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Abstract: A new model of inertial neural networks with a generalized piecewise constant argument
as well as unpredictable inputs is proposed. The model is inspired by unpredictable perturbations,
which allow to study the distribution of chaotic signals in neural networks. The existence and
exponential stability of unique unpredictable and Poisson stable motions of the neural networks are
proved. Due to the generalized piecewise constant argument, solutions are continuous functions
with discontinuous derivatives, and, accordingly, Poisson stability and unpredictability are studied
by considering the characteristics of continuity intervals. That is, the piecewise constant argument
requires a specific component, the Poisson triple. The B-topology is used for the analysis of Poisson
stability for the discontinuous functions. The results are demonstrated by examples and simulations.

Keywords: inertial neural networks; generalized piecewise constant argument; unpredictable os-
cillations; Poisson stable oscillations; unpredictable input–outputs; Poisson triple; Poincaré chaos;
exponential stability

1. Introduction

Recently, digitalization and artificial intelligence have been actively introduced into
many spheres of life, and neural networks, due to the unique structure, and high efficiency
of information processing, have become the main tool for their implementation. Basic
neural network models, such as cellular neural networks [1], bidirectional associative
memory neural networks [2], Hopfield neural networks [3] and shunting inhibitory cellular
neural networks [4] are described using first-order differential equations. However, it was
found that these mentioned neural networks cannot effectively model the mechanism of
squid semicircular canal and synapse [5]. To solve such an actual problem, Babcock and
Westervelt [6,7] introduced neural networks, known today as an inertial neural networks
(INNs). The standard mathematical model of the INNs can be described by the second-
order derivative and differs from the Hopfield neural networks by the inertial term. The
inclusion of inertia in the neural network model opened up new directions in the field
biology, engineering technology and information system [8,9].

The original inertial neural networks was considered in [10],

u′′i (t) = −aiu′i(t)− biui(t) +
m

∑
j=1

cij f j(uj(t)) + Ii(t), (1)

where t, ui ∈ R, i = 1, 2, . . . m, the second derivative of ui(t), is called an inertial term of
system (1); ui(t) is the state variable of the i th neuron at time t; ai > 0 is the damping
coefficient; bi > 0 is the rate with which the neurons self-regulate or reset their potential
when isolated from other networks and inputs; the constant cij is the synaptic connection
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weight of the neuron j on the neuron i; f j is the activation function of incoming potentials
of the neuron j at time t; and Ii(t) = Ii is the external input of network to the ith neuron.

In recent years, by using the reduced-order transformation, numerous papers have
been written on the stability and synchronization of the following delayed INNs and its
generalizations [11–13],

u′′i (t) = −aiu′i(t)− biui(t) +
m

∑
j=1

cij f j(uj(t)) +
m

∑
j=1

dij f j(uj(t− τij)) + Ii(t), (2)

where time delay τij ≥ 0 is constant, dij is the synaptic connection weight of the neuron
j on the neuron i with delay, and the external input Ii(t) for all i = 1, 2, . . . m is continu-
ous functions.

In [14], the inertial neural network (1) was modified by adding mixed delays,

u′′i (t) = −aiu′i(t)− biui(t) +
m

∑
j=1

cij f j(uj(t)) +
m

∑
j=1

dij f j(uj(t− τj(t))) +

+
m

∑
j=1

wij

t∫
t−kj(t)

f j(uj(s))ds + Ii(t), (3)

where cij, dij and wij are the synaptic connection weights, which are related to the neurons
without delays, with discrete delay and distributive delay, separately. τj is the discrete delay;
meanwhile, k j(t) is the distributed delay, which satisfies 0 ≤ τj ≤ τ, 0 ≤ k j(t) ≤ k, where τ
and k are constants. The external input Ii(t) for all i = 1, 2, . . . m, is continuous functions.

The latest results are related to consideration of time-varying velocities, weights
of connections and external inputs as continuous periodic, almost periodic functions
depending on a time variable. These results have been effectively applied to numerous
fields, such as the stabilization of periodic and almost anti-periodic motions, and control,
as well as synchronization [15–20].

In recent years, scientists have begun to study the distribution of recurrent and chaotic
signals in the network, taking Poisson stable [21–25] and unpredictable functions [26] as
external inputs. We note that the Poisson stable functions are a complex and general case of
the class of recurrent functions known to us as almost periodic, quasi-periodic and periodic
functions [27]. The concept of the unpredictability was introduced in 2016 [26]. Trajectories
of the dynamics are of Poincaré chaos, and this provides strong argument for the research,
considering the theoretical and application merits of chaos. Unpredictable functions differ
from the Poisson stable functions by the separation property [27,28]. Thus, unpredictable
motions make a subclass of Poisson stable ones, but as the studies demonstrate, all examples
of concrete Poisson stable functions are unpredictable. That is, the unpredictability may be
a more constructive phenomenon than Poisson stability [27,28]. Nevertheless, to provide
complete information of the results, we prove two main assertions on both unpredictable
and Poisson stable motions in the neural networks. Poisson stability is proved by the method
of included intervals, which was introduced and developed in [27–29]. Note that, currently,
this method remains the main way to prove convergence, due to its efficiency in theory
differential equations.

For the first time, unpredictable motions were investigated for inertial neural networks
in [29], that is, unpredictable functions were used as input data in system (1). The article
considers the case when the reduced-order transformation formula includes all parameters,
unlike the articles [10,14,15,18,19]. For example, if in the article [19] strict restrictions are
imposed on the coefficients in the main transformation formula, then in [29], for a broader
study, the positive coefficients are considered. The presence of such coefficients in the
transformation [29] give advantages in a detailed study of the behavior of the solution.

The present and potential contributions as well as the novelties of the paper can be
highlighted as follows:
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• In this article, the existence, uniqueness and exponential stability of discontinuous
Poisson stable and unpredictable motions of inertial neural networks with a general-
ized piecewise constant argument are studied.

• It is the first time in the literature that an inertial neural network with a generalized piece-
wise constant argument, combining delayed and advanced arguments, is investigated.

• The generalized piecewise constant argument function in the neural network model is
given in the form of a discontinuous stable Poisson function, which, in turn, is also a
novelty of the work. The function is described by special sequences that are connected
by a newly introduced relation, that is, a Poisson triple of sequences.

• Poisson stability of discontinuous functions is studied on the basis of the B-topology
and by the method of included intervals.

• In the future, the included intervals method based on B-topology can be used for neu-
ral networks with both impulsive and discontinuous functional dependence on time.

2. Preliminaries

Our goal is to find unpredictable and Poisson stable motions of inertial neural network
with a generalized piecewise constant argument. The presence of a piecewise constant
argument requires the study of unpredictable and Poisson stable oscillations on each
continuous interval. That is, we need to enter an unpredictable function and a piecewise
constant argument function. For that, in this part of the paper, we introduce special time
sequences and describe the generalized piecewise constant argument.

