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ABSTRACT 

 

ROBUST MAXIMAL COVERING LOCATION MODELS  

CONSIDERING PARTIAL COVERAGE 

 

 

Köksal, Burak 

Master of Science, Industrial Engineering 

Supervisor: Prof. Dr. Esra Karasakal 

Co-Supervisor: Prof. Dr. Orhan Karasakal 

 

 

May 2023, 90 pages 

 

 

Maximal Coverage Location Problem (MCLP) attempts to find a predetermined 

number of facilities to maximize the number of demand points that can be covered. 

In MCLP, while all demand points within a critical distance of a facility are 

completely covered, demand points exterior this region are not covered at all. In 

Partial MCLP (MCLP-P), another critical distance is introduced which allows 

coverage between two critical distances, monotonically decreasing with respect to 

demand points’ distance from facilities. In this thesis, we study MCLP-P under 

coverage uncertainty. We utilize robust optimization framework and introduce two 

different strategies to hedge against uncertainty. We propose multiple solution 

approaches for both strategies. We show interpretation of the proposed robust 

optimization models from the perspective of game theory using payoff tables. We 

present the impact of the models and compare the performance of the proposed 

solution approaches on randomly generated datasets. 

Keywords: Maximal coverage location problem, robust optimization, decision 

making under uncertainty, facility location, combinatorial optimization 



 

 

vi 

 

ÖZ 

 

KISMİ KAPSAMA ALTINDA  

GÜRBÜZ MAKSİMUM KAPSAMA MODELLERİ 

 

 

 

Köksal, Burak 

Yüksek Lisans, Endüstri Mühendisliği 

Tez Yöneticisi: Prof. Dr. Esra Karasakal 

Ortak Tez Yöneticisi: Prof. Dr. Orhan Karasakal  

 

 

Mayıs 2023, 90 sayfa 

 

Maksimum Kapsama Problemi (MCLP), kapsanacak talep miktarını maksimize 

edebilecek en iyi tesisleri bulmaya çalışır. MCLP'de tesisler, kritik mesafe adı verilen 

bir uzaklığa kadar yer alan tüm talep noktalarını tamamen kapsarken, bu uzaklığın 

dışındaki talep noktalarını hiç kapsamaz. Kısmi MCLP'de (MCLP-P) tanımlanan  

ikinci kritik mesafe, talep noktalarının tesislerden uzaklığına göre monoton olarak 

azalacak şekilde iki kritik mesafe arasında kapsamaya izin verir. Bu tezde, MCLP-P 

kapsama belirsizliği altında incelenmiştir. Gürbüz optimizasyon kullanılarak iki 

farklı çözüm yaklaşımı geliştirilmiştir. Önerilen çözüm stratejileri için farklı çözüm 

yöntemleri sunulmuştur. Sunulan gürbüz optimizasyon modelleri, sonuç tabloları 

kullanılarak oyun teorisi perspektifinden incelenmiştir. Önerilen çözüm 

yöntemlerinin etkisi ve modellerin performansı rassal olarak üretilmiş verisetleri 

üzerinde test edilmiştir. 

Anahtar Kelimeler: Maksimum kapsama problemi, gürbüz optimizasyon, belirsizlik 

altında karar verme, tesis yerleştirme, kombinatoryal optimizasyon 
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CHAPTER 1  

1 INTRODUCTION  

Facility locations problems aim to choose the "best" possible sites for a set of 

facilities to meet a particular set of demand points. Maximal Coverage Location 

Problem (MCLP) deals with finding a predetermined number of facilities to 

maximize the number of demand points that can be covered. In the classical MCLP, 

it is assumed that all demand points within a critical distance from a facility are 

completely covered, while the demand points outside this critical distance are not 

covered at all (Church and ReVelle, 1974). 

 

 

 

Figure 1.1. Coverage in the classical MCLP (★: Open facility, ⚫: Demand point) 
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However, in the classical MCLP problem, optimal solution is highly sensitive to the 

choice of the critical distance. Any demand point is fully covered until it reaches a 

certain critical distance from the center of the facility, but not covered at all exterior 

of this critical distance. Therefore, determining a single critical distance value may 

be problematic as it may lead to erroneous solutions. Based on this problem, Berman 

et al. (2003) and Karasakal and Karasakal (2004) define a second critical distance by 

introducing the idea of partial coverage. 

In their study, while all demand points up to the minimum critical distance from the 

center of the facility are fully covered, demand points between the minimum and 

maximum critical distances to the facility are “partially” covered. This coverage 

decreases along with the distance from the facility. Full coverage is achieved up to 

the minimum critical distance. Between the minimum and the maximum critical 

distances, coverage gradually decreases as demand point approaches the maximum 

critical distance. Finally, facilities do not perform any coverage outside the 

maximum critical distance. 

 

 

Figure 1.2. Coverage in the MCLP-P (★: Open facility, ⚫: Demand point) 
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This approach clearly enables us to find more realistic solutions than the classical 

MCLP approach. However, it is not easy to determine critical distances in real life. 

Critical distances of facilities are typically under the influence of many exogenous 

factors that are out of control of the decision-makers. Hence, disregarding their 

varying nature may result in finding solutions that are impractical in real-life. 

Therefore, the decision of selecting facilities that will cover the most demand points 

should be taken while carefully acknowledging this uncertainty.  

We adopt the robust optimization methodology to address this uncertainty. In robust 

optimization, it is assumed that uncertain data belongs to an uncertainty set. 

Uncertainty set is a set that contains all possible values for uncertain parameters 

aimed to be dealt with in a robust optimization problem. Robust optimization is 

widely popular as it is computationally tractable for many different types of 

uncertainty sets and problems. 

In this thesis, we introduce an approach to hedge against coverage uncertainty for 

MCLP-P based on the robust optimization framework presented in Bertsimas and 

Sim (2003). We propose two different models, namely robust and semi-robust 

models to deal with uncertainty. For the robust model, we propose a mixed integer 

linear programming formulation and a Benders decomposition algorithm to solve the 

problem. For the semi-robust model, we present two exact and two heuristic solution 

approaches. We propose a mixed integer linear program and a Benders 

decomposition algorithm as exact methods. For the Benders decomposition 

algorithm, we propose a method to obtain Benders cuts in linear time. Then, we 

present Greedy Neighborhood Search and Random Neighborhood Search as 

heuristics. We further investigate the process of finding robust solutions from the 

perspective of game theory using payoff tables, and present its interpretation. 

Organization of this thesis is as follows. In Chapter 2, we present the literature review 

for the study. In Chapter 3, we introduce the robust model and the proposed solution 

approaches. In Chapter 4, we present the semi-robust model, and the developed 

solution methodologies. In Chapter 5, we present the computational experiments. In 
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Chapter 6, we present solution insights. In Chapter 7, we summarize our findings 

and conclude the thesis. 
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Maximal Covering Location Problem 

Berman and Krass (2002) investigate the MCLP case where partial coverage is 

allowed. In the study, degree of coverage for any demand point is a non-increasing 

step function of the distance to the closest facility. They show that the problem is 

equivalent to the uncapacitated facility location problem (UFLP).  

Berman et al. (2003) study an extension of the generalized MCLP model analyzed 

in Berman and Krass (2002). They consider general forms of the coverage decay 

function in the paper. In addition to the UFLP-based formulation, authors develop 

an alternative formulation that yields significant computational improvements. 

Drezner et al. (2004) minimizes the total weighted non-coverage of demand points 

instead of maximizing the coverage. They convert the formulation to the Weber 

problem by imposing a special structure on its cost function. 

Karasakal and Karasakal (2004) formulates the problem based on the classical p-

median formulation where they maximize the coverage of demand points instead of 

minimizing the total distance. In their study, they relax the restriction on the coverage 

function for their model by allowing the use of any coverage function if the coverage 

level decreases as distance increases. Authors develop a solution procedure based on 

Lagrangian relaxation. 

Eydi and Mohebi (2018) examine the gradual MCLP with variable radius over multi-

periods. Each facility has a fixed cost together with a variable cost which depends 
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on the coverage radius of the facility. Authors attempt to maximize the coverage and 

minimize the relocation cost at the same time.  

Berman et al. (2009) studies the combination of ordered median location problem 

and gradual coverage location problem. Ordered median location problem is a 

generalization of most of the classical location problems such as p-median or p-

center which considers only relative customer-to-facility distance. By combining it 

with gradual coverage, authors are able to obtain a model that takes both relative and 

absolute customer-to-facility distances into account. 

Drezner and Drezner (2014) discuss the gradual covering problem case where every 

facility is allowed to cover multiple demand points and each demand point is allowed 

to be covered by multiple facilities. Authors argue that partial coverage can be 

interpreted as the probability that the full coverage will occur. In the paper, authors 

aim to maximize the minimum coverage of each demand point.  

Berman et al. (2019) discuss the multiple gradual cover location problem in the 

presence of joint coverage. Formulations in the study is based on the work of Drezner 

and Drezner (2014). However, different from the work of Drezner and Drezner 

(2014), authors aim to maximize the total joint cover of all demand points in this 

study.  

Álvarez-Miranda and Sinnl (2019) propose an exact solution framework for the 

multiple gradual cover problem. They consider the case where joint coverage is 

allowed and build their formulations upon the work of Drezner and Drezner (2014) 

and Drezner et al. (2019). Authors present four different mixed integer programming 

formulations for the problem by exploiting the submodularity of the objective 

function.  

Peker and Kara (2015) demonstrate the concept of gradual coverage to p-hub 

maximal covering problem. Authors present several mixed integer programming 

models that are applicable for both binary and partial coverages.  
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Karatas (2017) studies a multi-objective facility location problem which combines 

gradual coverage, cooperative coverage, and variable coverage concepts. Objectives 

in this study consists of covering demand points at a satisfactory level inexpensively 

and maintaining balanced workload among facilities.  

Drezner et al. (2019) investigates the case where demand points are represented by 

circular discs instead of mathematical points. In the study, demand covered by a 

facility is obtained as the intersection area of the disc centered at the demand and the 

disc centered at the facility. Partial cover of the demand is the intersection area 

divided by the area of the demand’s disc.  

Drezner et al. (2020a) study an extension of the directional approach to gradual 

cover. Unlike the work of Drezner et al. (2019), they aim to maximize the minimum 

cover for all demand points. 

Drezner et al. (2020b) discuss the gradual decline in attraction from 1 to 0 for the 

competitive facility location problems. Authors indicate that in competitive location 

problems, increasing function of market share is assumed as profit or revenue. 

