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ABSTRACT

DESIGNING COMPUTATIONALLY LIGHT ALGORITHMS FOR
CONCURRENT REAL-TIME ATTITUDE ESTIMATION AND SENSOR

CALIBRATION

Benli, Doğukan

M.S., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. Halil Ersin Söken

May 2023, 70 pages

Computer processors’ computational power and efficiency continue to improve each

year. This improvement enables the usage of less power for computing or more com-

plex models for embedded systems, especially in the aerospace industry. However,

implementing newer and more advanced technologies to the systems in the field or

production can be challenging. Therefore, focusing on more capable or efficient al-

gorithms for these systems is still crucial. This research aims to develop and evaluate

methods that decrease the computational load of onboard attitude estimation algo-

rithms that use the Kalman Filter (KF) as the core algorithm. Computationally effi-

cient algorithms are essential for small satellites as they are limited in hardware and

power consumption. A real-time runnable accurate attitude estimation algorithm that

also estimates the additional parameters, such as the sensor errors, can be beneficial

for these resource-limited satellites.

This thesis focuses on reducing the number of KF updates without compromising

the performance of the KF and demonstrates its performance on the small satellite

attitude estimation problem. This task requires manipulating the measurements to get
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a pseudo-measurement of slower frequency. To this end, “integrated measurements”

are suggested to replace the original measurements.

Keywords: attitude estimation, computational cost, integrated measurements, Multi-

plicative Extended Kalman Filter, sensor calibration
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ÖZ

HESAPLAMA YÜKÜ HAFİF EŞ VE GERÇEK ZAMANLI YÖNELİM
KESTİRİM VE SENSÖR KALİBRASYON ALGORİTMALARI TASARIMI

Benli, Doğukan

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Halil Ersin Söken

Mayıs 2023 , 70 sayfa

Her geçen yıl işlemcilerin gücü ve verimi artmakta ve bu sayede, gömülü sistemlerin

daha az güç kullanması veya daha karmaşık modeller içermesi mümkün olmaktadır.

Ancak, yeni ve gelişmiş teknolojilerin sahadaki veya üretimdeki sistemlere aktarıl-

ması zorlu veya zaman alan bir süreçtir. Bu sebeple, kabiliyeti daha yüksek veya daha

verimli algoritmaların geliştirilmesi hala büyük önem taşımaktadır. Bu tezdeki araş-

tırma, sistem üzerinde çalışan Kalman Filtreli yönelim kestirimi algoritmalarının he-

saplama yükünü azaltan yöntem geliştirme ve bu yöntemleri değerlendirmeyi hedef-

lemektedir. Hesaplama yükü özellikle bu konuda kısıtlı kaynaklara sahip olan küçük

uydular gibi sistemler için önemlidir. Gerçek zamanlı yönelim kestirimi gerçekleşti-

rirken, sensör hataları gibi ek parametreleri de kestiren algoritmalar bu sistemler için

faydalıdır.

Bu tez kestirim performansından taviz vermeksizin KF güncellemelerinin sıklığını

azaltma çalışmasını tarifleyip, bu çalışmanın performansını küçük uydu yönelim kes-

tirimi problemi üzerinde göstermektedir. Bu amaçla, ölçüm sıklığını düşüren "integ-

rallenmiş ölçümler" yöntemi önerilmektedir.
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Anahtar Kelimeler: yönelim kestirimi, hesaplama yükü, integrallenmiş ölçümler, Doğ-
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Position and attitude are considered vital information for the operation of various

systems such as tanks and cannons on the ground, ships in the vast seas, planes and

helicopters in the skies, and satellites and space vehicles in space. Inertial Navigation

Systems (INS) are utilized with other external aiding in systems where this informa-

tion is critical. This aiding usually comes in the form of Global Navigation Satellite

Systems. GNSS data can identify a vehicle’s position, velocity, and attitude. How-

ever, these signals may not always be available or may be spoofed to give incorrect

results.

On the other hand, Inertial Navigation Systems utilize Inertial Measurement Units

(IMU), which sense inertial motion in the form of acceleration and rotation. This

type of information does not rely on any outside signal. Thus, it is uninterrupted

and can not be spoofed. Their downfall is the multiple integrals required to achieve

position, velocity, and attitude, which builds up significant errors in time. Hence, an

INS is usually combined with aiding measurements to get the best of both worlds;

uninterrupted and unspoofable data with bounded error margins.

To combine these independent systems, a data fusion algorithm is required. The

most common approach to this is a solution to the estimation problem, Kalman Filter

(KF). KF is an unbiased optimal estimator (Kalman, 1960). It utilizes known statis-

tical properties of unknown system states along with observations to estimate those

unknowns. It also keeps track of correlations between the system states, updating

statistical knowledge for future potential use.
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In small and light systems such as satellites, a similar approach is commonly used to

estimate the attitude (Garcia et al., 2019; Qiu & Guo, 2021). If available, a triad of

gyroscopes is used instead of a full IMU. Measurements provided by the gyroscopes

are integrated to keep track of the body’s attitude, which builds up attitude errors due

to the erroneous nature of the gyroscopes. To keep the errors bounded, the Earth’s

magnetic field and the Sun’s direction information, which are obtained as magne-

tometer and Sun sensor measurements, can be used for aiding. A lightweight KF can

be used for this data fusion.

The KF requires several matrix operations, which scale with the number of parameters

needed to be estimated. If the KF is used only to estimate the attitude, computational

load is very light at the cost of degraded estimations in the presence of sensor errors

(Vinther et al., 2011). Sensors can develop additional errors during a mission, leading

to critical problems (Yuan et al., 2021). Errors on the sensors must be accounted for

in order to get accurate attitude information from a magnetometer (Soken & Sakai,

2020). As the number of parameters increases, so does the computational cost. Thus,

the computational load must be carefully considered while implementing the estima-

tion algorithm, specifically for attitude estimation for small satellites with a limited

computational resource (Pham et al., 2015).

In the author’s experience working with medium and high-grade INSs, computational

load for such systems is also critical. To lighten this load, methods that decrease the

computational load for estimation using the KF are investigated. A different approach

to the existing literature is suggested, and its estimation performance and computa-

tional load are compared to a commonly used KF.

This thesis focuses on the attitude estimation problem on a satellite with gyroscopes,

magnetometers, and sun sensors to demonstrate its findings. The research is per-

formed with a KF that can perform attitude estimation and sensor calibration concur-

rently. The KF and attitude integral architectures are combined in a fashion fit for

real-time applications.
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1.2 Literature Survey

A common approach to reducing the computational cost of KF is to reduce the com-

putational cost of related operations. These operations constitute matrix addition,

multiplication, and inversion.

Small satellites are a prime candidate for KF computational cost reduction research.

They are constrained in terms of mass, power, and computational power.

Asundi et al., 2011 describes the attitude estimation algorithm used on a picosatellite,

SwampSat, where computational resources are "at a premium". It involves the usage

of Murrell’s version of the EKF, which performs observation as a series of 3×1 vector

observations, limiting the matrix inverted for the gain calculation to a size of 3 × 3.

In Asundi et al., 2021, performance of the Murrell’s version of the EKF is evaluated

for attitude estimation using a non-redundant set of sensor configurations.

Chia et al., 2016 presents a low complexity KF to reduce gyroscope noises for a

nano-satellite. The low complexity, in terms of computational power, is achieved by

expressing state transition and observation matrices as sparse matrices and utilizing

matrix decomposition, which simplifies matrix operations. Pham et al., 2015 pro-

poses the usage of a gain-scheduled EKF to reduce the computational load of the

attitude determination process. The Kalman gains are analytically determined be-

forehand using the sensor specifications for different attitude modes of the satellite.

This allows skipping the gain computation, which involves costly inverse matrix op-

erations.

Vinther et al., 2011 demonstrates the usage of Unscented KF for satellite attitude esti-

mation with gyroscopes, magnetometers, and sun sensors. The UKF utilizes multiple

sigma points to represent the distribution of the states. These sigma points are indi-

vidually propagated, increasing the computational cost of the KF. However, due to a

better representation of the statistics, it is expected to have lower errors. This makes a

reduction in its computational cost even more important for systems with low compu-

tational capabilities. Biswas et al., 2018 investigates the Single Propagation UKF and

Extrapolated Single Propagation UKF for such a scenario, comparing estimation per-

formance and computational load. Both methods propagate only a single state vector,

3



the a posteriori mean. The other points are constructed using the first-order Taylor

series approximation for the former, and multi-dimensional Richardson extrapolation

for the latter.

On the other hand, Bonato et al., 2009; J. Guivant and Nebot, 2001; J. E. Guivant,

2002 tackles SLAM (Simultaneous Localization and Mapping) problems, which typ-

ically have a very high number of states to represent points on the map. In J. Guivant

and Nebot, 2001; J. E. Guivant, 2002, the map is divided into local sub-maps, includ-

ing only a subset of the entire state vector. Due to this, computations made within this

area are cheaper. The whole state vector is required only when information transfer

between a sub-map and the global map is to occur. In Bonato et al., 2009, a special-

ized FPGA architecture is developed which combines the strength of FPGAs with the

parallel nature of the matrix operations.

Fatehi and Huang, 2017 describes the usage of Integrated measurements in industrial

processes where a sample material is gradually collected and then sent to a laboratory

for analysis. The laboratory measures the integral of the desired states, called Inte-

grated measurements. A modified KF is proposed that uses these slow-rate Integrated

measurements as its observation to improve the final state observation. Balaguer and

Ibeas, 2021 mentions that the Integrated measurements contain process noise that

increases the variance on the measurement, and presents a guide to computing the

optimal averaging/integration window that minimizes it. In Movassagh et al., 2023, a

sliding window smoothing algorithm is proposed to enhance the accuracy of the fast

state estimations.