Denote by N,R and Z the sets of natural and real numbers, and integers, respectively.
Let ‖ · ‖ be the Euclidean norm in Rm, m ∈ N.

Let us commence with preliminary concepts and give the basic definitions of the
Poisson stable sequence and function, and the unpredictable function.

Definition 1 ([22]). A sequence κi, i ∈ Z, in R is called Poisson stable, provided that it is bounded
and there exists a sequence ln → ∞, n ∈ N, of positive integers such that |κi+ln − κi| → as n→ ∞
on bounded intervals of integers.

Definition 2 ([27]). A uniformly continuous and bounded function φ : R→ Rm is unpredictable
if there exist positive numbers ε0, δ and sequences tn, sn both of which diverge to infinity such that
‖φ(t + tn)− φ(t)‖ → o as n→ ∞ uniformly on compact subsets of R and ‖φ(t + tn)− φ(t)‖ ≥
ε0 for each t ∈ [sn − δ, sn + δ] and n ∈ N.

Definition 3 ([22]). A continuous and bounded function φ(t) : R → Rn is said to be Poisson
stable if there exists a sequence tn, tn → ∞ as n → ∞, such that ‖φ(t + tn) − φ(t)‖ → 0
uniformly on compact subsets of R .

The sequence tn in the last definitions is called the Poisson or convergence sequence and
the divergence estimated by ε0 is said to be the separation property.

In this paper, the main subject for investigation is inertial neural networks with
piecewise constant argument. The differential equations with piecewise constant arguments,
like any model of the theory of differential equations, arose due to the need to apply
them in real life. They are important mathematical models that are used in the study of
biological, biomedical processes, control theory, stabilization and neural networks [30–32].
For example, in control theory, the following process can be investigated using differential
equations with a piecewise constant argument: a state and control constraints, a plant
under control, as well as the performance index to be minimized are defined in continuous
time, while the manipulated variables are permitted to change at fixed and uniformly
distributed sampling times [33].

In general, differential equations with a piecewise constant argument have the form,

x′ = f (t, x(t), x(γ(t))),
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where γ(t) is a generalized piecewise constant argument function. It should be noted that
although the function γ(t) is discontinuous, the solution of the differential equation will be
continuous functions. A full description of this discontinuous function γ(t) can be found
in the book [33].

The system that we will consider has the following form:

u′′i (t) = −aiu′i(t)− biui(t) +
m

∑
j=1

cij f j(uj(t)) +
m

∑
j=1

dijgj(uj(γ(t))) + hi(t), (4)

where t, ui ∈ R, i = 1, 2, . . . m, γ(t) is a generalized piecewise constant argument func-
tion. Similar to coefficients cij of system (1), the constant dij is the synaptic connection
weight of the neuron j on the neuron i, and gj is the activation function of incoming po-
tentials of the neuron j at time t, respectively. Moreover, inputs hi(t) in system (4) are
unpredictable functions.

In what follows, we assume that the activations f j, gj : R → R, j = 1, 2, . . . , m, are
continuous functions, and the parameters cij and dij are real numbers.

2.1. Poisson Sequences

Fix the sequences of real numbers tn, θk, ξk, n ∈ N, k ∈ Z, which are strictly increasing
with respect to the index. Sequences θk, ξk, k ∈ Z, are unbounded in both directions. In
what follows, we call them Poisson sequences.

We provide the description of the Poisson couple and Poisson triple in the follow-
ing definitions.

Definition 4. A couple (tn, θk) of Poisson sequences tn, θk, n ∈ N, k ∈ Z, is called a Poisson
couple if there exists a sequence ln, n ∈ N of integers, satisfying ln → ∞, as n→ ∞ such that

θk+ln − tn − θk → 0 as n→ ∞, (5)

uniformly on each bounded interval of integers k.

Definition 5. A triple (tn, θk, ξk) of the sequences tn, θk, ξk, n ∈ N, k ∈ Z, is called Poisson triple,
if there exists a sequence ln, n ∈ N of integers, satisfying ln → ∞ as n→ ∞ such that the condition
(5) is fulfilled, and

ξk+ln − tn − ξk → 0 as n→ ∞, (6)

uniformly on each bounded interval of integers k.

By comparing the Definitions 4 and 5, one can formulate the following definition,
which is equivalent to Definition 5:

Definition 6. A triple (tn, θk, ξk) of the sequences tn, θk, ξk, n ∈ N, k ∈ Z, is called a Poisson
triple, if the couples (tn, θk), (tn, ξk) are separately Poisson couples with the common convergence
sequence ln.

Definition 7 ([34]). A sequence τk, k ∈ Z, is said to be with the (w, p)−property if there exist
positive real number w and integer p, which satisfy τk+p − τk = w for all k ∈ Z.

Next, we will consider important properties of sequences that will be used in the study
of further theoretical and illustrating the results.

Lemma 1. Assume that the couple (tn, θk) of the sequences tn, θk, n ∈ N, k ∈ Z, satisfies the
following conditions:

(i) tn = nw, where w ∈ R, n ∈ N;
(ii) the sequence θk admits the (w, p)− property.
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Then (tn, θk) is a Poisson couple.

Proof. Since (w, p)− property is true, θk+p = θk + w for each k ∈ Z. Taking ln = np
for n ∈ N, we obtain that θk+np = θk + nw. Now, one can easily check that the sequence
θk+ln − tn− θk consists of zeros. Thus, the condition (5) is satisfied on each bounded interval
of integers k.

Lemma 2. Assume that the triple (tn, θk, ξk) of the sequences tn, θk, ξk, n ∈ N, k ∈ Z consists of
the Poisson couple (tn, θk) such that

(i) tn = nw, where w ∈ R, n ∈ N,
(ii) the sequence θk admits the (w, p)− property,

and the sequence ξk = θk + sk, satisfying the following conditions:

(iii) the sequence sk is p−periodic.
(iv) for all k ∈ Z it is true that 0 ≤ sk < max

k
(θk+1 − θk).

Then (tn, θk, ξk) is a Poisson triple.

Proof. According to Lemma 1, (tn, θk) is a Poisson couple. So, it remains to check the
validity of ξk+ln − tn − ξk → 0 as n→ ∞ uniformly on each bounded interval of integers k.
By using the periodicity property, sk+np = sk, and for all k, one can see that the sequence
ξk+ln − tn − ξk consists of zeros. That is, (6) is valid on each bounded interval of integers
k.

As an example of a Poisson triple, one can consider (tn, θk, ξk), where tn = nw, n ∈ N,
and θk = k

5 , ξk =
θk+θk+1

2 = 2k+1
10 , k ∈ Z. One can verify that the sequence θk satisfies

( 1
5 , 1)−periodic property and ξk = θk + sk, where sk = 1

10 . That is, the triple satisfies the
conditions of Lemma 2.