Hence, maximizing market share is equivalent to maximizing profit or revenue. In 

this study, authors present formulations to maximize total market share for both 

single-facility and multi-facility cases.  
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2.2 Robust Optimization 

In real life decision-making problems, it is not possible to know everything in 

advance in a deterministic sense. Hence, solving problems assuming that the data is 

precisely known and using exact parameters could yield impractical solutions. In 

order for output of a model to be more applicable in practice, such uncertainties 

should be taken into account and the goal should be to develop models that are 

immune to these uncertainties as much as possible. Knowing that, if we correctly 

define these uncertainties and try to hedge against them in the most appropriate way 

possible, we would obtain significantly better solutions. 

There are various ways to deal with uncertainty in the decision-making literature. 

Two main approaches are stochastic and robust optimization. Stochastic 

optimization is based on the assumption that the probability distribution of uncertain 

data must be known. If this assumption holds for the data at hand, and if the 

stochastic reformulation is tractable, then the problem can be solved by stochastic 

optimization. However, it is not always the case. It may not be very straightforward 

to fit a probability distribution to data. In addition, chance constrained problems 

commonly are not computationally tractable. Yet, there are still many problems that 

can be solved using stochastic optimization, and it is one of the most popular 

approaches to handle uncertainty in optimization problems. The other common 

methodology is robust optimization. In robust optimization, the assumption is that 

the data belongs to an uncertainty set rather than a probability distribution. Robust 

optimization is popular as it is tractable for many types of uncertainty sets and 

problems. (Gorissen et al., 2015)  

In this thesis, we address the coverage uncertainty in MCLP-P. In MCLP-P, coverage 

values are defined for each demand-facility pair and is a function of the distance 

between these pairs. Knowing that the MCLP-P is already NP-Hard, obtaining the 

underlying probability distribution of each coverage value for all demand-facility 

pairs and solving the resulting optimization problem would pose a significant 



 

 

10 

challenge. Therefore, we adopt the robust optimization methodology as it allows to 

obtain rather tractable reformulations. 

The first paper in robust optimizaton dates back to 1970s, however it has been mostly 

developed in the last 20 years (Gorissen et al., 2015). In Soyster (1973), author 

considers data uncertainty in columns. It aims protection at the highest level for each 

constraint, thus it is one of the most conservative approaches in the robust 

optimization literature. To overcome this over-conservatism, Ben-Tal and 

Nemirovski (2000) proposed ellipsoid uncertainty sets and developed algorithms to 

address convex optimization optimization problems with uncertain data. However, 

as it contains conic quadratic formulation, it cannot be applied to combinatorial 

optimization problems directly. Bertsimas and Sim (2004) introduce another 

approach which not only enables adjusting conservatism level quite flexibly by 

varying a single parameter, but also leads to computationally tractable 

reformulations. Based on their work published in that paper, in Bertsimas and Sim 

(2003), authors demonstrate that their approach can be adopted for discrete 

optimization and network flow problems. They address data uncertainty both in cost 

coefficients and constraints, and demonstrate that their approach retains the original 

nominal problem’s complexity. In this thesis, we utilize the robust optimization 

framework introduced in Bertsimas and Sim (2003).  

In this thesis, we additionally demonstrate the connection between discrete robust 

optimization and game theory for MCLP.  In order to do that, we examine maximin 

and maximax concepts over payoff tables and explain their possible interpretations 

for discrete robust optimization along with illustrations. 
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2.3 Robust Optimization in Location Problems 

Schmid and Doerner (2010) study ambulance location and relocation problem to 

cover potential future demand in a time-efficient manner. They prefer to approach 

this problem in a multi-period fashion since the travel times differ throughout the 

day and solving the static ambulance location problem may not be sufficient to 

address the problem effectively.  

Dibene et al. (2016) extend this model by including multiple scenarios considering 

factors such as the time of day and the day of the week. With the use of real-world 

emergency data obtained from the Red Cross of Tijuana, the scenarios are generated. 

Authors attempt to solve all these scenarios in a single optimization problem. To 

solve this problem, authors propose static and robust versions of three different 

coverage models: the MCLP, the Location Set Covering Model (LSCM), and the 

Double Standard Model (DSM).  

Vatsa and Jayaswal (2021) model the problem of assigning doctors to health centers 

as a robust capacitated multi-period MCLP with server uncertainty. Demand nodes 

can be covered fully or partially. Scenario dominance rules are presented to reduce 

the size of the formulation. Minimax regret approach is adopted.  

In Lei et al. (2014), authors aim to maximize the expected demand coverage while 

considering possible facility failures. The suggested model considers geographically 

varying facility failure probabilities.  

Álvarez-Miranda et al. (2015) examine the recoverable robust facility location 

problem. They define a location and allocation strategy in two stages such that the 

first stage solution they obtain should be robust to the data which can only be 

revealed in the second stage. Thereby, if required, it is possible to recover the 

solution in the second stage at low cost. Authors state that the proposed model is 

robust to any kind of provider-side, receiver-side, and in-between uncertainties.  
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Wang and Qin (2021) address partial coverage situation in the uncertain hub 

maximal covering location problem. Authors introduce the partial coverage 

parameter by considering travel times as uncertain variables. They present specific 

decay functions for the expected value of partial coverage parameter. Their objective 

is to maximize the service ability and economic effectiveness in a multi-objective 

model. 

Coco et al. (2018) investigate the min-max regret MCLP. They address a 

generalization of the classical MCLP where they seek to find a set of columns with 

the maximum benefit sum in a matrix of benefits. Benefits of each column are 

uncertain and defined as interval data. They further define scenarios for all possible 

benefit realizations of these data intervals defined for each column. In their study, 

they enforce that each row is covered at least by a single column. Then they aim to 

minimize the maximum regret over all possible scenarios in their study. They 

propose exact and approximation algorithms. However, they indicate that even 

though the large running times, they obtain results with high optimality gaps. 

In Chauhan et al. (2019), authors study MCLP with drones that have limited battery 

capacity. To acknowledge this fact, authors add a battery constraint which limits 

drones’ travel distance. Chauhan et al. (2021) extends this work by considering 

uncertainties in battery capacity and consumption aiming to find robust solutions. 

Facilities act as launching sites for drones and have limited supply to cover the 

customer demand. Drones make single delivery trips until their battery is exhausted. 

They attempt to maximize the demand covered by drones while considering 

uncertainties in battery availability and consumption. The uncertainty is modeled by 

utilizing a penalty-based approach and gamma robustness. 

Peng et al. (2017) formulate a two-stage robust facility location model that takes 

demand and transportation cost uncertainties, and facility disruptions into account. 

They address the uncertainty by introducing budget uncertainty set. 

Saif and Delage (2021) discuss distributionally robust version of the capacitated 

facility location problem, where customer demand is the uncertain parameter. 



 

 

13 

Models for both single and two-stage problems are presented. In the single-stage 

problem, all decisions are made at the beginning, whilst in the two-stage problem 

location decisions are made under distributional ambiguity and demands are 

allocated to facilities once demands become known. 

Santos et al. (2019) focus on the stochastic version of Equitable Sensor Location 

Problem which is a unique type of MCLP. The objective of this problem is to cover 

all locations equally given a limited number of sensors. Both ambiguous and resilient 

versions are considered. While the resilient version attempts to solve the problem 

under the assumption that the sensors are subject to partial or complete failure, the 

ambiguous version investigates the problem under uncertain surveying probabilities. 

Baldomero-Naranjo et al. (2021) examine the single-facility MCLP on a network. 

They consider the case where the demand is uncertain with only a known interval 

estimation and distributed along the edges. To hedge against uncertainty in demand, 

authors propose a minmax regret model, where the facility can be located anywhere 

in the network. 

Du and Zhou (2018) study p-center facility location problem under cost uncertainty. 

They adopt symmetric interval and multiple allocation strategy and utilize three 

uncertainty sets for the robust problem: box uncertainty, ellipsoidal uncertainty, and 

cardinality-constrained uncertainty. The objective is minimizing the maximum cost 

of covering a demand node. 

Robustness takes significant place in the hub location problems (HLP) as inadequate 

applications most likely result in undesired outcomes such as high costs and 

discontented customers. Hence, robust hub location problems have been studied 

extensively in the literature.  

Boukani et al. (2016) consider both single and multiple allocation HLP under fixed 

set-up cost and capacity uncertainties. Five different scenarios were defined for each 

uncertain parameter and minmax regret model is proposed.  
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Amin-Naseri et al. (2018) aim to minimize the overall transportation cost and 

maximum uncertainty in network by selecting location of the hubs and allocation of 

other nodes to the hubs. Authors employ a desirability function-based approach to 

consider both objectives.  

Li et al. (2020) consider HLP under flow and set-up cost uncertainties. Budget 

uncertainty set is utilized to address the uncertainty. They offer formulations for both 

single and multiple allocation situations. The set-up cost of a hub depends on the 

total flow through the hub. They aim to obtain protected solutions against worst cases 

of different uncertain parameters. 

Meraklı and Yaman (2016) investigate the robust multiple allocation p-hub median 

problem under polyhedral demand uncertainty. They address the uncertainty by 

utilizing hose and hybrid models. The hose model only imposes aggregate upper 

bounds on inbound and outbound traffic of each node, whereas the hybrid model 

additionally introduces lower and upper bounds on individual traffic demands. Their 

objective is to minimize the cost of the network under the worst-case scenario by 

employing a minmax criterion. In Meraklı and Yaman (2017), authors consider the 

capacitated hub location problem under hose demand uncertainty. 

Ghaffarinasab (2022) approaches this problem with the same objective by using 

budget of uncertainty parameter which allows adjusting the level of conservatism. 

They utilize the budget of uncertainty approach to cope with uncertainty. Minimax 

criterion is used.  



 

 

15 

 

T
ab

le
 2

.2
 L

o
ca

ti
o

n
 P

ro
b

le
m

s 
U

n
d

er
 U

n
ce

rt
ai

n
ty

 i
n

 t
h

e 
L

it
er

at
u

re
 

 
 

S
o

u
rc

e 
o

f 
U

n
ce

rt
a

in
ty

 
M

o
d

el
 T

y
p

e 
 

A
u

th
o

rs
 

P
ro

b
le

m
 

T
y

p
e 

C
o

st
 

D
em

a
n

d
 

T
ra

v
el

 

T
im

e 
O

th
er

 
D

et
er

m
in

is
ti

c 
S

to
ch

a
st

ic
 

H
a

n
d

li
n

g
 U

n
ce

rt
a

in
ty

 

K
ö

k
sa

l 
et

 a
l.

