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ABSTRACT 

 
 

A COMPREHENSIVE ANALYSIS OF MUTATIONS IN CANCERS AND 
NEURODEVELOPMENTAL DISORDERS 

 
 

Yavuz, Bengi Ruken 
Ph.D, Department of Health Informatics 

Supervisor: Assoc. Prof. Dr. Yeşim Aydın-Son 
Co-Supervisor: Assoc. Prof. Dr. Nurcan Tunçbağ 

 
June 2023, 127 pages 

 
A multitude of pathologies are driven by mutations, and even a single mutation can act as 
a prognostic marker and modify the global genome and protein expression, thus changing 
oncogenic signaling pathways. However, a single-driver mutation's contribution to the 
activation of oncogenic signaling pathways is minimal and necessitates additional 
mutations over time. This thesis aims to identify co-occurring mutations in genes that 
promote tumorigenesis and alter the response to treatments. To achieve this, we employed 
a statistical technique to identify significantly co-occurring mutations in pan-cancer 
cohorts, focusing on the identification of latent driver mutations with minor observable 
translational potential and low frequencies. We then discovered 4352 significant different 
gene double mutations that alter non-redundant pathways and interactions and promote 
cancer-specific tumorigenesis. Rare co-occurring in trans combinations can serve as 
metastasis markers, whereas excluded combinations may give rise to oncogene-induced 
senescence (OIS). Furthermore, this thesis investigates the shared and distinguishing 
features between neurodevelopmental disorders (NDDs) and cancer. Despite the 
differences in their clinical manifestations, individuals with NDDs are more likely to 
develop cancer. Cancer mutations are sporadic and arise during life, whereas NDD-
associated mutations are germline. However, both NDDs and cancer share proteins, 
pathways, and mutations. Deep patterns that are rare but can prompt dramatic phenotypic 
alterations and serve as clinical signatures can be discovered through interrogating large 
genomic data and integrating it with small-molecule sensitivity data. 
 
Keywords: mutation doublets, molecular signatures of cancer, latent drivers, cancer 
genome analysis, neurodevelopmental disorders 
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ÖZ 

 
 

KANSERLERDE VE NÖROGELİŞİMSEL HASTALIKLARDA BULUNAN 
MUTASYONLARIN KAPSAMLI  BİR ANALİZİ 

 
 

Yavuz, Bengi Ruken 
Doktora, Sağlık Bilişimi Bölümü 

Tez Yöneticisi: Doç. Dr. Yeşim Aydın-Son 
Eş-Danışman: Doç. Dr. Nurcan Tunçbağ 

 
Haziran 2023, 127 sayfa 

 
 
Çok sayıda patoloji mutasyonlar tarafından yönlendirilir ve tek bir mutasyon bile tanısal 
bir belirteç olabilir ve küresel genom ve protein ekspresyonunu değiştirerek onkojenik 
sinyal yollarını değiştirebilir. Bununla birlikte, tek sürücülü bir mutasyonun onkojenik 
sinyal yollarının aktivasyonuna katkısı çok düşüktür ve zaman içinde ek mutasyonlara 
ihtiyaç duyulur. Bu tez, tümör oluşumunu teşvik eden ve tedavilere yanıtı değiştiren aynı 
gen üzerinde bulunan mutasyonları tespit etmeyi amaçlamaktadır. Bu amaçla, pan-kanser 
gruplarında birlikte bulunan anlamlı mutasyonları belirlemek için istatistiksel bir yöntem 
kullandık, translasyon potansiyeli belirgin olmayan ve düşük frekanslara sahip gizli 
sürücü mutasyonlarının tanımlanmasına odaklandık. Daha sonra fazlalık olmayan yolları 
ve etkileşimleri değiştiren ve kansere özgü tümör oluşumunu destekleyen 4352 anlamlı 
farklı gen çift mutasyonu keşfettik. Trans kombinasyonlarında bulunan seyrek ikililer, 
metastaz belirteci olarak işlev görebilirken, ayrık kombinasyonlar, onkojen kaynaklı 
yaşlanmaya yol açabilir. Ayrıca, bu tez nörogelişimsel bozukluklar ve kanser arasındaki 
ortak ve ayırt edici özellikleri araştırmaktadır. Klinik belirtilerindeki farklılıklara rağmen, 
nörogelişimsel hastalıklara sahip bireylerin kansere yakalanma olasılığı daha yüksektir. 
Kanser mutasyonları seyrek ve somatikken, NDD ile ilişkili mutasyonları kalıtsaldır. 
Bununla birlikte hem nörogelişimsel hastalıklar hem de kanser, aynı proteinleri, yolakları 
ve mutasyonları paylaşır. Nadir olan ancak dramatik fenotipik değişikliklere yol açabilen 
ve klinik imza görevi görebilen derin motifler, büyük genomik verilerin sorgulanması ve 
küçük molekül hassasiyet verileriyle bütünleştirilmesi yoluyla keşfedilebilir. 
Anahtar Sözcükler: mutasyon ikilileri, kanserin moleküler imzaları, gizli sürücüler, 
kanser genom analizi, nörogelişimsel hastalıklar  
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CHAPTER 1 

 
 
 

INTRODUCTION 

 
 

 
 
1. Cancer is a disease characterized by uncontrolled cell proliferation induced by 

genetic alterations. The impact of these alterations propagates into the molecular 
interaction network, changing signaling pathways and transcriptional regulation in 
the cell. Not all alterations equally contribute to a growth advantage of cancer cells. 
Some mutations are drivers, while others are passengers [1]. Whereas it is 
generally believed that passenger mutations do not bestow proliferative effects on 
the disease phenotype, their properties and possible roles are not fully understood 
[2]. Cancer genomics and evolution studies suggest that the accumulation of 
‘slightly’ deleterious passenger mutations can slow cancer progression, and this 
could be exploited for therapeutic purposes [3]. Lately, another class of mutations 
was defined, dubbed “latent” or “mini-drivers” [4–6]. Even though not identified 
as drivers since the effect that latent drivers generate is marginal, when coupled 
with other activating mutations, latent mutations can additively intensify the 
signal. Their detection may help forecast cancer progression and improve 
personalized treatment strategies [5]. Curated driver genes and mutations have 
been deposited in multiple databases [7–9] and used to develop computational 
approaches to predict driver genes and driver mutations [10–15]. These methods, 
including frequency-based methods, subnetwork identification methods, and 3D 
mutation search methods, have been comprehensively compared [16–20]. One of 
the concerns with frequency-based approaches is that prohibitively large sample 
sizes are needed to identify infrequently mutated driver genes. Thus, in frequency-
based approaches, there is a risk of generating biased results due to background 
mutation rates [21,22]. There are various resources and web servers that examine 
the effect of missense mutations on protein stability, protein-protein interactions, 
and the underlying molecular mechanisms [23,24]. However, frequency-based 
approaches fail in the identification of rare drivers which can be tissue-specific 
[25]. A recent multidimensional analysis of cancer driver genes in IntOGen 
showed that some drivers are cancer-wide whereas others are specific to a limited 
number of cancer types [12].  
 
Even a single mutation in a gene can be considered as a prognostic marker and 
change the global genome and protein expression, eventually altering the signaling 
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pathways [26]. However, it has been estimated that the contribution of a single 
driver mutation to cancer progression is very small and needs additional mutations 
over time [27]. Despite DNA repair, somatic mutations accumulate and different 
genotypes in individual tissues are generated. This mechanism, called ‘somatic 
mosaicism’, offers driver, or synergistic mutations an advantage in cancer cells 
[28]. Recently, the combination of single frequent mutations with a rare, or weak 
mutation in the same gene was shown to have a significant advantage in tumor 
progression and influence treatment response. These double mutations in cis in 
PIK3CA were shown to be more oncogenic, and more sensitive to inhibitors 
compared to a single mutation [29]. A recent work cataloged ‘composite 
mutations’ of multiple genes having more than one non-synonymous mutation in 
the same tumor [30]. Saito et al. demonstrated the functional implications of 
multiple driver mutations in the same oncogene with an emphasis on PIK3CA 
[31,32].  
 
Tumorigenesis is a complex process that could be attributed to alterations in a 
group of genes [33]. Besides the mutations in the same gene, understanding 
synergistic or antagonistic interactions between the mutations in different genes is 
also vital to identify the relation between these gene groups, and tumor 
formation/progression. We inspect relationships among genes, including 
functional similarities (or differences), occurrence in the same or different 
pathways, and their location in the pathway, upstream (or downstream). Co-
occurrence, or conversely, exclusivity, of two mutations in different genes (i.e., in 
trans) could be a random or a selected event in cancer evolution, providing a 
functional advantage. If two mutations in different genes occur less or more 
frequently than expected, they are mutually exclusive or co-occurring, respectively 
[34]. Mutual exclusivity was mostly observed on genes in the same pathway (or 
redundant pathways), and conversely, a co-occurrence trend was observed on 
genes in different (or parallel) pathways [35,36]. In our definition, if the pathways 
recruit the same downstream protein families, they are redundant; if evolutionary-
independent, they are parallel. Exclusivity has been attributed to the expectation 
that acquiring a second mutation in the same pathway will have a negligible effect 
on tumor growth. It has been related to factors such as such as tumor subtype, 
synthetic lethality, and positive selection [37]. Alternatively, the additive effect of 
same- or different- pathway co-occurring driver hotspot mutations are likely to 
hyperactivate the proliferation signal. Potent and sustained hyperactivation can 
trigger an oncogene-induced senescence (OIS) cellular program [38–40].  
 
Neurodevelopmental disorders (NDDs) arise from a dysfunctional nervous system 
during embryonic brain development. The origins of NDDs are still unclear. They 
may originate from dysregulation of neuron differentiation, during synapse 
formation and maturation, or other complex processes in the course of brain 
evolution, such as emergence from progenitor cells, neuron phenotypic 
specification, migration, and specific synaptic contacts. Flaws can result in faulty 
wired neuronal circuits [41,42]. Despite differing from processes associated with 
the emergence of cancer, data indicate that NDDs and cancer are related, with 



3 
 

immunity likely common factor. The immune and nervous systems coevolve as 
the embryo develops [43]. The outcomes, cancer or NDDs, reflect the different cell 
cycle consequences, proliferation in cancer and differentiation in NDDs. 
Proliferation requires a stronger signal to promote the cell cycle than 
differentiation does. This further suggests that in addition to nodes in the major 
signaling pathways, transcription factors (TFs) and chromatin remodelers, which 
govern chromatin organization, are agents in NDDs. Gene accessibility influences 
the lineage of specific brain cell types at specific embryonic development stages 
[42]. 
 
The primary focus of this dissertation is identifying statistically rare driver 
mutations from double mutations in the same gene which can collectively promote 
tumorigenesis or induce drug resistance when they occur in cis. Then, cancer type-
specific double mutations are identified and their effect on tumor growth or 
treatment response are evaluated computationally via the integration of pre-clinical 
models such as cell lines and patient derived xenografts. Next, epistatic relations 
between the mutations in different genes are examined. Mutually exclusive and co-
occurring mutations are determined with a comprehensive statistical analysis; the 
results indicated that these epistatic relations largely depend on the redundant or 
synergistic roles of the different gene double mutation components. Besides, 
different gene double mutations that can be metastatic markers are proposed. 
Finally we employ mutation, transcriptomic and network reconstruction analyses 
to detect commonalities and differences between cancer and NDDs. Despite being 
very different phenotypic properties, cancers and NDDs converge on key 
mutations, proteins, and pathways. 

 
The highlights addressed by these findings are as follows: 
 

• Some statistically rare mutations can cooperate with other mutations in the 
same gene to promote cell proliferation or drug resistance. 

• Oncogenic mutations in the long tails of the distributions are statistically 
rare and not yet labeled as oncogenic can be latent drivers.  

• Latent drivers may be tissue, or cell specific, harbored in specific cancers.  
• Mutations affecting the same pathway are usually mutually exclusive in a 

tumor to prevent functional redundancy, synthetic lethality and oncogene 
induced senescence, considering the additivity of the mutational impact. 

• Co-occurring different gene double mutations can change transcriptional 
regulation and drug response of patient derived xenografts for some 
inhibitors. 

• Rare doublets on PIK3CA and ESR1 mutations co-occur in metastatic 
tumors and might be metastatic markers. 

• Our results provide a molecular explanation for PTEN and PIK3CA 
mutations frequently found in cancer and NDD samples, which may serve 
as the foundation for functional and in-depth structural research. 

• Comparing expression scores of shared pathways by leveraging the 
transcriptomic profiles of NDDs and cancer samples revealed that NDD 
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samples have higher expression scores for genes functioning in 
differentiation than proliferation.  

• Despite having common signaling pathways, their regulation and 
difference in signal levels enhance different cell states: Proliferation for 
cancer and differentiation for NDDs. 

 
 
2. The dissertation consists of six main chapters, namely Introduction, “Literature 

Review”, “Discovery of Latent Driver Mutations from Double Mutations in Pan-
cancer Data Reveal Their Clinical Impact”, “Co-occurring Mutations in Trans can 
be Metastatic Markers; Excluded Combinations can Encode Oncogene Induced 
Senescence”, “Neurodevelopmental disorders and cancer networks share 
pathways; but differ in mechanisms, signaling strength, and outcome”, and 
“Discussion”.  

 
In Chapter 2, the rationale behind the double and latent driver mutations is 
presented; the studies that identify and investigate the function of such mutations 
are reviewed. The landscape of in cis mutations naturally extends to in trans 
mutations – the mutations in different protein molecules; various tools and 
databases investigating these in trans combinations are scrutinized. Then we 
investigate commonalities and differences between cancers and NDDs by utilizing 
mutations and network analysis. 
 
In Chapter 3, latent driver mutations are identified from the mutation profiles of 
the tumors in pan-cancer cohorts of TCGA and AACR GENIE. A statistical 
approach is deployed to determine double mutations in the same gene and the 
components of double-mutations were labeled as latent mutations if their co-
occurrence is significant and not yet labeled as a cancer driver. Co-occurring 
patterns that are predominantly present in specific tissues and tumor types are 
found. Tumor-type specific double mutations in the same gene which may promote 
tumorigenesis and alter the response to treatments are revealed. It is also revealed 
that tumors having at least one double mutation pair may lead to changes in 
response to drugs. Although the existence of a set of driver genes is considered 
cancer-wide, it is shown that having double mutations on those genes is cancer-
specific. Same gene double mutations are relatively rare; however, their impact is 
elevated in tumor progression. 
 
Chapter 4 focuses on finding the double mutations in different genes among the 
pan-cancer cohorts of TCGA and AACR GENIE with a statistical approach. The 
synergistic effect of different gene double mutations could elicit stronger 
oncogenic signal. Double mutations in trans that is in different genes on the 
protein-protein interface were rarely observed. However, some double mutations 
in trans were significantly higher in metastatic tumors. These could be evaluated 
as metastatic markers. In trans co-occurring double mutations can help in revealing 
alternative pathways in emerging drug resistance, and in identifying metastatic 
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markers. These findings are supported with case studies for the cancer types they 
are enriched in.  
 
In Chapter 5, we aim to uncover the shared features between neurodevelopmental 
disorders and cancer. We expect that these will help us understand the challenging 
question of how expression levels and mutations in the same pathways, and even 
the same proteins, including TFs and chromatin remodelers, can lead to NDDs 
versus cancer, with vastly different phenotypic presentations. Especially, we aim 
to discover what are the determining features deciding whether the major outcome 
is NDDs or cancer. We address this daunting goal by comprehensively leveraging 
mutations, transcriptomic data, and protein-protein interaction (PPI) networks.  
 
In the final chapter of this dissertation, the main findings are summarized and 
discussed; in addition, some possible future perspectives are proposed. 
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CHAPTER 2 
 
 
 

LITERATURE REVIEW 

 
 
 
This chapter briefly discusses the background and literature related to this study. The 
literature review is addressed in six main sections: (1) genome sequencing and variant 
classes; (2) driver, passenger and latent driver mutations; (3) latent driver mutations 
from biophysical perspective; (4) oncogenes and tumor suppressor genes (5) 
double/multiple mutations and latent drivers and (6) co-occurring and mutually 
exclusive mutations in different genes. 

2.1  Genome sequencing and variant classes 

Cancer is a disease of uncontrolled cell proliferation driven by molecular alterations. 
The impact of these alterations diffuses into the molecular interaction network and 
changes signaling pathways and transcriptional regulation in the cell. Precision 
medicine efforts to identify actionable mutations that cause cancer in patients have 
incited big-data initiatives. They have encouraged the development of experimental 
methods for data collection using next-generation sequencing methods, and they have 
provided thousands of genomic profiles of primary and metastatic tumors [44–49]. 
 
Human genome is made up of ~3 billion base pairs, of which ~1% are translated into 
functional proteins [50,51]. These are the proteins where mutations are most likely to 
have an immediate phenotypic impact. Next-generation sequencing (NGS) techniques 
have allowed for the rapid sequencing of large amounts of DNA and the identification 
of single nucleotide, structural, or copy number variants that affect DNA sequence. 
The DNA regions covered by these techniques differ. Whole-genome sequencing 
(WGS) can reveal variation in any region of the human genome, including coding, 
noncoding, and mitochondrial DNA sections. It determines the order of each 
nucleotide in an individual's DNA. Whole-exome sequencing (WES) scans for 
variants in protein-coding regions (exons). Exons are the sections of the genome that 
make up exomes, which account for ~1% of the entire genome. WES captures low 
frequency alterations better than WGS because sequencing a nucleotide multiple times 
provides greater sequencing depth. Targeted panel sequencing is an alternative 
technique that focuses on a subset of genes or coding regions of genes known to 
contain mutations that contribute to disease pathogenesis, and it provides more depth 
than WGS/WES [52,53]. Due to the advancements in NGS techniques, several pan-
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cancer data sets have been released. The Cancer Genome Atlas (TCGA) contains 
molecular and clinical data from over 10,000 tumors from 33 cancer types that were 
obtained using WES [54,55]. The Pan-Cancer Project, also known as the ICGC/TCGA 
Pan-Cancer Analysis of Whole Genomes project, examined 38 different tumor types 
from over 2658 donors [49]. These datasets contain a wide range of genomic data 
obtained through whole exome/genome or targeted/panel sequencing methods. As a 
result, a massive amount of omics data, including but not limited to mutation, 
transcriptomic, phospho-proteomic profiles, and copy number variations, as well as 
clinical information, has been accumulated. 
 
Several open-access servers or portals provide access to this diverse set of omics data 
[56–58]. These resources allow downloading pan-cancer, cancer tissue- or subtype-
specific mutation data in mutation annotation format (MAF) which is a tab-delimited 
text file with aggregated mutation information from variant call files (VCF) upon 
availability. Missense single nucleotide variations, which change one amino acid 
residue at the protein level, cause a significant portion of all currently recognized 
human genetic diseases [59,60]. A nonsense mutation causes a protein to be 
prematurely terminated and produces a shorter isoform. As a result, this truncated form 
may not preserve the original function of the protein and may even completely 
inactivate it [61]. An insertion or deletion that involves base pairs that are not multiples 
of three results in a frameshift mutation; this type of mutation may also result in the 
creation of shortened proteins due to an early stop codon [61]. Duplication and deletion 
variations are genetic changes that result in the duplication or deletion of a portion of 
DNA. This may result in the creation of additional copies of a gene or the complete 
loss of a gene, which may affect the function of the protein encoded by the gene. 
 
Genetic variants are variations in an individual's DNA sequence that can affect the 
structure and function of proteins. These variants can be inherited from a person's 
parents or acquired during an individual's lifetime. Genetic variants can be categorized 
into a wide range of categories, including single nucleotide polymorphisms (SNPs), 
insertions and deletions, and structural variations. Each category has a unique impact 
on the structure and operation of proteins, and these variations can influence the 
development and progression of various diseases. For example, genetic variants have 
been implicated in the onset of cancer, as well as other diseases such as cardiovascular 
disease, diabetes, and neurodevelopmental disorders [62]. Understanding the genetic 
basis of these diseases is important for developing effective treatments and preventive 
measures. 

2.2 Driver, passenger, and latent driver mutations  

Millions of somatic mutations in tumor cells have been identified using next-
generation sequencing. Identifying the molecular changes that lead to tumor formation 
is a major challenge in the interpretation of cancer genomes. Not all mutations 
contribute equally to cancer cell growth advantage. Some mutations are the drivers, 
while others are the passengers. To identify potential drivers, frequency-based and 
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function-based approaches have been developed [63–68]. Conventionally, frequent 
mutations are referred to as "driver mutations", and are thought to contribute to the 
development of cancer; in contrast, rare alterations, known as "passenger mutations," 
do not [5,25]. Many of the driver mutations identified by frequency-based methods 
also were experimentally validated as functionally important [69]. For the majority of 
cancer types, only a small number of genes are altered in a big proportion of tumors, 
whereas a far larger number of genes are only rarely modified. These investigations 
have so far uncovered about 140 genes that, when changed, have the potential to 
promote or "drive" cancer. A tumor normally contains two to eight of these "driver 
gene" mutations; the remaining mutations are "passengers" that do not confer a 
selective advantage for growth [1].  
 
Although it is widely believed that passenger mutations do not provide any 
proliferative advantage to the tumor cells, little is known about their characteristics 
and potential functions. [2]. As per cancer genomics and evolutionary simulation 
studies, the accumulation of "slightly" damaging passenger mutations can slow the 
growth of cancer, which could be utilized as a therapeutic advantage [3]. But in the 
long-tail of mutation frequency distributions, there may also be low-frequency driver 
mutations in addition to high-frequency ones. Experimental studies suggest that a 
number of long tail mutations have functional significance; however, to prioritize long 
tail mutations for functional research and to quantify their functional relevance, 
complementary methodologies are required [69]. It is crucial to be able to spot rare 
drivers amid passenger mutations because both recurrent and rare drivers provide 
cancer cells a selective growth advantage [25].  
 
Recently, a new category of mutations known as "latent" or "mini-drivers" was defined 
[4–6]. Latent mutations can cooperate with other activating mutations to enhance the 
signal, even though they are not recognized as drivers because of the minimal effect 
they have. Latent driver mutations behave like passengers and do not impart a cancer 
signature, however, they contribute to the development of cancer and drug resistance 
when paired with other new mutations. In addition to the conventional trend of labeling 
frequent mutations as drivers, the detection of latent drivers, which are rare drivers 
indeed, could enhance personalized treatment strategies and forecast the progression 
of cancer [5,25]. 
 
According to the "latent driver" hypothesis, mutations may eventually lead to protein 
ensembles populating a constitutively active state from the structural standpoint of 
protein molecules (or an inactive state for repressor proteins). Even if the extent of the 
shift caused by a pre-existing mutation is minor, this could explain why it was 
unreported. The emergence of a cooperative second mutation may drive the protein 
and cell to a constitutively active (or inactive) state with a cancer hallmark [5]. 
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Figure 1. Mutations affect the cellular network. This figure is obtained from the article 
[70] which is distributed under the terms of the Attribution (CC BY) 4.0 International 
(http://creativecommons.org/licenses/by/4.0/). 
 
