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Abstract: Lithium-ion batteries (LIBs) have been explored to meet the current energy demands;
however, the development of satisfactory anode materials is a bottleneck for the enhancement
of the electrochemical performance of LIBs. Molybdenum trioxide (MoO3) is a promising anode
material for lithium-ion batteries due to its high theoretical capacity of 1117 mAhg−1 along with
low toxicity and cost; however, it suffers from low conductivity and volume expansion, which limits
its implementation as the anode. These problems can be overcome by adopting several strategies
such as carbon nanomaterial incorporation and polyaniline (PANI) coating. Co-precipitation method
was used to synthesize α-MoO3, and multi-walled CNTs (MWCNTs) were introduced into the
active material. Moreover, these materials were uniformly coated with PANI using in situ chemical
polymerization. The electrochemical performance was evaluated by galvanostatic charge/discharge,
cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). XRD analysis revealed
the presence of orthorhombic crystal phase in all the synthesized samples. MWCNTs enhanced the
conductivity of the active material, reduced volume changes and increased contact area. MoO3-
(CNT)12% exhibited high discharge capacities of 1382 mAhg−1 and 961 mAhg−1 at current densities of
50 mAg−1 and 100 mAg−1, respectively. Moreover, PANI coating enhanced cyclic stability, prevented
side reactions and increased electronic/ionic transport. The good capacities due to MWCNTS and
the good cyclic stability due to PANI make these materials appropriate for application as the anode
in LIBs.

Keywords: α-MoO3; CNTs; PANI; anode materials; lithium-ion battery

1. Introduction

The current fossil fuels-based energy is at a severe risk owing to many factors, includ-
ing the consumption of non-renewable energy resources. Another worrying aspect of the
current fossil fuel energy economy is connected with CO2 emissions, which has increased
at a uniform rate, thus resulting in an increased global temperature with a series of sudden
climate changes. Environmental pollution and the growing population have caused an en-
ergy crisis, therefore it is very difficult to meet the current energy demands. Consequently,
researchers are trying to develop affordable, ecofriendly and environment-friendly energy
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storage devices using low cost, potentially abundant and environment-friendly material.
The development of renewable energy technologies is a substantial approach to limit global
warming, environmental pollution and the deficiency of fossil-based resources. Energy
storage plays a vital role in developing renewable energy systems [1–4]. Electrochemical
systems such as super capacitors and batteries, which can effectively deliver and store
energy in power plants, can also provide load levelling and power quality in the integrated
systems [5,6].