, 
2

0
2

3
 

M
C

L
P

 
 

X
 

 
 

X
 

 
𝛤

-r
o

b
u

st
n

es
s 

W
an

g
 a

n
d

 Q
in

, 
2

0
2

1
 

h
u

b
 M

C
L

P
 

 
 

X
 

 
 

X
 

E
x

p
ec

te
d

 v
al

u
e 

m
o
d

el
, 

ch
an

ce
 

co
n

st
ra

in
ed

 p
ro

g
ra

m
m

in
g

” 

G
h

af
fa

ri
n

as
ab

, 
2

0
2
2
 

H
L

P
 

 
X

 
 

 
X

 
 

M
in

m
ax

 r
eg

re
t,

 𝛤
-r

o
b

u
st

n
es

s 

B
al

d
o

m
er

o
-N

ar
an

jo
 e

t 

al
.,

 2
0

2
1
 

M
C

L
P

 
 

X
 

 
 

 
 

M
in

m
ax

 r
eg

re
t 

V
at

sa
 a

n
d

 J
ay

as
w

al
, 

2
0

2
1
 

M
C

L
P

 
 

 
 

X
 

X
 

 
M

in
m

ax
 r

eg
re

t 

S
ai

f 
an

d
 D

el
ag

e,
 2

0
2

1
 

F
L

P
 

 
X

 
 

 
 

X
 

D
R

O
 

C
h

au
h

an
 e

t 
al

.,
 2

0
2

1
 

M
C

L
P

 
 

 
 

X
 

X
 

 
P

en
al

ty
 b

as
ed

 a
p

p
ro

ac
h

, 
𝛤

-r
o

b
u

st
n
es

s 

L
i 

et
 a

l.
, 
2

0
2

0
 

H
L

P
 

X
 

 
 

X
 

X
 

 
U

n
ce

rt
ai

n
ty

 b
u
d

g
et

 

C
o

co
 e

t 
al

.,
 2

0
1
8
 

M
C

L
P

 
 

 
 

X
 

X
 

 
M

in
m

ax
 r

eg
re

t 

D
u

 a
n
d
 Z

h
o

u
, 
2
0

1
8
 

F
L

P
 

X
 

 
 

 
X

 
 

B
o

x
, 

el
li

p
so

id
al

, 
an

d
 c

ar
d
in

al
it

y
-

co
n

st
ra

in
ed

 u
n

ce
rt

ai
n

ty
 

M
er

ak
lı

 a
n
d

 Y
am

an
, 

2
0

1
7
 

H
L

P
 

 
X

 
 

 
X

 
 

H
o

se
 u

n
ce

rt
ai

n
ty

 

P
en

g
 e

t 
al

.,
 2

0
1
7

 
T

w
o

-s
ta

g
e 

F
L

P
 

X
 

X
 

 
X

 
X

 
 

B
u

d
g

et
 u

n
ce

rt
ai

n
ty

 s
et

 

B
o

u
k

an
i 

et
 a

l.
, 

2
0

1
6

 
H

L
P

 
X

 
 

 
X

 
X

 
 

M
in

m
ax

 r
eg

re
t 

D
ib

en
e 

et
 a

l.
, 
2

0
1

6
 

M
C

L
P

, 
L

S
C

M
, 

D
S

M
 

 
 

X
 

 
X

 
 

S
ce

n
ar

io
-b

as
ed

 o
p

ti
m

iz
at

io
n

 

M
er

ak
lı

 a
n
d

 Y
am

an
, 

2
0

1
6
 

H
L

P
 

 
X

 
 

 
X

 
 

H
o

se
 u

n
ce

rt
ai

n
ty

, 
h

y
b

ri
d
 u

n
ce

rt
ai

n
ty

, 

m
in

m
ax

 r
eg

re
t 

Á
lv

ar
ez

-M
ir

an
d

a 
et

 a
l.

, 

2
0

1
5
 

F
L

P
 

X
 

X
 

X
 

X
 

X
 

 
T

w
o

-s
ta

g
e 

R
O

 

S
ch

m
id

 a
n
d

 D
o

er
n

er
, 

2
0

1
0
 

D
S

M
 

 
 

X
 

 
X

 
 

M
u

lt
i-

p
er

io
d

 m
o
d

el
li

n
g

 

 



 

 

16 

2.4 Contributions to the Literature 

Different from the studies presented in this chapter, we adopt robust optimization 

framework to address coverage uncertainty in MCLP-P. We propose two models to 

hedge against uncertainty, namely robust and semi-robust approach. For the robust 

approach, we propose a mixed integer linear optimization formulation and a Benders 

decomposition algorithm. For the semi-robust strategy, we present a mixed integer 

linear optimization formulation and a Benders decomposition algorithm as exact 

methods and two heuristic solution approaches. In Benders decomposition 

algorithm, we propose a method to obtain Benders cuts in linear time. Then, using 

game theory payoff tables, we demonstrate how the suggested robust optimization 

model may be interpreted from the game theory standpoint. Finally, we discuss the 

impact of our model and compare the proposed solution approaches. 
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CHAPTER 3  

3 ROBUST MCLP-P 

In this chapter, we consider MCLP-P under coverage uncertainty within the robust 

optimization framework. In MCLP-P, coverage is a function of the distance between 

each facility-demand point pair and the provided coverage level depends on the 

critical distance of each facility. Proposed robust MCLP-P model assumes that upper 

and lower bounds of critical distances are the only available information. Given this 

limited information, motivation of this study is to obtain the best possible coverage 

levels under worst-case scenarios. The level of conservatism could be simply 

adjusted with 𝛤 parameter. In the following two sections we define the problem and 

provide a mathematical formulation of it. Then, we propose a mixed integer linear 

programming reformulation and a Benders decomposition algorithm to solve the 

problem. 

3.1 Problem Definition 

For the sake of completeness, we begin this chapter by presenting the deterministic 

MCLP-P formulation. Let  𝐼 denote the set of demand points, 𝐽 denote the set of all 

potential facility locations. 𝑆 is the minimum critical distance, and 𝑇 is the maximum 

critical distance for any potential facility 𝑗. Let 𝑐𝑖𝑗 represent the coverage level 

provided by potential facility 𝑗 at demand point 𝑖 and  𝑑𝑖𝑗 represent the distance from 

a demand point 𝑖 to a potential facility 𝑗. 𝑀𝑖 is the set of facilities that are eligible to 

cover demand point 𝑖. 𝑃 is the number of facilities to be opened. 
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The MCLP-P modeled by Karasakal and Karasakal (2004) is as follows: 

(𝑴𝑪𝑳𝑷 − 𝑷): 𝑚𝑎𝑥
𝑥,𝑦

 ∑∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈𝐽𝑖∈𝐼

 (1) 

𝑠. 𝑡.∑𝑦𝑗
𝑗∈𝐽

= 𝑃 (2) 

                                   𝑥𝑖𝑗 ≤ 𝑦𝑗 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝑀𝑖 (3) 

                                 ∑ 𝑥𝑖𝑗
𝑗∈𝑀𝑖

≤ 1 ∀𝑖 ∈ 𝐼 (4) 

                                  𝑥𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (5) 

                                    𝑦𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽 (6) 

 

where 

𝑥𝑖𝑗 = {
1, 𝑖𝑓 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 𝑖 𝑖𝑠 𝑒𝑖𝑡ℎ𝑒𝑟 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑜𝑟 𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑗
0,                                                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑦𝑗 = {
1, 𝑖𝑓 𝑎 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑠𝑖𝑡𝑒𝑑 𝑎𝑡 𝑗
0,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Coverage function under the MCLP-P is as follows: 

𝑐𝑖𝑗 = {

1, 𝑖𝑓 𝑑𝑖𝑗 ≤ 𝑆 

𝑓(𝑑𝑖𝑗),      𝑖𝑓 𝑆 < 𝑑𝑖𝑗 ≤ 𝑇

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Partial coverage function is represented as 𝑓(𝑑𝑖𝑗) ∈ ℝ
(0,1]. Partial coverage value 

for a demand point depends on the employed partial coverage function. The selected 

function should be monotonic, and nonincreasing within the increasing distance from 
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the facility. Berman et al. (2003) utilize linear decay function. In Karasakal and 

Karasakal (2004), authors compare four different possible coverage functions, 

sigmoid, classical, linear, and weighted linear partial coverage functions. For their 

computational study they use sigmoid function. In this study, we utilize a linear 

coverage function. However, as long as the partial coverage function is monotone 

decreasing with the increase in distance, any nonlinear function could also be 

utilized. 

Objective function in 𝐸𝑞. (1) maximizes the coverage level within the maximum 

critical distance. 𝐸𝑞. (2)  enforces that P facilities are opened. 𝐸𝑞. (3)  ensures that 

if facility 𝑗 covers demand point 𝑖, facility 𝑗 must be open. 𝐸𝑞. (4)  limits the number 

of facilities that can cover any demand point 𝑖 simultaneously to 1. 𝐸𝑞. (5) and 

𝐸𝑞. (6) enforces 𝑥𝑖𝑗 and 𝑦𝑗 to take binary values. 

MCLP-P extends the classical MCLP by introducing novel coverage levels. Let 𝑅 

denote the critical distance under the classical MCLP, its coverage function would 

be defined as follows:  

𝑐𝑖𝑗 = {
1, 𝑖𝑓 𝑑𝑖𝑗 ≤ 𝑅 

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Since MCLP only takes coverage as a binary function, it does not permit facilities to 

cover demand points that are exterior to their critical distance, even if they are away 

by a very small margin. However, this is not quite practical in real life. Facilities 

would be willing to cover such demand points since they would be able to cover 

many more demand points only by slightly extending their critical distance. In order 

to address this problem, in MCLP-P authors propose another critical distance which 

enables facilities to operate under more realistic settings. 

In MCLP-P, as in MCLP, the performance of the proposed solutions could 

deteriorate if critical distances are selected inaccurately. In such a case, if the critical 

distances are selected assuming the best-case scenario, we may try to cover demand 

points that could be impractical in real-life, at least under certain scenarios. On the 
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other hand, if the critical distances are chosen assuming the worst-case scenario, we 

may end up being too pessimistic and disregard possible coverage opportunities. 

Hence, both of these cases could lead to suboptimal solutions. 

However, selecting critical distances is not a simple task. They are under the 

influence of many exogenous factors and vary all the time. Hence, it is highly 

unlikely define the critical distances that reflect the real-life situations perfectly. In 

this study, we address this issue in MCLP-P and aim to find solutions that are robust 

to such changes in the critical distances. Since MCLP-P is a generalization of the 

classical MCLP, the proposed approach is applicable to the classical MCLP as well. 

