.6). Phase lag approximately converges to the zero for PI-S.

Yaw Rate Tracking Performances of PI and TV-LQR

Controller
Tracking Phase Lag Control effort Max. Tracking

Type Error (MAPE) (rad) (N2s) Error

TV-LQR-S 2.0180 % −0.0555 6.3283× 103 0.0255 rad/s

PI-S 2.3063 % ≈ 0.00 6.6432× 103 0.0324 rad/s

TV-LQR 3.4247 % 0.1432 8.4124× 103 0.0235 rad/s

PI 1.9669 % 0.0241 8.5634× 103 0.0643 rad/s

experiment increases the robot’s Coriolis and centripetal effects, the tracking error

parameter increases. These effects are coupled in 3 DoF; however, PI and TV-LQR

apply decoupled control signals for 3 DoF. PI controller has 0.1197 rad and 0.1737

rad phase lag in the low and high-velocity actual experiments, respectively. The mass

over linear damping ratio gives approximate information about the phase lag of the

open loop system. As the surge axis’ mass over linear-damping ratio is more signif-

icant than the heading axis’ ratio, the PI controller’s phase lag can be noticed in the

surge axis’ performance metrics.

5.3 Step Responses

These experiments generate piecewise constant velocity signals to make the robot fol-

low a rectangular shape path. The surge and sway axes are used, and the yaw is held at

zero velocity. The robot’s motion interval is separated into four pieces. First, zero and

0.8m/s velocities are applied on the sway and surge axes, respectively. Second, surge

velocity becomes zero while the sway axis is 0.4m/s. Then the negative direction of

these two steps is applied to complete the rectangular shape. Equation 5.7 shows the

piecewise constant velocity signals in more detail. These types of velocity responses

are rare in surface vehicles. Our motivation for these experiments is to see the step

responses of the robot in the surge and sway axes and perform some maneuvers that

classical ship-type underactuated USVs cannot perform.
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Figure 5.7: a : x velocity vs. time for the piecewise constant velocity equation 5.7.

LQR-SITL indicates TV-LQR controller experiment in the SITL. b : x velocity error

vs time for the piecewise constant velocities in the equation 5.7. Difference between

the robot’s surge velocity and the desired surge velocity for each sampling point.

Table 5.5 compares PI and TV-LQR performances. As the weight of the TV-LQR is

significant, the system response is faster than the PI controller in SITL. The under-

damped response for the TV-LQR and overdamped response for the PI controller can

be seen in both SITL and actual experiments (Fig. 5.7 and 5.8).
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Figure 5.8: a : y velocity vs. time for the piecewise constant velocity equation 5.7.

LQR-SITL indicates TV-LQR controller experiment in the SITL. b : y velocity error

vs time for the piecewise constant velocities in the equation 5.7. Difference between

the robot’s surge velocity and the desired surge velocity for each sampling point.

Table 5.5: Performance metrics for the surge axis during the step responses (Eqn.

5.7). The control effort is the total control effort applied for three axes’ velocity

tracking missions simultaneously. Percentage overshoot and settling time are calcu-

lated for the first part of the piecewise velocity function. Tracking error is obtained

from each experiment’s entire time interval.

Surge Velocity Tracking Performances of PI and TV-LQR

Controller
Tracking Settling Time Control effort Percentage

Type Error (NMSE) (sec) (N2s) Overshoot

TV-LQR-S 0.0142 0.9512 2.5955× 104 7.0640 %

PI-S 0.0261 3.0538 2.4658× 104 −
TV-LQR 0.0661 7.4092 6.6225× 104 20.2050 %

PI 0.0576 3.4543 4.2144× 104 −
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Figure 5.9: Step responses in the x and y axes (Eqn. 5.7), motor input signals for PI

and TV-LQR.

Table 5.6: Performance metrics for the sway axis during the piecewise constant ve-

locity tracking (Eqn. 5.7).