In this context, lithium-ion batteries (LIBs) have been proved as promising energy
storage devices that are widely used in daily life, such as in hybrid electric vehicles, space
exploration, aviation [7] and portable electronic devices [8–10], owing to high power densi-
ties, environmental friendliness, long cycle lives, low self-discharges, high energy densities,
small ionic sizes (which permit fast Li+ intercalation in solids) that are a main factor for
fast charging, cyclic stabilities, small memory effects and high open circuit voltages [11,12].
To fulfill the current energy demands, the electrochemical performance of LIBs including
cycle life, capacity, power density and charging speed should be enhanced [7]. Since the
mechanism of LIBs is based on the movement of Li+ ions between the anode and cathode,
the electrochemical and physical properties of the electrode materials have significant
influence on the performance of the battery; typically, a variety of lithium metal oxides
such as LiCoO2 have been used as the cathode material [12], and graphite is mainly used
as the anode material in commercial LIBs owing to low cost, stable operational poten-
tial and environmental friendliness [13]. However, the graphite anode exhibits poor rate
performance owing to a low theoretical capacity of 327 mAhg−1 [10]; it also suffers from
lithium dendrite formation, slow ion diffusion coefficient and volume deformation [13].
Moreover, a large hysteresis between lithiation/delithiation causes difficulties in practice
applications. Therefore, there is a strong motivation to develop some novel anode materials
(an important component of LIBs) with long cycle lives, large capacities and excellent
capacity retention [14]. To substitute graphite, transition metal oxide (TMO) anodes, a
class of inorganic materials, have been extensively used because of its high theoretical
capacity [15,16]. Thus, many transition metal oxides such as Co3O4, CuO, MoO3, WO3,
NiO and SnO2 have been prepared. Moreover, Si nanostructures, metal sulfides [17] and
tin compounds have also been developed in the field of lithium-ion battery owing to their
large theoretical capacities, widespread availability and environmental friendliness [7,18].
Chu et al. prepared MFe2O4@HPSs particles confined with a carbon network that ex-
hibited high cyclic stability and good rate performance. Moreover, these nanoparticles
maintain structural integrity during charging and discharging [19]. Qinglin et al. prepared
ZnO/ZnFeO4 nanospheres. Impressively, ZnO/ZnFeO4 showed good cycling performance
(1137 mAhg−1 after 80 cycles at 1 Ag−1) [20]. Among all of them, transition metal oxides
possess variable valence states and diverse morphology [17]. The capacity of a TMO can
reach values of 700–1200 mAhg−1. Molybdenum-based materials have been proved as
promising electrodes for energy storage systems owing to low cost, multiple valence states
and high theoretical capacity [21]. Molybdenum oxide electrodes have been employed
as negative and positive electrode materials. Among all of molybdenum oxides, MoO2
and MoO3 are mostly used [21]. To date, MoO3 is used as a promising anode material
for Li ion batteries (LIBs) owing to versatile structure, low cost, nontoxicity, natural abun-
dance, adjustable chemical state, high thermal and chemical stability [8], environmental
friendliness and a good theoretical capacity of 1117 mAh/g [8], which is three times greater
than that of commercial graphite (327 mAh/g) [22]. On the basis of crystallographic ar-
rangement, MoO3 has three different polymorphs, h-MoO3 (hexagonal), metastable [21]
β-MoO3 (monoclinic) and α-MoO3 (orthorhombic) [7,23], of which α-MoO3 is the most
stable thermodynamically [7,24]. Moreover, MoO6 is a building block of MoO3, and MoO6
octahedron in the layered structure of MoO3 provides a diffusion path for Li ions [23,25,26].
However, α-MoO3 exhibits poor electronic and ionic conductivity and suffers from large
volume changes that induce pulverization during delithiation/lithiation, unstable crystal
structure, small surface area [21], resulting low specific capacity and poor cycling stabil-
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ity [27–29]. During cycling, a major issue with transition metal oxides is pulverization
and cracking, which causes aggregation and dispersion in electrode material [12]. In order
to cope with these kinds of problems, multiple strategies have been applied to improve
electrochemical performance, mechanical strength, surface area, electron and mass trans-
port kinetics and conductivity of TMOs, such as designing nanostructures, introducing
conductive agents and engineering defects [21]. MoO3 has been converted into various
forms such as nanowires, nanorods, nanobelts [30], nanofibers and nano sheets [24]. The
small size of nanoparticles shortens Li+ diffusion path and the large surface area provides
active sites [31]. Furthermore, one of the most important approaches to increase electronic
conductivity of α-MoO3 and to improve Li+ ion diffusion and electronic conductivity,
carbon materials and matrices have been introduced into MoO3 such as carbon nanotubes
(CNTs), carbon black (graphene) [32] and polyaniline (PANI).

Moreover, the conducting polymer also provides the conducting backbone, which
increases the lithium ion conductivity, stability [33] and electrochemical performance of the
electrode [34,35].

Polymer materials such as polypyrrole (Ppy) and polyaniline (PANI) [24] have been
coated and the performance has improved. Recently, nanocomposites of MoO3 with poly-
pyrrole were synthesized and the nanocomposites exhibited good cycling stability and
electrochemical performance in lithium ion batteries, signifying the successful use of the
polymer [36]. Polyaniline is considered another polymer for a potential conductive polymer
due to its environmental stability, easy synthesis and high conductivity [37]. PANI has a
function of improving conductivity and stabilizing the structure. Cai et al. utilized nest-like
PANI that reduced volume changes to increase electrochemical performance of Si-based
anode materials [37]. Wu et al. prepared a 3D hydrogel conducting network by in situ
polymerization that demonstrated good cycling performance [38]. Furthermore, PANI
coating on the surface of MoO3 acts as a good anode material for a Li+ ion host.

Moreover, carbon also acts as a buffer that reduces the stress owing to a large volume
of expansion during the charging–discharging by enhancing the electrical conductivity of
anodes [39–41]. Furthermore, carbon increases the structural stability by surrounding the
active material particles because it prevents active material aggregation during cycling.
However, comparatively, CNTs displayed a good rate capability and cyclic stability over
carbon [42].