Characterization of uncertainty accurately is the first step to tackle this problem 

effectively. Since the coverage values are a function of distance between each 

demand point-facility pair, we aim to address uncertainty in the critical distances. To 

explain our proposition in a coherent way, we only focus on uncertainty in the 

maximum critical distance in this thesis. Yet, the proposed model is valid for both 

critical distances, and applying the proposed approach to the minimum critical 

distance is straightforward. 

We utilize the robust optimization framework demonstrated in Bertsimas and Sim 

(2003), which is developed to address the uncertainties in discrete optimization 

problems. We aim to obtain solutions that are robust to exogenous factors. Any 

solution found by this model is expected be practical under various real-life 

situations. To achieve that, we define two scenarios for the maximum critical 

distance, i.e., the worst-case scenario and the average-case scenario. We represent 

these distances by 𝑇′ and 𝑇, respectively. 𝑓(𝑑𝑖𝑗) and 𝑓′(𝑑𝑖𝑗) are the partial coverage 

functions under average-case and worst-case scenarios, respectively. 

3.1.1 Coverage in the Average-Case Scenario 

For the average-case scenario, the coverage occurs as follows: 
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𝑐𝑖𝑗 = {

1,   𝑑𝑖𝑗 ≤ 𝑆

𝑓(𝑑𝑖𝑗),   𝑆 < 𝑑𝑖𝑗 ≤ 𝑇

0,   𝑇 < 𝑑𝑖𝑗

 

This is the equivalent coverage definition to MCLP-P. In average-case scenario we 

assume that facilities can serve demand points as they usually do and no significant 

exogenous factor can deterioate this coverage level. To give a practical example, we 

can think of average-case scenarios as hospitals covering demand points in a 

particular region while the traffic congestion is moderate or relatively low. 

Under this scenario, demand point 𝑖 can be completely covered by facility 𝑗 within 

the minimum critical distance 𝑆, can be partially covered between the minimum and 

the maximum critical distances 𝑇, and no coverage can take place after the maximum 

critical distance.  

The partial coverage function 𝑓(𝑑𝑖𝑗) should be monotonic and nonincreasing in the 

increasing distance from the facility. This would ensure that for given demand points 

𝑖1 and 𝑖2 and a potential facility 𝑗, if 𝑑𝑖1𝑗 ≥ 𝑑𝑖2𝑗, then 𝑐𝑖2𝑗 ≥ 𝑐𝑖1𝑗. 

3.1.2 Coverage in the Worst-Case Scenario 

For the worst-case scenario, the coverage function is as follows: 

𝑐𝑖𝑗
′ = {

1,   𝑑𝑖𝑗 ≤ 𝑆

𝑓′(𝑑𝑖𝑗),   𝑆 < 𝑑𝑖𝑗 ≤ 𝑇′

0,   𝑇′ < 𝑑𝑖𝑗

 

In the worst-case scenario, we define a novel maximum critical distance 𝑇′. Different 

than the average-scenario, in this case we assume that the coverage level of facilities 

is affected by exterior elements. Thus, the facilities can only provide service to 

smaller regions. As a practical example, this would be the case where hospitals 

serving demand points while traffic congestion takes place. This would lead 

ambulances to be able to only reach shorter distances in a given time, resulting in the 

decreased level of coverage. 



 

 

22 

Preferred partial coverage function characteristics defined in section 3.1.1. is also 

valid for the worst-case scenario. 

       

a)  The average-case scenario                          b) The worst-case scenario 

Figure 3.1. Comparison of coverage under the average-case scenario (a) and the 

worst-case scenario (b) using heat map visualization. (★: Open facility, ⚫: Demand 

point)  

3.1.3 Uncertainty Set for Each Demand Point-Potential Facility Pair 

To accurately identify the uncertainty set, we can investigate loss in coverage based 

on incorrect choice of the critical distances. We can define the coverage loss value 

as variation and denote it as ĉ𝑖𝑗. For each demand point-potential facility pair, 

variation becomes: 

ĉ𝑖𝑗 =

{
 
 

 
 

0,                      𝑑𝑖𝑗 ≤ 𝑆

𝑓(𝑑𝑖𝑗) − 𝑓′(𝑑𝑖𝑗),   𝑆 < 𝑑𝑖𝑗 ≤ 𝑇
′

    𝑓(𝑑𝑖𝑗),                  𝑇
′ < 𝑑𝑖𝑗 ≤ 𝑇

0,                      𝑇 < 𝑑𝑖𝑗
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             a) Average-case scenario   b) Worst-case scenario    c) Variation 

Figure 3.2. Visual demonstration of coverage under different scenarios and the 

variation 

 

In Figure 3.2, let the blue dots on the top represent the location of facility 𝑗. 

Semicircles from top to bottom are the minimum critical distance, the maximum 

critical distance under the worst-case scenario and the maximum critical distance 

under the average-case scenario. For any demand point-facility pair, this figure 

visualizes the coverage values under the average-case scenario, the worst-case 

scenario, and the variation values respectively. Note that to accurately incorporate 

distance uncertainty the same coverage function should be preferred both for the 

average and the worst-case scenarios. 

We can analyze the set of coverage values for each demand point and potential 

facility pair by utilizing the coverage values that have been specified so far. We know 

that coverage values should take a value between the worst-case and the average-

case scenarios. So, if we denote 𝑐𝑖𝑗 ∈ ℝ
[0,1] as the actual coverage value for any 

demand point-facility pair, we can investigate the four possible cases as follows: 

• 𝑑𝑖𝑗 ≤ 𝑆: 𝑐𝑖𝑗 ∈ [1 , 1]. So, 𝑐𝑖𝑗 = 1. 

• 𝑆 < 𝑑𝑖𝑗 ≤ 𝑇
′: 𝑐𝑖𝑗 ∈ [f

′(𝑑𝑖𝑗), f(𝑑𝑖𝑗)]. 
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• 𝑇′ < 𝑑𝑖𝑗 ≤ 𝑇: 𝑐𝑖𝑗 ∈ [0, f(𝑑𝑖𝑗)]. 

• 𝑇 < 𝑑𝑖𝑗: 𝑐𝑖𝑗 ∈ [0, 0]. 𝑐𝑖𝑗 = 0. 

 

 

a) Coverage in the average-case scenario     b) Coverage in the worst-case scenario 

Figure 3.3. Coverage values against distance 

 

After defining the uncertainty set, the next step is to find an appropriate way to 

incorporate that knowledge in the model and then formulate the problem to obtain 

solutions that are robust to exogenous factors. 

3.2 The Mathematical Model 

We devise the mathematical model based on the robust optimization framework for 

discrete optimization problems presented in Bertsimas and Sim (2003). We 

formulate the model in a way that while the overall objective function aims to find 

solutions that will maximize the total coverage level, the lower level objective 

attempts to penalize this coverage given a conservatism level parameter, 𝛤. When 

the 𝛤 parameter is equal to 0, we obtain the same result as MCLP-P, and as we 

increase 𝛤, the coverage level decreases. 

 

 



 

 

25 

Nomenclature 

Sets: 

𝐼: Set of demand points; 𝑖 ∈ {1, 2, …, |𝐼|} 

𝐽: Set of facility sites; j ∈ {1, 2, …, |𝐽|} 

𝑈: Set of facilities that are subject to uncertainty. U⊆J. 

𝑀𝑖: Set of facility that are eligible to cover demand point 𝑖 fully or partially, j ∈ {1, 

2, …, |𝑀𝑖|}. 𝑀𝑖 ⊆ 𝐽. 

Parameters: 

𝑐𝑖𝑗: Average-case coverage level of demand point 𝑖 provided by facility j. 

ĉ𝑖𝑗: Difference of coverage level between the average and the worst-case scenarios 

of demand point 𝑖 provided by facility j. 

𝑐𝑖𝑗
′ : Worst-case coverage level of demand point i provided by facility j. 

𝑑𝑖𝑗: Distance between demand point 𝑖 and facility j. 

𝑆 : The minimum critical distance. 

𝑇: The maximum critical distance in the average-case scenario. 

𝑇′: The maximum critical distance in the worst-case scenario.  

𝛤: Level of conservatism, i.e., the number of facilities that will function in the 

worst-case scenario. 

𝑃: Number of facilities to be opened. 
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Decision Variables: 

𝑥𝑖𝑗: {
1, 𝑖𝑓 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 𝑖 𝑖𝑠 𝑒𝑖𝑡ℎ𝑒𝑟 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝑜𝑟 𝑓𝑢𝑙𝑙𝑦 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

y𝑗: {
1, 𝑖𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑗 𝑖𝑠 𝑜𝑝𝑒𝑛𝑒𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

w𝑗: {
1, 𝑖𝑓 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑗 𝑖𝑠 𝑖𝑛 𝑖𝑡𝑠 𝑤𝑜𝑟𝑠𝑡 − 𝑐𝑎𝑠𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

3.2.1 Formulation 

The proposed formulation for the robust MCLP-P is as follows: 

                          𝑚𝑎𝑥
𝑥,𝑦

 {∑∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈𝐽𝑖∈𝐼

+ 𝑚𝑖𝑛 
{𝑈|𝑈⊆𝐽,|𝑈|≤𝛤}

∑∑−ĉ𝑖𝑗𝑥𝑖𝑗
𝑗∈𝑈𝑖∈𝐼

} (7) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2) − (6) 

 

𝐸𝑞. (7) aims to find solutions that maximize the coverage while ensuring the impact 

of uncertainty is maximized. We allow variations up to 𝛤 parameter. 

To write the subproblem in the open form, a new variable, 𝑤𝑗, is introduced. 𝑤𝑗 is 

the variable that allows robustness and takes the value of 1 if facilty 𝑗 is in its worst-

case scenario and takes the value of 0 if facility 𝑗 is in the average-case scenario. 