Sway Velocity Tracking Performances of PI and TV-LQR

Controller
Tracking Settling Time Control effort Percentage

Type Error (NMSE) (sec) (N2s) Overshoot

TV-LQR-S 0.0142 3.3667 2.5955× 104 6.7462 %

PI-S 0.0017 3.3166 2.4658× 104 −
TV-LQR 0.0053 8.4731 6.6225× 104 12.9492 %

PI 0.0070 4.8185 4.2144× 104 −
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CHAPTER 6

CONCLUSIONS

In this study, Mathematical modeling and velocity control of a new design USV is

aimed. By comparing the model-based TV-LQR and conventional PI controller, tra-

jectory tracking performances of the fully-actuated robot are explained. A compre-

hensive literature review has been carried out. Autonomous vehicle technologies in

the marine industry and their regulations are presented. Degrees of freedom and the

Froude number of the robot are calculated to learn the vehicle group of the robot. The

physical properties of the robot are explained. For the robot to move on every axis,

four thrusters are placed on the robot’s skeleton symmetrically. A custom robot frame

has been made in Ardupilot autopilot software to directly control the robot’s motors.

The control allocation method is applied as quadratic programming to distribute the

reference thrust values in 3 degrees of freedom as inputs to the four motors.

According to the Newton-Euler formula, a dynamic model of the robot is obtained,

and some assumptions are made to make the system decoupled. Mass and damping

matrices are assumed to be diagonal. Coriolis and centripetal effects are ignored.

The thruster model of the robot is linear and has a small dead zone around the zero

input. Six-dimensional state space model and its linearization around a reference

signal derived.

System identification data is collected as constant, sinusoidal, and closed-loop exper-

iments. A scaling factor between the torque value and the T200 Thrusters is obtained

using the data generated by MathWorks [51]. The cost function for the parameter es-

timation of the USV dynamics is explained. The cost function takes every ten points

of the experimental data as the initial condition and solves the differential equation

numerically with predicted coefficients in a constant prediction horizon. We utilized a
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gradient-based optimization method to update our system parameters. However, this

method risks getting stuck in local minima. To mitigate this, we implemented a k-fold

cross-validation algorithm. This strategy provided distinct dataset groups for training

and evaluation, and by repeating the process ’k’ times, we obtained a distribution of

optimization parameters.

The MIMO system’s conventional PI controller and model-based TV-LQR controller

are explained. TV-LQR is derived by showing that the optimal cost value has a

quadratic form. By using the Hamilton-Jacobi theory matrix form of the Ricatti Dif-

ferential equation is obtained. Solving the Ricatti equation with a final value bound-

ary condition completes the solution for the optimal control signal. Control allocation

methods are explained in this study. Higher Q matrices force the robot to follow the

state trajectories well.

In the experimental results, we presented the sinusoidal tracking and step response

performances of the USV under both PI and TV-LQR control strategies. The results

indicate that the TV-LQR controller outperforms the PI controller regarding tracking

error and phase lag in sinusoidal tracking experiments. The better performance of

TV-LQR can be attributed to its dynamic model-based optimal control policy. The

results also emphasize the importance of obtaining accurate model parameters, as

the performance of the TV-LQR controller is affected by the quality of the system

identification.

Furthermore, the phase lag of the PI controller was observed to be higher in the surge

axis, which the mass can explain over linear damping ratio. Phase lag of the PI con-

troller highlights the limitations of the PI controller in handling the coupled dynamics

of the USV. In low-velocity sinusoidal tracking experiments, all controllers’ control

effort was lower than in high-speed experiments. Less tracking error in low-velocity

response is consistent with the expectation that lower velocities lead to reduced Cori-

olis and centripetal effects.

The USV was subjected to piecewise constant velocity signals in the step response

experiments to follow a rectangular path. Although such velocity responses are not

usual for surface vehicles, these experiments allowed us to examine the step response

performance of the USV in the surge and sway axes and demonstrate the ability of
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the USV to perform maneuvers that classical ship-type underactuated USVs cannot

achieve. Overall, the results presented in this study provide valuable insights into the

performance of the USV under different control strategies and highlight the poten-

tial advantages of using TV-LQR controllers for improved tracking performance in

various operating conditions.

As a future work, the mathematical model of this system can be used in different

model-based control algorithms. TV-LQR controller can be implemented with feed-

back motion planning algorithms such as Tedrake’s LQR-Trees method [52], and

Ege’s random sequential composition method [53].
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APPENDIX A

TV-LQR DERIVATIONS

The finite horizon continuous-time cost of the LQR is given in Equation A.1. Finding

the u∗(t) for t ∈ [t0, T ] is the goal of this cost function [48].