Last but not least, in Raitoharju and Piché, 2019, a tutorial for KF complexity reduc-

tion is provided. Different approaches are discussed, such as using partial linearity

and dividing the state.

1.3 Contribution

This thesis proposes the manipulation of observations to reduce the computational

load of the KF by reducing its operational frequency. This differs from the existing

literature, where the reduction is achieved for each operation cycle of the KF indi-
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vidually. The proposed method is expected to reduce the computational load without

compromising the estimation quality. It is also expected to be compatible with the

literature, providing further benefits to computational load.

The proposed method, referred to as Integrated Measurements, is implemented to a

real-time attitude estimation and concurrent sensor calibration algorithm and simu-

lated for a Low Earth Orbit satellite to demonstrate its impact on estimation perfor-

mance and computational load. It differs from the previously mentioned method with

the same name in that, the proposed method manipulates observations and states by

taking their integral to reduce computational load, rather than deriving a method to

observe states by their integrals for smoother estimations. An early version of this

approach was presented in Benli and Söken, 2022

1.4 The Outline of the Thesis

Chapter 1 contains an introduction to the problem at hand, the motivation for this

research, and the available literature on the subject.

In Chapter 2, preliminary information concerning the attitude estimation problem

within the small satellite context is shared. It lists the commonly used coordinate

systems, describes the coordinate transformation concept from the ground up with al-

ternative methods, presents the common coordinate transformations, and summarizes

the attitude update algorithm and model. It also contains the trajectory and data gen-

eration process for a simulation aimed to test the proposed method against a baseline.

Chapter 3 describes the attitude estimation problem, and methods utilized for it. It

also briefly introduces the Kalman Filter, building up to the variation used in this

thesis, MEKF.

In Chapter 4, integrated measurements approach for attitude filtering is introduced

and detailed. The chapter contains the required operations and modifications for its

application.

Chapter 5 demonstrates the estimation and computational performance of the pro-

posed approach. It contains estimation results for an example simulation and Monte-
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Carlo simulations within the described trajectory range.

Finally, Chapter 6 summarizes the results and concludes the research. Also, possible

future research is touched upon.
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CHAPTER 2

ATTITUDE, MODELLING, AND SIMULATION ENVIRONMENT

In order to develop, test, and evaluate the proposed algorithm, an appropriate envi-

ronment must be developed. This chapter describes related coordinate systems, data

generation from ground truth, sensor error models, and system error models used

throughout this study.

2.1 Coordinate Systems

A coordinate system is a set of basis vectors that form a vector space. For the purposes

of this study, a coordinate system refers to an orthonormal set of basis vectors that

form the 3-dimensional vector space, that is, the classical Euclidean Coordinates.

Coordinate systems are commonly used to represent vectors in space. However, the

orientation of a body can be defined with respect to a reference coordinate system via

the linear transformation between them. The coordinate systems used in this thesis

are discussed in this section.

2.1.1 Earth Centered Inertial Coordinate System (ECI)

ECI is a non-rotating coordinate system whose origin is fixed to the Earth, and it is

commonly utilized as the inertial reference for close-earth proximity problems. There

are two common versions of ECI; ecliptic and equatorial ECI. This thesis refers to the

ecliptic ECI unless explicitly stated otherwise.

The unit vectors for the ECI, shown in Figure 2.1, are as follows:
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• X-axis lies within the ecliptic plane of the Earth and is in the direction of the

line connecting the Sun and the Earth at the vernal equinox.

• Z-axis is normal to the ecliptic plane and in the direction of the angular mo-

mentum of the Earth’s solar orbit.

• Y-axis completes the orthonormal set.

Winter

Solstice

Vernal Equinox

Summer

Solstice

Autumnal Equinox

xy

z

xy

z

xy

z

xy

z

Figure 2.1: (Ecliptic) ECI

2.1.2 Earth Centered Earth Fixed Coordinate System (ECEF)

ECEF is a non-inertial coordinate system whose origin and axes transform with the

Earth. This thesis uses the WGS84 definition for the axes.

The unit vectors for the ECEF, shown in Figure 2.2, are as follows:

• X-axis lies within the equatorial plane and is in the direction of the line con-

necting the geodetic center of the Earth and the prime meridian.

• Z-axis is normal to the equatorial plane and is the direction of the Earth’s North

Pole.

• Y-axis completes the orthonormal set.
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x

y

z

0◦meridian

Figure 2.2: ECEF

2.1.3 Perifocal Orbital Coordinate System

Perifocal Orbital Coordinate System is defined by the orbit, and its origin lies at the

periapsis point of the orbit and is inertially fixed for a constant orbit. Its primary

function is to reduce the 3-dimensional orbit into a 2-dimensional orbit in the orbital

plane.

The unit vectors for the Perifocal Orbital Coordinate System , shown in Figure 2.3,

are as follows:

• X-axis lies within the orbital plane and is in the direction of the line connecting

the focal point of the orbit to the periapsis.

• Z-axis is normal to the orbital plane and is in the direction of the orbit’s angular

momentum.
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• Y-axis completes the orthonormal set.

O rp

r

Body

θ

−→er

−→et

⊗−→en

RTN Coordinate System

−→ex

−→ey

⊗−→ez

Perifocal Coordinate System

Figure 2.3: RTN and Perifocal Coordinate System

2.1.4 Radial, Transverse, and Normal Orbital Coordinate System (RTN)

RTN is a non-inertial orbital coordinate system defined by the orbit and the position

vector. Its origin is fixed to the position along the orbit, and it rotates at the same rate

as the position vector.

The unit vectors for the RTN, shown in Figure 2.3, are as follows:

• X-axis lies within the orbital plane and is in the Zenith direction, the direction

of the position vector.

• Z-axis is normal to the orbital plane and is in the direction of the orbit’s angular

momentum.

• Y-axis completes the orthonormal set.

2.1.5 Body Coordinate System

The body coordinate system is a pre-defined coordinate system attached to the body

of interest. It translates and rotates with the body, keeping a fixed orientation to the
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rigid body. It is usually used to define the body’s orientation with respect to a known

reference coordinate system.

The body coordinate system is usually defined using the symmetries within the body’s

shape. Although there are commonly used conventions, it is not strictly defined.

• Earth-pointing satellites generally have their Z-axis (camera axis) Nadir point-

ing, X-axis along the orbit trajectory, and Y-axis completing the set.

• Aircraft utilize their longitudinal symmetry plane to define the X-Z Plane, with

the X-axis in the direction of the nose.

• Smartphones use their vertical symmetry line as X-axis and screen normal as

Z-axis.

• Conventional land vehicles use their forward-vertical symmetry plane as their

X-Z Plane, with X-axis in the forward direction.

2.2 Orientation Representations

Coordinate transformation is a change in basis from the unit vectors of an origin coor-

dinate system to that of a destination coordinate system. Many representations exist

for this transformation, such as Direction Cosine Matrix(DCM), Quaternions, Rota-

tion Vector, and Euler Angles. Since a coordinate transformation ultimately defines

the orientation between two coordinate systems, the attitude of a body can be repre-

sented by the coordinate transformation between a reference coordinate system and

the body coordinate system.

2.2.1 DCM

DCM is the matrix representation of the coordinate transformation, and it contains a

projection vector for each of the origin coordinate system unit vectors to the destina-

tion coordinate system. It should also be noted that DCM is equivalent to the Rotation

Matrix that rotates the coordinate system; as such, it shares all the properties of the

Rotation Matrix.
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Let iO, jO,kO be the unit vectors for the origin(O) orthonormal coordinate system

and iD, jD,kD be the unit vectors for the destination(D) orthonormal coordinate

system.

The transformation matrix that transforms the basis from O to D, which CD
O denotes,

is obtained by transforming the unit vectors of O to D.

A vector, V , can be written in a desired orthonormal basis by utilizing the orthogonal

projection method.

VD =
[
iD jD kD

]
⟨V , iD⟩
⟨V , jD⟩
⟨V ,kD⟩

 (2.1)

where ⟨, ⟩ is the inner product operator.

Projecting the basis vectors of O onto the D and concatenating results in the transfor-

mation matrix (Friedberg et al., 2014). Elements of a DCM are cosines of the angles

between the combination of directions of the two coordinate systems.

CD
O =


⟨iO, iD⟩ ⟨jO, iD⟩ ⟨kO, iD⟩
⟨iO, jD⟩ ⟨jO, jD⟩ ⟨kO, jD⟩
⟨iO,kD⟩ ⟨jO,kD⟩ ⟨kO,kD⟩

 (2.2)

One important property of a DCM is that its inverse is equal to its transpose. It is also

equal to the coordinate transformation in the reverse direction.

(CD
O )−1 = (CD

O )T = CO
D (2.3)

The main advantage of using a DCM lies in the fact that it is the direct representation

of the coordinate transformation operation. As such, rotating a vector does not require

additional operations or definitions. This operation takes 6 additions and 9 multipli-

cations. It spans all 3-dimensional rotation space and has no algebraic singularities.

Consecutive transformations can be chained together to get a combined coordinate

transformation.
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CC
A = CC

BC
B
A (2.4)

Its disadvantage comes from its size. It contains 9 variables in its full form, and

the transformation combining requires the multiplication of two 3 ∗ 3 matrices. The

combined transformation is computed by 18 addition and 27 multiplication operations

(Stančin & Tomažič, 2020).