2.2. Description of the Generalized Piecewise Constant Argument

Let us determine the argument function in (4). In this paper, it is assumed that
γ(t) = ξk if θk ≤ t < θk+1, k ∈ Z, and the function is defined on the whole real line with
two Poisson sequences θk, ξk, k ∈ Z such that θ ≤ θk+1− θk ≤ θ for some positive numbers
θ, θ, and all integers k.

Additionally to the sequences θk, ξk, we fix a sequence tn, n ∈ Z, such that (tn, θk, ξk),
is a Poisson triple in the sense of Definition 5. Consider the function γ(t + tn) for a fixed
n ∈ Z. It is possible to show that γ(t + tn) = ξk+ln if θ′k ≤ t < θ′k+1, where θ′k = θk+ln − tn,
k ∈ Z.

Next, we shall show that the discontinuous argument function admits properties,
which are analogues of the Poisson stability.

Fix a bounded interval [a, b] with b > a, and an arbitrary positive number ε such
that 2ε < θ on this interval. We assume without loss of generality that θk ≤ θk+ln − tn
and consider discontinuity moments θk, k = l + 1, l + 2, . . . , l + p− 1, of the interval [a, b]
such that

θl ≤ a < θl+1 < θl+2 < · · · < θl+p−1 < b ≤ θl+p.

We show that for sufficiently large n, it is true that

|θ′k − θk| < ε (7)

for all k = l, l + 1, . . . , l + p, and

|γ(t + tn)− γ(t)| < ε (8)

for each t ∈ [a, b], except those between θk and θ′k for each k.
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Let us fix k, k = l, l + 1, . . . , l + p, and for fixed k, we have that γ(t) = ξk, for
t ∈ [θk, θk+1) and γ(t + tn) = ξk+ln , t ∈ [θ′k, θ′k+1). Thus, for sufficiently large n, the in-
terval (θ′k, θk+1) is non-empty. According to (5), condition (7) is valid. Moreover, from
condition (6), it is implied that for sufficiently large n,

|γ(t + tn)− γ(t)| = |ξk+ln − ξk| < ε (9)

for t ∈ [θ′k, θk+1). Thus, inequalities (7) and (8) are approved.
If conditions (7) and (8) are valid for arbitrary ε, then the piecewise constant function

γ(t + tn) converges to the function γ(t) on the bounded interval in B-topology [34]. That
is, γ(t) is a discontinuous Poisson stable function.

It should be noted that in this article, all the coefficients in (4) are constant. If one
wants to consider the coefficients ai, bi, cij, dij variable, they would be periodic or even
unpredictable. That is, we need a special kappa property [35], which establishes a correspon-
dence between periodicity and the unpredictability. The existence of such factors should
be due to the higher possibility of the selection of the triple tn, θk, ξk, when they satisfy
(w, p)−property [34], and in addition, the kappa property must be fulfilled [35–38]. In
this paper, we utilize a stronger state when this triple is a Poisson triple, which is more
comfortable in applications. This is why, in order not to weaken circumstances, we agree
that the coefficients are constants.

Throughout the article, the components of the generalized piecewise constant argu-
ment γ(t) in the system (4) are connected by the Poisson triple (tn, θk, ξk), and they are
understood as mentioned in this subsection.

2.3. Reduced System

As mentioned in the introduction, we use the following transformation formula [29]:

vi(t) = αiu′i(t) + βiui(t), i = 1, · · · , m, (10)

and correspondingly, rewrite the neural network system (4) as
u′i(t) = −

βi
αi

ui(t) + 1
αi

vi(t), i = 1, · · · , m

v′i(t) = −(ai −
βi
αi
)vi(t)− (αibi − βi(ai −

βi
αi
))ui(t)

+αi

m

∑
j=1

cij f j(uj(t)) + αi

m

∑
j=1

dijgj(uj(γ(t))) + αihi(t), i = 1, · · · , m.
(11)

If we take into account the contents of articles [10,14,15,18,19], the variable transfor-
mation formula considers the case when αi = 1. The presence of the two parameters αi, βi
makes the results more general.

2.4. A Space of Functions

Introduce the set Σ0 of 2m-dimensional vector-functions ψ(t) = (ψ1(t), ψ2(t), . . . ,
ψ2m(t)) with the norm ‖ψ‖1 = sup

t∈R
‖ψ(t)‖. It is assumed that the functions of Σ0 satisfy the

following properties:

(A1) They are Poisson stable functions with the common sequence of convergence
tn, n = 1, 2, . . ..

(A2) There exists a number H > 0 such that ‖ψ‖1 < H for all functions.

The following assumptions on the system (4) are required:

(C1) | fi(u) − fi(v)| ≤ Li|u − v| and |gi(u) − gi(v)| ≤ L̄i|u − v| for all u, v ∈ Rm, where
Li, L̄i are positive constants for i = 1, 2, . . . , m;

(C2) |hi(t)| ≤ H, | fi(u)| ≤ m f and |gi(u)| ≤ mg, where m f , mg are positive numbers for
all i = 1, 2, . . . , m, |u| < H;
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(C3) ai >
βi
αi

+ αi, βi > αi > 1, i = 1, 2, . . . , m;

(C4) (ai −
βi
αi
)− (|βi(ai −

βi
αi
)− αibi|+ αi) > 0, for each i = 1, 2, . . . , m;

(C5)

αi
(
m f

m

∑
j=1

cij + mg

m

∑
j=1

dij
)

(ai −
βi
αi
)− (|βi(ai −

βi
αi
)− αibi|+ αi)

< H, i = 1, 2, . . . , m;

(C6)
1

(ai −
βi
αi
)

[∣∣βi(ai −
βi
αi
)− αibi

∣∣+ αi(Li

m

∑
j=1

cij + L̄i

m

∑
j=1

dij)
]
< 1, i = 1, 2, . . . , m.

3. Main Results

This section of the manuscript concerns the existence and stability of the dynamics,
which is discussed in Preliminaries, that is, Poisson and unpredictable oscillations of INNs
(4). The investigation is fulfilled by considering dynamics of the specific operator Π in
the space Σ0. We prove the existence of Poisson stable dynamics in neural networks based
on the invariance and completeness of the operator in the set. Further, the existence and
exponential stability of the unpredictable solutions are confirmed.

Lemma 3. A couple u(t) = (u1(t), . . . , um(t)), and y(t) = (y1(t), . . . , ym(t)) is a bounded
solution of Equation (4) if and only if it is a solution of the following integral equation:

ui(t) =
1
αi

t∫
−∞

e−
βi
αi
(t−s)yi(s)ds,

vi(t) =
t∫

−∞

e−(ai−
βi
αi
)(t−s)[

(βi(ai −
βi
αi
)− αibi)ui(s)

+αi

m

∑
j=1

cij f j(uj(s)) + αi

m

∑
j=1

dijgj(uj(γ(s))) + αihi(s)
]
ds,

(12)

with i = 1, · · · , m.

