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ABSTRACT

STOCHASTIC DISCONTINUOUS GALERKIN METHODS FOR PDE–BASED
MODELS WITH RANDOM COEFFICIENTS

Çiloğlu, Pelin

Ph.D., Department of Scientific Computing

Supervisor : Assoc. Prof. Dr. Hamdullah Yücel

June 2023, 157 pages

Uncertainty, such as uncertain parameters, arises from many complex physical sys-
tems in engineering and science, e.g., fluid dynamics, heat transfer, chemically re-
acting systems, underwater pollution, radiation transport, and oil field reservoirs. It
is well known that these systems can be modeled by partial differential equations
(PDEs) with random input data. However, the information available on the input data
is very limited, which causes a high level of uncertainty in approximating the solution
to these problems. Therefore, the idea of uncertainty quantification (UQ) has become
a powerful tool to model such physical problems in the last decade.

In this thesis, the aim is the development, analysis, and application of stochastic
discontinuous Galerkin method for partial differential equation (PDE)–based mod-
els with random coefficients. As a model, we first focus on the single convection
diffusion equation containing uncertainty. To identify the random coefficients, we
use the well–known technique Karhunen Loève (KL) expansion. Stochastic Galerkin
(SG) approach, turning the original problem containing uncertainties into a large sys-
tem of deterministic problems, is applied to discretize the stochastic domain, while
a discontinuous Galerkin method is preferred for the spatial discretization due to its
better convergence behaviour for convection dominated PDEs. A priori and a pos-
teriori error estimates are also derived. SG method generally results in a large cou-
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pled system of linear equations, the solution of which is computationally difficult to
compute using standard solvers. Therefore, we provide low-rank iterative solvers for
efficient computing of such solutions, which compute low-rank approximations to the
solutions of those systems. Moreover, to overcome boundary and/or interior layers,
localized regions where the derivative of the solution is large, an efficient adaptive al-
gorithm is presented for the numerical solution of the parametric convection diffusion
equations. On the other hand, certain parameters of a model are needed to be opti-
mized in order to reach the desired target, for instance, the location where the oil is
inserted into the medium, the temperature of a melting/heating process, or the shape
of the aircraft wings. Therefore, we extend our findings to optimization problems
and consider optimal control problems governed by convection diffusion equations
involving random inputs.

Keywords: PDE–constrained optimization, uncertainty quantification, stochastic dis-
continuous Galerkin, error estimates, low–rank approximation, convection diffusion
equation with random coefficients, adaptive finite elements
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ÖZ

RASTGELE KATSAYILI KISMİ DİFERANSİYEL DENKLEM TABANLI
MODELLER İÇİN STOKASTİK SÜREKSİZ GALERKİN YÖNTEMLERİ

Çiloğlu, Pelin

Doktora, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Doç. Dr. Hamdullah Yücel

Haziran 2023, 157 sayfa

Belirsiz parametreler gibi belirsizlik, mühendislik ve bilimdeki birçok karmaşık fizik-
sel sistemden kaynaklanır; örneğin, akışkanlar dinamiği, ısı transferi, kimyasal olarak
reaksiyona giren sistemler, su altı kirliliği, radyasyon taşınımı ve petrol sahası rezer-
vuarları. Bu sistemlerin rasgele girdi verileri ile kısmi diferansiyel denklemler ile
modellenebileceği iyi bilinmektedir. Bununla birlikte, girdi verilerinde mevcut olan
bilgiler çok sınırlıdır ve bu da bu problemlerin çözümüne yaklaşmada yüksek dü-
zeyde belirsizliğe neden olur. Bu nedenle, belirsizlik ölçümü fikri, son on yılda bu tür
fiziksel problemleri modellemek için güçlü bir araç haline geldi.

Bu tezde amaç, rastgele katsayılara sahip kısmi diferansiyel denklem (PDE) tabanlı
modeller için stokastik süreksiz Galerkin yönteminin geliştirilmesi, analizi ve uygu-
lanmasıdır. Bir model olarak, önce belirsizlik içeren tek konveksiyon difüzyon denk-
lemine odaklanıyoruz. Rastgele katsayıları belirlemek için iyi bilinen Karhunen Lo-
ève (KL) genişletme tekniğini kullanıyoruz. Belirsizlikler içeren orijinal problemi bü-
yük bir deterministik problemler sistemine dönüştüren Stokastik Galerkin (SG) yakla-
şımı, stokastik alanı ayrıklaştırmak için uygulanırken, konveksiyon ağırlıklı PDE’ler
için daha iyi yakınsama davranışı nedeniyle uzaysal ayrıklaştırma için süreksiz bir
Galerkin yöntemi tercih edilir. Priori ve posteriori hata tahminleri de türetilir. SG yön-
temi genellikle, çözümünün standart çözücüler kullanılarak hesaplanması zor olan
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büyük bir birleşik lineer denklem sistemiyle sonuçlanır. Bu sebeple, bu sistemlerin
çözümlerine düşük kerteli yaklaşımlar hesaplayan bu tür çözümlerin verimli bir şe-
kilde hesaplanması için düşük kerteli yinelemeli çözücüler sağlıyoruz. Ayrıca, sınır
ve/veya iç katmanların, çözümün türevinin büyük olduğu yerel bölgelerin üstesin-
den gelmek için, parametrik konveksiyon difüzyon denklemlerinin sayısal çözümü
için etkili bir uyarlamalı algoritma sunulmuştur. Öte yandan, istenen hedefe ulaşmak
için bir modelin belirli parametrelerinin, örneğin yağın ortama eklendiği konum, bir
eritme/ısıtma işleminin sıcaklığı veya uçak kanatlarının şekli gibi bazı parametrele-
rin optimize edilmesi gerekir. Bu nedenle, bulgularımızı optimizasyon problemlerine
genişlettik ve rastgele girdiler içeren konveksiyon difüzyon denklemleri tarafından
yönetilen optimal kontrol problemlerini ele aldık.

Anahtar Kelimeler: PDE–kısıtlı eniyileme, belirsizlik ölçümü, stokastik kesintili Ga-
lerkin, hata tahminler, düşük kertegeli yaklaşımlar, rastgele katsayılı konveksiyon di-
füzyon denklemi, adaptif sonlu elemanlar
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CHAPTER 1

INTRODUCTION

Many physical systems in science and engineering, such as fluid dynamics, heat trans-

fer, chemically reacting systems, underwater pollution, radiation transport, oil field

reservoir, climate science, and structural mechanics, are modeled by partial differ-

ential equations (PDEs) together with appropriate initial and boundary conditions

[48, 128, 162]. To simulate complex kinds of behaviour in the physical systems, one

makes predictions and hypotheses about certain outputs of interest with the help of

simulation of mathematical models. Basically, the scientific computation paradigm

can be represented as in Figure 1.1 [58].

Physical
Phenomenon

Mathematical
Model

Numerical
Approximation

Computer
Implementation

Figure 1.1: Computational science framework.

However, it is not always possible to precisely measure or determine the parame-

ters, source functions or boundary conditions in the model due to lack of knowledge
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(called as epistemic uncertainty), or the inherent variability (called as aleatoric un-

certainty) of the model parameters. Epistemic uncertainties can be eliminated with

additional measurements or improved measuring instruments, but such approaches

are costly and also impractical to implement. Uncertainties arising from the nature

of the parameters, aleatoric uncertainty, can only be resolved by determining suitable

probability distributions for random parameters. Therefore, the idea of uncertainty

quantification, i.e., quantifying the effects of uncertainty on the result of a computa-

tion, has become a powerful tool for modeling physical phenomena in the last decade

[8, 11].

In mathematical models used in the oil and gas reservoir problems or in the manage-

ment and remediation of groundwater resources, parameters are defined as random

data to explain the limited knowledge of geological features and natural heterogene-

ity. In particular, taking the permeability parameter of the porous medium as random

data is more suitable for the nature of the problem since the classical (deterministic)

partial differential equations do not completely represent the actual behaviour of the

physical phenomena [46, 114]. In such problems, the dissolved concentration corre-

sponds to the solution of a convection diffusion equation, which includes the flow rate

as random data. Therefore, in this thesis, the fast and reliable solution of convection

diffusion equations containing random data is first emphasized.

In numerous applications, one may also rather be keen on deciding some unknown

parameters in the model by comparing the anticipated reaction with actual estima-

tors, or optimizing, certain parameters of the model. The motivation for this setup is

uncertainty quantification in the complex PDE-based simulations, where it is crucial

to account for imprecise or missing information in the input data. A well–known ex-

ample can occur in the petroleum engineering, especially in the search for ways to

extract more oil and gas from the earth’s subsurface. A percent increase in the pro-

duction may lead to a growth in profit of millions of dollars. A common process of oil

recovery, called "water flooding", employs two wells: injection and production wells.

While the production wells are used to transport gas and liquid from the reservoir, the

injection wells inject water into the oil reservoir to maintain high pressure and ade-

quate flow rate in the oil field. The balance between these wells is very crucial since

redundant water is used while the oil production rate decreases. Consequently, there
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may be a large amount of oil in the reservoir even the production has stopped. On the

other hand, the significant developments in petroleum engineering, computer speed,

storage capacity, and scientific computing techniques make it possible to manipulate

and control the fluid flow paths through the oil reservoir. This ability provides a con-

trol strategy that will result in the maximization of oil recovery. In the literature, one

of the well–known control approaches is the usage of an optimal control technique

to increase the oil production rate. As a result, such scenario in the real–world can

be mathematically expressed as PDE-constrained optimization under uncertainty, i.e.,

minimization of an objective functional subject to constraint equations in the form of

PDEs [45, 113, 131, 142]:

minimize J = J (y(ω), u(ω), z(ω))

subject to c (y(ω), u(ω), z(ω)) = 0,
(1.1)

where the constraint c represents a PDE containing an uncertain parameter z(ω) and

J is the corresponding cost functional. Here, u is the control variable, whereas y is

the corresponding state variable. In this context, the numerical solutions of optimiza-

tion problems constrained by convection diffusion equations containing random data

and how to do the mathematical analysis will also be investigated in this thesis.

In the following section, we will review some relevant background concepts in the

typical computational science framework with uncertainty.

1.1 Literature Review

This thesis combines numerous mathematical topics, including numerical discretiza-

tion methods, probability theory, optimization theory, approximation theory, and the-

ory of PDE. In the following, we will go over some relevant background concepts of

PDEs with random coefficients, such as random field generation, solution representa-

tion, discretization of spatial and temporal domains, adaptive finite element methods,

and PDE-constrained optimization with random inputs.
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1.1.1 Generation of Random Fields

In this thesis, we mainly focus on the phase flow model in porous media with uncer-

tain coefficients, which is a fundamental model in the oil reservoir simulation [46, 74].

It is crucial to describe how uncertain factors, such as permeability parameter, impact

the pressure of the fluid [46, 114]. Permeability in fluid mechanics is a property of

the porous medium that measures the capacity and ability of the formation to transmit

fluids, that is, the capacity of a rock layer to transmit water or other fluids such as oil.

However, it is hard to accurately measure the permeability field in the earth due to

the large area of the oil reservoir and complicated earth structure. On the other hand,

the permeability is a key parameter connecting the flow velocity and the gradient of

pressure from Darcy’s law. Therefore, the identification of random permeability is

crucial for the oil industry.

Norbert Wiener developed homogeneous chaos or polynomial chaos expansion in

1938, which set the groundwork for the contemporary analysis of PDEs with un-

known coefficients around the turn of the 20th century [148]. This polynomial chaos

expansion, which still holds sway as a popular numerical approach for resolving PDEs

with uncertain coefficients [98, 152], and offers a polynomial representation of Gaus-

sian random fields. A special case of polynomial chaos expansion is Karhunen–Loève

(KL) expansion [97, 116], which is a Fourier-like serie for representing a stochastic

process as a linear combination of orthogonal functions. It is also known as proper

orthogonal decomposition (POD), which decomposes the random dimensions and the

spatial dimensions of the stochastic process. In the literature, there are also varied ap-

proaches to generate random variables, for instance, source point method [77], Krig-

ing based method [132], Markov chain based method [161], and principle component

analysis (PCA) [134, 135].

In this thesis, the well-known approach KL expansion will be used. In KL expan-

sion, the random field can be represented as a linear combination of the eigenpair

of the corresponding covariance function and the corresponding uncorrelated random

variables; see Section 2.5.1 for more details.
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1.1.2 Discretization of Probability Domain

PDEs with random input data are one of the most powerful tools in order to model the

real-world problems. While solving a forward uncertainty quantification problem, the

aim is to determine the effect of uncertainties in the input on the solution of the un-

derlying problem or to investigate the numerical behaviour of the statistical moments

of the solution, such as the mean and variance. Engineers and mathematicians have

developed several methods to approximate the moments of solutions to such PDEs by

means of quantifying uncertainty. Such numerical techniques can be divided into two

main classes, which are intrusive and non–intrusive methods [107, 150]. While the

intrusive methods are directly based on spectral expansions of the solution on the pre-

defined stochastic subspace, the non-intrusive methods basically generate identically

independent samples of the random data according to their probability distribution.

Monte Carlo (MC) method [67] is the most commonly used non–intrusive method

for simulating PDEs with random coefficients since it is straightforward to apply as

generating samples of the random input and utilizes repetitive deterministic systems

for each realization. Although the MC method is very robust and independent of the

dimensionality of the random domain, its convergence rate is slow. To obtain small

error in the simulations, it requires a large amount of computation in the deterministic

systems, i.e., the mean value converges as 1/
√
N , where N is the number of realiza-

tions. Despite the convergence limitation of the standard Monte Carlo approach, there

have been developments that improve its efficiency, such as quasi-Monte Carlo [124]

and multi-level Monte Carlo methods [78, 88]. The other common non–intrusive

method is stochastic collocation (SC) [9, 150, 151] which consists of a Galerkin ap-

proximation in the space and an interpolation of the stochastic domain. It evaluates

solutions of a stochastic system at carefully chosen points (collocation points) within

the random space. The reason being preferred is to require only a deterministic solver

due to its non–intrusive structure as the MC methods and achieves fast convergence

rate especially for the small number of realizations. However, the construction of

collocation points is crucial because the choice of the collocation points determines

the efficiency of the method [118, 126].

In contrast to the Monte Carlo approach and the stochastic collocation method, stochas-
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tic Galerkin (SG) method [76], the most popular intrusive method, is a non–sampling

approach, which transforms a PDE with random coefficients into a large system of

coupled deterministic PDEs. As in the classic (deterministic) Galerkin method, the

idea behind the stochastic Galerkin method is to seek a solution for the model equa-

tion such that the residue is orthogonal to the space of polynomials. An important

feature of this technique is the separation of the spatial and stochastic variables, which

allows a reuse of established numerical techniques. The studies in [11, 128] show that

the stochastic Galerkin method generally exhibits superior performance compared

to the stochastic collocation method for PDE-constrained optimization problems, in

the sense that, unlike stochastic Galerkin method, the non-intrusivity property of the

stochastic collocation method is lost when the moments of the state variable appear

in the cost functional, or when the control is not stochastic. Lastly, the other intru-

sive method is the perturbation or Neumann series expansion methods [99, 8], which

expand the exact random solution in power series of a small parameter about their

respective mean values. However, the perturbation methods only give the good re-

sults for the problems containing small uncertainties; see, e.g., [84, 8]. Due to the

aforementioned, the stochastic Galerkin method will be used in this thesis in order to

quantify the uncertainty in the stochastic domain.

A major drawback of the stochastic Galerkin methods is the rapid increase of di-

mensionality, called as the curse of dimensionality. We address this issue by using

low–rank Krylov subspace methods, which reduce both the storage requirements and

the computational complexity by exploiting a Kronecker–product structure of system

matrices; see, e.g., [13, 102, 139]. Similar approaches have been used to solve steady

stochastic diffusion equations [55, 109, 122], unsteady stochastic diffusion equations

[20], stochastic Navier–Stokes equations [64, 110], the optimal control problems for

unconstrained control problems [17, 19, 21], and for control constraint problems [71].

Further, in the aforementioned studies, randomness is generally defined in the diffu-

sion parameter; however we here consider the randomness both in diffusion or con-

vection parameters.
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1.1.3 Discretization of Spatial Domain

In the literature review done so far, the focus is only on quantifying the uncertainty

in the stochastic domain. After discretization or approximation of the stochastic do-

main, it comes to the point that traditional numerical methods such as finite element,

finite volume, or finite difference methods are applied to approximate the solution to

the parameterized stochastic PDEs. In the literature, several stochastic finite element

methods have been proposed and analysed; see, e.g., [11, 12, 58, 66, 68, 121, 153]

and the references therein. Standard continuous finite element is the most commonly

used method owing to its efficiency and high-order convergence rate by compari-

son with the finite difference or finite volume [11, 12, 99, 115]. However, they ex-

hibit spurious oscillations while solving convection dominated PDEs, which are the

main focus of this study. Therefore, we prefer to use discontinuous Galerkin methods

[7, 54, 129, 136] for spatial discretization in this thesis. Compared with the discon-

tinuous Galerkin method, the finite difference method is not able to handle complex

geometries, the finite volume method is not capable of achieving high–order accu-

racy, and the standard continuous finite element method lacks the ability of local mass

conservation. Moreover, especially for convection dominated problems, DG methods

produce stable discretization without the need for stabilization strategies, and they

allow for different orders of approximation to be used on different elements in a very

straightforward manner [7, 129].

In the perspective of PDE-constrained optimization problems, optimal control prob-

lems governed by convection dominated PDEs have boundary and/or interior layers

generated in the state PDE as well as in the adjoint PDE. The standard finite element

methods may result in spurious oscillations causing in turn a severe loss of accuracy

and stability. To overcome this problem, some effective stabilization techniques are

used, i.e., the streamline upwind/Petrov Galerkin (SUPG) finite element method [50],

the local projection stabilization [15], the edge stabilization [93, 155]. However, DG

methods perform a better convergence behaviour for convection dominated optimal

control problems since optimal convergence orders are obtained if the error is com-

puted away from boundary or interior layers, in contrast to the SUPG discretization

[111]. To best of our knowledge, there exist few papers related to the application of
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the DG with random data [114, 115, 156].

1.1.4 Adaptivity in PDEs with Random Coefficients

With the improvement of computer–processing capacities, the demand for efficient

numerical simulation of partial differential equations (PDEs) with uncertainty or pa-

rameter dependent inputs, which are widely used in many fields in science and en-

gineering, see, e.g., [1, 53, 119, 163], has begun to grow. Even in the deterministic

setting, the reliable and efficient solution of such PDEs, especially convection diffu-

sion equations with random data, is challenging due to two possible issues. First of

all, a stable numerical approach is generally not possible to approximate convection

dominated problems since such problems may have rapid gradient changes in layers

with small widths in solutions. The second obstacle is that to be able to obtain more

accurate solutions, we need to include enough number of uncertain parameters in the

system, which in turn engenders high computational cost. A natural solution to these

issues is the combination of using meshes that are locally refined in the neighborhood

of boundary layers and adaptively chosen index sets for the stochastic space.

Design and theoretical analysis of adaptive finite element methods pioneered by the

work of Babuška and Rheinbold [10] have become a popular approach for the efficient

solution of deterministic PDEs [3, 145] as well as PDEs with random data. Within the

SG method setting for PDEs containing uncertainty, several adaptive strategies based

on, for instance, implicit error estimators [146], goal–oriented a posteriori error esti-

mates [28, 120], multilevel goal–oriented adaptive approaches [26], local equilibrium

error estimates [62], hierarchal error estimates [28, 29, 30, 51], and residual–based

error estimators [59, 60, 61, 79], are used to enhance the computed solution and drive

the convergence of approximations. In addition to the aforementioned studies, the

convergence analysis of adaptive SG methods are discussed in [60] for the residual–

based estimators, in [27] for hierarchical a posteriori error indicators for parametric

approximations, and in [26] for the multilevel construction of the spatial general-

ized polynomial chaos. However, according to our best literature review, there exist

any study for the convection dominated PDEs containing uncertainty. Here, we in-

tend to fill this gap. In this thesis, the stochastic discontinuous Galerkin method and
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a posteriori error estimation will be combined to obtain an adaptive approximation

for convection diffusion equations with random inputs. The SG method discretizes a

parametric reformulation of the given PDE with random data and searches for approx-

imations in tensor product spaces. Due to the enormous size of the space, computing

the SG solution becomes unaffordable if a large number of random variables are used

to represent the input data and highly resolved spatial grids are used for finite element

approximations on the physical domain. Hence, with the help of judiciously cho-

sen adaptive approaches in both spatial and stochastic domains, one can avoid a fast

growth of the dimension of tensor basis consisting of finite element basis functions

in the spatial domain and polynomial chaos polynomials in (stochastic) parameter

space.

1.1.5 Optimal Control Problems with Random Coefficients

In many applications, optimization of many physical and engineering phenomena

can be formulated as optimal control problems governed by partial differential equa-

tions which have been a major topic in the applied mathematics and control theory.

The methodology of deterministic PDE-constrained optimization problems has been

developed and investigated for several decades [31, 92, 113, 142]. However, the re-

search of the optimal control problems governed by PDEs with random coefficients

is still in its early stage. We refer to [21, 86, 94, 101, 131] and references therein for

optimal control problems with random coefficients.

PDE–constraint optimization problems with uncertainty have been studied in various

formulations in the literature, and these formulations can be categorized by assump-

tions on the cost functional in the minimization problem (1.1) as follows [5]:

1) Mean-based control: Replacing z(ω) by its expected value E[z(ω)], minimize

J (y, u,E[z]) by a deterministic optimal control; see, e.g., [32, 33].

2) Pathwise control: Fixing z(ω), minimize J (y, u, z(ω)), and then obtain a real-

ization u∗ of the stochastic optimal control u(ω); see, e.g., [5, 125].

3) Averaged control: Control the averaged state by minimizing J (E[y(ω)], u, z)
using a deterministic optimal control; see, e.g., [106, 165].
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4) Robust deterministic control: Minimize the expected cost E[J (y, u, z)] by a

deterministic optimal control; see, e.g., [35, ?, 86, 94, 101, 108, 131].

5) Robust stochastic control: Minimize the expected cost E[J (y, u, z)] by a stochas-

tic optimal control; see, e.g., [18, 21, 45, 104, 105, 141].

Since the source of uncertainty in the state PDE is not well explained by the mean–

based control issue, it is impossible to determine whether the optimal control problem

is robust or not. When combined with Monte Carlo and stochastic collocation sam-

pling techniques, the pathwise control problem is preferable. The expected value

E[u∗] does not, however, solve an optimum control problem, hence it is not a robust

value. In the average control problem, it minimizes the distance between the ex-

pected and a certain state, whereas the robust deterministic control seeks to minimize

the expected distance between the random state and the desired state. In practice, con-

trollers typically require a deterministic signal, therefore stochastic optimal controls

have limited practical usage. Robust deterministic control, which includes an appro-

priate statistical measure of the objective function to be minimized, is more practical

and realistic since randomness cannot be observed during the design of the control.

Therefore, the interest in this thesis is the robust deterministic control problem subject

to a convection diffusion equation containing uncertain inputs.

Finding an approximate solution for the optimization problems containing uncertainty

(1.1) is extremely challenging and requires much more computational resources than

the ones in the deterministic setting. In the literature, there exist various compet-

ing methods to solve such kinds of problem, for instance, Monte Carlo [5, 14, 87],

stochastic collocation method [34, 72, 131, 141], and stochastic Galerkin method

[56, 86, 108, 131, 140]. In this thesis, the stochastic Galerkin method is preferred as

a stochastic method since it separates the stochastic and spatial domain, and to rep-

resent random coefficient, the KL expansion is used; see Section 1.1.2 and Section

1.1.1. On the other hand, for the discretization of the spatial domain, we use a discon-

tinuous Galerkin method due to its better convergence behaviour for the optimization

problems governed by convection dominated PDEs; see, e.g., [111, 157, 159]. We

also refer to Section 1.1.3 and references therein for more details on the discontinu-

ous Galerkin methods. To overcome the curse of dimensionality problem, we apply
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a low–rank variant of generalized minimal residual (GMRES) method [133] with a

suitable preconditioner.

1.2 Outline of Thesis

An outline of the thesis is as follows: In Chapter 2, some background information

is provided on Kronecker product, low-rank approximation, function spaces, some

important inequalities, and stochastic Galerkin approach. Then, in Chapter 3, the for-

mulation of the stochastic discontinuous Galerkin methods is presented and applied

to solve a convection diffusion equation with uncertain data. To avoid the curse of

dimensionality, low–rank Krylov subspace methods are proposed by examining some

numerical examples. Chapter 4 focuses on the development of the adaptive stochastic

discontinuous Galerkin method and the derivation of a posteriori error estimation. In

Chapter 5, the robust deterministic optimal control problem constrained by a convec-

tion diffusion equation containing uncertain coefficients is investigated theoretically

and numerically. Finally, the thesis ends with Chapter 6, which includes the conclud-

ing remarks and future works.

11



12



CHAPTER 2

PRELIMINARIES

In this chapter, some important concepts, that are widely used in the rest of this thesis,

are covered, and the fundamental notations are fixed for the reader’s convenience.

Firstly, important definitions and notations related to the solution of linear system are

given in Section 2.1. To be able to analyze and solve partial differential equations

(PDEs) containing uncertain terms, the essential function spaces in the physical and

probability domains are presented in Section 2.2 and 2.3, respectively. Section 2.4

provides important inequalities, which are commonly utilized in the theoretical parts

of this thesis. Finally, the basic procedure of the stochastic Galerkin method, which

is a powerful tool for working with PDE with uncertainty, is reviewed in Section 2.5.

2.1 Matrix Computation on Kronecker Product

In this section, the Kronecker product of two matrices and its crucial properties are

introduced. Also, the basic notations related to low–rank approach are given.

Definition 2.1.1. Let A = [a1, . . . , an] ∈ Rm×n and B ∈ Rp×q. Then, the Kronecker

product A⊗B ∈ Rmp×nq is defined by

A⊗B =


a11B . . . a1nB

... . . . ...

am1B . . . amnB

 . (2.1)

The Kronecker product may alternatively be referred to as the direct product or the

tensor product.
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Definition 2.1.2. Let X = [x1, . . . , xn] ∈ Rm×n and Y =
[
yT1 , . . . , yTn

]T ∈ Rmn.

Then, isomorphic mapping between Rmn and Rm×n are defined, respectively, as fol-

lowing

vec : Rm×n → Rmn, mat : Rmn → Rm×n,

such that

vec(X) =


x1

...

xn

 , and mat(Y ) =
[
y1 . . . yn

]
. (2.2)

From (2.2), it is clear that the vec operator stacks the columns of a matrix into a

column vector, whereas the mat operator transforms a column vector to a matrix.

Next, a definition of the Kronecker (tensor) rank of a vectorized matrix is given.

Definition 2.1.3. ([83]) Given a matrix X ∈ Rm×m and its vectorized form x =

vec(X) ∈ Rm2
. The smallest r ∈ Z+ is called as the Kronecker rank of x so that

x =
r∑

i=1

ui ⊗ vi, ui, vi ∈ Rm. (2.3)

Especially, the rank of the matrix X corresponds to the Kronecker rank of the its

vectorized matrix x.

2.1.1 Basic Properties

Here, some basic properties of the Kronecker product are listed; see, e.g., [82, 102].

Let A be an m × n matrix, B be a p × q matrix, C be an s × t matrix, D be a d × e
matrix, and X be an m× p matrix:

• (A⊗B)⊗ C = A⊗ (B ⊗ C),

• (cA)⊗B = c(A⊗B) = A⊗ (cB) for all c ∈ C,

• (A⊗B)(C ⊗D) = AC ⊗BD,

• vec(AXB) = (BT ⊗ A)vec(X),

• (A⊗B)T = AT ⊗BT ,

14



• (A⊗B)−1 = A−1 ⊗B−1.

The proof of all cases is usually simple and is left up to the reader’s interpretation;

see, e.g., [82].

2.1.2 Low–Rank Approximation

A low–rank approximation of a matrix is applicable to many fields in science and

engineering. In particular, the scope of this thesis is taking advantage of the low–

rank approximation to the solutions of large linear systems in order to reduce both the

storage requirements and the computational complexity by exploiting a Kronecker–

product structure of system matrices; see, e.g., [13, 102, 139].

Lemma 2.1.4. A matrix A ∈ Rm×n of rank r can be represented as a factorization of

the form

A = BCT , B ∈ Rm×r, C ∈ Rn×r.

If rank(A)≪ m,n, the matrix A has low-rank.

≈

CT

BA

Figure 2.1: Approximation of a matrix A by its low–rank components B and C.

The illustration of a low–rank approximation of a matrix A is given in Figure 2.1.

Low–rank approximation is a minimization problem where the difference between

the provided matrix A, or array, and the approximating matrix with a lower rank is

measured by the cost function. The singular value decomposition (SVD) provides an

analytical solution to this minimization issue, which is given by the Eckart-Young-

Mirsky theorem:

Theorem 2.1.5. ([57, 80]) Assume that the SVD of a matrix A ∈ Rm×n with r =
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rank(A) is given by

A = UΣV T =
[
u1 . . . ur

]
σ1

. . .

σr




vT1
...

vTr

 ,
where σi ∈ R are the singular values of A with σ1 > σ2 > . . . > σr > 0, and

U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices. If Ak =
k∑

i=1

σiui v T
i , then

min
X s.t. rank(X)≤k

∥A−X∥F = ∥A− Ak∥F .

The matrix Ak is also called the best approximation of A in the set of all rank–

k matrices with respect to the Frobenious norm, that is, ∥A∥F =
√
⟨A,A⟩F with

⟨A,B⟩F = trace(ATB). For a tensor product matrix, or a multi-dimensional array,

its low–rank approximation will be discussed in Section 3.3.

2.2 Sobolev Spaces

Throughout this thesis, D stands for a bounded polygonal domain in R2. The vector

spaces Lp(D) are given by

Lp(D) =
{
v Lebesgue measurable : ∥v∥Lp(D) <∞

}
,

which is endowed with the norm

∥v∥Lp(D) =

∫
D

|v(x)|p
1/p

,

and

∥v∥L∞(D) = ess sup {|v(x)| : x ∈ D} .

The following introduces the space of locally integrable functions and the space of

infinitely many times differentiable functions with the compact support on a subset of

D, respectively:

Lp
loc = {v Lebesgue measurable : v ∈ Lp(K) for all K ⊂ D compact} ,

and

C∞c =
{
v ∈ C∞(D) : supp(v) ⊂ D compact

}
.
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Definition 2.2.1 (Weak Derivative). Let u, v ∈ L1
loc(D), and α be a multi-index.

Dαu := v is called the α-th weak partial derivative of u if∫
D
uDαψ dx = (−1)|α|

∫
D
vψ dx, ∀ψ ∈ C∞c (D),

where |α| = α1 + . . .+ αn for α = (α1, . . . , αn).

Now, the Sobolev space W k,p is defined by

W k,p(D) = {v ∈ Lp(D) : v has weak derivatives Dαv ∈ Lp(D), ∀|α| ≤ k} ,

with the Sobolev norm and the Sobolev semi–norm, respectively,

∥v∥Wk,p(D) :=



( ∑
|α|≤k

∫
D
|Dαv|p

)1/p

, 1 ≤ p ≤ ∞,

∑
|α|≤k

ess sup
D
|Dαv|, p =∞,

|v|Wk,p(D) :=



( ∑
|α|=k

∫
D
|Dαv|p

)1/p

, 1 ≤ p ≤ ∞,

∑
|α|=k

ess sup
D
|Dαv|, p =∞.

Remark 2.2.2. For p = 2, it can be written as

Hk(D) = W k,2, k = 0, 1, . . . ,

called a Hilbert space, with the following associated norm and semi-norm

∥v∥Hk(D) :=

( ∑
|α|≤k

∥Dαv∥2L2(D)

)1/2

,

|v|Hk(D) :=

( ∑
|α|=k

∥Dαv∥2L2(D)

)1/2

,

respectively.

Moreover, H1
0 (D) represents a Hilbert space with homogeneous Dirichlet boundary

condition defined as

H1
0 (D) =

{
u ∈ H1(D) : u|∂D = 0

}
.
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Then, the broken Sobolev space is given by

Hk(Th) =
{
v ∈ L2(D) : ∀K ∈ Th, v|K ∈ Hk(K)

}
,

where Th is the subdivision domain obtained by dividing D into triangle elements K.

So, the broken Sobolev norm becomes

∥v∥Hk(Th) =

( ∑
K∈Th

∥v∥2Hk(K)

)1/2

.

2.3 Stochastic Sobolev Spaces

Necessary spaces and stochastic notations, which are used in stochastic discretiza-

tions, are introduced in this section. The triplet (Ω,F ,P) denotes a complete proba-

bility space, where Ω is a sample space of events, F ⊂ 2Ω denotes a σ–algebra, and

P : F → [0, 1] is the associated probability measure. The space of all real–value

square integrable random variable is defined as

L2(Ω) = L2(Ω,F ,P) :=
{
X : Ω→ R :

∫
Ω

|X(ω)|2 dP(ω) <∞
}
,

which is a Hilbert space equipped with the inner product

⟨X, Y ⟩ =
∫
Ω

X(ω)Y (ω)dP(ω), X, Y ∈ L2(Ω).

Further, for a given separable Hilbert space H equipped with the norm ∥ · ∥H and

seminorm | · |H , the Bochner–type space Lp(H; Ω) for a random variable X : Ω→ H

is introduced as

Lp(H; Ω) :=
{
X : Ω→ H : ∥X∥Lp(H;Ω) <∞

}
,

where

∥X∥Lp(H;Ω) =


(∫

Ω
∥X(ω)∥pH dP(ω)

)1/p
, for 1 ≤ p <∞,

ess sup
ω∈Ω

∥X(ω)∥H , for p =∞.

