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ABSTRACT

DISTRIBUTED NONLINEAR MODEL PREDICTIVE FORMATION
CONTROL OF QUADROTOR TYPE UAVS IN CLUTTERED AND

DYNAMIC ENVIRONMENTS

Satır, Muhlis Sami
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Mustafa Mert Ankaralı

Co-Supervisor: Assoc. Prof. Dr. Erol Şahin

MAY 2023, 73 pages

Unmanned aerial vehicles (UAVs) have gained widespread use in various applica-

tions, including surveillance, inspection, and delivery. One important aspect in the

operation of UAVs is the ability to fly in formation, where a group of UAVs main-

tains a desired geometric configuration while performing a given task. In this thesis,

we use model predictive control (MPC) to address the problem of formation control

for a group of UAVs. We first review the literature on formation control for UAVs,

highlighting the advantages and limitations of different control approaches. We then

describe the MPC formulation for formation control of multi-UAV systems, taking

into account the dynamics and constraints of the UAVs. We also discuss the chal-

lenges and trade-offs in the design of the MPC controller, including the choice of the

prediction horizon and the control input constraints. We present a novel approach

that combines MPC formation control with graph generation algorithms to allow for

the formation of UAVs to start from arbitrary points providing greater flexibility and

adaptability to different scenarios.
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Finally, we demonstrate the proposed formation control method on a swarm of mini

UAV both in simulation and on physical platforms.

Keywords: Model Predictive Control, Swarm, Formation Control, Unmanned Aerial

Vehicles
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ÖZ

YOĞUN VE DİNAMİK ENGELLİ ORTAMDA DÖNERKANAT İHA’LARIN
DAĞITIK DOĞRUSAL OLMAYAN MODEL ÖNGÖRÜLÜ FORMASYON

KONTROLÜ

Satır, Muhlis Sami
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Mustafa Mert Ankaralı

Ortak Tez Yöneticisi: Doç. Dr. Erol Şahin

Mayıs 2023 , 73 sayfa

İnsansız hava araçları (İHA) gözetleme, denetleme ve teslimat dahil olmak üzere çe-

şitli uygulamalarda yaygın bir kullanıma sahiptir. İHA’ların önemli bir operasyonel

kabiliyeti olan formasyon uçuşu, bir grup İHA’nın belirli bir görevi yerine getirirken

istenen bir geometrik konfigürasyonu koruduğu düzende uçma yeteneğidir. Bu tezde,

bir grup İHA için formasyon kontrolü problemini çözmek için model öngörülü kont-

rol (MPC) kullanılmıştır. Öncelikle, İHA’lar için formasyon kontrolüne ilişkin litera-

türü farklı kontrol yaklaşımlarının avantajlarını ve sınırlamalarını vurgulayarak sunul-

muştur. Daha sonra, İHA’ların dinamiklerini ve kısıtlamalarını dikkate alarak çoklu

İHA sistemlerinin formasyon kontrolü için MPC formülasyonunu açıklanmıştır. Ay-

rıca tahmin ufkunun seçimi ve kontrol girişi kısıtlamaları da dahil olmak üzere model

öngörülü kontrolcünün tasarımındaki zorlukları ve ikilemleri tartışılmıştır. MPC for-

masyon kontrolünü çizge üretme algoritmalarıyla birleştirip, İHA’ların formasyona

rastgele noktalardan başlayarak ulaşmasını sağlayan yenilikçi bir yaklaşım sunulmuş-

tur. Bu yöntem, farklı ortamlara ve problemlere karşı daha fazla esneklik ve uyum
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sağlamıştır.

Son olarak, önerilen formasyon kontrol yöntemini gerçek dünyadaki bir uygulamaya

uygulayarak mümkünlüğünü ve kullanışlılığını gösterilmiştir. Önerilen yaklaşımın

potansiyel uzantıları ve uygulamalarının yanı sıra bu alanda gelecekteki araştırma

yönlerini tartışılmıştır.

Anahtar Kelimeler: Model Öngörülü Kontrol, Sürü, Formasyon Kontrolü, İnsansız

Hava Araçları
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Flocks of birds, schools of fish, and herds of goats exhibit some of the fascinating

behaviors of swarm intelligence. Individuals in a flock are less likely to get hunted

and are able to follow a more precise route with less energy consumption [4]. These

advantages of collective motion inspire engineers to mimic swarm behaviors.

In order to obtain a computer model that behaves like flocking birds, Reynolds [5]

defined simple rules namely separation, alignment, and cohesion. With Reynolds’

flocking model, swarm behavior was modeled mathematically for the first time.

Another interesting biological swarm is ant colonies. The common needs of survival,

such as gathering food, seeking or building shelter, and reproduction, led to formation

of colonies. This collective behavior facilitates defense against enemies, ensuring

safety of offsprings, a primitive division of labor, and building complex structures.

The colony functions properly without explicit instructions from a supervisor. Every

individual of the colony accomplishes tasks based on their decision-making, which

depends on signals from other worker ants and environmental features. Such interac-

tions occur via pheromones, detected by antennae sensitive to chemical stimulation.

Behavior of such a biological swarm is decentralized since each biological "robot"

remains independent from global knowledge or supervision but uses its own local

sensing, decision, and control mechanisms.

Recent advances in the computation capability of embedded systems, sensor tech-

nology, and communication systems have allowed robots to collaborate with other
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robots. With these developments, a swarm of robots could be deployed in search,

surveillance, reconnaissance, and mapping missions. Design and development of a

multi-robot system (MRS) unlocks a number of features that are infeasible with a

single robot. These features include multi-tasking, fault-tolerance, cost-effectiveness,

scalability, versatility, adaptability, and flexibility [2], [6]

With in the multi-robot research, the coordination and cooperation problems are ex-

amined under a large collection of topics: aggregation, consensus, agreement, ren-

dezvous, synchronization, social foraging, flocking, coverage, scheduling, and for-

mation [7–14].

The objective of formation is to maintain a certain shape with constant relative dis-

tances between robots during missions [2]. Including those mentioned above, de-

ploying a MRS with a predefined shape increases the efficiency of the task such as

the creation an aerial image of a large area with high spatial resolution using a UAV

swarm. Each individual UAV needs to be properly positioned relative to nearby UAVs

such that captured images can be stitched together, with no gaps, to obtain a complete

map of the area [14]. Another application increases the collective sensing capability

of interconnected sensors by ensuring optimal placement of individual robots for tar-

get tracking problem [15]. Lastly, by intelligent planning of formation for a group of

UAVs deployed in the field, it becomes possible to approximate the behavior of an

antenna that is orders of magnitude larger than the size of each individual robot. As a

result, sensitivity of the overall system is improved [16].

1.2 Problem Definition

Distributed formation control of MRS depends on relative information observed by

each individual robot through sensors that measure distance, angular displacement,

angular velocity, and relative displacement to other individuals. Since these relational

measurements play a critical role in determining the behaviors of robots, formation

control fundamentally differs from centralized control algorithms and conventional

distributed control systems in that formation control does not depend on internal states

with global coordinate values [14].
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Formation control requires the simultaneous execution of a number of tasks such as

navigating to goal, formation keeping, obstacle and reciprocal avoidance. Without

any priority of one task to the other, the system must; move from point A to point B

as a whole (measured by either the center of mass or center of volume), preserve the

relative positions and overall shape of the formation during the operation, perform

obstacle avoidance to assure successful determination of the motion, etc. In an in-

herently decentralized system such as formation control, the solution to these tasks

should not depend on the existence of a supervisor robot or master control unit. The

resultant behavior of the MRS should naturally follow from the designed decision-

making process of individual robots which is the core problem addressed in the sci-

entific research on formation control.

Robot i

Robot j Robot k

qi

qj

uj

qj

qk

dij dik

dij

djk

djk

dik

x

y

Figure 1.1: Formation of equilateral triangle. Euclidean distance between the robot i

and robot j denoted as dij . The desired distance between robot i and j is given by the

constant dij . uj is the control input for robot j. Note that the robot is symbolized by

a half-blue and half-red cross. The red side represents the front of the robot.

Consider a system of M mobile robots where qi is the position of the ith robot relative

to a world coordinate frame, and ui is the corresponding control input. ||qi(k)−qj(k)||
represents the Euclidean distance between the robot i and robot j at time instant k and

3



it can be denoted as dij . The desired distance between robot i and j is given by the

constant dij . Fig. 1.1 shows the defined positions, control inputs, measured and

desired distances for equilateral triangle formation.

The goal of formation acquisition is the formation and maintenance of a predefined

geometric shape by a group of robots in space. The control objective for formation

acquisition can be mathematically described as to design ui such that

dij =∥ qi(t)− qj(t) ∥−→ dij as k −→∞ ∀i, j, i ̸= j (1.1)

1.3 The Outline of the Thesis

The structure of this thesis is organized as follows. We provide a comprehensive sur-

vey of related literature in Chapter 2. Background information is provided on Graph

Theory, Model Predictive Control (MPC), Deleanuey Triangulation, and details of ex-

perimental setup and software in Chapter 3. The proposed methodology regarding the

robot model, single robot navigation with MPC, obstacle avoidance, reciprocal avoid-

ance, MPC cost functions for formation, and Distributed Model Predictive Formation

Control (DMPFC) are presented in Chapter 4. Chapter 5 contains results obtained

from simulations and experiments, a discussion on performance, and comparisons.

Finally, Chapter 6 concludes the thesis.
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CHAPTER 2

LITERATURE SURVEY

2.1 Classification of Control Strategies

Formation control strategies of MRS can be classified into three: centralized, decen-

tralized, and distributed control [3].

The centralized control strategy is built around a central controller that receives all

required information (such as states and sensor data etc.) from the robots and send

the control commands to them as depicted in Fig. 2.1 (a).