Define in Σ0 the operator Π such that Πψ(t) = (Π1ψ1(t), Π2ψ2(t), . . . , Π2mψ2m(t)),
where

Πiψi(t) =



1
αi

t∫
−∞

e−
βi
αi
(t−s)

ψi+m(s)ds, i = 1, · · · , m,

t∫
−∞

e
−(ai−m−

βi−m
αi−m

)(t−s)[
(βi−m(ai−m −

βi−m
αi−m

)− αi−mbi−m)ψi−m(s)

+αi−m

m

∑
j=1

c(i−m)j f j(ψj(s)) + αi−m

m

∑
j=1

d(i−m)jgj(ψj(γ(s)))

+αi−mhi−m(s)
]
ds, i = m + 1, · · · , 2m.

(13)

Lemma 4. ΠΣ0 ⊆ Σ0.
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Proof. We have for ψi(t) ∈ Σ0 and fixed i = 1, · · · , m that

|Πiψi(t)| =



∣∣ 1
αi

t∫
−∞

e−
βi
αi
(t−s)

ψi+m(s)ds
∣∣ ≤ 1

βi
|ψi+m(t)| ≤

H
βi

, i = 1, · · · , m,

∣∣ t∫
−∞

e
−(ai−m−

βi−m
αi−m

)(t−s)[
(βi−m(ai−m −

βi−m
αi−m

)− αi−mbi−m)ψi−m(s)

+αi−m

m

∑
j=1

c(i−m)j f j(ψj(s)) + αi−m

m

∑
j=1

d(i−m)jgj(ψj(γ(s))) + αi−mϑi−m(s)
]
ds
∣∣

≤
t∫

−∞

e
−(ai−m−

βi−m
αi−m

)(t−s)[∣∣βi−m(ai−m −
βi−m
αi−m

)− αi−mbi−m
∣∣H

+αi−m

m

∑
j=1

c(i−m)jm f + αi−m

m

∑
j=1

d(i−m)jmg + αi−mH
]
ds

≤ 1

(ai−m −
βi−m
αi−m

)

[(
βi−m(ai−m −

βi−m
αi−m

)− αi−mbi−m
)
|H

+αi−m

m

∑
j=1

c(i−m)jm f + αi−m

m

∑
j=1

d(i−m)jmg + αi−mH
]
, i = m + 1, · · · , 2m.

From the last inequality and conditions (C4) and (C5), we obtain ||Πψ||1 < H. So, the
property (A2) is valid for Πψ.

We continue the proof and show that Πψ satisfies condition (A1) using the method
of included intervals [27–29]. We need to verify that there exists a sequence tn, satisfying
tn → ∞, as n → ∞ such that for each Πψ ∈ Σ0, Πψ(t + tn) → Πψ(t) uniformly on each
closed and bounded interval of R. Fix an arbitrary number ε > 0 and an interval [a, b]
with a < b, where a, b ∈ R. It is enough to show that ||Πψ(t + tn) − Πψ(t)|| < ε for
sufficiently large n and t ∈ [a, b]. One can find numbers c < a and ξ > 0 in order to fulfill
the following inequalities:

2H
βi

e−
βi
αi
(a−c)

< ε/2, (14)

1
βi

αi < ε/2, (15)

2H

(ai −
βi
αi
)

[
|βi−m(ai −

βi
αi
)− αibi + Liαi

m

∑
j=1
|c(i)j|+ L̄iαi

m

∑
j=1
|dij|+ αi

]
e−(ai−

βi
αi
)(a−c)

< ε/4, (16)

ξ

(ai −
βi
αi
)

[
|βi(ai −

βi
αi
)− αibi|+ Liαi

m

∑
j=1
|cij|+ L̄iαi

m

∑
j=1
|dij|+ αi

]
< ε/4. (17)

It is true for sufficiently large number n that |ψi(t + tn)− ψi(t)| < ξ and |hi(t + tn)−
hi(t)| < ξ on [c, b]. Hence, for ψ ∈ Σ0, writing
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|Πiψi(t + tn)−Πiψi(t)| ≤



∣∣ 1
αi

t∫
−∞

e−
βi
αi
(t−s)

(ψi+m(s + tn)− ψi+m(s))ds
∣∣, i = 1, · · · , m,

∣∣ t∫
−∞

e
−(ai−m−

βi−m
αi−m

)(t−s)[
(βi−m(ai−m −

βi−m
αi−m

)

−αi−mbi−m)(ψi−m(s + tn)− ψi−m(s))

+αi−m

m

∑
j=1

c(i−m)j[ f j(ψj(s + tn))− f j(ψj(s))]

+αi−m

m

∑
j=1

d(i−m)j[gj(ψj(γ(s + tn)))− gj(ψj(γ(s)))]

+αi−m(hi−m(s + tn)− hi−m(s))ds
∣∣, i = m + 1, · · · , 2m.

If we divide the last integral into two parts, we obtain

|Πiψi(t + tn)−Πiψi(t)| ≤



∣∣ 1
αi

c∫
−∞

e−
βi
αi
(t−s)

(ψi+m(s + tn)− ψi+m(s))ds
∣∣

+
∣∣ 1
αi

t∫
c

e−
βi
αi
(t−s)

(ψi+m(s + tn)− ψi+m(s))ds
∣∣, i = 1, · · · , m,

∣∣ c∫
−∞

e
−(ai−m−

βi−m
αi−m

)(t−s)[
(βi−m(ai−m −

βi−m
αi−m

)

−αi−mbi−m)(ψi−m(s + tn)− ψi−m(s))

+αi−m

m

∑
j=1

c(i−m)j[ f j(ψj(s + tn))− f j(ψj(s))]

+αi−m

m

∑
j=1

d(i−m)j[gj(ψj(γ(s + tn)))− gj(ψj(γ(s)))]

+αi−m(hi−m(s + tn)− hi−m(s))ds
∣∣

+
∣∣ t∫

c

e
−(ai−m−

βi−m
αi−m

)(t−s)[
(βi−m(ai−m −

βi−m
αi−m

)

−αi−mbi−m)(ψi−m(s + tn)− ψi−m(s))

+αi−m

m

∑
j=1

c(i−m)j[ f j(ψj(s + tn))− f j(ψj(s))]

+αi−m

m

∑
j=1

d(i−m)j[gj(ψj(γ(s + tn)))− gj(ψj(γ(s)))]

+αi−m(hi−m(s + tn)− hi−m(s))ds
∣∣, i = m + 1, · · · , 2m,
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≤



2H
βi

e−
βi
αi
(a−c)

+
1
βi

αi,

i = 1, · · · , m,
1

(ai−m −
βi−m
αi−m

)

[
2H|βi−m(ai−m −

βi−m
αi−m

)− αi−mbi−m|

+2Li Hαi−m

m

∑
j=1
|c(i−m)j|+ 2L̄i Hαi−m

m

∑
j=1
|d(i−m)j|

+2Hαi−m
]
e
−(ai−m−

βi−m
αi−m

(a−c)

+
1

(ai−m −
βi−m
αi−m

)

[
|βi−m(ai−m −

βi−m
αi−m

)− αi−mbi−m|ξ

+Liξαi−m

m

∑
j=1
|c(i−m)j|+ ξαi−m

]
+L̄iαi−m

m

∑
j=1

d(i−m)j
∣∣ t∫

c

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds,

i = m + 1, · · · , 2m.