A generic random field z on the probability space (Ω,F ,P) is denoted by z(x, ω) :

D × Ω → R. For a fixed x ∈ D, z(x, ·) ∈ L2(Ω) is a real–value square integrable
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random variable. Then, the mean E[z], the standard deviation S(z), and the corre-

sponding variance V(z) for any random field z, are given, respectively, by

E[z] =
∫
Ω

z dP(ω), (2.4a)

S(z) =
[∫

Ω

(z − E[z])2 dP(ω)
]1/2

, (2.4b)

V(z) = [S(z)]2 = E[z2]− (E[z])2 . (2.4c)

Also, the covariance of z is denoted by

Cz(x,y) :=
〈(
z(x, ·)− E[z(x)]

)(
z(y, ·)− E[z(y)]

)〉
x,y ∈ D. (2.5)

In the following, the tensor–product space Hk(D) ⊗ L2(Ω) of random fields can be

stated as

Hk(D)⊗ L2(Ω) =

{
z : D ⊗ Ω→ R :

∫
Ω

∥z(·, ω)∥2Hk(D)dP(ω) <∞
}
, (2.6)

which is equipped with the norm

∥z∥Hk(D)⊗L2(Ω) :=

(∫
Ω

∥z(·, ω)∥2Hk(D) dP(ω)
)1/2

. (2.7)

In addition, the following isomorphism relation [11, 12] holds

Hk(D)⊗ L2(Ω) ≃ L2(Hk(D); Ω) ≃ Hk(D;L2(Ω))

with the definitions

L2(Hk(D); Ω) =
{
z : D × Ω→ R :

∫
Ω

∥z(·, ξ)∥2Hk(D)dP(ω) <∞
}

and

Hk(D;L2(Ω)) =
{
z : D × Ω→ R : ∀|α| ≤ k, ∃ ∂αz ∈ L2(D)⊗ L2(Ω) with∫

Ω

∫
D
∂αz(x, ω)φ(x, ω) dx dP(ω) = (−1)α

∫
Ω

∫
D
z(x, ω)∂αφ(x, ω) dx dP(ω),

∀φ ∈ C∞0 (D × Ω)} .

Thus, for a given complete probability space (Ω,F ,P), and D ⊂ Rn, the stochastic

Sobolev space is defined by

Lp(W k,q(D); Ω) =
{
z : D × Ω→ R Lebesgue measurable :∫
Ω

∥z(·, ξ)∥p
Wk,q(D)dP(ω) <∞

}
.
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2.4 Important Inequalities

This section presents some significant inequalities that are commonly utilized in this

thesis.

2.4.1 Trace Inequalities

Theorem 2.4.1. [129, Theorem 2.5] Given a bounded domain D with polygonal

boundary ∂D and outward normal vector n, there exists trace operators tr0 : H
k(D)→

Hk− 1
2 for k > 1

2
and tr1 : Hk(D) → Hk− 3

2 for k > 3
2
, that are, respectively,

extensions of the boundary values and boundary normal derivatives. Moreover, if

v ∈ C1(D), the following assumptions are satisfied:

tr0v = v|∂D, tr1v = ∇v · n|∂D.

Moreover, for positive constant ctr independent of diameter of K, hK , the trace in-

equalities are given as follow:

∥v∥2E ≤ ctr

(
∥v∥2L2(K) + hK |v|2H1(K)

)
, v ∈ H1(K), (2.8a)

∥∇v · nE∥2E ≤ ctr

(
|v|2H1(K) + hK |v|2H2(K)

)
, v ∈ H2(K), (2.8b)

where E denotes an edge or a face of a triangle K. Let Pℓ(K) be the space of poly-

nomials on K of degree less than or equal to ℓ. Then, the trace inequalities become

∥v∥2E ≤ ctrh
− 1

2
K ∥v∥L2(K), v ∈ Pℓ(K), (2.8c)

∥∇v · nE∥2E ≤ ctrh
− 1

2
K ∥∇v∥L2(K), v ∈ Pℓ(K). (2.8d)

2.4.2 Inverse Inequality

There is a positive constant cinv independent of hK such that for any polynomial

function v defined on K, the inverse inequality is given as follows (see, e.g., [36,

Section 4.5]):

|v|j,K ≤ cinv h
i−j|v|i,K , 0 ≤ i ≤ j ≤ 2. (2.9)
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2.4.3 Well–known Inequalities in Finite Element Analysis

Hölder’s, Cauchy-Schwarz’s, Young’s, Poincaré’s, and Jensen’s inequalities are the

most well-known inequalities used in the analysis of numerical methods. Below,

their basic descriptions will be given.

• Hölder’s inequality:

Let 1 ≤ p, q ≤ ∞ such that 1
p
+ 1

q
= 1. Then, it holds∫

D
|u v| ≤ ∥u∥Lp(D)∥v∥Lq(D), u ∈ Lp(D), v ∈ Lq(D). (2.10)

• Cauchy-Schwarz’s inequality:

For p = q = 2, Hölder’s inequality (2.10) becomes

| (u, v)D | ≤ ∥u∥L2(D)∥v∥L2(D), ∀u, v ∈ L2(D). (2.11)

• Young’s inequality:

ab ≤ ϵ

2
a2 +

1

2ϵ
b2, ∀ϵ > 0, a, b ∈ R. (2.12)

• Poincaré’s inequality:

∥u∥Hk(D) ≤ |u|Hl(D), k < l, ∀u ∈ H1
0 (D). (2.13)

• Jensen’s inequality:

For any convex function g and every random variable ξ,

g(E[ξ]) ≤ E[g(ξ)]. (2.14)

2.4.4 Gronwall’s Inequalities

In the analysis of time–dependent problems, Gronwall’s inequalities are crucial tools

and can be represented both continuous and discrete forms [91, 129]:

• Continuous Gronwall inequality:

Given piecewise continuous nonnegative functions f, g, and h defined on (a, b)
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and assume also that g is nondecreasing. If there exists a constant C > 0

independent of t such that

f(t) + h(t) ≤ g(t) + C

t∫
a

f(s) ds, ∀t ∈ (a, b),

then

f(t) + h(t) ≤ eC(t−a)g(t), ∀t ∈ (a, b).

• Discrete Gronwall inequality:

Assume that (an)n, (bn)n, (cn)n, and (dn)n are sequences of nonnegative num-

ber satisfying

an +∆t
n∑

i=0

bi ≤ B + C∆t
n∑

i=0

ai +∆t
n∑

i=0

ci, ∀n ≥ 0

for ∆t, B, C > 0. Then, if C∆t < 1,

an +∆t
n∑

i=0

bi ≤ eC(n−1)∆t

(
B +∆t

n∑
i=0

ci

)
, ∀n ≥ 0.

2.5 Stochastic Galerkin Method

In this section, the fundamental procedure of the stochastic Galerkin method, which is

one of the well-known discretization methods for PDE with uncertainty, is discussed.

2.5.1 Karhunen–Loève Expansion

This thesis focuses on the PDE with random inputs derived from some physical char-

acteristics connected to the models represented by the PDEs. To solve the model prob-

lem numerically, it is necessary to reduce the stochastic process into a finite number

of mutually uncorrelated random variables.

The major emphasis is on a certain class of random processes in L2(Ω) and their

representations in Fourier-like expansions that are convergent with respect to the norm

connected with the appropriate inner product in L2(Ω) space. Using a Fourier-like

series called the Karhunen-Loève (KL) expansion [97, 116], a stochastic process can
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be represented as a linear combination of orthogonal functions. It also goes by the

name proper orthogonal decomposition (POD), which divides the stochastic process’

spatial and random dimensions.

Following the Karhunen–Loève (KL) expansion [97, 116], a random field z(x, ω) :

D × Ω → R with a continuous covariance function Cz(x,y) defined in (2.5) admits

a proper orthogonal decomposition

z(x, ω) = z(x) + κz

∞∑
k=1

√
λkϕk(x)ξk(ω), (2.15)

where z(x) is the mean of the random variable z(x, ω), κz is the standard deviation,

and ξ := {ξ1, ξ2, . . .} are uncorrelated random variables. The pair {λk, ϕk} is a set

of the eigenvalues and eigenfunctions of the corresponding covariance operator Cz.

In order to obtain eigenpairs {λk, ϕk}, one needs to solve the following eigenvalue

problem ∫
D
Cz(x,y)ϕi(y) dy = λiϕi(x).

It is noted that as long as the covariance function Cz(·, ·) is nonnegative definite, the

eigenvalues {λk} form a sequence of nonnegative real numbers decreasing to zero;

see, e.g., [128]. Moreover, the eigenfunctions {ϕk} form a complete orthogonal basis

in L2(Ω).

The random variable z(x, ω) is then approximated by truncating its KL expansion of

the form

z(x, ω) ≈ zN(x, ω) := z(x) + κz

N∑
k=1

√
λkϕk(x)ξk(ω). (2.16)

Here, the choice of the truncated number N is usually based on the speed of decay on

the eigenvalues since
∞∑
i=1

λi =

∫
D
Vz(x) dx,

see, e.g., [65]. The truncated KL expansion (2.16) is a finite representation of the

random field z(x, ω) in the sense that the mean-square error of approximation is

minimized; see, e.g., [8]. Then, the truncation error resulting from the KL–expansion

is equivalent to

∥z − zN∥Lp(L∞(D);Ω) ≤ C

(
∞∑

i=N+1

λi

)1/2

, (2.17)
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where the constant C is independent of the truncation number N . For example, the

random field z(x, ω) is characterized by the following exponential covariance func-

tion

C(x, y) = e−|x−y|/ℓ, (2.18)

where ℓ is correlation length and x, y ∈ D = [−a, a]. To find the truncated KL

expansion, the following integral equations is needed to solve:∫ a

−a
e−|x−y|/ℓϕk(y)dy = λkϕk(x), x ∈ [−a, a]. (2.19)

By differentiating twice, it is obtained that

d2ϕ

dx2
+ ω2ϕ = 0 with ω2 :=

2ℓ−1 − ℓ−2λ
λ

and the boundary conditions are

ℓ−1ϕ(−a)− dϕ

dx
(−a) = 0, ℓ−1ϕ(a) +

dϕ

dx
(a) = 0.

By solving this differential equations, the eigenfunctions and the eigenvalues are of

the form

ϕ(x) = A cos(ωx) +B sin(ωx), λ =
2ℓ−1

ω2 + ℓ−2
.

For this special case of the covariance function, one can have the explicit expressions

for its eigenfunctions ϕk and eigenvalues λk. Let ωkodd and ωkeven solve the equations

ℓ−1 − ωkodd tan(aωkodd) = 0,

ωkeven + ℓ−1 tan(aωkeven) = 0.

Also, ωkeven and ωkodd are positive roots of above equations, respectively. It has been

shown in [117] that the even and odd indexed eigenfunctions are given, respectively,

by

ϕkodd(x) =
cos(ωkoddx)√
a+

sin(2aωkodd
)

2ωkodd

, ϕkeven(x) =
sin(ωkevenx)√
a− sin(2aωkeven )

2ωkeven

with corresponding indexed eigenvalues

λkeven =
2ℓ−1

ω2
keven

+ ℓ−2
, λkodd =

2ℓ−1

ω2
kodd

+ ℓ−2
.
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Now, consider a random field z(x, ω) characterized by its mean z̄ and covariance

function

C(x, y) =
2∏

m=1

e−|xm−ym|/ℓm , on D = [−a1, a1]× [−a2, a2].

Since C is separable, the eigenfunctions can be written as ϕk(x) = ϕ1
i (x1)ϕ

2
j(x2)

and the eigenvalues are λk = λ1iλ
2
j , where the eigen–pairs {λ1i , ϕ1

i } and {λ2j , ϕ2
j} are

solutions to the one-dimensional problem, which is defined in (2.19)∫ am

−am
e−|x−y|/ℓmϕm(y)dy = λmϕm(x), m = 1, 2.

For the n–dimensional case, the eigenfunctions and the eigenvalues can be written as

ϕk(x) =
N∏

m=1

ϕ1
k1
(x1)ϕ

2
k2
(x2)...ϕ

m
km(xm), λk =

N∏
m=1

λ1k1λ
2
k2
...λmkm .

0 20 40 60 80 100
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0 20 40 60 80 100
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Figure 2.2: Decay of eigenvalues of the KL expansion in (2.16) for one-dimensional
(left) and two-dimensional problem (right) with varying correlation length ℓ and ai =
1.

For the exponential covariance in (2.18), if the correlation length ℓ is larger, the decay

of eigenvalues will be faster; see Figure 2.2, and so a smaller number of terms are

needed in the KL expansion (2.16) to obtain an efficient approximation. Conversely,

in applications where the eigenvalues decay slowly, due to small correlation lengths,

the truncation number N might be very large.

By the assumption based on finite dimensional noise and Doob–Dynkin lemma [127],

the probability space (Ω,F ,P) is replaced with (Γ,B(Γ), ρ(ξ)dξ), where B(Γ) de-

notes Borel σ–algebra and ρ(ξ)dξ is the distribution measure of the vector ξ. Then,
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the random input in (2.16) is parameterized with a finite-dimensional vector ξ : Ω→
Γ ∈ RN and can be given by z(x, ω) = z(x, ξ1(ω), ξ2(ω), . . . , ξN(ω)). Hence, we

can state the tensor–product space Hk(D)⊗ L2(Γ), which is endowed with the norm

∥z∥Hk(D)⊗L2(Γ) :=

(∫
Γ

∥z(·, ξ)∥2Hk(D)ρ(ξ) dξ

)1/2

<∞.

2.5.2 Generalized Polynomial Chaos Expansion

The generalized polynomial chaos (gPC) expansion [150, 152] is a way to repre-

sent a second order stochastic process y(x, ω) ∈ L2(Ω,F ,P) with orthogonal multi–

dimensional polynomials of independent random variables. The expansion converges

to the actual process in the sense of the mean square as both the number of random

variables and the order of the polynomials approach infinity; see, e.g., [150]. Thus, by

a parameterized random vector ξ : Ω → Γ ⊂ RN , the gPC expansion of the process

y(x, ω) is given by the following form

y(x, ω) ≈ y(x, ξ) =
∞∑
i=0

yi(x)Ψi(ξ(ω)), (2.20)

where yi are the deterministic modes of the expansion defined as

yi(x) =

〈
y(x, ω)Ψi(ξ)

〉〈
Ψ2

i (ξ)
〉 . (2.21)

The functions Ψi are multivariate orthogonal polynomials satisfying following prop-

erties:

•
〈
Ψ0(ξ)

〉
= 1,

•
〈
Ψi(ξ)

〉
= 0, i > 0,

•
〈
Ψi(ξ)Ψj(ξ)

〉
=
〈
Ψ2

i (ξ)
〉
δij ,

with 〈
Ψi(ξ)

〉
=

∫
ω∈Ω

Ψi(ξ(ω)) dP(ω) =
∫

ξ∈Γ

Ψi(ξ)ρ(ξ) dξ, (2.22)

where Γ and ρ are the support and probability density function of ξ, respectively.

The probability density functions of random distributions are corresponding to the
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weight functions of some particular types of orthogonal polynomials. Therefore, the

orthogonal polynomials, i.e., Ψi, are chosen according to the type of the distribution

of random input, for instance, Hermite polynomials and Gaussian random variables,

Legendre polynomials and uniform random variables [100, 152]; see Askey–scheme

in Table 2.1.

Table 2.1: Correspondence between polynomial basis in Askey–scheme.

Distribution Basis Support
Gaussian Hermite (−∞,∞)

Gamma Laguerre [0,∞)

Beta Jacobi [a, b]

Uniform Legendre [a, b]

The Cameron–Martin theorem [40] states that the series (2.20) converges in the Hilbert

space L2(Ω,F ,P). Then, as done in the case of KL expansion (2.16), truncating the

expansion (2.20) gives

y(x, ω) ≈ yJ(x, ξ) =
J−1∑
i=0

yi(x)Ψi(ξ(ω)), (2.23)

where the total number of PC basis functions is determined by the dimension N of

the random vector ξ and the highest order Q of the basis polynomials Ψi

J = 1 +

Q∑
s=1

1

s!

s−1∏
j=0

(N + j) =
(N +Q)!

N !Q!
. (2.24)

Specifically, a partition of the support of probability density in finite dimensional

space Γ consists of disjoint RN–boxes, γ =
N∏

n=1

(rγn, s
γ
n), with (rγn, s

γ
n) ⊂ Γn for

n = 1, . . . , N so that the mesh size kn becomes kn = max
γ
|sγn − rγn|, n = 1 . . . N .

By following [66, 128], the corresponding stochastic space with degree at most qn on

each direction ξn is denoted by

Sq
k := span{Ψq(ξ) : q = 0, 1, . . . , J − 1} ⊂ L2(Γ) (2.25)

for the multi–index q = (q1, . . . , qN).

Next, to exemplify the construction of the stochastic space Sq
k in the case of Gaussian

random variables [128], letN = 2 andQ = 3 and the multi–index q = (q1, q2) denote

the degrees of the polynomials of the two random variables ξ1 and ξ2. Then, Sq
k is the
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collection of two–dimensional Hermite polynomials from Table 2.1. All possible val-

ues of q becomes (0, 0), (1, 0) (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), and

(0, 3). Considering that the univarite Hermite polynomials are ψ0(x) = 1, ψ1(x) = x,

ψ2(x) = x2 − 1, and ψ3(x) = x3 − 3x, it can be obtained that

Sq
k = span{Ψq(ξ) : q = 0, 1, . . . , 9}

= {1, ξ1, ξ21 − 1, ξ1ξ2, ξ
2
2 − 1, ξ31 − 3ξ1, (ξ

2
1 − 1)ξ2, ξ1(ξ

2
2 − 1), ξ32 − 3ξ2}.

Now, consider the case of uniform random variables with N = 2 and Q = 3. From

Table 2.1, the stochastic space Sq
k is a set of two–dimensional Legendre polynomi-

als. Since the univarite Legendre polynomials of degrees 0, 1, 2, 3 are ψ0(x) = 1,

ψ1(x) = x, ψ2(x) =
1
2
(3x2 − 1), and ψ3(x) =

1
2
(5x3 − 3x), the corresponding space

is defined as

Sq
k = span{Ψq(ξ) : q = 0, 1, . . . , 9}

= {1, ξ1,
1

2
(3ξ21 − 1), ξ1ξ2,

1

2
(3ξ22 − 1),

1

2
(5ξ31 − 3ξ1),

1

2
(3ξ21 − 1)ξ2,

1

2
ξ1(3ξ

2
2 − 1),

1

2
(5ξ32 − 3ξ2)}.
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CHAPTER 3

CONVECTION DIFFUSION EQUATIONS WITH RANDOM

COEFFICIENTS

In this chapter, the main focus is the numerical investigation of a convection diffusion

equation with random coefficients by using the stochastic Galerkin approach. Cor-

responding PDE can be considered as a basic model for transport phenomena in a

random media. Single phase flow model in porous media with uncertain coefficients

is a fundamental model, and it is widely used to describe how uncertain factors, such

as permeability, impact the pressure of the fluid [46, 114]. Due to the lack of knowl-

edge about permeability, the deterministic PDEs do not completely represent the ac-

tual behaviour of such physical phenomena. Therefore, it is reasonable to model

the permeability parameter as a random field, which corresponds to the solution of a

convection diffusion equation; see, e.g., [73, 149].

The rest of the chapter is organized as follows: In the next section, the stationary

model problem, that is, a convection diffusion equation with random coefficients,

is introduced, and an overview of its discretization, obtained by Karhunen–Loève

(KL) expansion, stochastic Galerkin method, and discontinuous Galerkin method,

is provided. In Section 3.2, a priori error estimates for the stationary problem is

derived in the energy norm. Section 3.3 discusses the implementation of low–rank

iterative solvers. In Section 3.4, we extend our findings into unsteady convection

diffusion with random coefficients and provide some error estimates for the stability

and convergence. Numerical results are given in Section 3.5 to show the efficiency

of the proposed approaches. Finally, some conclusions and discussions are given in

Section 3.6 based on the findings in this chapter.
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3.1 Stationary Model Problem with Random Coefficients

This section presents the model problem, which is a stationary convection diffusion

equation with random coefficients: find a random function y : D × Ω→ R such that

P-almost surely in Ω

−∇ · (a(x, ω)∇y(x, ω)) + b(x, ω) · ∇y(x, ω) = f(x) in D × Ω, (3.1a)

y(x, ω) = yDB(x) on ∂D × Ω, (3.1b)

where a : (D × Ω)→ R and b : (D × Ω)→ R2 are random diffusivity and velocity

coefficients, respectively, which are assumed to have continuous and bounded covari-

ance functions. The functions f(x) ∈ L2(D) and yDB(x) ∈ H1/2(∂D) correspond

to the deterministic source term and Dirichlet boundary condition, respectively. To

be ensured the regularity of the solution y, the following assumptions are needed:

i) The diffusivity coefficient a(x, ω) is P–almost surely uniformly positive, that is,

there exist constants amin, amax such that 0 < amin ≤ amax <∞, with

amin ≤ a(x, ω) ≤ amax a. e. in D × Ω. (3.2)

In addition, a(x, ω) has a uniformly bounded and continuous first derivative.

ii) The velocity coefficient b satisfies b ∈
(
L∞(D)

)2 for a.e. ω ∈ Ω and is incom-

pressible, i.e.,∇ · b(x, ω) = 0.

Under the assumptions on the coefficients provided above, the well–posedness of

the model equation (3.1) follows from the classical Lax–Milgram lemma; see, e.g.,

[11, 117]. It is noted that the truncated KL expansion of the diffusivity coefficient

a(x, ω) given in (2.16) should satisfy the positivity condition (3.2) to ensure the well-

posedness of the problem (3.1). Throughout this chapter, it is crucial to assume a

stronger dominance of the mean of the random input a(x, ω) as discussed in [103,

Section 2.3] and [128, Theorem 3.8], i.e.,

a(x) > κa

N∑
k=1

√
λkϕk(x)ξk(ω).
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The solution of the model problem (3.1), y(x, ω) ∈ L2(Ω,F ,P), is represented by a

generalized polynomial chaos (PC) approximation as discussed in Section 2.5.2

y(x, ω) =
J−1∑
i=0

yi(x)Ψi(ξ(ω)), (3.3)

where yi(x) are the deterministic modes of the expansion and Ψi are multivariate

orthogonal polynomials.

Following, if inserting KL expansions (2.16) of the diffusion coefficient a(x, ω) and

the convection coefficient b(x, ω), and the solution expression (3.3) into (3.1), one

can obtain

−
J−1∑
i=0

∇ ·

((
a(x) + κa

N∑
k=1

√
λakϕ

a
k(x)ξk

)
∇yi(x)Ψi

)

+
J−1∑
i=0

(
b(x) + κb

N∑
k=1

√
λbkϕ

b
k(x)ξk

)
· ∇yi(x)Ψi = f(x). (3.4)

After projecting (3.4) onto the space spanned by the PC basis functions, it is obtained

the following linear system, consisting of J deterministic convection diffusion equa-

tions for j = 0, ..., J − 1

−
J−1∑
i=0

(
∇ · (aij∇yi(x)) + bij · ∇yi(x)

)
= ⟨Ψj⟩ f(x), (3.5)

where

aij = a(x)
〈
Ψ2

i (ξ)
〉
δij + κa

N∑
k=1

√
λakϕ

a
k(x) ⟨ξkΨi(ξ)Ψj(ξ)⟩ ,

bij = b(x)
〈
Ψ2

i (ξ)
〉
δij + κb

N∑
k=1

√
λbkϕ

b
k (x) ⟨ξkΨi(ξ)Ψj(ξ)⟩ ,

where the inner product ⟨·⟩ is defined in (2.22). Instead of the solution y(x, ω), the

quantity of interest is the statistical moments of the solution y(x, ω) in (3.1). It is

simple to determine the statistical moments and the probability density of the solution

after the modes yi, i = 0, 1, . . . , J − 1, have been determined. For instance, the mean

and the variance of the solution are given, respectively, by

〈
y(x, ξ)

〉
=

〈
J−1∑
i=0

yi(x)Ψi(ξ)

〉

=
J−1∑
i=0

yi(x)
〈
Ψi(ξ)

〉
=

J−1∑
i=0

yi(x)δ0,i = y0(x)
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and

Var(y(x, ξ)) =
〈
y(x, ξ)2

〉
−
〈
y(x, ξ)

〉2
=

〈
J−1∑
i=0

J−1∑
j=0

yi(x)yj(x)Ψi(ξ)Ψj(ξ)

〉
− y20(x)

=
J−1∑
i=0

J−1∑
j=0

yi(x)yj(x)
〈
Ψi(ξ)Ψj(ξ)

〉
− y20(x)

=
J−1∑
i=0

J−1∑
j=0

yi(x)yj(x)
〈
Ψ2

i (ξ)δij
〉
− y20(x)

=
J−1∑
i=0

y2i (x)
〈
Ψ2

i (ξ)
〉
− y20(x) =

J−1∑
i=1

y2i (x)
〈
Ψ2

i (ξ)
〉
.

3.1.1 Symmetric Interior Penalty Galerkin Method

When the stochastic domain has been discretized, the parameterized stochastic PDEs

may now be approximated using classical numerical techniques like finite element

(FEM), finite volume (FVM), or finite difference (FDM) approaches. Since it is more

effective than the finite difference approach and has a higher rate of high-order conver-

gence, the standard continuous finite element is the technique that is utilized the most

frequently in order to solve PDEs [11, 12, 99, 115]. Yet, while solving convection-

dominated PDEs, the primary objective of this thesis, the discrete solutions obtained

from finite element simulations display spurious oscillations. Consequently, for spa-

tial discretization in this thesis, it is opted to employ discontinuous Galerkin tech-

niques [7, 54, 129, 136]. In comparison to the discontinuous Galerkin approach, the

finite volume method, ordinary continuous finite element method, and finite differ-

ence method are all unable to handle complicated geometries or to achieve high-order

precision. Moreover, especially for convection-dominated problems, DG approaches

generate stable discretization without the requirement for stabilization techniques,

such as streamline upwind Petrov–Galerkin (SUPG) [37], edge stabilization Galerkin

method [38], and they make it relatively simple to apply different degrees of approx-

imation to different elements in the mesh; see Table 3.1 for a detailed discussion

[90]. Several types of discontinuous Galerkin schemes, such as nonsymmetric in-

terior penalty Galerkin (NIPG) [130], symmetric interior penalty Galerkin (SIPG)
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[6, 147], incomplete interior penalty Galerkin (IIPG) [52], and local discontinuous

Galerkin (LDG) [49], have been introduced in the literature. In this thesis, due to

the symmetricity and adjoint consistency, SIPG method is chosen as DG method to

discretize the spatial domain [6, 147]. Now, the SIPG discretization is briefly recalled

following studies in [41, 42, 157].

Table 3.1: Comparison of the well-known numerical approaches to discretize the
spatial domain.

Complex Higher-order accuracy Local mass
geometries and hp-adaptivity Conservation

FDM × ✓ ✓
FVM ✓ × ✓
FEM ✓ ✓ ×
DG ✓ ✓ ✓

A shape-regular simplicial triangulations ofD stands for {Th}h providingD =
⋃

K∈Th
K

for each mesh Th. It is assumed for the regularity of the mesh that the intersection

Ki ∩ Kj is either empty or a vertex or an edge, i.e., there are no hanging nodes, for

different triangles Ki, Kj ∈ Th, i ̸= j. The diameter of an element K and the length

of an edgeE are denoted by hK and hE , respectively. In addition, the maximum value

of the element diameter is denoted by h = max
K∈Th

hK .

The set of all edges Eh is divided into the interior edges E0h and the boundary edges

E∂h such that Eh = E0h ∪E∂h . For a fixed realization ω and the unit outward normal n to

∂D, the inflow and outflow parts of ∂D are denoted by ∂D− and ∂D+, respectively,

∂D− = {x ∈ ∂D : b(x, ω) · n(x) < 0} ,

∂D+ = {x ∈ ∂D : b(x, ω) · n(x) ≥ 0} .

Also, denoting nK the unit normal vector on the boundary ∂K of an element K, the

inflow and outflow boundaries of an element K are defined by

∂K− = {x ∈ ∂K :b(x, ω) · nK(x) < 0} ,

∂K+ = {x ∈ ∂K :b(x, ω) · nK(x) ≥ 0} ,

respectively. Let the edge E be a common edge for two elements K and Ke. For a

piecewise continuous scalar function y, there are two traces of y along E, denoted by

y|E from inside K and ye|E from inside Ke. The jump and average of y across the
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edge E are defined by:

[[y]] = y|EnK + ye|EnKe , {{y}} = 1

2

(
y|E + ye|E

)
. (3.6)

Similarly, for a piecewise continuous vector field∇y, the jump and average across an

edge E are given by

[[∇y]] = ∇y|E · nK +∇ye|E · nKe , {{∇y}} = 1

2

(
∇y|E +∇ye|E

)
. (3.7)

For a boundary edge E ∈ K ∩ ∂D, the operators are defined by {{∇y}} = ∇y and

[[y]] = yn, where n is the outward normal unit vector on ∂D.

Then, the discrete state and test spaces are defined as follows

Vh =
{
y ∈ L2(D) : y |K∈ Pℓ(K) ∀K ∈ Th

}
, (3.8)

where Pℓ(K) be the set of all polynomials on K of degree at most ℓ for an integer ℓ

and K ∈ Th. It should be noted that the space of discrete state and test functions are

identical since it is possible to impose boundary conditions weakly in the discontinu-

ous Galerkin discretization.

By following the standard discontinuous Galerkin structure discussed in [7, 129], the

(bi)–linear forms of the SIPG discretization for a finite dimensional vector ξ can be

expressed as indicated below:

ah(y, v, ξ) =
∑
K∈Th

∫
K

a(., ξ)∇y · ∇v dx−
∑

E∈E0h∪E
∂
h

∫
E

{{a(., ξ)∇y}}[[v]] ds

−
∑

E∈E0h∪E
∂
h

∫
E

{{a(., ξ)∇v}}[[y]] ds+
∑

E∈E0h∪E
∂
h

σ

hE

∫
E

[[y]] · [[v]] ds

+
∑
K∈Th

∫
K

b(., ξ) · ∇yv dx+
∑
K∈Th

∫
∂K−\∂D

b(., ξ) · nE(y
e − y)v ds

−
∑
K∈Th

∫
∂K−∩∂D−

b(., ξ) · nEyv ds (3.9)

and

lh(v, ξ) =
∑
K∈Th

∫
K

fv dx+
∑
E∈E∂h

σ

hE

∫
E

yDB[[v]] ds−
∑
E∈E∂h

∫
E

yDB{{a(., ξ)∇v}} ds

−
∑
K∈Th

∫
∂K−∩∂D−

b(., ξ) · nEyDBv ds, (3.10)
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where the parameter σ ∈ R+
0 , called as the penalty parameter, should be sufficiently

large to ensure the stability of the SIPG scheme; independent of the mesh size h.

However, as discussed in [129, Section 2.7.1], it depends on the degree of polynomi-

als used in the DG discretization and whether the edge E is the interior or boundary

edge.

Then, (bi)–linear forms of the stochastic discontinuous Galerkin (SDG) correspond

to

aξ(y, v) =

∫
Γ

ah(y, v, ξ)ρ(ξ) dξ, lξ(v) =

∫
Γ

lh(v, ξ)ρ(ξ) dξ. (3.11)

Now, the associated energy norm on D × Γ is defined as

∥y∥ξ =

(∫
Γ

∥y(., ξ)∥2eρ(ξ) dξ

) 1
2

, (3.12)

where ∥y(., ξ)∥e is the energy norm on D, given as

∥y(., ξ)∥e =

( ∑
K∈Th

∫
K

a(., ξ)(∇y)2 dx+
∑

E∈E0h∪E
∂
h

σ

hE

∫
E

[[y]]2 ds

+
1

2

∑
E∈E∂h

∫
E

b(., ξ) · nEy
2ds+

1

2

∑
E∈E0h

∫
E

b(., ξ) · nE(y
e − y)2 ds

) 1
2

.

Following standard arguments as done in the deterministic case, one can easily show

the coercivity and continuity of aξ(·, ·).

Lemma 3.1.1. For y, v ∈ Vh ⊗ Sq
k , it holds that

aξ(y, y) ≥ ccv ∥y∥2ξ , (3.13a)

aξ(y, v) ≤ cct ∥y∥ξ∥v∥ξ, (3.13b)

where the coercivity constant ccv depends on amin, whereas the continuity constant cct

depends on amax.

Proof. Following the works [11, 12], and by the definition of the energy norm in

(3.12) and the coercivity and continuity of ah(y, y, ξ), the bounds (3.13a) and (3.13b)

are obtained.

Thus, the SDG variational formulation of (3.1) is as follows: Find y ∈ Vh ⊗ Sq
k such

that

aξ(y, v) = lξ(v), ∀v ∈ Vh ⊗ Sq
k . (3.14)
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3.1.2 Linear System

After applying of the KL expansion (2.16), the gPC expansion (2.23), and SIPG

scheme (3.9)-(3.10), one can get the following linear system:(
N∑
i=0

Gi ⊗Ki

)
︸ ︷︷ ︸

A

y =

(
N∑
i=0

gi ⊗ fi

)
︸ ︷︷ ︸

F

, (3.15)

where y = (y0, . . . , yJ−1)
T with yi ∈ RNd , i = 0, 1, . . . , J−1 andNd corresponds

to the degree of freedoms for the spatial discretization. The stiffness matrices Ki ∈
RNd×Nd and the right–hand side vectors fi ∈ RNd in (3.15) are given, respectively, by

K0(r, s)=
∑
K∈Th

∫
K

(
a∇φr · ∇φs + b · ∇φrφs

)
dx

−
∑

E∈E0h∪E
∂
h

∫
E

(
{{a∇φr}}[[φs]] + {{a∇φs}}[[φr]]

)
ds

+
∑

E∈E0h∪E
∂
h

σ

hE

∫
E

[[φr]] · [[φs]] ds+
∑
K∈Th

∫
∂K−\∂D

b · nE(φ
e
r − φr)φs ds

−
∑
K∈Th

∫
∂K−∩∂D−

b · nEφrφs ds, (3.16)

Ki(r, s)=
∑
K∈Th

∫
K

((
κa
√
λai ϕ

a
i

)
∇φr · ∇φs +

(
κb

√
λbi ϕ

b
i

)
· ∇φrφs

)
dx

−
∑

E∈E0h∪E
∂
h

∫
E

({{(
κa
√
λai ϕ

a
i

)
∇φr

}}
[[φs]] +

{{(
κa
√
λai ϕ

a
i

)
∇φs

}}
[[φr]]

)
ds

+
∑

E∈E0h∪E
∂
h

σ

hE

∫
E

[[φr]] · [[φs]] ds

+
∑
K∈Th

∫
∂K−\∂D

(
κb

√
λbi ϕ

b
i

)
· nE(φ

e
r − φr)φs ds

−
∑
T∈Th

∫
∂K−∩∂D−

(
κb

√
λbi ϕ

b
i

)
· nEφrφs ds, (3.17)

f0(s)=
∑
K∈Th

∫
K

fφs dx+
∑
E∈E∂h

σ

hE

∫
E

yDB[[φs]] ds−
∑
E∈E∂h

∫
E

yDB{{a∇φs}} ds

−
∑
K∈Th

∫
∂K−∩∂D−

b · nEyDBφs ds, (3.18)
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fi(s)=
∑
E∈E∂h

σ

hE

∫
E

yDB[[φs]] ds−
∑
E∈E∂h

∫
E

yDB

{{(
κa
√
λai ϕ

a
i

)
∇φs

}}
ds

−
∑
K∈Th

∫
∂K−∩∂D−

(
κb

√
λbi ϕ

b
i

)
· nEyDBφs ds, (3.19)

where {φi(x)} is the set of basis functions for the spatial discretization, i.e., Vh =

span{φi(x)}.