The centralized control strategy is simple and easy to implement [3]. But, it re-

quires high-performance processors and is vulnerable against to single point of fail-

ure. Moreover, since the central computer must be located on the ground station or

on a single robot, it will need to communicate with other robots in order to receive

information and control them. While controlling a robot, it is important to get the

state information with little delay and to send the control command for the stability

of the robot. Communication speed becomes a problem for centralized control while

increasing the number of robots.

The decentralized control strategy splits of the formation control problem into in-

dependent subproblems. In a decentralized control system, the entire system is no

longer controlled by one controller, but by numerous independent controllers com-

prised of decentralized controllers deployed on each module. A general definition

of the decentralized system in discrete time is provided by Tsitsiklis in [17]. The

definition states that the decentralized system consists of a few interconnected mod-

ules. According to the states of the current module, each module has a corresponding
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controller. The formation control method is decentralized in a multi-robot system

if each robot employs its own controller and navigates in accordance with its own

measurement (detection or sensing) [3].

The distributed control strategy refers to a control system in which the control func-

tions are distributed throughout the system rather than being centralized in a single

device [18]. In a distributed control, individual control loops are each controlled by

a local controller, which communicates with other controllers and field devices such

as sensors and actuators through a network. In the distributed control strategy, infor-

mation is exchanged between the controllers while the decentralized control scheme

does not exchange information.

Fig. 2.1 (b) and (c) shows the decentralized and distributed control strategies and

their differences [3]. The dashed lines represent the communication links of robots.

In the perspective of multi-robot systems, Olfati-Saber [19] defines the distributed

control strategy if the communication occurs only between the neighbors. This means

that if each robot communicates with all the other robots, the control strategy is not

distributed. The distributed control system is essential for the system’s scalability.

(b) (c)

R1 R2 RM

C1 C2 CM

u1 u2 u3q1 q2 q3

q q
R1 R2 RM

C1 C2 CM

u1
u2 uMq1 q2

qM
q

q

q

q
RMR1 R2

Cent.
Cont.

u1 u2 u3q1 q2 q3

(a)

Figure 2.1: Decentralized and Distributed Control Strategy. Adapted from [3]

2.2 Formation Control Strategies

Formation is a form of coordination in MRS, in which each robot must maintain

relationship with respect to neighboring robots. The interconnections between robots

are modeled as edges in a directed acyclic graph, labeled by a given relationship [2].

The aim of formation control is to generate appropriate control commands to drive

multiple robots to achieve the prescribed constraints on their own states, and a large
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body of the research has focused on consensus-based formation control, which utilises

the inter-robot distance information to allow the formation to retain a certain shape

while navigating [20].

2.2.1 Leader - Follower Method

In this method, one of the robots is assigned as the leader,while others are assigned as

followers. In this video the leader’s trajectory specifies the entire formation trajectory.

On the other hand, the main disadvantage of this approach is that there is no explicit

feedback from the followers to the leader [2]. In addition, the failure of the leader

may fail the entire formation [3].

Desai, Ostrowski and Kumar [21] proposed two types of decentralized leader-follower

control strategies named as Separation-separation and separation-bearing. In separation-

bearing, denoted as l − ϕ, control, the aim is to maintain the desired distance, l, and

desired angle ϕ between the leader and the follower as depicted in Fig. 2.2(b)

(a) (b)

Figure 2.2: Leader-Follower Methodologies (a) Separation-Separation (b)

Separation-Bearing

The objective of the separation-separation, denoted as l− l, control is to maintain the

desired distance between the follower and its two neighbors as shown in Fig. 2.2(a).

Some works based on a standard leader-follower structure can be found in [22], [23],

[24]. In [25], a virtual leader is defined in order to replace the actual vehicle since
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the system robustness is critical.

2.2.2 Virtual Structure Method

In the virtual structure method, the desired motion of a predefined virtual structure

is converted to the desired motion of each robot via rotation and translation matrices

[26]. Each robot tracks its desired trajectories via its individual controllers. Since it

is easy to define the relationships of the robots, it is easy to obtain stable formations,

especially during maneuvers. However, this approach limits the ability of formation

reconfiguration and this approach also leads to a single point of failure [27]. Do and

Pan [28] propose a combination of virtual structure and path tracking method to allow

the change of formation shape.

2.2.3 Behavior Based Method

Balch and Arkin proposed a behavior-based method in [29]. The behavior-based

method defines weights for each behavior and the formation problem is solved by

the summation of these weighted behavior vectors. Generally, the behaviors defined

in articles for the formation control are move-to-goal, avoid-obstacle, avoid-robot,

maintain-formation behaviors. The final controller output was determined as the

weighted combination of each behavior. The advantage of the behavior-based method

is decentralization since it does not requires communication. However, no guarantee

on the stability of the formation is available.

Antonelli et al. [30] present a behavioral-based method that handles static and dy-

namic obstacles. In [31], several behaviors such as moving to the goal, avoiding ob-

stacles, wall-following, avoiding robot, and formation keeping are defined for forma-

tion generation and formation keeping in cluttered environments. Lee and Chwa [32]

propose a decentralized algorithm using only defining behaviors based on relative

positions between neighbor robots and obstacles.
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2.2.4 Artificial Potential Field Method

The artificial potential field (APF) method proposed by Khatib [33] for a single robot

in a cluttered environment, has the advantage that it can be extended to use in multi-

robot systems by introducing inter-robot forces. Since the method requires less com-

munication and fewer calculations, it is preferable for real-time applications. On the

other hand, the local minimum problem can be considered as the main drawback.

Local minimum problem for APF occurs when all artificial forces are balanced out,

such as when an obstacle is directly in the path of the robot or when there are many

obstacles close together.

In [34], collision-free, distributed and bounded potential functions are presented for

each robot. The method presented by Masoud [35] allows the robots to leave or join

the formation. Wu et al. [36] proposed a collision avoidance based on obstacle enve-

lope modeling. In [37], several local attractive and repulsive potentials are defined for

obstacles and robots. Moreover, the robustness is increased with the global attractive

potential field.

2.2.5 Comparison

Table 2.1 compares three of the main formation control strategies with. The most

commonly adopted strategy is the leader-follower control scheme from deployment

perspective. The wide range of its applications cover most unmanned vehicle plat-

forms and are not limited to just mobile robot platforms. Its relative simplicity in

terms of implementation is the deciding factor in such a diverse range of applications.

The leader-follower approach is similar to the commonly observed group manage-

ment structures, an individual is selected as the supervisor and all the other members

of the group behave according to the guidance of the leader. As a result of this central-

ized structure, the formation relationship can be more explicitly observed. The leader-

follower approach also utilizes a centralized communication structure and therefore

requires stable connections to all other vehicles in the group. There is no need for

extra connections between the members of the group which decreases the number of

connections and overhead of communication compared to decentralized approaches.
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The disadvantage is, the overall structure is heavily dependent on the performance of

the leader vehicle which increases the risk of failure. If a member of the group loses

connection to the leader or there is a malfunction in the leader vehicle, the formation

becomes hard to control.

Virtual structure approach leads to a more stable formation because the vehicles are

designed to follow the rigid body of the virtual structure. The downside is that the

overall structure becomes harder to modify and adapt. In order to incorporate changes

in formation to the system, the virtual structure design needs to be reworked which

comes at a cost in terms of computational resources. The inflexibility of virtual struc-

ture particularly imposes a limitation on critical features of a multi-robot system such

as obstacle avoidance. This means that formation shape regeneration is infeasible for

virtual structure as given in Table 2.1.

Three main types of formation problem is summarized. The first problem type is for-

mation generation and maintenance. This involves creating a formation shape from

a starting point where unmanned vehicles are situated at random locations and ori-

entations. Once the shape is achieved, it must be sustained to carry out the mission.

Formation maintenance during trajectory tracking is the second problem type. This

category requires maintaining the formation shape with precision while the formation

is in operation, following a predefined trajectory.Finally, formation shape variation

and re-generation is the last formation control problem type. Similar to Type 2, this

category necessitates maintaining the formation shape; however, shape modification

and re-generation are also required while avoiding an obstacle [1].

In the behavior-based control strategy, a single control command is able to carry out

multiple sub-tasks that are required in a mission, which makes it the most adopt-

able methodology. However, the difficulties in obtaining a systematic mathematical

representation and absence of a stability analysis makes it infeasible for wide-spread

application. A one-size-fits-all approach is hard to come up with and therefore, trends

of future development hint that hybrid approaches are adopted for different situations.

For instance, in the open space with a high priority of system stabilization, the leader-

follower strategy or the virtual structure methodology can be used. If the application

necessitates navigation in a complex environment, the behavior-based approach be-
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Table 2.1: Comparison of formation control strategies. Adapted from [1]

11



comes preferable.

This subsection compares the main control strategies of formation control challenges:

i) formation shape generation; ii) formation course tracking; iii) formation reconfigu-

ration and iv) task allocation. Table 2.2 lists the features of formation control methods

an their capacity to overcome the main formation problems. Also, table 2.2 compares

the control strategies according to the following features: i) centralization vs. distri-

bution; ii) stability of formation; and iii) real-time implementation.

2.3 Contributions and Novelties

This thesis develops of a novel approach for the formation control of multiple robots

that combines MPC with graph generation algorithms. It enables robots to form a

formation starting from arbitrary points, increasing the flexibility and adaptability of

the control strategy to different environments and problems.

Morover, this thesis develops formulations of the MPC problem and analyzes the

trade-offs between computational complexity and performance. Specifically, the ef-

fect of sharing prediction information among robots on performance has been evalu-

ated. Sharing prediction information by sampling has been suggested as an innovative

method. In this way, while the communication load and calculation time of the system

is reduced, the distance and control effort are reduced. The use of MPC techniques

to deal with uncertainty and disturbances in the system is also presented. One of the

main advantages of the proposed method is that the system is scalable thanks to the

distributed development of the MPC.