It should also be noted that a DCM may lose its orthonormal property due to attitude

updates. There are methods to restore this property without guaranteeing convergence

to the desired DCM.

This thesis utilizes DCMs whenever a coordinate transformation is performed on a

vector.

The following special definitions are used to represent the DCM of an elemental ro-

tation:

C1(θ) =


1 0 0

0 cos(θ) sin(θ)

0 −sin(θ) cos(θ)

 (2.5)

C2(θ) =


cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (2.6)

C3(θ) =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 (2.7)

Functions given in Equation 2.5, 2.6, and 2.7 represent elemental rotations around

x, y, and z axes, respectively. They are such that each transforms a vector into a

coordinate system that is rotated in the axis they represent.
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2.2.2 Quaternion

Quaternions skew field is 4 parameter extension of the complex numbers field (Buch-

mann, 2011). In the field of complex numbers, multiplication is a linear transfor-

mation operation that scales and rotates its target. Its magnitude determines scal-

ing, while the ratio of real and imaginary components determines the rotation an-

gle. Quaternions carry these same properties, which can be utilized to achieve 3-

dimensional rotations.

A quaternion is comprised of a real number and three imaginary numbers and is

usually represented as:

q = w + xi+ yj + zk (2.8)

where i, j, k are imaginary numbers with non-commutative multiplication and are

defined by the equalities i2 = j2 = k2 = ijk = −1, and w, x, y, z ∈ R.

A quaternion can be expressed in ordered basis {1, i, j, k} as a 4-dimensional vector.

For the purposes of this thesis, quaternions are used as a representation of coordi-

nate transformation. Multiplication of 2 quaternions combines the two rotations they

represent into a single quaternion, combining the series of transformations.

qDO = qDR ⊗ qRO (2.9)

where the notation qDO represents coordinate transformation from origin coordinate

system O to destination coordinate system D, and R is a coordinate system whose

orientation is known wrt O and D.

It is important to note that quaternion multiplication is not commutative. The sym-

bol ⊗ is used to emphasize quaternion multiplication, where the operands are ei-

ther a quaternion or a vector. In the case of the latter, the vector is rewritten as

v =
[
0 vT

]T
.

Quaternion multiplication operation is a linear transformation whose transformation

matrix can be written as:
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qDR ⊗ qRO = Q(qDR )q
R
O = Q′(qRO)q

D
R (2.10)

where Q(q) =


w −x −y −z
x w −z y

y z w −x
z −y x w

 and Q′(q) =


w −x −y −z
x w z −y
y −z w x

z y −x w

.

Coordinate transformation by a quaternion is performed by two quaternion multipli-

cation of the vector.

vD = qDO⊗vO⊗(qDO )
−1 (2.11)

The inverse quaternion is the reverse coordinate transformation, the conjugate quater-

nion.

(qDO )
−1 = qOD = qDO (2.12)

Using Equation 2.10, and the inverse quaternion property, coordinate transformation

can be written as:

vD = Q(qDO )Q
′(qOD)vO (2.13)

Transformation matrices can be combined to yield a single transformation matrix that

converts vector v from O to D.

Q(q)Q′(q) =


qT q 0 0 0

0 w2 + x2 − y2 − z2 2xy − 2wz 2wy + 2xz

0 2wz + 2xy w2 − x2 + y2 − z2 2yz − 2wx

0 2xz − 2wy 2wx+ 2yz w2 − x2 − y2 + z2


Column and row corresponding to the scalar quaternion component (first row and

column) of the matrix are ineffective and can be disposed of, as the scalar compo-

nent of a vector is always 0. Rewriting the remaining 3x3 matrix yields the DCM

correspondent of the quaternion.
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vD = CD
O vO (2.14)

where

CD
O =


1− 2(y2 + z2) 2(xy − wz) 2(wy + xz)

2(wz + xy) 1− 2(x2 + z2) 2(yz − wx)

2(xz − wy) 2(wx+ yz) 1− 2(x2 + y2)

 (2.15)

and qDO = w + xi+ yj + zk is a unit quaternion.

This shows that the quaternion coordinate transformation operation involves extra

computations (Stančin & Tomažič, 2020) equivalent to constructing its DCM corre-

spondent.

Hence, this thesis performs quaternion to DCM conversion given in Equation 2.15

whenever a coordinate transformation is required, as subsequent uses of the same

transformation can be done with this DCM to save on computations. Quaternions are

used to compose a series of coordinate transformations into a single transformation,

as they are lighter both in terms of memory and computations (Stančin & Tomažič,

2020).

While not a necessity, a unit quaternion is usually preferred for attitude representa-

tion, as it does not scale the vector it transforms. The quaternion may lose its unit

magnitude through attitude updates or corrections and may need to be re-normalized.

2.2.3 Rotation Vector

A Rotation Vector defines an axis and magnitude for a rotation. A vector in R3 can be

rotated by the rotation vector. Applying this to the unit vectors of a coordinate system

would create another coordinate system whose orientation with respect to the original

is defined by the rotation vector. Conversely, as per Euler’s Rotation Theorem, a ro-

tation vector can be defined using the orientation of a coordinate system with respect

to another, given that the coordinate systems are orthogonal transformations of each

other.

Although a rotation vector can define attitude, it is usually not preferred. In order to
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apply the rotation, its linear transformation matrix needs to be computed, which is its

DCM correspondent.

Let ϕ = ϕuϕ be the rotation vector that rotates unit vectors of the origin (O) coor-

dinate system onto the unit vectors of destination (D) coordinate system, where ϕ is

the magnitude and uϕ is the unit direction vector.

Then, the linear transformation matrix from O to D can be written as (Savage, 2007):

CD
O = I − sin(ϕ)[uϕ×] + (1− cos(ϕ))[uϕ×]2 (2.16)

Note that this is the inverse of the rotation matrix created by the Rodrigues’ rotation

formula.

Another reason rotation vectors are not used to define attitude is that they are not eas-

ily combined. Two successive coordinate transformations described by two rotation

vectors are not easily combined into a single rotation vector, making them unfeasible

for attitude computations.

Since they are not well suited for either coordinate transformation or attitude compu-

tation, they are usually not used for these purposes. They best serve to convert simul-

taneous orthogonal rotations into a single rotation as shown by Stančin and Tomažič,

2011; that is, to combine gyroscope measurements. The reader can refer to Savage,

2007 for the specifics of this conversion.

The rotation vector can be converted into a quaternion (Savage, 2007):

qOD =

 cos(
ϕ

2
)

uϕsin(
ϕ

2
)

 (2.17)

Note that the quaternion coordinate transformation is in the opposite direction of

Equation 2.17.

This thesis uses rotation vectors to convert gyroscope measurements into attitude

change quaternions.
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2.2.4 Euler Angles

Euler angles describe the coordinate system transformation as three elemental rota-

tions. There are many possible conventions for using the Euler angles. This thesis

uses the so-called 3-2-1 (ZYX) convention, where the successive rotations are around

Z, Y and X axes. These are usually referred as the yaw (ψ), pitch (θ) and roll (ϕ)

angles respectively. Euler angles representation is popular due to their physical sig-

nificance, which are the angles of a classical 3-gimballed platform. This makes them

easier to visualize compared to the other representations. However, Euler angle rate

equations become indeterminate when the pitch is at 90 deg, which limits their use

(Titterton & Weston, 2004).

According to Titterton and Weston, 2004, a quaternion can be constructed from Euler

angles using:

qDO = a+ bi+ cj + dk (2.18)

where

a = cos(
ϕ

2
)cos(

θ

2
)cos(

ψ

2
) + sin(

ϕ

2
)sin(

θ

2
)sin(

ψ

2
)

b = −sin(ϕ
2
)cos(

θ

2
)cos(

ψ

2
) + cos(

ϕ

2
)sin(

θ

2
)sin(

ψ

2
)

c = −cos(ϕ
2
)sin(

θ

2
)cos(

ψ

2
)− sin(

ϕ

2
)cos(

θ

2
)sin(

ψ

2
)

d = −cos(ϕ
2
)cos(

θ

2
)sin(

ψ

2
) + sin(

ϕ

2
)sin(

θ

2
)cos(

ψ

2
)

Since Euler angles represent a series of elemental rotations, they can be converted

into a DCM by chaining elemental rotation DCMs.

CD
O = C1(ϕ)C2(θ)C3(ψ) (2.19)

where C1(·), C2(·), and C3(·) are defined in Equation 2.5, 2.6, and 2.7 respectively.
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2.3 Common Coordinate Transformations

Coordinate transformations are used as orientation representations, consequently, at-

titude representations. Although any of the transformations given in § 2.2 can be

used to describe the orientation of a coordinate system with respect to a reference

coordinate system, only the DCM versions will be given in the following sections for

brevity.

2.3.1 ECI to ECEF

This thesis utilizes a simplified relation between ECI and ECEF where the Earth’s

rotation is considered to be constant at its nominal rate for a sidereal day.

Ce
i =


cos(we

iet) sin(we
iet)cos(γ) sin(we

iet)sin(γ)

−sin(we
iet) cos(we

iet)cos(γ) cos(we
iet)sin(γ)

0 −sin(γ) cos(γ)

 (2.20)

where t is time since last Vernal Equinox, we
ie is the angular rate of the Earth wrt

inertial frame written in ECEF, and γ is the Earth’s equatorial tilt with respect to its

ecliptic plane.

2.3.2 ECI to Perifocal Coordinate System

Perifocal Coordinate System serves as a good stepping stone between ECI and RTN.