For i = 0, . . . , N , the stochastic matrices Gi ∈ RJ×J in (3.15) are given by

G0(r, s) = ⟨ΨrΨs⟩ , Gi(r, s) = ⟨ξiΨrΨs⟩ , (3.20)

whereas the stochastic vectors gi ∈ RJ in (3.15) are defined as

g0(r) = ⟨Ψr⟩ , gi(r) = ⟨ξiΨr⟩ . (3.21)

In (3.20), each stochastic basis function Ψq(ξ) is corresponding to a product of N

univariate orthogonal polynomials ψqn(ξn), i.e.,

Ψq(ξ) =
N∏

n=1

ψqn(ξn),

where ξ = {ξ1, . . . , ξN} are the uncorrelated random variables and the multi–index

q is defined by q = (q1, q2, . . . , qN) with
N∑

n=1

qn ≤ Q. In this chapter, Legendre

polynomials are chosen as stochastic basis functions because the underlying random

variables are considered as having a uniform distribution.

Now, suppose Legendre polynomials in uniform random variables on (−
√
3,
√
3) em-

ployed. Then, recalling the following three–term recurrence for the Legendre poly-

nomials [117]

ψk+1(x) =

√
2k + 1

√
2k + 3

(k + 1)
√
3

xψk(x)−
k
√
2k + 3

(k + 1)
√
2k − 1

ψk−1

with ψ0 = 1, ψ−1 = 0, we obtain

G0(i, j) =

∫
Γ

Ψi(ξ⃗)Ψj(ξ⃗)ρ(ξ⃗) dξ⃗

=
N∏
s=1

(∫
Γs

ψis(ξs)ψjs(ξs)ρ(ξs) dξs

)
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=
N∏
s=1

〈
ψis(ξs)ψjs(ξs)

〉
=

N∏
s=1

〈
ψ2
is(ξs)

〉
δisjs

=
N∏
s=1

δisjs =

1, if i = j,

0, otherwise,

and for k = 1 : N

Gk(i, j) =
∫
Γ

ξkΨi(ξ⃗)Ψj(ξ⃗)ρ(ξ⃗) dξ⃗

=

√
3∫

−
√
3

· · ·

√
3∫

−
√
3

ξkΨi(ξ⃗)Ψj(ξ⃗)ρ(ξ⃗) dξ⃗

=

(
N∏

s=1,s ̸=k

⟨ψis(ξs)ψjs(ξs)⟩

)
⟨ξkψik(ξk)ψjk(ξk)⟩

=

(
N∏

s=1,s ̸=k

⟨ψis(ξs)ψjs(ξs)⟩

)

×

(
(ik + 1)

√
3√

(2ik + 1)(2ik + 3)
⟨ψik+1ψjk⟩+

ik
√
3√

(2ik + 1)(2ik − 1)
⟨ψik−1ψjk⟩

)

=



(
N∏

s=1,s ̸=k

δisjs

)
(ik + 1)

√
3√

(2ik + 1)(2ik + 3)
, if ik + 1 = jk,(

N∏
s=1,s ̸=k

δisjs

)
ik
√
3√

(2ik + 1)(2ik − 1)
, if ik − 1 = jk,

0, otherwise,

=



(ik + 1)
√
3√

(2ik + 1)(2ik + 3)
, if ik + 1 = jk and is = js, s = {1 : N} \ {k},

ik
√
3√

(2ik + 1)(2ik − 1)
, if ik − 1 = jk and is = js, s = {1 : N} \ {k},

0, otherwise.

Hence, G0 is an identity matrix, whereas Gk, k > 0, contains at most two nonzero

entries per row; see, e.g., [66, 128]. On the other hand, gi is the first column of

Gi, i = 0, 1, . . . , N .
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3.2 Error Estimates

In this section, a priori error estimates for stationary convection diffusion equations

with random coefficients (3.1), discretized by stochastic discontinuous Galerkin method

is presented.

For v ∈ Hq+1(Γ),Φ ∈ Sq
k , the following estimate is obtained in [11, Section 3.2]

min
Φ∈Sqk
∥v − Φ∥L2(Γ) ≤

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

v∥L2(Γ)

(qn + 1)!
, (3.22)

where qn is the degree of polynomial space for the spatial domain and the degree

of (discontinuous) finite element approximation space Sq
k on each direction ξn. Also,

kn = max
γ
|sγn−rγn| is the mesh size for a partition of the support of probability density

in finite dimensional space Γ consists of disjoint RN–boxes, γ =
N∏

n=1

(rγn, s
γ
n), with

(rγn, s
γ
n) ⊂ Γn for n = 1, . . . , N .

To later use, the L2–projection operator Πq : L
2(Γ)→ Sq

k is introduced by

(Πq(ξ)− ξ, ζ)L2(Γ) = 0 ∀ζ ∈ Sq
k , ∀ξ ∈ L2(Γ), (3.23)

and the H1–projection operatorRh : H1(D)→ Vh ∩H1(D) satisfies

(Rh(ν)− ν, χ)L2(D) = 0 ∀χ ∈ Vh, ∀ν ∈ H1(D), (3.24a)

(∇(Rh(ν)− ν),∇χ)L2(D) = 0 ∀χ ∈ Vh, ∀ν ∈ H1(D). (3.24b)

Lastly, discontinuous Galerkin approximation estimates are given for all v ∈ H2(K)

with K ∈ Th in the following.

Theorem 3.2.1. ([129, Theorem 2.6]) Assume that v ∈ H2(K) for K ∈ Th and

ṽ ∈ Pℓ. Then, there exists a constant C independent of v and h such that

∥v − ṽ∥Hq(K) ≤ C hmin(ℓ+1,2)−q|v|H2(K) 0 ≤ q ≤ 2. (3.25)

Let ỹ ∈ Vh ⊗ Sq
k be an approximation of the solution y. Following [11, 115], we

derive an approximation for the tensor product Vh ⊗ Sq
k , which is a direct application

of the results for Vh and Sq
k .
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Theorem 3.2.2. Assume that v ∈ L2(H2(D); Γ)∩Hq+1(H1(D); Γ) and ṽ ∈ Vh⊗Sq
k .

Then, there exist the following bounds

∥∇(v − ṽ)∥L2(L2(D);Γ)≤Chmin(ℓ+1,2)−1∥v∥L2(H2(D);Γ)

+
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

v∥L2(H1(D);Γ)

(qn + 1)!
, (3.26a)

∥∇2(v − ṽ)∥L2(L2(D);Γ)≤Chmin(ℓ+1,2)−2∥v∥L2(H2(D);Γ)

+Ch−1
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

v∥L2(H1(D);Γ)

(qn + 1)!
, (3.26b)

where the constant C independent of v, the mesh sizes h, and kn.

Proof. By choosing ṽ = Πq(Rh(v)), it is obtained that

∥v − ṽ∥L2(H1(D);Γ)=∥v − Πq(Rh(v))∥L2(H1(D);Γ)

≤∥v −Rh(v)∥L2(H1(D);Γ) + ∥Rh(v)− Πq(Rh(v))∥L2(H1(D);Γ)

=∥v −Rh(v)∥L2(H1(D);Γ)) + ∥Rh(v)−Rh(Πq(v))∥L2(H1(D);Γ)

=∥v −Rh(v)∥L2(H1(D);Γ) + ∥Rh(v − Πq(v))∥L2(H1(D);Γ) (3.27)

for a fixed v ∈ L2(H2(D); Γ) ∩ Hq+1(H1(D); Γ). In the light of the estimate in

(3.25), one can easily obtain the following estimate

∥v −Rh(v)∥L2(H1(D);Γ) ≤ Chmin(ℓ+1,2)−1∥v∥L2(H2(D);Γ). (3.28)

With the help of the H1–projection operator in (3.24a) and Cauchy-Schwarz’s in-

equality (2.11), taking χ = Rh(v), it is obvious that

∥Rh(v)∥L2(D) ≤ ∥v∥L2(D) and ∥∇(Rh(v))∥L2(D) ≤ ∥∇v∥L2(D).

By the L2–projection operator in (3.23) and the approximation in (3.22), the bound

for the second term in (3.27) is

∥Rh(v − Πq(v))∥L2(H1(D);Γ) ≤ C∥v − Πq(v)∥L2(H1(D);Γ)

≤ C
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

v∥L2(H1(D);Γ)

(qn + 1)!
. (3.29)
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Combining (3.28) and (3.29) yields

∥v − ṽ∥L2(H1(D);Γ) ≤ Chmin(ℓ+1,2)−1∥v∥L2(H2(D);Γ)

+
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

v∥L2(H1(D);Γ)

(qn + 1)!
,

which implies (3.26a). For the derivation of (3.26b), the same strategy is followed as:

∥∇2(v − ṽ)∥L2(L2(D);Γ)

≤ ∥∇2(v −Rh(v))∥L2(L2(D);Γ) + ∥∇2(Rh(v)− Πq(Rh(v))∥L2(L2(D);Γ)

= ∥∇2(v −Rh(v))∥L2(L2(D);Γ) + ∥∇2(Rh(v − Πq(v))∥L2(L2(D);Γ).

An application of the inverse inequality (2.9) onRh(v), the definition ofH1–projection

operator (3.24a), and the Cauchy–Schwarz inequality (2.11) yields

∥∇2(Rh(v))∥L2(D) ≤ Ch−1∥∇(Rh(v))∥L2(D) ≤ Ch−1∥∇v∥L2(D). (3.30)

By (3.22), (3.30), and (3.25),

∥∇2(v − ṽ)∥L2(L2(D);Γ) ≤ ∥∇2(v −Rh(v))∥L2(L2(D);Γ)

+Ch−1∥∇(v − Πq(v))∥L2(L2(D);Γ)

≤ Chmin(ℓ+1,2)−2∥v∥L2(H2(D);Γ)

+Ch−1
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

v∥L2(H1(D);Γ)

(qn + 1)!
,

which is the desired result.

The next step is to use Theorem 3.2.2 together with the approximation estimate (3.25)

to derive an upper bound for the error in the energy norm.

Theorem 3.2.3. Assume y ∈ L2(H2(D); Γ) ∩ Hq+1(H1(D); Γ) and yh ∈ Vh ⊗ Sq
k .

Then, there is a constant C independent of y, h, and kn such that

∥y − yh∥ξ ≤ C
(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ)

+
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)
. (3.31)

Proof. Decompose ∥y − yh∥ξ as

∥y − yh∥ξ ≤ ∥yh − ỹ∥ξ + ∥y − ỹ∥ξ, (3.32)
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where ỹ ∈ Vh⊗Sq
k is an approximation of the solution y, satisfying the Theorem 3.2.2.

Firstly, we will find a bound for the first term in (3.32). By the coercivity of the

bilinear form (3.13a), the Galerkin orthogonality, an integration by parts over the

convective term in the bilinear form (3.11), and the assumption on the convective

term ∇ · b = 0, we obtain

ccv∥yh − ỹ∥2ξ≤ aξ(yh − ỹ, yh − ỹ)

= aξ(y − ỹ, yh − ỹ︸ ︷︷ ︸
χ∈Vh

) + aξ(y − yh, yh − ỹ)︸ ︷︷ ︸
=0

= aξ(y − ỹ, χ)

=

∫
Γ

ρ(ξ)

[ ∑
K∈Th

∫
K

a∇(y − ỹ) · ∇χ dx−
∑

E∈E0h∪E
∂
h

∫
E

{{a∇(y − ỹ)}}[[χ]] ds

−
∑

E∈E0h∪E
∂
h

∫
E

{{a∇χ}}[[y − ỹ]] ds+
∑

E∈E0h∪E
∂
h

σ

hE

∫
E

[[y − ỹ]] · [[χ]] ds

−
∑
K∈Th

∫
K

b · (y − ỹ)∇χ dx−
∑
K∈Th

∫
∂K+\∂D

b · nE(y − ỹ)(χe − χ) ds

+
∑
K∈Th

∫
∂K+∩D+

b · nE(y − ỹ)χ ds

]
dξ

≤ |T1 + T2 + T3 + T4 + T5 + T6 + T7|. (3.33)

With the help of the bound on a(x, ω) (3.2), Cauchy–Schwarz inequality (2.11),

Young’s inequality (2.12), and Theorem 3.2.2, the following bound is obtained for

the first term in (3.33)

|T1| =

∣∣∣∣∣∣
∫
Γ

[ ∑
K∈Th

∫
K

a∇(y − ỹ) · ∇χ dx

]
ρ(ξ)dξ

∣∣∣∣∣∣
≤

∫
Γ

√
amax

( ∑
K∈Th

∥∇(y − ỹ)∥2L2(K)

) 1
2
( ∑

K∈Th

∥
√
amax∇χ∥2L2(K)

) 1
2

ρ(ξ)dξ

≤
∫
Γ

(
2

ccv
amax

∑
K∈Th

∥∇(y − ỹ)∥2L2(K) +
ccv
8
∥χ∥2e

)
ρ(ξ)dξ

≤ C
∑
K∈Th

∥∇(y − ỹ)∥2L2(L2(K);Γ) +
ccv
8
∥χ∥2ξ
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≤ C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ) +

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)
+
ccv
8
∥χ∥2ξ . (3.34)

Next, we derive estimates for the second and third terms in (3.33). An application

of Cauchy–Schwarz inequality (2.11), Young’s inequality (2.12), the trace inequality

(2.8) for E ∈ KE
1 ∩KE

2 , and Theorem 3.2.2 yields

|T2|=

∣∣∣∣∣∣
∫
Γ

[ ∑
E∈E0h∪E

∂
h

∫
E

{{a∇(y − ỹ)}}[[χ]] ds

]
ρ(ξ)dξ

∣∣∣∣∣∣
≤
∫
Γ

∑
E∈E0h∪E

∂
h

(
hE

σamax

∥{{a∇(y − ỹ)}}∥2L2(E)

) 1
2
(
σamax

hE
∥[[χ]]∥2L2(E)

) 1
2

ρ(ξ)dξ

≤
∫
Γ

[
ccv
8

∑
E∈E0h∪E

∂
h

σ

hE
∥χ∥2L2(E) +

2

ccv

∑
E∈E0h∪E

∂
h

hE
σ
∥{{a∇(y − ỹ)}}∥2L2(E)

]
ρ(ξ)dξ

≤C
∫
Γ

∑
E∈E0h∪E

∂
h

hE
σ
hE|KE

1 |−1
(
∥∇(y − ỹ)∥L2(KE

1 ) + hKE
1
∥∇2(y − ỹ)∥L2(KE

1 )

)2

×ρ(ξ)dξ

+C

∫
Γ

∑
E∈E0h∪E

∂
h

hE
σ
hE|KE

2 |−1
(
∥∇(y − ỹ)∥L2(KE

2 ) + hKE
2
∥∇2(y − ỹ)∥L2(KE

2 )

)2

×ρ(ξ)dξ

+
ccv
8
∥χ∥2ξ

≤C

(
∥∇(y − ỹ)∥L2(L2(D);Γ) + h∥∇2(y − ỹ)∥L2(H1

0 (D);Γ)

)2

+
ccv
8
∥χ∥2ξ

≤C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ) +

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)2

+
ccv
8
∥χ∥2ξ , (3.35)

|T3|=

∣∣∣∣∣
∫
Γ

[ ∑
E∈E0h∪E

∂
h

∫
E

{{a∇χ}}[[y − ỹ]] ds

]
ρ(ξ)dξ

∣∣∣∣∣
≤
∫
Γ

∑
E∈E0h∪E

∂
h

∥{{a∇χ}}∥L2(E)∥[[y − ỹ]]∥L2(E) ρ(ξ)dξ

≤
∫
Γ

∑
K∈Th

(
C

(
∥y − ỹ∥L2(K) + hK∥∇(y − ỹ)∥L2(K)

)
a∥∇χ∥L2(K)

)
ρ(ξ)dξ
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≤C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ) +

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)
∥χ∥ξ

≤C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ) +

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)2

+
ccv
8
∥χ∥2ξ . (3.36)

By Cauchy–Schwarz inequality (2.11), Young’s inequality (2.12), the trace inequality

(2.8), and Theorem 3.2.2, one can find an upper bound for T4 in (3.33)

|T4|≤
∫
Γ

[ ∑
E∈E0h∪E

∂
h

σ

hE

∫
E

[[(y − ỹ)]] · [[χ]]

]
ρ(ξ)dξ

≤
∫
Γ

( ∑
E∈E0h∪E

∂
h

(
σ

hE

)
∥[[y − ỹ]]∥2L2(E)

) 1
2
( ∑

E∈E0h∪E
∂
h

(
σ

hE

)
∥[[χ]]∥2L2(E)

) 1
2

ρ(ξ)dξ

≤ 2

ccv

∫
Γ

∑
E∈E0h∪E

∂
h

(
σ

hE

)
∥[[y − ỹ]]∥2L2(E)ρ(ξ)dξ

+
ccv
8

∫
Γ

∑
E∈E0h∪E

∂
h

(
σ

hE

)
∥[[χ]]∥2L2(E)ρ(ξ)dξ

≤ 2

ccv

∫
Γ

∑
K∈Th

C

(
∥y − ỹ∥L2(K) + hK∥∇(y − ỹ)∥L2(K)

)2

ρ(ξ)dξ +
ccv
8
∥χ∥2ξ

≤C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ) +

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)2

+
ccv
8
∥χ∥2ξ . (3.37)

Now, for the convective terms in (3.33), which are T5, T6, and T7, the estimates are

derived by following the similar steps as done for T1–T4 in (3.34)-(3.37):

|T5|=

∣∣∣∣∣
∫
Γ

[ ∑
K∈Th

∫
K

b · (y − ỹ)∇χ dx

]
ρ(ξ)dξ

∣∣∣∣∣
≤
∫
Γ

∥b∥L∞(D)√
amax

( ∑
K∈Th

∥y − ỹ∥2L2(K)

) 1
2
( ∑

K∈Th

∥
√
amax∇χ∥2L2(K)

) 1
2

ρ(ξ)dξ

≤
∫
Γ

(
2

ccv

∥b∥L∞(D)√
amax

∑
K∈Th

∥y − ỹ∥2L2(K) +
ccv
8

∑
K∈Th

∥
√
amax∇χ∥2L2(K)

)
ρ(ξ)dξ

≤ 2

ccv
C
∑
K∈Th

∫
Γ

∥y − ỹ∥2L2(K) ρ(ξ)dξ +
ccv
8

∫
Γ

∥χ∥2e ρ(ξ)dξ
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≤ C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ) +

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)2

+
ccv
8
∥χ∥2ξ , (3.38)

|T6|=

∣∣∣∣∣
∫
Γ

[ ∑
K∈Th

∫
∂K+\∂D

b · nE(y − ỹ)(χe − χ) ds

]
ρ(ξ)dξ

∣∣∣∣∣
≤
∫
Γ

( ∑
E∈E0h

∥
√

b · nE

(
y − ỹ

)
∥2L2(E)

) 1
2
( ∑

E∈E0h

∥
√

b · nE

(
χe − χ

)
∥2E

) 1
2

ρ(ξ)dξ

≤ 2

ccv
C
∑
K∈Th

∫
Γ

(
∥y − ỹ∥L2(K) + hK∥∇(y − ỹ)∥L2(K)

)2

ρ(ξ)dξ

+
ccv
8

∫
Γ

∥χ∥2e ρ(ξ)dξ

≤C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ) +

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)2

+
ccv
8
∥χ∥2ξ , (3.39)

|T7|=

∣∣∣∣∣
∫
Γ

[ ∑
K∈Th

∫
∂K+∪D+

b · nE(y − ỹ)χ ds

]
ρ(ξ)dξ

∣∣∣∣∣
≤
∫
Γ

( ∑
E∈E0h

∥
√

b · nE

(
y − ỹ

)
∥2L2(E)

) 1
2
( ∑

E∈E∂h

∥
√

b · nEχ∥2E

) 1
2

ρ(ξ)dξ

≤ 2

ccv
C
∑
K∈Th

∫
Γ

(
∥y − ỹ∥L2(K) + hK∥∇(y − ỹ)∥L2(K)

)2

ρ(ξ)dξ

+
ccv
8

∫
Γ

∥χ∥2e ρ(ξ)dξ

≤C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ) +

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)2

+
ccv
8
∥χ∥2ξ . (3.40)

Combining the bounds of T1–T7 (3.34)-(3.40), the following result is obtained

∥yh − ỹ∥ξ ≤ C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ)

+
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)
. (3.41)
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Now, the second term in (3.32), i.e., ∥y − ỹ∥ξ will be discussed. By the definition of

energy norm in (3.12), it yields

∥y − ỹ∥2ξ =

∫
Γ

∥y − ỹ∥2e ρ(ξ)dξ

=

∫
Γ

[ ∑
K∈Th

∫
K

a(., ω)(∇(y − ỹ))2 dx+
∑

E∈E0h∪E
∂
h

σ

hE

∫
E

[[y − ỹ]]2 ds

+
1

2

∑
E∈E∂h

∫
E

b(., ω) · nE(y − ỹ)2ds

+
1

2

∑
E∈E0h

∫
E

b(., ω) · nE((y − ỹ)e − (y − ỹ))2ds

]
ρ(ξ)dξ

= A1 + A2 + A3 + A4.

One can easily derive the following estimates as done in the previous steps

A1≤
∫
Γ

amax

∑
K∈Th

∥∇(y − ỹ)∥2L2(K) ρ(ξ)dξ

=C∥∇(y − ỹ)∥2L2(L2(D);Γ)

≤C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ) +

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)2

,

(3.42)

A2≤
∫
Γ

∑
E∈E0h∪E

∂
h

σ

hE

(
Ch

1
2
E|K

E
1 |−

1
2

(
∥y − ỹ∥L2(KE

1 ) + hKE
1
∥∇(y − ỹ)∥L2(KE

1 )

)
ρ(ξ)dξ

+Ch
1
2
E|K

E
2 |−

1
2

(
∥y − ỹ∥L2(KE

2 ) + hKE
2
∥∇(y − ỹ)∥L2(KE

2 )

))2

ρ(ξ)dξ

≤
∫
Γ

∑
K∈Th

C

(
∥y − ỹ∥L2(K) + hK∥∇(y − ỹ)∥L2(K)

)2

ρ(ξ)dξ

≤C
(
∥y − ỹ∥L2(L2(D);Γ) + h∥∇(y − ỹ)∥L2(L2(D);Γ)

)2

≤C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ) +

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)2

,

(3.43)

A3≤
1

2

∫
Γ

∑
E∈E∂h

|b · nE|∥y − ỹ∥2L2(E) ρ(ξ)dξ

≤C
∫
Γ

(
∥y − ỹ∥L2(D) + h∥∇(y − ỹ)∥L2(L2(D);Γ)

)2
ρ(ξ)dξ
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≤C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ) +

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)2

,

(3.44)

A4≤
1

2

∫
Γ

∑
E∈E0h

|b · nE|
(
∥(y − ỹ)e∥L2(E) + ∥(y − ỹ)∥L2(E)

)2

ρ(ξ)dξ

≤C
(
∥y − ỹ∥L2(L2(D);Γ) + h∥∇(y − ỹ)∥L2(L2(D);Γ)

)2
≤C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ) +

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)2

.

(3.45)

Summation of the bounds of A1–A4 in (3.42)–(3.45) gives

∥y − ỹ∥2ξ ≤ C

(
hmin(ℓ+1,2)−1∥y∥L2(H2(D);Γ)

+
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!

)2

. (3.46)

Finally, the desired result is obtained from (3.41) and (3.46).

The length N of the random vector ξ in real applications, such as transport phenom-

ena in random media, can be large, especially given the small correlation length in

the random input’s covariance function. This rapidly increases the size of multivariate

stochastic basis polynomials J , which is a phenomenon known as the curse of dimen-

sionality. In the following section, the curse of dimensionality is broken by utilizing

a Kronecker–product structure of system matrices defined in (3.15), which decreases

both storage requirements and computing complexity.

3.3 Low–Rank Approximation

In this section, efficient Krylov subspace solvers with suitable preconditioners, where

the solution is approximated using a low–rank representation, are proposed in order

to reduce memory requirements and computational effort. Fundamental operations

associated with the low–rank format are significantly less expensive, and when the

Krylov subspace technique converges, it constructs a sequence of the low–rank ap-

proximations to the system solution.
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The idea behind a low-rank solution of the linear system is explained by giving

the basic notation related to Kronecker products and low-rank approach. Let y =

[yT1 , . . . , y
T
J ]

T ∈ RNdJ with each yi of length Nd and Y = [y1, . . . , yJ ] ∈ RNd×J ,

where Nd and J are the degree of freedoms for the spatial discretization and the total

degree of the multivariate stochastic basis polynomials, respectively.

Following the properties in Section 2.1.1, the system (3.15) can be interpreted as

A(Y) = F for the matrix Y ∈ RNd×J with y = vec(Y), where A(Y) is defined

as the linear operator satisfying vec(A(Y)) = Avec(Y). Assuming low–rank de-

composition of Y = WV T with

W = [w1, . . . , wk] ∈ RNd×r, V = [v1, . . . , vk] ∈ RJ×r, r ≪ Nd, J

and

vec(Y) = vec

(
r∑

i=1

wiv
T
i

)
=

r∑
i=1

vi ⊗ wi,

we have

Avec(Y) =

(
N∑
k=0

Gk ⊗Kk

)(
r∑

i=1

vi ⊗ wi

)

=
N∑
k=0

r∑
i=1

(Gkvi)⊗ (Kkwi) ∈ RNdJ .

This implies

A(Y) := mat(Avec(Y)) ∈ RNd×J .

In [20, 69], it is shown that the solution to (3.15) can be approximated by its low–rank

approximation if the system matrix and the right-hand side have a Kronecker-product

structure. Thus, the focus of this section will be on a low–rank approximation of the

solution y to the system (3.15).

3.3.1 Low-Rank Preconditioned Iterative Methods

In this section, the solution of the linear system is addressed by a tensor variant of

the Krylov subspace methods combined with the low–rank approximation so that the
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computational costs and memory requirements can be significantly reduced. Iterates

in the algorithm are truncated depending on the decay of their singular values in the

low–rank process. As a result, the iterates are formatted in low–rank form at each

iteration; see, e.g., [16, 102].

In the following, the low–rank variants of the some Krylov subspace solvers are ap-

plied, namely, conjugate gradient (CG) method [89], bi–conjugate gradient stabilized

(BiCGstab) [144], quasi–minimal residual variant of the bi–conjugate gradient stabi-

lized (QMRCGstab) method [43], and generalized minimal residual (GMRES) [133]

based on the low–rank approximation, where the advantage is taken of the Kronecker

product of the matrixA. Algorithms 1, 2, 3, and 4 show a low–rank implementation of

the classical left preconditioned CG, BiCGstab, QMRCGstab, and GMRES methods,

respectively. In principle, the low–rank truncation steps can affect the convergence

of the Krylov method and the well–established properties of Krylov subspace may

no longer hold. Therefore, in the implementations, a rather small truncation toler-

ance ϵtrunc is used to maintain a very accurate representation of what the full–rank

representation would like.

Algorithm 1 Low-rank preconditioned conjugate gradient (LRPCG)[20]
Input: Matrix functionsA,P : RNd×J → RNd×J , right–hand sideFn in low–rank format, truncation

operator T with respect to given tolerance ϵtrunc.

Output: Matrix Y ∈ RNd×J , ∥A(Y)−F∥F ≤ ε.

1: Y0 = 0, R0 = Fn, Z0 = P−1(R0), S0 = Z0, Q0 = A(S0)

2: υ0 = ⟨S0, Q0⟩, k = 0

3: while ∥Rk∥F > ε do

4: ωk = ⟨Rk, Sk⟩/υk
5: Yk+1 = Yn

k + ωkSk, Yk+1 ← T (Yk+1)

6: Rk+1 = Fn −A(Yk+1), Rk+1 ← T (Rk+1)

7: Zk+1 = P−1(Rk+1)

8: βk = −⟨Zk+1, Qk⟩/υk
9: Sk+1 = Zk+1 + βkSk, Sk+1 ← T (Sk+1)

10: Qk+1 = A(Sk+1), Qk+1 ← T (Qk+1)

11: υk+1 = ⟨Sk+1, Qk+1⟩

12: k = k + 1

13: end while

14: Y = Yk
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Algorithm 2 Low–rank preconditioned BiCGstab (LRPBiCGstab)
Input: Matrix functions A,P : RNd×J → RNd×J , right–hand side F in low–rank format, truncation

operator T with respect to given tolerance ϵtrunc.

Output: Matrix Y ∈ RNd×J satisfying ∥A(Y)−F∥F ≤ ϵtol.

1: Y0 = 0, R0 = F , R̃ = F , ρ0 = ⟨R̃, R0⟩, S0 = R0, S̃0 = P−1(S0), V0 = A(S̃0), k = 0

2: while ∥Rk∥F > ϵtol do

3: ωk = ⟨R̃, Rk⟩/⟨R̃, Vk⟩

4: Zk = Rk − ωkVk, Zk ← T (Zk)

5: Z̃k = P−1(Zk), Z̃k ← T (Z̃k)

6: Tk = A(Z̃k), Tk ← T (Tk)

7: if ∥Zk∥F ≤ ϵtol then

8: Y = Yk + ωkS̃k

9: return

10: end if

11: ξk = ⟨Tk, Zk⟩/⟨Tk, Tk⟩

12: Yk+1 = Yk + ωkS̃k + ξkZ̃k, Yk+1 ← T (Yk+1)

13: Rk+1 = F −A(Yk+1), Rk+1 ← T (Rk+1)

14: if ∥Rk+1∥F ≤ ϵtol then

15: Y = Yk+1

16: return

17: end if

18: ρk+1 = ⟨R̃, Rk+1⟩

19: βk = ρk+1

ρk

ωk

ξk

20: Sk+1 = Rk+1 + βk(Sk − ξkVk), Sk+1 ← T (Sk+1)

21: S̃k+1 = P−1(Sk+1), S̃k+1 ← T (S̃k+1)

22: Vk+1 = A(S̃k+1), Vk+1 ← T (Vk+1)

23: k = k + 1

24: end while
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Truncation operators are used at each iteration step of the algorithm, and these opera-

tions have a significant impact on the entire solution process. One of the issues in the

low–rank approximation is that the rank of the low–rank factors can increase either

via matrix vector products or vector (matrix) additions. The crucial way to prevent

this case is to truncate the iterates and force their ranks to remain low. Therefore, it

is needed to find new low–rank approximations W̃ and Ṽ that approximate the old

approximations Y ≈ WV T ≈ W̃ Ṽ T by using the truncation operator T . As a result,

rank–reduction techniques are required to keep costs under control, such as trunca-

tion based on singular values [102] or truncation based on coarse–grid rank reduction

[109]. As pointed out in [102], we define a truncation operator for a given matrix in

the following.

The truncation operator Y← T (Y) compresses a matrix Y ≈ WV T in the low–rank

format with W ∈ RNd×r, V ∈ RJ×r such that

∥WV T − W̃ Ṽ T∥F ≤ ϵtrunc.

For this purpose, QR factorizations of both matrices W = QWRW , V = QVRV are

computed and then it can be written as

Y = QWRWR
T
VQ

T
V .

Then, applying singular value decomposition (SVD) [81]

RWR
T
V = B diag(σ1, . . . , σr)CT ,

one can obtain a new low–rank representation. Here, the truncation rank r̃ ≤ r is

chosen provided that the smallest integer satisfy√
σ2
r̃+1 + . . . + σr ≤ ϵtrunc

√
σ2
1 + . . . + σr,

where ϵtrunc is truncation tolerance. In MATLAB notation, the new low–rank factors

are set by

W̃ = QW C(:, 1 : r̃) diag(σ1, . . . , σr̃), and Ṽ = QV B(:, 1 : r̃).

In this thesis, following the discussion in [20, 139], a more economical alternative

could be possible to compute singular values a truncated SVD of Y = WV T ≈
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B diag(σ1, . . . , σr)CT associated to the r singular values that are larger than the given

truncation threshold. In this way, the new low–rank representation Y ≈ W̃ Ṽ T is

obtained by keeping both the rank of low-rank factor and cost under control.

The other issue in the low–rank process is the computation of the inner product. It

can also be done easily by applying the following strategy:

⟨X,Z⟩ = vec(X)Tvec(Z) = trace(XTZ)

for the low-rank matrices

X = WXV
T
X WX ∈ RNd×rX , VX ∈ RJ×rX ,

Z = WZV
T
Z WZ ∈ RNd×rZ , VZ ∈ RJ×rZ .

Then, one can easily show that

trace(XTZ) = trace

(
(WXV

T
X )T (WZV

T
Z )

)
= trace

(
(V T

Z VX)(W
T
XWZ)

)

allows us to compute the trace of small matrices rather than of the ones from the full

discretization.

Preconditioning is known to be necessary for Krylov subspace techniques in order

to get a fast convergence in terms of the number of iterations, and low–rank Krylov

methods are no exception. The preconditioning operator decreases the number of it-

erations at an acceptable computational cost, but it must not significantly increase the

memory requirements of the solution process. The following well-known precondi-

tioners in the context of PDEs with uncertainty are listed here:

i) Mean-based preconditioner

P0 = G0 ⊗K0

is one of the most commonly used preconditioners for solving PDEs with ran-

dom data; see, e.g., [75, 128]. One can easily observe that P0 is block diagonal

matrix since G0 is a diagonal matrix due to the orthogonality of the stochastic

basis functions Ψi.

52



Algorithm 3 Low–rank preconditioned QMRCGstab (LRPQMRCGstab)
Input: Matrix functions A,P : RNd×J → RNd×J , right–hand side F in low–rank format, truncation

operator T with respect to given tolerance ϵtrunc.

Output: Matrix Y ∈ RNd×J satisfying ∥A(Y)−F∥F ≤ ϵtol.

1: R0 = F −A(Y0), for some initial guess Y0.

2: Z0 = P−1(R0)

3: Choose R̃0 such that
〈
Z0, R̃0

〉
̸= 0 (for example, R̃0 = R0).