Simulation and experimental results demonstrate the effectiveness of the proposed

control strategy in maintaining the desired formation of multiple UAVs under various

scenarios. Overall, this thesis presents a comprehensive study on the use of MPC

for the formation control of multiple UAVs, and the combination of MPC with graph

generation algorithms is highlighted as a key innovation.
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Table 2.2: Comparison between formation control strategies and their ability to cover

the main formation problems and challenges. Adapted from [2]
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CHAPTER 3

BACKROUND INFORMATION

3.1 Introduction to Graph Theory

We model a formation composed of N robots labeled by i ∈ V = 1, ..., N with a

undirected graph G = (V , E), where the vertex set V represents the robots, and the

edge set E ⊆ V × V contains the pairs of robots (i, j) for which robot i and robot j

are neighbors. The state of the ith robot is represented by qi. Euclidean distance is

denoted with the ∥ . ∥, and dij =∥ qi − qj ∥ is the Euclidean distance between the

robot i and robot j. The desired distance between the robot i and robot j is denoted as

dij . The formation is defined as F = (G,DF) where the DF =
(
dij | (i, j) ∈ E

)
is the objective distance set.

Figure 3.1: A graph network that represents a formation of robots

As seen in Figure 3.1, mesh networks can be constructed from a set of triangle in

form of graph. Swarm systems can sustain the triangulated formation by controlling

of distance as defined edges.
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3.2 Formation Graph Generation using Delaunay Triangulation

The process of generating a graph using triangulation involves utilizing mathematical

algorithms that partition a given set of points into non-overlapping triangles that are

mutually connected. Triangulation algorithms are a set of mathematical techniques

employed to accomplish this. In the context of graph generation, the triangles created

by these algorithms can be utilized to establish edges between the points, resulting

in a planar graph. The vertices of the graph correspond to the points used in the

triangulation, and the edges correspond to the triangles.

To construct a graph using the triangulation method, the process begins with an empty

set of triangulation edges. Subsequently, for each pair of robots, an edge is drawn. If

this edge does not intersect with any of the edges in the triangulation set, it is added

to the triangulation edge set.

The computational complexity of this algorithm is O(n3) because for each pair O(n2)

we compare intersection O(n). This is the simplest method for triangulation but it is

not efficient and gives a nondeterministic triangulation results.

Figure 3.2: Graph Triangulation Instances

The resulting triangles and their corresponding edges may differ depending on the

algorithm used. These variations can ultimately lead to differences in the order and

structure of the resulting graph. Therefore, the choice of triangulation algorithm can
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have a significant impact on the resulting graph order. Fig. 3.2 demonstrates the

effectiveness of different triangulation techniques in achieving improved and evenly-

distributed results, with superior results appearing on the left-hand side of the image.

The triangulation approach utilized on the left-hand side of the figure is obtained

through the use of Delaunay triangulation.

Delaunay triangulation is a type of triangulation algorithm that creates a triangula-

tion of a set of points in a way that satisfies a specific criterion named as Delaunay

criterion. The Delaunay criterion states that a triangulation of a set of points is a

Delaunay triangulation if and only if the circumcircle of each triangle in the trian-

gulation contains no other points of the set. In other words, the Delaunay triangula-

tion is the unique triangulation that maximizes the minimum angle of all triangles in

the triangulation and ensures that no point is inside the circumcircle of any triangle.

This property makes the Delaunay triangulation useful in many applications where

the quality of the triangulation is important, such as in finite element analysis, mesh

generation, and computer graphics.

illegal edge leg
al 

ed
ge

(a) (b)

Figure 3.3: Illegal-Legal Triangulation Examples

In a Delaunay triangulation, an edge is considered illegal if the circumcircle of the

triangle it forms with its neighboring triangles contains another point within it. If an

edge is illegal, it violates the Delaunay criterion, which states that the circumcircle

of any triangle in the triangulation should not contain any other points. On the other
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hand, a legal edge in a Delaunay triangulation is an edge that satisfies the Delaunay

criterion, meaning that the circumcircle of the triangle it forms with its neighboring

triangles does not contain any other points. A legal edge can be added to the triangu-

lation without violating the Delaunay criterion. Legal triangulation is actually to tend

to choose shorter edge. To explain more formally, there are 4 points to be triangulated

P = pi, pj, pk, pl. If the point pi lies in in interior of circumcircle of pj, pk, pl, pk − pl

is illegal edge, but if it is in interior circumcircle, pk − pl is a legal edge. As seen in

Fig. 3.3 on the left side pi is interior of circumcirle of pj, pk, pl and pk − pl edge is

illegeal but on the right side pk is not in interior of circumcircle of pi, pk, pj so pi− pj

is a legal edge and this triangulation is legal.

(a) (b)

Figure 3.4: (a) Voronoi Diagram (b) Delaunay Triangulation using Voronoi Diagram

of 4 UAVs

Delaunay triangulation can be obtained by several algorithms such as sweep plane al-

gorithm [38], randomized incremental construction [39] and conversion from Voronoi

diagram. One of the most known and simplest method is conversion Voronoi diagram

to triangulation by retrieving edges between neighbour Voronoi cells. This method

has a O(n · logn) time complexity in worst case. Voronoi diagram is simply defines

the regions which has a closest points set. Given points P = p0, p1, .., pn, the Voronoi

region of point pi, V (pi) is the set of points at least as close to pi as to any other point

in P, as in the Eqn. 3.1.
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V (Pi) = { q | ||piq|| < ||pjq|| , ∀j ̸= i } (3.1)

Where ||pq|| =
√∑d

j=1(pj − qj)2. Voronoi diagram can be computed using sweep

line Fortune’s algorithm [40] which has O(n·logn) time and O(n) storage complexity.

As seen in Fig. 3.4, when edges are drawn between neighbour sites of each site,

Delaunay triangulation can be simply acquired.

To construct the Delaunay triangulation using the Voronoi diagram, the following

steps should be followed in a methodical manner. Firstly, compute the Voronoi di-

agram of the given point set. The Voronoi diagram comprises of polygons, each

representing the region of space that is closer to that point than any other point in

the set. Next, draw a line segment for each edge that connects two adjacent poly-

gons in the Voronoi diagram. Each line segment represents an edge in the Delaunay

triangulation. Subsequently, remove any edges that intersect with other edges in the

Delaunay triangulation. Such intersecting edges are not part of the Delaunay trian-

gulation and should be eliminated. Repeat steps 2 and 3 until no more edges can be

added or removed, to ensure the construction of the complete Delaunay triangulation.

3.3 Model Predictive Control

Model Predictive Control (MPC) is a form of control that looks ahead in time to

predict the future behavior of a system, and uses this information to optimize the con-

trol actions that are applied to the system. In contrast to traditional control methods,

which only consider the current state of the system, MPC takes into account the dy-

namic behavior of the system over time, and uses optimization techniques to find the

best control actions to achieve a desired objective. This makes MPC well-suited for

applications where there are constraints or uncertainty, and where it is important to

control the system in a precise and efficient manner. MPC is used in a wide range of

applications, including robotics, aerospace, chemical processing, and power systems.

In MPC, an optimization problem should be defined with a cost function and con-

straints. For a robot, the cost function of MPC can be selected as the positional error

or energy consumption and the constraints can be defined as the obstacles, velocity
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limits or dynamic limitations of robot. The optimization problem is solved iteratively

over a series of time steps. At each time step, the MPC controller predicts the future

behavior of the system over a fixed time horizon, and then computes a sequence of

control actions that minimizes the cost function while satisfying the constraints on the

system’s state and control inputs. Once MPC calculates the control input sequences,

only the first element of the sequence is applied to the system. In the next time step,

the system’s state is updated using the system’s dynamics model, and the optimiza-

tion problem is re-solved at the next time step using the updated state. This process

is repeated at each time step until the end of the time horizon is reached. By solving

the optimization problem iteratively over a series of time steps, the MPC controller

is able to adapt to changes in the system’s behavior and continue to find the optimal

control actions. This allows the MPC controller to maintain good performance even

in complex and dynamic systems.

Setpoint

Future Control Action

Past Future

Predicted Future Output

k k+1 ... k+m
Prediction horizon

Figure 3.5: Model Predictive Control

To design an MPC controller, a mathematical model of the system’s dynamics is first

developed. This model describes how the system’s state (such as position, velocity,

and orientation) evolves over time in response to control inputs. The model can be

derived from first principles, or it can be estimated from experimental data.

Next, the objective of the MPC controller is identified. This could be to track a de-

sired trajectory, minimize energy consumption, or maximize performance. The MPC

control problem is then formulated as an optimization problem, where the objective
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is to find a sequence of control actions that minimizes a cost function while satisfying

constraints on the system’s state and control inputs.

An optimization algorithm is used to solve the MPC control problem. This typically

involves discretizing the time horizon over which the control actions will be applied,

and then iteratively solving a sequence of optimization problems to find the optimal

control sequence.

Once the MPC controller has been designed, it is implemented on the system and

used to control its behavior. Feedback from sensors on the system is used to update

the model and re-solve the optimization problem at each time step. This allows the

controller to adapt to changes in the system’s behavior and to continue to find the

optimal control actions.

The performance of the MPC controller can be validated by testing it on the system in

a variety of scenarios, and making any necessary adjustments to the controller design

or optimization algorithm. Overall, MPC is a powerful control method that can be

used to control complex, dynamic systems in a precise and efficient manner.