It needs to be computed only once for a non-perturbed orbit, as it does not depend on

the only time-varying orbit parameter which is the True Anomaly.

Cp
i = C3(ω)C1(i)C3(Ω) (2.21)

where ω, i,Ω are Argument of Periapsis, Inclination, and Right Ascension of the As-

cending Node respectively. Definitions of C1(·) and C3(·) are given in Equation 2.5

and 2.7 respectively.
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2.3.3 ECI to RTN

RTN Coordinate system can be obtained by a single rotation from the Perifocal Co-

ordinate system.

Cr
p = C3(θ) (2.22)

where θ is the True Anomaly, Cr
p is the DCM from Perifocal to RTN, and C3(·) is

given in Equation 2.7.

Then, the DCM from ECI to RTN is:

Cr
i = Cr

pC
p
i (2.23)

where Cr
p is given in Equation 2.22, and Cp

i is given in Equation 2.21.

2.3.4 Navigation to Body

The navigation coordinate system is the coordinate system chosen as the reference.

For ground systems, this is usually a Local Level Coordinate System. For the pur-

poses of this thesis, either ECI or RTN is treated as the Navigation coordinate system.

Given the Euler angles from the Navigation to Body, DCM is:

CB
N = C1(ϕ)C2(θ)C3(ψ) (2.24)

as given in Equation 2.19.

2.4 Attitude Update and System Model

Attitude update is performed by applying the rotation measured by onboard gyro-

scopes to the last known attitude of the system in a cumulative manner. This results

in error build-up in attitude due to gyroscope sensor errors. In order to mitigate this,

attitude error can be estimated using an estimator.

For the purposes of this thesis, Multiplicative Extended Kalman Filter (Markley,

2003) is used. MEKF works with a system model linearized around the last known
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attitude state. Thus, system model components linearized around the latest estimate

is discussed in this section.

2.4.1 Attitude Update

Let qib be the quaternion that represents the coordinate transformation from the body

coordinate system to ECI. A triad of gyroscopes measures the angular displacement

in the body coordinate system. Let the rotation vector corresponding to this angular

measurement be ϕ
bk+1

bk
.

Using Equation 2.17, quaternion that describes the angular displacement, qbkbk+1
can

be calculated.

Then, angular displacement can be combined with the prior attitude quaternion to get

the updated attitude quaternion.

qibk+1
= qibk ⊗ qbkbk+1

(2.25)

2.4.2 Attitude Error Model

Dynamics for the states that represent the attitude error will be derived in this section.

Let qi
b̂

be the latest attitude, whereˆdenotes the parameters that contain errors. Errors

can be separated from the attitude:

qi
b̂
= qib ⊗ qb

b̂
(2.26)

where b̂ is the computed body coordinate system which contains the attitude errors

and b is the truth body coordinate system.

According to Savage, 2007, the time rate of change of the attitude quaternion can be

written as:

q̇i
b̂
=

1

2
qi
b̂
⊗ ω̂b

ib (2.27)
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with ω̂b
ib = ωb

ib+δω where ω is the gyroscope measurements and δω is the combined

gyroscope errors.

Separating truth and error terms:

q̇ib ⊗ qb
b̂
+ qib ⊗ q̇b

b̂
=

1

2
qib ⊗ qb

b̂
⊗ (ωb

ib + δω) (2.28)

Re-arranging the equation to leave the time rate of change of the attitude error on one

side:

qib ⊗ q̇b
b̂
=

1

2
qi
b̂
⊗ δω +

1

2
qib ⊗ (qb

b̂
⊗ ωb

ib − ωb
ib ⊗ qb

b̂
) (2.29)

Rewriting using Equation 2.10:

qib ⊗ q̇b
b̂
=

1

2
qi
b̂
⊗ δω +

1

2
qib ⊗ (Q′(ωb

ib)−Q(ωb
ib))q

b
b̂

(2.30)

Multiplying both sides from left with qbi to cancel out rotations.

q̇b
b̂
=

1

2
qb
b̂
⊗ δω +

1

2
(Q′(ωb

ib)−Q(ωb
ib))q

b
b̂

(2.31)

Note that:

Q′(ωb
ib)−Q(ωb

ib) = −2

0 0T

0 ωb
ib×

 (2.32)

where 0 is the zero vector and × is the skew-symmetric operator.

Let attitude error be the rotation vector δϕ. For a small attitude error:

qb
b̂
≈

 1

δϕ/2

 (2.33)

Then its time rate of change is:
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q̇b
b̂
≈

 0

δϕ̇/2

 (2.34)

Substituting Equation 2.32, 2.33 and 2.34 into the Equation 2.31:

 0

δϕ̇/2

 ≈ 1

2

I +
 0 −δϕT

δϕ δϕ×

 0

δω

−

0 0T

0 ωb
ib×

 1

δϕ/2

 (2.35)

Ignoring the second order terms formed by multiplication of components of δϕ and

δω, and dropping the first row of the Equation 2.35 as it contains no information:

δϕ̇ ≈ δω −
[
ωb

ib×
]
δϕ (2.36)

where δϕ is the attitude error rotation vector and δω is the combined gyroscope error.

Note that in Equation 2.36, the term ωb
ib is not known and, in practice, is replaced by

the gyroscope measurement ω̂b
ib. Its multiplication with δϕ results in second-order

terms, which were already neglected.

2.5 Trajectory Generation

For the purposes of this study, trajectory generation was divided into position and

attitude generation parts. First, the body position was determined throughout the time

interval. Then, the nominal attitude was fixed using the Body position vector to get

the satellite to face toward either the Earth or the Sun. Finally, deviations were added

to attitude to simulate the disturbances on the body.

2.5.1 Position Generation

In order to determine a 3D orbit completely, 6 independent parameters must be known

(Curtis, 2008). Hyperbolic orbits were not considered as a part of this research. Thus,

from this point onward, equations are given under the assumption of an elliptical or

circular orbit. The Classical(Keplerian) Orbital Elements are :
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Figure 2.4: Angles defined in the Classical Orbital Elements

• Eccentricity(e)

• Semi-Major Axis(a)

• Inclination(i)

• Right Ascension of the Ascending Node(Ω)

• Argument of Periapsis(ω)

• True Anomaly(θ)

Angles defined in the classical orbital elements can be observed in Figure 2.4. To

ensure a LEO orbit, Eccentricity and Semi-Major Axis can be replaced by periapsis

(rp) and apoapsis (ra) radii using Equation 2.37 and Equation 2.38.

e =
ra − rp
ra + rp

(2.37)

2a = ra + rp (2.38)
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The 6 chosen orbital elements satisfy the following ranges:

• 100km ≤ ra −REarth ≤ 800km

• 100km ≤ rp −REarth ≤ ra −REarth

• −90◦ < i < 90◦

• −90◦ ≤ Ω ≤ 90◦

• −180◦ ≤ ω ≤ 180◦

• −180◦ ≤ θ ≤ 180◦

where REarth is the radius of the Earth. For simplicity, it can be taken as the semi-

major axis of the WGS84 ellipsoid of the Earth, REarth = 6378137.0m (WGS84,

2014).

From the given orbital elements, only True Anomaly changes with time. Before it is

computed, Mean Anomaly (Me) at that time must be calculated using Equation 2.39.

Me =
2π

T
t (2.39)

where t is the time since periapsis, and T is the orbit period which can be computed

using Equation 2.40.

T =
2π
√
µ
a

3
2 (2.40)

Then, the Equation 2.41 can be solved for the Eccentric Anomaly (E).

Me = E − esin(E) (2.41)

Finally, Equation 2.42 can be solved for True Anomaly (θ). Range of inverse tangent

function is limited to (−π
2
,
π

2
). The domain of the tangent used in the equation is

limited to the range [−π
2
,
π

2
] which matches with the range of the inverse tangent

function. Thus, the equation can be solved with the tan−1 without any problems.

25



tan(
E

2
) =

√
1− e

1 + e
tan(

θ

2
) (2.42)

Through the use of equations 2.39, 2.41 and 2.42 for all time points along the tra-

jectory, all points on the trajectory become known. Using the 6 orbital elements, the

3-dimensional position can be calculated.

To calculate the 3-dimensional position, one can start with the orbit radius and com-

pute the position vector using coordinate transformations.

Orbit radius at a given True Anomaly (θ) can be computed using Equation 2.43.

r = a
1− e2

1 + ecos(θ)
(2.43)

The position of the body in the RTN is rr =
[
r 0 0

]T
where r is the orbit radius.

Then, using the DCMs defined in Equation 2.23, the position in ECI can be computed

as:

ri = Ci
rr

r (2.44)

Equation 2.20 can be used for each time instance to convert the position to the ECEF.

re = Ce
i r

i (2.45)

2.5.2 Attitude Generation

For the attitude generation, nadir-pointing and sun-pointing configurations were con-

sidered. The satellite’s attitude was initialized such that its pointing axis aligns with

the initial position vector re. Then, the satellite can be rotated at each time instance

to satisfy this alignment. However, a single vector is insufficient to define the full

rotation between each time instance, and another constraint is required. The smallest

rotation needed to satisfy the pointing criteria can be used for simplicity. Savage,

2007 derives the DCM via the representations of the same vector with the minimum

rotation criteria.
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For the satellite to be at a Sun pointing attitude at time k, the following equation must

be satisfied:

ubk
k = Cbk

i ui
k (2.46)

where ub
k is the unit pointing vector of the satellite in its body coordinate system, ui

k

is the Sun’s direction from the body in ECI, and Cbk
i is the body attitude with respect

to ECI, at time k.