4: Q0 = V0 = D0 = 0

5: ρ0 = α0 = ω0 = 1, τ0 = ∥Z0∥F , θ0 = 0, η0 = 0, k = 0

6: while
√
k + 1|τ̃ |/∥R0∥F > ϵtol do

7: ρk+1 =
〈
Zk, R̃0

〉
, βk+1 = ρk+1

ρk

αk

ωk

8: Qk+1 = Zk + βk+1(Qk − ωkVk), Qk+1 ← T (Qk+1)

9: Q̃k+1 = A(Qk+1), Q̃k+1 ← T (Q̃k+1)

10: if ∥Q̃k+1∥F ≤ ϵtol then

11: Y = Yk

12: return

13: end if

14: Vk+1 = P−1(Q̃k+1), Vk+1 ← T (Vk+1)

15: αk+1 = ρk+1/
〈
Vk+1, R̃0

〉
16: Sk+1 = Zk − αk+1Vk+1, Sk+1 ← T (Sk+1)

17: τ̃ = τ θ̃k+1c, η̃k+1 = c2αk+1

18: D̃k+1 = Qk+1 +
θ2kηk
αk+1

Dk, D̃k+1 ← T (D̃k+1)

19: Ỹk+1 = Yk + η̃k+1D̃k+1, Ỹk+1 ← T (Ỹk+1)

20: S̃k+1 = A(Sk+1), S̃k+1 ← T (S̃k+1)

21: Tk+1 = P−1(S̃k+1), Tk+1 ← T (Tk+1)

22: ωk+1 = ⟨Sk+1, Tk+1⟩ / ⟨Tk+1, Tk+1⟩

23: Zk+1 = Sk+1 − ωk+1Tk+1

24: θk+1 = ∥Zk+1∥F /τ̃ , c =
1√

1 + θ2k+1

25: τ = τ̃ θk+1c, ηk+1 = c2ωk+1

26: Dk+1 = Sk+1 +
θ̃2k+1η̃k+1

ωk+1
D̃k+1, Dk+1 ← T (Dk+1)

27: Yk+1 = Ỹk+1 + ηk+1Dk+1, Yk+1 ← T (Yk+1)

28: k = k + 1

29: end while

30: Y = Yk
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Algorithm 4 Low–rank preconditioned GMRES (LRPGMRES)
Input: Matrix functions A,P : RNd×J → RNd×J , right–hand side F in low–rank format, truncation

operator T with respect to given tolerance ϵtrunc.

Output: Matrix Y ∈ RNd×J satisfying ∥A(Y)−F∥F ≤ ϵtol.

1: R0 = F −A(Y0), for some initial guess Y0.

2: V1 = R0/∥R0∥F
3: ξ = [ξ1, 0, . . . , 0], ξ1 = ∥V1∥F
4: for k = 1, . . . ,maxit do

5: Zk = P−1(Vk), Zk ← T (Zk)

6: W = A(Zk), W ← T (W )

7: for i = 1, . . . , k do

8: hi,k = ⟨W,Vi⟩

9: W = W − hi,kVi, W ← T (W )

10: end for

11: hk+1,k = ∥W∥F
12: Vk+1 = W/hk+1,k

13: Apply Givens rotations to kth column of h, i.e.,

14: for i = 1, . . . , k − 1 do

15:

 hi,k

hi+1,k

 =

 ci si

−si ci

 hi,k

hi+1,k


16: end for

17: Compute kth rotation, and apply to ξ and last column of h. ξk

ξk+1

 =

 ci si

−si ci

ξk
0


18: hk,k = ckhk,k + skhk+1,k, hk+1,k = 0

19: if |ξk+1| sufficiently small then

20: Solve Hq = ξ, where the entries of H are hj,k.

21: Q = [q1V1, . . . , qkVk], Q← T (Q)

22: Q̃ = P−1(Q), Q̃← T (Q̃)

23: Y = Y0 + Q̃, Y ← T (Y)

24: return

25: end if

26: end for
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ii) Ullmann preconditioner, which is of the form

P1 = G0 ⊗K0︸ ︷︷ ︸
:=P0

+
N∑
k=1

trace(KT
kK0)

trace(KT
0K0)

Gk ⊗K0,

can be considered as a modified version of P0 as discussed in [143]. One of

the advantages of this preconditioner is keeping the structure of the coefficient

matrix, which is, in this case, the sparsity pattern. Moreover, unlike the mean–

based preconditioner, it uses the whole information in the coefficient matrix.

However, this advantage causes P1 being more expensive since it is not block

diagonal anymore.

3.4 Unsteady Model Problem with Random Coefficients

Next, the discussion in Section 3.1 is extended to unsteady convection diffusion equa-

tions with random coefficients: find y : D×Ω× [0, T ]→ R such that P-almost surely

in Ω

∂y(x, ω, t)

∂t
−∇ · (a(x, ω)∇y(x, ω, t))

+b(x, ω) · ∇y(x, ω, t) = f(x, t), in D × Ω× (0, T ], (3.47a)

y(x, ω, t) = 0, on ∂D × Ω× [0, T ], (3.47b)

y(x, ω, 0) = y0(x), in D × Ω, (3.47c)

where y0(x) ∈ L2(D) corresponds to the deterministic initial condition.

By following the methodologies introduced for the stationary problem in Section 3.1

and the backward Euler method in temporal space with the uniform time step ∆t =

T/N , the fully discrete form can be written as

1

∆t

(
yn+1 − yn, v

)
ξ
+ aξ(y

n+1, v) = lξ(tn+1, v), ∀w, v ∈ Vh ⊗ Yq
k , (3.48)

where (
w, v

)
ξ
=

∫
Γ

∫
D

wv dx ρ(ξ) dξ ∀w, v ∈ Vh ⊗ Yq
k .

Then, one can obtain the following system of ordinary equations with block structure:

(
G0 ⊗M

)(yn+1 − yn

∆t

)
+

( N∑
k=0

Gk ⊗Kk

)
yn+1 =

(
g0 ⊗ f0

)n+1

,
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or, equivalently,

M
(
yn+1 − yn

∆t

)
+ Ayn+1 = F n+1, (3.49)

where

A =
N∑
k=0

Gk ⊗Kk, M = G0 ⊗M, F n+1 =

(
g0 ⊗ f0

)n+1

.

Rearranging (3.49), the following matrix form of the discrete systems is obtained:

Ayn+1 = Fn+1, (3.50)

where for k = 1, . . . , N

A = G0 ⊗ (M +∆tK0)︸ ︷︷ ︸
K̂0

+

( N∑
k=1

Gk ⊗ (∆tKk)︸ ︷︷ ︸
K̂k

)
,

Fn+1 = Myn +∆tF n+1.

It is also noted that the time dependence of the problem introduces additional com-

plexity of solving a large linear system for each time step. Therefore, it is necessary

to apply the low–rank approximation technique introduced in Section 3.3 for each

fixed time step.

Next, the following sections state the stability analysis and a priori error estimates of

the proposed method on the energy norm defined in (3.12), respectively.

3.4.1 Stability Analysis

It is generally of interest to know something about the long term behaviours of the

solution to a time-dependent equation. In particular, one would like to know if the

solution grows with time or if it can be bounded by the known data of the equation.

For the unsteady problem, stability estimates are crucial. Theorem 3.4.1 shows that

the proposed method is bounded by the known data, which are the initial condition y0

and the right hand side function f .

Theorem 3.4.1. There exists a constant C independent of h and ∆t such that for all

m > 0

∥ym∥2L2(L2(D);Γ) +∆t
m∑

n=1

∥yn∥2ξ ≤ C

(
∥y0∥2L2(L2(D);Γ) +∆t

m∑
n=1

∥fn∥2L2(L2(D);Γ)

)
.
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Proof. Taking v = yn+1 in the fully discrete system (3.48), it is obtained

1

∆t

∫
Γ

∫
D

(yn+1 − yn) yn+1 dx ρ(ξ) dξ + aξ(y
n+1, yn+1) = lξ(tn+1, y

n+1).

An application of the polarization identity

∀x, y ∈ R,
1

2
(x2 − y2) ≤ 1

2
(x2 − y2 + (x− y)2) = (x− y)x, (3.51)

yields

1

2∆t

(
∥yn+1∥2L2(L2(D);Γ) − ∥yn∥2L2(L2(D);Γ)

)
+ aξ(y

n+1, yn+1) = lξ(tn+1, y
n+1). (3.52)

From the coercivity of aξ (3.13a), Cauchy-Schwarz (2.11), and Young’s inequalities

(2.12), the expression (3.52) reduces to

1

2∆t

(
∥yn+1∥2L2(L2(D);Γ) − ∥yn∥2L2(L2(D);Γ)

)
+
ccv
2
∥yn+1∥2ξ ≤ |lξ(tn+1, y

n+1)|

≤ ∥fn+1∥L2(L2(D);Γ)∥yn+1∥L2(L2(D);Γ)

≤ 1

2
∥fn+1∥2L2(L2(D);Γ) +

1

2
∥yn+1∥2L2(L2(D);Γ).

Multiplying by 2∆t and summing from n = 0 to n = m− 1, one can get

∥ym∥2L2(L2(D);Γ) − ∥y0∥2L2(L2(D);Γ) +∆tccv

m∑
n=1

∥yn∥2ξ

≤ ∆t
m∑

n=1

∥fn∥2L2(L2(D);Γ) +∆t
m∑

n=1

∥yn∥2L2(L2(D);Γ).

After applying discrete Gronwall inequality given in Section 2.4.4, the desired result

is obtained

∥ym∥2L2(L2(D);Γ) +∆t
m∑

n=1

∥yn∥2ξ ≤ C

(
∥y0∥2L2(L2(D);Γ) +∆t

m∑
n=1

∥fn∥2L2(L2(D);Γ)

)
,

where the constant C is independent of h and ∆t.

3.4.2 Error Analysis

In the following, a priori error estimates is derived for the unsteady stochastic problem

(3.47) by the following procedure as done for the stationary problem in Section 3.2.
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Assuming that y ∈ L2(H2(D); Γ; [0, T ]) ∩ Hq+1(H1(D); Γ; [0, T ]) and the best ap-

proximation ỹ ∈ Vh ⊗ Sq
k , it is known from Theorem (3.2.3) that for ∀t ≥ 0,

∥y(t)− ỹ(t)∥L2(H1(D);Γ) ≤ C

(
hmin(ℓ+1,2)−1∥y(t)∥L2(H2(D);Γ) (3.53)

+
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y(t)∥L2(H1(D);Γ)

(qn + 1)!

)
,

and

∥y(t)− ỹ(t)∥ξ ≤ C

(
hmin(ℓ+1,2)−1∥y(t)∥L2(H2(D);Γ) (3.54)

+
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y(t)∥L2(H1(D);Γ)

(qn + 1)!

)
.

Using the linearity of the bilinear form, once can easily show that

aξ

( d
dt
(y − ỹ)(t), v

)
= 0, ∀t ≥ 0, ∀v ∈ Vh ⊗ Sq

k .

Theorem 3.4.2. Assume that the exact solution to problem (3.47) satisfies

y ∈ L2(H2(D); Γ; [0, T ]) ∩Hq+1(H1(D); Γ; [0, T ]),
∂2y

∂t2
∈ L2(L2(D); Γ; [0, T ]).

Then, there exists a constant C independent of h and ∆t such that for all m > 0

∥ymh − ym∥L2(L2(D);Γ) ≤ C∆t
∥∥∥∂2y
∂t2

∥∥∥
L2(L2(D);Γ;[0,T ])

+ C
√
∆t

(
hmin(ℓ+1,2)−1

∥∥∥∥∂y∂t
∥∥∥∥
L2(H2(D);Γ;[0,T ])

+
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

∂y
∂t
∥L2(H1(D);Γ;[0,T ])

(qn + 1)!

)
, (3.55a)(

∆t
m∑

n=1

∥ynh − yn∥2ξ

)1/2

≤ C∆t
∥∥∥∂2y
∂t2

∥∥∥
L2(L2(D);Γ;[0,T ])

+ C
√
∆t

(
hmin(ℓ+1,2)−1

∥∥∥∥∂y∂t
∥∥∥∥
L2(H2(D);Γ;[0,T ])

+
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

∂y
∂t
∥L2(H1(D);Γ;[0,T ])

(qn + 1)!

)
. (3.55b)
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Proof. Let ỹ be the best approximation of y. It is obvious that

(yn+1 − yn

∆t
, v
)
ξ
−
(yn+1

h − ynh
∆t

, v
)
ξ
+ aξ(y

n+1, v)− aξ(yn+1
h , v) = 0. (3.56)

Denoting yn − ynh = ρn − χn with ρn = yn − ỹn and χn = ynh − ỹn, substituting into

(3.56) and by the Galerkin orthogonality, one can have

(χn+1 − χn

∆t
, v
)
ξ
+ aξ(χ

n+1, v) =
(∂y
∂t

n+1

− yn+1 − yn

∆t
, v
)
ξ

+
(ρn+1 − ρn

∆t
, v
)
ξ
+ aξ(ρ

n+1, v)︸ ︷︷ ︸
=0

.

Setting v = χn+1 and Θn+1 = ∂y
∂t

n+1 − yn+1−yn
∆t

, and using the polarization iden-

tity (3.51), the coercivity of aξ(·, ·) (3.13a), Cauchy-Schwarz inequality (2.11), and

Young’s inequality (2.12), it holds

1

2∆t

(
∥χn+1∥2L2(L2(D);Γ) − ∥χn∥2L2(L2(D);Γ)

)
+ ccv∥χn+1∥2ξ

≤ ccv
2
∥χn+1∥2ξ + C

(
∥Θn+1∥2L2(L2(D);Γ) + ∥

ρn+1 − ρn

∆t
∥2L2(L2(D);Γ)

)
.

Then, it is obvious

1

2∆t

(
∥χn+1∥2L2(L2(D);Γ) − ∥χn∥2L2(L2(D);Γ)

)
+
ccv
2
∥χn+1∥2ξ

≤ C

(
∥Θn+1∥2L2(L2(D);Γ) + ∥

ρn+1 − ρn

∆t
∥2L2(L2(D);Γ)

)
. (3.57)

The definition of Θn+1 and Taylor series expansion yield

Θn+1 =
1

∆t

tn+1∫
tn

(t− tn)
∂2y(t)

∂t2
dt, and ρn+1 − ρn =

tn+1∫
tn

∂ρ

∂t
dt.

Using Cauchy-Schwarz inequality (2.11), one can easily prove that

∥Θn+1∥2L2(L2(D);Γ) ≤
∆t

3

tn+1∫
tn

∥∥∥∂2y(t)
∂t2

∥∥∥2
L2(L2(D);Γ)

dt, (3.58a)

∥ρn+1 − ρn∥2L2(L2(D);Γ) ≤
tn+1∫
tn

∥∥∥∂ρ
∂t

∥∥∥2
L2(L2(D);Γ)

dt. (3.58b)
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Inserting (3.58a) and (3.58b) into (3.57), multiplying the inequality by 2∆t, and sum-

ming from n = 0 to n = m− 1, it can be obtained

∥χm∥2L2(L2(D);Γ) − ∥χ0∥2L2(L2(D);Γ) + ccv∆t
m∑

n=1

∥χn+1∥2ξ

≤ C∆t2
T∫

0

∥∥∥∂2y
∂t2

∥∥∥2
L2(L2(D);Γ)

dt+ C∆t

T∫
0

∥∥∥∂ρ
∂t

∥∥∥2
L2(L2(D);Γ)

dt.

Since χ0 is zero and ∂ρ
∂t

satisfies the error estimates (3.53), it yields

∥χm∥2L2(L2(D);Γ)+ ccv∆t
m∑

n=1

∥χn+1∥2ξ ≤C∆t2
T∫

0

∥∥∥∂2y
∂t2

∥∥∥2
L2(L2(D);Γ)

dt

+ C∆t

T∫
0

(
hmin(ℓ+1,2)−1

∥∥∥∥∂y(t)∂t

∥∥∥∥
L2(H2(D);Γ)

+
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

∂y(t)
∂t
∥L2(H1(D);Γ)

(qn + 1)!

)2

dt.

Using triangle inequality, the desired results in (3.55) are obtained.

3.5 Numerical Results

This section presents several numerical results to examine the quality of the proposed

numerical approaches. As mentioned before, we are here interested in the statistical

moments of the solution y(x, ω) in (3.1), such as mean and variance rather than, the

solution y(x, ω). The numerical experiments are performed on an Ubuntu Linux ma-

chine with 32 GB RAM using MATLAB R2020a. To compare the performance of the

solution methods, the rank of the computed solution, the number of performed itera-

tions, the computational time, the relative residual, that is, ∥Ay−F∥F/∥F∥F , and the

memory demand of the solution are reported. Unless otherwise stated, in all simula-

tions, iterative methods are terminated when the residual, measured in the Frobenius

norm, is reduced to ϵtol = 10−4 or the maximum iteration number (#itermax = 100)

is reached. It is noted that the tolerance ϵtol should be chosen, such that ϵtrunc ≤ ϵtol;

otherwise, one would be essentially iterating on the noise from the low–rank trunca-

tions.
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In the numerical experiments, the random input z is characterized by the covariance

function

Cz(x,y) = κ2z

2∏
n=1

e−|xn−yn|/ℓn ∀(x,y) ∈ D (3.59)

with the correlation length ℓn and the standard deviation κz. This section uses lin-

ear elements to generate discontinuous Galerkin basis and Legendre polynomials

as stochastic basis functions since the underlying random variables have uniform

distribution over [−
√
3,
√
3], that is, it is chosen as ξ = {ξ1, . . . , ξN} such that

ξj ∼ U [−
√
3,
√
3]. The eigenpair (λj, ϕj) corresponding to covariance function

(3.59) are given explicitly in Section 2.5.1. Moreover, all parameters used in the

simulations are described in Table 3.2.

Table 3.2: Descriptions of the parameters used in the simulations.

Parameter Description
Nd degree of freedoms for the spatial discretization
N truncation number in KL expansion
Q highest order of basis polynomials for the stochastic domain
ν viscosity parameter
ℓ correlation length
κz standard deviation
ϵtol stopping tolerance of iterative methods
ϵtrunc truncation tolerance of the low–rank approximation

#itermax maximum iteration number of iterative methods

3.5.1 Stationary Problem with Random Diffusion Parameter

As a first benchmark problem, a two-dimensional stationary convection diffusion

equation with random diffusion parameter [109] defined on D = [−1, 1]2 with the

deterministic source function f(x) = 0, the constant convection parameter b(x) =

(0, 1)T , and the Dirichlet boundary condition

yDB(x) =

yDB(x1,−1) = x1, yDB(x1, 1) = 0,

yDB(−1, x2) = −1, yDB(1, x2) = 1,

is considered.
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The random diffusion parameter is defined by a(x, ω) = ν z(x, ω), where the ran-

dom input z(x, ω) has the unity mean, i.e., z(x) = 1 and ν is the viscosity parameter.

Around x2 = 1, when the value of the solution alters dramatically, the solution dis-

plays an exponential boundary layer. As an alternative to traditional finite element

techniques, discontinuous Galerkin discretization in the spatial domain may thus be

preferable; the mean and variance of solutions for various values of the viscosity pa-

rameter ν are shown in Figure 3.1. As ν decreases, the boundary layer becomes more

visible.

Figure 3.1: Example 3.5.1: Mean (top) and variance (bottom) of SG solutions ob-
tained solving by A\F with ℓ = 1, κz = 0.05, Nd = 393216, N = 3, and Q = 2 for
various values of viscosity parameter ν.

In Table 3.3, 3.4, and 3.5, the results of the simulations are reported by taking into

account numerous data sets. Table 3.3 shows the results for changing the truncation

number in the KL expansionN while keeping all other parameters fixed. It is obvious

that the complexity of the problem increases as N increases. As expected, decreasing

the truncation tolerance ϵtrunc increases the cost of computational time and memory

requirement, especially for large N . Another important finding from the Table 3.3

62



is that LRPGMRES performs better in terms of CPU time and memory requirement

when compared to other iterative methods. Table 3.4 shows how low–rank Krylov

subspace algorithms with the mean–based preconditioner P0 perform for different

viscosity values ν . The problem becomes increasingly convection dominated as the

values of ν decrease. As a result, all iterative solvers use more memory, and the rank

of the low-rank solution increases.

Afterward, the effect of the standard deviation parameter κz on the numerical simula-

tions is investigated. Figure 3.2 displays the convergence behaviour of the low–rank

variants of iterative solvers for varying values of ν. For relatively large κz, one can

observe that LRPBiCGstab and LRPGMRES provide better convergence behaviour,

although the LRPCG method does not converge since the dominance of the nonsym-

metric part of A increases.
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Figure 3.2: Example 3.5.1: Convergence of low–rank variants of iterative solvers
with κz = 0.05 (top) and κz = 0.5 (bottom) for varying values of viscosity ν. The
mean-based preconditioner P0 is used with the parameters N = 5, Q = 3, ℓ = 1,
Nd = 6144, and ϵtrunc = 10−6.

In Table 3.5, the effect of the standard deviation parameter κz is examined with P0

and P1 preconditioners for only LRPBiCGstab and LRPGMRES since they exhibit
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Table 3.3: Example 3.5.1: Simulation results showing ranks of truncated solutions,
total number of iterations, total CPU times (in seconds), relative residual, and memory
demand of the solution (in KB) with Nd = 6144, Q = 3, ℓ = 1, κz = 0.05, ν = 10−4,
and the mean-based preconditioner P0 for varying values of N .

Method
ϵtrunc

LRPCG
1e-06 (1e-08)

LRPBiCGstab
1e-06 (1e-08)

LRPQMRCGstab
1e-06 (1e-08)

LRPGMRES
1e-06 (1e-08)

N=3
Ranks 10 (10) 10 (10) 9 (10) 10 (10)
#iter 5 (5) 3 (3) 3 (3) 4 (4)
CPU 7.0 (7.7) 8.8 (8.9) 7.8 (10.0) 5.4 (5.2)
Resi. 1.8160e-07 (3.2499e-07) 5.5982e-06 (5.5413e-06) 2.9222e-05 (3.1021e-05) 6.3509e-07 (6.3509e-07)

Memory 481.6 (481.6) 481.6 (481.6) 433.4 (481.6) 481.6 (481.6)

N=4
Ranks 12 (18) 17 (18) 17 (17) 17 (17)
#iter 4 (5) 3 (3) 3 (3) 5 (5)
CPU 9.2 (13.3) 15.3 (15.3) 14.2 (14.4) 12.1 (11.7)
Resi. 1.2367e-06 (1.4311e-07) 7.7090e-06 (7.7030e-06) 1.0819e-05 (4.3167e-06) 8.1316e-08 (8.1316e-08)

Memory 579.3 (868.9) 820.7 (868.9) 820.7 (820.7) 820.7 (820.7)

N=5
Ranks 18 (28) 21 (28) 22 (28) 19 (28)
#iter 4 (5) 3 (3) 3 (3) 5 (5)
CPU 15.2 (20.8) 24.9 (25.1) 25.4 (26.0) 20.3 (20.6)
Resi. 1.1705e-06 (8.2045e-08) 8.5525e-06 (8.5527e-06) 1.6985e-06 (8.6182e-07) 8.4680e-08 (8.4680e-08)

Memory 871.9 (1356.3) 1017.2 (1356.3) 1065.6 (1356.3) 920.3 (1356.3)

N=6
Ranks 26 (42) 26 (42) 25 (42) 25 (42)
#iter 4 (4) 3 (3) 3 (3) 4 (4)
CPU 25.6 (32.0) 42.4 (43.7) 49.4 (51.2) 29.7 (31.5)
Resi. 9.2495e-07 (1.0605e-06) 9.6694e-06 (9.6649e-06) 7.7812e-07 (4.1770e-07) 1.0476e-06 (1.0476e-06)

Memory 1265.1 (2043.6) 1265.1 (2043.6) 1216.4 (2043.6) 1216.4 (2043.6)

N=7
Ranks 30 (60) 32 (60) 32 (60) 28 (47)
#iter 4 (4) 3 (3) 3 (3) 4 (4)
CPU 52.5 (58.8) 69.3 (73.8) 86.1 (87.9) 57.9 (57.7)
Resi. 1.0719e-06 (1.1205e-06) 9.9865e-06 (9.9880e-06) 6.5595e-07 (2.0226e-07) 1.1075e-06 (1.1075e-06)

Memory 1468.1 (2936.3) 1566 (2936.3) 1566 (2936.3) 1370.3 (2300.1)

0 5 10 15

10
-6

10
-4

10
-2

10
0

5 10 15

10
-6

10
-4

10
-2

10
0

5 10 15

10
-6

10
-4

10
-2

10
0

Figure 3.3: Example 3.5.1: Convergence of low–rank variants of LRPBiCGstab,
LRPQMRCGstab, and LRPGMRES with N = 7, Q = 3, ℓ = 1, Nd = 6144,
ϵtrunc = 10−8, and κz = 0.5 for the mean-based preconditioner P0 and the Ullmann
preconditioner P1.
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Table 3.4: Example 3.5.1: Simulation results showing ranks of truncated solutions,
total number of iterations, total CPU times (in seconds), relative residual, and memory
demand of the solution (in KB) with Nd = 6144, Q = 3, ℓ = 1, κz = 0.05, N = 7,
and the mean-based preconditioner P0 for various values of viscosity parameter ν.

Method
ϵtrunc

LRPCG
1e-06 (1e-08)

LRPBiCGstab
1e-06 (1e-08)

LRPQMRCGstab
1e-06 (1e-08)

LRPGMRES
1e-06 (1e-08)

ν = 1

Ranks 17 (44) 20 (51) 20 (42) 22 (39)
#iter 4 (4) 3 (3) 3 (3) 4 (4)
CPU 54.3 (62.0) 68.7 (75.2) 87.9 (91.2) 56.4 (56.3)
Resi. 8.2189e-07 (1.1215e-06) 9.9896e-06 (9.9897e-06) 7.3503e-07 (3.6458e-08) 1.1062e-06 (1.1062e-06)

Memory 831.9 (2300.1) 978.8 (2495.8) 978.8 (2055.4) 1076.6 (1908.6)

ν = 10−2

Ranks 21 (60) 26 (60) 25 (59) 23 (39)
#iter 4 (4) 3 (3) 3 (3) 4 (4)
CPU 52.4 (64.5) 65.9 (72.3) 89.5 (94.3) 52.3 (52.6)
Resi. 7.7284e-07 (1.1225e-06) 9.9906e-06 (9.9918e-06) 1.6268e-06 (8.4171e-08) 1.1074e-06 (1.1074e-06)

Memory 1027.7 (2936.3) 1272.4 (2936.3) 1223.4 (2887.3) 1125.6 (1908.6)

ν = 10−4

Ranks 30 (60) 32 (60) 32 (60) 28 (47)
#iter 4 (4) 3 (3) 3 (3) 4 (4)
CPU 52.5 (58.8) 69.3 (73.8) 86.1 (87.9) 57.9 (57.7)
Resi. 1.0719e-06 (1.1205e-06) 9.9865e-06 (9.9880e-06) 6.5595e-07 (2.0226e-07) 1.1075e-06 (1.1075e-06)

Memory 1468.1 (2936.3) 1566 (2936.3) 1566 (2936.3) 1370.3 (2300.1)

Table 3.5: Example 3.5.1: Simulation results showing ranks of truncated solutions,
total number of iterations, total CPU times (in seconds), relative residual, and memory
demand of the solution (in KB) withNd = 6144,N = 7,Q = 3, ℓ = 1, ϵtrunc = 10−6,
and ν = 10−4 for different choices of preconditioners.

Method
Preconditioner

LRPBiCGstab
P0

LRPGMRES
P0

LRPBiCGstab
P1

LRPGMRES
P1

κz = 0.05

Ranks 32 28 31 27
#iter 3 4 3 5
CPU 69.3 57.9 69.0 72.7
Resi. 9.9865e-06 1.1075e-06 6.0448e-06 8.7712e-08

Memory 1566 1370.3 1517.1 1321.3

κz = 0.5

Ranks 60 60 60 60
#iter 13 13 15 13
CPU 781.7 248.5 913.6 245.8
Resi. 1.2629e-06 4.9417e-07 1.8697e-06 6.9625e-07

Memory 2936.3 2936.3 2936.3 2936.3
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Figure 3.4: Example 3.5.1: Decay of singular values of low–rank solution matrix Y

obtained by using the mean-based preconditioner P0 with N = 5, Q = 3, ℓ = 1,
Nd = 6144, ν = 1, and ϵtrunc = 10−6 for κz = 0.05 (left) and κz = 0.5 (right).

better convergence behaviour; see Figure 3.2. As κz increases, the low-rank solutions

indicate deteriorating performance, regardless of which the preconditioner or iterative

solver is used. Also, the effect of preconditioners on the iterative solvers is shown

in Figure 3.3 in terms of convergence of iterative solvers. Since LRPCG does not

converge for large values of κz, they are not included. The results show that the

mean–based preconditioner P0 exhibits better convergence behaviour compared to

the Ullmann preconditioner P1 for LRPBiCGstab and LRPQMRCGstab, whereas

they are almost the same for LRPGMRES.

Figure 3.4 shows the decay of singular values of low–rank solution matrix Y ob-

tained by using the mean-based preconditioner P0. Keeping other parameters fixed,

increasing the value of κz slows down the decay of the singular values of the obtained

solutions. Thus, the total time for solving the system and the time spent on truncation

will also increase; see Table 3.5.

Last, the performance of A\F is displayed in terms of total CPU times (in seconds)

and memory requirements (in KB) in Table 3.6. Due to "out of memory" termination,

which has been marked as "OoM," some numerical results are not provided. A signif-

icant finding from numerical simulations is that low–rank variants of Krylov subspace

algorithms provide better computational savings, particularly in terms of memory.
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Table 3.6: Example 3.5.1: Total CPU times (in seconds) and memory (in KB) for
Nd = 6144, Q = 3, ℓ = 1, and κz = 0.05.

A\F ν = 100 ν = 10−2 ν = 10−4

N CPU (Memory) CPU (Memory) CPU (Memory)
2 10.8 (960) 10.7 (960) 10.8 (960)
3 1463.7 (1920) 1464.2 (1920) 1463.7 (1920)
4 OoM OoM OoM

3.5.2 Stationary Problem with Random Convection Parameter

Our second example is a two-dimensional stationary convection diffusion equation

with random velocity. To be more specific, the choice is the deterministic diffusion

parameter a(x, ω) = ν > 0, the deterministic source function f(x) = 0, and the

spatial domain D = [0, 1]2. The random velocity field b(x, ω) is

b(x, ω) :=

(
cos
(1
5
z(x, ω)

)
, sin

(1
5
z(x, ω)

))T

, (3.60)

where the mean of the random field is z(x) = 0. The Dirichlet boundary condition

yDB(x) is given by

yDB(x) =

1, x ∈ S,

0, x ∈ ∂D\S,

where the set S is the subset of ∂D defined by

{x1 = 0, x2 ∈ [0, 0.5]} ∪ {x1 ∈ [0, 1], x2 = 0} ∪ {x1 = 1, x2 ∈ [0, 0.5]}.

The solution features sharp transitions in the domain D due to the random velocity,

b(x, ω), and later spurious oscillations will spread into the stochastic domain Ω. As

ν decreases, the interior layer becomes more visible; see Figure 3.5 for the mean and

variance of solution for various values of ν.
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Figure 3.5: Example 3.5.2: Mean (top) and variance (bottom) of SG solutions ob-
tained by solving A\F with N = 2, Q = 2, ℓ = 1, Nd = 393216, and κz = 0.05, for
various values of ν.

Table 3.7: Example 3.5.2: Simulation results showing ranks of truncated solutions,
total number of iterations, total CPU times (in seconds), relative residual, and memory
demand of the solution (in KB) with Nd = 6144, Q = 3, ℓ = 1, κz = 0.05, N = 7,
and the mean-based preconditioner P0 for various values of viscosity parameter ν.

Method
ϵtrunc

LRPCG
1e-06 (1e-08)

LRPBiCGstab
1e-06 (1e-08)

LRPQMRCGstab
1e-06 (1e-08)

LRPGMRES
1e-06 (1e-08)

ν = 1

Ranks 8 (19) 10 (23) 9 (22) 6 (8)
#iter 10 (10) 3 (3) 4 (4) 5 (5)
CPU 108.6 (120.4) 49.7 (56.0) 76.1 (82.4) 60.7 (59.7)
Resi. 1.3666e-06 (1.4307e-06) 5.7868e-07 (5.7870e-07) 6.8606e-06 (6.8424e-06) 1.2811e-06 (1.2811e-06)

Memory 391.5 (929.8) 489.4 (1125.6) 440.4 (1076.6) 293.6 (391.5)

ν = 10−2

Ranks 15 (34) 45 (60) 21 (60) 6 (14)
#iter 100 (100) 100 (100) 100 (100) 100 (100)
CPU 992.2 (1202.8) 1782.7 (2133.9) 2602.3 (2815.0) 8798.7 (8864.7)
Resi. 3.0059e+26 (3.0060e+26) 1.4807e-01 (2.6669e-02) 9.0173e-03 (9.3659e-03) 1.0002e-03 (1.0002e-03)

Memory 734.1 (1663.9) 2202.2 (2936.3) 1027.7 (2936.3) 293.6 (685.1)

ν = 10−4

Ranks 29 (60) 60 (60) 35 (60) 12 (27)
#iter 100 (100) 100 (100) 100 (100) 100 (100)
CPU 1102.3 (1382.6) 2124.4 (2135.5) 2802.1 (2869.9) 8401.0 (8394.8)
Resi. 8.7243e+26 (8.7242e+26) 2.2085e-02 (3.2792e-02) 3.6713e-03 (3.3074e-03) 1.2075e-03 (1.2075e-03)

Memory 1419.2 (2936.3) 2936.3 (2936.3) 1712.8 (2936.3) 587.3 (1321.3)
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Table 3.8: Example 3.5.2: Simulation results showing ranks of truncated solutions,
total number of iterations, total CPU times (in seconds), relative residual, and memory
demand of the solution (in KB) with N = 7, Q = 3, ℓ = 1, κz = 0.05, ν = 10−4, and
the mean-based preconditioner P0 for various values of Nd.