3.4 Crazyflie

The Crazyflie 2.1 (Bitcraze, Sweden) [41] is a mini autonomous flying robot with

four coreless brushed motors, as shown in 3.6. An electronic circuit board with a

CPU and several communication and sensing components is housed in its body. A

350 mAh single-cell lithium polymer battery powers the motors and electronic parts

of the device. The Crazyflie weighs 27 grams in its most basic version, but when

equipped with the essential positioning hardware, it weighs 37 grams. This enables

it to fly for about four minutes while carrying additional equipment. The Crazyflie,

however, is unable to fly autonomously in its most basic configuration since the IMU

it carries is insufficiently accurate and has drifting problems.

Due to its appealing design, the software architecture developed for physics-based

simulations may be simply altered to operate with actual robots. With a few minor

adjustments, the high-level controller node employed in the simulations can also be
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Figure 3.6: Crazyflie 2.1 used in experiments

used to actual robots. The Crazyflie firmware is utilized in physics-based simulations

with the SITL (software in the loop) technique, and the communication ports are

located on the station computer. These ports are used by the high-level controller

node to transmit and receive flight orders and state data. These ports are adjusted to

correspond to the serial radio connectivity for actual robots.

3.5 Robot Operating System (ROS)

The Robot Operating System (ROS) is a set of software libraries and tools that help

build robot applications [42]. ROS creates a communication network and operating

system that runs on Linux. This network and operating system handle synchroniza-

tion, routing, and communication tasks for a given communication architecture, and

outputs the results to designated routes for specific applications. When used with a

real robot, a ROS framework on a computer can accept sensory input, such as images

from a camera, signals from a serial communication system, or information from the

internet. ROS is a software framework that allows users to program various outputs,

such as motor control signals, environmental estimates, or signals for the robot to act

on. It also provides a way for developers to create ROS-specific libraries, programs,
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and algorithms that can be shared within the community. This has helped to accelerate

the use of ROS, particularly in the field of robotics. Many hardware products, such as

LIDARs, motors, cameras, and aerial vehicles, now come with ROS libraries, drivers,

and tutorials, which makes them more appealing to ROS users. These collections of

libraries, drivers, and applications are known as ROS packages.

In this thesis, We used ROS to control the Crazyflie drone. The high-level controller

codes that generate reference velocity commands, as well as commands to start, stop,

take off, or land are written in Python. The low-level controller programs, such as

the position controller, velocity controller, attitude controller, and motor drivers, are

located in the Crazyflie firmware and maintained by its developers. The high-level

controller only specifies what action to take, such as what velocity to maintain or

what position to reach.

The ROS programs that are used for physics-based simulations can be easily adapted

for use with real robots by modifying the destination of the commands produced by

the high-level controller, and the source of feedback about the platform.

3.6 Experimental Setup

In the experiment setup, the most common and open tools are preferred for fast inte-

gration and testing. For that purpose infrastructure has built up with following hard-

ware and software configuration.

Hardware Configuration

1. Crazyflie2.1

(a) FreeRTOS

(b) Onboard Sensors: Imu, barometer

(c) Extra Sensors: Optic flow, LH Deck, UWB Deck, MoCap Markers

2. Base Station

(a) Intel i7-10700H:
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(b) Nvidia Quadro RTX3000

3. Positionning Infrastructure:

(a) Lighthouse Base Stations,

(b) UWB Anchors

(c) Motion Capture

Software Configuration:

1. Ubuntu-18.04

2. ROS Melodic:

3. C++/Python:

Supported Features by Software Architecture:

1. Central and distributed simulation

2. Central and distributed real flight

3. Hybrid usage can be used as well.

4. Different positioning systems are supported like lighthouse, UWB and motion

capture.

The crazyswarm [43] is developed at University of Southern California and used in

the most of projects about swarm UAVs. Crazyswarm is developed using ROS/C++

and provides well documented Python API to control swarm of UAVs, but it supports

only motion capture localization system and central management of UAVs by base

project.

In our test environment, crazyswarm project is used as base and some modifications

and extensions are carried out to support multiple localization system and distributed

UAV control. For distributed control, each UAV starts as separate and simultane-

ous ROS node and for controlling dedicated UAV crazyflie class which is part of

crazyswarm API is used. Each UAV controller node is publish control commands
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Figure 3.7: System Architecture of Test Environment
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like takeoff, landing, cmd_vel, stop etc.. to crazyswarm_server and listen to releated

drone state topics sent by crazyswarm server such as position, battery.

Crazyflie supports several positioning systems which are classified as onboard and ex-

ternal positioning system. In onboard positioning system UWB deck and lighthouse

deck are used on crazyflie as positioning hardware. Otherwise, in external positioning

system, motion capture systems are widely used [44]. In our test environment, experi-

ments can be realized via these three positioning systems. Having different type of lo-

calization system brings some advantages for our test environment. Each positioning

system has different sensitivity of position such that error range of calculation can be

ranked as UWB( 10cm) > Lighthouse( 10−1cm) > Motion Capture( 10−2cm) and

each of them has different calculation frequency. This variability offers the opportu-

nity to experiment with algorithms under different positioning sensitivity scenarios.

Furthermore, each laboratory could have different positioning system and our soft-

ware infrastructure allows algorithms to be integrated in each of them. crazyswarm

is already capable of an external motion capture positioning system. To extend with

onboard positioning system, crazyflie_ros project is integrated into our infrastruc-

ture to handle onboard positioning system. Although the project is deprecated, on-

board functionality of the project works well and ROS interface is synchronized with

crazyswarm API for fast switching of positioning mode.

Crazyswarm simulation provides useful features such that it has crazyflie flight dy-

namics, option to add noise and same API for real flight. However, it only provides

central swarm controller interface such that it takes control commands, updates drone

positions and visualize in a same process and doesn’t use ROS. For distributed sim-

ulation crazyflie_sim_server node is implemented. crazyflie_sim_server listens to

control commands’ topics, execute them via ROS and visualize UAVs in a separate

process from robot controller nodes simultaneously.
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CHAPTER 4

METHODOLOGY

4.1 Introduction

An optimizatıon problem is said to be non-convex if its objective function or con-

straints violate the properties of convexity. Convexity is a mathematical property that

is characterized by the fact that any line segment connecting two points on a convex

set lies entirely within the set. Convex optimization problems are generally easier

to solve than non-convex optimization problems because they have a unique global

minimum that can be efficiently found using optimization algorithms.

In the case of MPC-based formation control, the model is often non-convex due to

the presence of nonlinear constraints or objective functions. Nonlinear functions are

generally non-convex because their curvature changes along the function, causing the

line segments connecting two points on the set to fall outside the set. Additionally, the

constraints or objective functions may be non-convex due to the presence of products

or ratios of decision variables, which can lead to complex and nonlinear shapes.

The proposed method involves a nonlinear system model and a nonconvex optimiza-

tion problem that needs to be solved at each time step to generate control inputs. The

nonlinear model captures the dynamics of the agents while the non-convex optimiza-

tion problem ensures that the agents move in a coordinated manner while maintain-

ing their formation. However, the nonlinear model and non-convex optimization can

make the problem computationally challenging, requiring the use of advanced op-

timization solvers and numerical techniques. Despite these challenges, MPC-based

formation control has shown promising results in various MRS applications.
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4.2 Simplified Kinematic Model of Robot

We uses the single-integrator model widely used in multi-robot coordination con-

trol problems such as consensus and formation control [14, 45–48]. For a general

two-dimensional case, consider a group of M mobile robots, where all robots are in

accordance with single integrator dynamics. First order dynamics for robot i defined

as

q̇i = ui for i = 1, 2, . . . ,M (4.1)

where qi = [xi yi]
T is the position and ui = [uix uiy]

T is the velocity-level control

input of the ith robot with respect to the world coordinate frame.

The single integrator model, can arbitrarily assign a velocity vector input, beyond the

physical limits of the robot. Crazyflies and many other drones can be controlled with

velocity command unless there is a drastic change in the velocity vector. In order to

avoid this situation, control effort cost function is implemented to restrict a drastic

change in the velocity vector. The internal controllers available in Crazyflie and the

costs we determined for the input u, make it possible for us to command high-level

velocity inputs.

In order to obtain a suitable kinematic model for the Crazyflie moving in a 2D plane,

heading information should be added to the state. In addition, angular velocity should

be taken into account for a more realistic kinematic model. Therefore, new states are

defined as follows

qi =


xi

yi

θi

 (4.2)

where xi and yi is the position and θi is the heading of the robot i. Then, the control

is defined as

ui =


vi

ϕi

ωi

 (4.3)

where vi is velocity magnitude, ϕi is the orientation of the velocity vector from the

the heading, and ωi denotes the angular velocity. Fig. 4.1 illustrates the states and
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control inputs of the Crazyflie kinematic model.

...

...

Goal

Figure 4.1: Simplified Kinematic Model. The predicted trajectory is shown with

small green crosses. Note that the drone is symbolized by a half-blue and half-red

cross. The red side represents the front of the drone.The black arrow shows the goal

location and the final heading.

Consider a group of M robots with a discrete-time single-integrator model. Discrete-

time nonlinear kinematic model is formalized as follows,

qi(k + 1) = f(qi(k), ui(k)) for i = 1, 2, . . . ,M (4.4)


xi(k + 1)

yi(k + 1)

θi(k + 1)

 =


xi(k)

yi(k)

θi(k)

+


vi(k) cos(θi(k) + ϕi(k))

vi(k) sin(θi(k) + ϕi(k))

ωi(k)

∆T (4.5)

4.3 Navigation of single UAV with Model Predictive Control

At the sampling instant k, the state vector qi(k) is available through measurement for

the robot i. With the given state qi(k) and the prediction horizon N , the predicted

future states are denoted as qi(1|k), qi(2|k), ..., qi(n|k), ..., qi(N |k), where qi(n|k) is

the predicted state for sampling instant k + n. The cost function for a single robot
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from the start to the goal point is given in Eqn. 4.6. Note that, the notation ∥ z(.) ∥2A
is used for z(.)TAz(.) for any given vector z(.) and matrice A.