Since the unit pointing vector of the satellite is constant, ubk+1

k+1 = ubk
k is true. Then,

Equation 2.46 can be used to write equal vectors between adjacent sampling times k

and k + 1.

Cbk
i ui

k = C
bk+1

i ui
k+1 (2.47)

Using property of the Equation 2.4, Cbk+1

i can be rewritten as Cbk+1

bk
Cbk

i where Cbk+1

bk

contains the rotation of the body.

Cbk
i ui

k = C
bk+1

bk
Cbk

i ui
k+1 (2.48)

Considering ubk
k = Cbk

i ui
k, Equation 2.48 can be re-written:

ubk
k = C

bk+1

bk
ubk

k+1 (2.49)

In Equation 2.49, Cbk+1

bk
is defined as the transformation of ubk

k+1 into ubk
k . However,

this DCM is not unique as this definition is under-constrained. Imposing a minimum

rotation constraint along with Equation 2.49, one can solve for Cbk+1

bk
.

According to Savage, 2007, such minimum rotation occurs within the plane formed

by the two vectors. So, the direction of rotation vector ϕ that represents Cbk+1

bk
:

ϕ

ϕ
=

ubk
k × ubk

k+1

||ubk
k × ubk

k+1||
(2.50)
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where || · || is the L2-Norm operator.

Since ubk
k and ubk

k+1 are unit vectors, ||ubk
k ×ubk

k+1|| = sin(ϕ) and ubk
k ·ubk

k+1 = cos(ϕ)

where · is the dot product operator. Then,

ϕ = tan−1(
sin(ϕ)

cos(ϕ)
) (2.51)

Finally, plugging all back into the Equation 2.50, the rotation vector corresponding to

the minimum required rotation to keep the satellite pointing in the desired direction

is:

ϕ =
ubk

k × ubk
k+1

||ubk
k × ubk

k+1||
tan−1(

||ubk
k × ubk

k+1||
ubk

k · ubk
k+1

) (2.52)

ϕ in Equation 2.52 can be used with Equation 2.16 to find Cbk+1

bk
. Performing this

operation for every consequent time generates the truth attitude by vector pointing.

This method is used with the sun’s direction to create sun pointing portions of the

attitude.

Nadir pointing portion is strictly defined by the angle with respect to the RTN. Choos-

ing −X as the Earth pointing direction of the body coordinate system, Euler angles

from RTN to the body can be set to 0, that is:

Cbk
rk

= I (2.53)

where k is the time instance, and I is the identity matrix.

Then, Equation 2.23 can be used to generate attitude at time k:

Cbk
i = Crk

i (2.54)

Finally, attitude deviations can be added on top.

The figures below show an example of an attitude generated using methods described

in this section.
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Figure 2.5 contains attitude with respect to the ECI, described in terms of Euler an-

gles. Sections not shaded with gray contain the attitude for the Sun pointing attitude

mode. The pitch and yaw angles are fixed such that the +X axis of the body faces

toward the Sun. Deviations in this attitude can be seen clearly in the close-up.

Figure 2.5: Example Attitude with respect to ECI

Figure 2.6 contains the attitude with respect to the RTN. Gray shaded sections contain

the Nadir pointing attitude mode. Euler angles are all set to 0, which fixes the body

coordinate system to the RTN. This results in -X axis facing towards the Earth. For

this attitude mode, smaller deviations are created compared to the Sun pointing mode.

These deviations may be observed in the close-up.

Figure 2.6: Example Attitude with respect to RTN

Sensor data generation for the onboard (a triad of) magnetometer, sun sensor, and
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gyroscope on the described trajectory can be considered separately.

2.6 Truth Data Generation

This section explains methods for error-free sensor data generation. Generated trajec-

tory, a reference magnetic model, and the Sun position were used to generate gyro-

scope, magnetometer, and sun sensor data. These data represent error-free measure-

ments along the trajectory.

2.6.1 Gyroscope

Gyroscopes either measure an instantaneous angular rate or angle change within its

measurement interval. For the purposes of this thesis, the two were considered iden-

tical, except for the time interval term. Also, the gyroscope measurements were

deemed coning corrected.

Given the attitude at each time instance, the angle change required for the transition

can be calculated by computing the delta attitude.

q
bk+1

bk
= q

bk+1

i ⊗ qibk (2.55)

where qbki is the attitude at time k.

Rotation vector ϕ corresponding to the qbk+1

bk
can be calculated as follows:

Let qbk+1

bk
= w + xi + yj + zk where i, j and k are the complex numbers. The

magnitude of the rotation vector is:

ϕ = 2tan−1(

√
x2 + y2 + z2

w
) (2.56)

Then, the rotation vector is:

ϕ =
ϕ

sin(
ϕ

2
)


x

y

z

 (2.57)
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For simplicity, a constant angular rate can be assumed between k and k + 1. Then,

the error-free mean angular rate from time k to k + 1 is:

ωk = ϕk/∆t (2.58)

where ∆t is the gyroscope measurement interval.

2.6.2 Magnetometer

Magnetometers in satellite missions are used to measure the Earth’s magnetic field.

This vector measurement and its known reference value can be utilized to obtain

information about the satellite’s orientation. Having generated trajectory data in the

form of position and attitude with respect to the ECEF, one can generate the expected

magnetic field using a model for it. World Magnetic Model (WMM) (Chulliat et al.,

2020) is a well-known model that can be used for this purpose. It is renewed every 5

years with the most up-to-date measurements. The WMM is a spherical harmonical

model of the Earth’s magnetic field at its valid date and its rate of change. These

coefficients for the magnetic field and their time derivatives can be used to find the

magnetic field at a given location.

In § 2.5, satellite position at each time instance was created in ECEF. Using the trans-

formation algorithm provided in Savage, 2007, their (geodetic) latitude, longitude,

and altitude equivalents can be found. Chulliat et al., 2020 describes the calculation

of the magnetic field starting from the geodetic coordinates. The conversion from

the geodetic coordinates (λ, ϕ, h) to the geocentric coordinates (λ, ϕ′, r) is given in

Equation 2.59, where λ is the latitude, ϕ is the longitude in its respective coordinate

system, h is the geodetic altitude, and r is the geocentric radius.

p = (Rc + h)cos(ϕ)

z = (Rc(1− e2) + h)sin(ϕ)

r =
√
p2 + z2

ϕ′ = sin−1(
z

r
)

(2.59)
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where Rc is the radius of curvature of the prime vertical at the latitude ϕ, and e is the

Earth’s eccentricity.

The radius of curvature, Rc, can be computed by the following set of equations:

Rc =
A√

1− e2sin2(ϕ)
(2.60)

where A is the semi-major axis of the WGS84 ellipsoid.

The model contains main field coefficients gmn (t0) and hmn (t0) and their change rates,

secular variation coefficients, ġmn (t0) and ḣmn (t0), where t0 = 2020.0 is the reference

epoch of the model in decimal years. Gauss coefficients for the desired time t, in

decimal years, computed as follows:

gmn (t) = gmn (t0) + (t− t0)ġ
m
n (t0)

hmn (t) = hmn (t0) + (t− t0)ḣ
m
n (t0)

(2.61)

Finally, the magnetic field components in ECEF can be calculated as:

X = −
12∑
n=1

(a
r

)n+2
n∑

m=0

(gmn (t)cos(mλ) + hmn (t)sin(mλ))
dP̆m

n (sin(ϕ′))

dϕ′

Y =
1

cos(ϕ′)

12∑
n=1

(a
r

)n+2
n∑

m=0

m(gmn (t)sin(mλ)− hmn (t)cos(mλ))P̆
m
n (sin(ϕ′))

Z = −
12∑
n=1

(n+ 1)
(a
r

)n+2
n∑

m=0

(gmn (t)cos(mλ) + hmn (t)sin(mλ))P̆
m
n (sin(ϕ′))

(2.62)

where a is the geomagnetic reference radius, and P̆m
n (·) are the Schmidt seminormal-

ized associated Legendre functions. Details regarding these functions can be found

in Chulliat et al., 2020.

The components in Equation 2.62 can be combined to find the magnetic field vector

in ECEF:

Be =
[
X Y Z

]T
(2.63)

Then, the reference magnetic field vector in ECI can be found by applying the relevant

coordinate transformation, whose inverse is defined in Equation 2.20:

Bi = qie ⊗Be (2.64)
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Using the attitude generated in § 2.5, the error-free magnetometer measurements in

the body coordinate system can be calculated.

Bb = qbi ⊗Bi (2.65)

2.6.3 Sun Sensor

In order to calculate the direction of the Sun from the satellite, the position of the

satellite and the Sun in ECI can be used. Satellite position is known from the tra-

jectory generation in § 2.5. To calculate the position of the Sun in ECI, a reverse

approach can be taken.

Given a simulation start date, it can be converted into a Julian date. Julian day at 0 h

Universal Time(UT ) can be computed as (Curtis, 2008):

J0 = 367y − INT

7

(
y + INT (

m+ 9

12
)

)
4

+ INT (
275m

9
) + d+ 1721013.5

(2.66)

where INT (·) rounds towards zero, y, m, and d are integers for the year, month, and

day respectively lying in the following ranges:

1901 ≤ y ≤ 2099

1 ≤ m ≤ 12

1 ≤ d ≤ 31

(2.67)

Then, any other time of the day can be calculated using:

JD = J0 + UT/24 (2.68)

Then, the elapsed days can be calculated by the difference from J2000:

∆JD = JD − J2000 (2.69)
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where J2000 = 2451545.0

This can be converted into centuries by division with 365.25. Then, all orbital ele-

ments in Table 2.1(Curtis, 2008) can be propagated in time to the desired date using

their change rates. Using the orbital equations provided in § 2.5, the position of the

Earth with respect to the Sun in ECI, ri
e\s, can be calculated.