LRPCG
1e-06 (1e-08)

LRPBiCGstab
1e-06 (1e-08)

LRPQMRCGstab
1e-06 (1e-08)

LRPGMRES
1e-06 (1e-08)

Nd = 384

Ranks 17 (37) 58 (60) 21 (60) 26 (42)
#iter 100 (100) 100 (100) 100 (100) 100 (100)
CPU 213.3 (205.7) 329.8 (329.4) 487.6 (481.7) 2119.7 (2135.3)
Resi. 1.1637e+28 (1.1637e+28) 1.5964e-02 (3.3908e-01) 1.0163e-02 (1.0857e-02) 7.4718e-06 (7.2284e-06)

Memory 66.9 (145.7) 228.4 (236.3) 82.7 (236.3) 102.4 (165.4)

Nd = 1536

Ranks 25 (56) 60 (60) 21 (55) 30 (49)
#iter 100 (100) 100 (100) 100 (100) 65 (65)
CPU 305.4 (338.8) 497.8 (503.0) 699.4 (709.0) 1278.3 (1286.1)
Resi. 2.9340e+27 (2.9339e+27) 5.3887e-02 (1.9615e-02) 6.8316e-03 (7.0652e-03) 1.8606e-06 (1.8606e-06)

Memory 323.4 (724.5) 776.3 (776.3) 271.7 (711.6) 388.1 (633.9)

Nd = 6144

Ranks 29 (60) 60 (60) 35 (60) 12 (27)
#iter 100 (100) 100 (100) 100 (100) 100 (100)
CPU 1102.3 (1382.6) 2124.4 (2135.5) 2802.1 (2869.9) 8401.0 (8394.8)
Resi. 8.7243e+26 (8.7242e+26) 2.2085e-02 (3.2792e-02) 3.6713e-03 (3.3074e-03) 1.2075e-03 (1.2075e-03)

Memory 1419.2 (2936.3) 2936.3 (2936.3) 1712.8 (2936.3) 587.3 (1321.3)

Nd = 24576

Ranks 25 (60) 60 (60) 23 (60) 7 (19)
#iter 100 (100) 100 (100) 100 (100) 100 (100)
CPU 7276.2 (10498.6) 16726.6 (16936.7) 19960.3 (20646.5) 41929.8 (41778.9)
Resi. 3.5040e+26 (3.5100e+26) 5.8952e-03 (1.7120e-02) 1.7710e-03 (1.6015e-03) 7.3550e-04 (7.3550e-04)

Memory 4823.4 (11576.3) 11576.3 (11576.3) 4437.6 (11576.2) 1350.6 (3665.8)

Next, Table 3.7 and 3.8 display the performance of low–rank of Krylov subspace

methods with the mean–based precondition P0 by taking into account numerous data

sets. It is obvious that the complexity of the problem increases in terms of the rank of

the truncated solutions, total CPU times (in seconds), and memory demand of the so-

lution (in KB) when ν decreases; see Table 3.7. As seen in the previous example, the

LRPCG approach performs poorly for smaller values of ν, however the LRPGMRES

method performs better.

Then, as shown in Figure 3.6, the convergence behaviour of low-rank versions of

iterative solvers with different values of ν is explored. The relative residuals ob-

tained by LRPQMRCGstab and LRPGMRES decline monotonically, whereas the

LRPBiCGstab method exhibits oscillatory behaviour.

Figure 3.7 shows the decay of singular values of low–rank solution matrix Y obtained
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Figure 3.6: Example 3.5.2: Convergence of low–rank variants of iterative solvers for
varying values of viscosity ν. The mean-based preconditioner P0 is used with the
parameters N = 7, Q = 3, ℓ = 1, κz = 0.05, Nd = 6144, and ϵtrunc = 10−8.
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Figure 3.7: Example 3.5.2: Decay of singular values of solution matrix Y with
N = 7, Q = 3, ℓ = 1, Nd = 6144, κz = 0.05, and ϵtrunc = 10−8 with the mean-based
preconditioner P0 (top) and the Ullmann preconditioner P1 (bottom) for various val-
ues of ν.
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by using P0 and P1 preconditioners. When the other parameters remain constant,

reducing the value of ν decreases the decay of the singular values of the resulting

solutions. As a result, the overall time required to solve the system and the time spent

on truncation will rise; see Table 3.7.

Large–scale simulations with a high degree of freedoms (DOFs) are generally more

interesting in practical applications. Another experiment in Table 3.9 is the memory

requirement of the solution (in KB) produced from full–rank and low–rank variations

of the GMRES solver. Low–rank approximation, as predicted, considerably decreases

the amount of computer memory required to solve the huge system.

Table 3.9: Example 3.5.2: Memory demand of the solution (in KB) obtained full–
rank and low–rank variants of GMRES solver with N = 7, Q = 3, ℓ = 1, κz = 0.05,
ϵtrunc = 10−6 (ϵtrunc = 10−8), and the mean-based preconditioner P0 for various
values of degree of freedoms (DOFs).

DOFs 46080 184320 737280 2949120

Low–Rank 94.5 (157.5) 323.4 (556.3) 587.3 (1468.1) 1543.5 (3665.8)
Full–Rank 360 1440 5760 23040

3.5.3 Unsteady Problem with Random Diffusion Parameter

Last, an unsteady convection diffusion equation with random diffusion parameter de-

fined on D = [0, 1]2 is considered. The rest of data is as follows

T = 0.5, b(x) = (1, 1)T , f(x, t) = 0, y0(x) = 0

with the Dirichlet boundary condition

yDB(x) =

yDB(0, x2) = x2(1− x2), yDB(1, x2) = 0,

yDB(x1, 0) = 0, yDB(x1, 1) = 0.

In this example, the random diffusion coefficient a(x, w) is chosen as a(x, w) =

z(x, w) having the unity mean. In the numerical simulations, the number of time

points is chosen as NT = 32. As mentioned in Section 2.5.1, it is known that de-

creasing the correlation length slows down the decay of the eigenvalues in the KL

expansion of the random variable a(x, ω) and therefore, more random variables are
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Figure 3.8: Example 3.5.3: Mean and variance of computed solution at various time
steps obtained by LRPBiCGstab with N = 17, Q = 3, ℓ = 1.5, κz = 0.15, ϵtrunc =
10−6, and the mean–based preconditioner P0.

required to capture the randomness sufficiently; see, e.g., [117]. In other words, it

causes the truncation parameter N to increase: When the correlation length is in-

creased, the situation is the reverse. Consequently, the main focus for this benchmark

problem is the effect of correlation length on the low–rank variants of the iterative

solver. With the help of the following computation as done in [63],(
N∑
i=1

λi

)
/

(
Mℓ∑
i=1

λi

)
> 0.97,

suitable truncation number N can be chosen for the given correlation length ℓ. Here,

Mℓ is a large number which is set 1000. Computed mean and variance of the solution

are displayed in Figure 3.8 for various time steps.

In Table 3.10, the results of numerical simulations for the mean-based precondi-

tioner P0 is presented for varying values of the correlation length ℓ. No matter

whether an iterative solver is employed, the small correlation length raises the rank

of obtained low–rank solutions and the number of iterations as long as 97% of the

total variance is captured. As expected, decreasing the truncation tolerance ϵtrunc

increases the cost of comparatively more computational time and memory require-

ments, nonetheless it does not affect the relative residuals. Next, Table 3.11 displays

numerical results obtained by using the standard Krylov subspace iterative solvers

with the mean-based preconditioner P0. Compared to the full–rank solvers in Ta-
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Table 3.10: Example 3.5.3: Simulation results showing ranks of truncated solutions,
total number of iterations, total CPU times (in seconds), relative residual, and memory
demand of the solution (in KB) with Nd = 6144, Q = 3, κz = 0.15, and the mean–
based preconditioner P0 for various values of correlation length ℓ at final time T =

0.5.

Method
ϵtrunc

LRPCG
1e-06 (1e-08)

LRPBiCGstab
1e-06 (1e-08)

LRPQMRCGstab
1e-06 (1e-08)

LRPGMRES
1e-06 (1e-08)

ℓ = 3, N = 9

Ranks 25 (56) 25 (55) 22 (52) 25 (38)
#iter 4 (4) 3 (3) 4 (4) 4 (4)
CPU 5348.9 (6543.5) 5072.2 (6869.4) 9459.5 (11060.9) 5974.5 (6005.6)
Resi. 2.7590e-04 (2.7601e-04) 1.2268e-03 (1.2268e-03) 8.5901e-05 (8.5657e-05) 2.3936e-04 (2.3936e-04)

Memory 1243 (2784.3) 1243 (2734.5) 1093.8 (2585.4) 1243 (1889.3)

ℓ = 2.5, N = 10

Ranks 27 (61) 27 (60) 25 (55) 27 (43)
#iter 4 (4) 3 (3) 4 (4) 4 (4)
CPU 7564.4 (9310.7) 7030.5 (9558.5) 13158.6 (15636.3) 9219.1 (9158.8)
Resi. 2.7397e-04 (2.7405e-04) 1.2665e-03 (1.2665e-03) 9.5085e-05 (9.4831e-05) 2.3810e-04 (2.3810e-04)

Memory 1356.3 (3064.3) 1356.3 (3014.1) 1255.7 (2762.9) 1356.3 (2160.1)

ℓ = 2, N = 13

Ranks 28 (68) 29 (66) 27 (63) 32 (52)
#iter 4 (4) 3 (3) 4 (4) 4 (4)
CPU 10813.5 (15435.4) 10745.0 (15709.9) 18748.2 (24049.6) 18496.9 (18284.7)
Resi. 2.6686e-04 (2.6703e-04) 1.2994e-03 (1.2994e-03) 1.0372e-04 (1.0345e-04) 2.4580e-04 (2.4580e-04)

Memory 1466.5 (3561.5) 1518.9 (3456.8) 1414.1 (3299.6) 1676 (2723.5)

ℓ = 1.5, N = 17

Ranks 32 (78) 33 (77) 31 (73) 38 (62)
#iter 4 (4) 3 (3) 4 (4) 4 (4)
CPU 20658.3 (36422.4) 22889.2 (33851.9) 36876.4 (50963.2) 58974.4 (57828.0)
Resi. 2.3545e-04 (2.3548e-04) 1.3217e-03 (1.3217e-03) 1.0444e-04 (1.0425e-04) 2.9531e-04 (2.9531e-04)

Memory 1821 (4438.7) 1877.9 (4381.8) 1764.1 (4154.2) 2162.4 (3528.2)

1.5 2 2.5 3

10
4

10
5

Figure 3.9: Example 3.5.3: CPU times of LRPCG, LRPBiCGstab, and LRPGMRES
iterative solvers obtained by the the mean–based preconditioner P0 and the Ullmann
preconditioner P1 with Q = 3, Nd = 6144, and κz = 0.15 for various values of
correlation length ℓ.
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Table 3.11: Example 3.5.3: Simulation results showing total number of iterations,
total CPU times (in seconds), and memory demand of the full–rank solution (in KB)
with Nd = 6144, Q = 3, κz = 0.15, and the mean-based preconditioner P0 for
various values of correlation length ℓ at final time T = 0.5.

Method
ϵtol

PCG
1e-04

PBiCGstab
1e-04

PGMRES
1e-04

ℓ = 3, N = 9

#iter 11 5.5 10
CPU 7910.7 7863.4 8727.0

Memory 10560 10560 10560

ℓ = 2, N = 13

#iter 11 5.5 10
CPU 20252.0 20148.5 22318.8

Memory 26880 26880 26880

ℓ = 1.5, N = 17

#iter 11 5.5 10
CPU 41345.0 41207.4 45499.8

Memory 54720 54720 54720

ble 3.11, low–rank Krylov subspace solvers generally exhibit better performance; see

Table 3.10. Regarding the preconditioners, the Ullmann preconditioner P1 produces

better performance in terms of computational time; see Figure 3.9.

3.6 Discussion

In this chapter, the statistical moments of a convection diffusion equation having ran-

dom coefficients have been numerically investigated. The original problem is con-

verted into a system consisting of deterministic convection diffusion equations for

each realization of the random coefficients by means of the stochastic Galerkin ap-

proach. Due to its local mass conservativity, the symmetric interior penalty Galerkin

approach is then employed to discretize the deterministic problem. According to the

literature, the analysis of stochastic discontinuous Galerkin techniques using convec-

tion diffusion equations has not been studied, so this study intends to fill this gap;

see [41]. Moreover, the a priori error estimates in the energy norm is provided for

the steady and unsteady models, while the stability analysis for the time-dependent

models is discussed in the energy norm. To reduce computational time and memory

74



requirements, low–rank variants of various Krylov subspace methods, such as CG,

BiCGstab, QMRCGstab, and GMRES with suitable preconditioners, have been em-

ployed. On the contrary to the studies in literature [20, 55, 64, 109, 110, 122], where

randomness is generally defined in the diffusion parameter, the randomness is, here,

considered both in diffusion or convection parameters. The numerical simulations

have demonstrated that LRPGMRES performs better, especially for the convection-

dominated models.

75



76



CHAPTER 4

ADAPTIVE STOCHASTIC DISCONTINUOUS GALERKIN

FOR CONVECTION DIFFUSION EQUATIONS WITH

RANDOM COEFFICIENTS

The aim of this chapter is the development, and in part the analysis, of adaptive

stochastic discontinuous Galerkin method, which consists of successive loops of the

following sequence [138]:

SOLVE→ ESTIMATE→MARK→ REFINE (4.1)

for convection diffusion equations containing random coefficients. The SOLVE step

stands for the numerical solution of the underlying PDE in a finite dimensional tensor

product space defined on the given spatial mesh and stochastic domain. The ESTI-

MATE step is the key point of the adaptive stochastic discontinuous Galerkin method.

In this step, in order to control the error in the Galerkin solution, spatial estimators and

parametric estimators are computed in terms of the discrete solutions without knowl-

edge of the exact solutions. Based on the information of the indicators, the MARK

step selects a subset of elements subject to each refinement. At each iteration, the

REFINE module either performs a local refinement of the current triangulation in

the spatial domain or enriches the current index set of the stochastic domain; see,

e.g., [29, 60].

The efficient numerical solution of the convection diffusion equations with uncer-

tainty discussed in Chapter 3 presents a number of theoretical and practical chal-

lenges. One challenging class of problems is that in the convection dominated prob-

lems, some layers and oscillations occur, so these cause difficulties to compute nu-
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merical solutions. Another particularly challenging class of problems is represented

by PDEs whose inputs and outputs depend on infinitely many uncertain parameters.

For this class of problems, numerical algorithms are sought that are able to identify

a finite set of most important parameters to be incorporated into the basis of the ap-

proximation space. These difficulties motivates that the combination of discontinuous

Galerkin adaptivity in the spatial domain and the adaptivity in the (stochastic) param-

eter domain for the solution of convection dominated PDEs with random inputs.

In this chapter, we begin with our investigation in the next section by introducing the

model problem. In Section 4.2, the numerical schemes, which are Karhunen–Loève

(KL) expansion, stochastic Galerkin method, and symmetric interior penalty Galerkin

method (SIPG), are briefly recalled by referring the Chapter 3. A residual–based error

estimator is developed in Section 4.3. Section 4.4 represents the adaptive algorithm

and reports the results of numerical experiments. Finally, Section 4.5 concludes this

chapter by giving some conclusions and discussions.

4.1 Problem Formulation

In this chapter, we study a convection diffusion equation with random coefficients:

find a random function y : D × Ω→ R such that P-almost surely in Ω

−∇ · (a(x, ω)∇y(x, ω)) + b(x, ω) · ∇y(x, ω) = f(x) in D × Ω, (4.2a)

y(x, ω) = yDB(x) on ∂D × Ω, (4.2b)

where a : (D × Ω)→ R and b : (D × Ω)→ R2 are random diffusivity and velocity

coefficients. As done in Chapter 3, source function and Dirichlet boundary condition

denoted by f(x) ∈ L2(D) and yDB(x) ∈ H1/2(∂D), respectively, are given in a

deterministic way. The well–posedness of the model problem (4.2) can be shown by

proceeding the classical Lax–Milgram lemma, see, e.g., [11], under the assumptions

given in Section 3.1.
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4.2 Stochastic Galerkin Discretization

After representing the given random coefficients a(x, ω) and b(x, ω) by Karhunen–

Loève (KL) expansion (2.16), we seek for the solution y(x, ω) = y(x, ξ1(ω), ξ2(ω),

. . . , ξN(ω)) on the probability space (Γ,B(Γ), ρ(ξ)dξ), where Γ =
N∏

n=1

Γn is the sup-

port of probability density in finite dimensional space, B(Γ) denotes Borel σ–algebra,

and ρ(ξ)dξ is the distribution measure of the vector ξ. For any integers n,m ∈ N,

{ψn
m(ξn)}∞m=0 denotes the set of univariate polynomials of degree m on Γn that are

orthogonal in L2(Γn). By following the discussion in [25, 59], the set of finitely

supported multi–indices (or called as index set) is

U = {q = (q1, q2, . . .) ∈ N : |supp q| <∞},

where supp q = {n ∈ N | qn ̸= 0} and |q| :=
∑

i∈supp q
qi. Then, the countable ten-

sor product polynomial Ψq(ξ) is corresponding to a product of univariate orthogonal

polynomials, i.e.,

Ψq(ξ) =
∏

n∈supp q

ψn
qn(ξn),

for any q ∈ U and ξ ∈ Γ. In this setting, for a given finite index set B ⊂ U, the

(discontinuous) finite element approximation space Sq
k ⊂ L2(Γ) having at most qn

degree on each direction ξn is denoted by

Sq
k := span{Ψq : q ∈ B}, (4.3)

where its dimension is equivalent to the cardinality of set, that is, dim(Sq
k) = #B. In

addition, we set a subspace Sqn
k ⊂ S

q
k for n = 1, . . . , N consisting of the family of

polynomials {Ψ̃q(ξ)}q∈B defined by

Ψ̃q(ξ) =
N∏
i=1

ψ̃i
qi
(ξi), where ψ̃i

qi
(ξi) =

ψ̃
n
qn(ξn), i = n,

1, i ̸= n.

Hence, the approximate solution of the model problem (4.2), y(x, ω) ∈ L2(Ω,F ,P),
represented by a generalized polynomial chaos (gPC) approximation, see Section 2.5.2,

is of the form

y(x, ω) ≈ yk(x, ω) =
∑
q∈B

yq(x)Ψq(ξ(ω)), (4.4)
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where yq(x), the deterministic modes of the expansion, are given by

yq(x) =
⟨y(x, ω)Ψq(ξ)⟩〈

Ψ2
q(ξ)

〉 .

Last, we discretize the spatial domain D by using the SIPG discretization introduced

in Section 3.1.1 so that the variational formulation of (4.2) obtained by the stochastic

discontinuous Galerkin discretization is as follows: Find yh ∈ Vh ⊗ Sq
k such that

aξ(yh, v) = lξ(v) ∀v ∈ Vh ⊗ Sq
k , (4.5)

where

aξ(y, v) =

∫
Γ

ah(y, v, ξ)ρ(ξ) dξ, lξ(v) =

∫
Γ

lh(v, ξ)ρ(ξ) dξ.

Here, the (bi)–linear forms ah(·, ·, ·) and lh(·, ·) for a finite dimensional vector ξ are

corresponding to (3.9) and 3.10, respectively.

Due the jump terms [[·]], the bilinear form aξ(y, v) (4.5) is not well–defined for the

functions y, v ∈ H1(D) ⊗ Sq
k . However, when the bilinear form aξ(y, v) (4.5) is

decomposed as follows [136]

aξ(y, v) = ãξ(y, v) + jξ(y, v) ∀y, v ∈ Vh ⊗ Sq
k , (4.6)

where

jξ(y, v) = −
∫
Γ

( ∑
E∈Eh

∫
E

(
{{a(., ξ)∇y}}[[v]] + {{a(., ξ)∇v}}[[y]]

)
ds
)
ρ(ξ) dξ,

the bilinear form ãξ(y, v) becomes well–defined for the functions y, v ∈ H1(D)⊗Sq
k

and the following relation holds

aξ(y, v) = ãξ(y, v), y, v ∈ H1(D)⊗ Sq
k . (4.7)

In the following, a residual–based error estimator in the energy norm, which separates

the effects of stochastic Galerkin discretization in parametric spaces and of the SIPG

discretization in physical space, will be derived.

4.3 Residual–Based Error Estimator

Throughout this section, the symbol ≲ is used to denote bounds that are valid up to

positive constants independent of the local mesh sizes and the penalty parameter σ,
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provided that σ ≥ 1. To derive a reliable residual–based error estimator, we follow

the energy norm defined in (3.12).

By following [47, 137], we introduce an L2–projection operator Πq : L
2(Γ)→ Sq

k by

(Πq(ξ)− ξ, ζ)L2(Γ) = 0 ∀ζ ∈ Sq
k , ∀ξ ∈ L2(Γ), (4.8a)

and an local L2–projection operator Πqn : L2(Γ)→ Sqn
k for n = 1, 2, . . . , N by

(Πqn(ξ)− ξ, ζ)L2(Γ) = 0 ∀ζ ∈ Sqn
k , ∀ξ ∈ L2(Γ). (4.8b)

Setting ζ = Πq(ξ) and ζ = Πqn(ξ) in (3.23) and (4.8b), respectively, and applying

Cauchy–Schwarz inequality (2.11), one can easily show that

∥Πq(ξ)∥L2(Γ) ≤ C∥ξ∥L2(Γ) and ∥Πqn(ξ)∥L2(Γ) ≤ C∥ξ∥L2(Γ), (4.9)

whereC is a generic positive constant depending on the parameter space Γ. Moreover,

since Sqn
k ⊂ S

q
k , we have

(Πq(ξ)− ξ,Πqn(ξ))L2(Γ) = 0 ∀ξ ∈ L2(Γ). (4.10)

Let fh, yDB
h , ah,N ∈ Vh⊗Sq

k , and bh,N ∈ (Vh⊗Sq
k)

2 denote the piecewise polynomial

approximations to the right–hand side function f , the Dirichlet boundary condition

yDB, and the random coefficient functions a(x, ω) and b(x, ω), respectively. By ex-

tending the work of Schötzau and Zhu [136] for a single convection diffusion equation

to the parametric setting, the total error estimator becomes

ηT =

( ∑
K∈Th

η2h,K︸ ︷︷ ︸
η2h

+
∑
K∈Th

η2θ,K︸ ︷︷ ︸
η2θ

+
∑
K∈Th

η2q,K︸ ︷︷ ︸
η2q

)1/2

, (4.11)

where the spatial error estimator for each element K ∈ Th is

η2h,K =

∫
Γ

(
h2K∥a∥−1L2(K)∥fh +∇ · (ah,N∇yh)− bh,N · ∇yh∥2L2(K)

)
ρ(ξ)dξ

+

∫
Γ

 ∑
E∈∂K\∂D

hE∥a∥−1L2(E)∥[[ah,N∇yh]]∥
2
L2(E)

 ρ(ξ)dξ

+

∫
Γ

∑
E∈∂K\∂D

(
σ

hE
∥ah,N∥L2(E) + ∥bh,N∥L2(E) +

hE∥bh,N∥2L2(E)

∥a∥L2(E)

)

× ∥[[yh]]∥2L2(E) ρ(ξ)dξ
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+

∫
Γ

∑
E∈∂K∩∂D

(
σ

hE
∥a∥L2(E) + ∥b∥L2(E)

)
∥yh − yDB

h ∥2L2(E) ρ(ξ)dξ,

data approximation terms caused by the discontinuity of the functions or parameters

is

η2θ,K =

∫
Γ

(
h2K∥a∥−1L2(K)

(
∥f − fh∥2L2(K) + ∥∇ · ((a− ah,N)∇yh)∥2L2(K)

+∥(b− bh,N) · ∇yh∥2L2(K)

))
ρ(ξ)dξ,

+

∫
Γ

( ∑
E∈∂K\∂D

hE∥a∥−1L2(E)∥[[(a− ah,N)∇yh]]∥
2
L2(E)

)
ρ(ξ)dξ

+

∫
Γ

∑
E∈∂K\∂D

( σ
hE
∥a− ah,N∥L2(E) + ∥b− bh,N∥L2(E)

+
hE∥b− bh,N∥2L2(E)

∥a∥L2(E)

)
∥[[yh]]∥2L2(E) ρ(ξ)dξ

+

∫
Γ

∑
E∈∂K∩∂D

( σ
hE
∥a∥L2(E) + ∥b∥L2(E)

)
∥yDB

h − yDB∥2L2(E) ρ(ξ)dξ,

and the parametric error estimator is equivalent to

η2q,K =

∫
Γ

∥a∥−1L2(K)

1

N

N∑
n=1

∥Πqn(a∇yh)− a∇yh∥2L2(K) ρ(ξ) dξ

+

∫
Γ

∥a∥−1L2(K)

1

N

N∑
n=1

∥Πqn(b · ∇yh)− b · ∇yh∥2L2(K) ρ(ξ) dξ

+

∫
Γ

∑
E∈∂K\∂D

∥a∥−1L2(E)

1

N

N∑
n=1

∥Πqn (b · [[yh]])− b · [[yh]]∥2L2(E) ρ(ξ) dξ.

Before the derivation of reliability of the proposed error estimates (4.11), an operator

Th : Vh⊗Sq
k → H1⊗Sq

k is constructed, following the discussion in [96, Theorem 2.1]

for the deterministic models, satisfying Thv|∂D = ṽ ∀v ∈ Vh ⊗ Sq
k and∫

Γ

∑
K∈Th

∥v − Thv∥2L2(K) ρ(ξ)dξ ≲
∫
Γ

∑
E∈E0h

hE ∥[[v]]∥2L2(E) ρ(ξ)dξ

+

∫
Γ

∑
E∈E∂h

hE ∥v − ṽ∥2L2(E) ρ(ξ)dξ, (4.12a)
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∫
Γ

∑
K∈Th

∥∇(v − Thv)∥2L2(K) ρ(ξ)dξ ≲
∫
Γ

∑
E∈E0h

h−1E ∥[[v]]∥
2
L2(E) ρ(ξ)dξ

+

∫
Γ

∑
E∈E∂h

h−1E ∥v − ṽ∥
2
L2(E) ρ(ξ)dξ. (4.12b)

Moreover, a Clément type interpolation Ih : H1
0 (D)→ V c

h , where V c
h = Vh∩H1

0 (D),
is a conforming subspace of Vh satisfies for 0 ≤ k ≤ l ≤ 2 [39, 145]

∥∇k(v − Ihv)∥L2(K) ≲ hl−kK ∥∇
lv∥L2(∆K), (4.13a)

∥v − Ihv∥L2(E) ≲ h
1/2
E ∥∇v∥L2(∆E), (4.13b)

where ∆K and ∆E are the union of elements that share at least one vertex with the

element K and the edge E, respectively. By the inequalities (4.9) and (4.13), for

∀v ∈ L2(H1(D); Γ), it further holds that

∥Πq(v − Ihv)∥2L2(L2(K);Γ) ≲ ∥v − Ihv∥2L2(L2(K);Γ) ≲ h2K∥∇v∥2L2(L2(∆K);Γ) (4.14)

and

∥Πq(v − Ihv)∥2L2(L2(E);Γ) ≲ ∥v − Ihv∥2L2(L2(E);Γ) ≲ hE∥∇v∥2L2(L2(∆E);Γ). (4.15)

Now, we derive an upper bound for the error between the continuous solution y of

(4.2) and the discrete solution yh obtained from the stochastic discontinuous Galerkin

(4.5), which shows the reliability of the proposed estimator in (4.11).

Theorem 4.3.1. Let y be the solution of (4.2) and yh ∈ Vh ⊗Sq
k be its SDG approxi-

mation (4.5). Then, there exists the following upper bound

∥y − yh∥ξ ≲ ηT .

Proof. Split the discretized solution yh into a conforming part plus a remainder in the

spatial domain as done in [95], i.e., yh = ych+y
r
h, where ych = Thyh ∈ V c

h ⊗S
q
k . Then,

by the triangle inequality, we have

∥y − yh∥ξ ≤ ∥yrh∥ξ + ∥y − ych∥ξ. (4.16)

First, an upper bound for the remainder term in (4.16) is derived in terms of the error

estimator (4.11). By the fact that [[yrh]] = [[yh]] and the definition of the energy norm
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(3.12), we have

∥yrh∥2ξ =
∫
Γ

∑
K∈Th

∫
K

a(., ξ)(∇yrh)2 dx ρ(ξ)dξ +
∫
Γ

∑
E∈Eh

σa(., ξ)

hE

∫
E

[[yh]]
2 ds ρ(ξ)dξ

+

∫
Γ

1

2

∑
E∈E0h

∫
E

b(., ξ) · nE((y
r
h)

e − yrh)2 ds ρ(ξ)dξ

+

∫
Γ

1

2

∑
E∈E∂h

∫
E

b(., ξ) · nE(y
r
h)

2ds ρ(ξ)dξ. (4.17)

An application of Cauchy-Schwarz inequality (2.11), the inequalities in (4.12) with

yrh = yh − Thyh, adding/subtracting the data approximation terms, and Young’s in-

equality (2.12) into the first term in (4.17) yields∫
Γ

∑
K∈Th

∫
K

a(., ξ)(∇yrh)2 dx ρ(ξ)dξ

≲
∫
Γ

1

σ

∑
E∈E0h

σ

hE

(
∥ah,N∥L2(E) + ∥a− ah,N∥L2(E)

)
∥[[yh]]∥2L2(E) ρ(ξ)dξ

+

∫
Γ

1

σ

∑
E∈E∂h

σ

hE
∥a∥L2(E)

(
∥yh − yDB

h ∥2L2(E) + ∥yDB
h − yDB∥2L2(E)

)
ρ(ξ)dξ

≲
1

σ

( ∑
K∈Th

η2h,K +
∑
K∈Th

η2θ,K

)
. (4.18)

A similar upper bound is also obtained for the second term in (4.17). For the re-

maining terms in (4.17), Cauchy-Schwarz (2.11) and Young’s (2.12) inequalities give

us ∫
Γ

1

2

∑
E∈Eh

∫
E

b(., ξ) · nE((y
r
h)

e − yrh)2 ds ρ(ξ)dξ

≲
∫
Γ

∑
E∈E0h

(
∥bh,N(., ξ)∥L2(E) + ∥b(., ξ)− bh,N(., ξ))∥L2(E)

)
∥[[yh]]∥2L2(E) ρ(ξ)dξ

+

∫
Γ

∑
E∈E∂h

∥b(., ξ)∥L2(E)

(
∥yh − yDB

h ∥2L2(E) + ∥yDB
h − yDB∥2L2(E)

)
ds ρ(ξ)dξ

≲
∑
K∈Th

η2h,K +
∑
K∈Th

η2θ,K . (4.19)

So combining (4.18) and (4.19), it is obtained that

∥yrh∥2ξ ≲
∑
K∈Th

η2h,K +
∑
K∈Th

η2θ,K . (4.20)
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Next, a bound for the second term in (4.16) will be derived. By the fact that y|∂D =

ych|∂D = yDB due to the construction of Th, we have y − ych ∈ H1
0 (D) ⊗ S

q
k . Then,

the following inf–sup condition holds for all v ∈ L2(H1
0 (D); Γ) [136, Lemma 4.4]

∥y − ych∥ξ ≲ sup
v∈L2(H1

0 (D);Γ)

ãξ(y − ych, v)
∥v∥ξ

. (4.21)

By the bilinear systems (4.5) and (4.6), Clément type interpolation estimates (4.13),

and the continuity of the bilinear form (3.13b), one can have

ãξ(y − ych, v) = ãξ(u, v)− ãξ(ych, v) =
∫
Γ

∫
D

fv dx ρ(ξ)dξ − ãξ(ych, v)

=

∫
Γ

∫
D

fv dx ρ(ξ)dξ − ãξ(yh, v) + ãξ(y
r
h, v)

=

∫
Γ

∫
D

fIhv dx ρ(ξ)dξ +

∫
Γ

∫
D

f(v − Ihv) dx ρ(ξ)dξ − ãξ(yh, v) + ãξ(y
r
h, v)

=

∫
Γ

∫
D

f(v − Ihv) dx ρ(ξ)dξ − ãξ(yh, v − Ihv) + jξ(yh, Ihv) + ãξ(y
r
h, v)

≤ ∥yrh∥ξ∥v∥ξ + jξ(yh, Ihv) +

∫
Γ

∫
D

f(v − Ihv) dx ρ(ξ)dξ − ãξ(yh, v − Ihv)︸ ︷︷ ︸
T

.

(4.22)

The term jξ(yh, Ihv) in (4.22) is equivalent to

jξ(yh, Ihv) = −
∫
Γ

∑
E∈Eh

∫
E

{{a(., ξ)∇Ihv}}[[yh]] ds ρ(ξ) dξ,

since Ihv ∈ V c
h . Then, with the help of Cauchy–Schwarz (2.11) and inverse estimate

(2.9)

∥v∥L2(E) ≲ h
−1/2
K ∥v∥L2(K) ∀v ∈ Vh

with hE ≲ hK , and adding/subtracting the data approximation terms, it yields

jξ(yh, Ihv)

≲
∑
E∈Eh

∥a∇Ihv∥L2(L2(E);Γ)∥[[yh]]∥L2(L2(E);Γ)

≲
∑
E∈Eh

h
1/2
E ∥a

1/2∇Ihv∥L2(L2(E);Γ)

∑
E∈Eh

∥a1/2∥L2(L2(E);Γ)h
−1/2
E ∥[[yh]]∥L2(L2(E);Γ)
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≲
∑
K∈Th

∥a1/2∇Ihv∥L2(L2(K);Γ)

∑
E∈Eh

∥a1/2∥L2(L2(E);Γ)h
−1/2
E ∥[[yh]]∥L2(L2(E);Γ)

≲ σ−1

(∑
K∈Th

η2h,K +
∑
K∈Th

η2θ,K

)1/2

∥v∥ξ. (4.23)

To find a bound for the term denoted by T in (4.22), the L2–projection operator Πq

(4.8) is first added/subtracted with v ∈ L2(H1
0 (D); Γ)

T =
4∑

i=1

Ai, (4.24)

where

A1 =

∫
Γ

∑
K∈Th

∫
K

(
f(v − Ihv)− Πq(a∇yh) · ∇(v − Ihv)

)
dx ρ(ξ)dξ

−
∫
Γ

∑
K∈Th

∫
K

Πq(b · ∇yh)(v − Ihv)dx ρ(ξ)dξ

−
∫
Γ

∑
K∈Th

∫
∂K−\∂D

Πq((b · nE)(y
e
h − yh))(v − Ihv) ds ρ(ξ)dξ,

A2 =

∫
Γ

∑
K∈Th

∫
K

(
Πq(a∇yh)− a∇yh

)
· ∇(v − Ihv) dx ρ(ξ)dξ,

A3 =

∫
Γ

∑
K∈Th

∫
K

(
Πq(b · ∇yh)− b · ∇yh

)
(v − Ihv) dx ρ(ξ)dξ,

A4 =

∫
Γ

∑
K∈Th

∫
∂K−\∂D

(
Πq((b · nE)(y

e
h − yh))− (b · nE)(y

e
h − yh)

)
(v − Ihv)dx ρ(ξ)dξ.