Ji,nav =
N−1∑
n=0

[
∥ qi(n|k)− qgoali ∥2Q + ∥ ui(n|k) ∥2R

]
+ ∥ qi(N |k)− qgoali ∥2Qf

(4.6)

Where, N is the prediction horizon, Q is the state cost matrix, R is the input cost

matrix and Qf is the final state cost matrix. qgoali is the position and heading of the

given goal point for robot i, qi(n|k) and ui(n|k) are the predicted state and predicted

control input at the sampling instant k + n respectively.

For a single robot and an environment with no obstacles, Ji,nav is sufficient for nav-

igating the robot to the goal point. For this simplistic scenario, total cost function

Ji,total is considered to be equal to Ji,nav and the optimization problem is formalized

as follows,

min
q,u

Ji,total (4.7)

subject to

qi(0) = q0i (4.8a)

qi(n+ 1|k) = f(qi(n|k), ui(n|k)), n = 0, 1, ..., N − 1 (4.8b)

qmin ≤ qi(n|k) ≤ qmax, n = 0, 1, ..., N (4.8c)

umin ≤ ui(n|k) ≤ umax, n = 0, 1, ..., N (4.8d)

Equation (4.8a) defines the initial condition. Equations (4.8b), (4.8c) and (4.8d) indi-

cate the system dynamics, map margins and input constraints, respectively.

4.3.1 Control Effort Cost Function

The control effort aims to reduce the energy consumption of the control commands

and hence minimizes the input effort. To achieve this, it calculates the rate of change

of the input commands and penalizes abrupt acceleration and deceleration. It also

increases the method’s usability as a high-level controller since it prevents drastic

changes in the reference control inputs. The control effort is defined as the difference

equation of consecutive control inputs ∆ui(n|k) = ui(n|k)−ui(n−1|k). The control

effort cost penalizes the changes in the control commands.
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GOAL GOAL

ROBOT

ROBOT

(a) (b)

Figure 4.2: Robot is approaching the given goal point by making use of both navi-

gation cost and control effort. (a) At the start position, robot generates its predicted

trajectory as indicated with a green crosses. (b) The trajectory followed by the robot

is shown with a solid black line.

Cost function for control effort can be defined as follows:

Ji,eff =
N−1∑
n=1

∥ ∆ui(n|k) ∥2Reff
(4.9)

Ji,total in equation 4.7 can be defined as Ji,total = Ji,nav + Ji,eff . Fig. 4.2 shows

the drone navigating to its goal with the cost function which includes navigation and

control effort.

4.4 Constraints for Obstacle Avoidance

In order to ensure safe navigation, robots need to keep a distance from the obsta-

cles in the environment. To avoid a potential collision with an obstacle, constraints

should be added to the optimization problem. In this thesis, both the drones and ob-

stacles are considered as circular objects. The actual radius of the drone is denoted

as rrobot. Additional distance dsafety is added to robot in order to increase safety.

For the constraint, rsafety is defined as the summation of the drone radius rrobot and

safety distance dsafety. robstacle is radius of an obstacle and qobstacle is position of the
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obstacle.

The Euclidean distance between the center of the obstacle qobstacle and the center of

the drone (and its predictions) can be denoted as ||qi(n|k)−qobstacle|| at time instant k.

For all the predictions and current state of each robot i, the Euclidian distance should

be larger than the summation of rsafety and robstacle. Fig. 4.3 shows an environment

with an obstacle and the defined radii.

GOAL

robstacle

obstacle

GOAL

obstacle

(a) (b)

Figure 4.3: Drone is approaching to the given goal point by making use of obstacle

avoidance constraint. (a) At the start position, drone generates its state predictions as

indicated with a green curve. rrobot, indicated with a black dashed line, is the radius of

the dashed green circle, rsafety is the distance between dashed green and red circles,

robstacle is the radius of the obstacle. (b) The trajectory followed by the robot is given

with a solid black line.

The optimization problem given in equation 4.7 can be rewritten with updated obsta-

cle constraint 4.11a as follows:

min
q,u

Ji,total (4.10)

subject to

qi(0) = q0i

qi(n+ 1|k) = f(qi(n|k), ui(n|k)), n = 0, 1, ..., N − 1

qmin ≤ qi(n|k) ≤ qmax, n = 0, 1, ..., N

umin ≤ ui(n|k) ≤ umax, n = 0, 1, ..., N

(rsafety + robstacle)− ||qi(n|k)− qobstacle|| ≤ 0, n = 0, 1, ..., N (4.11a)
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4.4.1 Dynamic Obstacle

For a dynamic obstacle the center of obstacle becomes a function of time instant k,

and labeled as qobstacle(k). Since the MPC is an online optimization process, dynamic

obstacles can be considered as static obstacles for each small time instant k. By

updating the qobstacle at the constraint in Eqn. 4.11a for each time instant k dynamic

obstacle problem can be solved with the same cost function as Eqn. 4.10.

Fig. 4.4 illustrates a dynamic obstacle and a robot moving towards each other. The

robot continuously calculates its own trajectory prediction based on the current posi-

tion of the obstacle at each time step.

GOAL

dynamic 
obstacle

(a) (b)

(d)(c)

Figure 4.4: Drone is approaching to the given goal point by avoiding dynamic obsta-

cle coming towards it (a) at time t = 1.0 s (b) t = 2.6 s (c) t = 4.0 s (d) t=6.0 s
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4.5 Robots’ Reciprocal Avoidance with Position Sharing Method

In this method, each robot has only the position information of other robots in the

environment. As in the case of the dynamic obstacle, each robot predicts its own tra-

jectory by adding the current positions of the other robots to its optimization problem

as a constraint. Fig. 4.5 demonstrates two robots moving towards each other, where

each robot plans its trajectory prediction solely based on the instantaneous position

of the other robot.

In Eqn. 4.12, reciprocal avoidance constraint is defined for robot i. Given constraint

should be applied for each robot j in the system. Note that, at instant k, the state

vector qj(k) is available for each robot j with its own measurement and published to

other robots.

(2rsafety)− ||qi(n|k)− qj(k)|| ≤ 0, n = 0, 1, ..., N (4.12)

4.6 Robots’ Reciprocal Avoidance with Trajectory Sharing Method

Introducing a system where a robot is capable of distinguishing between other robots

and dynamic obstacles, while also being aware that these robots employ their own pre-

dictive models, brings about notable improvements in its path-planning capabilities.

However, this enhanced performance comes at the expense of increased information

sharing.

In the previous approach, each robot only required positional information in the form

of three floating-point values (representing x, y coordinates and θ heading angle) for

all other robots (M−1 in total), necessitating the sharing of 3 ·(M−1) floating-point

values. However, the current method takes a step further by requiring the sharing

of the complete predicted positional information of other robots. This mandates the

sharing of 3 · (M − 1) · (N + 1) floating-point values, accounting for the predictions

horizon (N ).

To address the trade-off between computational and communication costs while still
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Reciprocal avoidance of two robots with position sharing method in po-

sition swap scenario (a) at time t = 0.8 s (b) t = 1.8 s (c) t = 2.6 s (d) t = 3.6 s (e) t =

4.4 s (f) t = 6.4 s
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achieving performance improvements, an alternative sampling-based method is in-

troduced in the subsequent sections. This approach effectively reduces both the com-

putational load and the communication load. By selectively sampling points from

the predicted trajectories, the method maintains a reasonable level of accuracy while

mitigating the burden of transmitting and processing extensive trajectory information.

(a) (b) (c)

Figure 4.6: Reciprocal avoidance of two robots with (a) position sharing (b) trajectory

sharing (c) sampled trajectory sharing

Fig. 4.6 illustrates the proposed methods in a simple environment involving a single

obstacle and two robots. The shared information between the robots is represented

by black arrows. The impact of the shared information on the individual path plans

of the robots is evident from the figure.

4.6.1 Complete Trajectory Sharing

In this method, robots share their predicted state sequences, τi(k) = {qi(n|k)}n:0,N ,

with their neighbors to solve the next optimization problem simultaneously. Although

sharing all predictions increases the communication load of the system and the total

calculation time, it has shortened the traveled path and reduced the control effort. The

reciprocal avoidance constraint should be modified as

(2rsafety)− ||qi(n|k)− qj(n|k)|| ≤ 0, n = 0, 1, ..., N (4.13)

In Fig. 4.6(b), it can be observed that by sharing the entire predicted trajectory, the

trajectory of the lower robot adjusted based on the received information.
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In Fig. 4.5, it can be observed that the robots plan collision-free trajectory, τi(k),

based only on the instantaneous position of the other robot, qj(k), while in Fig. 4.7,

each robot plans its own trajectory, τi(k), based on the trajectory information shared

with it, τj(k), ensuring that its own trajectory does not collide with the trajectory of

the other robots.

Although sharing all predictions increases the communication load of the system and

the total calculation time, it has shortened the traveled path and reduced the control

effort.

4.6.2 Sampled Trajectory Sharing

Sharing the robot’s predicted trajectory through sampling can significantly reduce

both communication and computation loads. While reducing the loads, it is important

to perform the sampling in a way that minimizes the impact on collision avoidance

and trajectory smoothness.

Due to the fact that the closer predictions of the robot contain more critical informa-

tion regarding collision avoidance and trajectory smoothness, the sampling method

should be chosen accordingly. Hence, the sampling was performed by defining an

exponential function so that samples are more frequent from close predictions and

sparser from distant ones.

The sampled trajectory is defined as τ̂i(k) = {qi(n|k)}n:0,1,R,R2,...,Ra for the robot

i which can be shared with other robots. An exponential sampling rate R can be

selected to suit for application. The choice of sampling rate influences the density

of samples along the predicted trajectory. The last term that will be shared is the Ra

which is the largest possible power of R less than the N .