Conductive carbonaceous materials such as CNTs and reduced graphene oxide (RGO)
have been used with MoO3, which can improve conductivity and structural stability, thus
increasing the overall electrochemical performance [43]. The unique properties of CNTs
such as low density and high conductivity make them well suited to synthesize TMO–CNT
nanocomposites for the lithium ion battery. Therefore, we developed a straightforward and
facile co-precipitation method for the synthesis of MoO3, MoO3-PANI, MoO3-(CNTs)x%
and MoO3-(CNTs)x%-PANI. The battery parameters, such as coulombic efficiency, cyclic
stability and capacity retention are compared and discussed with MoO3 bulk.

2. Results and Discussion

Figure 1 depicts XRD patterns for MoO3-pure and its nanocomposites, indicating
orthorhombic MoO3 phase for all samples with no diffraction peaks of other impurities
with the lattice parameters (a = 3.962 Å, b = 13.85 Å, c =3.6970), which are well consistent
with the JCPDS card no 05-058 [44–47]. The three sharp peaks at 23.46, 25.82 and 27.46 can
be perfectly indexed to the crystalline orthorhombic phase; however, other minor peaks also
showed a best match with the JCPDS card [48]. This observation shows that PANI coating
does not affect the crystal lattice of MoO3 and that the structure is preserved. The crystallite
sizes for various synthesized samples were calculated using Debye–Scherrer equation as
represented: λ is incident wavelength of X-rays, which is 1.5406 nm, β is the full width
at half-maximum of the selected peak in radians and θ is the diffraction angle (Bragg’s
angle) at which the peak arises and is also measured in radians [49]. The crystallite sizes
of the materials are as follows: MoO3 (48.6 nm), MoO3-PANI (41.43 nm), MoO3-(CNT)12%
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(39.7 nm) and MoO3-(CNT)12%-PANI (47 nm). All information regarding other samples are
given in Table S1 (supporting information) and Figure S1.

D = kλ/βcosθ (1)

where D represents crystallite size and k represents the constant usually taken as 0.9. The
crystal structure of α-MoO3 is shown at the bottom of Figure 1, in which the red balls
represent oxygen and the green balls indicate molybdenum (Mo).
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Figure 1. XRD patterns of samples and the orthorhombic crystal structure of MoO3.

The surface morphologies of the MoO3-pure and their nanocomposites were investi-
gated by SEM. Pure α-MoO3 presented with a uniform plate-like structure that appears like
clusters of nanoflowers at low magnification, as shown in Figure 2. At high magnification,
it showed a flat smooth surface with a semicircular tip. These plates [50] combined layer by
layer to form well oriented microbelts, showing perfect morphology and well crystallinity.

MoO3 maintained a plate-like morphology after the addition of CNTs, but with a
small size, unsmooth particle surface and a little disorder, as shown in Figure 3. It was also
observed that CNTs were well dispersed around the MoO3 nanoparticles. EDX analysis was
also done to determine relative abundance and elemental composition. The corresponding
EDS mapping exhibited existence of Mo, O and C.

FTIR (Fourier transform infrared) spectroscopy was employed to investigate the
bonding and functional groups of MoO3. FTIR analysis was carried out in the transmittance
mode for structure elucidation as well as to assess bonding present between various
components, as shown in Figure 4. Two peaks were observed at 565 cm−1 and 678 cm−1,
displaying the bending and stretching vibration of MoO [51]. The peaks at 852 cm−1 and
980 cm−1 are assigned to the stretching vibration of the O–Mo–O bond and the stretching
vibration of oxygen in Mo–O–Mo, repectively [52]. The small peaks observed at 1471 cm−1

and 1644 cm−1 correspond to the bending vibrations of H–O–H [53]. It also showed the
presence of water in crystallization of MoO3.
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Figure 5. MoO3 showed almost no adsorption at a relative pressure less than 0.9, while it
started showing small adsorption when relative pressure approached 1.0. On the contrary,
in the case of MoO3-CNTs(12%)-PANI, with the increase of relative pressure, adsorption
quantity increased gradually. In addition, in the 0.9–1.0 relative pressure range, hystere-
sis loop was observed. The BET surface areas of MoO3, MoO3-PANI, MoO3-(CNT)12%
and MoO3-(CNT)12%-PANI were 0.849 m2/g, 4.017 m2 g−1, 19.8 m2 g−1 and 41.3 m2 g−1,
respectively, and the BJH (Barrett-Joyner-Halenda) pore volumes were 0.0018 cm3g−1,
0.008 cm3g−1, 0.072 cm3g−1 and 0.143 cm3g−1, respectively. MoO3-(CNTs)12%-PANI dis-
played a broad pore-size distribution in the 5–150 nm pore diameter range. The porous
structure with a large surface area makes charge transfer easier at the electrode/electrolyte
interface due to additional access points to the electrolyte.