This variable, coupled with the bilevel form of the problem, allows us to incorporate 

coverage variation that is caused by exogenous factors. Then, we can write the 

proposed model equivalently as follows: 

 

(𝑹 −𝑴𝑪𝑳𝑷−𝑷): 

 

𝑚𝑎𝑥
𝑥,𝑦

{∑∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈𝐽

+𝑚𝑖𝑛
𝑤
{∑∑−ĉ𝑖𝑗𝑥𝑖𝑗

𝑗∈𝑈𝑖∈I

𝑤𝑗}

𝑖∈I

} (8) 
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𝑠. 𝑡.∑𝑤𝑗
𝑗∈𝑈

≤  𝛤 (9) 

                                  0 ≤  𝑤𝑗 ≤ 1 ∀𝑗 ∈ 𝑈 (10) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2) − (6) 

 

In this formulation, 𝐸𝑞. (8) maximizes the overall coverage level while minimizing 

the negative coverage variation. Minimizing the negative variation would lead 

maximizing the worst-case scenario which is the aim of the robust optimization 

framework. Hence, the objective is to maximize coverage under the worst-case 

scenario. 𝐸𝑞. (9) limits the total number of facilities that are in their worst-case 

scenario to 𝛤. 𝐸𝑞. (10) does not allow any facility to perform any worse than their 

worst-case scenario. The inner optimization problem ensures that we maximize the 

coverage variation while allowing us to adjust the level of conservatism. As we are 

maximizing the total coverage variation, this model is going to select facilities in a 

robust way assuming that the worst-case scenarios are likely to take place. 

3.2.2 A Primal-Dual Solution Approach 

The problem is in the form of bilevel optimization problem. Since the inner 

minimization problem is a linear optimization problem, we can convert it to a single 

level problem as follows. 

Given that 𝑥 ∈ 𝑋 is fixed, we apply strong duality and formulate the dual of the inner 

minimization problem. We obtain the following formulation: 
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(𝑹 − 𝑳𝑷): 

 

𝑚𝑎𝑥
𝑥,𝑦,𝜃,𝑧

{∑∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈J

+𝑚𝑎𝑥 {𝛤𝜃 +∑𝑧𝑗
𝑗∈U

}

𝑖∈I

}  (11) 

                                         𝑠. 𝑡. 𝑧𝑗 + 𝜃 ≤∑−ĉ𝑖𝑗𝑥𝑖𝑗
𝑖∈I

 ∀𝑗 ∈ 𝑈 (12) 

                                     𝑧𝑗 ≤ 0 ∀𝑗 ∈ 𝑈 (13) 

             θ ≤ 0        (14) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2) − (6) 

 

Since the overall objective function is already maximization type, we can remove 

the inner maximization and write it directly as follows:  

𝑚𝑎𝑥
𝑥,𝑦,𝜃,𝑧

{∑∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈J

+ 𝛤𝜃 +∑𝑧𝑗
𝑗∈U𝑖∈I

}  (15) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2) − (6), (12) − (14) 

 

Now, we have a mixed integer linear programming problem. Next, we propose a 

Benders decomposition algorithm by keeping 𝑥𝑖𝑗 and 𝑦𝑗 variables in the master 

problem, and taking the remaining variables 𝜃 and 𝑧𝑗 to the subproblem. 

3.3 Benders Decomposition Algorithm 

Benders decomposition is an exact solution approach for large-scale combinatorial 

optimization problems based on row generation. The procedure involves solving two 

problems, namely master problem and subproblem, iteratively until a solution is 
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found. As the computational difficulty increases with problem size, rather than 

solving a single large-scale problem, Benders decomposition algorithm iteratively 

solves smaller problems to become more efficient in terms of computational effort. 

In Benders decomposition algorithm, variables in the original formulation are 

divided into two sets and splitted among these two problems. Master problem is 

solved using one of these variable sets and subproblem is solved given the solution 

output of master problem. Depending on the solution of the subproblem, feasibility 

or optimality cuts are generated and added to the master problem. Each iteration 

provides a lower and upper bound for the optimal solution and the algorithm is 

repeated until either the gap between these bounds are sufficiently small or there is 

no optimal solution. 

In the Benders decomposition algorithm, we keep the decision variables related to 

the coverage assignment and facility selection, 𝑥𝑖𝑗 and 𝑦𝑗 , in the master problem 

whilst we take 𝜃 and 𝑧𝑗 variables as complicating variables and project them out to 

the subproblem. The decomposition of the problem is equivalent to (𝑅 −𝑀𝐶𝐿𝑃 −

𝑃). Our master problem would be: 

 

(𝑹 −𝑴𝑷): 

 

𝑚𝑎𝑥
x,y,𝑞

 {∑∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈J

− 𝑞

𝑖∈I

}  (16) 

                         𝑠. 𝑡. 𝑞 ≥∑∑ĉ𝑖𝑗𝑥𝑖𝑗𝑤̅𝑗
𝑖∈I𝑗∈U

 (17) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (1), (6) 

 

Here, we introduce a new continuous variable, 𝑞. For a given solution found in the 

master problem, this new variable tracks the solution of the subproblem and allow 

us to obtain the maximum possible coverage whilst incorporating the variation 

knowledge acquired from the subproblem. Hence, 𝐸𝑞. (17) is an optimality cut that 

is generated at each iteration after solving the subproblem. As the subproblem cannot 
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be unbounded for any combination of 𝑥𝑖𝑗 or 𝑦𝑗 solutions, infeasibility cuts are not 

required. 

After solving the master problem and obtaining a feasible solution of coverage 

assignments, which are shown by 𝑥̅, the maximum variation in coverage for this 

given solution can be obtained using the following subproblem: 

 

 

(𝑹 − 𝑺𝑷(𝑥̅)): 

 

𝑚𝑎𝑥
𝜃,𝑧

{𝛤𝜃 +∑𝑧𝑗
𝑗∈U

}  (18) 

 𝑠. 𝑡. 𝑧𝑗 + 𝜃 ≤∑−ĉ𝑖𝑗𝑥̅𝑖𝑗
𝑖∈I

 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝑀𝑖 (19) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (13), (14) 

 

This subproblem attempts to maximize the variation in coverage for the coverage 

assignment solution, 𝑥̅𝑖𝑗, obtained in the master problem. Note that this problem 

always yields feasible and bounded solutions. Therefore, its dual is always has to be 

feasible and bounded. Then, the dual formulation of this subproblem for a given 𝑥̅ is 

as follows: 

(𝑹 − 𝑫𝑺𝑷(𝑥̅)): 𝑚𝑖𝑛
𝑤
{∑∑−ĉ𝑖𝑗𝑥̅𝑖𝑗

𝑖∈I𝑗∈U

𝑤𝑗} (20) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (9), (10) 

 

This subproblem is equivalent to the subproblem given in (𝑅 −𝑀𝐶𝐿𝑃 − 𝑃), where 

we explain the constraints and the objective function in detail. After solving the dual 

subproblem, we add optimality cuts to the master problem. We iteratively continue 
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this process until a solution is found. Implemetation of the proposed Benders 

decomposition algorithm can be found in Algorithm 1. 

 

ALGORITHM 1: BENDERS DECOMPOSITION ALGORITHM FOR THE ROBUST MCLP-P 

1 Data: 𝐿𝐵 = −∞,  𝑈𝐵 = ∞, 𝜀 = 0.05 

2 While: 𝑈𝐵 − 𝐿𝐵 >  𝜀 

3  Step 1: Solve the master problem, obtain 𝑥𝑖𝑗
∗ and 𝑦𝑗

∗. 

4  Set 𝑥̅𝑖𝑗 ← 𝑥𝑖𝑗
∗ 

5 Set 𝑦̅𝑗 ← 𝑦𝑗
∗ 

 6 Set 𝑞̅ ← 𝑞∗ 

7 Set 𝑈𝐵 ← ∑ ∑ 𝑐𝑖𝑗 𝑥̅𝑖𝑗𝑖∈𝐼𝑗∈𝐽 − 𝑞̅ 

8 Step 2: Solve the subproblem with the updated master problem variables, 𝑥̅𝑖𝑗 . 

9  Set 𝑤̅𝑗 ← 𝑤𝑗
∗ 

10 Set 𝐿𝐵 ← ∑ ∑ 𝑐𝑖𝑗 𝑥̅𝑖𝑗𝑖∈𝐼𝑗∈𝐽 − ∑ ∑ −ĉ𝑖𝑗𝑥̅𝑖𝑗𝑖∈𝐼𝑗∈𝑈 𝑤̅𝑗 

11 Step 3: Add the following optimality cut to the master problem. 

12   𝑞 ≤ ∑ ∑ −ĉ𝑖𝑗𝑥𝑖𝑗𝑤̅𝑗𝑖∈𝐼𝑗∈𝑈   

13 End   
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CHAPTER 4  

4 SEMI-ROBUST MCLP-P 

In this chapter, we consider MCLP-P under coverage uncertainty in an optimistic 

manner. As we have shown in Chapter 3, the robust optimization framework aims to 

find solutions while maximizing the variation caused by worst-case scenario. In this 

chapter, we present an approach that acknowledges worst-case scenario for each 

possible coverage and provide solutions that are affected by the worst-case scenarios 

at the least. Here the basic idea is to evade the effect of the worst-case scenarios as 

much as possible instead of mitigating the impact of the worst-case scenarios on the 

system when it happens. We utilize the uncertainty definition presented in Chapter 

3. After we model the problem, we propose a nonlinear programming formulation 

and its linearization. Then, we propose a Benders decomposition algorithm and two 

heuristic methods to solve this problem. In Benders decomposition algorithm, we 

propose an approach to obtain cuts in linear time which provides significant 

improvements in computational performance for realistic large instances. 

4.1 The Mathematical Model 

Using the notation given in Chapter 3, the proposed model Semi-Robust MCLP-P, 

is given as follows: 

(𝑺𝑹 −𝑴𝑪𝑳𝑷 − 𝑷): 𝑚𝑎𝑥
𝑥,𝑦

 {∑∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈𝐽𝑖∈𝐼

− 𝑚𝑖𝑛 
{𝑈|𝑈⊆𝐽,|𝑈|=𝛤}

∑∑ĉ𝑖𝑗𝑥𝑖𝑗
𝑗∈𝑈𝑖∈𝐼

} (21) 

                                                              𝑠. 𝑡.∑𝑦𝑗
𝑗∈𝐽

= 𝑝  (22) 

                                                              𝑥𝑖𝑗 ≤ 𝑦𝑗  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝑀𝑖 (23) 
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                                                           ∑ 𝑥𝑖𝑗
𝑗∈𝑀𝑖

≤ 1 ∀𝑖 ∈ 𝐼 (24) 

                                                         𝑥𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (25) 

                                                         𝑦𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽 (26) 

 

Objective function given in 𝐸𝑞. (21) aims to find the solution that maximizes 

coverage while ensuring the impact of uncertainty is minimized. We allow variations 

up to 𝛤 facilities. 𝐸𝑞. (22) limits the total number of facilities to be opened to 𝑃. 

𝐸𝑞. (23) ensures that facility 𝑗 can only cover demand point 𝑖, if facility is 𝑗 is 

opened. 𝐸𝑞. (24) enforces that each demand point 𝑖 is covered at most once. 