In the following chapter, a comprehensive performance comparison is conducted

among four approaches: complete trajectory sharing, uniform sampling, and two dif-

ferent exponential sampling rates. This analysis aims to assess the effectiveness of

each method in terms of collision avoidance, trajectory smoothness, and the associ-

ated communication and computation loads.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Reciprocal avoidance of two robots with prediction sharing method in

position swap scenario (a) at time t = 0.6 s (b) t = 1.4 s (c) t = 2.2 s (d) t = 3.8 s (e) t

= 4.4 s (f) t = 6.8 s
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Reciprocal avoidance of two robots with sampled number of prediction

sharing method in position swap scenario (a) at time t = 0.4 s (b) t = 1.0 s (c) t = 1.8

s (d) t = 3.0 s (e) t = 4.0 s (f) t = 6.6 s
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4.7 Cost Function for Formation Control

To incorporate the formation behavior into the system, it is necessary to add a new

cost function to the MPC. This function should ensure that the distance between two

neighboring robots namely i and j is equal to the desired formation distance d̄(i, j).

Ji,form =
N−1∑
n=0

Mi∑
j=0

(
S0(∥ qi(n|k)− qj(n|k) ∥ −d̄(i, j))2

+S1(θi − θj)
2
) (4.14)

Mi describes the number of neighbors of the ith robot. d̄(i, j) means the given desired

distance between the robots i and j. A quadratic cost is described as the difference

between the measured distance and desired distance. In addition, if the heading align-

ment is required, a quadratic cost is added for the heading difference of robots. S0

and S1 are the weights for the formation cost and heading alignment cost respectively.

The optimization problem given in Eqn. 4.10 is still valid with the following update i

the total cost function

Ji,total = Ji,nav + Ji,eff + Ji,form

Treating the formation as a cost rather than a constraint in MPC-based formation con-

trol offers several advantages. Firstly, it provides flexibility in adapting and modifying

the formation during runtime, allowing for dynamic prioritization of formation main-

tenance or reconfiguration based on mission requirements or environmental condi-

tions. Secondly, it enables smooth transitions between different formations by gradu-

ally adjusting the cost weights associated with each configuration, ensuring seamless

and continuous control. Lastly, by incorporating the formation as a cost, the con-

troller can optimize multiple objectives simultaneously, such as obstacle avoidance

or energy efficiency, resulting in a versatile and adaptable control behavior. Addition-

ally, this approach allows the controller to handle infeasible formations by relaxing

the formation cost and finding the best compromise or approximation, ensuring stable

and feasible control even in challenging conditions.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Three robot moving to goal without formation (a) at time t = 0.4 s (b) t =

4.0 s (c) t = 8.0 s (d) t = 12.0 s (e) t = 16.0 s (f) t = 20.4 s
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Three robot moving to goal with formation (a) at time t = 4.0 s (b) t =

8.0 s (c) t = 12.0 s (d) t = 16.0 s (e) t = 22.0 s (f) t = 28.0 s
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4.8 Discussions

In the discussion section, we will provide a detailed analysis of the experimental re-

sults obtained from our study on the MPC-based formation control problem in 2D.

We will start by introducing the algorithm of proposed method. Then, we will com-

pare the performance of different optimization solvers and methods for converting

nonconvex problems into convex ones, based on metrics such as computation time

and solution quality.

Furthermore, we will provide an in-depth discussion on the rationale behind our deci-

sion to limit our study to 2D formation control and the implications of our findings for

real-world applications. Specifically, we will examine the advantages and disadvan-

tages of 2D formation control compared to 3D formation control, and the trade-offs

involved in choosing between the two.

Finally, we will then discuss how the results of our experiments relate to the theoreti-

cal expectations and highlight the limitations and opportunities for future research in

this area.

4.8.1 Solver

Model Predictive Control (MPC) is an advanced control strategy that uses mathe-

matical models to predict future system behavior and optimize control actions. To

solve the optimization problem in MPC, a variety of solvers can be employed. These

include:

Interior-point solvers: These are iterative solvers that operate by finding the solution

to a sequence of linear equations, and then using a Newton-based method to search

for the optimal solution. Interior-point solvers are widely used in MPC due to their

ability to handle large-scale problems efficiently.

Active-set solvers: These are optimization algorithms that search for the optimal so-

lution by iteratively adding or removing constraints. They are efficient for small to

medium-sized optimization problems.
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Gradient-based solvers: These solvers employ gradient information to iteratively

search for the optimal solution. They are efficient for problems that have smooth

and convex objective functions.

Quadratic programming (QP) solvers: QP solvers are used when the MPC optimiza-

tion problem can be formulated as a quadratic program. These solvers can handle

large-scale problems efficiently and are widely used in MPC applications.

Sequential quadratic programming (SQP) solvers: These solvers employ a similar

approach as QP solvers but use a sequence of quadratic approximations of the ob-

jective function to iteratively search for the optimal solution. They are efficient for

problems that have nonlinear constraints.

The choice of solver depends on the specific requirements of the MPC problem, such

as the size of the problem, the complexity of the model, and the desired level of

accuracy and computational speed.

Interior-point solvers have several advantages over other optimization solvers when

it comes to Model Predictive Control (MPC) applications. They can handle a wide

range of nonlinear and non-convex optimization problems, making them suitable for

many different MPC applications. They are highly efficient for large-scale problems

with hundreds or thousands of decision variables, making them well-suited for com-

plex MPC models. Interior-point solvers have a high degree of numerical stability,

which means they can produce accurate solutions even when faced with numerical

issues such as ill-conditioned matrices. They can handle a wide range of constraints,

including inequality and equality constraints, making them a versatile choice for MPC

optimization problems. Interior-point solvers are generally faster than other opti-

mization solvers, such as active-set solvers, when solving large-scale MPC problems.

Overall, the advantages of interior-point solvers make them a popular choice for MPC

applications where large-scale, nonlinear optimization problems are common.

4.8.2 Pseudocode of Proposed Method

Algorithm 1 describes how the DMPC code operates independently on each robot.

According to the selected method, each robot receives state or prediction informa-
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tion from its neighbors, updates the constraints of its own Optimal Control Problem

(OCP), applies the first step of the optimal control command obtained from the solved

OCP, and simultaneously shares its own position or prediction information with its

neighbors. This iteration continues for each robot until it reaches its target.

Algorithm 1: Distributed Model Predictive Control

Input: q0i , q
goal
i ,Mi, d̄(i, j)

Output: qi(k), qi(n|k)

1: Initialize MPC Parameters: Q,Qf , R,Reff, N, T

2: Define the OCP in Eqn. 4.10 with Eqns. 4.6,4.9,4.14

3: while qgoal
i not reached do

4: for each robot j in Mi do

5: constraint← qj(k) (position sharing) or

6: constraint← τj(k) (predicted trajectory) or

7: constraint← τ̂i(k)) (sampled predicted traj.)

8: end for ▷ Communicate with all neighbors

9: Update the constraints as given in Eqns. 4.12 or 4.13

10: u∗
i ← Solve OCP with given constraints

11: Apply the first step of calculated u∗

12: Publish your state qi(k) or predicted trajectory τi(k) or its sampled

version τ̂i(k))

13: end while

4.8.3 Converting a Non-convex Problem to a Convex Problem

Converting a non-convex optimization problem to a convex optimization model can

be challenging and is not always possible. However, in some cases, it is possible to

transform a non-convex optimization problem into a convex optimization problem by

making certain assumptions or approximations.

One common approach is to use convex relaxation, which involves replacing the origi-

nal non-convex constraints or objective function with a convex approximation that has

the same or tighter bounds. This can be done by applying a series of mathematical
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techniques, such as linearization, quadratic relaxation, or semidefinite programming,

to transform the non-convex constraints or objective function into a convex form.

The resulting convex approximation may not always yield the optimal solution to the

original non-convex problem, but it can provide a feasible solution that is close to the

global minimum.

Another approach is to use reformulation techniques, which involve reformulating the

original problem into an equivalent convex optimization problem. This can be done

by introducing additional decision variables or constraints that transform the origi-

nal problem into a convex form. For example, a non-convex optimization problem

with product terms can be reformulated as a convex optimization problem using a

logarithmic transformation.

It is important to note that converting a non-convex optimization problem to a convex

optimization model can be computationally expensive and may not always be feasi-

ble, particularly for complex models or in real-time applications. Therefore, it is often

necessary to use specialized optimization algorithms and solvers that can efficiently

handle non-convex optimization problems.

4.8.4 Obstacle Avoidance and Formation Control with Soft Constraint

Hard constraints are requirements that must be satisfied exactly, while soft constraints

are requirements that can be violated, but at a cost. In the context of obstacle avoid-

ance for mobile robots, soft constraints can be used to encourage the robot to avoid

obstacles, while still allowing it to navigate through tight spaces if necessary.

For example, a soft constraint can be added to the cost function that penalizes the

robot for getting too close to obstacles. The penalty could be proportional to the

distance to the obstacle, so that the closer the robot gets, the higher the cost. This

would encourage the robot to avoid obstacles, but still allow it to navigate through

narrow passages if the cost of violating the constraint is lower than the cost of taking

a longer path.

In the context of MPC, hard constraints can be used to enforce the desired formation

shape and inter-robot distances. These constraints would ensure that the robots main-
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tain a specific formation, and any violation of the constraint would result in a very

high cost in the optimization problem. This type of constraint enforces the desired

formation strictly, which may not always be feasible or optimal.

On the other hand, soft constraints are requirements that can be violated at a cost,

allowing for flexibility and adaptability in the formation control. Soft constraints can

be used to encourage the robots to maintain a desired formation, while still allowing

for some variation in the formation shape and movement. Soft constraints can be

defined based on the desired inter-robot distances or angles and can be included in

the MPC optimization problem as a penalty term. This type of constraint allows the

robots to move and adapt to the environment more naturally, while still keeping some

formation constraints.