J =

∫ T

t0

[xTQx+ uTRu]dt+ xT (T )Qfx(T ) (A.1)

For the calculation of the optimal control signal, one needs to follow the path given

below [47],

• If the optimal value of the cost (Eqn. A.1), J∗(x(t), t) exists with an arbitrary

u∗(t), show that it is in the form of xT (t)P (t)x(t) where p(t) is a symmetric

matrix

• By using the Hamilton-Jacobi theory, show that p(t) satisfies a nonlinear matrix

Ricatti Differential Equation.

• Find the optimal control signal u∗(t)

Let us assume that J∗(x(t), t) is continuous in the state vector, x(t). If J∗(x(t), t) has

a quadratic, xT (t)P (t)x(t), form, it is necessary and sufficient to show that optimal

cost satisfies Equations A.2 and A.3. x1(t) and x2(t) indicates two different reference

state vector signals to show J∗(x1(t), t) is the optimal solution for the x1(t) and

J∗(x2(t), t) is optimal cost for the x2(t).

J∗(λx(t), t) = λ2J∗(x(t), t) (A.2)
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J∗(x1(t), t) + J∗(x2(t), t) =
1

2
[J∗(x1(t) + x2(t), t) + J∗(x1(t)− x2(t), t)]

(A.3)

Let us show the optimal cost value with the optimal control signal u∗(t) parame-

ter. Since the system is linear and the cost is quadratic, multiplying x(t) and u(t)

by a constant λ coefficients results in λ2j∗(x(t), t) (Eqn. A.4). Optimality of the

J∗(λx(t), t) garanties the inequality in Equation A.4. Multiplying the u(t) with λ−1

and x(t) with λ results in Equation A.5 in a similar way. Equation A.4 and A.5

satisfies the scaling property in Equation A.2.

J∗(λx(t), t) ≤ J(λx(t), λu∗(t), t) = λ2J∗(x(t), t) (A.4)

λ2J∗(x(t), t) ≤ λ2J(x(t), λ−1u∗(.), t) = J∗(λx(t), t) (A.5)

One can see that Equation A.6 holds by using Equation A.2 with λ = 2. In Equation

A.7 left-hand side of the equation is optimal. Hence, the cost function on the right-

hand side of the inequality uses an arbitrary non-optimal control signal. As the state

space model is linear, Equation A.7 can be written as Equation A.8.

J∗(x1(t), t) + J∗(x2(t), t) =
1

4
[J∗(2x1, t) + J∗(2x2, t)] (A.6)

1

4
[J∗(2x1, t) + J∗(2x2, t)] ≤

1

4
[J(2x1,u

∗
x1+x2

+ u∗
x1−x2

, t)

+J(2x2,u
∗
x1+x2

+ u∗
x1−x2

, t)]

(A.7)

1

4
[J(2x1,u

∗
x1+x2

+ u∗
x1−x2

, t) + J(2x2,u
∗
x1+x2

+ u∗
x1−x2

, t)] =

1

2
[J(x1(t) + x2(t),u

∗
x1+x2

, t) + J(x1(t)− x2(t),u
∗
x1−x2

, t)] =

1

2
[J∗(x1(t) + x2(t), t) + J∗(x1(t)− x2(t), t)]

(A.8)
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The right-hand side of Equation A.8 can be manipulated with λ = 0.5 by using

Equation A.2. Using the system’s linearity property in Equation A.9, the second

necessary and sufficient condition in Equation A.3 is obtained

1

2
[J∗(x1(t) + x2(t), t) + J∗(x1(t)− x2(t), t)] =

2

[
J∗

(
(x1(t) + x2(t))

2
, t

)
+ J∗

(
(x1(t)− x2(t))

2
, t

)]
≤ J∗

(
(x1(t) + x2(t))

2
,u∗

x1
+ u∗

x2
, t

)
+ J∗

(
(x1(t)− x2(t))

2
,u∗

x1
− u∗

x2
, t

)
= J(x1(t),u

∗
x1
, t) + J(x2(t),u

∗
x2
, t) = J∗(x1(t), t) + J∗(x2(t), t)

(A.9)

As a result of these mathematical operations, optimal cost value can be written as

given in Equation A.10. If there is an optimal solution for the cost function, it can be

shown as a quadratic function of p(t).