Figure 1 depicts mutations in the cellular network that affect drivers, passengers, and 
latent drivers. Driver mutations (red nodes) can change the phenotypic outcome from 
normal to disease state on their own. A passenger mutation (blue nodes) does not result 
in cancer cells. Latent driver mutations (yellow nodes) can express a cancer cell 
phenotype when combined with a newly evolved mutation [70]. 

2.3 Latent driver mutations from a biophysical perspective 

Proteins exist in conformational ensembles in which the inactive state is more 
populated, and they switch between conformations to perform their functions. Proteins 
can transition from inactive to active (or vice versa) states using three different 
mechanisms. If there are two allosteric stimuli, one of them may be sufficient to drive 
the transition between states. The combined effect of the two stimuli is not greater than 
the effect of the single stimulus. However, in some cases, both stimuli are required for 
full activation. All stimuli contribute gradually to full activation in a graded 
mechanism [5]. 

A pathogenic allosteric driver mutation can start (or stop) oncogenic signaling 
constitutively. When it comes to latent driver mutations, a graded 
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activation/suppression mechanism is usually applied. Latent driver mutations boost 
signaling and increase the number of active (or inactive) conformations in the cell. 
Each new mutation raises the level of activity (or repression). A set of latent driver 
mutations or a subsequent concomitant external allosteric action is required for full 
activation. Since they are located at established functional loci, orthosteric driver 
mutations are easier to identify. The majority of driver mutations, however, occur at 
unknown allosteric sites. Allosteric rare/frequent driver mutations, like orthosteric 
driver mutations, can cause functional change [4]. 

Tissue-specific high- or low-frequency drivers switch the ensemble from inactive to 
active state. Rare drivers, on the other hand, are uncommon because, in the absence of 
further mutations, the protein activation they stimulate is insufficient to provide cancer 
cells with a selection advantage. When combined with other mutations, they can shift 
the protein from inactive to active state. This system guards against mutation-causing 
events.  

In Figure 2 [25], Nussinov et al. provides a theoretical background for  free energy 
landscapes of proteins as compared with the wild-type protein, frequent allosteric 
drivers, latent drivers, and multiple rare driver mutations. The wild-type protein 
populates the inactive state more than the active state (Figure 2A). The emergence of 
an allosteric driver mutation increases the number of active conformations in the 
population (Figure 2B). A single latent driver mutation is not capable of shifting 
populations into the active state (Figure 2C). However, when there are multiple rare 
driver mutations, the active state is more densely populated than the inactive state, 
which is very similar to the case of an allosteric driver mutation (Figure 2D). 
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Figure 2. Free energy landscapes of conformational switches for different mutation 
types. This figure is obtained from the article [25] which is distributed under the terms 
of the Attribution (CC BY) 4.0 International. 

2.4 Oncogenes and tumor suppressor genes 

Human neoplastic disorders arise and spread through a multi-step process involving 
the accumulation of genetic alterations in somatic cells. Tumorigenesis is 
characterized by genetic changes that affect important cellular processes involved in 
growth and development. These genetic changes frequently involve the inactivation of 
tumor suppressor genes (TSGs) and the activation of collaborating oncogenes (OGs), 
both of which appear to be required for the overall neoplastic phenotype [71,72]. 
Suppressed TSGs and overactive OGs contribute significantly to cell proliferation and 
apoptosis during cancer formation via genetic variations such as somatic mutations 
and deletions [73]. Oncogene activation and tumor-suppressor gene (TSG) 
inactivation are two key factors that cause cancer [74,75].  

Proto-oncogenes, which are oncogenes before mutations appear, regulate normal cell 
division. When mutated, an oncogene has the potential to cause cancer.  Based on 
protein sequences, heuristic approaches, such as the 20/20 rule, classify a gene as an 
oncogene if more than 20% of its mutations occur at a specific residue [76,77]. 
Oncogenes are normally involved in the regulation of cell growth and division, and 
when they are mutated or overexpressed, they can cause cells to grow and divide 
uncontrollably, leading to the formation of a tumor [78]. Oncogene products can be 
made up of a wide range of molecules, including transcription factors, chromatin 
remodelers, growth factors, growth factor receptors, signal transducers, and apoptosis 
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regulators, all of which are crucial for the development of tumors. Well-known 
examples of oncogenes include PIK3CA, RAS, WNT, MYC, ERK, and EGFR [79].  

A tumor suppressor gene is a type of gene that inhibits cell growth and division, 
thereby aiding in cancer prevention. Because they are enriched in protein-truncating 
mutations, Vogelstein et al. proposed that genes with more than 20% truncating events 
can be considered as TSGs [1,80]. TSGs typically function by encoding proteins that 
inhibit cell division or cause cell death in response to DNA damage or other cellular 
stress. When a tumor suppressor gene is mutated or inactivated, cells can continue to 
divide and grow uncontrollably, leading to the development of a tumor. 
 
The functions of TSGs are broadly distributed across various cellular processes, 
including signaling pathways, chromatin remodeling, and DNA damage, suppressing 
metastasis and repair processes among others [81]. The loss of function for a tumor 
suppressor may lead to cancer due to uncontrolled cell division. Because of their 
importance, extensive studies have been undertaken to understand the different 
functional mechanisms of tumor suppressors [82]. The two-hit model has been 
commonly applied to study the roles of TSGs in cancer [83,84]. Unlike oncogenes, 
most TSG loss-of-function mutations act recessively in nature. In contrast to 
haploinsufficient TSGs, which function dosage-dependently, a TSG must presumably 
have mutations in both copies of the gene in order to completely lose its activity [75]. 
When one copy of a gene is deleted or mutated, the amount of normal product 
produced by the single wild-type gene is insufficient for full function, resulting in 
haploinsufficiency, a condition in which two wild-type copies of a gene are required 
for a normal phenotype [85]. TSGs that are well known include TP53, PTEN, STAG1, 
NOTCH1, and CDKN1A. 
 
Tumor suppressor genes (which prevent tumorigenesis and can be inactivated by 
mutations or deletions) and proto-oncogenes (which promote proliferation and can be 
activated by mutations such as amplifications or chromosomal translocations) are the 
two primary types of cancer driver genes [86]. As of September 2022, OnkoKB 
knowledge base deposited 1081 cancer genes of 275 are OGs, 275 are TSGs, and 40 
are both OG and TSG [87]. Yet another knowledge base, TSGene version 2.0,  
contains 1217 human TSGs (1018 protein-coding and 199 non-coding genes) curated 
from over 9000 articles and pan-cancer genomic data collection [81]. 

2.5 Double/multiple mutations and latent drivers 

 Recent developments in cancer genomics have made it possible to identify and 
characterize numerous cancer genes and the associated mutations that are related to 
cancer initiation, sustain the disease once it has started and potentially alleviate it 
[1,14,32,88]. Scientists have been putting a tremendous effort for identification and 
functional characterization of specific driver mutations, which have revealed a variety 
of phenotypes and therapeutic vulnerabilities. These "driver" mutations, which are 
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characterized as frequent mutations that give a cell a selective growth advantage, 
promote clonal expansion and the development of disease [30,89,90].  
 
Even a single mutation in a gene can be considered as a prognostic marker and change 
the global genome and protein expression, eventually altering the signaling pathways 
[26]. However, it has been estimated that the contribution of a single driver mutation 
to cancer progression is very small and needs additional mutations over time[27]. 
Despite DNA repair, somatic mutations accumulate and different genotypes in 
individual tissues are generated. This mechanism, called ‘somatic mosaicism’, offers 
driver, or synergistic mutations an advantage in cancer cells[28]. Recently, the 
combination of single frequent mutations with a rare, or weak mutation in the same 
gene was shown to have a significant advantage in tumor progression and influence 
treatment response. These double mutations in cis in PIK3CA were shown to be more 
oncogenic, and more sensitive to inhibitors compared to a single mutation [29]. A 
recent work cataloged ‘composite mutations’ of multiple genes having more than one 
non-synonymous mutation in the same tumor [30]. Saito et al. demonstrated the 
functional implications of multiple driver mutations in the same oncogene with an 
emphasis on PIK3CA [31,32].  
 
However, to date, driver mutations whose frequencies are low and their observable 
translational potential are minor have escaped identification. Recently, several 
investigations have found evidence of multiple or double mutations on the same gene 
in the same allele (in cis). In these multiple or double mutations on the same gene, 
rare, functionally weak mutations are convergently selected, which may offer an 
explanation for why such mutations accumulate in tumor cells [29,31,32,91]. 
 
Several groups have recently investigated epistatic relationships for frequent and rare 
driver mutations. Two driver mutations can have synergistic, additive, or suppressive 
functional consequences. If two mutations are driving tumors independently, they 
should be additive. However, the functionality of two mutations can be higher 
(synergistic) or lower (suppressed) than the functionality of a single mutation, 
indicating a genetic interaction between mutations. The term "epistasis" best describes 
these genetic interactions; in fact, several recurrent multiple mutations have synergistic 
functions, indicating positive epistasis [32]. Synergistic epistasis can occur when a 
conformation change caused by one mutation is required for a second mutation to 
realize its effect on protein function (conformational epistasis). In such cases, the 
secondary mutated residue may contact a novel substrate only when the first mutation 
causes a conformational change. Another explanation includes the stability thresholds 
in which the mutation has a detrimental effect only when it reduces the protein stability 
below a critical threshold. In this scenario, single mutations have little effect, but two 
mutations reaching the critical threshold have a very deleterious effect [92–94]. 
 
Recently, the combination of single frequent mutations with a rare, or weak mutation 
in the same gene was shown to have a significant advantage in tumor progression and 
influence treatment response. These double mutations in cis in PIK3CA were shown 
to be more oncogenic, and more sensitive to inhibitors compared to a single mutation. 
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A recent work cataloged ‘composite mutations’ of multiple genes having more than 
one non-synonymous mutation in the same tumor. Saito et al. demonstrated the 
functional implications of multiple driver mutations in the same oncogene with an 
emphasis on PIK3CA. Multiple mutations in a single gene rarely co-occur in patient 
tumors. However, when they are together, they may cause dramatic phenotypic 
differences and can be signatures of specific tumor tissues or cancer types [29–31]. 
For example, double mutations in PIK3CA increase the sensitivity to PI3K inhibitors 
in breast cancer [29], while double mutations in EGFR predominantly exist in lung 
cancer  [31]. 
 
The comprehensive investigation of pan-cancer genomes by Saito et al. revealed 
multiple driver mutations in the same oncogene in cancer patients. They discovered 
14 oncogenes that are shared by all cancer types and 6 that are unique to specific cancer 
types. Most of these in cis multiple mutations were functionally weak, infrequent 
mutations that conferred enhanced oncogenicity when combined. These mutations also 
influence carcinogenesis, have positive epistatic relationships, and are linked to 
increased drug sensitivity. Researchers discovered enhanced downstream signaling 
activation and/or greater sensitivity to inhibitory treatments in related cells with 
multiple mutations compared to those with single mutations. They proposed that the 
primary mechanism for oncogenic multiple mutations, which constitute a frequently 
reported driving event, is a clonal selection of suboptimal mutations, which are 
uncommon individually but account for a significant percentage of oncogenic 
mutations collectively [31,32]. 

2.6 Co-occurring and mutually exclusive mutations in different genes 

Tumorigenesis is a complex process that could be attributed to alterations in a group 
of genes [33]. Multiple activating mutations are needed to initiate cancer or promote 
tumor progression [1,95]. For example in colorectal cancer, loss of function mutations 
in APC needs TP53 or KRAS mutations to complete malignant transformation [86,96]. 
Random mutations are sequentially selected during tumor evolution if they provide a 
fitness advantage over the underlying genomic landscape [37]. As we reviewed in 
Section 2.5, these activating double/multiple mutations can be in the same protein 
molecule. Recent studies have shown that cis mutations are also positively selected in 
cancer genomes and can potentiate oncogenic signaling by the additive or synergistic 
effect of constituent mutations [29–31]. 

There are also scenarios where multiple mutations can co-exist in different genes that 
participate in the same or different pathways. Co-occurrence, or conversely, 
exclusivity, of two mutations in different genes (i.e. in trans) could be a random or a 
selected event in cancer evolution, providing a functional advantage. If two mutations 
on different genes occur less or more frequently than expected, they are mutually 
exclusive or co-occurring, respectively [34]. Mutual exclusivity was mostly observed 
on genes in the same pathway (or redundant pathways), and conversely, a co-
occurrence trend was observed on genes in different (or parallel) pathways [35,36]. 
Nussinov et al. define redundant and parallel pathways as follows: if the pathways 
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recruit the same downstream protein families, they are redundant; if evolutionary-
independent, they are parallel [35]. Exclusivity has been attributed to the expectation 
that acquiring a second mutation in the same pathway will have a negligible effect on 
tumor growth. It has been related to factors such as tumor subtype, synthetic lethality, 
and positive selection [37]. Alternatively, the additive effect of same- or different- 
pathway co-occurring driver hotspot mutations are likely to hyperactivate the 
proliferation signal. Potent and sustained hyperactivation can trigger an oncogene-
induced senescence (OIS) cellular program [38–40]. Moreover, there are some 
exclusive gene pairs when one of them mutated, the other needs to be in wild-type 
form to boost oncogenic signaling (“synthetic essentiality”) [86]. 

OIS suppresses cell proliferation caused by aberrant activation of oncoproteins in 
normal cells. In the literature it is often discussed as caused by activated RAS and RAF 
proteins, especially the BRAFV600E hotspot [97]. RTK-RAS pathway members NRAS 
and BRAF are mutually exclusive in the TCGA skin cutaneous melanoma cohort. 
Harboring a mutation on one of the genes can promote tumor progression by 
amplifying signaling output. Similarly, BRAF mutation and the RAS mutation are 
mutually exclusive among metastatic colorectal cancer tumors [97,98]. OIS [99–101], 
a tumor-suppressive mechanism arresting cell cycle progression, can be a main reason 
for the exclusive co-occurrence of driver mutations in the same or different pathways. 
Senescence phenotypes depend on strong oncogenic stimulus [102]. Overexpression 
of oncogenes such as RAS, BRAF, and MYC induces OIS, as does increased 
PI3K/AKT signaling. Loss of PTEN, which negatively regulates the PI3K/AKT 
pathway, can trigger OIS through a p53-dependent pathway [103]. Sustained 
hyperactivation of the PI3K/AKT/mTOR pathway results in cellular senescence 
[104,105]. Cisowski et al. observed that co-expression of KRASG12D and BRAFV600E, 
two strong drivers, led to oncogene-induced senescence in their lung cancer study on 
mouse models [106]. Examples of mutually exclusive relations between gene pairs 
include BRCA2-TP53, BRCA1-PARP1, PTEN-PIK3CA in breast cancer; in ovary 
cancer BRCA1-CCNE1, BRAF-KRAS, ERBB2-KRAS [107]. 

There are several tools for identifying biologically meaningful, mutually exclusive 
gene sets. Liu et al. introduced a statistical framework MEScan, that takes into account 
the background mutation rate of highly mutated genes in the genomic data, hence 
accurately identifies tissue specific pan-cancer mutually exclusive genes [108]. 
MEGSA (mutually exclusive gene set analysis) is another tool relying on the 
likelihood ratio test and a model selection procedure [109]. The statistical tool Mutual 
Exclusivity Modules (MEMo) integrates multiple data types to identify driver modules 
in cancer pathways [110]. Co-occurring Mutated Driver Pathways (CoMDP) is a 
mathematical method identifying significantly co-occurring driver pathways from 
mutation data [111]. Mina et al. developed an algorithm SELECT, that captures 
evolutionarily dependent alterations at the pan-cancer level that can affect drug 
resistance and sensitivity [112]. Mutual Exclusivity Module Cover (MEMCover) 
identifies mutual exclusivity hubs and pan-cancer dysregulated networks across 
tissues, avowedly correlating to cancer drivers with significant growth advantages 
[113]. 
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Complex biological functions are mostly managed through protein-protein interactions 
(PPIs), and mutations occurring in protein-protein interfaces cause changes on the 
interactome, resulting in different phenotypes [114]. Evaluating the effects of single 
or coexisting mutations in PPIs is crucial to understand the molecular mechanisms that 
lead to tumor formation and/or progression. It is also vital for understanding the 
mechanisms of network rewiring and its contribution to drug resistance/sensitivity. 
Alterations perturbing PPIs can be highly related to patient survival and drug 
resistance/sensitivity [4,68,115]. Li et al. identified ~260 PPIs related to cancer and 
OncoPPI based STK11-CDK4 interaction demonstrated to be sensitive to the 
palbociclib, a CDK4 inhibitor. Similarly, Cheng et al. identified 470 oncoPPIs 
affecting patient survival and drug resistance/sensitivity [115]. Detection of druggable 
PPIs is promising since some are cancer-specific and could be therapeutic targets 
[116,117]. Several mutations are classified as metastatic markers in gastric carcinomas 
of Fujian cohort. One of these is PTPRT mutations [118]. Chondrosarcoma 
TERT promoter mutation is a metastasis marker [119]. A database, My Personal 
Mutanome (MPM) deposits ~500,000 mutations that are mapped to ~300,00 
functional sites and ~100,000 structure-resolved/predicted PPIs, including ligand-
protein binding sites and eight different posttranslational modifications (PTMs). For 
these mapped interactions, 8884 survival results and 1,271,132 drug treatment 
responses are also available for precision oncology efforts [120].  
 

2.7 Connection between the neurodevelopmental disorders and cancer  

Recent epidemiological studies on large cohorts with neurodevelopmental disorders 
(NDDs) demonstrated an increased risk for cancer compared to the general population. 
In one study, a standardized incidence ratio model was applied to a cohort of 8438 
patients with autism retrieved from the Taiwan National Health Insurance database 
during 1997-2011 [121]. Increased cancer risk was also observed in a population-
based study among 2.3 million individuals with autism spectrum disorder (ASD) from 
Nordic countries during 1987-2013 with co-occurring birth defects, including 
intellectual disability [122]. A correlation between autism and cancer with shared risk 
factors was also pointed out [123]. Another cohort study proposed that patients with 
bipolar disorder and their unaffected siblings have an especially higher risk of breast 
cancer compared to normal control groups [124]. Association between brain, 
hepatocellular, and lung cancer among people with epilepsy was manifested by animal 
experiments, genotoxicity studies, and epidemiological observations. Possible 
underlying mechanisms have also been proposed [125,126].  
 
Comparisons of the time windows of NDDs and cancer frequently concluded that 
while cancer is predominantly caused by somatic mutations and alterations in signaling 
and transcriptional programs, NDDs are primarily linked to mutations that occur 
during embryonic development. A recent study has similarly suggested that mutations 
in cancer susceptibility genes are not necessarily inherited or somatic; they can also 
arise throughout embryogenesis as a result of errors occurring during cell division 
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[127]. These mosaic mutations, occurring in early embryogenesis, were suspected to 
be associated with some rare cancers. Genetic changes associated with RASopathies 
are believed to be often sporadic, not inherited. Along these lines, according to the 
NCI page [61], this means that typically multiple family members do not share the 
same syndrome. 
 
Different than this view, here our thesis is that inherited and de novo mutations 
(missense or truncation) are major causes of NDDs such as intellectual disability, 
ASD, epilepsy [128–131], and cancer [5,70,132]. As in cancer [132], more than one 
mutation is required for observable symptomatic NDDs. Our premise is that family 
members can harbor these embryonic mutations; however, they are not diagnosed as 
having the disorder. Their offsprings are however already susceptible to it. The 
presence of multiple mutations may also explain the phenotypic overlaps of the 
disorders. Further, individuals with NDDs have somewhat higher probabilities of 
eventually coming down with cancer, likely due to the preexistence of the mutations 
in the shared proteins, making them more susceptible. We hypothesized that strong 
driver mutations in cell growth/division pathways are chiefly responsible for 
uncontrolled cell proliferation in cancer. NDDs’ weak/moderate strength mutations 
may be a reason why an inherited NDD has not been identified in a parent while 
predisposing an offspring to it. An additional mutation promotes NDD clinical 
manifestation. It may be inherited from the other parent or emerge during 
embryogenesis.  
 
Tumor suppressor phosphatase and tensin homolog (PTEN), which carries inherited 
(germline) and de novo mutations in NDD patients, is related to cancers and several 
NDDs, collectively named PTEN hamartoma tumor syndrome (PHTS). The NDDs 
include phenotypes, such as Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba 
syndrome (BRRS), Proteus syndrome (PS), Proteus-like syndrome (PSL), 
macrocephaly, and ASD. Besides, NDDs often overlap mutation-wise and genome-
wise [133–137]. Among these, deletions and duplications of the 16p11.2 region are 
common. About 48% of deletion carriers and 63% of duplication carriers have at least 
one psychiatric diagnosis [138,139]. The region is associated with a variety of 
psychiatric conditions. RASopathies, which include Noonan syndrome (NS), 
cardiofaciocutaneous (CFC) syndrome, neurofibromatosis type 1 (NF1), and Legius 
syndrome (LS), are NDDs that result from the overactivation of the Ras/mitogen-
activated protein kinase (MAPK) pathway due to the germline mutations and (or) 
overexpression in embryogenesis [62,140–143]. Their phenotypic overlaps may 
emerge due to shared proteins/pathways as in the case of PIK3CA-related overgrowth 
spectrum (PROS), PS, and CS which share phenotypic characteristics with 
RASopathies [141]. The commonality of proteins/pathways playing roles in cancer 
and RASopathies prompted consideration of mitogen-activated protein kinase (MEK) 
inhibitors and Ras-targeted therapies for some of the RASopathies like selumetinib for 
the treatment of some patients with NF1 [144–146]. Early-onset cancers, including 
breast cancer, and mutations occurring during embryonic development, such as in 
BRCA1/2, were also observed to be related [147,148]. Another mutated gene 
associated with these conditions and White-Sutton syndrome is POGZ gene that 
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encodes pogo transposable element derived with the zinc finger domain, which 
disrupts brain development [149,150]. 
 
Cell proliferation and differentiation take place in both cancer and NDDs. Since NDDs 
are mostly related to dysregulated differentiation, mutations in genes regulating 
chromatin organization rank high. MAPK is primarily responsible for division and is 
the major pathway in proliferation. The phosphoinositide 3-kinase/protein kinase 
B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway primarily acts in cell 
growth, the primary pathway in differentiation [151]. Embryonic mutations in both 
pathways give rise to several NDDs [152]. Hundreds of genes are implicated in NDDs; 
however, they are involved in a few conserved pathways regulating transcription, 
chromatin accessibility, and synaptic signaling [153]. In particular, PI3K/mTOR and 
Ras/MAPK are frequently linked with NDDs and synaptic dysregulation [41]. Proteins 
in the Wnt, BMP/TGF-β (bone morphogenetic protein/transforming growth factor β), 
SHH (sonic hedgehog), FGF (fibroblast growth factor), and RA (retinoic acid) 
pathways, are also involved in autistic brain development. To identify similarities in 
genes and pathways, Forés-Martos et al. compared the gene expression profiles of 22 
cancer types with the frontal cortical tissues from ASD patients with a correlation 
analysis  [154]. 
 