In the last inequality, we need to evaluate the integral. To do this, let us divide the
integral over small intervals as follows. For a fixed t ∈ [a, b], we assume without loss
of generality that θi ≤ θi+ln − tn and θi ≤ θi+ln − tn = c < θi+1 < θi+2 < · · · < θi+p ≤
θi+p+ln − tn ≤ t < θi+p+1. That is, there exist exactly p discontinuity points in [c, t].

Let the following inequalities

2L̄iαi−m(p + 1)ξ

(
1− e

−(ai−m−
βi−m
αi−m

)θ)(
ai−m −

βi−m
αi−m

) < ε/4, (18)

and

2L̄iαi−m pH

(
e
(ai−m−

βi−m
αi−m

)ξ − 1
)(

ai−m −
βi−m
αi−m

) < ε/4 (19)

be satisfied for the given ε > 0. Let us denote

I =
t∫

c

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds, i = m + 1, · · · , 2m.
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Consider the last integral as follows:

I =

θi+1∫
c

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds

+

θi+1+ln−tn∫
θi+1

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds

+

θi+2∫
θi+1+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds

+

θi+2+ln−tn∫
θi+2

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds

+

θi+3∫
θi+2+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds

...

+

t∫
θi+p+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds

=
i+p−1

∑
k=i

θk+1∫
θk+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds

+
i+p−1

∑
k=i

θk+1+ln−tn∫
θk+1

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds

+

t∫
θi+p+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds.

Denote

Ak =

θk+1∫
θk+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds

and

Bk =

θk+1+ln−tn∫
θk+1

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds,

where k = i, i + 1, · · · , i + p− 1, and

I =
i+p−1

∑
k=i

Ak +
i+p−1

∑
k=i

Bk +

t∫
θi+p+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(γ(s + tn))− ψj(γ(s))|ds.

By the condition (8) for t ∈ [θk+ln − tn, θk+1), γ(t) = ξk, we have that γ(t+ tn) = ξk+ln ,
k = i, i + 1, · · · , i + p− 1. Thus, we get that
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Ak =

θk+1∫
θk+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(ξk+ln)− ψj(ξk)|ds

=

θk+1∫
θk+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(ξk + tn + o(1))− ψj(ξk)|ds

=

θk+1∫
θk+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj(ξk + tn)− ψj(ξk) + ψj(ξk + tn + o(1))− ψj(ξk + tn)|ds

≤
θk+1∫

θk+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)
[|ψj(ξk + tn)− ψj(ξk)|+ |ψj(ξk + tn + o(1))− ψj(ξk + tn)|]ds

≤
θk+1∫

θk+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)[
ξ + |ψj(ξk + tn + o(1))− ψj(ξk + tn)|

]
ds.

In accordance with the uniform continuity of ψ, for large n and ξ > 0, one can define
a ρ > 0 such that ‖ψ(ξk + tn + o(1))− ψ(ξk + tn)‖ < ξ if |ξk+ln − ξk − tn| < ρ. From this,
we deduce that

Ak ≤ 2ξ

θk∫
θk−1+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)
ds ≤ 2ξ

(
1− e

−(ai−m−
βi−m
αi−m

)θ)(
ai−m −

βi−m
αi−m

) .

Moreover, we obtain that

Bk ≤ 2H

θk+ln−tn∫
θk

e
−(ai−m−

βi−m
αi−m

)(t−s)
ds ≤ 2H

(
e
(ai−m−

βi−m
αi−m

)ξ − 1
)(

ai−m −
βi−m
αi−m

)
by virtue of the condition (7). Similarly to Ak, one can evaluate following integral:

t∫
θi+p−1+ln−tn

e
−(ai−m−

βi−m
αi−m

)(t−s)|ψj−m(γ(s + tn))− ψj−m(γ(s)|ds

≤ 2ξ

(
1− e

−(ai−m−
βi−m
αi−m

)θ)(
ai−m −

βi−m
αi−m

) .

In this way,

I ≤ 2(p + 1)ξ

(
1− e

−(ai−m−
βi−m
αi−m

)θ)(
ai−m −

βi−m
αi−m

) + 2pH

(
e
(ai−m−

βi−m
αi−m

)ξ − 1
)(

ai−m −
βi−m
αi−m

)
can be obtained. Consequently, it is true that |Πiψi(t + tn)−Πiψi(t)| < ε for t ∈ [a, b] in
conformity with the inequalities (14)- (19). This shows that (A2) holds for Πψ. Thus, the
operator Π is invariant in Σ0.

Lemma 5. The operator Π from Σ0 to Σ0 is contractive.
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Proof. For u ∈ Σ0 and v ∈ Σ0 and t ∈ R, one can find that

|Πiui(t)−Πivi(t)| ≤



∣∣ 1
αi

t∫
−∞

e−
βi
αi
(t−s)|ui+m(s)− vi+m(s)|ds

∣∣ ≤ 1
βi
‖u(t)− v(t)‖1,

i = 1, · · · , m,∣∣ t∫
−∞

e
−(ai−m−

βi−m
αi−m

)(t−s)[
(βi−m(ai−m −

βi−m
αi−m

)

−αi−mbi−m)(ui−m(s)− vi−m(s))

+αi−m

m

∑
j=1

c(i−m)j( f j−m(uj−m(s))− f j−m(vj−m(s)))

+αi−m

m

∑
j=1

d(i−m)j(gj−m(uj−m(γ(s)))− gj−m(vj−m(γ(s))))ds
∣∣

≤ 1

(ai−m −
βi−m
αi−m

)

[∣∣βi−m(ai−m −
βi−m
αi−m

)− αi−mbi−m
∣∣|

+Liαi−m

m

∑
j=1

c(i−m)j + L̄iαi−m

m

∑
j=1

d(i−m)j
]
‖u(t)− v(t)‖1,

i = m + 1, · · · , 2m.

So, the inequality ‖Πu−Πv‖1 ≤ max
i

( 1
βi

,
1

(ai −
βi
αi
)

[∣∣βi(ai−
βi
αi
)− αibi

∣∣+ αi(Li

m

∑
j=1

cij +

L̄i

m

∑
j=1

dij)
])
‖u− v‖1 holds for t ∈ R.

Consequently, conditions (C3) and (C6) imply that the operator Π : Σ0 → Σ0 is
contractive. The lemma is proved.