With the help of the definition of L2–projection operator Πq (4.8a), the fact that

Πqf = f , and the integration by parts over D, it is obtained that

A1 =

∫
Γ

∑
K∈Th

∫
K

(
f +∇ · (a∇yh)− b · ∇yh

)
Πq(v − Ihv) dx ρ(ξ)dξ︸ ︷︷ ︸

A1,1

−
∫
Γ

∑
E∈E0h

∫
E

a∇yh · nEΠq(v − Ihv) ds ρ(ξ)dξ︸ ︷︷ ︸
A1,2

−
∫
Γ

∑
K∈Th

∫
∂K−\∂D

((b · nE)(y
e
h − yh))Πq(v − Ihv) ds ρ(ξ)dξ

︸ ︷︷ ︸
A1,3

. (4.25)
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By adding/subtracting the data approximation terms and using Cauchy–Schwarz in-

equality (2.11) with (4.14) and (3.12), a bound for the first term in (4.25) is derived

A1,1 =

∫
Γ

∑
K∈Th

∫
K

(
fh +∇ · (ah,N∇yh)− bh,N · ∇yh

)
Πq(v − Ihv) dx ρ(ξ)dξ

+

∫
Γ

∑
K∈Th

∫
K

(
(f − fh) +∇ · ((a− ah,N)∇yh)− (b− bh,N) · ∇yh

)
× Πq(v − Ihv) dx ρ(ξ)dξ

≲

(∑
K∈Th

η2h,K + η2θ,K

)1/2

∥v∥ξ. (4.26a)

Analogously, an application of the Cauchy–Schwarz inequality (2.11), the inequality

(4.15), and the definition of the energy norm (3.12) yields

A1,2 ≲
∑
E∈E0
∥[[a∇yh]]∥L2(L2(E);Γ) ∥Πq(v − Ihv)∥L2(L2(E);Γ)

≲
∑
E∈E0
∥[[((a− ah,N) + ah,N)∇yh]]∥L2(L2(E);Γ) h

1/2
E ∥∇v∥L2(L2(∆E);Γ)

≲

(∑
K∈Th

η2h,K + η2θ,K

)1/2

∥v∥ξ, (4.26b)

A1,3 ≲
∑
E∈E0
∥b · [[yh]]∥L2(L2(E);Γ) ∥Πq(v − Ihv)∥L2(L2(E);Γ)

≲
∑
E∈E0
∥
(
b− bh,N) + bh,N

)
· [[yh]]∥L2(L2(E);Γ) h

1/2
E ∥∇v∥L2(L2(∆E);Γ)

≲

(∑
K∈Th

η2h,K + η2θ,K

)1/2

∥v∥ξ. (4.26c)

Next, it will be shown that the rest of terms in (4.24) is bounded in terms of the

parametric estimator given in (4.11). By Sqn
k ⊂ S

q
k ⊂ L2(Γ) and (4.8), one can obtain

for each n = 1, . . . N

∥Πq(a∇yh)− a∇yh∥L2(L2(D);Γ)

≤ ∥Πq(a∇yh)− Πqn(a∇yh)∥L2(L2(D);Γ)︸ ︷︷ ︸
=0

+∥Πqn(a∇yh)− a∇yh∥L2(L2(D);Γ).
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Then,

N∥Πq(a∇yh)− a∇yh∥L2(L2(D);Γ) ≤
N∑

n=1

∥Πqn(a∇yh)− a∇yh∥L2(L2(D);Γ). (4.27)

Hence, the Cauchy–Schwarz inequality (2.11), the inequalities (4.13) and (4.27) with

hE ≤ hK < 1 give us

A2 =

∫
Γ

∑
K∈Th

∫
K

(
Πq(a∇yh)− a∇yh

)
· ∇(v − Ihv) dx ρ(ξ)dξ

≤ 1

N

N∑
n=1

∥Πqn(a∇yh)− a∇yh∥L2(L2(D);Γ)∥∇v∥L2(L2(D);Γ)

≤ 1

N

N∑
n=1

∥Πqn(a∇yh)− a∇yh∥L2(L2(D);Γ) ∥a−1/2∥L2(L2(D);Γ)∥v∥ξ

≤

(∑
K∈Th

η2q,K

)1/2

∥v∥ξ, (4.28a)

A3 =

∫
Γ

∑
K∈Th

∫
K

(
Πq(b · ∇yh)− b · ∇yh

)
(v − Ihv) dx ρ(ξ)dξ

≤
∑
K∈Th

∥
(
Πq(b · ∇yh)− b · ∇yh

)
∥L2(L2(K);Γ)hK∥∇v∥L2(L2(K);Γ)

≤ 1

N

N∑
n=1

∥
(
Πqn(b · ∇yh)− b · ∇yh

)
∥L2(L2(D);Γ) ∥a−1/2∥L2(L2(D);Γ)∥v∥ξ

≤

(∑
K∈Th

η2q,K

)1/2

∥v∥ξ, (4.28b)

A4 =

∫
Γ

∑
K∈Th

∫
∂K−\∂D

(
Πq((b · nE)(y

e
h − yh))− (b · nE)(y

e
h − yh)

)
(v − Ihv)dx ρ(ξ)dξ

≲
∑
E∈E0
∥Πq(b · [[yh]])− b · [[yh]]∥L2(L2(E);Γ)∥v − Ihv∥L2(L2(E);Γ)

≲
∑
E∈E0
∥Πq(b · [[yh]])− b · [[yh]]∥L2(L2(E);Γ)h

1/2
E ∥∇v∥L2(L2(∆E);Γ)

≲

(∑
K∈Th

η2q,K

)1/2

∥v∥ξ. (4.28c)

Inserting the bounds obtained in (4.20), (4.23), (4.26), and (4.28) into (4.21), we get

∥y − ych∥ξ ≲

(∑
K∈Th

η2h,K + η2θ,K + η2q,h

)1/2

. (4.29)

Last, combining the results in (4.20) and (4.29), we obtain the desired result.
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4.4 Numerical Experiments

This section now uses the error estimator developed in Section 4.3 to propose an adap-

tive stochastic discontinuous Galerkin method for the numerical solutions of (4.2). In

the next section, the adaptive algorithm is described in details.

4.4.1 Adaptive Loop

A generic adaptive refinement/enrichment procedure for the numerical solution of the

model problem (4.2) consists of successive loops of the sequence given in (4.1). Start-

ing with a given triangulation T 0
h and an initial index set B0, the adaptive procedure

generates a sequence of triangulations T k
h ⊆ T k+1

h and of index sets Bk ⊆ Bk+1.

The SOLVE step (subroutine solve) corresponds to the numerical approximations of

the statistical moments obtained by the stochastic discontinuous Galerkin numerical

scheme in the current mesh and index set. After an application of the discretization

techniques, one needs to solve the following linear system:(
N∑
i=0

Gi ⊗Ki

)
︸ ︷︷ ︸

A

y =

(
N∑
i=0

gi ⊗ fi

)
︸ ︷︷ ︸

F

, (4.30)

where y =
(
y0, . . . , y(#(Bk)−1)

)T with yi ∈ RNd , i = 0, 1, . . . , (#(Bk) − 1)

and Nd corresponds to the degree of freedoms for the spatial discretization. Here,

Ki ∈ RNd×Nd and Gi ∈ R(#(Bk))×(#(Bk)) represent the stiffness and stochastic matri-

ces, respectively, whereas fi ∈ RNd and gi ∈ R(#(Bk)) are the right–hand side and

stochastic vectors, respectively; see Section 3.1.2 for the constructions of the matrices

and vectors in details. In order to solve the matrix system (4.30), we use a generalized

minimal residual (GMRES) solver, given in Algorithm 5, in a combination with the

well known mean-based preconditioner [128], that is,

P0 = G0 ⊗K0,

where G0 and K0 are the mean stochastic and stiffness matrices, respectively. It is

noted that P0 is one of the most commonly used preconditioners for solving PDEs

with random data since it is a block diagonal matrix obtained by the orthogonality
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of the stochastic basis functions. In the ESTIMATE step (subroutine estimate), we

compute the error estimator (4.11) contributed from the physical domain, the data

approximation terms, and the parametric domain in order to control the behaviour of

the error. In the a posteriori error estimates (4.11), some terms still contain continuous

data terms. To overcome this problem, continuous terms a, b are replaced by the

discrete ones ah,N , bh,N . By (2.17), there is also a bound for the data oscillation term

caused by a random variable z(x, ω) as follows

∥z − zh,N∥L2(Γ;L2(D)) ≤ ∥z − zN∥L2(Γ;L2(D)) + ∥zN − zh,N∥L2(Γ;L2(D))

≲
N∞∑

i=N+1

λi︸ ︷︷ ︸
Λz

+∥zN − zh,N∥L2(Γ;L2(D)),

whereN∞ is chosen as the KL expansion can cover the 97% of sum of the eigenvalues

λi. In order to equidistribute the error, the data estimator ηθ,K is decomposed as

follows

η2θ,K = η2θ,h,K + η2θ,q,K , (4.31)

where

η2θ,h,K =

∫
Γ

(
h2K∥ah,N∥−1L2(K)

(
∥f − fh∥2L2(K) + ∥∇ · ((aN − ah,N)∇yh)∥2L2(K)

+∥(bN − bh,N) · ∇yh∥2L2(K)

))
ρ(ξ)dξ,

+

∫
Γ

( ∑
E∈∂K\∂D

hE∥ah,N∥−1L2(E)∥[[(aN − ah,N)∇yh]]∥
2
L2(E)

)
ρ(ξ)dξ

+

∫
Γ

∑
E∈∂K\∂D

( σ
hE
∥aN − ah,N∥L2(E) + ∥bN − bh,N∥L2(E)

+
hE∥bN − bh,N∥2L2(E)

∥ah,N∥L2(E)

)
∥[[yh]]∥2L2(E) ρ(ξ)dξ

+

∫
Γ

∑
E∈∂K∩∂D

(
σ

hE
∥ah,N∥L2(E) + ∥bh,N∥L2(E)

)
∥yDB

h − yDB∥2L2(E) ρ(ξ)dξ

and

η2θ,q,K =

∫
Γ

(
h2K∥ah,N∥−1L2(K)

(
∥∇ · (Λa∇yh)∥2L2(K) + ∥Λb · ∇yh∥2L2(K)

))
ρ(ξ)dξ,

+

∫
Γ

( ∑
E∈∂K\∂D

hE∥ah,N∥−1L2(E)∥[[Λa∇yh]]∥2L2(E)

)
ρ(ξ)dξ
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+

∫
Γ

∑
E∈∂K\∂D

(σΛa

hE
+ Λb +

hEΛ
2
b

∥ah,N∥L2(E)

)
∥[[yh]]∥2L2(E) ρ(ξ)dξ.

Algorithm 5 Preconditioned GMRES (PGMRES) [133]
Input: Matrices A,P ∈ RNd×(#(Bk)), right–hand side vector F ∈ RNd(#(Bk)).

Output: Vector y ∈ RNd(#(Bk)) satisfying ∥Ay −F∥2 ≤ ϵtol.

1: Solve r0 from P r0 = F −Ay0 for some initial guess y0.

2: v1 = r0/∥r0∥2
3: ξ = [ξ1, 0, . . . , 0], ξ1 = ∥v1∥2
4: for k = 1, . . . ,maxit do

5: Solve w from P w = A vk

6: for i = 1, . . . , k do

7: hi,k = ⟨w, vi⟩

8: w = w − hi,kvi

9: end for

10: hk+1,k = ∥w∥2
11: vk+1 = w/hk+1,k

12: Apply Givens rotations to kth column of h, i.e.,

13: for i = 1, . . . , k − 1 do

14:

 hi,k

hi+1,k

 =

 ci si

−si ci

 hi,k

hi+1,k


15: end for

16: Compute kth rotation, and apply to ξ and last column of h. ξk

ξk+1

 =

 ci si

−si ci

ξk
0


17: hk,k = ckhk,k + skhk+1,k, hk+1,k = 0

18: if |ξk+1| sufficiently small then

19: Solve Hq = ξ, where the entries of H are hj,k.

20: Q = [q1v1, . . . , qkvk]

21: Solve P Q̃ = Q

22: y = y0 + Q̃

23: return

24: end if

25: end for

In the computation of spatial terms of the estimator, we just make the Kronecker

product of the spatial contributions with the stochastic matrix G0, whereas stochastic

91



mass matrix is used in the computation of parametric term by following the classical

projection computation. In the step MARK (subroutine mark), a bulk criterion is

used to specify the elements in T k
h by using the a posteriori error estimators ηh,K and

ηθ,h for a fixed marking parameter 0 < θh ≤ 1:

θh
∑
K∈T k

h

(
η2h,K + η2θ,h,K

)
≤

∑
K∈Mk

h⊂T
k
h

(
η2h,K + η2θ,h,K

)
. (4.32)

On the other hand, to build a minimal subset of marked indices, we first define a new

index set

Rk := {q ∈ U\Bk : q = qB ± ϵ(n) ∀qB ∈ Bk, ∀n = 1, . . . NB}, (4.33)

where the counter parameter is

NB =

 0, if B = {0},
max{max(supp(qB)) : qB ∈ B\{0}}, otherwise,

and ϵ(n) =
(
ϵ
(n)
1 , ϵ

(n)
2 , . . .

)
is the Kronecker delta sequence satisfying ϵ(n)j = δnj for

all j ∈ N. Then, by using parametric error estimators for a fixed marking parameter

0 < θq ≤ 1, we apply a bulk criterion in parametric setting as follows

θq
∑
q∈Rk

η2q ≤
∑

q∈Mk⊆Rk

η2q . (4.34)

In spite of performing the marking for both triangulation and indices, we only enrich

one direction by comparing the spatial and parametric error estimators. Finally, the

REFINE step (subroutine refine) either performs a refinement of the current triangu-

lation or an enrichment of the current index set. In the refinement of a triangulation,

the marked elements are refined by longest edge bisection, whereas the elements of

the marked edges are refined by bisection [44]. On the other hand, the enrichment

of the polynomial space is made by adding all marked indices to the current index,

i.e., Bk+1 = Bk ∪Mk. Overall, the adaption process is summarized in Algorithm 6,

which repeats until the prescribed tolerance TOL is met by the total estimator or

maximum number of total degree of freedoms maxdof is reached.
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Algorithm 6 Adaptive stochastic discontinuous Galerkin algorithm
Input: initial mesh T 0

h , initial index set B0, marking parameters θh and θq , data f, yDB , a,b, tolerance threshold TOL, and

maximum degree of freedoms maxdof .

1: for k = 0, 1, 2, . . . do

2: ykh = solve(T k
h ,Bk, f, yDB , a,b)

3: (η2h, η
2
θ,h, η

2
θ,q , η

2
q ) = estimate(ykh, T

k
h ,Bk, f, yDB , a,b)

4: if (η2T ≤ TOL) or (#(Bk)×Nd ≤ maxdof ) then

5: break;

6: end if

7: Mk
h = mark(T k

h , η2h, η
2
θ,h, θh) and Mk = mark(Uk, η2q , θq)

8: if (η2h + η2θ,h) ≥ (η2q + η2θ,q) then

9: T k+1
h = refine(T k

h ,Mk
h)

10: else

11: Bk+1 = refine(Bk,Mk)

12: end if

13: end for

4.4.2 Numerical Results

This section now presents several numerical results in order to examine the quality of

derived estimators in Section 4.3 and the performance of the adaptive loop proposed

in Section 4.4.1. In the numerical experiments, the random input z is characterized

by the covariance function in (3.59) with the correlation length ℓn and the eigenpair

(λj, ϕj). Since the underlying random variables have been chosen based on the uni-

form distribution over [−1, 1], that is, ξj ∼ U [−1, 1] for i = 1, . . . , N , Legendre

polynomials are used as the stochastic basis functions; see Table 2.1. On the other

hand, linear elements are employed to generate a discontinuous Galerkin basis. In

the numerical implementations, the initial mesh and index set are chosen as T 0
h with

Nd = 384 and B0 = {(0, 0, 0, . . .), (1, 0, 0, . . .)}, respectively. Then, uniform meshes

are constructed by dividing each triangle into four triangles, whereas uniform para-

metric spaces are generated by increasing the truncation number N and polynomial

degree ψ by one unit. Unless otherwise stated, in all simulations, we take the corre-

lation length ℓ = 1 and standard deviation κ = 0.05. The Algorithm 6 is terminated

when the total error estimator ηT is reduced to TOL = 1e − 6 or the degree of free-

doms is reached to maximum (maxdof = 107). Further, all parameters used in the

simulations are described in Table 4.1.
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Table 4.1: Descriptions of the parameters used in the simulations.
Parameter Description

Nd degree of freedoms for the spatial discretization
N truncation number in KL expansion
Q highest order of basis polynomials for the stochastic domain
ν viscosity parameter
ℓ correlation length
κz standard deviation
θh marking parameter for spatial discretization
θq marking parameter for parametric discretization

# B size of index

4.4.2.1 Example with Random Diffusivity

As a first benchmark problem, a two-dimensional convection diffusion equation with

random diffusion parameter examined in Section 3.5.1 is considered on D = [−1, 1]2

by choosing the deterministic source function f(x) = 0, the deterministic convection

parameter b(x) = (0, 1)T , and the nonhomogeneous Dirichlet boundary condition

Figure 4.1: Example 4.4.2.1: Process of adaptively refined triangulations obtained by
Algorithm 6 with the marking parameters θh = 0.5, θq = 0.5, the initial mesh T 0

h ,
and the initial index set B0 for the viscosity parameter ν = 100 (top) and ν = 10−2

(bottom).
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yDB(x) =

y
DB(x1,−1) = x1, yDB(x1, 1) = 0,

yDB(−1, x2) = −1, yDB(1, x2) = 1.
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Figure 4.2: Example 4.4.2.1: Behaviour of error estimators on the adaptively and uni-
formly generated spatial/parametric spaces for various values of viscosity parameter
ν.
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Figure 4.3: Example 4.4.2.1: Behaviour of error estimators on the adaptively gener-
ated spatial/parametric spaces with marking parameter θh = 0.5, θq = 0.5 for various
values of viscosity parameter ν.

On the other hand, diffusion parameter a(x, ω) is defined in the form of a(x, ω) =

νz(x, ω), where z(x, ω) is a random variable having unity mean z(x) = 1 and ν

is the viscosity parameter. As ν decreases, the solution of the underlying problem

exhibits an exponential boundary layer near, where the value of the solution changes

dramatically; see Figure 3.1. Locally refined triangulations generated by following

the Algorithm 6 with the marking parameters θh = 0.5, θq = 0.5, the initial coarse

mesh T 0
h , and the initial index set B0 are given in Figure 4.1. It is observed that our

estimator ηT (4.11) detects the regions well where the mean of the solution is not

sufficiently.
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Figure 4.2 displays the behavior of estimator ηT and its spatial and parametric con-

tributions ηh + ηθ,h and ηq + ηθ,q, respectively, on the adaptively (with the marking

parameters θh = 0.5, θq = 0.5) and uniformly generated spatial/parametric spaces

for various values of viscosity parameter ν. Results on Figure 4.2 show that the esti-

mators on the adaptively generated spaces are superior to the ones on the uniformly

generated spaces. From Figure 4.3, we also observe that the total error estimates de-

cay with an overall rate of about O(DOF−1/3) even for the smaller values of ν; see

[27] for the convergence analysis of adaptive stochastic Galerkin applied to elliptic

problems.
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Figure 4.4: Example 4.4.2.1: Effect of the marking parameters θq (left) and θh (right)
on the behaviour of estimator ηT for ν = 10−2.

Next, the effect of marking parameters θq and θh is investigated in Tables 4.2 and 4.3,

respectively, for the viscosity parameter ν = 10−2. As expected, bigger values for the

parameter θq result in more enrichment in one loop, whereas smaller θq yields more

optimal index but more enrichment loops. When θq is fixed, although the iteration

number decreases as θh increases, the process does not perform optimally; see also

Figure 4.4. However, the adaptive algorithm converges with an overall rate of about

O(DOF−1/3) regardless of the marking parameters.

Last, we investigate the effect of the correlation length ℓ and the standard deviation

κ on the estimator ηT with the adaptively generated spatial/parametric spaces in Fig-

ure 4.5. As expected, the performance of the estimator becomes worse when we

decrease the value of the correlation length ℓ and increase the value of the standard
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Table 4.2: Example 4.4.2.1: Results of adaptive procedure with the viscosity param-
eter ν = 10−2 for varying marking parameter θq.

θh = 0.5 θq = 0.3 θq = 0.5 θq = 0.8

# iter 78 64 59

# Total DOFs 12,880,665 10,240,608 12,735,090

# B 721 784 1010

Nd 17865 13062 12609

ηT 4.7329e-02 6.1645e-02 6.4343e-02

ηh + ηθ,h 3.1194e-02 4.1618e-02 4.3911e-02

ηq + ηθ,q 3.5594e-02 4.5476e-02 4.7030e-02

B iter = 1 (0 0)
(1 0)

iter = 1 (0 0)
(1 0)

iter = 1 (0 0)
(1 0)

iter = 2 (0 1) iter = 2 (0 1)
(1 1)

iter = 2 (0 1)
(1 1)

iter = 3 (0 0 1) iter = 3 (0 0 1)
(0 1 1)

iter = 3 (0 0 1)
(0 1 1)
(0 2 0)

...
...

...

iter = 6 (0 0 0 0 0 1)
(0 0 0 0 1 1)

iter = 6 (0 0 0 0 0 1)
(0 0 0 0 1 1)
(0 0 0 0 2 0)
(0 0 0 1 0 1)

iter = 6 (0 0 0 0 0 1)
(0 0 0 0 1 1)
(0 0 0 0 2 0)
(0 0 0 1 0 1)
(0 0 0 1 1 1)

...
...

...

iter = 9 ( 0 0 0 0 0 0 0 0 1)
(0 0 0 0 0 0 0 1 1)
(0 0 0 0 0 0 0 2 0)

iter = 9 (0 0 0 0 0 0 0 0 1)
(0 0 0 0 0 0 0 1 1)
(0 0 0 0 0 0 0 2 0)
(0 0 0 0 0 0 1 0 1)
(0 0 0 0 0 0 1 1 1)

iter = 9 (0 0 0 0 0 0 0 0 1)
(0 0 0 0 0 0 0 1 1)
(0 0 0 0 0 0 0 2 0)
(0 0 0 0 0 0 1 0 1)
(0 0 0 0 0 0 1 1 1)
(0 0 0 0 0 0 1 2 0)
(0 0 0 0 0 0 2 0 1)
(0 0 0 0 0 0 2 1 0)

...
...

...
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Table 4.3: Example 4.4.2.1: Results of adaptive procedure with the viscosity param-
eter ν = 10−2 for varying marking parameter θh.

θq = 0.5 θh = 0.3 θh = 0.5 θh = 0.8

# iter 102 99 80
# Total DOFs 10,171,980 10,109,880 10,110,888

# B 2070 2070 1444
Nd 4914 4884 7002
ηT 5.7915e-02 5.7960e-02 5.2630e-02

ηh + ηθ,h 4.0556e-02 4.0376e-02 3.4721e-02
ηq + ηθ,q 4.1344e-02 4.1583e-02 3.9552e-02

deviation κ.
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Figure 4.5: Example 4.4.2.1: Effect of the correlation length ℓ (left) and the standard
deviation κ (right) on the behaviour of estimator ηT with adaptively generated spa-
tial/parametric spaces for the viscosity parameter ν = 10−2.

4.4.2.2 Example with Random Convection

Our second example is a two-dimensional convection diffusion equation with random

velocity in the domain D = [−1, 1]2. To be precise, we choose the deterministic

diffusion parameter a(x, ω) = ν > 0, the deterministic source function f(x) =

0.5, and the homogeneous Dirichlet boundary condition. The random velocity field

b(x, ω) is taken as

b(x, ω) := (z(x, ω), z(x, ω))T ,
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Figure 4.6: Example 4.4.2.2: Mean of SG solutions for various values of viscosity
parameter ν.

where the mean of the random field is z(x) = 1. Figure 4.6 displays the mean of the

computed discrete solution for various values of viscosity parameter ν. Adaptively

generated triangulations obtained by Algorithm 6 for the different values of viscosity

ν are displayed in Figure 4.7. As we expected, most refinements occur around the

boundaries x1 = 1 and x2 = 1 for the smaller values of ν, where the solution exhibits

boundary layers for the smaller values of ν.

Figure 4.8 shows that estimators exhibit a better convergence behavior for each value

of viscosity parameter ν on the adaptively (with the marking parameters θh = 0.5,

θq = 0.5) than the ones on uniformly generated spatial/parametric spaces. In addition,

the overall convergence rate of the total estimator ηT is about O(DOF−1/3) for the

smaller values of the viscosity ν, see Figure 4.9, as the previous Example 4.4.2.1. The

performance of the estimator ηT on adaptively generated spatial/parametric spaces for

different values of the correlation length ℓ and the standard deviation κ is given in

Figure 4.10.

Table 4.4 shows results of adaptive algorithm with the viscosity parameter ν = 10−2

for varying marking parameter θq. When the value of the marking parameter θq is

increased, we observe that the number of iterations decreases, while the size of the

index set B increases. However, as in the previous example, we could not obtain an

optimal process for the making parameter θh; see, Table 4.5 and Figure 4.11.
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Figure 4.7: Example 4.4.2.2: Adaptively refined triangulations obtained by Algo-
rithm 6 with the marking parameters θh = 0.5, θq = 0.5 for the viscosity parameter
ν = 100 with iter = 8, Nd = 10593 (left), ν = 10−1 with iter = 30, Nd = 11385

(middle), and ν = 10−2 with iter = 65, Nd = 13062 (right).
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Figure 4.8: Example 4.4.2.2: Behaviour of error estimators on the adaptively and uni-
formly generated spatial/parametric spaces for various values of viscosity parameter
ν.
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Figure 4.9: Example 4.4.2.2: Behaviour of error estimators on the adaptively gener-
ated spatial/parametric spaces with marking parameter θh = 0.5, θq = 0.5 for various
values of viscosity parameter ν.
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Figure 4.10: Example 4.4.2.2: Effect of the correlation length ℓ (left) and the stan-
dard deviation κ (right) on the behaviour of estimator ηT with adaptively generated
spatial/parametric spaces for the viscosity parameter ν = 10−2.
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Figure 4.11: Example 4.4.2.2: Effect of the marking parameters θq (left) and θh (right)
on the behaviour of estimator ηT for ν = 10−2.

4.5 Discussion

In this chapter, an efficient adaptive approach, based on mesh refinement or paramet-

ric enrichment, has been proposed for convection diffusion equations containing ran-

dom coefficients. A parametric system of convection diffusion equations obtained by

an application of stochastic Galerkin approach is discretized by using a symmetric in-
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Table 4.4: Example 4.4.2.2: Results of adaptive algorithm with the viscosity param-
eter ν = 10−2 for varying marking parameter θq.

θh = 0.5 θq = 0.3 θq = 0.5 θq = 0.8

# iter 78 64 59

# Total DOFs 12,880,665 10,240,608 12,735,090

# B 721 784 1010

Nd 17865 13062 12609

ηT 4.7329e-02 6.1645e-02 6.4343e-02

ηh + ηθ,h 3.1194e-02 4.1618e-02 4.3911e-02

ηq + ηθ,q 3.5594e-02 4.5476e-02 4.7030e-02

B iter = 1 (0 0)
(1 0)

iter = 1 (0 0)
(1 0)

iter = 1 (0 0)
(1 0)

iter = 2 (0 1) iter = 2 (0 1)
(1 1)

iter = 2 (0 1)
(1 1)

iter = 3 (0 0 1) iter = 3 (0 0 1)
(0 1 1)

iter = 3 (0 0 1)
(0 1 1)
(0 2 0)

...
...

...

iter = 6 (0 0 0 0 0 1)
(0 0 0 0 1 1)

iter = 6 (0 0 0 0 0 1)
(0 0 0 0 1 1)
(0 0 0 0 2 0)
(0 0 0 1 0 1)

iter = 6 (0 0 0 0 0 1)
(0 0 0 0 1 1)
(0 0 0 0 2 0)
(0 0 0 1 0 1)
(0 0 0 1 1 1)

...
...

...

iter = 9 ( 0 0 0 0 0 0 0 0 1)
(0 0 0 0 0 0 0 1 1)
(0 0 0 0 0 0 0 2 0)

iter = 9 (0 0 0 0 0 0 0 0 1)
(0 0 0 0 0 0 0 1 1)
(0 0 0 0 0 0 0 2 0)
(0 0 0 0 0 0 1 0 1)
(0 0 0 0 0 0 1 1 1)

iter = 9 (0 0 0 0 0 0 0 0 1)
(0 0 0 0 0 0 0 1 1)
(0 0 0 0 0 0 0 2 0)
(0 0 0 0 0 0 1 0 1)
(0 0 0 0 0 0 1 1 1)
(0 0 0 0 0 0 1 2 0)
(0 0 0 0 0 0 2 0 1)
(0 0 0 0 0 0 2 1 0)

...
...

...
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Table 4.5: Example 4.4.2.2: Results of adaptive algorithm with the viscosity param-
eter ν = 10−2 for varying marking parameter θh.

θq = 0.5 θh = 0.3 θh = 0.5 θh = 0.8

# iter 75 64 55
# Total DOFs 10,265,400 10,240,608 11,253,450

# B 900 784 650
Nd 11406 13062 17313
ηT 6.6956e-02 6.1645e-02 5.2375e-02

ηh + ηθ,h 4.6923e-02 4.1618e-02 3.5066e-02
ηq + ηθ,q 4.7763e-02 4.5476e-02 3.8905e-02

terior penalty Galerkin (SIPG) method with upwinding for the convection term in the

spatial domain. We have showed the reliability of the proposed residual-based error

estimator in the energy norm contributed by the error due to the SIPG discretization,

data oscillations, and the error due to stochastic Galerkin discretization. The findings

in Chapter 3 shows that the numerical solutions of convection dominated problems

with uncertainty are affected by some challenges such as boundary/interior layers in

the solution, and adding enough number of random data in the system. In several

benchmark examples, it has been shown that the optimal remedy to these problems

is the combination of the adaptivity in physical space and the adaptivity in random

space based on the proposed estimator.
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CHAPTER 5

ROBUST DETERMINISTIC CONTROL OF CONVECTION

DIFFUSION EQUATIONS WITH RANDOM COEFFICIENTS

This chapter investigates a numerical behaviour of the following robust deterministic

optimal control problem

min
u∈Uad

J (y, u) := 1

2
∥y − yd∥2X +

γ

2
∥S(y)∥2W +

µ

2
∥u∥2U (5.1)

governed by

H
(
y(x, ω)

)
= f(x) + u(x) in D × Ω, (5.2a)

y(x, ω) = yDB(x) on ∂D × Ω, (5.2b)

whereH : Y → Y ′ is a linear operator that contains uncertain parameters, D ⊂ R2

is a convex bounded polygonal set with a Lipschitz boundary ∂D, and Ω is a sample

space of events. In the light of the findings in Chapter 3, the stochastic Galerkin ap-

proach (SG), turning the original optimization problem containing uncertainties into a

large system of deterministic problems, is applied to discretize the stochastic domain,

while a discontinuous Galerkin method, namely, symmetric interior penalty Galerkin

(SIPG), is preferred for the spatial discretization due to its better convergence be-

haviour for optimization problems governed by convection dominated PDEs; see,

e.g., [111].

In (5.1), the cost functional including a risk penalization via the standard deviation

S(y) is denoted by J (y, u), whose first term is a measure of the distance between the

state variable y and the desired state yd in terms of expectation of y − yd. Without

loss of generality, it is assumed that the state y ∈ Y is a random field, whereas the
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desired state yd ∈ Y is modeled deterministically. The second term measures the

standard deviation of y, which is added since it is desirable to have a control for

which the state is more accurately known, leading to a risk averse optimum. The

last term corresponds to distributive deterministic control. The constant µ > 0 is a

regularization parameter of the control u, whereas γ ≥ 0 is a risk–aversion parameter.

Deterministic source function and Dirichlet boundary conditions are denoted by f and

yDB, respectively. It is noted that the cost functional J is a deterministic quantity,

although it contains uncertain inputs. Further, the closed convex admissible set in the

control space U is defined by

Uad := {u ∈ U : ua ≤ u(x) ≤ ub, ∀x ∈ D}, (5.3)

where constants ua, ub ∈ R with ua ≤ ub.

This chapter is organized by first discussing the existence of the solution in the next

section. In Section 5.2, the problem is reduced into a finite dimensional setting via

Karhunen–Loève (KL) expansion, stochastic Galerkin method, and symmetric inte-

rior penalty Galerkin method. Error analyses are done in Section 5.3. In Section 5.4,

we construct the matrix formulation of the underlying optimization problem by pro-

ceeding with the optimize-then-discretize approach, and then discuss the implemen-

tation of the low–rank GMRES solver. Results of the numerical experiments are pro-

vided in Section 5.5 to illustrate the efficiency of the proposed methodology. Finally,

this chapter is ended with some conclusions and discussions in Section 5.6.

5.1 Existence and Uniqueness of the Solution

For a generic random field z on the probability space (Ω,F ,P) denoted by z(x, ω) :

D × Ω → R, the mean E[z], the standard deviation S(z), and the corresponding

variance V(z) are defined in (2.4). For simplicity and readability, the mathematical

analysis will be done throughout this chapter provided that the equation of state has

homogeneous boundary condition, i.e., yDB = 0. By following the standard argu-

ments in the deterministic setting, it can be extended to the nonhomogeneous Dirich-

let boundary conditions. Recalling the tensor–product space Hk(D)⊗L2(Ω) in (2.6),
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the state and control spaces are defined as follows, respectively,

Y := H1
0 (D)⊗ L2(Ω) and U := L2(D).

We also set X := L2(D)⊗ L2(Ω) andW = L2(D).

In order to show the existence of the solution, it is assumed that the operatorH satis-

fies the following conditions:

a) H is coercive such that P-a.s., (Hv, v) ≥ c∥v∥X , ∀v ∈ X , where c is a positive

constant.

b) (Hu, v) = (u,H∗v), ∀u, v ∈ X , whereH∗ is the adjoint ofH.

To discuss the existence and uniqueness of the optimization problem (5.1)–(5.2), we

first give the following optimality definition, and existence and uniqueness theorem

for the quadratic Hilbert space optimization problem.

Definition 5.1.1. Let a function ū ∈ U be an optimal control and ȳ = ȳ(ū) the

associated optimal state corresponding to the optimization problem (5.1)–(5.2). Then,

it holds, P-a.s.,

J (ȳ, ū) ≤ J (y(u), u), ∀u ∈ U .

Theorem 5.1.2. [142, Theorem 2.14], [22, Theorem 3.2] Assume that {K1, ∥·∥} and

{K2, ∥·∥} are Hilbert spaces, and K̃1 ⊂ K1 is a non-empty, closed, and convex set.

Let yd ∈ K1 and the constants γ, µ ≥ 0 be given and L : K1 → K2 be a continuous

linear operator. Then, the quadratic Hilbert space optimization problem

min
u∈K̃1

f(u) :=
1

2
∥Lu− yd∥2K2

+
γ

2
∥S(Lu)∥2K2

+
µ

2
∥u∥2K1

admits, P-a.s., an optimal solution ū ∈ K̃1. If µ > 0, then ū is uniquely determined.

Proof. Note first that the function f(u) ≥ 0 is continuous and convex. Therefore, the

proof follows analogously to that of [142, Theorem 2.14].