NDD data has expanded recently, particularly de novo mutation data obtained by trio-
sequencing and publicly available databases, however, it is still not as prevalent as the 
whole exome/genome sequencing data for cancer [155,156]. 32,991 de novo variants 
obtained from 23,098 trios are deposited in denovo-db. According to the database 
definition, de novo mutations are germline de novo variants present in children but not 
in their parents. The Deciphering Developmental Disorders (DDD) Study provides 
detailed genotype-phenotype information for 14,000 children with developmental 
disorders, and their parents from the UK and Ireland. Additionally, there are some 
knowledge databases with curated sets of genes and variants associated with 
one/multiple developmental diseases or cancer [157,158]. 
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CHAPTER 3 
 

 
 

DISCOVERY OF LATENT DRIVERS FROM DOUBLE MUTATIONS IN 
PAN-CANCER DATA REVEAL THEIR CLINICAL IMPACT 

 
 
 
In this chapter, aided by informatics techniques, somatic mutations in pan-cancer 
cohorts of TCGA and AACR GENIE across ~60,000 patient tumors are screened and 
co-occurring patterns that are predominantly present in specific tissues and tumor 
types are identified. As a result, tumor-type specific double mutations in the same gene 
which may promote tumorigenesis and alter the response to treatments were identified. 
It also reveals that tumors having at least one double mutation pair may lead to changes 
in response to drugs. The components of double mutations were cataloged as latent 
mutations if their co-occurrence is significant and not yet labeled as a cancer driver 
and this led to uncover 140 latent driver mutations. The oncogenic activation of the 
protein may be through a single, or multiple additive contributions of the mutations. 
Although the existence of a set of driver genes is considered cancer-wide, it is shown 
that having double mutations on those genes is cancer-specific. Same gene double 
mutations are relatively rare; however, their impact is elevated in tumor progression. 
The results of this chapter are published under the title “Pan-cancer clinical impact of 
latent drivers from double mutations” in 2023 [159]. 

3.1 Methods 

3.1.1 Data collection and processing 
 
All available somatic missense mutation profiles are downloaded from The Cancer 
Genome Atlas (TCGA) and the AACR launched Project GENIE (Genomics Evidence 
Neoplasia Information Exchange) [45,56,108]. The TCGA mutation annotation file 
contains more than 10,000 tumors across 33 different cancer types. We used the 
merged MC3 file to get TCGA pan-cancer data. The somatic variants without 
sufficient normal depth coverage and variants found in the panel of normal samples 
were evaluated as possible germline variants and were removed from the file before 
merging. 
 
The GENIE mutation file (Release 6.2-public) contains 65,401 patients and 68,897 
tumor samples across 648 cancer subtypes under the Oncotree classification. Within 
the GENIE cohort 2930 patients match with multiple tumor barcodes. For those cases, 
only one primary tumor barcode is kept when available; if not, only one metastatic or 
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unspecified tumor barcode is kept for further analysis without any other constraint. 
Among these patients, 2019 has sequenced primary tumors, 757 have sequenced 
metastatic tumors and the remaining 154 have tumors of the type not specified.  

Next, we selected non-synonymous mutations including missense, nonsense, nonstop 
and frameshift mutations (altering only one position on a protein). We also excluded 
the mutations where the wild type and/or mutant residue name is not specified. As a 
result of this filtering process, 9703 and 57,921 tumors remained with a total of 
1,631,755 point mutations in the TCGA and GENIE cohorts, respectively. 

We did a pre-filtering on the VAF (Variant Allele Frequency) value to control the 
heterogeneity of the samples to some extent given that variants were collected by bulk 
sequencing in both datasets. We calculated VAF by using the ratio of the values in the 
t_alt_count and t_depth columns of the MAF (Mutation Annotation File) file of the 
pan-cancer data sets. Then, we continued our analysis with the mutations that have 
VAF value more than 0.125, ensuring that the remaining mutations are present roughly 
in 25% of the sequenced cells. We continued the analyses with 62,567 samples (9588 
and 52,979 samples from the TCGA and GENIE cohorts, respectively) from 619 
cancer subtypes and 33 tissues (including OTHER category). 
 
3.1.2 Statistics and reproducibility 
 
We set pre-filtering criteria to find significant double mutations. This pre-filtering 
consists of total number of occurrences and VAF values of each individual mutation. 
We construct potential double mutations to be tested after prefiltering. Therefore, it is 
independent of the test statistic under the null hypothesis71,72. If an individual mutation 
is present in less than three tumors in the cohort and have a VAF less than 0.125, we 
filtered them out. We continued our calculations with the remaining 65,872 mutations 
on 12,724 genes, and for each gene and the mutations they are harboring in the final 
set we formed binary combinations. As a result, we obtained 2,230,203 potential 
double mutations to be tested in 62,567 tumor samples that have at least one point 
mutation with VAF>0.125 and assessed their statistical significance (Fisher’s Exact 
Test). For each potential double mutation, we created a contingency table [[a,b],[c,d]] 
where a is the number of tumors having both alterations, b is the number of tumors 
having only the first alteration, c is the number of tumors having only the second 
alteration and d is the number of all tumors not having these two alterations together 
(d = 62,567-(a+b+c)).  
 
We applied more filtering for the significant double mutations based on the nonsense 
mutation composition among double mutants and the VAF values of the constituents. 
Throughout our analyses, we assumed point mutations occur at the same position as 
same regardless of the mutant residue. We evaluated the VAF values of the 
components and the presence of a nonsense mutation in the upstream in a tumor-
specific way for the significant double mutations and double mutant tumors. In the 
components of a doublet, despite having a mutation at the same position, the mutated 
amino acid may result in a missense, nonsense or frameshift mutation. Therefore, a 
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double mutation can be one of the combinations of the following variant classes: 
missense+missense, missense+frameshift, missense+nonsense, 
frameshift+frameshift, nonsense+nonsense. Among the tumor barcodes having a 
double mutation, if at least half of the barcodes carries a nonsense mutation as a 
component of a doublet we filtered them from our dataset. 
 
To inspect whether double mutation constituents are in the same set of sequenced cells 
in a tumor, we first calculated the total VAF value of double mutation components. If 
the total VAF value is greater than 0.5, mutation components encompass >100% of 
the sequenced cells, which is impossible unless there is an overlap. Therefore, we 
labeled the mutation constituents as highly likely overlapping for such records. We 
retained the double mutations where the constituents overlap for at least 20% of the 
records for further inspection and kept 7252 significant double mutations where 155 
of them are present in at least three tumors.  
 
We used the Catalog of Validated Oncogenic Mutations from the Cancer Genome 
Interpreter [9] to label double mutation components: if a mutation is among the 5601 
driver mutations, we labeled it as known driver (D), otherwise potential latent driver 
(d). For each gene harboring at least one double mutation, we collected all the tumors 
with mutations present on at least 3 tumors as gene-mutant tumors. Then, we 
calculated the fraction (%) of tumors with double mutation components among the 
gene-mutant tumors. We classified a known driver mutation as a strong driver if it is 
present in more than 10% of the gene-mutant tumors; otherwise, it is a weak driver. 
Similarly, we dubbed a potential latent driver mutation as a strong latent driver if it is 
present in more than 1% of the gene-mutant tumors; otherwise, we classified it as a 
weak latent driver. Here, we considered mutations in each gene present in at least three 
tumors when generating gene-mutant tumor group. 
Additionally, double mutations are annotated based on their functions, domains, 
chemical properties, and structural proximity (see Appendix B). 
 
3.1.3 Hyper-mutated samples and double mutations 
 
First, we listed all non-hyper-mutated tumors that have at least one mutation on the 54 
genes carrying at least one double mutation. Then, for each double mutation, we noted 
the total number of non-synonymous mutations on these tumors and labeled the double 
mutant tumors as Double and the remaining gene-mutant tumors as Single.  
To test the null hypothesis that the double mutant tumors (Double) have a lower or 
equal mutation burden compared to the remaining gene-mutant tumors (Single), we 
applied a permutation test (p<0.01) with 5000 iterations. We prepared a two-column 
table having the Double/Single group labels of the tumors in the first column and the 
total number of non-synonymous mutations in the second column for each double 
mutation. To compare the observed and expected mean mutation counts for the two 
tumor groups, we shuffled the group labels in the first column 5000 times by 
preserving the second column as is. Here, we set the test statistic for two groups as 
follows: Test Statistic= μ(Double) – μ(Single) where μ is the mean mutation 
count.  We calculated the permuted test statistic at each iteration by shuffling the 
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Double/Single labels. At the end of 5000 iterations, we counted the number of 
iterations where the permuted test statistic is greater than the original test statistic (N) 
and found the p-value by N/5000. 
 
3.1.4 Allelic configuration of double mutations 
 
We exploited supplementary data files of the papers [29–31] to check cis/trans status 
of double mutations for the matching samples.  
 
3.1.5 Mutational signature analysis 
 
We used 96 mutation contexts deposited in COSMIC that the format of codons and 
putative substitutions is as follows: C1[C2>C2subs]C3 where Ci is the nucleotide in the 
corresponding position for i=1,2,3 and C2>C2subs indicates the wild type nucleotide C2 
is substituted by C2subs. We assumed double mutations are of the same context either 
they have the same base pairs in C1[C2>C2subs]C3 at the same position or C1, C2, C2subs 
and C3 are mapped to the opposite strand with the same ordering[160]. 
 
3.1.6 Cell line network construction 
 
We obtained a list of cell lines with the dual mutations from Cell Model Passports and 
their drug response information from CancerrxGene [161,162]. We also extracted 
information about drug targets and target pathways. We used 2 different approaches 
to select drugs for PTEN, APC, and PIK3CA double mutant cell lines: if a drug is in 
the gray zone (|z-score|<=2) in the single mutant cell lines but gives a significant drug 
response in a double mutant cell line (|z-score|>2). If there is a single mutant cell line 
that is sensitive (or resistant) to the drug but the dual mutant cell line gives an opposite 
response to the drug. (Drug response flips sensitive into resistant or resistant into 
sensitive between single and dual mutant cell lines). For EGFR we selected drugs that 
give significant drug response either in the single or double mutant cell line. Then we 
formed networks connecting mutations to cell lines, cell lines to drugs, and drugs to 
their target pathways.  
 
3.1.7 Patient-derived xenograft analysis 
 
We used the mutation profiles, transcriptomic data and drug responses of patient-
derived xenografts in[163]. We determined xenografts harboring significant doublets. 
Then, we compared changes in tumor volumes of single and dual mutant xenografts 
for the untreated and drug-treated cases (single mutation is part of a significant dual 
mutation). We preferred to specify the time intervals in multiples of 5. When a given 
timepoint is not a multiple of 5, we used linear interpolation between two nearest 
numbers containing a multiple of 5.  
 
𝑉𝑜𝑙$ = 𝑉𝑜𝑙$&' +

)*&)*+,
)*-,+)*+,

(𝑉𝑜𝑙$/' − 𝑉𝑜𝑙$&') (2) 
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where ti is a timepoint that is multiple of 5 between the given timepoints ti-1 and ti+1 
and Voli is the volume (mm3) at timepoint i. 
 
3.1.8 Availability of data and materials 
 
The results shown here are in whole or part based upon data generated by the TCGA 
Research Network: https://www.cancer.gov/tcga. The authors would like to 
acknowledge the American Association for Cancer Research and its financial and 
material support in the development of the AACR Project GENIE registry, as well as 
members of the consortium for their commitment to data sharing. Interpretations are 
the responsibility of the study authors. The cell line data underlying the results 
presented in the study are available from GDSC in 
https://www.cancerrxgene.org/downloads, Cell Model Passports in 
https://cellmodelpassports.sanger.ac.uk/downloads, and The Cancer Dependency Map 
project in https://depmap.org/portal/download/. The PDX data underlying the results 
presented in the study are available in Gao et al[163]. Codes are available at 
https://github.com/bengiruken/LatentDriverDiscovery. 

3.2 Results 

3.2.1 Discovery of latent drivers through double mutations  
 
Multiple mutations in a single gene rarely co-occur in patient tumors. Vasan et al. 
examined the PIK3CA-mutant cancer genomes and reported that 12 to 15% of breast 
cancers and other tumor types harbor multiple PIK3CA mutations, the majority of 
which (95%) are double mutations [29]. Similarly, Saito et al. performed a pan-cancer 
study to check the presence of multiple mutations in a subset of oncogenes among 
~60,000 tumors. They discovered 20 oncogenes with a higher rate of multiple 
mutations than expected where  9% of samples with at least one mutation in these 
oncogenes had multiple mutations[31,32]. Despite their relative scarcity, when 
multiple mutations are together in the same gene, they may cause dramatic phenotypic 
differences and can be signatures of specific tumor tissues or cancer types[29–31]. For 
example, double mutations in PIK3CA increase the sensitivity to PI3K inhibitors in 
breast cancer[29], while double mutations in EGFR predominantly exist in lung 
cancer[164]. We defined latent driver mutations as mutations that due to their 
unobservable translational or structural effects, have not been associated with tumor 
development. However, when combined with other alterations, can contribute to 
cancer progression and drug resistance [5]. Some mutations cataloged as passengers 
may belong to this category. The collective action of latent driver mutations in 
oncogenes (OGs) can switch the protein ensemble to an active state; in tumor 
suppressor genes (TSGs) the inactive state. When the mutations are on the same allele 
(i.e., in cis), a latent driver mutation could couple with driver mutations; two or more 
latent driver mutations can also collaborate (Figure 3). In either case, the outcome can 
be a stronger effect. Along similar lines, a strong driver may couple with a weak driver 
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or a latent driver, strengthening the pathological impact. Our definition of latent 
mutations applies only to mutations in cis. That is, in the same protein molecule (i.e., 
multiple same-allele driver mutations). Allosteric effects cannot be applied in trans, 
that is, to mutations in two different molecules, where one molecule has one mutation 
and the other has the second.  
 

 
Figure 3. Double mutations in the same gene. 

 
We exploited the mutation profiles from TCGA and GENIE pan-cancer cohorts to 
discover latent drivers (Figure 4). We included all non-synonymous mutations, 
including variant classifications such as missense, nonsense, nonstop, and frameshift 
mutations. We excluded frameshifts (insertions or deletions) that alter more than one 
position in a protein. We also excluded variants where the wild type and/or mutant 
residues are not specified. Finally, we filtered out the mutations that have VAF 
(Variant Allele Frequency) less than or equal to 0.125 to assure that the mutations are 
present approximately in 25% of the sequenced tumor cells. 
 
We identified potential double mutations from proteins having two or more mutations 
at different positions in the pan-cancer data. Pairwise combinations of mutations in the 
same genes are pooled and evaluated as a potential double mutation. As a result, we 
obtained 2,230,203 potential double mutations to be tested among 62,567 tumors. 
 
 

 
Figure 4. Distribution of double mutant tumors across different tissues. The data is 
filtered with variant allele frequency (VAF>0.125). Total number of tumors, 
alterations, cancer types in the union of TCGA and AACR GENIE studies (n = 62,567 
tumor samples). Windrose plot shows the number of same gene double mutant (blue) 
tumors and without any significant double mutation (green) across 33 tissues on the 
log-scale axis. 
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To assess the significance of all potential double mutations (2,230,203 doublets), we 
constructed a 2x2 contingency table for each pair of mutations on each gene (12,724 
genes). We built the tables according to the number of samples where constituents of 
a double mutation are present together, only one of the constituents is present, and 
none of them are present. (See Methods). Applying Fisher’s Exact Test followed by 
multiple testing correction (Benjamini-Hochberg, q<0.1) resulted in 11,532 significant 
pairs. Then, we filtered out the doublets if both of the mutation constituents are 
nonsense (411 double mutations were filtered out of which 49 and 4 were on APC and 
PTEN, respectively; the rest scattered through 190 different proteins). A component in 
downstream of a nonsense mutation in a doublet is either a false positive (chance 
passenger with no functional consequence), or in trans (not a true double mutation 
affecting the same protein). Thus, we also filtered these significant double mutations 
out (1377 doublets where 80 and 15 are in APC and PTEN, respectively; the rest are 
on 552 different proteins). Then, we applied a stringent filtering to the rest to ensure 
that co-existing mutations are not erroneously identified. Given a mutation pair (©, j), 
if mutation © is present in xi% cells and mutation j is in xj% cells and the total of xi 
and xj is greater than 100%, it is highly likely that double mutation components truly 
overlap in the cells. After filtering significant doublets based on the proportion of 
nonsense mutations in double-mutant tumors and total VAF value of each double 
mutation in the corresponding tumor, 7252 significant doublets were identified, 155 
of which were present in three or more tumors. We labeled the constituents true co-
existing mutations and retained 155 double mutations for further analysis (Methods, 
Appendix A-Figure 1, [159]). 
 
We labeled double mutation components as known driver (D) if it is a validated 
oncogenic mutation in Cancer Genome Interpreter [9]; and otherwise potential latent 
driver (d). We classified a known driver mutation as a strong driver if it is present in 
more than 10% of the gene-mutant tumors; otherwise, it is a weak driver. Similarly, 
we dubbed a potential latent driver mutation as a strong latent driver if it is present in 
more than 1% of the gene-mutant tumors; otherwise, we classified it as a weak latent 
driver. Here, we propose that combinations of two strong latent driver mutations can 
act like a known driver, whereas weak latent drivers can only potentiate the effects of 
weak driver mutations. We classified mutation pairs as co-occurring based on the odds 
ratio (OR, log2(OR)>0), and the rest as mutually exclusive. As a result, we identified 
148 co-occurring and 7 mutually exclusive double mutations. The mutually exclusive 
doublets are composed of known driver mutations, i.e., the constituents are either 
weak- or strong- known driver mutations. 
 
We examined the cis/trans occurrences of the double mutation components. We used 
publicly available supplementary data from Saito et al., Gorelick et al., and Vasan et 
al. since raw data or allelic configuration information for the GENIE data, which 
constitutes around 90% of our dataset, is unavailable [29–31]. With the availability of 
raw data or allelic configuration information, it would be possible to enlarge the set of 
double mutations that are in cis. The analysis identified 36 tumor samples carrying 
double mutations matching our data. As a result, we could find cis and trans 
information in our double mutation dataset for only 19 doublets accumulated in six 
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genes. For each of the 19 doublets, if the cis occurrence is higher among the double 
mutant group, we labeled it as cis, and trans otherwise. 8 (5 cis, 3 trans) of these 
doublets are in the TSGs PTEN and TP53, the remaining 11 doublets are in OGs 
EGFR, ERRB2, KRAS, and PIK3CA where 10 are in cis; and one of them is 
inconclusive due to the equal number of cis and trans occurrence.  
 
Recently, the frequency of driver genes was analyzed together with the maximum 
prevalence of their mutations, distinguishing cancer-specific drivers versus cancer-
wide drivers[13]. We applied a similar analysis to our dataset composed of double 
mutations in the same gene where we obtained the ratio of the number of tissues 
carrying double mutations (Tdouble) and single mutations (Tsingle). We also calculated 
the prevalence of double mutations compared to single mutations. For example, KRAS 
double mutations are observed on tumors in four tissues (bowel, pancreas, skin, lung), 
but single mutations of KRAS can be seen on tumors from 30 different tissues. Thus, 
the tissue specificity, Tdouble/Tsingle, of KRAS is ~0.13. Prevalence of KRAS is the ratio 
of the number of double mutant tumors (n = 8) to the number of all KRAS-mutant 
tumors (n~8000), which is ~0.001. Values closer to the origin on the x-axis indicate 
tissue specificity since for each gene the number of double mutations carrying tissues 
is smaller compared to the number of single mutations carrying tissues. Larger 
numbers on the y-axis represent the multitude of patients with double mutations on the 
gene. Hence, double mutations of KRAS can be considered as tissue specific with a 
low prevalence. As a result, although some genes and their single mutant states have 
been previously cataloged cancer-wide, we found sets of double mutations that are 
cancer tissue-specific. Examples include double mutations in BRCA1, EGFR, and 
KRAS (Figure 5).  
 

 
Figure 5. Cancer specificity of the genes harboring double mutations. Tissue 
specificity of same gene double mutations compared to their single mutant 
counterparts. Genes having cancer-specific double mutations are red and cancer-wide 
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double mutations are in blue (25 TSGs with 72 double mutations, 13 OGs with 55 
double mutations, and the remaining 15 are labeled as both or neither).   

Double mutation components that are not known drivers can be considered as 
‘potential latent driver’ mutations. In a doublet, the components can be known drivers 
or potential latent drivers, so each doublet is cataloged as DD, Dd, and dd. That is, DD 
is a known driver-known driver doublet, Dd is a known driver-potential latent driver 
and dd is a doublet consisting of two potential latent drivers. Among the 155 same 
gene double mutations, there are 54 DD, 29 Dd, 72 dd where the mutations that are 
not cataloged as known driver (D) are potential latent drivers. The 155 same gene 
double mutations are composed of a pairwise combination of 213 mutations of which 
73 are known drivers and 140 are potential latent drivers. Thus, our analysis can 
capture rare mutations that are potential latent driver candidates.  
The 155 significant double mutations are composed of 213 mutations in 53 different 
genes. These 53 genes harbor 34,011 mutations that are observed in at least one tumor. 
Therefore, the fraction of double mutation components among all mutations (in 53 
genes carrying at least one same gene double mutation) is ~0.6%. When we evaluate 
all mutations on 53 genes that are observed in at least three patients, the total number 
of such mutations is 6245 and the fraction is ~3.4% (Appendix A-Figure 2). 
 
When we solely examine the double mutations in genes classified as OG or TSG, the 
number of doublets of type DD, Dd, dd is 37, 12, 6, and 17, 17, 38 on the 13 OGs and 
25 TSGs, respectively. We observe that OGs have significantly more DD mutations 
than TSGs (p-value < 10-7, two-sided Fisher’s Exact Test) and the fraction of double 
mutation components among all mutations on these 13 OGs (~1.2%) is almost two 
times higher than the fraction of double mutation components among all mutations on 
these 25 TSGs (~0.5%) (Figure 6). This result implies that becoming more oncogenic 
requires mostly co-occurrence of two frequent mutations while suspending tumor 
suppressor activities may involve rare mutations coming together. 



30 
 

 
Figure 6. Composition of the double mutations based on known driver (D) and 
potential latent driver (d) labels in tumor suppressor genes and oncogenes where D is 
already known frequent driver mutations, d is relatively rare potential latent drivers 
(p-val <10-7, two-sided Fisher’s Exact Test). 