Table 2.1: Elements for Earth’s orbit around the Sun

Element J2000 Value Change per century

Semi-Major Axis [m] 149597887.5 -7.5

Eccentricity 0.0167 -0.00004

Inclination [°] 0.00005 -0.01304

RAAN [°] -11.26 -5.063

Longitude of Perihelion [°] 102.95 0.333

Mean Longitude [°] 100.46 35999.37

Then, the position of the Sun with respect to the satellite in ECI is:

ri
s\b = −ri

b\e − ri
e\s (2.70)

where ri
b\e is the position of the body with respect to the Earth in ECI and ri

s\b is the

position of the Sun with respect to the satellite body in ECI.

ri
s\b in Equation 2.70 can be normalized to find the direction of the Sun from the

satellite, ui
s\b. This becomes the sun sensor measurement reference, which can be

converted into the body coordinate system using the generated attitude to find the

error-free sun sensor measurement.

rb
s\b = qbi ⊗ ri

s\b (2.71)

Additionally, whether the Earth blocks the view of the Sun from the satellite must be

checked. This can be done by testing the vector ri
s\b for intersection with a sphere

representing the Earth. This intersection check can be performed by finding the clos-

est point on the vector ri
s\b to the center of the Earth and comparing its distance with
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the radius of the Earth. The intersection threshold can be exaggerated to disregard

partially eclipsed conditions as eclipsed.

Alternatively, the intersection can be checked in terms of angles.

Let α be the angle whose opposite edge is Earth’s radius in the plane perpendicular to

the body position vector and the neighbor edge is the Earth’s position vector from the

body, and β be the angle between the Sun vector and the Earth vector from the body

given in Figure 2.7. Then, α ≥ β must be true for the Earth to block the view of the

Sun. α can be increased by a flat value for additional clearance.

Figure 2.7: Eclipse test by angles

2.7 Sensor Errors

For a realistic simulation, generated error-free sensor data must be corrupted by er-

rors. This section explains the types and generation methods for these errors for each

sensor type.

Sensor measurements can generally be considered as the sum of the truth value they

are measuring and a combined error. This combined error may have various sources

with different underlying mechanisms. These errors are usually simplified into groups

according to the needs of the system at hand. Error types considered in this thesis can

be found in this section.

∆y(t) =
∑
i

δyi(t) (2.72)
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where ∆yt is the combined error at time t and δyt,i is error caused by error type i at

time t.

2.7.1 Gyroscope Errors

For the purposes of this thesis, a gyroscope that would fall into the tactical grade

MEMS gyroscope category was considered. Table 2.2 contains the specifications for

the generated gyroscope errors.

Table 2.2: Characteristics for the Modeled Gyroscope

Bias Repeatability Error 1°/h

Bias Instability Error 10°/h

Instability Time Constant 2 h

Noise 0.1°/
√

h

Output Frequency 1 Hz

∆ygyro = δyb,rep + δyb,ins(t) + w (2.73)

In Equation 2.73, δyb,rep is the gyroscope Bias Repeatability Error, which is a con-

stant offset independent of the truth measurement. While constant for a single run,

it takes different values from run to run. δyb,rep is considered to be a zero mean nor-

mally distributed random value across simulations, with a standard deviation given in

Table 2.2.

On the other hand, δyb,ins(t) is the gyroscope Bias Instability Error, which is repre-

sented with a random-walk trough cumulative sum of zero-mean normally distributed

random values. The standard deviation for this sum accumulates at a rate of 10◦/h in

2h.

Lastly, w in Equation 2.73 is the gyroscope noise, which is a zero-mean normally

distributed random value with its standard deviation given in Table 2.2.
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2.7.2 Magnetometer Errors

A magnetometer whose specifications are given in Table 2.3 was considered.

Table 2.3: Characteristics for the Modeled Magnetometer

Bias Error 4000 nT

Orthogonality Error 50 mrad

Scale Factor Error 0.1

Noise 200 nT/
√

Hz

Output Frequency 1 Hz

ŷmag = (I +M)−1ymag + δybias +w (2.74)

In Equation 2.74, δybias is the constant magnetometer bias which only varies across

simulations. It is zero-mean normally distributed across the simulations, with its

standard deviation specified in Table 2.3.

The term M is the magnetometer’s combined scale factor and misalignment error,

and y is the error-free measurement. Scale factor error indicates a scaling error from

the sensor’s input to its output. Misalignment error occurs when the sensor’s sensi-

tive axis does not align with the intended sensing axis. For a triad of sensors, this

may happen due to a rotation of the triad block as a whole or individual rotations of

the sensing axes. Small misalignment errors can be treated as multiplicative errors

that scale with the truth measurements perpendicular to the intended sensing axis.

For the purposes of this thesis, only orthogonality error was considered in terms of

misalignment, which is shown for the XY plane in Figure 2.8.

M =


SFx Mxy Mxz

Mxy SFy Myz

Mxz Myz SFz

 (2.75)

where Mab is the orthogonality error between a and b axes and SF a is the scale factor

error in axis a, with a = x, y, z and b = x, y, z.
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Mxy

Mxy

Figure 2.8: XY Orthogonality Error Diagram

Lastly, w in Equation 2.74 is the magnetometer noise vector, whose components

are zero-mean normally distributed random values with given standard deviation in

Table 2.3.

2.7.3 Sun Sensor Errors

Sun sensor was considered to provide a unit vector in the direction of the Sun. The

only significant error considered for the sensor was the noise. Also, sun sensors’

inability to provide measurements when eclipsed is considered. Under the eclipse

conditions, the generated data contains a zero vector and is unusable.

ûsun =
usun +w

||usun +w||
(2.76)

In Equation 2.76, usun is the error-free sun direction vector and w is the zero mean

normally distributed noise on this vector. The noise corrupted vector is normalized

at achieve a direction vector. Standard deviation of the components of w is given in

Table 2.4

Table 2.4: Characteristics for the Modeled Sun Sensor

Noise 2 mrad/
√

Hz

Output Frequency 1 Hz

Measurement cut-off by eclipse
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CHAPTER 3

ATTITUDE ESTIMATION AND CONCURRENT SENSOR CALIBRATION

Attitude determination is the process of estimating the current attitude of a system

from a set of observations with respect to a reference coordinate system. This pro-

cess can be categorized into static methods and filtering approaches. Static methods

utilize simultaneous, or close enough, measurements to determine the attitude. On

the other hand, filtering approaches accumulate a "memory" of observations and fuse

this information with the dynamics (mathematical model) of the system (Markley &

Crassidis, 2014).

3.1 Attitude Estimation Algorithms

The focus of this thesis is attitude estimation via Kalman Filter. Thus, only the

TRIAD method is mentioned as a static method in this section as a means to find

an initial attitude estimate for the MEKF.

3.1.1 The TRIAD Algorithm

The TRIaxial Attitude Determination algorithm is derived from the idea that the coor-

dinate transformation matrix, DCM, can be computed using the vectors it transforms.

Let u be a vector whose representation in the reference coordinate system r is ur and

in body coordinate system b is ub

Then, the relation between the different representations of u is:

ub = Cb
ru

r (3.1)
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where Cb
r is the DCM from the reference to the body coordinate system.

Let v be another such vector, with the constraint u · v ̸= 0. Then, a third vector can

be constructed:

w = u× v (3.2)

Since all three vectors are known in both coordinate systems, Equation 3.1 can be

modified to contain all three transformations.

[
ub vb wb

]
= Cb

r

[
ur vr wr

]
(3.3)

Since u, v, and w are linearly independent set of vectors, the matrix constructed by

them is invertible.

Cb
r =

[
ub vb wb

] [
ur vr wr

]−1

(3.4)

Equation 3.4 is true for error-free measurements of all three vectors. The solution

will not yield an orthonormal matrix if the vectors contain errors, such as noise.

The TRIAD method builds on this idea by finding an orthonormal set of vectors before

attempting to solve for the DCM.

x =
u

∥u∥

y =
u× v

∥u× v∥

z = x× y

(3.5)

Set {x,y, z} is an orthonormal set whose representation is known in both r and

b coordinate systems. Note that this method discards information provided by the

projection of u onto v. Then, the coordinate transformation can be computed as

(Markley & Crassidis, 2014):

Cb
r = xb(xr)T + yb(yr)T + zb(zr)T (3.6)
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The TRIAD method is a very light attitude determination algorithm. However, it

does not account for sensor errors; it discards some of the information available and

utilizes measurements from a single time instance.

3.1.2 Recursive Attitude Estimation

Recursive attitude estimation methods make use of the most recent estimated attitude

and iterate on it to improve the results. Kalman Filter is a prevalent approach that

utilizes system dynamics to correlate states, "accumulating" information over time.

This information is utilized for the estimation process. It is important to note that

there is no expanding memory or memory window, but rather the state correlations

kept by the KF represents this information.

3.1.2.1 Kalman Filter

Kalman Filter is a recursive optimal estimator for linear systems under white process

noise and measurement noise. It offers a way of balancing information from the

system dynamics with the information from the observations. This is done by creating

a weight matrix via the uncertainty ratio of the system states and the observations.

Operations of a KF are usually divided into two steps. First is the time propaga-

tion (prediction) step, which propagates the states through time using known system

dynamics.

In this section, the superscript − is used to denote a priori (before observation), and

the superscript + is used to denote a posteriori (after observation) information.