For convenience, we adopt the following notations:

λ = min
i

(
βi
αi

, ai −
βi
αi

)
, L f = max

i

(
1
αi

, | − αibi + βi(ai −
βi
αi
)|+ αiLi

m

∑
j=1
|cij|

)
,

Lg = max
i

(
αi L̄i

m

∑
j=1
|dij|

)
, i = 1, · · · , m.

The following conditions are to be assumed:

(C7) θ[(λ + L f )(1 + Lgθ)e(λ+L f )θ + Lg] < 1;

(C8) −λ + L f + KLg < 0, where K =
(

1− θ[(λ + L f )(1 + Lgθ)e(λ+L f )θ + Lg]
)−1

.

Theorem 1. If functions hi(t), i = 1, 2, . . . m, in system (4), are Poisson stable with the con-
vergence sequence tn, n = 1, 2, . . ., then under conditions (C1)–(C8), system (4) has a unique
exponentially stable Poisson stable solution.

Proof. First, we show the completeness of the space Σ0. Let us denote a Cauchy sequence
in the space Σ0 by rk(t), where the limit of rk(t), on R as k → ∞ is r(t). One can say that
r(t) is a bounded function, which means that (A2) is achieved for r(t). Let us show that
(A1) is satisfied for r(t) as well. Consider a closed, bounded interval I ⊂ R. We obtain

‖r(t + tn)− r(t)‖ ≤ ‖r(t + tn)− rk(t + tn)‖
+ ‖rk(t + tn)− rk(t)‖+ ‖rk(t)− r(t)‖.
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For small enough ε > 0 and t ∈ I, each difference in absolute value on the right side
of last the inequality can be made smaller than ε

3 , and then we have ‖r(t + tn)− r(t)‖ < ε
on I. This implies that the sequence r(t + tn)→ r(t) uniformly on I, which approves that
the space Σ0 is complete. Note that the operator Π is invariant and contractive in Σ0, on
the ground of Lemmas 4 and 5, respectively. It follows from the Banach theorem that the
operator Π has only one fixed point z(t) ∈ Σ0. That is, we concluded that the system (4)
has a unique solution. So, the uniqueness of the solution is shown.

Next, consider the stability of z(t). Further, for convenience, write the system (11) in
vector form, using the 2m-dimensional function z(t) = (u1(t), . . . , um(t), y1(t), . . . , ym(t)),

dz
dt

= Az + F(t, z), (20)

where A =
{
− β1

α1
,− β2

α2
, . . . ,− βm

αm
,−(a1 − β1

α1
),−(a2 − β2

α2
), . . . ,−(am − βm

αm
)
}

is a diagonal
matrix, F(t, z) = (F1(t, z), F2(t, z), . . . , F2m(t, z)) is a vector function such that

Fi(t, z) =



1
αi

zi+m(t), i = 1, · · · , m

−(αi−mbi−m − βi−m(ai−m −
βi−m
αi−m

))zi−m(t)

+αi−m

m

∑
j=1

c(i−m)j f j(zj(t)) + αi−m

m

∑
j=1

d(i−m)jgj(zj(γ(t))) + αi−mhi−m(t),

i = m + 1, · · · , 2m.

The exponential stability will be proved once we prove the lemma below.

Lemma 6. Suppose that conditions (C1) and (C8) hold, and z(t) is a continuous and bounded
function with ‖z(t)‖ < H. If ω(t) = (u1(t), .., um(t), v1(t), . . . , vm(t)) is a solution of

ω′(t) = Aω(t) + F(t, ω(t)), (21)

where A =
{
− β1

α1
,− β2

α2
, . . . ,− βm

αm
,−(a1 − β1

α1
),−(a2 − β2

α2
), . . . ,−(am − βm

αm
)
}

is a diagonal ma-
trix, F(t, ω) = (F1(t, ω), F2(t, ω), . . . , F2m(t, ω)) is a vector function such that

Fi(t, ω(t)) =



1
αi

ωi+m(t), i = 1, · · · , m,

−(αi−mbi−m − βi−m(ai−m −
βi−m
αi−m

))ωi−m(t)

+αi−m

m

∑
j=1

c(i−m)j[ f j(ωj(t) + zj(t))− f j(zj(t))]

+αi−m ∑m
j=1 d(i−m)j[gj(ωj(γ(t)) + zj(γ(t)))− gj(zj(γ(t)))],

i = m + 1, · · · , 2m,

and then the following inequality

‖w(γ(t))‖ ≤ K‖w(t)‖ (22)

is true for t ∈ R, with K, which is defined as in (C8).

Proof. Let t belong to the interval [θk, θk+1), for some fixed k, and consider two alternative
cases (a) θk ≤ ξk ≤ t < θk+1, (b) θk ≤ t < ξk < θk+1 .
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(a) For t ≥ ξk, we have

||w(t)|| ≤ ||w(ξk)||+
t∫

ξk

[||A||||w(s)||+ ||F(s, ω(s))||]ds

≤ ||w(ξk)||+
t∫

ξk

[
λ||w(s)||+ L f ||w(s)||+ Lg||w(ξk)||

]
ds

≤ ||w(ξk)||(1 + Lgθ) +

t∫
ξi

(
λ + L f

)
||w(s)||ds.

According to the Gronwall–Bellman lemma, we obtain

||w(t)|| ≤ ||w(ξk)||(1 + Lgθ)e(λ+L f )θ .

Moreover, for t ∈ [θk, θk+1) we have

||w(ξk)|| ≤ ||w(t)||+
t∫

ξk

[||A||||w(s)||+ ||F(s, ω(s))||]ds

≤ ||w(t)||+
t∫

ξk

[(λ + L f )||w(s)||+ Lg||w(ξk)||]ds

≤ ||w(t)||+
t∫

ξk

[
(λ + L f )(1 + Lgθ)e(λ+L f )θ ||w(ξk)||+ Lg||w(ξk)||

]
ds

≤ ||w(t)||+ θ
[
(λ + L f )(1 + Lgθ)e(λ+L f )θ + Lg

]
||w(ξk)||.

Deduce from the condition (C8) that ‖w(ξk)‖ ≤ K‖w(t)‖, for t ∈ [θk, θk+1), k ∈ Z. It
follows that (22) holds for all θk ≤ ξk ≤ t < θk+1, k ∈ Z. If one considers another case,
θk ≤ t < ξk < θk+1, k ∈ Z; in a similar way, we will obtain the same result. Thus, (22) is
satisfied for all t ∈ R.

Let ω(t) = υ(t)− z(t), where υ(t) = colon(υ1(t), υ2(t), . . . , υm(t)) denotes any other
solution of the system (4). We will check that ω(t) = colon(ω1(t), ω2(t), . . . , ωm(t)) is a
solution of (21).