In the pan-cancer dataset, same gene double mutations accumulate in 53 genes, of 
which 25 are TSGs, 13 are OGs, 2 are both OG and TSG, and the rest (13 genes) are 
in other functional categories.  There are 821 double mutant tumors carrying at least 
one double mutation in these 53 genes. In total, the number of tumors having at least 
one double mutation in an OG and TSG is 468 and 307, respectively. Patient tumors 
that have at least one double mutation in any TSG have a significantly higher 
passenger mutation load compared to patient tumors having at least one double 
mutation in an OG (p-value < 10-30, two-sided Mann Whitney-U Test, Figure 6). Given 
that only ~2% of the 41,734 tumors (having at least one mutation in the 53 genes) carry 
a double mutation, double mutations are comprising a very small portion of gene-
mutant tumors. Especially, TSGs require a very high mutation load for two coexisting 
mutations in a single gene. Based on the mutation load, and in line with our previous 
result, loss of function through double mutations in TSGs requires considerably higher 
mutational load compared to gain of function in OGs. We further compared the 
mutation load of TCGA and GENIE cohorts separately, taking into account the 
differences in coverage between the sequencing technologies (Appendix A-Figure 3). 
There are 63 and 69 tumors with at least one double mutation in an OG and TSG, 
respectively, in the TCGA data set. Similarly, the GENIE data set has 405 and 238 
tumors with at least one double mutation in an OG and a TSG, respectively. Our 
finding that tumors with at least one double mutation in any TSG have a significantly 
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higher passenger mutation burden is preserved in both the TCGA and GENIE datasets 
(two-sided Mann Whitney-U Test, p-values 0.003 and 10-30, respectively). In addition, 
comparing passenger mutation loads among all tumors from TCGA (9588 tumors) and 
GENIE (52,979 tumors) revealed that TCGA tumors have a larger passenger mutation 
load (Appendix A-Figure 3A-B). Among the sample group harboring at least one 
double mutation in a TSG, both passenger and passenger+driver mutation loads are 
higher than in OGs (Figure 7, Appendix A-Figure 4). Moreover, there are 43 known-
driver and 22 latent driver mutations in OGs; and 30 known-driver and 74 latent driver 
mutations in TSGs when we compare the counts of the known-driver and potential 
latent driver mutations contributing to the formation of significant double mutations. 
Given these two facts, excess passenger load might have led to the discovery of more 
latent drivers in TSGs than OGs.  
 
Double mutations in TSGs are more enriched in latent driver mutations compared to 
OGs. This abundance could be due to the higher passenger mutation load among 
tumors with double mutations in TSGs. Despite the small number of samples with 
cis/trans information, the double mutations in TSGs mainly occur in trans. 
Here, the task is to decide whether latent driver mutations in TSGs are functional or 
they are false positives due to the passenger mutation burden. There is a need for pre-
clinical models such as patient-derived xenografts or cell lines containing double 
mutations in cis in TSGs. To inspect the role of such latent drivers, it would be 
enlightening to perform a comparative analysis of tumor growth or drug response in 
wild type, single and double mutant (in cis) pre-clinical models. 
 

 
Figure 7. Box plot showing passenger mutation load in OGs and TSGs (p-val <10-30, 
two-sided Mann Whitney-U Test). 
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3.2.2 Functional interpretation of double mutations by using the characteristics of 
mutation constituents and double mutant tumors 

 
To interpret the functional consequences of double mutations, we elaborated on the 
frequencies of the mutations forming the significant pairs, the chemical properties of 
the wild-type and mutant residues, or the relationships of the double mutation 
components with mutational signatures. Known driver mutations have a higher 
frequency than potential latent driver mutations (Figure 8). The median values of 
tumor count for known driver and potential latent driver mutations are 70 and 9, 
respectively (p-val<10-10, two-sided Mann Whitney-U Test). Potential driver 
mutations are relatively rare, and their pathological impact can be dramatic when they 
couple with another mutation. Therefore, we cataloged all potential latent driver 
mutations that contribute to a significant doublet in the same gene as strong or weak 
latent drivers. The list of 140 latent drivers can be found in the supplementary data of 
[159]. 
 

 
Figure 8. Tumor count distributions of known driver and potential latent driver 
mutations (p-val<10-10, two-sided Mann Whitney-U Test).  
 
Next, we followed a bottom-up approach to obtain the spatial, chemical, and pathway 
level organization of the double mutations. We used the pan-cancer mutation clusters 
deposited in 3Dhotspot where each cluster represents the set of mutations that are 
spatially close to each other [165]. We found that components of the doublets in the 
same gene are usually spatially distant from each other. The simultaneous presence of 
two strong spatially close driver mutations is rare in a patient tumor; there are only 15 
doublets belong to the same cluster accumulated in EGFR, KRAS, PIK3CA and TP53. 
However, some weak drivers are proximal to either a strong driver or another weak 
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driver, as in the cases of mutations at positions R130/R173 in PTEN. Spatially close 
residues may form potent allosteric couples, which may enhance proliferation.  
 
There are four rare (significant double mutations observed in less than three tumors) 
BRAF doublets (see supplementary data of [159]). Here, the mechanisms of BRAF 
mutations were classified into those suggested to be activated as monomers (Class 1), 
acting as constitutive active dimers (Class 2), and those having impaired/dead kinase 
activity (Class 3) [166]. There are two doublets having a mutation from Class 2 (K601, 
L597). These rare double mutations are still kept when we apply a more stringent 
threshold for total VAF value (up to 40%). 
 
During the formation of double mutations, we had assumed all mutations at a specific 
position in a protein as the same mutation. We traced back to the mutation positions 
and obtained wild type and mutated amino acid types to obtain the chemical class 
changes. A comparison of the fraction of chemical classes of the wild type and mutant 
residues revealed that Charged>Polar and Charged>Charged switches are more 
dominant among TSGs and OGs, respectively (p-values ~0.009, 0.04 respectively, 
two-sided Fisher’s exact test, p=0.05) (Appendix A-Figure 5A, Appendix B). 
Similarly, for the double mutation components that are Known Driver [D] or possible 
latent driver [d], we compared the chemical class alterations of the mutations. 
Hydrophobic>Hydrophobic changes are more common among tumors carrying 
potential latent drivers. Charged>Polar and Charged>Charged changes are prominent 
among tumors carrying known drivers (Appendix A-Figure 5B).  
 
 In total, the number of tumors having at least one double mutation in an OG and TSG 
is 468 and 307, respectively. The distribution of variant classifications among the 
tumors carrying at least one double mutation in an OG is as follows: 
missense+missense (~99%), missense+frameshift (<1%), missense+nonsense (<1%) 
(Appendix A-Figure 6A). Among these tumors, doublets in which both mutation 
components are missense mutations are dominant. On the other hand, we see a more 
diffuse result when we analyze the tumors harboring at least one double mutation in a 
TSG (Appendix A-Figure 6B). These tumors have variant classifications as 
missense+missense (50%), frameshift+frameshift (~30%), missense+nonsense 
(~10%), missense+frameshift (~3%), frameshift+nonsense (~0.48%). The specific 
sample details related to variant classifications of double mutations in OGs and TSGs 
are provided in the supplementary data of [159]. 
 
During post-processing, we identified 3519 tumors as hyper-mutated out of 62,567 
samples with at least one point-mutation with a Q3+8 x IQR threshold (see Methods). 
First, we used Fisher’s exact test (p < 0.05) to test the robustness of the 155 double 
mutations against hyper-mutated samples. 19 doublets are present in hyper-mutated 
genes including APC, KMT2D, ZNF442, and ZNF678; therefore, we excluded these 
doublets from the subsequent analyses. Among the remaining 136 doublets, one is not 
significant according to Fisher’s exact test (p < 0.05) evaluated in the non-hyper-
mutated tumor group (see [159]).  
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Then, we performed a permutation test (p < 0.01) using the non-synonymous mutation 
burden of the double-mutant and single-mutant tumors (see Methods). For each double 
mutation, we tested the null hypothesis that the double mutant tumors (labeled 
“Double”) have a mean mutation burden less than or equal to the mean mutation 
burden of the remaining gene-mutant tumors (labeled “Single”). We can reject the null 
hypothesis for 7 doublets since the p-values obtained with the permutation test are less 
than 0.01. For the remaining 129 significant doublets the evidence is not sufficient to 
conclude that the double mutant tumor samples have a lower or equal mean observed 
mutation load on the basis of failure to reject this as a null hypothesis [159]. 
 
We next conducted single base substitutions (SBS) signature analysis of double 
mutations to explore if components of doublets have common or different signatures 
(a.k.a. contexts). There are 96 single base substitutions (SBS) of the trinucleotide 
context where the mutated base is in the middle in square brackets expanded with 5’ 
and 3’ bases[48] (e.g. T[G>A]A). We only considered missense mutations in SBS 
analysis. As a result, we analyzed 711 records (tumor-specific information for each 
doublet) from 115 doublets in 649 tumors. Within this set, the majority of the double 
mutations are of different contexts (630 records), and all of these records match with 
one of the 96 channels (see Methods). There are 81 records (composed of 17 doublets 
in 77 tumors) where the double mutations are of the same context from 96 channels. 
The contexts T[G>A]A, C[G>A]A, C[A>G]T, and A[G>T]A are dominant and are 
present in 40, 13, 5, and 5 records, respectively. Doublets from the same context are 
mostly located in PIK3CA (Appendix B, [159]). 
 
Taken together, double mutations are exceedingly rare phenomena and do not 
positively correlate with the tumors’ mutation burden. The components of the doublets 
that have been classified as latent driver mutations also occur far less frequently than 
known driver mutations. Despite several genes with double mutations having a high 
rate of single mutations in different tissues, there are extremely few double-mutant 
genes that are tissue-specific. Additionally, in contrast to TSGs, the doublets in OGs 
are mainly comprised of known driver mutations. Double-mutant tumors with at least 
one TSG doublet have a higher passenger mutation load. These could be attributed to 
different mechanisms in elevating oncogenic signaling and lowering tumor-
suppressive signaling through double mutations among OGs and TSGs, as well as their 
biological impact. 
 
3.2.3 Doublets in the same gene are rare but are a signature for some cancer types 
 
After identifying the doublets that are significant at the pan-cancer level, we also 
assembled tissue-specific sets of double mutations since tissues differ in sample size 
and are enriched in different genes and mutations. Identification of tissue-specific 
double mutations are particularly essential because they may point to the tissue of 
origin of the preclinical models to evaluate drug responses and tumor growth patterns. 
As shown in Figure 9A, co-occurring double mutations in the same gene are relatively 
rare, with varied frequencies across tissues. In some tissues, doublets are present in the 
same gene in up to 10% of the patient tumors (e.g., bowel and breast tissues). However, 
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same gene doublets are either extremely rare or not present in other tissues, such as 
the pancreas, ovary, liver, kidney, biliary tract.  
 
Since double mutations are significantly less common than single mutations (t-test, p-
value~0.006), tissue-specific double mutations can have important roles to predict 
sensitivity/resistance to specific inhibitors. Here, we aimed to determine the fraction 
of tumors with at least one double mutation on the corresponding gene among all gene 
mutants in each tissue or cancer type. Figure 9A illustrates the tissue-specific 
prevalence of double mutations in the same gene. TP53 and its double mutations are 
cancer wide. PIK3CA double mutations are quite common in breast and uterus tumors. 
Among lung tumors, EGFR, and among bowel tumors, PIK3CA double mutations are 
ahead by far. Bowel, breast, and lung tissues are enriched with double mutations on 
specific genes whereas brain tissue has significant but rare double mutations in 
multiple genes such as FGFR1, IRS2, POLE, TP53. LUAD (Lung Adenocarcinoma) 
is enriched with EGFR double mutations. COAD (Colon Adenocarcinoma) is enriched 
with B2M, PTEN and RNF43 double mutations. We note that PIK3CA double 
mutations are relatively more dominant in BRCA, IDC, ILC, COAD, and UEC 
subtypes (Figure 9B).  
 
The most frequent mutation, G12D on KRAS, is rarely coupled with another mutation 
in KRAS [159]. The mutational mosaic of KRAS is distinguishable among different 
cancer types. G12D is predominantly present in pancreatic, lung and colorectal 
cancers. KRAS mutations are context specific, and a mutation may act differently in 
different cancer types. 
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Figure 9. Same gene double mutations are specific to some tissues or cancer 
subtypes. Bubble plots show number (node size) and frequency (node color) of 
double-mutant tumors among gene-mutant tumors across different tissues and cancer 
subtypes (Oncotree). For the 53 genes with significant same gene double mutations, 
node size represents the number of patients carrying at least one doublet on a gene in 
a tissue or cancer type. (A) Presence of same gene double mutations across different 
cancer tissues where at least three tumors carry at least one same gene double mutation 
in one of the 53 genes. (B) Presence of same gene double mutations across different 
cancer subtypes. The cancer subtypes where at least five tumors carry at least one 
double mutation are listed on the y-axis. 
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PIK3CA has three driver mutations- H1047, E45, and E542- mostly accompanied by 
a group of rare mutations that are potential latent driver mutations. Along the same 
lines, the driver mutations L858, T790, G719 on EGFR; R130 and R173 in PTEN have 
rare potential latent driver mutation companions (Figure 10). 
 

 
Figure 10. Representation of mutations in genes to compose a doublet as a circular 
diagram. The strips from one residue to another represents significant double 
mutations with size of strips indicating frequency of each double mutation. 
 
Thus, even though rare, doublets on the same gene can be a signature for some cancer 
types, e.g., bowel, breast, and lung cancers. 
 
3.2.4 Linking double mutations to clinical data using cancer cell lines and 

xenografts 
 
We next explored the potential clinical association of these significant same gene 
double mutations. Since the patient-specific clinical and treatment data are sparse, we 
computationally screened differences in cell lines and patient derived xenografts 
(PDXs) from available experimental datasets. We used cancer cell lines from the 
DepMap project and PDX samples provided in Gao et al. [163]. In both datasets, 
mutation profiles and response to a panel of hundreds of drugs are available. Double 
mutations are rare in the patient tumor samples. We notice the same pattern: Despite 
scanning hundreds of cancer cell lines, double mutations on the same gene are rare. 
Among 155 same gene double mutations only 23 double mutations are present in at 
least  one cell line in Cell Model Passports [161]. The intersection between the 
significant double mutations and their presence in the cell lines led us to pursue a 
detailed analysis on the genes PIK3CA, EGFR, BRAF, and PTEN.  
 
PIK3CA has both strong drivers (e.g., H1047R, E545K), and weak drivers (e.g., R88Q, 
E453K, M1043I) which are components of 23 significant double mutations in the 
patient cohort. Despite PTEN, TP53, EGFR and the rest (53 genes in total) have a 
higher single mutation load compared to PIK3CA, their double mutation load is by far 
less (the paired dot plot for 53 genes is shown in Appendix A -Figure 7). Full activation 
of oncogenic PIK3CA is through at least two drivers acting in different, albeit 
complementary mechanisms, or enhancing each other. One well example of how the 
co-occurrence of in cis mutations might promote cancer is PI3Kα [29,31]. Moreover, 
crystal structures and experimental research have shown the activation mechanism at 
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the atomic scale, and the role of frequent or rare driver mutations on this mechanism 
is widely discussed [36,167–170]. E542K, E545K, and H1047R are hotspot helical 
and kinase domain mutations that can activate PI3Kα, but they can also have additive 
effects when combined with the moderate mutations E453K/Q, E726K, and M1043V/I 
[25,36]. Sporadic and weak activating mutations in PI3Kα are also present. The weak 
mutations cause conformational changes that lead to PI3Kα activation. These weak 
mutations include E726K and M1043VI in the kinase domain, N345K, C420R, and 
E453K/Q in the C2 domain, and R38H/C, R88Q, R93Q, R108H, and G118D in the 
ABD domain [36] . Thus, the pathological impact of a single driver may be insufficient 
[40]. One well-known example is H1047 and E545 double mutation enhancing 
proliferation. However, E545 and E542 double mutations do not make PIK3CA reach 
the fully activated level. A combination of two strong latent driver mutations – but 
likely not two weak mutations – may act like a driver mutation. The frequency of 
double mutation components in PIK3CA is shown in Figure 11 where many doublets 
are composed of one frequent and one rare mutation [40,167]. 
 

 
Figure 11. Paired dot plot of the 23 double mutations in PIK3CA, and the number of 
tumors carrying them. Colors indicate type of a mutation, strong driver (purple), weak 
driver (orchid), strong latent driver (blue), weak latent driver (light blue). Lines size 
connecting the dots is proportional to the number of tumors with double mutations. 
 
Our frequency-based analysis revealed that E726 is a potential strong latent driver 
while N107, R357, E418 and H1048 might be weak latent drivers coupled with a weak 
or strong driver mutation. PIK3CA double mutations are also tissue- and context-
specific as shown in Figure 12. Most are in breast tissue. An exception involves 
doublets consisting of R88Q which are depleted in breast but frequent in uterus tumors. 
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Their structural location is shown in Figure 13. Kinase mutations work by destabilizing 
the inactive or stabilizing the active state. These are better captured by their detailed 
conformational alterations. A detailed analysis of the folding free energy (ΔΔG) upon 
double or single mutation with DynaMut [171]  shows the increased impact of several 
double mutations in the protein stability  (Appendix A-Figure 8, Appendix B). 
 

 
Figure 12. Presence of PIK3CA same gene double mutations across different cancer 
tissues. Dots are scaled based on the number of tumors having double mutations, and 
color corresponds to the percentage of double mutant tumors among single mutants. 

 
The impact of co-occurring mutations in the same gene is mostly additive but can be 
also cooperative. When the double mutant phenotype incorporates traits from the 
single mutants, it can be regarded as additive. Additivity is considered to be a sign that 
there is no functional link between the driver mutations under evaluation. When the 
combined effect of two mutations on the phenotypes is greater than the total of each 
mutation’s individual effects, they are referred to as cooperative (also known as 
synergistic, positive epistasis, or more-than-additive). But rather than just adding up 
the impacts of two mutations, it is possible to obtain a lesser effect (suppressed, 
negative epistasis) [32,92,172]. There are seven allosteric mutations at positions 83, 
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88, 365, 539, 542, 603, 629 in PIK3CA in BRCA as cataloged in Allosteric DB [173]. 
13 out of 23 PIK3CA double mutations are harbored by at least one breast tumor and 
there are 215 double mutant tumors. The doublet P539/H1047 in PIK3CA is composed 
of one strong driver (at position 1047) and one weak driver mutation (at position 539) 
which is allosteric. Their effects are additive.  
 

 
Figure 13. 3D structure of PIK3CA (PDB: 4OVV) with H1047, E726, E542, E545, 
R88, R93, P539, E418, R357, N107 mutations. Red, pink, blue and cyan residues are 
strong driver, weak driver, strong latent driver, and weak latent driver mutations, 
respectively.  

 
We found a breast cancer cell lines with cis mutations [29] in PIK3CA belonging to 
the BRCA subtype: BT-20 has P539/H1047 double mutation. H1047R is a frequent 
driver. However, P539 is a rare mutation in the pan-cancer data, making it a potential 
weak driver. To illustrate the difference between the double mutations and single 
mutations in terms of drug response, a network of cell lines to drugs and target 
pathways is constructed (Figure 14A) where drugs are linked to each cell line which 
has altered response compared to their single mutation counterparts. Indeed, there is a 
difference in the response to PIK3α inhibitors in double-mutant cell line BT-20 
compared to single mutant cell line counterparts (p-value = 0.015). Additionally, 
double mutant BT-20 cell line is significantly sensitive to the PIK3𝛾 inhibitor 
CZC24832 while single mutant MFM-223 (H1047) cell line does not show significant 
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response (Figure 14B).  Despite factors contributing to the drug sensitivity including 
other single point mutations and gene copy numbers, double mutations in PIK3CA 
may be still an important contributor as evidenced by increasing its oncogenic activity 
described in the literature. Therefore, we further explored PDX data to compare double 
mutant and single mutant PIK3CA tumors in terms of the tumor volume changes and 
drug responses. We found two PDXs having double PIK3CA mutations (E726/H1047, 
R88/T1025). In PDX X-2524 with doublet H1047R/E726K, a strong known 
driver/strong latent driver combination, the volume change of the tumor between days 
0 and 10 is more than 1700 mm3, while single mutant tumors X-3077 and X-3078 
(with mutation H1047R) have volume change of ~200 mm3 in the first 10 days 
reaching ~400 mm3 at around 35 days (Figure 15A). The double mutant PDX tumor 
has a dramatically higher growth rate. We compared the growth pattern of double 
mutant PDX with only single H1047 mutant PDX since there was not any single E726 
mutant PDX within the data set.  
 
Tumor growth rate data of these three PDX tumors are also available for drug 
treatment. BYL-719 (Alpelisib) treatment, a selective PI3Kα inhibitor, diminishes 
tumor volume by 88% (around 1600 mm3) in the first 10 days in the double mutant in 
the xenograft (X-2524) which is dramatically higher than the single mutant xenografts 
(X-3077 and X-3078) implying increased drug sensitivity (Figure 15B). Drug 
combination of BYL-719 with LJM716, an anti-HER3 monoclonal antibody, is even 
more effective in reducing tumor volume than BYL-719 treatment alone because of 
the HER3 alteration in this PDX (Figure 15C). In cis E726K/H1047R doublet may be 
a potential strong driver of faster tumor growth rate and better response to PI3K 
inhibitor Alpelisib; however, no causal conclusions can be drawn without functional 
data for these cell lines and PDXs. Several factors may lead to this difference in tumor 
growth rate and response to PI3K inhibitor. Despite other alterations, these PDX 
models have only one known driver mutation (cataloged in Cancer Genome 
Interpreter) at position 1047 in PIK3CA and common in all three xenografts (X-2524: 
PIK3CA 1047/726 double mutant, X-3077 and X-3078: PIK3CA 1047 single mutant). 
Another factor is the copy number of the genes in PI3K/Akt/mTOR  pathway which 
could affect PIK3CA activity, and drug response. The copy number values (the median 
values for individual exons called by ExomeCNV [163]) of PIK3R1 and AKT3 in the 
double mutant xenograft are two-fold higher than the single mutant samples (double 
mutant: 2.41, single mutants:1.34, 1.41). PIK3R1 functions as a negative regulator of 
PIK3CA. Increased level of PIK3R1 may negatively regulate the excessive activity of 
double mutant PIK3CA.  
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Figure 14. (A) Response of PIK3CA breast cancer cell lines with double mutations in 
cis to drugs in network representation. Dashed lines connecting cell line nodes 
(hexagon) to mutation nodes (diamond) indicates cell lines that harbor the 
corresponding mutations. Green and red lines connecting cell line nodes (hexagon) to 
drug nodes (V-shaped) represent sensitivity and resistance of the cell lines to the 
corresponding drugs, respectively. Dashed lines between the drug nodes (V-shaped) 
and pathway nodes (rectangle) indicate that the drugs have target(s) in the 
corresponding pathways. (B) PIK3CA mutation doublets in breast cancer and the 
associated violin plot illustrating response to PI3Kɣ inhibitors. 

 
On the other hand, not all tumors having double mutation in PIK3CA show a similar 
pattern. For example, growth rate of the tumor (X-3093) with R88/T1025 is slower 
than of the tumor having a single mutation (at position R88), because both mutations 
are potential weak drivers and mutations in PTEN (E7 and R130*) in addition to other 
alterations. A tumor with only the R88 mutation is more responsive to PI3K inhibitors 
compared to that with R88/T1025 (Appendix A-Figure 9A-H). PTEN is a tumor 

A. 