The discrete-time propagation on a linear system with no inputs is performed as fol-

lows:

x−
k+1 = Φk+1

k xk (3.7)

where xk is the state vector at time k and Φk+1
k is the state transition matrix from time

k to k + 1.
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Corresponding covariance propagation is performed by the following equation:

P−
k+1 = Φk+1

k Pk

(
Φk+1

k

)T
+Q (3.8)

where Pk is the covariance matrix at time k and Q is the process noise.

The second step is the measurement (observation) update, where external measure-

ments are fed into the system, and an estimation is performed. This is done by feed-

ing back the difference between the estimated output and external measurement to the

system model and its covariance. This feedback factor is the Kalman Gain:

K = P−
k H

T/(HP−
k H

T +R) (3.9)

where H is the measurement (output) matrix, R is the measurement noise and K is

the Kalman Gain.

The difference between the estimated output and external measurement is called in-

novation.

z = y −Hx− (3.10)

where y is the external measurement corresponding to the measurement matrix H

and z is the innovation. Note that R in Equation 3.9 corresponds to the noise on the

innovation z.

Then the states can be updated with the following:

x+ = x− +Kz (3.11)

Corresponding covariance update can be performed by:

P+ = (I −KH)P−(I −KH)T +KRKT (3.12)

where I is the identity matrix.

Note that Equation 3.12 is given in the non-simplified form, valid for any feedback

gain K.
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3.1.2.2 Extended Kalman Filter

Extended Kalman Filter is an extension that enables the usage of KF on a non-linear

system via linearization of the system around an estimate state. The state propagation

shown in Equation 3.7 is replaced by:

x−
k+1 = f(xk) (3.13)

where f(·) is the non-linear state transition function.

The function f(·) can be linearized around the state vector xk to compute the state

transition matrix Φk+1
k , which can be used in Equation 3.8 for covariance propagation.

For a non-linear system, the measurement matrix H may be a function of the states.

Then, Equation 3.10 can be replaced by:

z = y − g(x−) (3.14)

where g(·) is the non-linear measurement function.

Like the state transition function, the measurement function can be linearized around

the state vector to compute the measurement matrix H . Then, Equation 3.9, 3.11, and

3.12 can be used to apply corrections and update the covariance matrix.

3.1.2.3 Multiplicative Extended Kalman Filter

Multiplicative EKF extracts an unconstrained 3-component attitude error from the 4-

component non-singular representation of the attitude (Markley, 2003). This deriva-

tion is detailed in § 2.4.2. It is important to note that the attitude-related states within

the MEKF are attitude errors rather than the full attitude. Following this example,

all states in the system are written in terms of errors, constructing a system model of

errors.

A diagram representing the order and interaction of operations of the attitude estima-

tion with MEKF and gyroscopes can be seen in Figure 3.1. Gyroscope measurements

are integrated to update changes in attitude. This attitude integral builds up errors due
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to gyroscope errors. KF is used to estimate both sensor and growing attitude errors.

When a measurement from another sensor is available along with its reference, a KF

Cycle can be processed for the estimation.

Gyro

Measurement
Attitude

Integrate
Attitude Integral

Measurement

Reference

Measurement

CB
I

+
−

V B
ref

V̂ B
meas

MEKF

Apply

Corrections

State Corrections

Measurement

Error

Store

Corrections

KF Cycle

Gyro Corrections Attitude Correction

Sensor Correction

Figure 3.1: Attitude Estimation Diagram using MEKF

Firstly, the KF is propagated to the measurement time using Equation 3.7 and 3.8.

Stored corrections from the previous cycle are fed back into the KF system model and

sensor corrections, deserializing the KF by adding one cycle delay to the feedback.

Then, the measurement reference must be converted to the same coordinate system as

the measurements. This is done by utilizing attitude quaternion in its DCM form CB
I .

Measurement error can be calculated via the difference between the transformed mea-

surement reference and the corresponding measurement. This is the observation for

the KF, given as y in Equation 3.10. With the observation at hand, the measurement

update stage of the KF is performed to estimate the states using Equation 3.9-3.12.

Lastly, estimated states are stored for feedback, without applying immediately.

The delayed feedback mechanism is chosen to parallelize Attitude Integral and KF

Cycle without adding extra computations, only at the cost of a little additional mem-

ory to store corrections.
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CHAPTER 4

INTEGRATED MEASUREMENTS

Commonly, observation for a KF is used as soon as it becomes available. This re-

quires the KF not to run slower than the frequency of the observations. One can

reduce this frequency by downsampling the observations at the cost of estimation

performance. This thesis suggests manipulation of the observations so that the KF

can be slowed down without much effect on the estimation accuracy of the filter.

Figure 4.1 shows the modified MEKF diagram that utilizes the Integrated Measure-

ments. Measurement and its coordinate-transformed reference are integrated within a

window to produce a slower measurement and reference pair that contains the same

amount of information at a reduced frequency. Utilizing the deserialized KF ap-

proach, operations regarding the MEKF can be distributed within this window rather

than in between two Attitude Integral operations. This reduces overall computational

load, as the KF operations are performed less frequently and can be distributed over

time. At the end of the window, integrals of the measurements are reset, and the next

integration window begins. Note that this also means corresponding uncertainties in

the MEKF, if any, must also be reset.

Let yBk
k be the measurement made at time tk in the body coordinate system Bk. For

an interval of N measurement cycles, the integral can be taken in a chosen frame of

reference. Choosing BN as the coordinate system for this purpose, which is the body

coordinate system at the end of the integration interval, yields the following:

YN =

tN∫
t0

CBN
Bt

yBt
t dt (4.1)

where CBN
Bt

is the direction cosine matrix (DCM) that relates the body coordinate

system at time t to that at time tN .
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Figure 4.1: Integrated Measurements MEKF Diagram

For discrete (sampled) measurements, the integration can be formulated in discrete

form using a midpoint integration technique as follows:

YN = ∆t

(
1

2
(CBN

B0
yB0
0 + yBN

N ) +
N−1∑
i=1

CBN
Bi

yBi
i

)
(4.2)

Furthermore, since the attitude relation between the beginning and end of the interval

is not known until the completion of the interval, the scheme can be converted into a

recursive form to enable its computation at every time step rather than a bulk at the

end, both saving memory and distributing the computational load evenly.

Ym = Cm
m−1

(
Ym−1 + 0.5y

Bm−1

m−1 ∆t
)
+ 0.5yBm

m ∆t (4.3)

where Y0 = 0, ∆t is the output interval of the measurement sensor, and m =

1, 2, ..., N is the counter for the steps to reach the integration interval.

This scheme distributes the computation of the discrete integral among the sensor

measurement cycles rather than clumping them all at the end. It is essential for a real-
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time application for the computations to be evenly distributed in time for a uniform

decrease in load.

KF can be designed for this new measurement with little modification. The errors in

the measurements y are integrated into Y .

Ŷ = Y + δY (4.4)

where δY is the error vector in the integrated measurements.

Expanding the state vector by the integrated measurement error δY can account for

this.

xnew =

 x

δY

 (4.5)

In a regular observation scheme, innovation for the measurement and reference pair

is:

Z = V̂ B
meas − CB̂

I V
I
ref (4.6)

Equation 4.6 can be simplified by eliminating truth terms and linearizing it.

Z ≈ δV B
meas + [ϕ×]CB

I V
I
ref (4.7)

whereCB̂
B is the DCM corresponding to the attitude error, [ϕ]× is the skew-symmetric

form of the attitude error vector given in Equation 2.33 and V I
ref is the reference

vector in the inertial frame.

For integrated measurements, δV B
meas in Equation 4.7 directly corresponds to the new

part of the state vector, δY . Its contribution to the measurement matrix H becomes

identity, and the rest of the contribution comes from the coordinate transformation

applied to the measurement reference:

Z ≈ δYmeas + [ϕ×]Yref (4.8)
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With this new measurement, both time propagation and measurement update portions

of the KF can be slowed down to the frequency of the new measurements. Overall,

this results in a reduction of computational load for the system. However, it should be

noted that this integration interval has a limit to be considered when increased. The

attitude estimation problem can be highly non-linear, assuming a dynamic attitude.

The linearized system model in the KF can fail to represent the system properly within

the given time interval. This will lead to a discrepancy between the actual errors

of the estimation and the standard deviation estimated by the filter, along with the

probability distribution of the errors.

The measurement noise R in Equation 3.9 and 3.12 changes with the integration as

well. Measurement corrupted by errors and noise can be written as:

V̂ = V + δV + r (4.9)

where V is the error-free measurement, δV combined measurement error and r is the

white noise with standard deviation σ.

Then, the integrated measurement can be written as:

Ŷ = Y + δY +
N∑
i=1

r (4.10)

where N is the number of measurements within the integration window.

Since the noise is uncorrelated, it can be treated as the summation of N numbers with

the same standard deviation:

std

[
N∑
i=1

r

]
=

√
Nσ (4.11)

where std[·] is the standard deviation function.

Measurement noise for the KF measurement update is formed by the Equation 4.11.

For a measurement with constant magnitude, the signal-to-noise ratio increases by

a factor of
√
N . This is the redeeming factor for the estimation performance, as

integrated measurements have fewer observations than the original measurements.
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CHAPTER 5

SIMULATION RESULTS

The proposed algorithm was tested against an unmodified approach to compare esti-

mation performance and computational load. To this end, a simulation environment

was created. The test case was chosen to be a satellite in a LEO orbit with a triad of

gyroscopes, magnetometers, and sun sensors on board.