The objective function is different than the objective function of the model proposed 

in Chapter 3. Thus, we need certain modifications in our model. First, we need to 

ensure that the worst-case can only occur for the facilities that are open. As we are 

minimizing the total variation, the model would be inclined to select potential 

facilities to be in their worst-case scenarios even though they are not open if we do 

not specify otherwise. Because of that, we need to add the following logical 

constraint to our subproblem, 

𝑤𝑗 ≤ 𝑦𝑗 

Then, as the overall objective function is of maximization type and there is a minus 

in front of the subproblem, the model would not select any potential facility to be in 

their worst-case scenario since it deterioates the overall objective value. Hence, for 

the sum of number of selected worst-case facilities, rather than less than or equal to 

relationship we need equality type constraint. Therefore, we need to enforce that into 

the subproblem as follows: 

∑𝑤𝑗
𝑗∈𝑈

=  𝛤 
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Now, we apply a simple mathematical operation on 𝐸𝑞. (21) and obtain an 

equivalent formulation. We convert the sign prior the subproblem to positive and 

multiply the subproblem objective coefficient by negative. We retain the constraints. 

The resulting model is as follows: 

                                𝑚𝑎𝑥
𝑥,𝑦

 {∑∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑗∈𝐽𝑖∈𝐼

+ 𝑚𝑎𝑥 
{𝑈|𝑈⊆𝐽,|𝑈|=𝛤}

∑∑−ĉ𝑖𝑗𝑥𝑖𝑗
𝑗∈𝑈𝑖∈𝐼

} (27) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (22) − (26) 

 

If we write this model in the open form, we obtain the following single-level 

formulation.  

𝑚𝑎𝑥
𝑥,𝑦,𝑤

∑∑(𝑐𝑖𝑗𝑥𝑖𝑗 − ĉ𝑖𝑗𝑥𝑖𝑗𝑤𝑗)

𝑗∈𝐽𝑖∈𝐼

 (28) 

∑𝑤𝑗
𝑗∈𝑈

=  𝛤 (29) 

                              𝑤𝑗 ≤ 𝑦𝑗 ∀𝑗 ∈ 𝑈 (30) 

                            𝑤𝑗 ∈ {0,1} ∀𝑗 ∈ U (31) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (22) − (26) 

 

Differently than the model presented in Chapter 3, we end up with a nonlinear model. 

Nonlinear problems can be challenging to solve due to their complex mathematical 

nature. In contrast, linear problems are simpler to solve and have well-established 

solution methods that can find the global optimum more easily when compared to 

nonlinear problems. Therefore, we next give the linearization of the proposed model 

to be able to tackle the problem more effectively. 
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4.1.1 Linearization 

Nonlinearity in the model is caused by the multiplication of 𝑥𝑖𝑗 and 𝑤𝑗 variables in 

𝐸𝑞. (28). To linearize the model, we introduce a new variable, 𝑧𝑖𝑗, and eliminate this 

nonlinear term in the objective function. The following are the linearization 

constraints: 

𝑧𝑖𝑗 ≤ 𝑤𝑗 

𝑧𝑖𝑗 ≤ 𝑥𝑖𝑗 

𝑧𝑖𝑗 ≥ 𝑥𝑖𝑗 + 𝑤𝑗 − 1 

Among these constraints, since 𝑧𝑖𝑗 ≥ 0 and it has a negative objective coefficient in 

a maximization problem as given in 𝐸𝑞. (37), we can safely remove the first two 

constraints, since 𝑧𝑖𝑗 is already going to be minimized. Hence, the resulting 

optimization model is as follows: 

(𝑺𝑹 − 𝑳𝑷): 𝑚𝑎𝑥
𝑥,𝑦,𝑤,𝑧

∑∑(𝑐𝑖𝑗𝑥𝑖𝑗 − ĉ𝑖𝑗𝑧𝑖𝑗)

𝑗∈𝐽𝑖∈𝐼

 (32) 

𝑧𝑖𝑗 ≥ 𝑥𝑖𝑗 + 𝑤𝑗 − 1 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ U (33) 

                                                                   𝑧𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝑈 (34) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (22) − (26), (29) − (31) 

 

Now, we have a mixed integer linear programming problem. In the sequel, we 

propose a Benders decomposition algorithm by keeping 𝑦𝑗 and 𝑤𝑗 variables in the 

master problem, and taking the remaining variables 𝑥𝑖𝑗 and 𝑧𝑖𝑗 to the subproblem. 

Then, for realistic instances where the number of demand points are very high and 

number of potential facilities are reasonably low, we propose an approach to obtain 

Benders cuts in linear time. 
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4.2 Benders Decomposition Algorithm 

In the Benders decomposition algorithm, we keep only variables related to facility 

selection, 𝑦𝑗 and 𝑤𝑗, in the master problem. We take 𝑥𝑖𝑗 and 𝑧𝑖𝑗 variables as 

complicating variables and transfer them to the subproblem. Our premiere focus is 

to select the average-case and the worst-case facilities in this algorithm. Our master 

problem is as follows: 

(𝑺𝑹 −𝑴𝑷):      𝑚𝑎𝑥
𝑞,𝑦,𝑤

 𝑞 (35) 

 𝑠. 𝑡. 𝑞 ≤∑∑(1 − 𝑤𝑗)α̅𝑖𝑗 +
𝑖∈𝐼𝑗∈𝑈

∑∑𝑦𝑗β̅𝑖𝑗 +

𝑖∈𝐼𝑗∈𝐽

∑𝜋̅𝑖
𝑖∈𝐼

 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ U (36) 

 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (22), (26), (29) − (31) 

 

A new variable 𝑞 is being introduced, which is used to monitor the subproblem 

solution and to update the master problem accordingly. Thus, after solving the 

subproblem, 𝐸𝑞. (36) is introduced as an optimality cut in each iteration. There is no 

requirement for infeasibility cuts since the subproblem cannot be unbounded for any 

given value of the master problem variables, 𝑦𝑗 and 𝑤𝑗. 

The following subproblem is utilized to determine the best possible coverage values 

for a given 𝑦̅
𝑗
 and 𝑤̅𝑗 values obtained by the master problem: 

(𝑺𝑹 − 𝑺𝑷(𝑦̅, 𝑤̅)): 𝑚𝑎𝑥
𝑥,𝑧

(∑∑𝑐𝑖𝑗𝑥𝑖𝑗 −∑∑ĉ𝑖𝑗𝑧𝑖𝑗
𝑗∈U𝑖∈𝐼𝑗∈𝐽𝑖∈𝐼

) (37) 

𝑠. 𝑡.  𝑧𝑖𝑗 ≥ 𝑥𝑖𝑗 + 𝑤̅𝑗 − 1 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝑀𝑖 (38) 

𝑥𝑖𝑗 ≤ 𝑦̅𝑗  ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝑀𝑖 (39) 
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𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (24), (25), (34) 

 

(𝑆𝑅 − 𝑆𝑃(𝑦̅, 𝑤̅)) is an assignment problem for a given set of facility variables 𝑦̅𝑗 

and robustness variables 𝑤̅𝑗. In this problem, the integrality constraints on 𝑥𝑖𝑗 can be 

relaxed and problem can be converted into a linear program. This is due to the fact 

that, for fixed 𝑦̅ and 𝑤̅, problem could be decomposed into seperate problems for 

∀𝑖 ∈ 𝐼. If 𝑤̅𝑗 = 1, then 𝑧𝑖𝑗 = 𝑥𝑖𝑗 due to 𝐸𝑞.  (38), also the objective function of 

(𝑆𝑅 − 𝑆𝑃(𝑦̅, 𝑤̅)) (𝐸𝑞. (37)) for the given facility 𝑗 becomes 𝑚𝑎𝑥
𝑥
(∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑖∈𝐼 −

∑ ĉ𝑖𝑗𝑥𝑖𝑗𝑖∈𝐼 ). If 𝑤̅𝑗 = 0, then 𝑧𝑖𝑗 = 0 due to 𝐸𝑞.  (38), and the objective function 

𝐸𝑞. (37), for the given facility 𝑗 becomes 𝑚𝑎𝑥
𝑥
(∑ 𝑐𝑖𝑗𝑥𝑖𝑗)𝑖∈𝐼 . Hence, the problem 

becomes seperable for ∀𝑖 ∈ 𝐼 again due to 𝐸𝑞. (24) and (39), and can be solved by 

inspection. Let us define 𝐽1 = {𝑗: 𝑦̅
𝑗
= 1, 𝑤̅𝑗 = 0} and 𝑈1 = {𝑗: 𝑦̅

𝑗
= 1, 𝑤̅𝑗 = 1}.  

For a given demand point 𝑖, the maximum coverage is obtained by 

𝑚𝑎𝑥 {𝑚𝑎𝑥
𝑗∈𝐽1

(𝑐𝑖𝑗),𝑚𝑎𝑥
𝑗∈𝑈1

(𝑐′𝑖𝑗)} and we decide coverage assignments depending on the 

highest coverage for the solution vectors 𝑦̅ and 𝑤̅. This proves two points: i) if we 

know solution vectors 𝑦̅ and 𝑤̅, we can compute the objective value of the 𝑆𝑅 − 𝑆𝑃 

in linear time, ii) relaxing the integrality constraints on 𝑥𝑖𝑗 yields exactly the same 

objective value as the binary problem. As a result, it would be safe to relax the 

integrality constraints 𝐸𝑞. (25) for this subproblem as its linear relaxation would 

yield the same solution as its discrete form. We use the relaxation approach to solve 

the subproblem. 

Note that for any given value of 𝑦̅ and 𝑤̅, (𝑆𝑅 − 𝑆𝑃(𝑦̅, 𝑤̅)) is always both feasible 

and bounded. Therefore, the dual of this subproblem is always feasible and bounded. 