B. 
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suppressor and PIK3CA is an oncogene. Active PI3K phosphorylates signaling lipid 
PIP2 to PIP3.This activates a cascade of protein kinases leading to the cell cycle. PTEN 
suppresses cancer by dephosphorylating PIP3 back to PIP2. Loss of function at PTEN 
and gain of function at PIK3CA ascends PIP3 levels in the cells [174]. PTEN is a 
negative regulator of the PI3K/Akt/mTOR signaling pathway. Overactivation of 
PIK3CA and loss of activity of PTEN due to the double mutations can lead to 
hyperactivation of PI3K/Akt/mTOR signaling which may result in oncogene induced 
senescence (OIS), potentially explaining the blockage of tumor growth in the double 
mutant X-3093 xenograft. 
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Figure 15. (A) Tumor volume changes of single and double PIK3CA mutant 
xenografts without any treatment. (B) Tumor volume comparison of the single and 

C. 

B. 

A. 
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double mutant xenografts without any treatment and with BYL719 (Alpelisib) 
treatment. (C) Comparing tumor volume changes of the double PIK3CA mutant 
xenografts without any treatment and with BYL719 and BYL719+LJM716 treatment. 

Another oncogene with latent driver mutations is EGFR; the mutations L62, G779, 
K860, A871 are weak latent accompanied by weak/strong driver mutations (Figure 
16A). There are 17 double mutations on EGFR; these doublets are mostly composed 
of weak drivers (7 doublets) and weak+strong driver combinations (6 doublets). A 
combination of a weak driver and a strong driver mutation T790/ L858 double 
mutation in EGFR is present in one cell line (NCI-H1975) of lung cancer. H3255 cell 
line has only one mutation at position L858 in EGFR (Figure 16B). Both mutations 
are in the kinase domain to which the RTK inhibitors bind (PDB: 4I23, Figure 16C). 
However, response to the inhibitors is significantly different in the cell line with 
double mutant EGFR. It is more resistant compared to the single mutant cell line (p-
value=0.01, two-sided Mann Whitney-U Test, Figure 16D). 
 
L858R in EGFR is sensitive to EGFR-targeted tyrosine-kinase inhibitors (TKIs). After 
treatment with TKIs, T790M, has been observed. It decreases TKIs’ binding [32,175].  
L858R lies in the A-loop of the drug binding pocket and destabilizes the inactive 
conformation. The “gatekeeper” residue T790M is in the hinge region of the binding 
pocket. L858/T790 increases the protein stability and changes the conformation of the 
binding pocket which generates resistance to the EGFR inhibitors[176,177]. Another 
double mutation is T790/C797. The sensitivity of the T790M mutant in lung cancer 
tumors to the third generation TKIs vanishes with the emergence of C797S [32]. 
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Figure 16. Structural and clinical aspects of EGFR double mutations. (A) Paired 
dot plot of EGFR double mutations. Each paired dot represents one double mutation. 
Dots are colored according to their type, driver (purple), weak driver (orchid), strong 
latent driver (blue), weak latent driver (sky blue). Line size connecting the dots is 
proportional to the number of tumors with double mutations. (B) EGFR mutation 
doublets in lung cancer cell lines and their response to drugs in network representation. 
Dashed lines connecting cell line nodes (hexagon) to mutation nodes (diamond) 
indicate cell lines that harbor corresponding mutations. Green and red lines connecting 
cell line nodes (hexagon) to drug nodes (V-shaped) represent sensitivity and resistance 
of the cell lines to the corresponding drugs, respectively. Dashed lines between the 
drug nodes (V-shaped) and pathway nodes (rectangle) indicate that, the drugs have 
target(s) in the corresponding pathways. (C) Representation of double mutations in 
EGFR structure. (D) EGFR mutation doublets in lung cancer together with the violin 
plot that shows the response to RTK inhibitor in double mutant and single mutant cell 
lines. More negative z-score means more sensitivity and more positive z-score means 
more resistance to the drug molecule. 
 
Collectively, pre-clinical models -PDXs and cell lines- bearing double mutations show 
different growth and drug response patterns. The PIK3CA double-mutant PDX grows 
faster, and its growth trend differs from the single-mutant PDXs. Better response to 
the PI3K inhibitors both in double mutant cell lines and PDX gives clues to their 
clinical behavior, despite the necessity of functional data. On the contrary, EGFR 
double mutation may lead to increased resistance by altering the inhibitor binding 
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pocket. Overall, the double mutations and single mutation counterparts are not the only 
genetic difference between pairs of single mutant and double mutant cell lines or 
PDXs. However, the significant difference between double and single mutants in terms 
of drug response and tumor growth make them good candidates for further exploration 
of their clinical association.  

3.3 Concluding remarks 

A major observation from our comprehensive analyses in this chapter is that double 
mutations are infrequent event. We attributed the relative rarity of strong doublet hot 
spots to oncogene induced senescence (OIS). Another highly plausible explanation is 
that our doublets count identical mutations. However, the doublets can consist of 
mutations of similar chemical character. Our results, supported by drug response data 
of cell lines and patient-derived xenografts, and transcriptomic profiles of single and 
double mutant tumors, provide a strong background for therapeutic potentials of 
double mutations. Our results may form a basis for further experimental evaluation of 
molecular alterations to be exploited for therapeutics across different cancer types. The 
cancer-specific doublet that we observed here can be useful in clinical identification. 
Mechanistically, the actions of same gene double mutations are more straightforward 
to interpret as compared to double mutations in different proteins in independent 
pathways. How double mutations in independent pathways work is highly challenging 
to understand.
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CHAPTER 4 
 

 
CO-OCCURRING MUTATIONS IN TRANS CAN BE METASTATIC 

MARKERS; EXCLUDED COMBINATIONS CAN ENCODE ONCOGENE-
INDUCED SENESCENCE 

 
 
 
Tumorigenesis is attributed to the activation of oncogenic signaling pathways via driver 
mutations. Tumor formation needs to be evaluated regarding to complex relations between 
driver mutations. Conventionally, the interactions between driver genes are mainly 
observed in two different ways: Co-occurring and mutually exclusive driver mutations in 
certain cancer types. Co-occurring driver mutations usually act through different/parallel 
pathways, while mutually exclusive driver mutations act through same/redundant 
pathways. This distinction basically relies on the fact that, the genes on the 
same/redundant path exert similar and different/parallel pathways exert same and different 
functions, respectively. The additivity of co-occurring driver mutations in different genes 
(in trans) can lead to powerful oncogenic signal, encoding aggressive proliferation. Rare 
co-occurring in trans combinations can serve as metastasis markers; excluded 
combinations may give rise to oncogene-induced senescence (OIS). In this chapter, a 
statistical approach was applied to identify significantly co-occurring mutations in the 
pan-cancer data of mutation profiles of ~80.000 tumor sequences from the TCGA and 
AACR GENIE databases. Co-occurring and mutually exclusive mutation pairs that 
additively can promote tumorigenesis through single or multiple pathways are cataloged. 
Although most of the different gene double mutations were present in primary tumors, 
rare occurrences can be a signature of metastatic tumors. 4352 statistically significant 
different gene double mutations that alter non-redundant pathways and interactions and 
promote cancer-specific tumorigenesis were identified. The relationships among genes, 
including functional similarities (differences), occurrence in the same or different 
pathways, and their location in the pathway, upstream (or downstream) were inspected 
throughout the chapter. 

4.1 Methods 

4.1.1 Data collection and processing 
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All available somatic missense mutation profiles are downloaded from two sources, The 
Cancer Genome Atlas (TCGA) and the AACR launched Project GENIE (Genomics 
Evidence Neoplasia Information Exchange) [45,56,108]. The TCGA mutation annotation 
file contains more than 11,000 human tumors across 33 different cancer types. The GENIE 
mutation file (Release 6.2-public) contains 70,679 samples across 671 cancer subtypes 
under Oncotree classification. The GENIE cohort contains multiple tumor barcodes 
belonging to the same tumor type. In such a case only one primary tumor barcode is kept 
for further analysis. We continued the analysis with 78,837 samples from 671 cancer 
subtypes and 34 tissues (including UNKNOWN and OTHER categories). There are 
50,138 primary and 22,703 metastatic tumors within the final dataset. We used pathways 
obtained in[178] to associate with dual mutant genes. The dataset contains ten canonical 
pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3- Kinase/Akt, RTK-RAS, TGF-β 
signaling, p53 and β-catenin/Wnt. In addition to these, we included categories Cohesin 
Complex (contains cohesin complex subunits SMC3, STAG2 and RAD21), PKMTs 
methylate histone lysines and Generic Transcription Pathway (from Reactome). 
 
4.1.2 Identification of significant double alterations 
 
The total number of mutations and copy number variations is 1638191 in 19443 genes. 
We only evaluated dual combinations of 23715 (on 5215 genes) of these alterations 
observed on at least 5 tumors. We constructed binary combinations of the remaining 
21983 mutations. Then we created a contingency table for each combination of tumor 
numbers having both mutations, only the first or second alteration and none of those two 
alterations. Based on the contingency table, we calculated the p-value by using Fisher 
Exact Test with the formula below: 
 

23-43 526-76 5

23-4-6-73-7 5
				(1) 

 
where a is the number of tumors having both alterations, b is the number of tumors having 
only the first alteration, c is the number of tumors having only the second alteration and d 
is the number of tumors not having these two alterations. 
 
~4352 significant pairs on different genes were decided using the Fisher Exact Test for 
p=0.05 and Benjamini-Hochberg FDR correction was applied (q<0.05). We used the 
Catalog of Validated Oncogenic Mutations from the Cancer Genome Interpreter [9] to 
label double mutation components: if a mutation is among the 5601 driver mutations we 
label it as known driver (D), otherwise driver (d) (based on what is the driver 
identified/determined).  
 
4.1.3 Survival analysis  
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For survival analysis, 10336 patients in MSK impact 2017 and 11160 patients in TCGA 
and their overall survival status are used [108]. We compared survival times of tumor 
groups with significant same/different gene double mutations and single mutations in a 
specific cancer subtype. The first group is the union of patients with significant doublets 
whereas the second is the union of patients that carry only one component of these 
significant double mutations. Then we gathered overall survival times (time in months) 
and vital status (1: Deceased, 0: Alive) of these patients for survival analysis. We utilized 
the “survival” library of R to do Kaplan Meier Survival Analysis of double and single 
mutant groups. The survival probability at any particular time is calculated by the formula 
given below [179]:  
 

𝑆) 	=
(:;<=>?	@A	B;=C>D)B	E$F$GH	I)	)J>	B)I?))&(:;<=>?	@A	B;=C>D)B	)

:;<=>?	@A	B;=C>D)B	E$F$GH	I)	)J>	B)I?)
			(2) 

 
4.1.4 Oncoprint maps 
 
To reveal mutual exclusivity and co-occurrence patterns between double mutations we 
plotted oncoprint maps by using ComplexHeatmap package of R.  
 
4.1.5 Transcriptome analysis 
 
To identify differentially expressed genes in the group of patients with double mutations 
compared to the single mutant patient group we downloaded RNA-seq transcriptome data 
of the TCGA project from the cBioPortal database (https://www.cbioportal.org). We used 
median Transcripts Per Kilobase Million (TPM) values of RNA-seq data of PAAD and 
BRCA cohort of TCGA.  For the PAAD cohort, 177 patients with TPM values, we 
constructed two groups where Group 1 is tumors having at least one significant double 
mutation of type KRASG12D/V/C +TP53mutation and group 2 is tumors having either single 
mutant KRASG12D/V/C or single mutant TP53. For the BRCA cohort, 1082 patients with 
TPM values, we constructed two groups where the PIK3CADouble mutant group has tumors 
having at least one significant PIK3CA same/different gene double mutation and the 
PIK3CASingle mutant group has tumors having at least one PIK3CA mutation but without any 
significant same/different gene double mutation of PIK3CA. We calculated the log2FC 
value of each gene between the double mutant and single mutant groups by using the 
formula: 
 

𝑙𝑜𝑔2𝐹𝐶 = P>IGQR>G>SB	TUP	FIE;>B	I<@GH	V@;=E>	R?@;W	UI)$>G)BX
P>IG(R>G>SB	TUP	FIE;>B	I<@GH	Y$GHE>	R?@;W	UI)$>G)B)

				(3) 
 

We identified differentially expressed genes between the double mutant tumors group and 
the single mutant tumors group (comparison of means of TPM values by Mann-Whitney 
U-Test).  If |𝑙𝑜𝑔2𝐹𝐶|>0.5 and p-value < 0.01 we considered the corresponding gene as 
differentially upregulated or downregulated in the double mutant group. We continued 
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our analysis with these differentially expressed genes. Then we calculated z-scores of each 
gene as follows: 
 

𝑧	 = TUP	FIE;>	@A	R>G>&[
\

					(4) 
where is µ is the mean of TPM values and σ is the standard deviation across all samples 
in the double mutant and the single mutant groups. After obtaining z-scores for each gene, 
we sorted the genes as downregulated and upregulated and represented these values as a 
heatmap (https://seaborn.pydata.org). We used Webgestalt (http://www.webgestalt.org) 
for the gene set enrichment analysis where the functional database is selected from 
Reactome and significantly up- or down-regulated pathways are found. FDR threshold is 
selected 0.05 and the list of genes ranked by their logFC values are given as input. 
 
4.1.6 FPGrowth tree construction 
 
We are inspired by the prediction of association rules in database transaction systems 
which find the most frequent associations between items in each transaction. In our setup, 
each tumor is considered as a transaction and each alteration is considered as an item in 
the transaction. We used the pyspark library together with the modules pyspark.ml and 
pyspark.sql to find the association rules. The FP growth algorithm is selected for tree 
construction where each node represents one alteration and each edge in the tree represents 
the association of the nodes [180]. In the constructed tree, all nodes in the path from root 
to the distant node are associated with each other and strongly present together in the 
tumors. The tendency of the alterations to be specific to metastatic tumor is calculated by  
 

𝑝𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦(𝑖) 	= 	 e$/:$
g/:

   (5) 
 
where xi is the number of metastatic tumors having double mutation i, Ni is the number of 
tumors having double mutation i, X is the number of metastatic tumors and N is the 
number tumors in our dataset.  
 
4.1.7 Personalized page rank algorithm 
 
We used a network diffusion-based algorithm to find the most affected region of the 
interactome given a set of nodes. Given a directed or undirected graph G(v,e) where v∈V 
and e∈E and a set of seed nodes S⊆V, the personalized PageRank algorithm solves the 
seed set expansion problem, where it finds which additional nodes may exist in the 
community besides the nodes in S and ranks them according to their importance. We used 
the PageRank [181] function implemented in Python networkx library [182]. The damping 
parameter, alpha, is selected as 0.85 and the number of iterations are 100. In NFE2L2-
KEAP1 example, the seed nodes are selected as S={NFE2L2, KEAP1, KRAS}.    
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4.2 Results 

4.2.1 Functionally non-redundant mutations on different genes in tumorigenesis  
 
Collecting missense mutations on each gene and counting their pairwise combinations 
result in 4352 significant double mutations on different genes composed of co-existing 
mutations from 282 genes. 9276 non-significant double mutations are identified with 
Fisher Exact Test (p ≥	0.05). To examine the double mutations at the pathway level, we 
merged pathway information from KEGG and Reactome for each gene. In Figure 17A, 
we see that, both 3655 double mutation constituents belong to at least one pathway 
(~84%). Among these 2999 of the double mutations do not share a common pathway 
(~69%), and the remaining 656 mutation doublets have at least one common pathway 
(~15%). The set size of all doublets where at least one component does not belong to any 
pathway is 697 (~16%). When we looked at the potential of oncogenes (OG) and tumor 
suppressor genes (TSG) to form significant pairs among the 3958 annotated doublets, we 
identified 1998 OG+TSG, 1204 TSG+TSG, 532 OG+OG, 128 TSG+OG/TSG, 93 
OG+OG/TSG, 3 OG/TSG+OG/TSG doublets (for 394 doublets, at least one component 
is not annotated) (Figure 17B). Different gene double mutations (~45%) are dominated by 
OG+TSG type doublets.  
 
We examined whether double mutations formed by various types of combinations of 
oncogene or tumor suppressor gene mutations were known drivers (D) or drivers (d). 
Figure 17C shows that for OG+OG, OG+OG/TSG, OG+TSG, TSG+OG/TSG and 
TSG+TSG type double mutations fraction of known driver-known driver combinations 
are 58%, 3%, 42%, 2%, 20; fraction of known driver-driver combinations is 21%, 45%, 
34%, 17%, 28%; fraction of driver-driver combinations is 20%, 51%, 23%, 79%, 51%. 
OG + OG accumulates more DD type mutations than TSG+TSG, which is consistent with 
our findings on the same gene double mutations. 
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Figure 17. Overview of different gene double mutations. (A) The nested pie chart 
displays details about the pathways of 4352 different gene double mutations. In the outer 
layer, light plum region represents the fraction of double mutations where both 
components belong to at least one pathway in KEGG or Reactome (~84%); for the 
doublets in the gray region with fraction ~14%, at least one component does not belong 
to any pathway. In the inner layer, ~69% of the doublets are formed by components 
belonging to exclusive pathways (royal blue), ~15% of the doublets are composed of 
constituents sharing a common pathway (sky blue). (B) Count plot of different gene 
double mutations. Among 3958 annotated doublets Gene1+Gene2, there are 532 OG+OG, 
93 OG+OG/TSG, 1998 OG+TSG, 3 OG/TSG+OG/TSG, 128 TSG+OG/TSG, 1204 
TSG+TSG type combinations of genes harboring a double mutation component (for 394 
doublets, at least one component is not annotated). (C) Stacked bar plot of 3958 annotated 
doublets (x-axis, Gene1+Gene2) representing fractions (y-axis) of known driver (D) and 
driver (d) combinations. Blue, royal blue, light blue regions represents the fraction of 
known driver-known driver (DD), known driver-driver (Dd), driver-driver (dd) type 
doublets respectively. (D) We call a gene couple A|B if there is a different gene double 
mutation where the component mutations are on the genes A and B, and the gene couple 
A|B is mutated on the union of tumors with double mutations on these genes. Network 
representation of oncogene couples seen together in 50 or more patients: Nodes are 
oncogenes forming a gene couple, blue solid lines between nodes indicates the genes 
connected by this edge are constituents of a gene couple and they are members of  at least 
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one common pathway; dashed blue line indicates the genes connected by this edge are 
constituents of a gene couple but they do not belong to any common pathway. Gray dashed 
lines with a blue diamond mark, on the other hand, show that on the nodes they connect, 
there is no double mutation of any different gene, but that these two genes coexist on at 
least one pathway. (E) Oncoprint map of the oncogene couples. Tumor samples with 
double mutations on the oncogene couples are usually mutually exclusive. 

We call a gene couple A|B if there is a different gene double mutation where the 
component mutations are on genes A and B, and the gene couple A|B is mutated on the 
union of tumors with double mutations on these genes. Figure 17D depicts oncogene 
couples seen together in 50 or more patients. Nodes are oncogenes forming a gene couple, 
blue solid line between nodes indicates the genes connected by this edge are constituents 
of a gene couple and they are members of at least one common pathway; dashed blue line 
indicates the genes connected by this edge are constituents of a gene couple but they do 
not belong to any common pathway. Gray dashed lines with a blue diamond mark, on the 
other hand, show that on the nodes they connect, there is no double mutation of any 
different gene, but that these two genes coexist on at least one pathway. PIK3CA 
mutations co-occur with mutations on KRAS, FGFR2, IDH1, ERBB2, FGFR3, CTNNB, 
ESR1, NRAS genes. These PIK3CA partner genes share at least one common pathway 
with PIK3CA. KRAS forms gene couples with the genes ERBB2, NRAS and BRAF 
sharing a common pathway with KRAS. The density of gray dashed lines suggests that 
oncogenes are less likely to co-mutate with genes of at least one common pathway, hence, 
from this perspective the genes on the same pathway are mutually exclusive. The 
oncoprint map of oncogene couples in Figure 17E reveals that tumor samples harboring 
double mutations are mostly mutually exclusive.   
 
Post translational modification sites (PTMs), controls protein functions and protein-
protein interactions. If one or both of the different gene double mutation components hit 
a PTM site, this may increase or decrease the oncogenic signal emerging from a different 
gene double mutation.  
To this end, we checked whether the constituents of double mutations match with any 
PTM site deposited in the PhosphoSitePlus database (https://www.phosphosite.org). 
Among the 1136 doublets, one constituent mutation of the 174 doublets (~15%) matches 
with a PTM site; for two doublets on CTNNB1S37/U2AF1S34 and 
CTNNB1S33/U2AF1S34 both mutations are on phosphorylation sites (for 3216 doublets 
both components do not match with a PTM site). The low frequency of mutations 
matching a PTM site might be related to the possibility that physical and chemical changes 
in one of the mutations reduce the oncogenic signal potential of the double mutation. (Why 
checking this? It needs explaining) [183,184]. 
 
The co-occurrence/mutual exclusivity pattern at the gene level can be examined in more 
detail with the help of double mutations. The majority of genes with double mutations do 
not share a common pathway (~69% of all doublets), might be related to the fact that these 
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genes do not have a common function and therefore may increase oncogenic signal via 
activating different oncogenic pathways.  
 
4.2.2 Can double mutations co-occur in the same interface?  
 
We collected protein-protein interfaces from the Interactome Insider [185] which consists 
of PDB and Interactome3D interfaces [18]. One constituent of 29 out of 4352 different 
gene double mutations matches with an interface mutation. Appendix C-Figure 1A shows 
the mutation prevalence (node size) and tendencies to contribute to double mutations in 
different genes and tissues.  
We ask whether genes contributing to a significant double mutation are in the same or 
different pathways. The list of genes contributing to dual mutations is piped to the EnrichR 
tool [186] and Reactome pathway annotations are collected for each gene. Our results 
show that a large portion of the genes act in different pathways (corresponding to 3180 
double mutation pairs in different genes). To show these results in an abstract way, we 
used ten prominent pathways from [178]  (including Cell Cycle, HIPPO, MYC, NOTCH, 
NRF2, PI3K, TGF-Beta, RTK RAS, TP53, WNT) and Cohesin Complex subunits 
(Appendix C-Figure 1B) and calculated the prevalence of significant dual mutations on 
different genes in these pathways. Double mutations from 83 genes out of 282 genes are 
in these ten pathways and the cohesin complex. For example, co-occurring mutations – 
one in a gene in the RTK/RAS pathway and one in a gene in PI3K or TP53 pathways – 
can significantly accelerate tumorigenesis. The results show that co-occurring driver 
mutations can be in different pathways.  
 