Hence, the inequality

||w(t)|| ≤ eA(t−t0)‖w(t0)‖+
∫ t

t0

eA(t−s)F(s, ω(s))ds. (23)

is valid. By using the inequality (22) to (23), we have that

||w(t)|| ≤ e−λ(t−t0)||w(t0)||+
∫ t

t0

e−λ(t−s)
[

L f ||w(s)||+ LgK‖w(s)‖
]
ds.

Hence, we find that

‖w(t)‖ ≤ e−λ(t−t0)‖w(t0)‖+
∫ t

t0

e−λ(t−s)(L f + KLg)||w(s)||ds.

It means that

eλt‖w(t)‖ ≤ eλt0 ||w(t0)||+ (L f + KLg)
∫ t

t0

eλs‖w(s)‖ds.
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By the Gronwall–Bellman lemma, the following inequality can be obtained:

||w(t)|| ≤ ||w(t0)||e(−λ+L f +KLg)(t−t0).

In other words, we have

||υ(t)− z(t)|| ≤ ||υ(t0)− z(t0)||e(−λ+L f +KLg)(t−t0).

It follows from the condition (C7), that Poisson stable solution z(t) of (4) is exponen-
tially stable. The theorem is proved.

Next, we shall need the following condition:

(C9) The functions hi(t), i = 1, 2, . . . m, in system (4) belong to Σ0, and there exist positive
numbers ε0, δ and sequence sn, n = 1, 2, . . . , which diverge to infinity such that
‖h(t + tn)− h(t)‖ ≥ ε0 for each t ∈ [sn − δ, sn + δ] and n ∈ N.

The unpredictability of the solution for the system (4) is established by the next theorem.

Theorem 2. Under conditions (C1)–(C9), system (4) has a unique exponentially stable unpre-
dictable solution.

According to Theorem 1, system (4) has a unique exponentially stable Poisson sta-
ble solution z(t). Therefore, to show that system (4) has a unique exponentially stable
unpredictable solution, it remains to prove that z(t) admits the unpredictability property.

So, we will show the existence of a sequence sn, satisfying ln → ∞, as n → ∞, and
numbers ε0 > 0, δ > 0 so that |zi(t + tn)− zi(t)| ≥ ε0 for each t ∈ [sn − δ, sn + δ] and n ∈ N

zi(t + tn)− zi(t) =



zi(sn + tn)− zi(sn)−
βi
αi

t∫
sn

(zi(s + tn)− zi(s))ds

+

t∫
sn

1
αi
(zi+m(s + tn)− zi+m(s))ds, i = 1, · · · , m,

zi(sn + tn)− zi(sn)−
t∫

sn

(ai−m −
βi−m
αi−m

)(zi(s + tn)− zi(s))ds

−
t∫

sn

(βi−m(ai−m −
βi−m
αi−m

)− αi−mbi−m)(zi−m(s + tn)− zi−m(s))ds

+

t∫
sn

αi−m

m

∑
j=1

c(i−m)j[ f j(zj(s + tn))− f j(zj(s))]ds

+

t∫
sn

αi−m

m

∑
j=1

d(i−m)j[gj(zj(γ(s + tn)))− gj(zj(γ(s)))]ds

+

t∫
sn

αi−m(hi−m(s + tn)− hi−m(s))ds, i = m + 1, m + 2, · · · , 2m.

(24)

Positive numbers κ and l, k ∈ N are chosen to satisfy

κ < δ, (25)

κ
[αi

2
−
[
(ai −

βi
αi
) + |βi(ai −

βi
αi
)− αibi|+ Liαi

m

∑
j=1
|cij|

]
(

1
l
+

2
k
)− 2L̄iαi

m

∑
j=1
|dij|

]
≥ 3/2l, i = 1, · · · , m (26)



Entropy 2023, 25, 620 17 of 22

and
|zi(t + s)− zi(t)| < ε0 min{1/k, 1/4l}, t ∈ R, |s| < κ, i = 1, · · · , m. (27)

Let the numbers κ, l, k and n ∈ N be fixed.
We will use the symbol ∆ to denote |zi(sn + tn) − zi(tn)| and examine the cases:

(i) ∆ ≥ ε0/l, (ii) ∆ < ε0/l.
(i) If ∆ ≥ ε0/l is valid, then

|zi(t + s)− zi(t)| ≥ |zi(sn + tn)− zi(sn)| − |zi(sn)− zi(t)|
− |zi(t + tn)− zi(sn + tn)| (28)

> ε0/l − ε0/4l − ε0/4l = ε0/2l, i = m + 1, m + 2, · · · , 2m

for t ∈ [sn − κ, sn + κ], n ∈ N.
(ii) For the case ∆ < ε0/l, in accordance with (27), we have that

|zi(t + tn)− zi(t)| ≤ |zi(sn + tn)− zi(sn)|+ |zi(sn)− zi(t)|
+ |zi(t + tn)− zi(sn + tn)| (29)

< ε0/l + ε0/k + ε0/k = (1/l + 2/k)ε0, i = 1, 2, · · · , 2m,

for t ∈ [sn, sn + κ].
Applying (25)–(27) and due to the condition (C9), one can find that

|zi(t + tn)− zi(t)| ≥
∣∣ t∫

sn

αi−m(hi−m(s + tn)− hi−m(s))ds
∣∣

−
∣∣ t∫

sn

(ai−m −
βi−m
αi−m

)(zi(s + tn)− zi(s))ds
∣∣

−
∣∣ t∫

sn

(βi−m(ai−m −
βi−m
αi−m

)− αi−mbi−m)(zi−m(s + tn)− zi−m(s))ds
∣∣

−
∣∣ t∫

sn

αi−m

m

∑
j=1

c(i−m)j[ f j(zj(s + tn))− f j(zj(s))]ds
∣∣

−
∣∣ t∫

sn

αi−m

m

∑
j=1

d(i−m)j[gj(zj(γ(s + tn)))− gj(zj(γ(s)))]ds
∣∣

− |zi(sn + tn)− zi(sn)|

≥ αi−mε0
κ

2
− ε0(

1
l
+

2
k
)κ
[
(ai−m −

βi−m
αi−m

)

+ |βi−m(ai−m −
βi−m
αi−m

)− αi−mbi−m|+ Liαi−m

m

∑
j=1
|c(i−m)j|

]
− L̄iαi−m

m

∑
j=1
|d(i−m)j|

∣∣ t∫
sn

|zj(γ(s + tn))− zj(γ(s))|ds
]
− ε0

l

for t ∈ [sn +
κ
2 , sn + κ], i = m + 1, m + 2, · · · , 2m.