If setting K̃1 = Uad, K1 = U , and K2 = Y , denoting continuous linear operator

L : u → y(u), and substituting L into the cost functional J (y, u) in (5.1), then the
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following quadratic minimization problem is obtained in the Hilbert space U :

min J (u) := 1

2
E
∫
D

(
Lu− yd

)2
dx+

γ

2
E
∫
D

[Lu− (E[Lu])]2 dx+
µ

2
E
∫
D

u2 dx. (5.4)

With the definitions above, Y and U are Hilbert spaces, the functional J is strictly

convex, and the admissible set Uad is a closed and convex set. Then, by Theorem

5.1.2, the optimization problem (5.1)–(5.2) has a unique solution. Next, we also state

the relation between the optimal solution and the variational inequality.

Theorem 5.1.3. ([113, Theorem 1.3: Lion’s Lemma]) Let the cost functional J (v)
be strictly convex and differentiable. Then, a unique optimal control ū ∈ U exists if

and only if the variational inequality holds

J ′(ū) · (v − ū) ≥ 0, ∀v ∈ Uad, (5.5)

where

J ′(ū) · w := lim
h→0

J (ū+ hw)− J (ū)
h

(5.6)

is the directional derivative of J with respect to u in the direction of w.

Now, the first order optimality system of the optimization problem containing uncer-

tain coefficients (5.1)–(5.2) can be derived.

Theorem 5.1.4. A pair (y, u) is a unique solution of the optimization problem (5.1)–

(5.2) if and only if there exists an adjoint p ∈ Y such that the optimality system holds,

P-a.s., for the triplet (y(u), u, p(u)) ∈ Y × Uad × Y

H
(
y(u)

)
= f(x) + u(x), (5.7a)

H∗
(
p(u)

)
= y(u)− yd + γ

(
y(u)− E[y(u)]

)
, (5.7b)(

E[p(u)] + µu, v − u
)
≥ 0, v ∈ Uad. (5.7c)

Proof. Rewrite the objective functional J as

J (u) =
1

2
E
[∫
D

(
y(u)− yd

)2
dx

]
︸ ︷︷ ︸

J1(u)

+
γ

2
E
[∫
D
y(u)2 dx

]
︸ ︷︷ ︸

J2(u)

− γ
2

∫
D
(E [y(u)])2 dx︸ ︷︷ ︸
J3(u)

+
µ

2

∫
D
u2 dx︸ ︷︷ ︸

J4(u)

.
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By the definition of directional derivative (5.6), it is obtained that

J ′1(u) · (v − u) = lim
h→0+

E
[∫
D

(
y(u+ h(v − u))− yd

)2
dx
]

2h

−
E
[∫
D

(
y(u)− yd

)2
dx
]

2h

= lim
h→0+

E
[∫
D

(
y(u+ h(v − u))2 − (yd)2

)
dx
]

2h

−
E
[∫
D 2 (y(u+ h(v − u))− y(u)) yd dx

]
2h

= E
[∫
D

(
y(u)− yd

)
y′(u) · (v − u) dx

]
,

J ′2(u) · (v − u) = γ lim
h→0+

E
[∫
D

(
y(u+ h(v − u))

)2
dx
]
− E

[∫
D y(u)

2 dx
]

2h

= γE
[∫
D
y(u)y′(u) · (v − u) dx

]
,

J ′3(u) · (v − u) = γ lim
h→0+

E
[∫
D

(
E [y(u+ h(v − u))]

)2
dx
]

2h

−
E
[∫
D

(
E [y(u)]

)2
dx
]

2h

= γE
[∫
D
E[y(u)]y′(u) · (v − u) dx

]
,

J ′4(u) · (v − u) = µ lim
h→0+

E
[∫
D(u+ h(v − u))2 dx

]
− E

[∫
D u

2 dx
]

2h

= µ lim
h→0+

E
[∫
D

(
h2(v − u)2 + 2hu(v − u)

)
dx
]

2h

= µE
[∫
D
u · (v − u) dx

]
.

Hence, by combining all terms, it holds

J ′(u) · (v − u)

= E
[∫
D

(
y(u)− yd

)
y′(u) · (v − u) dx

]
+ γE

[∫
D
y(u)y′(u) · (v − u) dx

]
− γ

∫
D
E[y(u)]y′(u) · (v − u) dx+ µ

∫
D
u · (v − u) dx. (5.8)

By well–posedness of the state equation (5.2) followed from the Lax–Milgram lemma,

one can easily show that the operator H is invertible so that, by taking directional
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derivative, one gets

y′(u) · (v − u) = lim
h→0

y (u+ h(v − u))− y(u)
h

= lim
h→0

H−1 (f + u+ h(v − u))−H−1 (f + u)

h

= lim
h→0

hH−1 (v − u)
h

= H−1(v − u) = H−1(v + f − f − u)

= H−1(f + v)−H−1(f + u) = y(v)− y(u).

Thus, (5.8) gives us

J ′(u) · (v − u) = Ψ(γ) + µ

∫
D
u · (v − u) dx, (5.9)

where

Ψ(γ) = (1 + γ)E
[∫
D
y(u) ·

(
y(v)− y(u)

)
dx

]
− γ

∫
D
E[y(u)] ·

(
y(v)− y(u)

)
dx

− E
[∫
D
yd ·

(
y(v)− y(u)

)
dx

]
.

To guarantee the existence and uniqueness of the solution from Theorem 5.1.3, the

following requirement is needed

J ′(u) · (v − u) ≥ 0. (5.10)

We note that the adjoint state p(u) ∈ Y is introduced by

H∗
(
p(u)

)
= y(u)− yd + γ

(
y(u)− E[y(u)]

)
. (5.11)

Multiplying both sides of (5.11) by
(
y(v)− y(u)

)
, integrating over D, and taking the

expectation of the resulting system, we obtain

E
[∫
D
H∗
(
p(u)

)
·
(
y(v)− y(u)

)
dx

]
= E

[∫
D
p(u) ·

(
H
(
y(v))−H

(
y(u))

)
dx

]
= E

[∫
D
p(u) ·

(
v − u

)
dx

]
= Ψ(γ). (5.12)

Inserting (5.12) into (5.9) and combining with (5.10) yield

J ′(u) · (v − u) =
(
E[p(u)] + µu, v − u

)
≥ 0, (5.13)

which is the desired result.
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In this chapter,H is considered as the convection–diffusion operator

H := −∇ ·
(
a(x, ω)∇

)
+ b(x, ω) · ∇, (5.14)

which turns the state equation (5.2) into

−∇ ·
(
a(x, ω)∇y

)
+ b(x, ω) · ∇y = f + u in D × Ω, (5.15a)

y = yDB on ∂D × Ω, (5.15b)

where a : (D × Ω)→ R and b : (D × Ω)→ R2 are random diffusivity and velocity

coefficients, respectively, which is assumed to have continuous and bounded covari-

ance functions. In addition, we recall the following assumptions on the uncertain

coefficients defined in Section 3.1:

i) ∃ amin, amax such that for almost every (a.e.) (x, ω) ∈ D × Ω,

0 < amin ≤ a(x, ω) ≤ amax <∞.

In addition, a(x, ω) has a uniformly bounded and continuous first derivatives.

ii) The velocity coefficient b satisfies b(·, ω) ∈
(
L∞(D)

)2 for a.e. ω ∈ Ω and

∇ · b(x, ω) = 0.

Then, the well–posedness of the state equation (5.15) can be shown by following the

classical Lax–Milgram lemma; see, e.g., [11, 117].

Now, the corresponding weak formulation of the optimization problem containing

uncertainty (5.1)–(5.2) is given as follows:

min
u∈Uad

J (u) =
1

2
E
[∫
D

(
y(u)− yd

)2
dx

]
+
γ

2
E
[∫
D

(
y(u)− E[y(u)]

)2
dx

]
+
µ

2

∫
D
u2 dx (5.16)

governed by

a[y, υ] + b[u, υ] = [f, υ], υ ∈ Y , (5.17)

where

a[y, υ] = E
[∫
D

(
a(x, ω)∇y · ∇υ + b(x, ω) · ∇y υ

)
dx

]
, ∀y, υ ∈ Y ,

b[u, υ] = −E
[∫
D
uυ dx

]
and [f, υ] = E

[∫
D
fυ dx

]
, ∀u ∈ U , υ ∈ Y .
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Moreover, the optimality system in (5.7) can be stated in the weak formulation as

follows:

a[y, υ] + b[u, υ] = [f, υ], υ ∈ Y , (5.19a)

a[q, p] = [y − yd, q] + γ
[
y − E[y], q

]
, q ∈ Y , (5.19b)(

E[p] + µu,w − u
)
≥ 0, w ∈ Uad, (5.19c)

where the adjoint p ∈ Y solves the following convection diffusion equation having

negative convection term containing uncertain inputs:

−∇ ·
(
a(x, ω)∇p

)
− b(x, ω) · ∇p = (y − yd) + γ

(
y − E[y]

)
in D × Ω, (5.20a)

p = 0 on ∂D × Ω. (5.20b)

In the following, the techniques, that is, Karhunen–Loève (KL) expansion (2.16),

stochastic Galerkin, and discontinuous Galerkin method, will be summarized to re-

cast the infinite–dimensional model problem (5.16)–(5.17) into the finite dimensional

problem.

5.2 Stochastic Galerkin Discretization

To solve (5.16)–(5.17) numerically, it is needed to reduce the stochastic process into

finite mutually uncorrelated random variables. Therefore, the coefficients a(x, ω)

and b(x, ω) are approximated by the truncated KL expansion (2.16), which is a finite

representation of the random field in the sense that the mean-square error of approx-

imation is minimized; see, e.g., [8]. To guarantee the positivity of the truncated KL

expansion (2.16) for the diffusivity coefficient a(x, ω), it is also assumed that the

mean of random coefficient exhibits a stronger dominance; see, e.g., [128].

By the assumption on the finite dimensional in Section 2.16 and Doob–Dynkin lemma

[127], the solution of (5.17) can be expressed in the finite dimensional stochastic

space, that means, y(x, ξ(ω)) ∈ Yρ = L2(H1
0 (D); Γ) with ξ =

(
ξ1(ω), . . . , ξN(ω)

)
.
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Then, setting Ẽ[y] =
∫
Γ

y ρ(ξ)dξ, the optimization problem (5.16)-(5.17) becomes

min
u∈Uad

J (u) =
1

2
Ẽ
[∫
D

(
y(u)− yd

)2
dx

]
+
γ

2
Ẽ
[∫
D

(
y(u)− Ẽ[y(u)]

)2
dx

]
+
µ

2

∫
D
u2 dx (5.21)

subject to

a[y, υ]ρ + b[u, υ]ρ = [f, υ]ρ, ∀υ ∈ Yρ, (5.22)

where

a[y, υ]ρ =

∫
Γ

∫
D

(
a(x, ξ)∇y · ∇υ + b(x, ξ) · ∇y υ

)
dx ρ(ξ)dξ, ∀y, υ ∈ Yρ, (5.23a)

b[u, υ]ρ = −
∫
Γ

∫
D
uv dx ρ(ξ)dξ, ∀u ∈ U , υ ∈ Yρ, (5.23b)

[f, υ]ρ =

∫
Γ

∫
D
fυ dx ρ(ξ)dξ, ∀υ ∈ Yρ. (5.23c)

Then, the optimization problem (5.21)-(5.22) has a unique solution pair (y, u) ∈ Yρ×
Uad if and only if there is an adjoint p ∈ Yρ such that the following optimality system

holds for the triplet (y, u, p):

a[y, υ]ρ + b[u, υ]ρ = [f, υ]ρ, υ ∈ Yρ, (5.24a)

a[q, p]ρ = [y − yd, q]ρ + γ
[
y − Ẽ[y], q

]
ρ
, q ∈ Yρ, (5.24b)(

Ẽ[p] + µu,w − u
)
≥ 0, w ∈ Uad. (5.24c)

Next, the state solution y(x, ξ) ∈ L2(Γ,F ,P), as well as the adjoint solution p(x, ξ) ∈
L2(Γ,F ,P), can be represented by a finite generalized polynomial chaos (gPC) ap-

proximation (2.23) as stated in Cameron–Martin theorem [40],

y(x, ω) ≈ yJ(x, ξ) =
J−1∑
i=0

yi(x)Ψi(ξ), (5.25a)

p(x, ω) ≈ pJ(x, ξ) =
J−1∑
i=0

pi(x)Ψi(ξ), (5.25b)

where yi(x) and pi(x) are the deterministic modes of the expansion and J is the total

number of PC basis given in (2.24).

For simplicity, we only deal with the state equation since the procedure for the ad-

joint equation is similar to the state one. By inserting KL expansions (2.16) of the
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diffusion a(x, ω) and the convection b(x, ω) coefficients, and the solution expres-

sion (5.25) into the variational form of the state equation (5.22) and projecting onto

the space of the PC basis functions, and applying the SIPG discretization defined in

Section 3.1.1, the following (bi)–linear forms of the stochastic discontinuous Galerkin

(SDG) method is obtained for the state equation correspond to

aξ[y, v] + bξ[u, v] = [f, v]ξ,

where

aξ[y, v] =

∫
Γ

ah(y, v, ξ)ρ(ξ) dξ, [f, v]ξ =

∫
Γ

lh(f, v, ξ)ρ(ξ) dξ,

bξ[u, v] =

∫
Γ

bh(u, v, ξ)ρ(ξ) dξ, with bh(u, v, ξ) = −
∑
K∈Th

∫
K

uv dx.

Here, ah(·, ·, ξ) and lh(·, ·, ξ) correspond to the bilinear form in (3.9) and linear form

in (3.10). Now, the discrete optimal control problem is stated as

min
uh∈Uad

h

J (uh) =
1

2
Ẽ
[∫
D

(
yh − yd

)2
dx

]
+
γ

2
Ẽ
[∫
D

(
yh − Ẽ[yh]

)2
dx

]
+
µ

2

∫
D
u2h dx (5.26)

governed by

aξ[yh, υh] + bξ[uh, υh] = [f, υh]ξ, ∀υh ∈ Yh = Vh ⊗ Sq
k , (5.27)

where the discrete admissible set (5.3) is defined by

Uad
h := {uh ∈ Uh : ua ≤ uh(x) ≤ ub, a.e. x ∈ K ⊂ Th}, (5.28)

with Uad
h = Uh ∩ Uad and Uh = Vh.

Analogously, a pair (yh, uh) ∈ Yh × Uad
h is a unique solution of the control problem

(5.26)-(5.27) if and only if an adjoint ph ∈ Yh exists such that the optimality system

holds for (yh, uh, ph) ∈ Yh × Uad
h × Yh

aξ[yh, υh] + bξ[uh, υh] = [f, υh]ξ, υh ∈ Yh, (5.29a)

aξ[qh, ph] = [yh − yd, qh]ξ + γ
[
yh − Ẽ[yh], qh

]
ξ
, qh ∈ Yh, (5.29b)

[ph + µuh, wh − uh]ξ ≥ 0, wh ∈ Uad
h , (5.29c)
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where [ph + µuh, wh − uh]ξ =
(
Ẽ[ph] + µuh, wh − uh

)
since the discrete solution uh

is deterministic.

Further, by denoting

J ′h(uh) · wh = [ph + µuh, wh]ξ, ∀wh ∈ Uad
h , (5.30)

one can easily obtain the following expression for the discrete directional derivative

of functional Jh(uh):

J ′h(uh) · (wh − uh) ≥ 0, ∀wh ∈ Uad
h . (5.31)

5.3 Error Analysis

This section provides an a priori error analysis of the optimization problem (5.16)-

(5.17), discretized by the stochastic discontinuous Galerkin method in the energy

norm (3.12). First, we introduce L2–projection operator on the finite dimensional

probability domain Γ, and H1–projection operator and L2–projection operator on the

spatial domain D.

• L2–projection operators Πq : L
2(Γ) → Sq

k and Πh : L2(D) → Vh ∩ L2(D) are

given by

(Πq(ξ)− ξ, ζ)L2(Γ) = 0, ∀ζ ∈ Sq
k , ∀ξ ∈ L2(Γ), (5.32a)

(Πh(ν)− ν, χ)L2(D) = 0, ∀χ ∈ Vh, ∀ν ∈ L2(D) (5.32b)

with the following estimate

∥ν − Πh(ν)∥L2(L2(D;Γ)) ≤ Ch∥ν∥L2(H1(D;Γ)). (5.33)

In addition, taking ζ = Πq(ξ) and χ = Πh(ν) in (5.32a) and (5.32b), respec-

tively, it holds that

∥Πq(ξ)∥L2(Γ) ≤ C∥ξ∥L2(Γ), ∀ξ ∈ L2(Γ), (5.34a)

∥Πh(ν)∥L2(D) ≤ C∥ν∥L2(D), ∀ν ∈ L2(D). (5.34b)
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• H1–projection operatorRh : H1(D)→ Vh ∩H1(D) is stated by

(Rh(υ)− υ, ϑ)L2(D) = 0, ∀ϑ ∈ Vh, ∀υ ∈ H1(D), (5.35a)

(∇(Rh(υ)− υ),∇ϑ)L2(D) = 0, ∀ϑ ∈ Vh, ∀υ ∈ H1(D). (5.35b)

With the help of theH1–projection operator in (5.35a), the Cauchy–Schwarz inequal-

ity (2.11), the L2–projection operator in (5.32a), and the approximation in (3.22),

we have the following approximation property ([41, Theorem 3.2]): for all v ∈
L2(H2(D); Γ) ∩Hq+1(H1(D); Γ), and ṽ ∈ Vh × Sq

k

∥v − ṽ∥L2(H1(D);Γ) ≤ Ch∥v∥L2(H2(D);Γ)

+
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

v∥L2(H1(D);Γ)

(qn + 1)!
, (5.36)

where the constant C does not depend on v, h, and kn.

To recognize error contributions emerging from the spatial domain D and the proba-

bility domain Γ, separately, a projection operatorPhq mapping onto the tensor product

space Yh is given by

PhqΥ = ΠhΠqΥ = ΠqΠhΥ, ∀Υ ∈ L2(L2(D); Γ), (5.37)

and we decompose as follows:

Υ− PhqΥ = (Υ− ΠhΥ) + Πh(I − Πq)Υ, ∀Υ ∈ L2(L2(D); Γ). (5.38)

Then, it follows from (5.34a), (5.34b), and (5.37) that

∥PhqΥ∥L2(L2(D);Γ) ≤ C∥Υ∥L2(L2(D);Γ), ∀Υ ∈ L2(L2(D); Γ). (5.39)

Before the derivation of a priori error estimate, the following auxiliary problem is

stated as

J ′h(u) · (w − u) = [ph(u) + µu,w − u]ξ ≥ 0, ∀w ∈ Uad, (5.40)

where ph(u) ∈ Yh solves the following auxiliary system:

aξ[yh(u), vh] + bξ[u, vh] = [f, vh]ξ, vh ∈ Yh, (5.41a)

aξ[qh, ph(u)] = [yh(u)− yd, qh]ξ + γ
[
yh(u)− Ẽ[yh(u)], qh

]
ξ
, qh ∈ Yh. (5.41b)

It is also noted that we prefer to use ∥u∥L2(L2(D);Γ) in the derivation of error estimates

instead of ∥u∥L2(D) for better readability in terms of notation.
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Lemma 5.3.1. With the definition in (5.40), the following estimate holds:

(J ′h(w)− J ′h(u)) · (w − u) ≥ µ∥w − u∥2L2(L2(D);Γ). (5.42)

Proof. By (5.40), we have(
J ′h(w)− J ′h(u)

)
· (w − u) = [ph(w)− ph(u), w − u]ξ + µ[w − u,w − u]ξ.(5.43)

Now, it follows from (5.41) that

[ph(w)− ph(u), w − u]ξ = aξ[yh(w)− yh(u), ph(w)− ph(u)]

= (1 + γ)[yh(w)− yh(u), yh(w)− yh(u)]ξ

− γ
[
Ẽ[yh(w)− yh(u)], yh(w)− yh(u)

]
ξ
. (5.44)

The usage of Cauchy-Schwarz (2.11) and Young’s inequalities (2.12) yields

− γ
[
Ẽ[yh(w)− yh(u)], yh(w)− yh(u)

]
ξ

≥ −γ
2
∥Ẽ[yh(w)− yh(u)]∥2L2(L2(D);Γ) −

γ

2
∥yh(w)− yh(u)∥2L2(L2(D);Γ).

Since all norms are convex functions, Jensen’s inequality (2.14) and Ẽ[Ẽ[u]] = Ẽ[u]

give us

−γ
[
Ẽ[yh(w)− yh(u)], yh(w)− yh(u)

]
ξ
≥ −γ∥yh(w)− yh(u)∥2L2(L2(D);Γ). (5.45)

Thus, inserting (5.45) into (5.44), it is obtained that

[ph(w)− ph(u), w − u]ξ ≥ ∥yh(w)− yh(u)∥2L2(L2(D);Γ)︸ ︷︷ ︸
≥0

. (5.46)

Hence, (5.43) and (5.46) imply that (5.42) holds.

Next step is to derive an upper bound for the error between the discrete solutions

(yh, ph) and the auxiliary solutions (yh(u), ph(u)).

Lemma 5.3.2. Let (yh, ph) and (yh(u), ph(u)) be the solutions of (5.29) and (5.41),

respectively. Then, there exist the following estimates for positive constants C1 and

C2 independent of h

∥yh − yh(u)∥ξ ≤ C1∥u− uh∥L2(L2(D);Γ), (5.47a)

∥ph − ph(u)∥ξ ≤ C2∥u− uh∥L2(L2(D);Γ). (5.47b)
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Proof. By subtracting (5.41a) from (5.29a) and taking vh = yh − yh(u), it holds that

aξ[yh − yh(u), yh − yh(u)] = [uh − u, yh − yh(u)]ξ.

With the help of the coercivity of aξ (3.13) and the Cauchy-Schwarz inequality (2.11),

one can obtain

ccv∥yh − yh(u)∥2ξ ≤ aξ[yh − yh(u), yh − yh(u)]

≤ ∥uh − u∥L2(L2(D);Γ)∥yh − yh(u)∥ξ,

which yields the desired result (5.47a).

Analogously, by subtracting (5.41b) from (5.29b) and taking vh = ph − ph(u), we

have that

aξ[ph − ph(u), ph − ph(u)]

= (1 + γ)[yh − yh(u), ph − ph(u)]ξ − γ
[
Ẽ[yh − yh(u)], ph − ph(u)

]
ξ

= (1 + γ)[yh − yh(u), ph − ph(u)]ξ + γ
[
Ẽ[yh(u)− yh], ph − ph(u)

]
ξ
.

It follows from the coercivity of aξ (3.13), Cauchy-Schwarz inequality (2.11), and

Jensen’s inequality (2.14) that

ccv∥ph − ph(u)∥2ξ ≤ aξ[ph − ph(u), ph − ph(u)]

≤ (1 + 2γ)∥ph − ph(u)∥L2(L2(D);Γ)∥yh − yh(u)∥ξ. (5.48)

It is noted that the procedure applied in (5.45) is also used in the derivation of (5.48).

Hence, by (5.48) and (5.47a), the desired result (5.47b) is deduced.

To obtain an upper bound for the control, the domain D is divided into pieces by

considering the active and inactive parts of the control u as done in [4, 112]:

D+ =

{⋃
K

: K ⊂ D, ua < u|K < ub

}
, (5.49a)

D∂ =

{⋃
K

: K ⊂ D, u|K = ua or u|K = ub

}
, (5.49b)

D− = D \ (D+ ∪ D∂). (5.49c)

It is assumed that these sets are disjoint, D = D+ ∪ D∂ ∪ D−, and D− satisfies the

following inequality related to the regularity of u and Th

meas(D−) ≤ Ch, (5.50)
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which is valid if the boundary of the D∂ is represented by finite rectifiable curves

[123]. Further, a set is defined as D+ ⊂ D∗ = {x ∈ D : ua < u(x) < ub} [164].

Lemma 5.3.3. Suppose that (y, u, p) and (yh, uh, ph) are the solutions of (5.19) and

(5.29), respectively. Let u ∈ L2(W 1,∞(D); Γ) with u|D+ ∈ L2(H2(D+); Γ) be given.

Then, it holds that

∥u− uh∥L2(L2(D);Γ)

≤ C∥p− ph(u)∥L2(L2(D;Γ)) + Ch3/2∥u∥L2(W 1,∞(D);Γ)

+ C
(
h∥p∥L2(H1(D);Γ) +

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

p∥L2(H1(D);Γ)

(qn + 1)!

)
. (5.51)

Proof. With the help of Lemma 5.3.1, the expression (5.40), the standard Lagrangian

interpolation Πu, the assumption D+ ⊂ D∗, and the notation ph = ph(uh), it is

obtained that

µ∥u− uh∥2L2(L2(D);Γ) ≤ J ′h(u) · (u− uh)− J ′h(uh) · (u− uh)

= [µu+ ph(u), u− uh]ξ − [µuh + ph, u− uh]ξ

= [µu+ p, u− uh]ξ︸ ︷︷ ︸
−J ′(u)·(uh−u)≤0

−[p− ph(u), u− uh]ξ

+ [µuh + ph, uh − Πu]ξ︸ ︷︷ ︸
−J ′

h(uh)·(Πu−uh)≤0

+[µuh + ph,Πu− u]ξ

≤ [µuh + ph,Πu− u]ξ + [ph(u)− p, u− uh]ξ. (5.52)

The first term in (5.52) can be rewritten as follows

[µuh + ph,Πu− u]ξ = [µuh + ph − µu− p,Πu− u]ξ + [µu+ p,Πu− u]ξ

= [µuh − µu,Πu− u]ξ + [µu+ p,Πu− u]ξ

+ [ph − ph(u),Πu− u]ξ + [ph(u)− p,Πu− u]ξ. (5.53)

Then, inserting (5.53) into (5.52) and applying Cauchy-Schwarz (2.11) and Young’s

(2.12) inequalities and Lemma 5.3.2 produce

µ∥u− uh∥2L2(L2(D);Γ) ≤ c1∥ph(u)− p∥2L2(L2(D);Γ) + c2∥u− uh∥2L2(L2(D);Γ)

+c3∥u− Πu∥2L2(L2(D);Γ) + [µu+ p,Πu− u]ξ. (5.54)
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Since Πu(x) = u(x) for any vertex x, Πu ∈ Uad
h and the following estimates hold

∥u− Πu∥L2(L2(D+);Γ) ≤ Ch2∥u∥L2(H2(D+);Γ), (5.55a)

∥u− Πu∥L2(W 0,∞(D−);Γ) ≤ Ch∥u∥L2(W 1,∞(D−);Γ) (5.55b)

for u ∈ L2(W 1,∞(D); Γ) and u|D∗ ⊂ L2(H2(D∗); Γ). Hence

∥u− Πu∥2L2(L2(D);Γ)

= ∥u− Πu∥2L2(L2(D+);Γ) + ∥u− Πu∥2L2(L2(D∂);Γ)︸ ︷︷ ︸
=0

+∥u− Πu∥2L2(L2(D−);Γ)

≤ ∥u− Πu∥2L2(L2(D+);Γ) + C∥u− Πu∥2L2(W 0,∞(D−);Γ)meas(D−)

≤ Ch4∥u∥2L2(H2(D+);Γ) + Ch3∥u∥2L2(W 1,∞(D−);Γ)

≤ Ch3
(
h∥u∥2L2(H2(D+);Γ) + ∥u∥2L2(W 1,∞(D−);Γ)

)
≤ Ch3

(
∥u∥2L2(H2(D+);Γ) + ∥u∥2L2(W 1,∞(D−);Γ)

)
. (5.56)

By the variational inequality (5.29c) and the definitions of domains (5.49), it can be

seen that

µu+ p = 0 on D+ and Πu− u = 0 on D∂.

Then,

[µu+ p,Πu− u]ξ = [µu− Πh(µu) + Πh(µu),Πu− u]D−︸ ︷︷ ︸
T1

+ [p− Phq(p) + Phq(p),Πu− u]D−︸ ︷︷ ︸
T2

. (5.57)

It follows from the inequalities (5.33), (5.34b), and (5.55b), Sobolev embedding the-

orem, see, e.g., [2], and Young’s inequality (2.12) that

T1 = [µu− Πh(µu),Πu− u]D− + [Πh(µu),Πu− u]D−

≤ µ
(
∥u− Πhu∥L2(L2(D−);Γ) + ∥Πhu∥L2(L2(D−);Γ)

)
∥u− Πu∥L2(L2(D−);Γ)

≤ µ
(
∥u− Πhu∥L2(L2(D−);Γ) + C∥u∥L2(L2(D−);Γ)

)
∥u− Πu∥L2(L2(D−);Γ)

≤ µ
(
∥u− Πhu∥L2(L2(D−);Γ) + C∥u∥L2(W 0,∞(D−);Γ)meas(D−)

)
× ∥u− Πu∥L2(L2(D−);Γ)

≤ Ch∥u∥L2(H1(D−);Γ)∥u− Πu∥L2(W 0,∞(D−);Γ)meas(D−)

≤ Ch3∥u∥L2(H1(D−);Γ)∥u∥L2(W 1,∞(D−);Γ)

≤ Ch3
(
∥u∥2L2(H1(D−);Γ) + ∥u∥2L2(W 1,∞(D−);Γ)

)
. (5.58)
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Next, with the help of the projector operator in (5.37) and the bounds in (3.22), (5.33),

(5.39), and (5.55b), Sobolev embedding theorem, and Cauchy and Young’s inequali-

ties (2.11) and (2.12), a bound for the second term T2 in (5.57) is obtained

T2 = [p− Πh(p),Πu− u]D− + [Phq(p),Πu− u]D− + [Πh(I − Πq)(p),Πu− u]D−

≤
(
∥p− Πh(p)∥L2(L2(D−);Γ) + ∥Phq(p)∥L2(L2(D−);Γ)

)
∥Πu− u∥L2(L2(D−);Γ)

+ ∥Πh(I − Πq)(p)∥L2(L2(D−);Γ)∥Πu− u∥L2(L2(D−);Γ)

≤ C1

(
h∥p∥L2(H1(D−);Γ) + ∥p∥L2(W 0,∞(D−);Γ)meas(D−)

)
h2∥u∥L2(W 1,∞(D−);Γ)

+ C2

N∑
n=1

(
kn
2

)qn+1∥∂qn+1
ξn

p∥L2(H1(D−);Γ)

(qn + 1)!
h2∥u∥L2(W 1,∞(D−);Γ)

≤ C1

(h2
2
∥p∥2L2(H1(D−);Γ) +

h4

2
∥u∥2L2(W 1,∞(D−);Γ)

)
+ C2

(
1

2

N∑
n=1

(
kn
2

)2qn+2∥∂qn+1
ξn

p∥2L2(H1(D−);Γ)

((qn + 1)!)2
+
h4

2
∥u∥2L2(W 1,∞(D−);Γ)

)
.

(5.59)

Combination of (5.58) and (5.59) yields

[µu+ p,Πu− u]ξ

≤ Ch3
(
∥u∥2L2(H1(D−);Γ) + ∥u∥2L2(W 1,∞(D−);Γ)

)
+ Ch2∥p∥2L2(H1(D−);Γ) + C

N∑
n=1

(
kn
2

)2qn+2∥∂qn+1
ξn

p∥2L2(H1(D−);Γ)

((qn + 1)!)2
. (5.60)

Finally, inserting (5.56) and (5.60) into (5.54), the proof of Lemma 5.3.3 is completed.

Lemma 5.3.4. Suppose that (y, p) and (yh(u), ph(u)) are the solutions of (5.19) and

(5.41), respectively. Then, it holds

∥y − yh(u)∥ξ ≤ Ch∥y∥L2(H2(D);Γ)

+
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!
, (5.61)
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and

∥p− ph(u)∥ξ

≤ Ch
(
∥y∥L2(H2(D);Γ) + ∥p∥L2(H2(D);Γ)

)
+

N∑
n=1

(
kn
2

)qn+1

(
∥∂qn+1

ξn
y∥L2(H1(D);Γ) + ∥∂qn+1

ξn
p∥L2(H1(D);Γ)

)
(qn + 1)!

. (5.62)

Proof. An application of the coercivity and continuity of aξ in (3.13),H1(D)–projection

Rh in (5.35), L2(D)–projection Πq in (5.32a), and Galerkin orthogonality yields

ccv∥y − yh(u)∥2ξ
≤ aξ[y − yh(u), y − yh(u)]

≤ aξ[y − yh(u), y − Πq (Rh(y))] + aξ[y − yh(u),Πq (Rh(y))− yh(u)]︸ ︷︷ ︸
=0

≤ cct∥y − yh(u)∥ξ∥y − Πq (Rh(y))∥ξ.

Then, by the approximation property (5.36), it is obvious to get

∥y − yh(u)∥ξ ≤
cct
ccv
∥y − Πq (Rh(y))∥ξ

≤ Ch∥y∥L2(H2(D);Γ) +
N∑

n=1

(
kn
2

)qn+1∥∂qn+1
ξn

y∥L2(H1(D);Γ)

(qn + 1)!
,

which is the desired result (5.61). Analogously, it is deduced that

ccv∥p− ph(u)∥2ξ
≤ aξ[p− ph(u), p− ph(u)]

≤ aξ[p− Πq (Rh(y)) , p− ph(u)] + aξ[Πq (Rh(y))− ph(u), p− ph(u)]︸ ︷︷ ︸
=0

= (1 + γ)[y − yh(u), p− Πq (Rh(y))]ξ + γ
[
Ẽ[yh(u)− y], p− Πq (Rh(y))

]
ξ

≤ (1 + 2γ)∥y − yh(u)∥ξ∥p− Πq (Rh(y))∥L2(L2(D);Γ)

≤ (1 + 2γ)

2
∥y − yh(u)∥2ξ +

(1 + 2γ)

2
∥p− Πq (Rh(y))∥2L2(L2(D);Γ),

where the definition of bilinear forms (3.9), the procedure applied in (5.45), and

Young’s inequality (2.12) are used. Then, using the approximation property (5.36)

and (5.61), the proof of (5.62) is completed.
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Now, by combining the findings in Lemmas 5.3.3 and 5.3.4, the error analysis is

finalized.

Theorem 5.3.5. Assume that (y, u, p) and (yh, uh, ph), respectively, are the solutions

of (5.19) and (5.29). Then, it holds that

∥u− uh∥L2(L2(D);Γ) + ∥y − yh∥ξ + ∥p− ph∥ξ

≤ Ch3/2∥u∥L2(W 1,∞(D);Γ) + Ch
(
∥y∥L2(H2(D);Γ) + ∥p∥L2(H2(D);Γ)

)
+ C

N∑
n=1

(
kn
2

)qn+1

(
∥∂qn+1

ξn
y∥L2(H1(D);Γ) + ∥∂qn+1

ξn
p∥L2(H1(D);Γ)

)
(qn + 1)!