Figure 6 shows the CVs of all the MoO3-based electrodes at the scan rate of 0.5 mVs−1

over a potential range of 0.01–3.0 V for the first two cycles. Three broad peaks were seen at
2.11 V, 2.57 V and 0.01 V vs. Li+/Li in the first cycle of the cathodic polarization process,
which corresponds to the lithium intercalation processes, while the current anodic peak at
1.25 V was seen in anodic polarization, which corresponds to the lithium extraction process.
More specifically, these types of anodic and cathodic peaks at these potentials represent
lithium insertion/de-insertion in different structural sites of MoO3 to form LixMoO3. The
strong peak at 0.01 V appeared due to lithiation of MoO3. The area of peak in the first cycle
was more than that in the second cycle, which may be attributed to irreversible conversion
reactions [54]. The change in the shape of the cathodic peak in the second cycle corresponds
to the structural change of the material. When the lithium cation enters into the structure,
it increases interlayer spacing and the repulsive forces of the cation leads to cracking of
MoO3 and thus decreases the particle size. That is why the peaks of MoO3 change in the
next cycles [55,56]. The overall discharge and charge process could be summarized by the
Equations (1) and (2) [57]:

Intercalation: MoO3 + xLi+ + xe− → LixMoO3 (2)

Conversion: LixMoO3 + (6 − x) Li+ + (6 − x) e− ↔ Mo + 3Li2O (3)
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Galvanostatic charge/discharge measurements were performed between the voltage
windows of 0.01–3 V at a current density of 100 mAg−1, as shown in Figure 7. The initial dis-
charge capacities of MoO3-pure, MoO3 PANI, MoO3-(CNT)12% and MoO3-(CNT)12%-PANI
at 100 mAhg−1 were found to be 622.23, 561.75, 961.50 and 801.00 mAhg−1, respectively,
while the charge capacities were 494.08, 485.01, 814.04 and 801.00 mAhg−1, respectively and
the first coulombic efficiencies were 79.40, 86.30, 84.60 and 82.40%, respectively. All MoO3
anodes led to low coulombic efficiencies in the first cycle, because of large irreversible
capacities [55]. The large irreversible capacity arises owing to the following reasons: firstly,
the solid electrolyte interface (SEI) formation on the surface of nanoparticles; secondly, de-
composition of electrolytes owing to unsaturated carbon atoms. In addition, Li ions may be
trapped in the cavities of nanocomposites due to the slow release of Li kinetics, formation
of lithium compounds or may be due to the bonding between less coordinated atoms at
defect sites [55,58]. From the second discharge onwards, the discharge/charge curves were
well coincided. All uncoated samples almost showed similar behavior, showing variations
only in the extent to which these materials stored capacity and further how much capacity
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was retained upon cycling. The first discharge profile showed a rapid potential drop from
3 V until it reached a narrow plateau around 2.3 V, which is due to the intercalation of
lithium ions into the crystal structure of the active material, followed by a wide plateau
at a potential of 0.8 V, which corresponds to the conversion reaction between lithium ions
and molybdenum oxide. Moreover, a steep profile followed this narrow plateau, which
tappers off gradually until the potential reached 0.01 V and showed the formation of SEI.
The following second discharge curve underwent changes due to the Li+ driven structural
changes and therefore did not show any narrow plateau at a potential lower than 2.3 V,
followed by a reduction in the wide plateau and steep profile. Information regarding other
compositions of α-MoO3 are given in supporting information (Figure S3).
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Figure 8 investigates specific capacity, rate performance and cyclic stability of MoO3-pure,
MoO3-(CNT)x% and MoO3-(CNT)x%-PANI electrodes at various rates, such as 50 mAg−1,
100 mAg−1, 200 mAg−1 and 400 mAg−1 for 35 cycles. The charge/discharge capacities of
Mo-(CNT)12% were 814.5/961.5, 433.8/484.9 and 293.9/330.0 and of MoO3-CNT)12%-PANI
nanocomposites were 660.0/801.0, 347.0/390.7, 247.5/286.9 mAg−1 at the current density
of 100, 200 and 400 mAg−1, respectively; while pure MoO3 possessed charge/discharge
capacities of 494.08/622.23, 160.20/181.40 and 104.10/119.70 at the same current rates,
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respectively. The graph shows a decrease in capacity with an increase of current den-
sity; however, when the current density reduced back to 100 mAg−1, a charge/discharge
capacity of 449.93/450.96 and 211/221 in the cases of MoO3-(CNT)12% and pure MoO3,
respectively, were obtained and remained stable in the subsequent cycles. PANI occupied
some spaces in the nanoparticles, which increased reversibility and cyclic stability owing
to the increasing extraction/insertion of the Li+ ion. Carbon nanotubes also improved
the performance of the composites because of their conductivity; they also prevented the
electrode from disintegrating during charge and discharge. Apart from these, carbon nan-
otubes were active electrochemically and prevented electrode disintegration by providing
a mechanical framework during charge and discharge [59]. On the other hand, carbon
nanotubes provided a physical barrier to prevent MoO3 nanoparticles from aggregation
and improved structure integrity [60]. Moreover, during cycling, they acted as buffers that
accommodate volume changes and thereby maintained structural stability [60]. Specific
capacity decreased drastically by increasing the cycle number due to volumetric changes
that resulted in a decrease in crystallinity. The stability results of MoO3-(CNT)12% were
better compared to those of MoO3-(CNT)12%-PANI (Table 1).
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Table 1. Specific capacities and cycle performances of MoO3-based anodes in LIBs as reported in the
literature.