For a fixed t ∈ [sn +
κ
2 , sn + κ], we can choose κ to be small enough so that θi+ln − tn ≤

sn < sn +
κ
2 ≤ t ≤ sn + κ < θi+1 for certain i ∈ Z. The function z(t) is uniformly continuous

since it belongs to Σ0. We can conclude that for sufficiently large n and ε0 > 0, there exists
number ρ > 0 such that
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t∫
sn

|zj(γ(s + tn))− zj(γ(s))|ds =

t∫
sn

|zj(ξi+ln)− zj(ξi)|ds

≤
t∫

sn

|zj(ξi + tn)− zi(ξi)|ds

+

t∫
sn

|zj(ξi + tn + o(1))− zj(ξi + tn)|ds ≤ 2κε0,

if |ξi+ln − ξi − tn| < ρ.
Finally, we have by inequalities (25)–(27) that

|zj(t + tn)− zj(t)| ≥ αi−mε0
κ

2
− ε0(

1
l
+

2
k
)κ
[
(ai−m −

βi−m
αi−m

)

+ |βi−m(ai−m −
βi−m
αi−m

)− αi−mbi−m|+ Liαi−m

m

∑
j=1
|c(i−m)j|

]
− 2L̄iαi−m

m

∑
j=1
|d(i−m)j|κε0 −

ε0

l
≥ − ε0

l
+

3ε0

2l
≥ ε0

2l

for t ∈ [sn +
κ
2 , sn + κ], i = m + 1, m + 2, · · · , 2m. Thus, we obtain that

|zj(t + tn)− zj(t)| ≥
ε0

2l

for t ∈ [sn +
κ
2 , sn + κ], i = m + 1, m + 2, · · · , 2m. Moreover,

|zi(t + tn)− zi(t)| ≥
∣∣ t∫

sn

1
αi
(zi+m(s + tn)− zi+m(s))ds

∣∣
− |zi(sn + tn)− zi(sn)|

−
∣∣ βi

αi

t∫
sn

(zi(s + tn)− zi(s))ds
∣∣

≥ 1
αi

κ
ε0

2l
− ε0

l
− βi

αi
κε0(

1
l
+

2
k
).

Thus, z(t) is an unpredictable solution with sequences sn = sn +
3κ
4 and δn = κ

4 .

4. An Example and Numerical Simulations

Consider the following inertial neural network with generalized piecewise constant
argument given by

u′′i (t) = −aiu′i(t)− biui(t) +
3

∑
j=1

cij f j(uj(t)) +
3

∑
j=1

dijgj(uj(γ(t))) + hi(t), (30)

where the damping coefficients and the rates of the neurons activity are given as follows:
a1 = a2 = 4, a3 = 6, b1 = b2 = 3.8, b3 = 6.2. As activations, we consider the following
functions fi(ui(t)) = 0.2 tanh(ui(t)/4), gi(ui(t)) = 0.3 tanh(ui(t)/6), i = 1, 2, 3, and the
synaptic connection weights are given by c11 c12 c13

c21 c22 c23
c31 c32 c33

 =

 0.1 0.2 0.5
0.3 0.1 0.2
0.2 0.1 0.3

,

 d11 d12 d13
d21 d22 d23
d31 d32 d33

 =

 0.1 0.2 0.1
0.2 0.2 0.2
0.1 0.3 0.1
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and the external input  h1(t)
h2(t)
h3(t)

 =

 −4.8Θ(t)
−36Θ3(t) + 0.4
32Θ3(t)− 0.3

.

As the function Θ(t), we use an unpredictable function,

Θ(t) =
∫ t

−∞
e−3(t−s)Ω(s)ds, t ∈ R,

where Ω(t) is piecewise constant function, which is defined by Ω(t) = πi for t ∈ [i, i + 1),
i ∈ Z with an unpredictable solution πi, i ∈ Z, of logistic map considered in the paper [26].
The function Θ(t) is bounded on R such that sup

t∈R
|Θ(t)| ≤ 1/3. In the paper [26], it was

proved that the function Θ(t) is unpredictable.
The constant argument function γ(t) is defined by the sequences θk = k

5 , ξk = 2k+1
10 ,

k ∈ Z, which constitute the Poisson triple (see example, Preliminaries).
We checked that the conditions (C1)-(C9) are true for the system (30) with α1 = α2 =

α3 = 2, β1 = β2 = 3, β3 = 4, λ = 1.3, m f = 0.2, mg = 0.3, Li = L̄i = 0.05, for i = 1, 2, 3,
and moreover, K = 2.164. If we take H = 2, then (30) satisfies all conditions of Theorem 2.

Since we will not be able to build the unpredictable function itself, we will not be
able to accurately determine the initial value. Then, to show the behavior of an un-
predictable solution u(t), according to the stability, one can consider another solution
z(t) = (z1(t), z2(t), z3(t)), which exponentially approaches this solution and starts at the
initial point z(0) = (0.4956, 1.7739, 1.1992).

As can be seen in Figure 1, the solution of the system (30) is a continuous function.
However, due to the constant argument in the model, a function with discontinuous
derivatives of the first order is obtained, and we have continuously differentiable motion
on the intervals [θk, θk+1), k ∈ Z. That is, we have the non-smoothness at the switching
points θk, k ∈ Z. Next, let us observe the influence of the length of constancy in the
delay function for the output dynamics. Namely, we additionally construct the function
Ω(t) = πi in the intervals [0.1i, 0.1(i + 1)) and [0.05i, 0.05(i + 1)) i ∈ Z. The result of
the simulations is seen in Figures 2 and 3, where the intensity of the non-smoothness is
increased, if one compares with Figure 1, where the length of the constancy is equal to 1.
Figure 4 demonstrates the chaotic nature of the unpredictability. Furthermore, this picture
confirms the existence of an attractor.
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Figure 1. The coordinates of function z(t) exponentially approaches the unpredictable solution
u(t). For the special part z3 between 105 and 140, it is zoomed to demonstrate the appearance of
non-smooth or discontinuous derivatives, with Ω(t) = πi for t ∈ [i, i + 1), i ∈ Z .
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Figure 2. The coordinates of function z(t), with Ω(t) = πi for t ∈ [0.1i, 0.1(i + 1)), i ∈ Z.

0 50 100 150
−2

−1

0

z
1

0 50 100 150

−1

0

1

2

z
2

0 50 100 150

0

0.5

1

t

z
3

Figure 3. The coordinates of function z(t), when Ω(t) = πi for t ∈ [0.05i, 0.05(i + 1)), i ∈ Z.
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Figure 4. The trajectory of function z(t).

5. Conclusions

The article discusses Poisson stable and irregular, that is, unpredictable, motions in
inertial neural networks with a generalized piecewise constant argument. The novelty of
the research is caused by the fact that the neural network model contains a discontinuous
Poisson stable function as a piecewise constant argument. The proof of the convergence
of discontinuous functions was made on the basis of the B-topology, and the included
intervals method was used. Since the argument function is defined by time sequences, they
led to difficulties in the study, respectively. To solve this problem, we needed the concepts
of a Poisson couple and a Poisson triple of sequences.
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The research technique and results can be effectively used in the study of different
models of neural networks with impulses and discontinuous functional dependence on
time, as well as areas of their application.
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