4.8.5 2D Quadcopter Formations and Down-wash Effect

Quadcopter formations are commonly worked in 2D due to several practical reasons.

Firstly, quadcopters are often used in applications that occur in 2D environments, such

as surveillance, inspection, and mapping. These applications typically do not require

quadcopters to move vertically or operate in complex 3D environments, so working

in 2D simplifies the control and planning algorithms. Secondly, working in 2D al-

lows for simpler and more cost-effective sensing and communication systems. Most

quadcopters use basic sensors like accelerometers, gyroscopes, and magnetometers to

estimate their position and orientation, which are usually more accurate in 2D than in

3D. Similarly, communication systems used to transmit data and commands between

quadcopters and a ground station are generally simpler and more reliable in 2D.

Practical applications of quadcopter formations in 2D include swarm robotics, target

tracking, and environmental monitoring. In swarm robotics, multiple quadcopters

can be controlled to form a coordinated group and carry out tasks, such as search

and rescue or object transport. Target tracking involves using multiple quadcopters

to track a moving object or person, such as a suspect in a police chase or a wildlife

animal. Environmental monitoring can involve using multiple quadcopters to collect

data on air or water quality, weather patterns, or other environmental factors.
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The down-wash effect is a well-known phenomenon in the field of quadcopter con-

trol, wherein the airflow generated by the rotors of a quadcopter flows downward and

creates a disturbance on the ground or nearby objects. This disturbance can result in

destabilization of other nearby quadcopters or objects, making it challenging to main-

tain a desired formation. In micro UAV swarms, 2D formations are often preferred

over 3D formations due to their ability to reduce the impact of the down-wash on the

neighboring quadcopters. By aligning the quadcopters along a single plane, the down-

wash effect is largely confined to that plane, allowing for greater control and stability.

Additionally, 2D formations are often simpler to implement and control compared to

3D formations. This is because the motion planning and control algorithms can be

designed using simpler mathematical models, allowing for faster and more efficient

computation. The use of 2D formations is a practical choice for small UAV swarms,

which often operate in confined spaces and require rapid response times.
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CHAPTER 5

SIMULATION RESULTS AND EXPERIMENTAL WORK

In order to evaluate the performance of the proposed model predictive control ap-

proach for formation flight, we implemented the proposed control system on mini

quadrotors Crazyflie 2.1 and tested the formation control performance in a variety

of scenarios, including static and dynamic obstacles, as well as different numbers of

quadcopters.

The implementation of the algorithm was carried out in Python, utilizing the Robot

Operating System (ROS) for swarm management. The casADi [49] library, a nonlin-

ear optimizer, was employed for the optimization tasks involved in the MPC frame-

work. The simulations and experiments were performed on a laptop equipped with

an Intel i7 2.4 GHz processor, running Ubuntu 20.04 operating system.

By conducting these simulations and experiments, we aimed to evaluate the perfor-

mance of the proposed MPC approach under diverse conditions, allowing for a com-

prehensive analysis of its capabilities, robustness, and scalability in real-world sce-

narios.

All the parameters utilized in the algorithm for simulations and experiments were

carefully chosen and documented in Table 5.1. These parameters include critical

values, weightings, thresholds, and any other relevant variables necessary for the suc-

cessful execution of the MPC approach. The specific values for each parameter were

selected based on prior research, practical considerations, and the desired objectives

of the formation flight experiments. By specifying and adhering to these parame-

ter values, we aimed to ensure consistency and reproducibility in the evaluation and

analysis of the MPC algorithm’s performance.
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Table 5.1: Control parameters and constraints used in experiments

Parameter Symbol Value Unit

Time Step k 0.2 s

Prediction Horizon N 20 -

Robot’s Actual Radius rrobot 8 cm

Safety Distance dsafety 32 cm

Robot Safety Distance rsafety 40 cm

State Cost Matrix Q diag(10,10,0.1) -

Final State Cost Matrix Qf diag(10,10,0.1) -

Input Cost Matrix R diag(0.5,0.001,0.05) -

Control Effort Cost Matrix Reff diag(0.5,20,0.05) -

Velocity Constraint vmax 0.8 m/s

Angular Velocity Constraint wmax 0.6 rad/s

5.1 Monte-Carlo Experiments

Fig. 4.5, 4.7 and 4.8 illustrate the paths followed by robots in position swap scenarios

with the proposed methods. Figure 5.1 presents the confidence plots derived from

Monte Carlo trials performed under the different process noises (SNR = 0,SNR =

1,SNR = 2). It can be observed that the sampled trajectory sharing method decreases

the average path length taken and yields more stable results. It also reduces the aver-

age computation time. Two important observations can be made: First, the sampled

trajectory method generates paths that are almost as short as the complete trajectory

method. This indicates that sampling does not move us away from optimality. Sec-

ond, the paths generated with sampled trajectory sharing created less variance than

the paths generated with complete trajectory sharing. One possible explanation is

that exponential sampling implicitly moves the problem into the exponential decay of

rewards in time within the reinforcement learning paradigm.
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Figure 5.1: The average traveled path, the average computation time and energy

(uTRu) for each sharing method under the different noise levels. The box extends

from the lower to upper quartile values of the data, with a line at the median. The

whiskers extend from the box to show the range of the data. Only the position shar-

ing method cannot guarantee reaching the goal in a both noisy and noise-free environ-

ment. Sampled Trajectory Sharing method reduces the average traveled path and the

average computation time. The average computation time and the average traveled

path have less variance for the proposed method.
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The term uTRu, commonly referred to as energy, represents the squared sum of the

commanded linear and angular velocities in the system. It is used in the MPC frame-

work and is aimed to be minimized during the optimization process. By minimizing

this term, the MPC aims to find control inputs that result in smoother and more ef-

ficient motion. When plotting the energy term for different methods, we expect to

observe variations in the energy values, reflecting the efficiency and smoothness of

the control strategies employed. Lower energy values indicate more efficient control

methods with reduced commanded velocities and potentially smoother trajectories.

Fig. 5.2 illustrates the results of the systematic Monte Carlo trials where we analyzed

the effects of prediction horizon length on the system performance. A short predic-

tion horizon can make it difficult to find the optimal path as it cannot see the entire

trajectory. On the other hand, when the prediction horizon is too long, several factors

can impede finding the optimal path:

Computation Complexity: Increasing the prediction horizon requires evaluating a

larger number of future states, which can significantly increase the computational

complexity. This can lead to longer computation times and may not be feasible in

real-time applications.

Sensitivity to Uncertainties: A longer prediction horizon amplifies the impact of

uncertainties in the system, such as measurement errors or dynamic changes in the

environment. This sensitivity can result in deviations from the optimal path if the

predicted states do not accurately reflect the actual future states.

Environmental Changes: In dynamic environments, a longer prediction horizon may

encounter unexpected changes, such as the sudden appearance of obstacles or alter-

ations in the terrain. These unforeseen changes can render the initially planned opti-

mal path ineffective or even infeasible.

Therefore, selecting an intermediate prediction horizon can yield better results. An

intermediate value can provide sufficient foresight into the future while maintaining a

reasonable computation time and complexity. It is also more tolerant to uncertainties

and can adapt better to environmental changes.
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Figure 5.2: The average traveled path, the average computation time and energy for

each sharing method under the different prediction horizons. An excessively short or

long prediction horizon may not be able to find the optimal path. Instead, an interme-

diate value often yields better results. It balances the ability to foresee sufficient future

states while keeping computation time and complexity manageable. Additionally, an

intermediate prediction horizon is more resilient to uncertainties, model inaccuracies,

and environmental changes. As expected, increasing the prediction horizon for each

method results in an increase in the average computation time. However, in the pro-

posed method, the change in computation time is minimized relative to the variation

in the prediction horizon.
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Fig. 5.3(a),(b) illustrate the formation motion under the process noise (SNR = 1).

Fig. 5.3(c) presents the variation of distance between the robots over time. The

desired distance for each edge of the equilateral triangle formation is defined as 2

meters. The maximum and minimum values obtained from Monte Carlo trials are

shown with shaded regions in Fig. 5.3(c).
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Figure 5.3: Three robots navigating to goal locations while keeping the formation

under process noise at (a) t = 11.0 s (b) t = 30 s. (c) The plots indicate the inter-agent

distance averages (solid lines) and the ranges (shaded region). The colors correspond

to the edges indicated with dashed lines.
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5.1.1 Computation Time and Shared Data Package Analysis

The state matrix qi is composed of three floating-point values. A data package is de-

fined as a single state matrix. With the position sharing method, each robot transmits

a single data package containing its current state. In contrast, the complete trajectory

sharing method involves the sharing of N + 1 data packages, as each robot pro-

vides its current state and predicted states. In the sampled trajectory sharing method,

⌈logR(N)⌉ + 1 data packages are exchanged among the robots, where R is the sam-

pling rate.

Table 5.2: Shared data package and computation time of sharing methods under dif-

ferent prediction horizons for 2 robot position swap scenario

Position

Sharing

Complete Traj.

Sharing

Sampled Traj.

Sharing

Shared Data

Package (N=20)
1 21 6

Avg. Comp. Time

(N=20)
39.12 ms 37.11 ms 35.95 ms

Shared Data

Package (N=40)
1 41 7

Avg. Comp. Time

(N=40)
86.21 ms 71.92 ms 66.04 ms

The experiment was conducted by setting the sampling rate R to 2, and the results

were recorded for different simulation environments in terms of the number of shared

data packages and computation time. The impact of reducing the amount of shared

data on the average computation time can be observed in the tables 5.2, 5.3. Addi-

tionally, the cases where the sampling rate R is set to 2 and 3 were compared with the

complete trajectory sharing and uniform sampling methods, and the results are shown

in Fig. 5.5.
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(c) (d)

(e) (f)

Figure 5.4: Narrow passage scenario with complete prediction sharing method (a) at

time t = 0.4 s (b) t = 3.0 s (c) t = 6.0 s (d) t = 9.0 s (e) t = 13.0 s (f) t = 19.0 s
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Table 5.3: Shared data package and computation time of sharing methods under dif-

ferent prediction horizons for narrow passage scenario

Position

Sharing

Complete Traj.