Electrode Material Initial Cycle
Discharge (mAhg−1)

Reversible
Capacity (mAhg−1)

Current Density
(mAg−1) Ref.

MoO3-(CNT)12%-PANI 801 406 100 This Work
MoO3-(CNT)12% 961 517 100 This work

α-MoO3 301 180 30 [61]
α-MoO3 211 133 300 [61]
MoO3 668 157 200 [52]
MoO3 974 286 100 [62]

MoO3-NiMoO4 1031 324 100 [62]
α-MoO3-CNT 583 194 500 [8]
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The Nyquist plots of the EIS spectra Z” (ohm) and Z’ (ohm) represent imaginary and
real impedance components in the Nyquist plots. To evaluate the kinetics of anode and cath-
ode electrodes and to provide information about the bulk resistance of the electrode, surface
film and charge transfer, we measured the electrochemical impedance spectroscopy (EIS) of
the MoO3-pure, MoO3-PANI, MoO3-(CNT)12% and MoO3-(CNT)12%-PANI nanocomposite
electrodes. An equivalent circuit was employed to model the circuit parameters correspond-
ing to the EIS of the cell. The electrochemical impedance spectra (EIS) of nanocomposites
were recorded at an open circuit potential (OCP) as shown in Figure 9. R1 connected in
series represents the solution resistance, and the two parallel circuits consisting of constant
phase elements (CPEs) and resistance (R) represent the capacitive and resistive load in
the cell. R2 and CPE2 denote the resistance and constant phase element of the semicircle
obtained at the high frequency region, while R3 and CPE3 are for the semicircle obtained
at the low frequency region. According to the literature, the small semicircle in the high
frequency region signifies interfacial layers, where Li+ ions migrate through surface films
on the electrode encounter resistance. The larger semicircle represents charge transfer resis-
tance and double layer capacitance at the low frequency range. The semicircles, however,
are generally depressed and a true capacitor cannot fit well with the experimental data.
The CPEs are generally used in place of a capacitor to obtain a better mathematical fit, but
their physical justification is not obvious. Heterogeneities in the electrodes, such as surface
roughness and porosity, were generally attributed with this observation [63,64]. Physical
interpretation of Q and α values in CPE is not straightforward and has no clear physical
correspondence. Only alpha (α) can provide a measure of how similar the CPE is to an ideal
capacitor. In addition, alpha being close to 0.5 was attributed to the behavior of a porous
electrode, whereas for an ideal flat electrode, it is unity. Beyond these, Q and α hardly
provide any physical insight and were not analyzed in detail [65].The experimental data
(symbols) and the simulated (solid line) data according to the electrical equivalent circuit
in the inset of figure are collected in Table 2. The chi-square (χ2) showed an acceptable
correlation between simulated and experimental data, thereby validating the equivalent
circuit model. At the electrode–electrolyte boundary, there was kinetic resistance offered
owing to the charge transfer [66]. MoO3-(CNT)12% showed small resistance due to the
electric conductivity offered by CNTs and the small contact resistance of the active material
and current collector [67].
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Table 2. EIS fitting results of samples.