Let α𝑖𝑗 , β𝑖𝑗 , and π𝑖 denote the dual variables for 𝐸𝑞. (38), 𝐸𝑞. (39), and 𝐸𝑞. (24), 

respectively. Then, the dual formulation of (𝑆𝑅 − 𝑆𝑃(𝑦̅, 𝑤̅)) is as follows: 
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(𝑺𝑹 − 𝑫𝑺𝑷(𝑦̅, 𝑤̅)): 𝑚𝑖𝑛
α,β,𝜋

∑∑(1− 𝑤̅𝑗)𝛼𝑖𝑗 +

𝑖∈𝐼𝑗∈𝑈

∑∑𝑦̅𝑗β𝑖𝑗 +

𝑖∈𝐼𝑗∈𝐽

∑𝜋𝑖
𝑖∈𝐼

 (40) 

             𝑠. 𝑡.  −α𝑖𝑗 ≥ −ĉ𝑖𝑗   ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝑈 (41) 

                  α𝑖𝑗 + β𝑖𝑗 + 𝜋𝑖 ≥ 𝑐𝑖𝑗   ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (42) 

α𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝑈 (43) 

β
𝑖𝑗
≥ 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (44) 

𝜋𝑖 ≥ 0 ∀𝑖 ∈ 𝐼 (45) 

 

Next, we provide an approach to obtain Benders cuts in linear time similar to 

Cordeau et al. (2017). According to the complementary slackness theorem, the 

following equations must hold at optimality for the variables of the primal and the 

dual subproblem:  

𝛼𝑖𝑗
∗(−𝑧𝑖𝑗

∗ + 𝑥𝑖𝑗
∗ − 1 + 𝑤̅𝑗) = 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝑈 (46) 

𝛽𝑖𝑗
∗(𝑥𝑖𝑗

∗ − 𝑦̅𝑗) = 0 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (47) 

𝜋𝑖
∗ (∑𝑥𝑖𝑗

∗

𝑗∈𝐽

− 1) = 0 ∀𝑖 ∈ 𝐼 (48) 

 

Both utilizing 𝐸𝑞. (46) − (48) and 𝑆𝑅 − 𝐷𝑆𝑃, we can obtain the dual solution in 

linear time. Next, we show the computation of the 𝑆𝑅 − 𝐷𝑆𝑃 solution utilizing these 

information. 

Recall that 𝐽1 = {𝑗: 𝑦̅
𝑗
= 1, 𝑤̅𝑗 = 0} and 𝑈1 = {𝑗: 𝑦̅

𝑗
= 1, 𝑤̅𝑗 = 1}. If a given 

demand point 𝑖 is covered, let us denote the index of the covering facility by 𝑘. 



 

 

40 

If ∑ 𝑦̅
𝑗𝑗∈𝑀𝑖
< 1, meaning that if demand point 𝑖 cannot be covered by any open 

facilities, then we are certain that all 𝑥𝑖𝑗
∗ = 0, 𝑧𝑖𝑗

∗ = 0 for demand point 𝑖. Then, we 

can see that: 

• α𝑖𝑗
∗ = 0 for ∀𝑗 ∈ 𝐽\𝑈1, and α𝑖𝑗

∗ ≥ 0 for ∀𝑗 ∈ 𝑈1 due to 𝐸𝑞. (46). 

• β𝑖𝑗 = 0 for ∀𝑗 ∈ (𝐽1 ∪ 𝑈1), and β𝑖𝑗 ≥ 0 for ∀𝑗 ∈ 𝐽\(𝐽1 ∪ 𝑈1) due to 

𝐸𝑞. (47). 

• 𝜋𝑖
∗ = 0 due to 𝐸𝑞. (48). 

If ∑ 𝑦̅
𝑗𝑗∈𝑀𝑖
≥ 1, then there are two possibilities. Facility 𝑘 that covers demand point 

𝑖 could be in i) the average-case scenario (𝑘 ∈ 𝐽1) or ii) the worst-case scenario (𝑘 ∈

𝑈1). 

If ∑ 𝑦̅
𝑗𝑗∈𝑀𝑖
≥ 1, and 𝑘 ∈ 𝐽1 we can deduce that: 

• α𝑖𝑗
∗ ≥ 0 for ∀𝑗 ∈ (𝑈1 ∪ {𝑘}), and α𝑖𝑗

∗ = 0 for ∀𝑗 ∈ 𝐽\(𝑈1 ∪ {𝑘}) due to 

𝐸𝑞. (46). 

• β𝑖𝑗 ≥ 0 for ∀𝑗 ∈ 𝐽\(𝐽1 ∪ 𝑈1 − {𝑘}), and β𝑖𝑗 = 0 for ∀𝑗 ∈ (𝐽1 ∪ 𝑈1 − {𝑘}) 

due to 𝐸𝑞. (47). 

• 𝜋𝑖
∗ ≥ 0 due to 𝐸𝑞. (48). 

If ∑ 𝑦̅
𝑗𝑗∈𝑀𝑖
≥ 1, and 𝑘 ∈ 𝑈1, we can infer that: 

• α𝑖𝑗
∗ ≥ 0 for ∀𝑗 ∈ 𝑈1, and α𝑖𝑗

∗ = 0 for ∀𝑗 ∈ 𝐽\𝑈1 due to 𝐸𝑞. (46). 

• β𝑖𝑗 ≥ 0 for ∀𝑗 ∈ 𝐽\(𝐽1 ∪ 𝑈1 − {𝑘}), and β𝑖𝑗 = 0 for ∀𝑗 ∈ (𝐽1 ∪ 𝑈1 − {𝑘}) 

due to 𝐸𝑞. (47). 

• 𝜋𝑖
∗ ≥ 0 due to 𝐸𝑞. (48). 

Utilizing these information and considering 𝐸𝑞. (40) − (45), we can generate 

optimal solutions and obtain the dual variable values as follows: 

If ∑ 𝑦̅
𝑗𝑗∈𝑀𝑖
< 1: 

α𝑖𝑗
∗ = 0 for ∀𝑗 ∈ 𝐽\𝑈1, and α𝑖𝑗

∗ ∈ [0, ĉ𝑖𝑗] for ∀𝑗 ∈ 𝑈1. 
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• β𝑖𝑗 = 0 for ∀𝑗 ∈ (𝐽1 ∪ 𝑈1), and β𝑖𝑗 = 𝑐𝑖𝑗 for ∀𝑗 ∈ 𝐽\(𝐽1 ∪ 𝑈1). 

• 𝜋𝑖
∗ = 0. 

If ∑ 𝑦̅
𝑗𝑗∈𝑀𝑖
≥ 1, and 𝑘 ∈ 𝐽1: 

• α𝑖𝑗
∗ ∈ [0, c𝑖𝑘 − β𝑖𝑗] for ∀𝑗 ∈ (𝑈1 ∪ {𝑘}), and α𝑖𝑗

∗ = 0 for ∀𝑗 ∈ 𝐽\(𝑈1 ∪

{𝑘}). 

• β𝑖𝑗 ∈ [0, c𝑖𝑘 − α𝑖𝑗] for ∀𝑗 ∈ 𝐽\(𝐽1 ∪ 𝑈1 − {𝑘}), and β𝑖𝑗 = 0 for ∀𝑗 ∈ (𝐽1 ∪

𝑈1 − {𝑘}). 

• 𝜋𝑖
∗ = c𝑖𝑘. 

If ∑ 𝑦̅
𝑗𝑗∈𝑀𝑖
≥ 1, and 𝑘 ∈ 𝑈1: 

• α𝑖𝑗
∗ = ĉ𝑖𝑗 for ∀𝑗 ∈ 𝑈1, and α𝑖𝑗

∗ = 0 for ∀𝑗 ∈ 𝐽\𝑈1. 

• β𝑖𝑗 ∈ [0, c𝑖𝑘 − 𝜋𝑖] for ∀𝑗 ∈ 𝐽\(𝐽1 ∪ 𝑈1 − {𝑘}), and β𝑖𝑗 = 0 for ∀𝑗 ∈ (𝐽1 ∪

𝑈1 − {𝑘}). 

• 𝜋𝑖
∗ ∈ [0, c𝑖𝑘 − β𝑖𝑗]. 

 

Note that dual variables may take any value in the specified intervals each yielding 

an alternative optimal solution. This approach is especially useful for realistic cases 

where the number of demand points is very high and the number of potential facilities 

are reasonably low. For these instances, computational experiment made for this 

approach is given in Chapter 5. 

The proposed Benders decomposition algorithm first solves the master problem to 

optimality, obtains 𝑦̅
𝑗
 and 𝑤̅𝑗 values from the master solution. Then, these values are 

transferred to the dual subproblem. After solving this dual subproblem, we add 

optimality cuts to the master problem. We repeat this process until we find the 

optimal solution. The algorithm of the proposed approach is given in Algorithm 2. 
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ALGORITHM 2: BENDERS DECOMPOSITION ALGORITHM FOR THE SEMI-ROBUST MCLP-P 

1 Data: 𝐿𝐵 = −∞,  𝑈𝐵 = ∞, 𝜀 = 0.05 

2 While: 𝑈𝐵 − 𝐿𝐵 >  𝜀 

3  Step 1: Solve the master problem, obtain 𝑦𝑗
∗ and 𝑤𝑗

∗. 

4  
Set ȳ𝑗 ← 𝑦𝑗

∗ 

5 Set 𝑤̅𝑗 ← 𝑤𝑗
∗ 

6 Set 𝑞̅ ← 𝑞∗ 

7 Set 𝑈𝐵 ← 𝑞̅ 

8 Step 2: Solve the subproblem with the updated variables, ȳ𝑗 and 𝑤̅𝑗. 

9 
 

Set 𝛼̅𝑖𝑗  ← 𝛼𝑖𝑗
∗ 

10 Set 𝛽̅𝑖𝑗 ← 𝛽𝑖𝑗
∗
 

11 Set 𝜋̅𝑖 ← 𝜋𝑖
∗ 

12 Set 𝐿𝐵 ← ∑ ∑ (1 − 𝑤̅𝑗)𝛼̅𝑖𝑗 +𝑖∈𝐼𝑗∈𝑈 ∑ ∑ 𝑦̅𝑗β̅𝑖𝑗 +𝑖∈𝐼𝑗∈𝐽 ∑ 𝜋̅𝑖𝑖∈𝐼  

13 Step 3: Add the following optimality cut to the master problem. 

14  𝑞 ≤ ∑ ∑ (1 − 𝑤𝑗)α̅𝑖𝑗 +𝑖∈𝐼𝑗∈𝑈 ∑ ∑ 𝑦𝑗β̅𝑖𝑗 +𝑖∈𝐼𝑗∈𝐽 ∑ 𝜋̅𝑖𝑖∈𝐼   

15 End   

 

The linearized model and the Benders decomposition algorithm can be 

computationally expensive and may take a long time to solve problems for certain 

instances. On the other hand, heuristics are computationally less expensive and can 

find near-optimal solutions very quickly. Hence, to obtain good solutions in shorter 

time periods, we propose two heuristic algorithms. The proposed heuristics are not 

applicable for the Robust model since it has different objectives in its bilevel form. 