We assessed the prevalence of gene double mutations in different tissues. Figure 18A and 
18B show gene pairs having significantly co-occurring mutations. For example, mutations 
in PIK3CA and FGFR3 co-occur significantly in bladder cancer tissue while BRAF and 
RNF43 co-occurring mutations are specific to colon cancer. Dual mutations in PIK3CA 
and ESR1 are significantly associated with BRCA. We analyzed KRAS, APC, and their 
associated co-occurring mutations separately where KRAS and CDKN2A mutations are 
in pancreatic cancers (Appendix C-Figure 2A-B).   
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Figure 18. Widespread different gene double mutations in different tissues and cancer 
subtypes (The double mutations where one of the constituent mutations is on TP53, APC 
or KRAS are excluded from the list). We call a gene couple A|B if there is a double 
mutation where the component mutations are on the genes A and B, and the gene couple 
A|B is mutated on the union of tumors with double mutations on these genes. Various 
gene couples are prominent in different tissues and cancer subtypes. Node size is the 
overall number of patients with different gene double mutations in each tissue/subtype, 
and node color is a fraction of all double mutant tumors to the all tumors in 
tissues/subtypes. (A) Different gene couples (mutated on at least 50 patients in a tissue) 
and their tissue prevalence (have mutation at least 3 patients on a gene couple). (B) 
Different gene couples (mutated on at least 20 patients in a cancer subtype) and their 
cancer subtype prevalence (have mutation at least 5 patients on a gene couple)   
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A driver alteration may affect the signaling pathways and the transcriptional profile of 
genes. In a transcriptional regulation network, these altered genes can contribute to 
upstream activities through feedback loops [187]. We searched for transcriptional 
differences between tumors having double mutations in different gene pairs and their 
single mutation counterparts.  
 
One of the most frequent mutations in pancreatic cancer patients is KRASG12D. It pairs 
with a mutation in TP53, which impairs DNA binding. In the pan-cancer dataset, there are 
2232 PAAD tumors, among these 1720 have KRASG12D mutations. There are 131 
significant mutation doublets composed of KRASG12 mutations and at least one mutation 
in TP53 that exists in 1068 patient tumors. Among them, mutations at positions 248 and 
273 are directly in contact with DNA. Position 175 is far from the DNA binding region 
however it is in contact with a Zinc ion and a mutation at that position destabilizes p53 
and eventually prevents its binding to DNA. Some tumors have significant double 
mutations composed of TP53 and KRASG12D mutations. Because this coupling may have 
an impact on transcriptional regulation, we compared the transcriptome profiles of Group 
1 (defined as PAAD tumor having at least one significant doublet composed of KRASG12D 
and TP53 mutations) to Group 2 (defined as the PAAD tumors having mutation either in 
KRAS or in TP53 or mutation in any of these genes that do not contribute to a significant 
doublet). This analysis is used to distinguish the transcriptional alterations when a driver 
mutation in TP53 co-occurs with a KRASG12D mutation. Group 1 has 67 patient tumors. 
Group 2 has 35 of which TP53 is wild type in 25 samples and the rest have TP53 
mutations. None contributes to co-occurring mutations. Using a conventional 
transcriptomic analysis, we obtained 412 differentially expressed genes between Group 1 
and Group 2 in PAAD samples (Figure 19A, 169 upregulated and 243 downregulated 
genes where p-value < 0.01 (Mann Whitney U Test) and |log2FC| > 0.5). This allowed us 
to identify TP53 mutations contributing to doublets in transcriptional regulation. A set of 
genes in immune response, positive regulation of cell proliferation and cell-cell signaling, 
are enriched in Group 1 compared to Group 2. Next, we found the significant upstream 
transcription factors that regulate differentially expressed genes using the TFBSCons 
dataset in the DAVID tool. As a result, BACH1 (268/412 DEGs), PPARG (165/412 
DEGs), NFKB1 (76/412 DEGs) are retrieved as the main regulators (Figure 19B). BACH1 
is an epithelial-mesenchymal transition enhancer promoting pancreatic metastasis [188]. 
We constructed the network of the transcription factors and KRAS with CancerGeneNet 
and found that the proliferation phenotype is upregulated (Figure 19C). This result also 
agrees with driver mutations in TP53 significantly affecting the transcriptional output 
compared to the single mutant counterparts [30].   
 
Similarly, PIK3CA double mutations predominantly exist in breast tissue. We compared 
the transcriptomic profiles of tumors with single mutant PIK3CA to double mutant 
PIK3CA. The first tumor group has at least one mutation doublet in PIK3CA and the 
second tumor group has PIK3CA mutations that are not a component of any significant 
doublet. We obtained 46 tumors in the first group and 296 tumors in the second which has 
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transcriptomic data and satisfies these conditions.  The transcriptome analysis of double 
and single mutant samples revealed that among 117 significantly expressed genes 90 are 
upregulated and 27 downregulated in double mutant PIK3CA (Figure 19D). In this 
comparison, olfactory receptors are upregulated and the GPCR signaling pathway is 
significantly more active in dual mutant tumors (Figure 3E). We also constructed a 
subnetwork of these downregulated genes using a diffusion-based approach (see 
Methods). The resulting network recovers receptor enhancers and transporters (Figure 
19F).  
 

 
 
Figure 19. Transcriptome analysis of tumors with double mutation (A) Comparison 
of gene expression profiles of double mutant and single mutant TP53 cases in KRASG12 
mutant PAAD tumors revealed 412 differentially expressed genes (169 upregulated, 243 
downregulated) between Group 1 and Group 2. The heatmap shows the z-scores of 
differentially expressed genes (DEGs) across patient tumors. (B) Main regulator 
transcription factors of differentially expressed genes are BACH1, PPARG, NFKB1 
obtained from TFBSCons dataset in the DAVID tool (https://david.ncifcrf.gov). (C) The 
network of KRAS and important transcription factors linked to proliferation phenotype 
generated by CancerGeneNet [65]. (D) The heatmap of differentially expressed genes 
between double mutant and single mutant PIK3CA cases in breast cancer tumors. Among 
117 significantly expressed genes in double mutant tumors, 90 genes are upregulated, and 
27 genes are downregulated. (E) Enriched Reactome pathways in differentially expressed 
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genes obtained from Webgestalt web tool. Among the double mutant tumors, olfactory 
receptors are highly upregulated and the GPCR signaling pathway is more active 
compared to the group without any significant doublet on PIK3CA. (F) Subnetwork of 
DEGs in the GPCR signaling pathway where the red node border represents upregulation 
and blue represents downregulation in dual mutant cases.   

 

 
Figure 20. Different gene double mutations on the PIK3CA-PIK3R1 complex. (A) 
PIK3CAE542, PIK3CAE545, PIK3R1R348, PIK3R1R461 mutations on PIK3CA-PIK3R1 
interface. (B) Tissues (x-axis) harboring different/same gene double mutations (y-axis) in 
at least 3 tumors. (C) Same gene double mutations on PIK3CA and different gene double 
mutations on PIK3CA-PIK3R1 complex are mutually exclusive. 

 
Another interesting case occurs on the PIK3CA-PIK3R1 complex (PDB: 4OVV), (Figure 
20A). We investigated the two different gene double mutations of PIK3CAR88 (located at 
the ABD–kinase domain interface) pairing with two interface mutations PIK3R1R348 and 
PIK3R1R461. In the pan-cancer dataset, 14 tumors harbor PIK3CAR88/PIK3R1R348 and 5 
tumors harbor PIK3CAR88/PIK3R1R461 double mutation. PIK3CAR88, PIK3R1R348 
(number of patients = 58) and PIK3R1R461 (number of patients = 22) are weak driver 
mutations (labelled as Known Driver, D, number of patients < 500). These double 
mutations are prevalent among bowel and uterus tissue tumors (Figure 20B). In Figure 
20A, both interface mutations PIK3R1R348 and PIK3R1R461 are in close proximity of the 
interface mutations PIK3CAE542 and PIK3CAE545. In our previous study about same gene 
double mutations [189], 6 patients with the double mutations PIK3CAR88/E542 and 
PIK3CAR88/E545 (one patient carries both doublets). We also observe that 
PIK3CAR88/PIK3R1R348 and PIK3CAR88/PIK3R1R461 double mutant tumors do not carry 
any PIK3CAE542 or PIK3CAE545 mutations. Also, these two PIK3CA-PIK3R1 double 
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mutations are mutually exclusive with same gene double mutations of PIK3CA in the pan-
cancer dataset (Figure 20C). This suggests that in the absence of helical domain mutations 
PIK3CAE542 or PIK3CAE545 on the interface, the interface mutations PIK3R1R348 and 
PIK3R1R461 can cooperate with PIK3CAR88  to over activate PIK3CA.   
 
4.2.3 Double mutations are mostly present in primary tumors and some rare doubles 

are signature of metastatic tumors  
 
GENIE has samples from primary and metastatic tumors and the mutational profile may 
have different patterns in these two groups. We found that more than 70% of all double 
mutations exist in primary tumors. However, there is a small set of double mutations that 
are specific to metastatic tumor samples. We applied the frequency pattern growth tree 
approach (see Methods) to obtain the association rules of molecular alterations in 
metastatic tumors (Figure 21A). 
 
 

 
 
Figure 21. Some rare double mutations are specific to metastatic tumors.  (A) 
Frequency pattern growth tree of missense mutations in metastatic tumors where links 
represent association between mutations.  Different gene double mutations in ESR1, 
GATA3, and PIK3CA genes are enriched in metastatic tumors. (B) Propensity of double 
mutations from ESR1-PIK3CA pair and from other genes where one side is from ESR1 
or PIK3CA in metastatic tumors.  

 
We identified a strong association between mutations in ESR1, GATA3, and PIK3CA 
genes in metastatic tumors. ESR1 mutations at positions 536, 537, and 538, which are 
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sequence neighbors, are exclusively paired with the major drivers of PIK3CA at positions 
1047, 542, and 545 (Figure 21B). ESR1 (Estrogen Receptor 1) mutations coupled with 
PIK3CA mutations mostly exist in metastatic tumors. We also calculated the propensity 
of dual mutations in ESR1 and PIK3CA to be in metastatic tumors and doublets of each 
mutation with mutations in other genes. The result strongly shows that mutation pairs, one 
from ESR1 and one from PIK3CA are a marker of metastatic tumors (Figure 21A, p-value 
< 10-13). GATA3 mutation at position 408 is coupled with ESR1 or PIK3CA mutations. 
GATA3 is also functionally related and cooperates with ESR1 in transcriptional regulation 
[190]. Additionally, PAK1 amplification co-exists with ESR1 mutations in metastatic 
tumors which is either absent or very rare in primary tumors. Another interesting result is 
the tendency of EGFR dual mutations to be in metastatic samples. Positions 790 and 797 
are gatekeeper residues and mutations at these positions promote resistance to RTK 
inhibitors in lung cancer. We noted that EGFR790 and EGFR797 dual mutations are 
significantly accumulated in metastatic samples (14 out of 17 samples). Additionally, 
more than half of the samples having EGFR R790/R858 double mutations are from 
metastatic origin which is also shown in the FP-Growth Tree in Figure 21A. 
 
In supplementary data of the study [191], there is a list of actionable mutations for 1106 
metastatic tumors from the Hartwig Medical Foundation (HMF) data set. Among 393 
metastatic breast tumors, 22 harbor one PIK3CA and one ESR1 mutation. The mutations 
at the positions 542, 545, H1047 of PIK3CA confirm a double mutation with one of the 
mutations at positions 380, 536, 537 and 538 on ESR1, and determined to be metastatic 
markers by the FP Growth algorithm. 
 
4.2.4 Functionally equivalent alterations do not co-exist in tumors 
 
Alterations may have similar phenotypic outcomes. We dub them ‘functionally 
equivalent’. According to our analysis, these alterations either rarely or never coexist in 
tumor tissues and appear mutually exclusive. Exclusive alterations have similar signaling 
outputs. We provide two examples below. KRASG12D is coupled with alterations in a 
context-specific way. KRASG12D and the deep deletion of CDKN2A predominantly co-
exist in pancreatic cancers. Mutually exclusive alterations may exist in different pathways 
but result in similar phenotypic effects. Although dual mutations are extremely rare in 
KRAS, they promote a downstream alteration that leads to proliferation phenotype. 
Among these alterations, mutations in SMAD4, CDKN2A, U2AF1, and GNAS are 
mutually exclusive and rarely coexist. In Figures 22A and 22B, we show the presence of 
these mutations in KRASG12D mutated PAAD tumors.  
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Figure 22. Different gene double mutations in PAAD tumors. (A) Oncoprint of the 
mutations that coexist with KRASG12. KRASG12 partners on CDKN2A, SMAD4, GNAS, 
U2AF1 shows a mutually exclusive pattern. (B) Circular plot of the mutations in KRASwt 
and KRASG12 showing tumor frequencies. (C) CDKN2A/CDK6 complex. The mutations 
R58, R80, H83, and D84 are on the interface region between CDKN2A and CDK6. (D) 
SMAD4 mutations D351 and R361 are in the interface between SMAD4/SMAD3 
complex. (E) Oncoprint of the most frequent alterations that coexist with KRASG12. A 
TP53 mutation on the DNA binding domain accompany to KRASG12 and this couple is 
followed by either MYC amplification or CDKN2A deletion. (F) A subnetwork of highly 
frequent alterations coexisting with KRASG12 leading to proliferation and oncogenic 
signal.  
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CDKN2A and SMAD4 mutations are in binding regions and rarely co-occur in the 
proteins in tumors. CDKN2A mutations (R58*/Q, R80*, H83N/R/Y, and D84G) are in 
the interface with CDK6 (PDB: 1BI7) (Figure 22C). All, except R58*/Q, are spatially 
clustered. Disruption of CDKN2A-CDK6 interaction inhibits their ability to interact with 
cyclins D and phosphorylate the retinoblastoma protein thus proliferation is positively 
regulated. SMAD4 mutations at positions D351 and R361 are located in the interface 
between SMAD4/SMAD3 heterodimer [192] (PDB: 1ygs (dimer), 1U7F (trimer)) (Figure 
22D). These mutations disrupt both homo- and hetero-oligomerization of SMADs. All 
mutually exclusive mutations shown in Figure 22A and 22E are on non-overlapping paths 
linked to MYC and their functional outcome may be similar. U2AF1 and GNAS paths are 
linked to KRAS and downstream proliferation phenotype (Figure 22F).  
 
Co-occurrence of MYC amplification and CDKN2A deletion is extremely rare. MYC 
amplification promotes proliferation while tumor suppressor gene CDKN2A functions as 
a negative regulator of the proliferation of normal cells. They cooperate as shown by at 
least one TP53 mutation in the DNA-binding domain. This result also supports that 
multiple alterations on similar paths resulting in similar phenotype or on similar functional 
sites do not coexist as potent alterations can promote oncogene-induced senescence. 
 
Another example of exclusive mutations relates to NFE2L2 and KEAP1 (Figure 23A-B). 
These mutations significantly co-occur with KRASG12D/V/C in lung tissue. NFE2L2 is a 
transcription factor and a missense mutation at position 79 abolishes the binding of 
KEAP1 to NFE2L2. NFE2L2 level is tightly regulated by KEAP1 which is a substrate 
recruiter in ubiquitin-ligase complex [193].  Mutations on NFE2L2 and KEAP1 may 
disrupt their interaction increasing NFE2L2 transcriptional activity, eliciting senescence. 
Lung tissue-specific mutations in KEAP1 exist at positions 271, 272, 320, 333, and 417. 
Among them, 333 and 417 are located on the Kelch motif. NFE2L2 mutations at positions 
24, 29, and 79 are also lung tissue specific. KEAP1 mutations are annotated as loss of 
function and NFE2L2 mutations are annotated as the gain of function in OncoKB. They 
are present both in primary and metastatic lung tumors. Mutations in KEAP1 are 
predominantly in lung tissue and are not simultaneously present in the same tumor sample. 
Transcriptional and siRNA experiments also show that KRASG12D up-regulates NRF2 
transcription by Myc [194]. The oncogenic activity of NRF2 is context-specific [193] and 
appears linked to enhanced oncogenicity and drug resistance [195]. In Figure 23C, we 
applied a personalized PageRank algorithm to obtain the key nodes in the KRAS-
NFE2L2-KEAP1 axis and constructed a network. This network clearly shows exclusive 
subnetworks and shared proteins between KRAS and NFE2L2-KEAP1.  
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Figure 23. Detailed analysis of KEAP1-NFE2L2 alterations (A) KEAP1 is a ubiquitin 
ligase which functions in degradation of NFE2L2. Dysregulation of the interaction 
between NFE2L2 and KEAP1 results in proliferation and oxidative stress response. (B) 
Oncoprint of the mutation presence (green) in KRASG12 mutant patient tumors having at 
least one mutation in KEAP1 or NFE2L2 which clearly shows their exclusiveness. (C) 
KRAS-KEAP1-NFE2L2 originated subnetwork constructed by pagerank algorithm. 

4.3 Concluding remarks 

In this chapter, we carry out a statistical approach to identify co-occurring mutations in 
trans. Mutations affecting the same pathway are usually mutually exclusive in a tumor to 
prevent functional redundancy, synthetic lethality [37,178,196] and OIS [106], 
considering the additivity of the mutational impact. We also observe this pattern in protein 
interfaces that double hotspot mutations in the same interface are exclusive i.e., CDKN2A 
R58, R80, H83 and R84. Some of the in trans double mutations that are prominent in 
specific tissues or cancer subtypes are associated with poor overall survival. For example, 
co-occurring mutations in IDH2/NPM1, IDH1/NPM1, DNMT3A/NPM1 pairs are 
significantly prevalent in AML tumors which have been recently associated with poorer 
overall survival [197]. Another combination is mutated RNF43 together with BRAFV600E 
which significantly co-occur in our dataset. This cooperativity was defined as a marker of 
aggressive right-sided colorectal cancer (RCRC) subtype [198].  Co-occurring mutations 
in PIK3CA and ARID1A in uterine endometrioid carcinoma (UEC) subtype raise in 
sensitivity to PI3K inhibitors [199]. 
 
We also adopted the fp-growth tree method, which has been developed for database 
systems, to find the association rules between single point mutations, deletions, and 
amplifications events. Our analysis revealed association with metastatic tumors. We also 
discover that PIK3CA and ESR1 mutations co-occur in metastatic tumors and double 
mutations in EGFR are more frequent in metastatic tumors compared to primary tumors.  
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As noted earlier, and reemphasized by our work, advanced computational approaches are 
crucial to reveal and forecast such important patterns in cancer progression. Vast amounts 
of data are being generated. Interpreting it and extracting patterns is vital for precision 
oncology. Co-occurring mutational signatures for metastatic tumors, coupled with 
identification of the respective proteins and pathways, can create interactive maps. 
Linking them with drugs can create immensely useful tool for the attending physicians 
[120,200].  
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CHAPTER 5 
 

 
NEURODEVELOPMENTAL DISORDERS AND CANCER NETWORKS 

SHARE PATHWAYS; BUT DIFFER IN MECHANISMS, SIGNALING 
STRENGTH, AND OUTCOME 

 
 
 
In this chapter, we aim to uncover the similarities and differences between 
neurodevelopmental disorders (NDDs) and cancer. We expect that these will help us 
understand the challenging question of how mutations in the same pathways, and even the 
same proteins can lead to NDDs and cancer, with vastly different phenotypic 
presentations. Especially, we aim to discover what are the determining features deciding 
whether the major outcome is NDD or cancer. We address this inspiring and daunting goal 
by comprehensively leveraging mutations, transcriptomic data, and protein-protein 
interaction (PPI) networks. We use de novo mutations in ~10,000 samples with NDDs 
from denovo-db and somatic mutations of ~10,000 tumor samples from The Cancer 
Genome Atlas (TCGA). We compare the effects of mutations (at the same position and 
the same/different mutant amino acid) on the pathogenicity of commonly mutated genes 
in NDDs and cancer. We observe that mutations in NDDs tend to be weak. To evaluate 
the pathway-level properties of NDDs and cancer, we reconstructed the disease-specific 
networks for ASD and breast cancer and identified 23 common transcription factors (TFs). 
Most of the targets of these common TFs are mutated in both ASD and breast cancer and 
involved in MAPK, cell cycle, and PI3K/AKT pathways. By using transcriptomic profiles 
of ASD and breast/brain/kidney cancers we show that in breast cancer samples there is an 
increase in signaling strength in shared pathways involved in proliferation and a decrease 
in differentiation. This however is not the case among ASD samples where the signaling 
level is high in shared pathways involved in differentiation and low in proliferation. This 
chapter is part of the preprint [42]. 

5.1 Methods 

5.1.1 Data collection and processing 
 
NDD mutations were obtained from denovo-db [155] which holds a collection of human 
germlines de novo variants of 20 phenotypes including but not limited to ASD, and 
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intellectual disability NDDs. Variants from two ASD studies were collected by targeted 
sequencing of different patients coming from two different studies, while the remaining 
datasets come from either whole exome or whole genome studies. The phenotypes, the 
number of samples, unique mutated genes and unique mutations are given in Figure 1B. 
We mapped the genomic coordinates to the proteins to obtain the amino acid changes on 
the protein level using VarMap [201]. We only kept the point mutations that map to the 
canonical protein sequences. After these filtering steps, we obtained a total of 14,133 
unique mutations on 7907 genes from 9737 samples. 
 
5.1.2 TCGA 
 
Somatic missense, nonsense and frameshift cancer mutations were downloaded from 
TCGA. There are 9703 tumor samples from 33 different cancer types in the annotation 
file where corresponding protein changes are also present. In total, we have 1,626,715 
unique mutations on 19,438 genes. 7837 of these genes are also mutated in the NDD 
dataset. 11,601 of them are only mutated in TCGA, while there are only 70 genes that 
are mutated solely in NDDs. 
 
5.1.3 Cancer drivers 
 
A list of cancer driver mutations was downloaded from the Cancer Genome Interpreter 
(CGI) [9], which is available as the Catalog of Validated Oncogenic Mutations in their 
website. We only used the missense or nonsense mutations resulting in an analysis of 3688 
driver mutations belonging to 237 genes.  
 
5.1.4 Visualization of mutations in protein sequences and 3D structures 
 
We utilized the ProteinPaint tool [202] to show NDD and cancer mutations on PTEN and 
PI3Kα. To map the mutations to the 3D structures of PTEN (PDB: 1D5R [203]) and 
PI3Kα (PDB: 4OVV [204]) we used PyMol [205]. 

5.2 Results 

5.2.1 NDD and cancer mutations can be shared, but their presentation and phenotypic 
damage differ 

 
NDDs and cancer are highly complex diseases caused by impairments in cellular 
processes such as cell growth, proliferation, and differentiation. This challenging 
complexity has led to the community's desire to understand how their genetics, cellular 
environment, and the signaling pathways are converging to express their distinct 
phenotypic outcomes [62,153,206,207]. Cancer results from gene alterations that provide 
cells with a growth advantage. Whereas numerous studies focused on the connection 
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between the mutations -germline, de novo, or somatic- and cancer [208–213], the number 
of studies related to NDDs increased, though still lagging behind, far from reaching the 
same level. Qi et al. observed that among patients with NDDs, germline damaging de novo 
variants are more enriched in cancer driver genes than non-drivers [206]. Bioinformatics 
analyses conducted on 219 cancer-related genes from Online Mendelian Inheritance in 
Man (OMIM, https://www.omim.org/about) and de novo mutations from 16,498 patients 
with NDDs, including ASD, congenital heart disease, and intellectual disability, had 
significantly more de novo mutations in cancer-related genes than in the 3391 controls 
[214]. In another study focusing on ASD, an evolutionary action method identified 
missense de novo variants that are most likely to contribute to the etiology of the disorder 
[215].  
 