No Samples R1 (Ω) R2 (Ω) Q2 (Fsα−1) α2 R3 (Ω) Q3 (Fsα−1) α3 χ2

1 MoO3 7.11 9.92 1.21 × 10−3 0.474 1208 4.39 × 10−3 0.904 0.0077

2 MoO3
PANI 2.66 20.01 0.16 × 10−3 0.644 1201 5.25 × 10−3 0.882 0.00279

3 MoO3
(CNT)12%

3.07 22.20 0.11 × 10−3 0.678 339 0.0133 0.788 0.00796

4 MoO3-(CNT)12%
PANI 5.16 45.40 7.65 × 10−5 0.722 696 4.64 × 10−3 0.754 0.00383

3. Materials and Methods
3.1. Materials

All chemicals and reagents were purchased from Sigma-Aldrich (Saint Louis, MO,
USA) and used without any further purifications.

3.2. Synthesis of α-MoO3

MoO3 nanorods were synthesized by adding 0.1 M solution of ammonium heptamolyb-
date tetrahydrate in 100 mL deionized water, and the solution was stirred continuously for
30 min. Subsequently, 5 mL concentrated nitric acid (HNO3) was poured slowly drop-wise.
Pale-yellow colored precipitates were observed in a reaction beaker. The beaker was then
placed in a water bath at 120 ◦C for 3 h. The obtained precipitates were washed, centrifuged
and dried for 6 h in an oven at 70 ◦C.

3.3. Synthesis of α-MoO3-MWCNTs-PANI

Accordingly, for the preparation of MoO3/MWCNTs, (x = 4% (0.15 g), x = 8% (0.312 g),
x = 12% (0.48 g)) of functionalized MWCNTS were ultrasonicated for 30 min in 50 mL water
(solution A). A quantity of 3.62 g of prepared MoO3 was also ultrasonicated for 30 min in
25 mL water. A total of 25 mL of solution B was transferred to 50 mL of solution A, and the
mixture was ultrasonicated for one hour. Excess water was removed using a centrifuge and
the remaining was dried in an oven at 50 ◦C. For the preparation of MoO3/MWCNTs/PANI,
an appropriate amount of prepared material was added in a round bottom flask containing
1 M HCl solution and ultrasonicated for half hour, as shown in Figure 10. The solution
was then placed in an ice bath, so that during the whole reaction time, the temperature
could be maintained. After 10 min of stirring, 10 wt% of aniline monomer was added in a
round bottom flask, followed by 30 min of stirring. A calculated amount of ammonium per
sulfate (APS) was added in a small amount of distilled water and poured slowly in a round
bottom flask. APS acts as an oxidizing agent that mainly initiates polymerization of aniline
monomers. The reaction mixture was stirred in an ice bath for 6 h and the temperature was
maintained below 4 ◦C. After 6 h, the mixture was washed many times and dried.

3.4. Physiochemical Characterization

The crystal structure of the sample was investigated by XRD (X-ray diffraction) with
Cu kα radiation (λ = 0.154 nm), recorded by Bruker D8 diffractometer. FESEM (field
emission scanning electron microscopy) (FEI 430 Nano Scanning Electron Microscope,
Ankara, Turkey) was used to confirm the surface morphology. EDX (energy-dispersive
X-ray spectroscopy, Turkey) was used for elemental mapping. The pore size distribution
and specific surface areas were analyzed by N2 adsorption–desorption isotherm. FTIR
(JASCU 6600, NCP, Islamabad, Pakistan) analysis was done to identify the functional
groups of MoO3.
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3.5. Electrochemical Measurements

Electrochemical measurements were done by using two electrodes and a lithium foil
as a reference or counter electrode. The electrode was fabricated by mixing active material,
PVDF binder and conductive carbon black in N-methyl-2-pyrrolidinone (NMP) in a weight
ratio of (75:15:10). By using the doctor blade, the slurry was evenly pasted on a Cu foil
(thickness: 200 µm) and then heated overnight in a vacuum oven. The assembling process
was completed in a glovebox under argon (Ar) atmosphere, where concentration of O2 and
H2O were below 0.1 ppm. The discharge/charge measurements were done in the voltage
range of 0.00–3.0 V at different current densities. CV measurements were performed at a
scan rate of 0.5 mVs−1. EIS (electrochemical impedance spectroscopy) was performed at
room temperature between the frequency range of 100 kHz and 10 mHZ and an amplitude
of 10 mV.