First, a LEO trajectory was generated for the simulation case. Then, corresponding

error-free sensor measurements were generated along this trajectory. Simulated sen-

sor data were created by corrupting the error-free measurements. Finally, the sensor

data were run through 2 real-time concurrent attitude estimation and sensor calibra-

tion algorithms; a regular MEKF as a baseline and the Integrated Measurements ap-

proach MEKF. It is important to note that the same sensor data and code structure,

except for the modifications performed for the Integrated Measurements, were used

for both estimation algorithms for a fair comparison.

The estimation results and compute duration for the entire trajectory were collected.

Estimated attitude and sensor errors were compared against the ground truth from

the trajectory and generated sensor errors. The performance of both algorithms was

evaluated and compared in terms of accuracy. Finally, the total compute times were

used to gauge the overall change in the computational load.

Simulations were performed over two configurations of sensor error models, using

an unmodified MEKF as a baseline and Integrated Measurements as the proposed

method. The first configuration was a simplified case where magnetometer bias, scale

factor, and misalignment errors were ignored in sensor error generation and system

modeling. The second configuration included all these terms and represented attitude
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estimation with concurrent sensor calibration.

The Integrated Measurements approach with an integration window of 10 seconds

was compared to the baseline in terms of estimation performance for all states and

in terms of total computational load. This section contains these results for a single

representative simulation to demonstrate performance in the time domain and the final

estimation statistical results for a Monte-Carlo test of 100000 simulations to verify the

integrity of statistical assumptions of the estimations. In the sample simulation plots,

eclipsed portions are shaded with red and Nadir pointing sections are shaded with

gray for ease of identification.

5.1 Simple Configuration

Simple configuration is a test for a simplified case where only attitude estimation is

required and sufficient. It was meant as grounds for further investigation with the

full configuration. The results belong to a single sample simulation unless otherwise

stated.

In this configuration, the following sensor errors are present and are modeled in the

MEKF:

• Gyroscope Bias Repeatability & Instability Error

• Gyroscope Noise Error

• Magnetometer Noise Error

• Sun Sensor Noise Error

• Sun Sensor Eclipse Measurement Cut-off

Figure 5.1 and 5.2 show that both regular KF and integrated measurements KF pro-

duce very similar attitude and gyroscope bias estimations for the simple configuration.

The attitude error goes down to 0.5 mrad and the total gyroscope bias is reduced to

2°/h, along with their standard deviations when both magnetometer and sun sensor

measurements are available.
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In this sample case, the satellite is eclipsed approximately every 100 minutes, and

sun sensor measurements are lost, the first one starting at about 70th minute. These

sections show an increase in both the estimation error and uncertainty, especially for

the attitude estimation.

Figure 5.1: Attitude Estimation Errors for Simple Configuration

Figure 5.2: Gyroscope Bias Instability Estimation Errors for Simple Configuration
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Figure 5.3 shows that both approaches result in normally distributed residual attitude

errors. The previous figures show that no performance has been lost with the 10

seconds integrated measurements approach.

Figure 5.3: Attitude Estimation Error PDFs for Simple Configuration

Figure 5.4 and 5.5 show the end of simulation residual attitude and gyroscope bias

error distributions across the Monte-Carlo simulation. The former also shows the

median standard deviation at the same point for roll, pitch, and yaw while the latter

shows the same for the gyroscope bias. They confirm that both the uncertainty and the

estimation provided by the proposed approach match the performance of the baseline.
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Figure 5.4: MC Final Attitude Estimation Error PDFs for Simple Configuration

Figure 5.5: MC Final Gyroscope Bias Error PDFs for Simple Configuration

On a desktop pc (with Intel i7-8700 CPU, single core affinity), regular KF and 10s

Integrated Measurements KF approach was compared using identical input sensor

data and system architecture, with the exception of modifications shown in Figure 4.1.

In this section, identical estimation performance was demonstrated. The speed-up

was measured as the ratio of median compute times. Figure 5.6 shows the histogram

of speed-up factors with a median value of 7.1x compared to the baseline.
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Figure 5.6: MC Simulation Compute Speed Comparison for Simple Configuration

5.2 Full Configuration

Full configuration includes magnetometer bias, orthogonality, and scale factor errors

in addition to those already existing in the simple configuration. The full list of sensor

errors and modeled states are as follows:

• Gyroscope Bias Repeatability & Instability Error

• Gyroscope Noise Error

• Magnetometer Bias Error

• Magnetometer Scale Factor Error

• Magnetometer Orthogonality Error

• Magnetometer Noise Error

• Sun Sensor Noise Error

• Sun Sensor Eclipse Measurement Cut-off
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The system model amounts to a total of 15 states for the regular KF approach. How-

ever, 3 additional states, in the form of integrated magnetometer error states, are re-

quired to implement the integrated measurements approach, totaling 18 states.

In the sample simulation, similar to the simple configuration, Figure 5.7 and 5.8 show

almost identical attitude and gyroscope bias estimations for both estimators. After

the initial stages, overall estimation performance becomes similar to simple configu-

ration. This is due to the good estimation of the additional errors, which is demon-

strated in the upcoming figures.

Figure 5.7: Attitude Estimation Error PDFs for Full Configuration
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Figure 5.8: Gyroscope Bias Instability Estimation Errors for Full Configuration

Figure 5.9, 5.10 and 5.11 show that both estimators produce nearly identical magne-

tometer error estimates after the initial stages. At the end of the first 2 hours; bias

was reduced to 30 nT, orthogonality was reduced to 1 mrad, and scale factor was re-

duced to 1000 ppm range. For a LEO satellite, these errors would produce a similar

magnitude of measurement errors, as the main observable parameter is their sum.
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Figure 5.9: Magnetometer Bias Estimation Error for Full Configuration

Figure 5.10: Magnetometer Orthogonality Estimation Error for Full Configuration

57



Figure 5.11: Magnetometer Scale Factor Estimation Error for Full Configuration

Figure 5.12 shows the attitude estimation error distribution throughout the sample

run. The distribution is heavily affected by errors in the initial stages due to low

amounts of rotation in the system. Thus, the observability is low and it takes time for

the estimation to reduce errors down to the linear region. The performance will be

demonstrated via the matured estimations in the MC simulation.

Figure 5.12: Attitude Estimation Error PDFs for Full Configuration
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Figure 5.13 and 5.14 show the end of simulation residual attitude and gyroscope bias

error distributions across the Monte-Carlo simulation for the full configuration case.

The median uncertainties at these points are also denoted in the figures for reference.

They confirm that both the uncertainties and the estimations provided by the pro-

posed approach match those of the baseline. The overall distribution shape closely

resembles the normal distribution, confirming that the modified MEKF’s statistical

properties are intact.

Figure 5.13: MC Final Attitude Estimation Error PDFs for Full Configuration
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Figure 5.14: MC Final Gyroscope Bias Error PDFs for Full Configuration

Figure 5.15, 5.16, and 5.17 show the end of the simulation residual magnetometer

bias, orthogonality, and scale factor error distributions across the Monte-Carlo simu-

lation. They demonstrate that both estimators produce nearly identical uncertainties

and probability distributions. These distributions are in the shape of normal distribu-

tions, confirming the integrity of the estimations.
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Figure 5.15: MC Final Magnetometer Bias Error PDFs for Full Configuration

Figure 5.16: MC Final Magnetometer Orthogonality Error PDFs for

Full Configuration
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Figure 5.17: MC Final Magnetometer Scale Factor Error PDFs for

Full Configuration

Figure 5.18 shows probability distributions of final pitch estimations in a Monte-Carlo

simulation comparing different integration intervals for the Integrated Measurements

along with their corresponding speed-ups. The computational load gets lighter as the

integration interval is increased, however, the error distribution is adversely affected

as a trade-off. Therefore, the interval should be carefully chosen so as not to cause

divergence in the system.

Figure 5.18: PDFs of Pitch Error for Different Integrated Measurements Intervals

62



Using the aforementioned setup in § 5.1, the speed-up of 10s integrated measurements

KF was measured to be 6.2x, as shown in Figure 5.19. It should be noted that this

speed-up value includes all the work the attitude algorithm does, including the attitude

integral and KF operations. As the proposed approach only lightens the load of the

latter, the former becomes a limiting factor for speed-up. This and the measurement

integration overhead prevent the proposed approach from achieving linear speed-up

with the integration window, which would have been 10x for 10s intervals.

Figure 5.19: MC Simulation Compute Speed Comparison for Full Configuration
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, a complementary approach to literature was taken to reduce the com-

putational load of a KF. This approach was applied to a real-time onboard attitude

estimation and sensor calibration algorithm for a small satellite. It was tested via the

sets of sensor data generated for a variety of LEO trajectories using a Monte-Carlo

simulation. The performance of the proposed method was compared to the traditional

approach in terms of estimation and computational performance. A lighter overall

computational load was demonstrated without a loss in the estimation quality.

However, the integration interval for the method must be carefully chosen as the es-

timation performance may degrade for bigger windows depending on the system dy-

namics. Also, increasing the integration window provides diminishing returns since

the speed-up is sub-linear.

In conclusion, the Integrated Measurements approach was shown to reduce the com-

putational load of a KF without a visible impact on the estimation performance on the

satellite attitude estimation problem. Having shown its effectiveness in the satellite

attitude estimation problem, the method can be further assessed in other navigation-

related problems as well. Moreover, it can be combined with the available methods

in the literature for additional improvements.
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6.2 Future Work

As a continuation of this research, the following work can be considered:

• Applying the method to computationally heavier estimators like UKF.

• Applying the method to other navigation-related problems

• Investigation of adaptive integration interval selection
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