 
Figure 24.   Overview of the data and workflow. (A) Statistics from NDDs and cancer 
datasets. Denovo-db deposits mutation profiles of 9736 samples with NDDs across 20 
phenotypes (left panel). TCGA provides mutation profiles of 9703 tumors across 33 
cancer types (middle panel). The length of each bar (y-axis in a logarithmic scale) in the 
upset plots shows the number of all mutated genes and the number of TFs, TSGs, OGs 
among the mutated genes for NDDs (left panel) and cancer samples (middle panel). There 
are 712 TFs, 162 TSGs, and 147 OGs out of 7907 mutated genes among NDD samples. 
Similarly, there are 1579 TFs, 259 TSGs, and 249 OGs out of 19,438 mutated genes 
among the cancer samples. The Venn diagram (right panel) shows that there are 7837 
common mutated genes between NDDs and cancer; the number of NDD- and cancer-
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specific mutated genes are 70 and 11,601, respectively. Abbreviations: TSG, tumor 
suppressor gene; OG, oncogene. (B) Network of NDD phenotypes. Each node represents 
one phenotype in the network, and each edge represents the connection between two 
phenotypes if they share at least one commonly mutated gene. Each phenotype is 
represented with a vector of three numbers; the total number of patients having the 
phenotype (cyan), total number of genes carrying at least one mutation (orange), and total 
number of mutations associated with the phenotype (purple). The ticker edges represent 
the more commonly mutated genes. The most tightly connected pair among the phenotype 
pairs is autism and developmental disorder.  

To identify genetic similarities and differences between NDDs and cancer, firstly we 
utilized publicly available mutation datasets. Public databases provide somatic mutation 
profiles of thousands of NDD and tumor samples, including denovo-db and TCGA, 
respectively. Denovo-db includes de novo mutation profiles for 20 different NDD 
phenotypes for 9736 samples [155]; TCGA covers 9703 samples with point mutations 
across 33 tissues (Figure 24A). Not all genes and variations in their protein products affect 
the phenotypic output in the same way. Oncogenes, tumor suppressors, TFs, and 
chromatin remodelers are well-known examples of specific genes whose defects can cause 
observable alterations in phenotypic outcomes. We compared mutations and mutated 
proteins between de novo mutations in NDD data deposited in the denovo-db and TCGA, 
focusing on point mutations that affect only one residue in a protein. We identified 7908 
genes in NDDs and 19,439 genes in TCGA with point mutations, among which 7838 
genes are common. There are 147 oncogenes, 167 tumor suppressor genes, and 712 TFs 
in the NDD data, while 248 oncogenes, 259 tumor suppressor genes, and 1579 TFs are in 
TCGA. ~40% of the mutated genes in TCGA also have mutations in NDD samples. 
 
The network of NDD phenotypes in the denovo-db database covers 20 NDD phenotypes 
with a varying number of patients, mutated genes, and mutations (Figure 24B). Only two 
of these phenotypes –autism and developmental disorders– have more than 1000 samples. 
In autism, there are 3473 patients, 3726 mutated genes, and 4794 mutations; in the 2926 
developmental disorder samples, there are 3531 mutated genes with 4797 mutations. In 
the network, the width of edges between the phenotypes is commensurate with the number 
of commonly mutated genes; autism and developmental disorder share the most. 
Congenital heart disease and intellectual disability have less than 1000 samples, 912 and 
577, respectively. The remaining 15 phenotypes, including schizophrenia, epilepsy, and 
cerebral palsy, have less than 500 samples.  
 
Our premise is that NDD mutations offer modest but prolonged signaling, whereas cancer 
mutations are associated with high signaling levels [41,62,216,217]. Driver mutations are 
frequent, which is why they are often identified as drivers unless there is experimental 
data for potent rare mutations [5,25]. Weaker or moderate mutations occur less frequently; 
otherwise, they are drivers. Similarly, the difference between passenger and driver 
mutations is also based on the statistics; their counts are low. As one indicator of mutation 
strength, we compared the frequency of the cancer driver mutations in TCGA and NDD 
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mutations amongst TCGA samples. For cancer driver mutations, we used the Catalog of 
Validated Oncogenic Mutations from the Cancer Genome Interpreter (CGI) [9]. Only 
missense or nonsense mutations were included in the analyses, which comprised 3688 
driver mutations in 237 genes. Among 14,133 unique NDD mutations, 1504 are in TCGA 
(Figure 25A). On the other hand, TCGA harbors 1060 unique driver mutations. 
Interestingly, only 23 mutations are shared across known cancer driver mutations and 
NDD (see inset Venn diagram of Figure 2A). This finding suggests that although there are 
shared mutations between the two pathologies, these mutations tend to be on the weaker 
side in terms of a driver effect. In addition, compared to driver mutations, the mutations 
present in both NDDs and TCGA are notably rare in the TCGA cohort, as demonstrated 
by the difference between the mutation frequency distribution in TCGA with a t-test (p = 
0.001). Therefore, when we limit the mutations to those present in TCGA, only ~1% of 
NDD mutations are cancer drivers, and they have very low frequency among TCGA 
samples. Figure 25B depicts the number of mutated samples in commonly mutated genes 
among NDDs and cancer. Most commonly mutated genes have more mutation hits at 
different positions among all cancer samples. Our observations point to only relatively 
few common NDD and cancer driver mutations, making it crucial –even if difficult– to 
understand the mechanisms through which these common mutations impact gene function 
and disease phenotypes. We used pathogenicity scores from MutPred2 [218], which 
probabilistically predict the impact of variants on protein structure and function. We 
anticipate that variants may have impact on protein structure, which can either stabilize or 
destabilize the conformation of the protein depending on protein function and disease 
phenotypes. The more harmful a mutation is, the closer its pathogenicity score is to one. 
A comparison of the distribution of the pathogenicity scores of the NDD and driver 
mutations calculated using MutPred2 demonstrates that drivers have higher pathogenicity 
than NDD mutations (t-test, p < 5 × 10-30) (Figure 25C). We observe that most driver 
mutations accumulate in regions where the pathogenicity scores are larger than 0.8 on the 
y-axis. NDDs harbor mutations in key cancer genes such as PTEN, PIK3CA, MTOR, KIT, 
etc. These mutations have lower frequencies among tumor samples from TCGA, which is 
an indicator of the lower potency of these mutations. The number of residues hit by 
mutations among NDD samples is usually lower. 
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Figure 25. Comparison of mutations between NDDs and cancer. (A) Frequency-based 
analysis of mutations for NDDs and cancer. The cancer driver mutations in TCGA in 
comparison to the frequency of NDD mutations. The cancer driver mutations were 
selected amongst tumor samples only. Among the cancer mutations in TCGA, 23 
mutations are shared between NDD and known cancer driver mutations, while 1481 are 
NDD-specific and 1037 are cancer-specific mutations (inset Venn diagram). Comparison 
of the frequency of these mutations in the TCGA cohort (y-axis in a logarithmic scale, 
where frequency=log10N+1, and N is the number of patients). The difference between 
mutation frequency distribution in TCGA with t-test shows that the mutations present in 
both NDDs and TCGA are significantly rare in the TCGA cohort when compared to driver 
mutations (p < 0.001). (B) Frequency of mutations on common genes in NDDs and known 
cancer drivers datasets. The dumbbell plot shows the mutation frequencies of common 
genes–the genes harboring at least one point mutation among NDDs and cancer samples–
in cancer (TCGA) and NDDs (denovo-db) simultaneously. Cancer driver mutations (red) 
are more frequent than or equal to NDD mutations (blue) except EP300 and PTPRT. The 
size of the circles represents the number of unique mutations each gene carries. The x-axis 
in a logarithmic scale represents the number of patients having at least one mutation in the 
corresponding gene in TCGA or NDD sets. (C) MutPred2 pathogenicity scores of NDDs 
and cancer driver mutations. Violin plots show the distribution of NDD and driver 
mutation pathogenicity scores. A comparison of the pathogenicity scores using a t-test 
shows that the pathogenicity of driver mutations is significantly higher (p < 0.001). 
Pathogenicity scores are between 0 and 1, where 1 is the most pathogenic. 

 
5.2.2 Mechanistic interpretation of NDD and cancer mutations 
 
PTEN phosphatase and PI3Kα lipid kinase are respectively negative and positive 
regulators in the PI3Kα/AKT/mTOR pathway. PTEN dephosphorylates 
phosphatidylinositol 3,4,5-trisphosphate (PIP3) to phosphatidylinositol 4,5-bisphosphate 
(PIP2) produced by PI3K. The signaling lipid PIP3 recruits AKT and PDK1 
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(phosphoinositide-dependent kinase 1) protein kinases to the plasma membrane, thereby 
playing a vital role in cell growth, survival, and migration [167,219]. Loss of function of 
PTEN by germline or somatic mutations leads to increased PIP3 concentrations at the 
membrane and promotes cell proliferation mediated by PI3Kα. Since the 
PI3Kα/AKT/mTOR pathway is one of the primary regulators of cell proliferation, the 
mechanistic hallmarks of the mutations are vital to understand. Analysis of mutations in 
PTEN (Figure 26A) and PI3Kα (Figure 26B) sequences reveals that NDD mutations on 
these proteins usually occur at less frequently mutated sites among tumors (see Methods). 
R130* mutation in NDD on PTEN is an exception, yet it is less frequent compared to the 
R130Q and R130G mutations at the same position in cancer.  
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Figure 26. Profiles of TCGA and NDDs mutations for PTEN and PI3Kα at the 
residue level on the sequence and structure. (A) Mutations of PTEN are shown as 
circles where phosphatase domain (red), C2 domain (dark green), and C-tail (light green) 
are represented as colored boxes along the sequence. The number and the size of the circle 
represents the frequency of each mutation in NDD (blue) or TCGA (red) datasets. 
Mutations shared by both datasets are highlighted with rectangular borders for emphasis. 
Total mutation frequencies and the total number of patients in each dataset are shown in 
the bottom right box. Nonsense mutations are abbreviated with star (*) sign. 6 of 12 PTEN 
mutations in the NDD set are present in TCGA. Only R130* has a high frequency relative 
to other shared mutations, yet it is much less frequent when compared to two other TCGA 
mutations on the same position, R130Q and R130G. (B) Mutations of PI3Kα (PIK3CA) 
are shown as circles where ABD (green), RBD (yellow), C2 domain (gray), helical domain 
(light orange), and kinase domain (orange) are represented as colored boxes along the 
sequence. The number and the size of the circle represents the frequency of each mutation 
in NDD (blue) or TCGA (red) datasets. Mutations shared by both datasets are highlighted 
with rectangular borders for emphasis. Total mutation frequencies and the total number of 
patients in each dataset are shown in the bottom right box. 3 of 5 PI3Kα mutations in the 
NDD set are present in TCGA. None of these TCGA mutations are on the most frequently 
mutated residues or among the most frequent mutations. Abbreviations: ABD, adaptor-
binding domain; RBD, Ras-binding domain. The 3D structure of (C) PTEN (PDB: 1D5R) 
and (D) PI3Kα (PDB: 4OVV) with selected NDD and TCGA mutations. For each residue, 
mutated amino acids are colored in red, blue, or orange if they are present only among 
cancer, NDDs or both phenotypes, respectively. In PTEN, these mutations are known to 
affect the functions of protein including loss of phosphatase activity, reduced protein 
stability at the membrane, and failing to suppress AKT phosphorylation. In PI3Kα, these 
mutations may interrupt protein activation and reduce protein stability at the membrane. 

While several residues of PTEN were mutated in both NDD and cancer, some mutations 
–such as T131I, L140F, and D268E– are NDD-specific (Figure 26A). As to the domain 
distribution, among the NDD samples, mutated residues D92, I101, R130, T131, L140, 
Q149, and T167 are on the phosphatase domain, and P204, F241, P246, and D268 are on 
the C2 domain (Figure 26C). PTEN’s catalytic activity occurs in the phosphatase domain 
that contains the P loop (residues 123-130) with the catalytic signature motif, 
123HCxxGxxR130 (where x is any amino acid). PTEN mutations in the P loop, or nearby, 
such as at the residues R130 and T131, can directly constrain the P loop, leading to 
silencing PTEN catalytic activity. The mutation at the residue D92 in the WPD loop 
(residues 88-98) can disrupt the closed WPD loop conformation that can bring D92 to the 
active site. D92 is involved in the catalytic activity during the process of hydrolysis to 
release the phosphate group from Cys124 after transferring it from PIP3. Other PTEN 
mutations, which are distant from the active site, can allosterically bias the P loop 
dynamics, reducing protein stability and its catalytic activity. A similar pattern is observed 
in PI3Kα; the rare mutations R108H, V344M, and R770Q are harbored in both NDD and 
cancer, while R115Q and A1035T are specific to NDD samples (Figure 26B). V344 is on 
the C2 domain; R770 and A1035 are on the N- and C-lobes of the kinase domain, 
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respectively (Figure 26D). R770 is located near the P loop, and R108 is on the interface 
of the catalytic subunit p110α and the regulatory subunit p85α. The mutations at these 
positions in PI3Kα may promote protein activation and increase protein stability at the 
membrane, but their mutational effects appear to be weaker than the driver mutations. 
 
Several studies investigated germline mutations in PTEN and their association with tumor 
susceptibility or developmental disorders. [220–223]. For example, the rare I101T 
mutation on PTEN is present in NDD and cancer samples. This mutation is identified as 
related to reduced lipid phosphatase activity and protein stability in a study conducted 
among 13 patients with PHTS who have autistic features, neurodevelopmental delays, and 
macrocephaly. The I101T mutant retained almost 30% of the lipid phosphatase activity of 
the wild-type protein; hence, it might be one of the major causes of tissue overgrowth and 
autistic appearance [223]. Although available data are limited, PTEN retains its tumor 
suppressive function in NDD while fully dysfunctional among cancer samples.  

5.3 Concluding remarks 

Our findings offer a mechanistic interpretation for PTEN and PIK3CA mutations 
frequently observed in cancer and NDD samples, which may form a basis for functional 
and detailed structural analysis, including molecular dynamics simulations. Comparing 
expression scores of shared pathways by leveraging the transcriptomic profiles of NDD 
and cancer samples revealed that NDD samples have higher expression scores for genes 
functioning in differentiation than proliferation. These findings provide an essential step 
toward understanding the etiology of the two different pathologies, NDD, and cancer. 
Despite having common signaling pathways, their regulation and differences in signal 
levels enhance different cell states: proliferation for cancer and differentiation for NDD. 
 
Comparisons of the time windows of NDDs and cancer frequently concluded that while 
cancer is predominantly caused by somatic mutations and alterations in signaling and 
transcriptional programs, NDDs are primarily linked to germline mutations that express 
during embryonic development. A recent study has similarly suggested that mutations in 
cancer susceptibility genes are not necessarily inherited or somatic; they can also arise 
throughout embryogenesis as a result of errors occurring during cell division [127]. These 
mosaic mutations, occurring in early embryogenesis, were suspected to be associated with 
some rare cancers. Genetic changes associated with RASopathies are believed to be often 
sporadic, not inherited. Along these lines, according to the NCI page [61], this means that 
typically multiple family members do not share the same NDD. 
 
Different than this view, here our thesis is that inherited and de novo mutations (missense 
or truncation) can be major causes of NDDs such as intellectual disability, ASD, epilepsy, 
and cancer. As in cancer, more than one mutation is required for observable symptomatic 
NDDs. Our premise is that family members can harbor these NDD germline mutations; 
however, they are not diagnosed as having the disorder. Their offspring are however 
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already susceptible to it. Individuals with NDDs have higher probabilities of eventually 
coming down with cancer, likely due to the preexistence of the mutations in the shared 
proteins, making them more susceptible. Patients with autism have increased mutation 
load in genes that drive cancer. We hypothesize that strong driver mutations in cell 
growth/division pathways are chiefly responsible for uncontrolled cell proliferation in 
cancer. NDDs’ weak/moderate strength mutations may be a reason why an inherited NDD 
has not been identified in a parent while predisposing an offspring to it. An additional 
mutation promotes NDD clinical manifestation. It may be inherited from the other parent 
or emerge during embryogenesis. It may also promote cancer by providing the companion 
mutations. 
 
Here, we employed de novo mutations in ~10,000 samples with NDDs from denovo-db 
and somatic mutations in ~10,000 tumor samples from TCGA. We observed that around 
40% of the 19,439 mutant genes in TCGA are also altered in NDD samples. 1504 of the 
14,133 distinct NDD mutations are present in TCGA. On the other hand, TCGA contains 
1060 distinct driver mutations, whereas known cancer driver mutations and NDD only 
share 23 mutations. This result suggests that common mutations across the two 
pathologies do exist, although they are typically less potent than cancer drivers. 
Especially, PTEN and PI3Kα possess a range of mutations scattered through their protein 
sequences that are either common or disease specific. This work argues for searches for 
such mutations even in undiagnosed family members and follow their combination in the 
offspring. It further supports consideration of cancer pharmacologies in NDD-patients.  
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CHAPTER 6 
 

 
DISCUSSION 

 
 
 
This dissertation brings together research on how mutations contribute to the emergence 
and development of two different phenotypes: Cancers and NDDs. In order to understand 
the relationships between mutations occurring in cis or trans across pan-cancer genomes, 
our initial goal was to detect double mutations in the same or different gene. Then we 
broadened our scope to determine the similarities and differences between cancer and 
NDDs by employing mutation and transcriptomic data. We designed Chapter 3 to discover 
latent driver mutations based on the premise that in cis, latent, and weak mutations can 
cooperate to enhance the oncogenic signal. In Chapter 4, we identified co-occurring 
double mutations in different genes that additively can promote tumorigenesis through 
single or multiple pathways. They are mostly in primary tumors. Rare occurrences can be 
a signature of metastatic tumors. In Chapter 5, we aim to answer the following questions: 
(i) How can disorders with radically diverse clinical manifestations be caused by the same 
biological pathways, proteins, and mutations? (ii) Why do those who have conditions like 
autism and schizophrenia have a higher risk of developing cancer? Utilizing mutations, 
transcriptomic information, and protein-protein interaction (PPI) networks all at once, we 
take on this challenging task. 
 
In the first part of this dissertation, we scan the cancer genome landscapes aiming to 
identify infrequent driver mutations, i.e., latent drivers. We identified 155 significant, 
same gene double mutations which are composed of mostly one rare and one frequent. 
Frequent mutations have been cataloged as strong drivers [5,25,224]. Rare drivers can also 
be strong drivers. We newly cataloged 140 latent drivers. Even though they may be 
cancer-wide, coupling with another mutation increases their cancer-type specificity. The 
load of double mutations in tumor suppressors is significantly higher than in oncogenes, 
indicating their relative robustness to functional loss.  
 
In our definition, mutations which are statistically frequent and thus labeled as oncogenic 
hotspots in the literature are strong drivers. Oncogenic mutations in the long tails of the 
distributions are statistically rare. They can be strong or weak drivers. Mutations that are 
rare [25] and not yet labeled as oncogenic can be latent drivers. They may or may not be 
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allosteric [225]. Rare drivers can be as potent as frequent drivers. Their low statistical 
frequencies may simply be an outcome of the computational strategy that has been 
employed in the calculation [226,227]. They may be tissue, or cell specific, harbored in 
specific cancers.  Apart from repressors, under physiological conditions, the wild-type 
inactive state is more highly populated than the active state. Driver mutations, whether 
frequent or rare, destabilize the inactive state and/or stabilize the active state making the 
active state more populated than the inactive state. Two or multiple driver mutations can 
destabilize the inactive state to a greater extent than single driver mutation as compared 
to the active state, shifting the population toward the active state. Especially, the 
conformational change that they promote may also involve steric hindrance at the drug 
binding site. However, an allosteric mutation away from the binding site may restore drug 
efficacy against highly resistant mutants, as observed in BCR-ABL1 [228]. A latent driver 
also either destabilizes the inactive state and/or stabilizes the active state, but the relative 
difference between the states can be smaller. Consequently, on their own their contribution 
to protein activation is relatively small, hindering their identification. However, the 
additive contributions of strong drivers or of latent drivers, strong or weak, can increase 
the population of the active conformations leading to the ensemble being fully activated. 
Given that the mechanism described here depends on the positions of the constituents in 
the 3D protein structure and their distance from one another in addition to other factors, it 
is entirely plausible that it cannot apply to all doublets. 
 
With the sparsity of patient treatment datasets, cell lines or patient-derived tumor 
xenografts are a useful clinical interpretation resource. We found significant differences 
in the response to PI3K inhibitors in tumor models that differ in the presence or absence 
of double mutations in PIK3CA, which is in line with recent experimental work [29]. 
Tumor growth is extremely fast in double mutant PIK3CA compared to the single mutant. 
Recent mechanistic studies suggest that the increased protein activity or acquired drug 
resistance is due to the mutation combinations. Zhang et al. [40] suggested that 
combinations of strong and weak drivers can enhance PI3K activity and explain the 
phenotypic differences in PIK3CA double mutant tumors [36] that we observed 
prominently in breast and uterus tumors. Here we further extended the analysis to 
combinations of less frequent mutations not catalogued as drivers, which we view as 
potential latent drivers. Among them, doublets with mutation at position R88 are depleted 
in breast but not in uterus cancers, suggesting that potential latent driver mutations pairing 
with R88 are important signatures of uterus tumors.   

Not limited to PIK3CA, numerous other significant double mutations with possible 
prognostic or therapeutic impact have also been identified (i.e. EGFR in the lung in line 
with previous studies [30]). To fully understand mutational frequencies requires detailed 
functional data related to specific mutations, their combinations, and the proteins that 
harbor them. We, and others, have been aiming to reveal the mechanisms of oncogenic 
mutations in key protein nodes in the network. The paramount principle that guides us is 
that the mechanisms of the mutations mimic the physiological activation [229]. However, 
whereas physiological activation is regulated, taking place following some signaling 
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event, e.g., hormone binding to the extracellular domain of a receptor tyrosine kinase in 
the case of PI3K, with the signaling propagating downstream through a series of cascading 
events, oncogenic activation is dysregulated. We thus suggest that the single mutations 
which are components of doublets can act in one of two ways: their effects can be 
complementary in relieving the autoinhibition [224,230,231], or can enhance the same 
effect, for example involving not one positive charge but two for membrane binding. 
Consider for example PI3K, whose physiological activation involves binding of the 
phosphorylated C-terminal motif of insulin receptor to the nSH2, resulting in breaking of 
the interaction of the nSH2 with the helical domain and relieving the autoinhibition, and 
binding of active Ras, which assists in binding and properly positioning the PI3K on the 
membrane. E542K and E545K hotspots mimic the action of the first, and H1047R the 
second. With all being strong hotspots, their co-occurrence can trigger oncogene induced 
senescence (OIS). However, a combination with more moderate mutations can powerfully 
activate this lipid kinase. Relieving the autoinhibition is a common physiological 
activation mechanism that oncogenic mutations adopt [230]. Not all mutations form pairs. 
One example is BRAF V600E. This has been attributed to its being a strong hotspot. 
Mutant BRAF V600E has been postulated to be activated as a monomer independent of 
Ras activation [232] and shown to be able to phosphorylate MEK [233–235]. However, 
as we noted above, recent data suggest that even though the mutant is activated as a 
monomer, a dimeric BRAF is still required to phosphorylate MEK in cells [234,236–238]. 
Mechanistic arguments clarify that the despite the activating mutation, for cell growth 
BRAF V600E still requires a collaboration with a Raf partner to have MEK appropriately 
positioned and retained in the assembly, just as in the case of physiological BRAF [236], 
an observation which is of vital importance in drug discovery aiming at targeting 
dimerization. This example serves to illustrate the importance of knowledge of the 
functional activation mechanism which statistics alone is unable to provide [239]. 
Combined, they may better forecast treatment outcomes. The sensitivity or responsivity 
of drug action to a targeted cancer depends on how much the tumor relies on the particular 
oncogene and the cellular pathway with which it is associated. In PIK3CA, a combination 
of a driver mutation with a weak driver, or strong latent driver, particularly under different 
mechanisms of actions, have a good, albeit temporary, therapeutic response. 