4. Conclusions

The increasing global energy crisis and environmental concerns have stimulated the
development of energy storage devices that are efficient and clean for the society. Currently,
batteries and SCs have exhibited their potential as energy storage devices, as a consequence
of excellent charge–discharge capabilities, their great energy densities and long cycling
stabilities. MoO3 electrodes underwent fast growth and their potential in advancement of
effective energy storage systems is explained due to their excellent electrochemical perfor-
mances and good physicochemical properties. However, their low electrical conductivity
has retarded their good energy storage application. As a result, to solve this problem, many
nanostructured MoO3 and their composites were fabricated. MoO3 and their composites
with CNTs and PANI coating proved to have excellent electrochemical performances in bat-
teries and SCs. In this work, MoO3, MoO3-(CNT)x% and MoO3-(CNT)x%-PANI composites
with a plate-like morphology, in which MWCNTs were anchored, were synthesized via the
co-precipitation method. Various conditions including temperature and acid concentration
were optimized to achieve the desired orthorhombic crystal phase. Moreover, these materi-
als were uniformly coated with PANI by in situ chemical polymerization. The morphology
and structure of nanocomposites were investigated by scanning electron microscopy (SEM)
and X-ray diffraction (XRD), while the specific surface area and porosity were determined
using Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods. Fourier
transform-infrared (FTIR) spectrometer analysis was performed in the transmittance mode
in the range of 500 to 4000 cm−1 to investigate different functional groups. The electrochemi-
cal performance was evaluated by galvanostatic charge/discharge, cyclic voltammetry (CV)
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and electrochemical impedance spectroscopy (EIS). Pure α-MoO3 and its composites with
CNTS were uniformly coated with polyaniline by applying in situ chemical polymerization.
The PANI coating layer alleviated volume changes and improved conductivity and cyclic
stability. MoO3 with CNTs contributed to fast Li ion diffusion and buffered the volume
changes during this work, which further demonstrates the effect of PANI coating on the LiB
performance. The CNTs and PANI suppressed aggregation to maintain structural integrity
and improved kinetic and conductivity of MoO3. The result showed an increase in specific
capacities, particularly in the case of CNT-based composites, where the capacity is recorded
as 1382 mAhg−1 at 50 mAhg−1 and 961 at 100 mAhg−1 in the case of MoO3-(CNT)12%. In
short, this study suggests strategies of CNT incorporation and polymer coating to address
the problems of low electronic and ionic conductivity and the swelling of active materials
during cycling that were successful, and in the future, these can be applied to other active
materials as well along with changing the morphology from micro to nanoscale.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28083319/s1, Figure S1: XRD patterns of nanocomposites;
Figure S2: Cyclic voltammograms for all nanocomposites (a) MoO3-(CNTs)4% (b) MoO3-(CNTs)4%-
PANI (c) MoO3-(CNTs)(8%) (d) MoO3-(CNTs)8%-PANI nanocomposite; Figure S3: The charge/discharge
curves of (a) MoO3-(CNT)4% (b) MoO3-(MWCNT)4%-PANI (c) MoO3-MWCNTS(8%) (d) MoO3-
MWCNTs(8%)-PANI of all nanocomposites electrodes (e) Cycling performance of electrodes in the
initial 10 cycles; Figure S4: The cyclic performance of (a) MoO3-(CNT)4% (b) MoO3-(CNT)4%-PANI
(c) MoO3-(CNTS)8% (d) MoO3-(CNTs)8%-PANI nanocomposite nanocomposites at various current
rates; Figure S5: The equivalent circuit and Nyquist plots of MoO3 nanocomposites; Table S1: Crystal-
lite size of nanocomposites; Table S1: EIS fitting results of samples.
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