J∗(x(t), t) = xT (t)P (t)x(t) (A.10)

Hamilton-Jacobi Equation is given in Equation A.11 [47]. In Equation A.12, the

parameters of this equation are modified according to this study. The cost function

has constant Q and R matrices to regulate states and inputs, respectively. Derivative

of the optimal cost value with respect to the state vector is obtained by Equation A.10.

The state equation is taken as a linear time-varying system.

∂J∗(x(t), t)

∂t
= −minu(t)

{
l(x(t),u(t), t) +

[
∂J∗(x(t), t)

∂x

]
f(x(t),u(t), t)

}
(A.11)

l(x(t),u(t), t) = uT (t)Ru(t) + xT (t)Qx(t)[
∂J∗(x(t), t)

∂x

]T
= 2xT (t)p(t)

f(x(t),u(t), t) = A(t)x(t) +B(t)u(t)

(A.12)
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The final version of the Hamilton-Jacobi Equation can be written as given in Equation

A.13 by using the time derivative of Equation A.10.

xT ˙P (t)x =

−minu(t)

[
uTRu+ xTQx+ 2xTP (t) + 2xTP (t)A(t)x+ 2xTP (t)B(t)u

]
(A.13)

One can write the inside of the minimization operation in Equation A.13 as a quadratic

form. The minimization of this quadratic form is trivial. Since the R matrix is a

positive definite matrix, (u+R−1B(t)TP (t)x) term of the equation should converge

to zero. Equation A.15 indicates a control signal, ¯u(t), that minimizes the Hamilton-

Jacobi Equation. One can see that this control signal is the optimal control signal

that minimizes the cost function. The control signal can be generated for the robot by

calculating the P (t) matrix.

uTRu+ xTQx+ 2xTP (t) + 2xTP (t)A(t)x+ 2xTP (t)B(t)u

= (u+R−1B(t)TP (t)x)R(u+R−1B(t)TP (t)x)

+xT [Q− P (t)B(t)R−1BTP (t) + P (t)A(t) + A(t)TP (t)]x

(A.14)

¯u(t) = −R−1B(t)TP (t)x(t) (A.15)

After the control input, which is given in Equation A.15 minimizes Equation A.14,

Equation A.16 is obtained and holds for all x(t). By reducing the x(t) terms, Equa-

tion A.17 gives the matrix Ricatti equation. As the matrix form of the differential

Ricatti equation is obtained, it is necessary to define boundary conditions to solve the

differential equation. The solution of this differential equation is the P (t) symmet-

ric matrix, which completes the optimal control signal calculation. This differential

equation depends on the robot’s time-varying state space matrices, the Q matrix that

determines the trajectory tracking effort of the robot, and the R matrix that optimizes

the robot’s power consumption.

xT ˙P (t)x = −xT [Q− P (t)B(t)R−1BTP (t) + P (t)A(t) + A(t)TP (t)]x (A.16)
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− ˙P (t) = Q− P (t)B(t)R−1BTP (t) + P (t)A(t) + A(t)TP (t) (A.17)

Since Hamilton-Jacobi Equation has a boundary condition as given in Equation A.18,

the final value of the differential equation is Qf . One can solve the differential equa-

tion numerically by using the boundary condition. As the boundary condition is a

final value, the first iteration of the numerical solution method should start from the

final time of the time interval [t0, T ]. P (t) solution completes the finite horizon time-

varying LQR controller derivation for the USV.

x(T )T ˙P (T )x(T ) = x(T )TQfx(T )

P (T ) = Qf

(A.18)

Equation A.19 provides the optimal control input and the K(t) gain matrix of the

TV-LQR. Notably, the negative sign associated with the control signal underscores

the negative feedback inherent in the closed-loop system. Additionally, the term x(t)

within the input signal signifies that the USV employs full-state feedback. The gain

matrix’s dimensions align with the robot’s parameters, where the number of rows

corresponds to the input size, and the number of columns represents the state vector

dimension.

u∗(t) = −R−1B(t)TP (t)x(t)

K(t) = R−1B(t)TP (t)
(A.19)
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