In the second part of this dissertation, we screen mutation profiles of pan-cancer tumors 
to identify double mutations in different genes. We found 4352 statistically significant 
different gene double mutations that alter non-redundant pathways and interactions and 
promote cancer-specific tumorigenesis. The genes harboring these double mutations are 
observed to be involved in exclusive pathways implicating a compensatory relation 
between the double mutation constituents. Several studies looking for gene-level epistatic 
interactions have provided fundamental insights into the genetic architecture of cells as 
well as identified potential new therapeutic interventions [240–242]. However, either 
synthetic-lethal or cooperating interactions are shown to be context dependent in most of 
the cases, i.e., the epistatic relations are not preserved across different cancer-types. For 
example, patients with advanced pancreatic cancer and pathogenic mutations in BRCA1, 
BRCA2, and PALB2 have shown therapeutic activity with PARP inhibitors [243,244]. 
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The term "epistasis" describes how a mutation depends on one or more additional 
mutations as well as the overall genetic background. Epistasis has been postulated as a 
significant contribution to variances in disease outcome in the context of human disorders, 
where it complicates the range of disease symptoms [245]. Our competence to forecast 
phenotypic outcomes is constrained by the nonadditive interaction between mutations and 
the inadequate understanding of the underlying physiological effects.  

There are various classes of epistatic interactions in cells depending on the context. If two 
mutations, when present together, provide a higher phenotypic outcome than would be 
expected from each of their individual effects, this is referred to as positive epistasis. The 
outcome synergistic and arises between the mutations in the genes belonging to non-
redundant complementary pathways. On the contrary, two genes are synthetic lethal if 
mutation in both genes impairs cell viability and result in cell death. Synthetic lethality 
usually arises due to the co-occurring mutations in the genes that are involved in the 
upstream or downstream of the same pathway or in the protein-protein interfaces. 
Therefore, if a mutation occurs in one of the interacting gene pairs, the other one needs to 
be in wild-type form to be able to sustain cell viability [246]. These interactions are 
attractive for the development of cancer treatments because they allow the targeting of a 
gene whose synthetic lethal partner is irreversibly inactivated in cancer cells but expresses 
wild-type in healthy cells.  

Here, we carry out analysis of co-occurring mutations in trans. We adopted the fp-growth 
tree method, which has been developed for database systems, to find the association rules 
between single point mutations, deletions, and amplifications events. Our analysis 
revealed association with metastatic tumors. We also discover that PIK3CA and ESR1 
mutations co-occur in metastatic tumors and double mutations in EGFR are more frequent 
in metastatic tumors compared to primary tumors. Mutations affecting the same pathway 
are usually mutually exclusive in a tumor to prevent functional redundancy, synthetic 
lethality [37,178,196] and OIS [106], considering the additivity of the mutational impact. 
We also observe this pattern in protein interfaces that double hotspot mutations in the 
same interface are exclusive i.e., CDKN2A R58, R80, H83 and R84. Driver mutations co-
occurrence (DCO) networks can be helpful in identifying synergy and drug response 
[247]. 
 
Some of the in trans double mutations that are prominent in specific tissues or cancer 
subtypes are associated with poor overall survival. For example, co-occurring mutations 
in IDH2/NPM1, IDH1/NPM1, DNMT3A/NPM1 pairs are significantly prevalent in AML 
tumors which have been recently associated with poorer overall survival [197]. Another 
combination is mutated RNF43 together with BRAFV600E which significantly co-occur 
in our dataset. This cooperativity was defined as a marker of aggressive right-sided 
colorectal cancer (RCRC) subtype [198].  Co-occurring mutations in PIK3CA and 
ARID1A in uterine endometrioid carcinoma (UEC) subtype raise in sensitivity to PI3K 
inhibitors [199]. 
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In the third part of this dissertation, we analyzed genomes of NDD and cancer patients 
asking how and what makes these pathologies similar or different. We comprehensively 
analyzed mutations, transcriptomic data, and PPI networks. We dissected commonly 
mutated proteins in NDD and cancer to comprehend why some mutations can promote 
cancer while others can abet NDDs, and why the same mutations can support both 
phenotypes. The analysis was carried out under our premise that cancer mutations are 
connected to elevated signaling levels, while NDD mutations encode sustained but low 
levels. We further surmised that signaling levels are largely determined by the total 
number of molecules that the mutations activate, either alone or in combination, along 
with the cell type-specific expression levels of the mutant protein and other proteins in the 
relevant pathways, the timing of the emergence of the mutation (inherited or during 
embryonic development, or sporadic), as well as additional factors [62]. Ample data 
indicate that even high expression levels of an unmutated protein can provoke cancer. 
Dysfunction of proteins that are involved in the MAPK and PI3K/AKT/mTOR pathways 
which harbor germline or somatic mutations, is particularly crucial to determine since 
these pathways control proliferation and differentiation, thus clinical outcome.  
 
Cancer involves uncontrolled cell proliferation whereas NDDs are connected to anomalies 
in the development of the nervous system. Cell proliferation and differentiation take place 
in both cancer and NDDs. Since NDDs are mostly related to dysregulated differentiation, 
mutations in genes regulating chromatin organization rank high. Risk genes for NDDs 
include more than a third of the cancer driver genes, and NDDs and cancer share the same 
cellular pathways, especially MAPK and PI3K/AKT/mTOR, the hallmark of cell division 
and growth [151,248], thus proliferation and differentiation [62,206]. In brain cells, 
embryonic mutations in both pathways give rise to NDDs[152]. Hundreds of genes are 
implicated in NDDs; however, they are involved in few conserved pathways regulating 
transcription, including chromatin accessibility, and synaptic signaling. PI3K/mTOR and 
Ras/MAPK are frequently linked with synaptic dysregulation [41,43,62,249,250]. 
Proteins in the Wnt, BMP/TGF-β (bone morphogenetic protein/transforming growth 
factor β), SHH (sonic hedgehog), FGF (fibroblast growth factor), and RA (retinoic acid) 
pathways, are also involved in autistic brain development [251]. Gene expression profiles 
of 22 cancer types and frontal cortical tissues from ASD patients identified similarities in 
genes and pathways [154]. 
 
NDDs share phenotypic and clinical commonalities. Tumor suppressor phosphatase and 
tensin homolog (PTEN), which carries inherited (germline) and de novo mutations in 
NDD patients, is related to cancers and several NDDs, collectively named PTEN 
hamartoma tumor syndrome (PHTS). The NDDs include phenotypes, such as Cowden 
syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome (BRRS), Proteus syndrome (PS), 
Proteus-like syndrome (PSL), macrocephaly, and ASD. NDDs often overlap mutation-
wise and genome-wise [134–136]. Among these deletions, and duplications of the 16p11.2 
region are common. About 48% of deletion carriers and 63% of duplication carriers have 
at least one psychiatric diagnosis [138,139]. RASopathies, which include Noonan 
syndrome (NS), cardiofaciocutaneous (CFC) syndrome, neurofibromatosis type 1 (NF1), 
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and Legius syndrome (LS), are NDDs that result from overactivation of the MAPK 
pathway due to the germline mutations and (or) overexpression in embryogenesis 
[140,142]. Their phenotypic overlaps may emerge due to shared proteins/pathways as in 
the case of PIK3CA-related overgrowth spectrum (PROS), PS, and CS which share 
phenotypic characteristics with RASopathies [141]. The commonality of cancer and 
RASopathies prompted MEK inhibitors and Ras-targeted therapies for some RASopathies 
like selumetinib for NF1patients [144–146].  
 
Although there is a strong association between PTEN germline mutations and cancer–
PHTS–they have also been described in patients with ASDs [133]. PTEN mutations linked 
to ASD can lead to an unstable but still catalytically active gene product [252]. C124S, 
G129R, H118P, H123Q, E157G, F241S, D252G, N276S, and D326N are autism-related; 
A39P, N48K, L108P, L112P, and R130L are PHTS-related mutations [220]. AKT 
signaling was suppressed in all seven ASD-related PTEN mutations. However, AKT 
signaling was impaired by all five PTEN mutations in severe PHTS cases, suggesting that 
variants with partial loss of PTEN function are predominantly in ASD patients [220]. 
Thus, catalytically inactive PTEN mutant is connected to tumor phenotypes, partially 
active PTEN to ASD [253,254] . 
 
Dysregulation of the PI3K/AKT/mTOR pathway is a primary factor in NDDs, including 
megalencephaly (also known as “large brain”), microcephaly (sometimes known as “small 
brain”), ASD, intellectual disability, schizophrenia, and epilepsy [255]. Mosaic gain-of-
function mutations in the PIK3CA gene lead to PROS, with clinical outcomes such as 
excessive tissue growth, blood vessel abnormalities, and scoliosis [256,257]. Among ~200 
individuals with PIK3CA mosaic mutations, highly activating hotspot mutations were 
associated with severe brain and/or body overgrowth, whilst fewer activating mutations 
were linked to more mild somatic overgrowth and mostly brain overgrowth [258,259]. 
R88Q, V344M, and G914R mutations were identified in PI3Kα patients with 
macrocephaly and developmental delay or ASD [260]. 
 
We further pursued the complex relationship between genotype and phenotype by 
constructing disease-specific networks of ASD and breast cancer. We observed distinct 
protein-protein interactions (PPIs) in shared pathways controlling the cell cycle. These 
rewired interactions could be a reason why shared pathways have different signal strengths 
in ASD and cancers. Under physiological conditions, MAPK and PI3K/AKT/mTOR 
pathways coregulate the cell cycle through feedback loops to control cell functions, 
including growth, and division. In cancers, they are frequently hyperactivated [261–263] 
The PI3K/AKT pathway is also critical in early embryonic development and maintenance 
of stem cell pluripotency through inhibition of the MAPK proliferation pathway [264–
267]. The strength of the signaling perturbations induced by the mutations is manifested 
in weak/moderate and strong signaling changes, epitomized by ASD and breast cancer, 
respectively. Strong signals enhance proliferation, and weak/moderate signals may drive 
cell cycle exit in differentiation [268]. 
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TF complexes are primarily involved in cell cycle regulation through their targets, such 
as E2F mediating CDK that accelerates proliferation [269,270]. In breast cancer-specific 
networks, CDK4 interacts with MAPK1, JAK3, and p53, promoting proliferation [271]. 
In the ASD-specific network, TF complexes such as forkhead box protein G1 (FOXG1) 
and sex determining region Y-box 2 (SOX2), also implicated in microcephaly, play 
critical roles in lineage determination, neural stem/progenitor cell proliferation, and 
maintenance of pluripotency [272,273]. In NDDs, these TFs can promote premature 
senescence and dysregulated differentiation via distinct pathways such as Wnt and Hippo 
[274]. In a study of the English population half of decedents with intellectual disabilities 
and cancer were at stage IV when diagnosed  [275], which suggested involvement of the 
canonical Wnt pathway during brain morphogenesis, and non-canonical in cancer cell 
migration and metastasis [276]. Cancer onset in NDD can be undetected until stage IV 
since the slow cell division in the NDDs retards mutational accumulation [275]. Where 
statistics are available, the mortality of cancer patients with intellectual disabilities was 
reported to be approximately 1.5 times higher than the general population [277]. These 
results suggest that cancer initiation and progression differ in individuals with NDD than 
in the broad apparent NDD-free population with different outcomes via common 
pathways.  
 
The expression scores of TFs were grouped based on proliferation and differentiation. TFs 
enhancing proliferation were mainly overexpressed in cancers while relatively low-
expressed in ASD. Proliferating cells are more vulnerable to mutations than differentiating 
ones, both since dividing cells have less time to repair DNA damage than quiescent cells, 
and with more replication cycles there is a higher chance for mutations [278] . As to TFs 
in the differentiation state, ASD has relatively higher expression profiles, while there are 
significantly low-expression profiles in cancers. In cancers, high expression couples with 
accumulation of mutations, cell growth, and metastasis [279].  
 
Finally, immunity could be viewed as a common factor in NDDs and cancer [41,62]. 
Multiple pathways related to immunity can be dysregulated in NDD due to the coevolution 
of the immune and nervous systems [41,280]. Signaling pathways related to immunity, 
such as Wnt, Notch, JAK/STAT, and Hippo, also play roles in cancer metastasis and drug 
resistance [274,281,282]. 
 
We believe the findings of this dissertation offer a new perspective to identify double 
mutations in the same or different genes. Extending the gene-level interactions with the 
mutation-level interactions would help to discern epistatic interactions and provide a 
higher resolution for the genetic architecture of the cells. These types of interactions play 
a vital role in identifying disease subtype, predicting therapeutic response or resistance.   
Recently, the mutations in cancer related genes and pathways have implicated to be involved 
in neurodevelopmental disorders [62,153]. Therefore, investigating the role of mutations, 
either single or double, interaction of mutations and enriched pathways would give valuable 
information about the etiology of neurodevelopmental disorders and its similarity/difference 
to cancer. As noted earlier, and reemphasized by our work, advanced computational 
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approaches are crucial to reveal and forecast such important patterns in cancer progression 
and the manifestation of NDDs. Vast amounts of data are being generated. Interpreting it 
and extracting patterns is vital for precision oncology. Co-occurring mutational signatures 
for metastatic tumors, coupled with identification of the respective proteins and pathways, 
can create interactive maps. Linking them with drugs can create immensely useful tool for 
the attending physicians [120,200].  
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APPENDIX A 

 
 
ADDITIONAL CHAPTERS OF FIGURE 3 
 

 
Appendix A - Figure 1: Histogram depicting VAF values of 213 double mutation 
constituents on 821 double mutant tumors. Double mutation constituents have VAF values 
accumulated between 0.2 and 0.4 on the double mutant tumors. 
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Appendix A - Figure 2: Fraction of 213 double mutation components among all 
mutations that are observed on at least one tumor (n=34,011)(on the left), and three tumors 
(n=6245)(on the right) on the 53 genes harboring at least one double mutation. 

 
 
Appendix A - Figure 3: (A) Comparison of the passenger mutation loads of tumors from 
TCGA and GENIE data sets separately shows that the passenger load of the tumors 
carrying at least one tumor suppressor doublet is significantly higher than its counterpart 
in oncogenes. (B) Passenger mutation loads of the tumors among TCGA and GENIE data. 
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Appendix A - Figure 4: Mutation loads of tumors that that carry at least one significant 
double mutation on oncogenes (n=468) and tumor suppressor genes (n=307). There are 
13 oncogenes and 25 tumor suppressor genes. Mutation loads of tumors with at least one 
double mutation on a TSG is significantly higher (Mann Whitney-U Test, p<4x10-30). 

 
 
Appendix A -  Figure 5: Analysis of the chemical class of  (A) TSGs and OGs (B) known 
driver and latent driver mutations. Charged>Polar and Charged>Charged switches are 
more dominant among TSGs and OGs, Charged>Polar and Hydrophobic>Hydrophobic 
switches are more dominant among known driver and latent driver mutations, 
respectively. 
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Appendix A - Figure 6: Combinations of missense mutations are highly prominent 
among double mutations on oncogenes; but for the doublets on tumor suppressor genes 
there are various combinations where missense+missense and frameshift_del 
+frameshift_del get the highest shares when the fractions (%) compared. 

 
Appendix A - Figure 7: Number of double and single mutations on each gene that harbors 
at least one significant double mutation present in at least three double mutant tumors. All 
the single mutations observed on at least three tumors are included. Double mutation 
fraction among the single mutations are also noted. 

 
 



121 
 

 
Appendix A - Figure 8: Predicted ∆∆G values for single and double mutations of 
PIK3CA calculated with Dynamut web server (PDB id: 4OVV). 
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Appendix A - Figure 9.  PIK3CA R88/T1025 mutant xenograft (X-3093, BRCA) volume 
change compared to single R88 mutant xenograft (X-3205, BRCA) for different drug 
treatments. x-axis shows treatment days, y-axis shows volume difference 
Volume(Day=n)-Volume(Day=0). Treatment with the drugs/drug combinations. (A) 
BYL719+cetuximab+encorafenib combination. (B) HDM201 (Siremadlin). (C) 
CGM097. (D)LEE011(Ribociclib) (E) BYL719 (Alpelisib) (F) Encorafenib (G) 
BYL719+Encorafenib (H) BKM120+LJC049 
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APPENDIX B 

 
ADDITIONAL METHODS OF CHAPTER 3 
 
Variant allele frequency of mutation constituents 
 
We created a dataset of 2917 distinct tumor-mutation pairs and associated VAF values 
based on the VAF values of each double mutation component on 1308 double mutant 
tumors and 295 double mutation constituents. Using the first quartile (Q1=0.21), median 
(0.30), and third quartile (Q3=0.40) values, the data was divided into four groups, each 
covering 25% of the total data. The values in each group encompass the VAF values 
0.125-0.21, 0.21-0.30, 0.30-0.40, and 0.40-0.95. Appendix A-Figure 1 shows the 
histogram of VAF values for the mutations forming doublets among the double mutant 
tumors. 
Annotation of double mutations 
 
To find out spatial closeness of same gene double mutations we use 3DHotspots[16] 
which identifies statistically significant mutations clustering in 3D protein structures. 
There are 943 clusters of 504 different genes. If two mutated residues that are containing 
a dual mutation belong to the same cluster, we consider this same gene dual mutation 
components are in close proximity. We used Interactome Insider to identify if the 
components of either same gene or different gene double are located in the same interface 
[185]. Besides the experimental data in PDB and predicted data in Interactome3D, it also 
contains the predicted interfaces with their in-house method.  We used EnrichR to find the 
pathway annotation of the genes having co-occurring mutations[186] . 
Alterations in chemical properties of amino acids  
 
In order to classify alterations with respect to chemical classes of amino acids before and 
after mutations, we prepared a file containing unique rows as follows “patient barcode| 
gene | residue number | wild type amino acid | mutant amino acid”.  We excluded the cases 
where the final amino acid is a stop codon. The 9 categories we evaluated in our analysis 
are Polar-Hydrophobic, Charged-Polar, Hydrophobic-Hydrophobic, Hydrophobic-Polar, 
Hydrophobic-Charged, Polar-Charged, Polar-Polar, Charged-Hydrophobic, Charged-
Charged. 
In total 188 missense mutations from 863 samples were analyzed. Positions that are 
mutated to multiple amino acids are counted multiple times. 
We collected wild type and mutant residue information for each double mutant tumor and 
the double mutation constituent it comprises, as well as the chemical classifications of 
these residues. Considering that some mutations contribute to more than one double 
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mutation, we ensured that each tumor and mutation was recorded only once. We excluded 
the cases where the mutant residue is a stop codon. Among the double mutant tumors on 
TSGs and OGs, there were 795 and 1170 unique tumor and mutation records, respectively. 

 
 
PIK3CA stability analysis via Dynamut tool 
 
The mechanisms of activation of PI3Kα by some of the driver mutations have been 
recently worked out [16,40,170]. Unsurprisingly, considering their diverse mechanisms 
of action no clear trend is observed in the calculated folding free energy (ΔΔG) upon 
double or single mutation with DynaMut [171] (Appendix A-Figure 11). If the 
components of double mutations act via distinct mechanisms, the additivity of their 
activation potential is high; otherwise the additivity is low as in the E545/E542 example 
where the mutations execute the same mechanism of action. Using the inactive state (PDB 
id: 4OVV) we calculated the folding free energy (ΔΔG) upon mutation using DynaMut 
[171]  to assess the impact of single and double mutations on PIK3CA stability. 
Unsurprisingly, considering their diverse mechanism of action no clear trend is observed 
(Appendix A-Figure 11). For example, H1047R is a strong driver that promotes 
interaction with the membrane. It destabilization impact is minor (∆∆G ≈ -0.5 kcal/mol). 
The impact of weak drivers R88Q and R93W is somewhat stronger (∆∆G ≈ -1.5 kcal/mol 
and ∆∆G ≈ -1 kcal/mol, respectively). The effect of allosteric mutation D539R is also 
minor (∆∆G ≈ -0.6 kcal/mol). Another strong driver E542K (∆∆G ≈ 0.7 kcal/mol), 
stabilizes the protein like the weak drivers D350G (∆∆G ≈ 0.5 kcal/mol) and E453Q (∆∆G 
≈ 0.3 kcal/mol). The most prominent stability changes occur when the strong driver 
H1047R cooperates with the allosteric mutation P539R (∆∆G ≈ -2.3 kcal/mol) and the 
minor mutation P104L (∆∆G ≈ -2.5 kcal/mol). These two dual mutations H1047R/P539R 
and H1047R/P104L destabilize the protein as do T1025A/R88Q (∆∆G ≈ 0.7 kcal/mol) 
while T1025A and R88Q have a destabilizing effect. 
Mutational Signatures 
 
For example, E542/E726 and E542/E545 are of context T[G>A]A in 20 and 10 records. 
Similarly, the context T[G>A]A forms the doublets E545/E726 and E545/M1004 in 20 
and 4 records, respectively. E542 and E545 are strong driver mutations, while 
E726 and M1004 are strong and weak latent driver mutations. C[A>G]T forms 
H1047/H1048 doublet in 5 records, and C[G>A]A forms R88/R357 doublet in 7 records. 
Further examples include S97/L25 doublet in PIM1 with the context G[C>G]T (3 records) 
and S431/R232 doublet in PTPRD with the context T[C>T]G (3 records) [159]. 
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APPENDIX C 

 
 
ADDITIONAL FIGURES OF CHAPTER 4 

 

 
Appendix C - Figure 1: (A)Different gene dual mutation tendency. Node size 
represents the percentage of the Gene-mutant tumors and the node color represents 
percentage of different gene dual mutant tumors in the corresponding tissue where the 
gene on the x-axisis one of the constituents.(B) Different gene couples pathway 
prevalence.  
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Appendix C - Figure 2: (A) Presence of different gene dual mutations across different 
cancer tissues when one of the constituents is APC or KRAS. (B) Presence of different 
gene dual mutations across different cancer subtypes when one of the constituents is APC 
or KRAS. 
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