Sharing

Sampled Traj.

Sharing

Shared Data

Package (N=40)
1 41 7

Avg. Comp. Time

(SNR=0)
135.50 172.61 ms 96.74 ms

Avg. Comp. Time

(SNR=1)
127.32 109.57 ms 82.21 ms

Shared Data

Package (N=60)
1 61 7

Avg. Comp. Time

(SNR=0)
199.15 263.18 ms 195.83 ms

Avg. Comp. Time

(SNR=1)
162.22 187.71 ms 131.13 ms

Shared Data

Package (N=70)
1 71 8

Avg. Comp. Time

(SNR=0)
275.58 385.72 ms 258.67 ms

Avg. Comp. Time

(SNR=1)
187.78 211.18 ms 163.56 ms

Fig. 5.5 illustrates the average traveled path, average computation time, and energy

values for different sampling methods under varying levels of noise. The graphs de-

pict the sharing of the complete trajectory, τi(k) = {qi(n|k)}n:0,N , uniform sampling

of all predictions that are multiples of 3, τ̂i(k) = {qi(n|k)}n:0,3,6,...,3·a<N , and expo-

nential sampling with two different sampling rates τ̂i(k) = {qi(n|k)}n:0,1,R,R2,...,Ra<N

(R = 2 and 3).
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Figure 5.5: The average traveled distance, average computation time, and energy

values are shown for different sampling methods, including the complete trajectory

sharing method, under various noise levels and constant prediction horizon N = 40.

As the number of shared data packages decreases, the computation time decreases for

all levels of noise. Particularly in noise-free environments, sampling has a positive

effect on the average traveled distance. In a noise-free environment, a sampling rate

of 2 yields slightly better results compared to a sampling rate of 3. As the noise level

increases, the difference between uniform sampling and complete sharing decreases,

and the difference between sampling rates 2 and 3 also decreases.
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Figure 5.6: (a) By using the concept of Voronoi Diagram and Delaunay Triangulation

a graph structure consisting of five quadcopters is obtained. The constructed Voronoi

Diagram is indicated with solid black lines. (b) Robots are reaching the desired for-

mation while navigating through the goal points at t = 5.0 s . (c) Robot positions at

time t = 15 s. (d) The plot shows the edge lengths of the corresponding graph struc-

ture. The change in the edge lengths is represented by the indicated colors of the

dashed lines.

Figure 5.6 illustrates the formation control using the sampled trajectory sharing method.

As the robots navigate towards their respective targets, they also share their sampled

trajectories with their neighbors to establish the desired formation shape. Table 5.4

59



provides information on the amount of shared data and the average computation time

when attempting formation control with different methods.

Table 5.4: Shared data package and computation time of sharing methods under dif-

ferent prediction horizons for Regular Pentagon Formation

Position

Sharing

Complete Traj.

Sharing

Sampled Traj.

Sharing

Shared Data

Package (N=20)
1 21 6

Avg. Comp. Time

(N=20)
NA 48.83 ms 31.19 ms

Shared Data

Package (N=40)
1 41 7

Avg. Comp. Time

(N=40)
NA 93.62 ms 56.30 ms

5.2 Comparison of the Results

The Buffered Voronoi Cell (BVC) [50] is a motion planning algorithm designed to

compute a path for mobile robots that ensures they can move safely and collision-free

between their starting and goal positions. The algorithm utilizes a Voronoi diagram,

which divides the space around obstacles into regions of influence. In addition, BVC

incorporates a buffer zone around the mobile robots that prevent collisions with ob-

stacles and other robots while balancing safety and efficiency. The buffer zone’s size

is adjustable to suit the task’s specific requirements.

BVC generates a motion plan that the mobile robots execute using a feedback con-

trol strategy. The feedback control strategy is responsible for adjusting the robots’

movement in real-time based on sensor data such as odometry and laser scans. It

guarantees that the robots follow the planned path and avoid collisions.
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(c) (d)

(e) (f)

Figure 5.7: Four robot position swap scenario with BVC method(a) at time t = 1.0 s

(b) t = 3.5 s (c) t = 6.0 s (d) t = 9.0 s (e) t = 12.0 s (f) t = 16.0 s
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One significant difference between BVC and MPC is their optimization approach.

BVC utilizes a static optimization method, which involves precomputing the Voronoi

diagram to generate collision-free paths. In contrast, MPC utilizes a dynamic opti-

mization approach that involves real-time problem-solving based on current sensor

readings and predictions of future robot motion. Despite the differences, both BVC

and MPC offer unique benefits. MPC’s advantages include predictive control, real-

time optimization, constraints handling, and optimality. Predictive control allows

MPC to predict future robot motion and optimize the path accordingly, making it

more suitable for complex tasks than BVC. Real-time optimization enables MPC to

adjust the path according to changes in the environment. Constraints handling allows

MPC to handle complex constraints such as nonholonomic constraints and veloc-

ity and acceleration limits. Optimality ensures that MPC generates globally optimal

paths that minimize a cost function, leading to more efficient paths.

These advantages make MPC particularly useful in applications that require predic-

tive control, real-time optimization, and constraint handling. However, the complex-

ity of MPC makes it more challenging to implement and use than BVC.

Table 5.5: Comparison of Trajectory Sampled MPC method with BVC

Traveled Path Traveling Time
Computation

Time

MPC 7.717 m 14.7 s 35 ms

BVC 8.512 m 16.2 s 3.7 ms

The table 5.5 highlights the trade-off between average computation time, traveling

time, path length, and deadlock handling between BVC and MPC algorithms for robot

path planning. The results show that while BVC has a shorter computation time, MPC

outperforms BVC in terms of traveling time and path length. This is because MPC is

capable of handling deadlocks thanks to its online optimization process and predictive

behavior. Despite the longer computation time required for MPC, the resulting path

is often shorter and faster, making it a better choice for applications that prioritize
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Figure 5.8: Four robot position swap scenario with MPC method(a) at time t = 1.0 s

(b) t = 3.0 s (c) t = 5.0 s (d) t = 7.0 s (e) t = 9.0 s (f) t = 14.0 s
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efficiency and speed. The computation time of BVC is lower due to its simplicity

and solving a less complex problem. However, the simplicity of the BVC algorithm

also makes it vulnerable to deadlock situations. To avoid deadlock, BVC requires a

rule-based escape maneuver code, which can slow down the robots.

5.3 Crazyflie Experiments

In order to evaluate the performance of the proposed model predictive control ap-

proach for formation flight, we conducted experiments with Crazyflies. The Crazyflie

UAVs are equipped with onboard sensing and control capabilities, making them well-

suited for testing formation control algorithms. In our experiments, we implemented

the proposed control system on the Crazyflie UAVs and tested the formation control

performance in a variety of scenarios, including static and dynamic obstacles, as well

as different numbers of UAVs. The results of the experiments demonstrated that the

Crazyflie UAVs were able to achieve and maintain the desired formation shape and

position with a high level of accuracy, even in the presence of external disturbances.

These results demonstrate the feasibility and effectiveness of the proposed control

approach for formation flight of multiple UAVs.

We also tested the control approach in multi-robot scenarios, in which the UAVs had

to coordinate their movements to achieve a common goal. To do this, we imple-

mented a decentralized control architecture that allowed each UAV to make its own

decisions based on local information, while still being able to achieve the overall goal

of the group. The results of these experiments showed that the proposed control ap-

proach was able to enable the UAVs to effectively coordinate their movements and

achieve the desired multi-robot behavior. This demonstrates the potential of the pro-

posed control approach for enabling robust multi-robot coordination in a variety of

applications.
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Figure 5.9: Illustration of the MPC-based distributed formation control method

in which robots share their exponentially-sampled trajectories with each other that

would move them among dynamic obstacles to a desired goal position. In a set of

systematic experiments conducted in simulation and with mini quadcopters, we have

shown that sharing of exponentially-sampled trajectories (as opposed to positions, or

complete trajectories) among the robots provides near-optimal paths while decreas-

ing the required computation cost and communication bandwidth. Surprisingly, in

the presence of noise, sharing exponentially-sampled trajectories among the robots

decreased the variance in the final paths.
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CHAPTER 6

CONCLUSIONS

In this thesis, we propose a Model Predictive Control (MPC) based distributed for-

mation control method for a swarm of robots that would move them among dynamic

obstacles to a desired goal position. Our approach was based on the optimization of

a performance index that takes into account the formation constraints and the robots’

dynamics.

Specifically, after formulating the formation control, as a distributed version of MPC,

we propose and evaluate three information-sharing schemes within the swarm; namely

sharing (i) positions, (ii) complete predicted trajectories, and (iii) exponentially-

sampled predicted trajectories.

In a set of systematic experiments conducted in simulation and with mini quadcopters,

we have shown that sharing of exponentially-sampled trajectories (as opposed to po-

sitions, or complete trajectories) among the robots provides near-optimal paths while

decreasing the required computation cost and communication bandwidth. Surpris-

ingly, in the presence of noise, sharing exponentially-sampled trajectories among the

robots decreased the variance in the final paths.

There are a few limitations to our study that should be considered in future work.

First, we only considered a simplified model, and a more detailed model may be

required for real-world implementation. Another direction is to consider more com-

plex performance indices and constraints, such as energy efficiency or communication

constraints.

Overall, our work contributes to the development of reliable and efficient formation

control algorithms for UAVs.
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