. (5.63)

Proof. From (5.51) and (5.62), it is obtained that

∥u− uh∥L2(L2(D);Γ)

≤ Ch3/2∥u∥L2(W 1,∞(D);Γ) + Ch
(
∥y∥L2(H2(D);Γ) + ∥p∥L2(H2(D);Γ)

)
+ C

N∑
n=1

(
kn
2

)qn+1

(
∥∂qn+1

ξn
y∥L2(H1(D);Γ) + ∥∂qn+1

ξn
p∥L2(H1(D);Γ)

)
(qn + 1)!

. (5.64)

Moreover, by Lemmas 5.3.2 and 5.3.4, and the bound (5.64), it follows

∥y − yh∥ξ + ∥p− ph∥ξ

≤ ∥y − yh(u)∥ξ + ∥yh(u)− yh∥ξ + ∥p− ph(u)∥ξ + ∥ph(u)− ph∥ξ

≤ C∥u− uh∥L2(L2(D);Γ) + Ch
(
∥y∥L2(H2(D);Γ) + ∥p∥L2(H2(D);Γ)

)
+ C

N∑
n=1

(
kn
2

)qn+1
(
∥∂qn+1

ξn
y∥L2(H1(D);Γ) + ∥∂qn+1

ξn
q∥L2(H1(D);Γ)

(qn + 1)!

)
. (5.65)

Thus, by combining (5.64) and (5.65), the desired result (5.63) is achieved.

5.4 Matrix Formulation

This section first constructs the matrix formulation of the underlying problem (5.16)–

(5.17) by employing the “optimize-then-discretize”approach; see, e.g., [142]. In this

methodology, one obtains the optimality system (5.19) of the infinite-dimensional

optimization problem, and then discretizes the optimality system by a stochastic dis-

continuous Galerkin method discussed in Section 5.2. Later, we propose a low–rank
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variant of the generalized minimal residual (GMRES) method with a suitable precon-

ditioner to solve the corresponding linear system based on the numerical findings in

Chapter 3.

5.4.1 State System

After an application of the discretization techniques discussed in Section 5.2, one gets

the following linear system for the state part of the optimality system (5.19):(
N∑
i=0

Gi ⊗Ki

)
︸ ︷︷ ︸

A

y − (G0 ⊗M)︸ ︷︷ ︸
M

u =

(
N∑
i=0

gi ⊗ fi

)
︸ ︷︷ ︸

F

, (5.66)

where y = (y0, . . . , yJ−1)
T and u = (u0, . . . , uJ−1)

T with yi, ui ∈ RNd , i =

0, 1, . . . , J−1 andNd corresponds to the degree of freedoms for the spatial discretiza-

tion. The mass matrix M ∈ RNd×Nd is given by

M(r, s) =
∑
K∈Th

∫
K

φrφs dx.

Here, Ki ∈ RNd×Nd and Gi ∈ RJ×J represent the stiffness and stochastic matrices,

respectively, whereas fi ∈ RNd and gi ∈ RJ are the right–hand side and stochas-

tic vectors, respectively; see Section 3.1.2 for the constructions of the matrices and

vectors in details.

5.4.2 Matrix Formulation of the Optimality System

The discrete optimality system in (5.29) can be represented as a block matrix system

including the state, adjoint, and variational equations in the finite dimensional set-

ting. To solve the underlying block linear system, “the primal–dual active set (PDAS)

methodology as a semi-smooth Newton step” is applied; see, e.g., [24] for more de-

tails. After a definition of the active sets

A− =
⋃
{x ∈ K : −p− µua < 0, ∀K ∈ Th},

A+ =
⋃
{x ∈ K : −p− µub > 0, ∀K ∈ Th},
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and the inactive set

I = Th \
(
A− ∪ A+

)
,

the block formulation becomes

Ay −MIu = F , (5.67a)

A∗p−Mγy = −Fd, (5.67b)

(G0 ⊗ diag(1I))p+ µ (G0 ⊗ I)u = (g0 ⊗ 1A−)µua + (g0 ⊗ 1A+)µub, (5.67c)

where

MI := I ⊗M,

Fd := g0 ⊗ yd with yd(s) =
∑
K∈Th

∫
K

ydφs dx,

Mγ := (G0 ⊗M) + γ (M0 ⊗M) withM0 = diag
(
0, ⟨Ψ1⟩2 , . . . , ⟨ΨJ−1⟩2

)
,

and 1A− , 1A+ , and 1I correspond to the characteristic functions of A−, A+, and I,

respectively. Equivalently,Mγ can be rewritten as

Mγ := Gγ ⊗M, with Gγ := G0 + γM0,

where

Gγ(r, s) =


⟨Ψ0⟩2 , if r = s = 0,

(1 + γ) ⟨Ψr⟩2 , if r = s = 1, . . . , J − 1,

0, otherwise.

(5.68)

Rearranging (5.67) gives us the following linear matrix system
Mγ 0 −A∗

0 µ (G0 ⊗ I) G0 ⊗ diag(1I)

−A MI 0



y

u

p

=


Fd

µ
(
(g0 ⊗ 1A−)ua + (g0 ⊗ 1A+)ub

)
−F

,
(5.69)

which is a saddle point system. It is noted that since Legendre polynomials are used,

G0 = I , and hence,MI =M.

The saddle point system (5.69) is generally very large in practical implementations,

depending on the length of the random vector ξ and the number of refinements in the
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spatial discretization. To overcome the curse of dimensionality, it is useful to employ

a low–rank approximation that decreases both computational complexity and memory

needs by using a Kronecker–product structure of the matrices provided in (5.69).

5.4.3 Low–Rank Approach

In this section, low–rank approximation techniques are explained, and how they can

be used with iterative solvers in order to solve the saddle point system (5.69). Iterative

techniques, such as Krylov subspace approaches, are particularly appealing when the

optimality system (5.70) is large and sparse since their storage needs often depend

primarily on the number of nonzero entries in the coefficient matrix. The concept of

low–rank approximation for the state equation, namely convection diffusion equation

with random inputs (3.1), is discussed in Section 3.3. As we have already noted in

Chapter 3, an optimal Krylov subspace solver for the convection-dominated problems

is the GMRES algorithm [133]. Thus, the low-rank version of the GMRES method,

which uses the Kronecker product structure of the obtained linear system to reduce

computational complexity and memory requirements, is used to address large matrix

systems emerging from stochastic Galerkin methods in this chapter.

Following the properties in Section 2.1.1 and the construction in Section 3.3, the

system (5.69) can be interpreted as


Gγ ⊗M 0 −

N∑
i=0

Gi ⊗K∗i

0 µ (G0 ⊗ I) G0 ⊗ diag(1I)

−
N∑
i=0

Gi ⊗Ki G0 ⊗M 0


︸ ︷︷ ︸

L


vec(Y )

vec(U)

vec(P )


︸ ︷︷ ︸

Θ

=


vec(B1)

vec(B2)

vec(B3)


︸ ︷︷ ︸

B

, (5.70)

where

Y = (y0, . . . , yJ−1) , U = (u0, . . . , uJ−1) , P = (p0, . . . , pJ−1) , B1 = mat
(
Fd
)
,

B2 = mat
(
µ
(
(g0 ⊗ 1A−)ua + (g0 ⊗ 1A+)ub

))
, B3 = mat (−F) .
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By the identity (2.1.1), we have

LΘ = vec




MY GTγ −

N∑
i=0

K∗iPGTi

µIUGT0 + diag(1I)PGT0

−
N∑
i=0

KiY GTi +MUGT0



 = vec



B1

B2

B3


 . (5.71)

Assuming that the matrices Θ and B have the following low–rank representations,

see, e.g., [139, 16, 69],

Y = WY V
T
Y , WY ∈ RNd×rY , VY ∈ RJ×rY ,

U = WUV
T
U , WU ∈ RNd×rU , VU ∈ RJ×rU , (5.72)

P = WPV
T
P , WP ∈ RNd×rP , VP ∈ RJ×rP ,

B1 = B11B
T
12, B11 ∈ RNd×rB1 , B12 ∈ RJ×rB1 ,

B2 = B21B
T
22, B21 ∈ RNd×rB2 , B22 ∈ RJ×rB2 ,

B3 = B31B
T
32, B31 ∈ RNd×rB3 , B32 ∈ RJ×rB3 ,

with rY , rU , rP , rB1 , rB2 , rB3 ≪ Nd, J , (5.71) can be stated as follows:
MWY V

T
Y GTγ −

N∑
i=0

K∗iWPV
T
P GTi

µIWUV
T
U GT0 + diag(1I)WPV

T
P GT0

−
N∑
i=0

KiWY V
T
Y GTi +MWUV

T
U GT0

 =


B11B

T
12

B21B
T
22

B31B
T
32

 , (5.73)

where vec operator is ignored for the simplicity and readability. Moreover, the three

block rows in (5.73) can be written as[
MWY −

N∑
i=0

K∗iWP

]
︸ ︷︷ ︸

Ŵ1

[
GγVY GiVP

]T
︸ ︷︷ ︸

V̂ T
1

, (5.74a)

[
µIWU diag(1I)WP

]
︸ ︷︷ ︸

Ŵ2

[
G0VU G0VP

]T
︸ ︷︷ ︸

V̂ T
2

, (5.74b)

[
−

N∑
i=0

KiWY MWU

]
︸ ︷︷ ︸

Ŵ3

[
GiVY G0VU

]T
︸ ︷︷ ︸

V̂ T
3

, (5.74c)

in low–rank formats ŴiV̂
T
i for i = 1, 2, 3. By the usage of (5.74), the low–rank ap-

proximate solutions to (5.70) can be obtained; see Algorithm 7 modified from [69] for
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details of the low–rank implementation of the GMRES. Moreover, the inner product

computation in Algorithm 7 denoted by

trprod(A11, A12, A21, A22, A31, A32, B11, B12, B21, B22, B31, B32)

can be computed as following:

⟨A,B⟩F = trace
((
A11A

T
12

)T (
B11B

T
12

)T)
+ trace

((
A21A

T
22

)T (
B21B

T
22

)T)
+trace

((
A31A

T
32

)T (
B31B

T
32

)T)
= trace

(
AT

11B11A
T
12B12

)
+ trace

(
AT

21B21A
T
22B22

)
+trace

(
AT

31B31A
T
32B32

)
,

where

A = vec



A11A

T
12

A21A
T
22

A31A
T
32


 , B = vec



B11B

T
12

B21B
T
22

B31B
T
32


 .

Low-rank factors can raise their rank throughout the iteration process using either ma-

trix vector products or vector (matrix) additions. Thus, by utilizing truncation based

on singular values [102] or truncation based on coarse–grid rank reduction [109],

the expense of rank-reduction approaches is kept under control. Our strategy, which

is explicitly discussed in Section 3.3 and inspired by the discussion in [139, 20], in

which a truncated SVD of U = W TV ≈ B diag(σ1, . . . , σr)CT is built for the largest

singular values that are bigger than the specified truncation tolerance. This operation

is carried out by the truncation operator in Algorithm 7. Further, to represent accu-

rately the full-rank solution in the numerical simulations, a rather small truncation

tolerance is utilized.

When employed with a proper preconditioner, iterative techniques, such as GMRES,

are known to show better convergence in terms of the number of iterations. The

low–rank variants also display the same behaviour so that we use a block diagonal

mean-based preconditioner of the form

P0 =


Mγ 0 0

0 µ (G0 ⊗ I) 0

0 0 S̃

 ,
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Algorithm 7 Low–rank preconditioned GMRES (LRPGMRES)
Input: Coefficient matrix L : R3Nd×J → R3Nd×J , inverse of the preconditioner matrix P−1

0 : R3Nd×J → R3Nd×J , and

right–hand side matrix B in the low–rank formats, truncation operator T with given tolerance ϵtrunc.

Output: Matrix Θ ∈ R3Nd×J satisfying ∥L(Θ)− B∥F /∥B∥F ≤ ϵtol.

1: Choose initial guess Θ(0)
11 ,Θ

(0)
12 ,Θ

(0)
21 ,Θ

(0)
22 ,Θ

(0)
31 ,Θ

(0)
33 .

2: (Θ̃11, Θ̃12, Θ̃21, Θ̃22, Θ̃31, Θ̃32) = L(Θ(0)
11 ,Θ

(0)
12 ,Θ

(0)
21 ,Θ

(0)
22 ,Θ

(0)
31 ,Θ

(0)
32 ). Θ̃ij ← T (Θ̃ij)

3: R
(0)
11 = {B11, −Θ(0)

11 }, R
(0)
12 = {B12, Θ

(0)
12 }.

4: R
(0)
21 = {B21, −Θ(0)

21 }, R
(0)
22 = {B22, Θ

(0)
22 }. R

(0)
ij ← T (R

(0)
ij )

5: R
(0)
31 = {B31, −Θ(0)

31 }, R
(0)
32 = {B32, Θ

(0)
32 }.

6: ∥R0∥ =
√

trprod(R(0)
11 , . . . , R

(0)
11 , . . .).

7: V
(0)
11 = R

(0)
11 /∥R0∥F , V

(0)
12 = R

(0)
12 .

8: V
(0)
21 = R

(0)
21 /∥R0∥F , V

(0)
22 = R

(0)
22 . V

(0)
ij ← T (V (0)

ij )

9: V
(0)
31 = R

(0)
31 /∥R0∥F , V

(0)
32 = R

(0)
32 .

10: γ = [γ1, 0, . . . , 0], γ1 =

√
trprod(V (0)

11 , . . . , V
(0)
11 , . . .).

11: while i ≤ maxit do

12: (Z
(i)
11 , Z

(i)
12 , Z

(i)
21 , Z

(i)
22 , Z

(i)
31 , Z

(i)
32 )=P−1

0 (V
(i)
11 , V

(i)
12 , V

(i)
21 , V

(i)
22 , V

(i)
31 , V

(i)
32 ), Z

(i)
ij ← T (Z

(i)
ij )

13: (W11,W12,W21,W22,W31,W32) = L(Z(i)
11 , Z

(i)
12 , Z

(i)
21 , Z

(i)
22 , Z

(i)
31 , Z

(i)
32 ). Wij ← T (Wij)

14: for j = 1, . . . , i do

15: mj,i =

√
trprod(W11, . . . , V

(j)
11 , . . .)

16: W11 = {W11, −mj,iV
(i)
11 }, W12 = {W12, V

(j)
12 }.

17: W21 = {W21, −mj,iV
(i)
21 }, W22 = {W22, V

(j)
22 }. Wij ← T (Wij)

18: W31 = {W31, −mj,iV
(i)
31 }, W32 = {W32, V

(j)
32 }.

19: end for

20: mi+1,i =
√

trprod(W11, . . . ,W11, . . .)

21: V
(i+1)
11 = W11/mi+1,k , V

(k+1)
12 = W12.

22: V
(i+1)
21 = W21/mi+1,k , V

(k+1)
22 = W22. V

(i+1)
ij ← T (V (i+1)

ij )

23: V
(i+1)
31 = W31/mi+1,k , V

(k+1)
32 = W32.

24: Perform Givens rotations for the ith column of m:

25: for j = 1, . . . , i− 1 do

26:

 mj,i

mj+1,i

 =

 cj sj

−sj cj

 mj,i

mj+1,i


27: end for

28: Compute ith Givens rotation, and perform for γ and last column of m.

29:

 γi

γi+1

 =

 ci si

−si ci

γi
0


30: mi,i = cimi,i + simi+1,i, mi+1,i = 0.

31: if |γi+1| ≤ ϵtol then

32: Compute y from My = ξ, where (M)j,i = mj,i.

33: Y11 = {y1V (1)
11 , . . . , ykV

(i)
11 }, Y12 = {V (1)

12 , . . . , V
(i)
12 }.

34: Y21 = {y1V (1)
21 , . . . , ykV

(i)
21 }, Y22 = {V (1)

22 , . . . , V
(i)
22 }. Yij ← T (Yij)

35: Y31 = {y1V (1)
31 , . . . , ykV

(i)
31 }, Y32 = {V (1)

32 , . . . , V
(i)
32 }.

36: (Ỹ11, Ỹ12, Ỹ21, Ỹ22, Ỹ31, Ỹ32)=P−1
0 (Y11, Y12, Y21, Y22, Y31, Y32). Ỹij ← T (Ỹij)

37: Θ11 = {Θ(0)
11 , Ỹ11}, Θ12 = {Θ(0)

12 , Ỹ12}.

38: Θ21 = {Θ(0)
21 , Ỹ21}, Θ22 = {Θ(0)

22 , Ỹ22}. Θij ← T (Θij)

39: Θ31 = {Θ(0)
31 , Ỹ31}, Θ32 = {Θ(0)

32 , Ỹ32}.

40: end if

41: end while
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where S̃ =
(
G0⊗ K̃0

)
M−1

γ

(
G0⊗ K̃0

)T corresponds to the approximated Schur com-

plement with K̃0 = K0 +
√

1+γ
µ
M diag(1I); see, e.g, [21, 128].

5.5 Numerical Results

The numerical experiments in this section demonstrate the performance of the pro-

posed discretization approaches and a low–rank variation of the GMRES method-

ology. On a 32 GB RAM Ubuntu Linux computer, all numerical calculations are

carried out in MATLAB R2021a. When the residual shrinks below the specified

tolerance threshold (ϵtol = 5 × 10−3) or when the maximum number of iterations

(#itermax = 250) is reached, iterative techniques are terminated. In order to avoid

iterating the noise during the low-rank process, the truncation tolerance ϵtrunc = 10−8

is selected such that ϵtrunc ≤ ϵtol.

In the numerical experiments, the random coefficient z is described by the covariance

function in (3.59) with the correlation length ℓn. Linear elements are used to generate

the discontinuous Galerkin basis, whereas the Legendre polynomials are taken as

the stochastic basis functions since the underlying random variables have uniform

distribution over [−
√
3,
√
3], that is, ξj ∼ U [−

√
3,
√
3], j = 1, . . . , N . Further, all

parameters used in the simulations are described in Table 5.1.

Table 5.1: Descriptions of the parameters used in the simulations.

Parameter Description
Nd degree of freedoms for the spatial discretization
N truncation number in KL expansion
Q highest order of basis polynomials for the stochastic domain
µ regularization parameter of the control u
γ risk-aversion parameter
ν viscosity parameter
ℓ correlation length
κz standard deviation
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5.5.1 Unconstrained Problem with Random Diffusion Parameter

For the first example, we present an unconstrained optimal control problem, that is,

Uad = U , having a random diffusion coefficient defined on D = [−1, 1]2 with the

source function f(x) = 0, the convection parameter b(x) = (0, 1)T , and the Dirichlet

boundary condition

yDB(x) =

yDB(x1,−1) = x1, yDB(x1, 1) = 0,

yDB(−1, x2) = −1, yDB(1, x2) = 1.

The random diffusion parameter is chosen as a(x, ω) = ν z(x, ω), where the random

field z(x, ω) has the unity mean with the corresponding covariance function (3.59)

and ν is the viscosity parameter. The desired state (or target) yd corresponds to the

stochastic solution of the forward model by taking u(x) = 0. It is noted that the

desired state exhibits an exponential boundary layer near x2 = 1, where the solution

changes in a dramatic manner; see Figure 3.1.

Table 5.2: Example 5.5.1: Computational values of the cost functional J (uh) and
tracking term ∥yh − yd∥2X obtained by L\B with Nd = 6144, N = 3, Q = 3,
ℓ = 1, κz = 0.5, and γ = 1 for varying values of the viscosity parameter ν and the
regularization parameter µ.

µ = 1 µ = 10−2 µ = 10−4 µ = 10−6

ν = 1
J (uh) 1.2393e-05 2.5034e-06 1.0257e-06 9.7533e-07

∥yh − yd∥2X 5.4679e-06 7.1725e-07 3.2113e-08 1.6931e-09

ν = 10−2
J (uh) 1.4349e-05 8.3285e-06 7.2067e-07 6.0683e-07

∥yh − yd∥2X 1.3120e-05 4.1452e-06 9.0731e-08 3.5983e-09

ν = 10−4
J (uh) 1.3675e-05 1.1798e-06 3.9380e-07 3.7211e-07

∥yh − yd∥2X 1.5285e-05 4.3924e-07 1.1422e-07 8.3896e-09

The tracking term ∥yh− yd∥2X and cost functional J (uh) obtained by L\B are shown

in Table 5.2 for various values of the viscosity parameter ν and the regularization

parameter µ. As µ declines, it is noticed that both the tracking term and the objective

functional get smaller. Moreover, Table 5.3 shows that the peak values of states’

variance can be reduced by increasing the value of the parameter γ.

In Table 5.4, we next show the performance of L\B in terms of total CPU times (in

seconds) and storage requirements (in KB). Nevertheless, due to the simulation termi-
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Table 5.3: Example 5.5.1: Peak values of the states’ variance obtained by L\B with
Nd = 6144, N = 3, Q = 3, ℓ = 1, ν = 1, and µ = 1 for varying values of the
risk–aversion γ and the standard deviation κz.

κz = 0.05 κz = 0.25 κz = 0.5

γ = 0 4.5406e-05 1.1980e-03 5.7995e-03
γ = 1 4.1995e-05 1.0984e-03 5.1327e-03
γ = 2 3.8944e-05 1.0110e-03 4.5807e-03
γ = 3 3.6207e-05 9.3377e-04 4.1243e-03
γ = 4 3.3731e-05 8.6520e-04 3.7409e-03

Table 5.4: Example 5.5.1: Total CPU times (in seconds) and memory (in KB) for
Nd = 6144, Q = 3, ℓ = 1, µ = 10−2, γ = 1, and κz = 0.5.

L\B ν = 100 ν = 10−2 ν = 10−4

N CPU (Memory) CPU (Memory) CPU (Memory)
2 116.0 (2880) 116.1 (2880) 117.5 (960)
3 779.6 (5760) 787.7 (5760) 813.0 (5760)
4 OoM OoM OoM

nating with “out of memory”, which we have designated as “OoM”, some numerical

results could not been reported. Therefore, we require efficient numerical techniques

or solvers, such as the low–rank variation of GMRES iteration with a mean based

preconditioner P0, to address the curse of dimensionality and hence to raise the value

of truncation number N .
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Figure 5.1: Example 5.5.1: Behaviours of the cost functional J (uh) (left), the track-
ing term ∥yh − yd∥2X (middle), and the relative residual (right) with Nd = 6144,
Q = 3, ℓ = 1, ν = 1, µ = 10−2, γ = 0, and the mean-based preconditioner P0 for
varying values of κz.

Table 5.5 presents the simulation results by taking into account several data sets in the

low–rank format. We provide findings for altering the truncation numberN in the KL
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Table 5.5: Example 5.5.1: Total number of iterations, total rank of the truncated
solutions, total CPU times (in seconds), relative residual, and memory demand of the
solution (in KB) with Nd = 6144, Q = 3, ℓ = 1, κz = 0.5, ν = 1, γ = 0, and the
mean-based preconditioner P0 for varying values of N and µ.

µ = 1 µ = 10−2 µ = 10−4

N = 4

#iter 250 250 250
Rank 51 51 51
CPU 40126.1 40017.9 39950.4
Resi. 3.5759e-02 3.3521e-02 3.7375e-02

Memory 2461.9 2461.9 2461.9

N = 5

#iter 250 250 250
Rank 84 84 84
CPU 91366.2 90544.0 90021.2
Resi. 2.1672e-02 2.3056e-02 3.1080e-02

Memory 4068.8 4068.8 4068.8

N = 6

#iter 250 250 250
Rank 126 126 126
CPU 208643.4 207964.0 207464.4
Resi. 1.8357e-02 1.8064e-02 2.0494e-02

Memory 6130.7 6130.7 6130.7

N = 7

#iter 250 250 250
Rank 180 180 180
CPU 355115.9 355167.5 355652.3
Resi. 1.1208e-02 1.3833e-02 1.4914e-02

Memory 8808.8 8808.8 8808.8

expansion and the regularization parameter µ for κz = 0.5 in Table 5.5 while holding

the other parameters fixed. The difficulty of the task, as measured by the number of

ranks, memory, and CPU time, grows as N increases. Another important finding is

that when N increases, the relative residual declines regardless of the value of µ.

Next, the effect of the standard deviation parameter κz is investigated on the nu-

merical simulations. The behaviours of the cost functional J (uh), the tracking term

∥yh−yd∥2X , and the relative residual for different values of κz are shown in Figure 5.1.

It can be seen that when the value of κz rises, the values of J (uh) and ∥yh − yd∥2X
monotonically decrease. Moreover, the low-rank version of the preconditioned GM-

RES algorithm produces convergence behaviour for all κz values. Last but not least,

Figure 5.2 shows that the speed of convergence of relative residual decreases by in-
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creasing the value of risk–aversion parameter γ in the beginning of the iteration.
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Figure 5.2: Example 5.5.1: Convergence of LRPGMRES with Nd = 6144, N = 5,
Q = 3, ℓ = 1, µ = 1, and ν = 1 for varying κz and γ.

5.5.2 Unconstrained Problem with Random Convection Parameter

Our second example is an unconstrained optimal control problem containing random

velocity input parameter. To be precise, we set the deterministic diffusion parameter

a(x, ω) = ν > 0, the deterministic source function f(x) = 0, and homogeneous

Dirichlet boundary conditions on the spatial domain D = [−1, 1]2. On the other

hand, the random velocity field b(x, ω) is defined as b(x, ω) = (z(x, ω), z(x, ω))T ,

where the random input z(x, ω) has the unity mean, i.e., z(x) = 1. Further, the

desired state yd is given by

yd(x) = exp

[
−64

((
x1 −

1

2

)2

+

(
x2 −

1

2

)2
)]

.

Figure 5.3 and 5.4 display, respectively, the mean of state E[yh] and the control uh

for varied values of the regularization parameter µ obtained by solving the full–rank

system L\B. As the previous example, we observe that the state yh becomes closer

to the target solution yd while µ decreases.

Next, we compare the full–rank solutions obtained by solving the system L\B with

the low–rank ones. Figure 5.5 exhibits the behaviours of the cost functional J (uh)
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Figure 5.3: Example 5.5.2: Simulations of the mean of state E[yh] obtained by L\B
with Nd = 6144, N = 3, Q = 3, ℓ = 1, κz = 0.05, ν = 1, and γ = 0 for varying
µ = 1, 10−2, 10−4, 10−6 and the desired state yd.

Figure 5.4: Example 5.5.2: Simulations of the control uh obtained solving by L\B
with Nd = 6144, N = 3, Q = 3, ℓ = 1, κz = 0.05, ν = 1, and γ = 0 for varying
regularization parameter µ = 1, 10−2, 10−4, 10−6.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 1

10
-3

10
-2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1 1

10
-4

10
-3

10
-2

0 10 20 30 40 50

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.5: Example 5.5.2: Behaviours of the cost functional J (uh) (left), the track-
ing term ∥yh − yd∥2X (middle), and the relative residual (right) with Nd = 6144,
N = 3, Q = 3, κz = 0.05, ℓ = 1, ν = 1, γ = 0, and the mean-based preconditioner
P0 for varying µ.
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(left), the tracking term ∥yh−yd∥2X (middle), and the relative residual (right) for vary-

ing values of the regularization parameter µ. The key observation is that the low–rank

solutions display the same pattern with the full–rank solutions as µ increases. More-

over, Table 5.6 reports the results of the simulations by considering various values of

the risk–aversion parameter γ. As the previous example, the relative residual becomes

smaller as decreasing the value of γ.

Table 5.6: Example 5.5.2: Simulation results showing total number of iterations,
ranks of the truncated solutions, total CPU times (in seconds), relative residual, and
memory demand of the solution (in KB) with Nd = 6144, N = 3, Q = 3, ℓ = 1,
ν = 1, µ = 10−6, and the mean-based preconditioner P0 for varying γ.

γ = 0 γ = 10−6 γ = 10−4 γ = 10−2 γ = 1

#iter 250 250 250 250 250
Rank 29 30 30 30 21
CPU 24468.2 19383.2 17382.0 17422.8 17797.1
Resi. 2.1733e-01 2.6663e-01 4.0428e-01 6.9542e-01 9.1911e-01

Memory 1396.5 1444.7 1444.7 1444.7 963.2

Last, we investigate the effect of the mean of random input z(x) on both full–rank

and low–rank solutions. Denoting the full–rank solution and the low-rank solution by

yf and yl, respectively, the behaviour of the differences ∥yf − yd∥2X , ∥yl − yd∥2X , and

∥yf − yl∥2X computed by solving the full–rank and low–rank systems is displayed in

Figure 5.6. As increasing the mean of random input z(x), the difference between the

full–rank and low–rank solutions becomes smaller.
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Figure 5.6: Example 5.5.2: Behaviour of the differences ∥yf−yd∥2X (left), ∥yl−yd∥2X
(middle), and ∥yf − yl∥2X (right), where the full–rank and low–rank solutions are
denoted by yf and yl, respectively, computed by solving the full–rank and low–rank
systems with Nd = 6144, N = 3, Q = 3, ℓ = 1, µ = 10−6, γ = 0, ν = 1, and
κz = 0.05 for varying values of the mean of random input z(x).
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5.5.3 Constrained Problem with Random Convection Parameter

Last, a constrained optimal control problem containing a random velocity parameter

is considered. With the exception of Example 5.5.2, there exists an upper bound for

the control variable such as ub = 100. The regularization and risk–averse parame-

ters are selected as µ = 10−6 and γ = 0, respectively, taking the findings from the

previous case into consideration.

The desired state yd, the mean of the state E[yh], and the control uh obtained by L\B
are shown in Figure 5.7. It is noted that the upper bound of the control constrained

is satisfied. Table 5.7 compares the low–rank solutions with the full–rank ones. As

increasing the truncation number N , we obtain better results as expected.

Figure 5.7: Example 5.5.3: Simulations of the desired state yd, the mean of state
E[yh], and the control uh (from left to right) obtained by L\B with Nd = 6144,
N = 3, Q = 3, ℓ = 1, κz = 0.05, and ν = 1.

Table 5.7: Example 5.5.3: Simulation results showing the memory demand of the
solution (in KB), the objective function J (uh), the tracking term ∥yh − yd∥2X , the
difference of the full–rank and low–rank ∥yf − yl∥2X , ranks of the truncated solutions,
and the relative residual with Nd = 6144, Q = 3, ℓ = 1, ν = 1, and the mean-based
preconditioner P0.

Memory J (uh) ∥yh − yd∥2X ∥yf − yl∥2X Rank Res.
N = 3 5744.0 5.508e-04 6.031e-04
N = 3 1444.7 1.046e-02 2.091e-02 1.802e-02 30 9.232e-01
N = 4 2461.9 1.029e-02 2.056e-02 1.769e-02 51 9.161e-01
N = 5 4068.8 9.996e-03 1.996e-02 1.713e-02 84 9.042e-01
N = 6 6130.7 9.616e-03 1.919e-02 1.642e-02 126 8.895e-01
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5.6 Discussion

In this chapter, the statistical moments of a robust deterministic optimal control prob-

lem subject to a convection diffusion equation having random coefficients have nu-

merically been studied. Based on the finding in Chapter 3, the original problem

is turned into a large system of deterministic optimal control problems for each

realization of the random coefficients using the stochastic discontinuous Galerkin

method. Nevertheless, some numerical results could not be reported when increasing

the value of truncation number N . As a result, a low–rank variant of GMRES itera-

tion (LRPGMRES) with a mean–based preconditioner, which reduces computational

time and memory needs, has been used to break the curse of dimensionality problem.

It has been shown in the numerical simulations that LRPGMRES can be an alternative

to solve such large systems.
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CHAPTER 6

CONCLUDING REMARKS

In this thesis, we have mainly investigated the numerical behaviour of a single partial

differential equation, namely, convection diffusion, containing random coefficients

and then have extended our findings to an optimal control problem constrained by the

underlying PDE with uncertain terms.

The starting point has been the state equation which is the convection diffusion equa-

tion containing random inputs in Chapter 3. With the help of the stochastic Galerkin

approach, we have transformed the original problem into a system consisting of de-

terministic convection diffusion equations for each realization of random coefficients.

On the other hand, the symmetric interior penalty discontinuous Galerkin method has

been applied to discretize the spatial domain due to its local mass conservativity,

which is a crucial property for convection dominated problems. To solve the large–

size and computationally challenging linear systems emerging from the stochastic

Galerkin method, we have used the low–rank Krylov subspace methods, which reduce

memory demand and computational costs. It has been seen in the numerical simula-

tions that the low-rank GMRES algorithm is more efficient than CG, BiCGstab, and

QMRCGstab for the convection dominated models.

Next, the focus of Chapter 4 has been on the efficient adaptive stochastic discontinu-

ous Galerkin methods for the numerical solution of convection dominated equations

with parameter dependent inputs. SG methods allow the separation of the spatial

and stochastic variables, which provides a reuse of established numerical techniques

such as a posterior error analysis, adaptive refinement in the physical, and adaptive

enrichment probability domains. The boundary and/or interior layers, which cause
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difficulties in computing numerical solutions to convection dominated problems, are

resolved by applying adaptive stochastic discontinuous Galerkin methods driven by

a residual–based posteriori error estimator. Promising numerical examples have been

provided, opening the door to a variety of perspectives, such as combination with

spatial mesh refinement and index enrichment of basis polynomials.

In the last part of the thesis, the findings in Chapter 3 have been extended to PDE-

constrained optimization problems in Chapter 5. In addition to the single convection

diffusion equations, the numerical solution of the optimization problems governed by

convection diffusion PDEs suffers from additional memory requirements and com-

putational complexity. In spite of the nice properties exhibited by the stochastic dis-

continuous Galerkin method, the dimension of the resulting linear system increases

rapidly. As a remedy, we have applied a low–rank variant of the generalized minimal

residual (GMRES) method [133] with a suitable preconditioner based on the results

in Chapter 3. The numerical simulations of benchmark examples have shown that the

low-rank iterative solver, especially the GMRES, is efficient in handling large-size

problems.

As a future study, it will be interesting that randomness can be considered in different

forms, for instance, in boundary conditions, desired state, or geometry; see, e.g.,

[85, 154]. Moreover, the adaptivity concepts can be extended to PDE–constrained

optimization problems since the optimality conditions for the optimization problems

governed by convection diffusion PDEs with uncertainty involve not only the original

convection diffusion state equation, but also another convection diffusion PDE, the

so-called adjoint PDE, so we refer to [157, 158, 160] and references therein. The

diffusion part of the adjoint PDE is equal to that of the state PDE, but the convection

in the adjoint PDE is equal to the negative of the convection in the state PDE. This

has important implications for the behaviour of the solution, as well as for numerical

methods. When convection dominates diffusion, the layers are generated in the state

PDE as well as in the adjoint PDE, and are determined by the convection as well as

by its negative; see, e.g., [70, 93]. This causes more difficulties than studying the

solution of a single convection diffusion PDE. Recent studies in [23, 111] show that

discontinuous Galerkin (DG) discretizations enjoy a better convergence behaviour for

convection dominated optimal control problems.
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