4.3 Greedy Adding with Neighborhood Search (GNS) 

In the GNS algorithm, we attempt to find optimal solution by iteratively selecting 

facilities that provide the greatest coverage and then seek for possible coverage 
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improvements at each step. We begin this approach with the selection of the average-

case facilities and continue with selecting the worst-case facilities until we reach the 

facility limit 𝑃. 

For a given problem (assuming 𝑃 − 𝛤 ≥ 1, meaning that there is at least one facility 

to be opened in the average-case scenario.), this algorithm starts with selecting the 

facility with the highest total coverage value for the average-case scenario. In each 

subsequent iteration, the algorithm first selects the facility that provides the 

maximum average-case coverage for the remaining uncovered demand points. 

Selected facilities are added to the set. After selecting these facilities according to 

their coverage, in each iteration, the GNS algorithm seeks if swapping selected 

facilities with non-selected facilities provides coverage improvements. If there exists 

any coverage improvements, swapping takes places and the selected facilities are 

updated. If there is no improvements, they are retained. This process is repeated until 

either number of selected facilities reaches to 𝑃 − 𝛤 or all demand points are 

covered. Once the number of average-case facilities is equal to 𝑃 − 𝛤, the GNS 

algorithm seeks to find 𝛤 number of worst-case facilities in the same way with a 

single difference that is the selected average-case facilities are fixed and cannot be 

swapped or selected again.  

After we select facilities utilizing this algorithm, we find the best solution by solving 

the problem only for the selected facilities. Solution can be obtained in linear time 

as shown in Section 4.2. 

Flowcharts of the GNS and the Neighborhood Search Algorithms are given in Figure 

4.1 and Figure 4.2 respectively. 
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Figure 4.1. GNS Algorithm Flowchart 
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Figure 4.2. Neighborhood Search Algorithm Flowchart.  (J: Number of candidate 

facilities, Q: Number of selected facilities) 

Set: 𝑐𝑜𝑣_𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒                 

  Set: 𝑚 = 1; Set 𝑛 = 1. 
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non-selected facility 𝑛 

for selected facility 𝑚? 
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No 
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4.4 Random Selection with Neighborhood Search (RNS) 

In the RNS algorithm, we initially begin with arbitrarily selecting 𝑃 − 𝛤 facilities 

for the average-case and 𝛤 facilities for the worst-case scenario. For the given set of 

average-case facilities, we obtain 𝑚𝑎𝑥(∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗)𝑗∈𝐽1 𝑖∈𝐼 . Next, for the given set of 

worst-case facilities and the remaining uncovered demand points, we calculate 

𝑚𝑎𝑥 (∑ ∑ 𝑐𝑖𝑗
′ 𝑥𝑖𝑗𝑗∈𝑈1 𝑖∈𝐼 ). Summation of these two values becomes the initial 

solution. The RNS algorithm continues by seeking coverage improvements by 

performing the Neighborhood Search Algorithm given in Figure 4.2 for both 

average-case and worst-case facilities. Then, we find the incumbent solution by 

solving the problem for the selected facilities. Solution can be found in linear time 

as shown in Section 4.2.  We start again by arbitrarily generating a set of facilities. 

We repeat this process until we reach the iteration limit. Flowchart of the RNS 

algorithm is given in Figure 4.3. 
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      Figure 4.3. RNS Algorithm Flowchart 
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CHAPTER 5  

5 COMPUTATIONAL EXPERIMENTS 

In this chapter, we test the presented models on different instances and report their 

results. In each instance, along with the proposed models we also compare our 

solutions to the MCLP-P solutions to have a better idea about the effect of the 

proposed approaches. Time limit allowed for each solution approach was set to 3600 

seconds. We executed all computational operations on Python 3.10 via CPLEX 

22.1.0. The runs were conducted on a Windows 11 PC with a 2.60 GHz Intel Core 

i7 CPU and 8 GB RAM. 

Some abbreviations used in the solution tables of the experiments. 𝑧 corresponds to 

objective value, 𝐺𝑎𝑝(%) is the optimality gap,  𝑡𝑠𝑜𝑙 denotes the CPU time (in 

seconds) spent solving any given model, 𝑡𝑡𝑜𝑡𝑎𝑙 denotes total CPU time spent while 

solving any model (including initialization processes such as creating a mathematical 

model), 𝑡𝑠𝑢𝑏 and 𝑡𝑚𝑎𝑠𝑡𝑒𝑟 are CPU times for solving subproblems and master 

problems of Benders decomposition algorithms, respectively. 𝑧̅ denotes the average 

solution value for all three models. 𝑧𝑛̅𝑜𝑚 represents the nominal coverage value for 

the robust models. 𝑡̅, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 and 𝑠 denotes average, minimum, maximum and the 

standard deviation of the CPU time values.  

5.1 Data Generation 

We test the proposed approaches on randomly generated data sets. Let 𝑋, 𝑌 be the 

random variables for corresponding 𝑥, 𝑦 coordinates of any point in datasets. Data 

are generated as 𝑋𝑑𝑒𝑚𝑎𝑛𝑑~𝑈[0, 50], 𝑌𝑑𝑒𝑚𝑎𝑛𝑑~𝑈[0, 100], 𝑋𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦~𝑈[5, 45], and 

𝑌𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦~𝑈[10, 90]. Euclidean distance is used to compute the distance between 

each demand-facility points and calculate the coverage values. Partial coverage 
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functions used in this study are  𝑓(𝑑𝑖𝑗) = {

𝑇−𝑑𝑖𝑗

𝑇−𝑆
,    𝑑𝑖𝑗 ∈ [𝑆, 𝑇]

  0,          𝑑𝑖𝑗 ∉ [𝑆, 𝑇] 
 for the average-case 

scenario, and 𝑓′(𝑑𝑖𝑗) = {

𝑇′−𝑑𝑖𝑗

𝑇′−𝑆
,    𝑑𝑖𝑗 ∈ [𝑆, 𝑇′]

  0,           𝑑𝑖𝑗 ∉ [𝑆, 𝑇′] 
  for the worst-case scenario. 

5.2 Experiment Design 

Effects of five different factors are investigated, number of demand points |𝐼|, 

number of potential facility points |𝐽|, magnitude of the worst-case scenario 
𝑇−𝑇′

𝑇−𝑆
 

denoted as δ, number of facility points to be opened 𝑃, and robustness parameter 𝛤. 

All the results are compared to MCLP-P to investigate the effect of uncertainty on 

solutions.  

Each factor has a certain number of levels, and we investigate all possible 

combinations of these factor levels. All factors and their corresponding factor levels 

are presented in Table 1. 

Table 5.1 Factors and their levels of the experiment 

|𝐼| |𝐽| 𝑃 𝛤 𝛿 

500 8 0.25|𝐽| 0.25𝑃 35% 

2000 16 0.5|𝐽| 0.5𝑃 70% 

8000 32 0.75|𝐽| 0.75𝑃  

 

In this experiment 𝑆 and 𝑇 were set to 15 and 25. For fractional 𝛤 values, we round 

them to the higher nearest integer value. And if there exists any duplication instances 

caused due to rounding fractional values, we remove such instances from our 

experiment. Plus, the instances where 𝑝 = 𝛤 which were the result of the rounding 

are also omitted. 
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5.3 Robust MCLP-P  

From the experiments of the Robust MCLP-P we can observe that the primal-dual 

model performs well for almost all instances. Increase in the number of decision 

variables and constraints does not seem to have a strong impact on the solution time. 

The greatest effect on computation time for the primal dual model seems to be the 

number of demand points. 

Benders decomposition algorithm seems to provide slightly higher computational 

times than the Primal Dual model for most instances. We note that in a few instances 

it was not able to find the optimal solution in the time limit. Robust MCLP-P 

experiment summary is given in Table 5.2. 

Table 5.2. shows important experiment results against every factor level. Complete 

experiment can be found in Appendix A. 

We employed t-test with 95% confidence level to compare the performance of the 

proposed solution approaches. For this given experiment, p-value of the t-test is 

found to be 0.007. Hence, we can say that the primal dual formulation performs 

better than the Benders decomposition algorithm in a statistically significant manner. 

5.4 Semi-Robust MCLP-P 

In the experiments of the Semi-Robust MCLP-P, we compared four different 

solution approaches. Summary of the findings are given in Table 5.3. This summary 

provides a bird-eye view for the proposed models and their performance. Complete 

experiment can be found in Appendix. 

As can be seen from Table 5.3, proposed heuristic algorithms provides optimal or 

near-optimal solutions for most of the instances. Average optimality gap for all 

instances were found as 1.49% and 1.08% for the GNS and the RNS algorithms 

respectively. 
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Table 5.2 Robust MCLP-P experiment summary 

 𝑀𝐶𝐿𝑃 𝑅 − 𝐿𝑃 𝐵𝑒𝑛𝑑𝑒𝑟𝑠 

 𝑧̅ 𝑧̅ 𝑧𝑛̅𝑜𝑚 𝑡̅ 𝑡𝑚𝑖𝑛 𝑡𝑚𝑎𝑥 𝑠 𝑡̅ 𝑡𝑚𝑖𝑛 𝑡𝑚𝑎𝑥 𝑠 

I=500 429.89 412.47 427.59 0.38 0.04 3.45 0.55 4.34 0.49 69.56 10.02 

I=2000 1745.07 1677.15 1732.90 3.78 0.23 41.15 7.03 108.60 2.17 2252.32 390.20 

I=8000 6997.10 6724.92 6944.83 98.35 1.65 2450.82 361.83 471.29 10.23 3600.00 1026.15 

J=8 2607.86 2433.42 2579.61 2.56 0.04 23.80 2.87 17.55 0.49 205.95 22.91 

J=16 3027.36 2890.28 3004.03 15.66 0.07 245.42 27.34 184.05 0.76 3600.00 368.15 

J=32 3387.00 3322.59 3369.85 73.76 0.12 2450.82 207.21 323.57 1.39 3600.00 549.01 

P=0.25|J| 3014.05 2878.90 2999.91 105.87 0.23 2450.82 203.27 513.99 1.54 3600.00 561.72 

P=0.5|J| 3063.29 2943.17 3041.24 17.31 0.10 598.44 49.11 152.15 0.59 3600.00 347.49 

P=0.75|J| 3080.29 2972.71 3052.44 3.23 0.04 20.70 3.53 24.50 0.49 249.71 29.40 

Γ=0.25P 3140.91 3069.78 3129.71 12.62 0.08 251.32 21.45 91.91 0.75 2581.92 212.11 

Γ=0.5P 3010.04 2891.19 2986.15 13.08 0.05 255.97 22.33 155.68 0.55 3383.37 306.90 

Γ=0.75P 3127.88 2973.15 3101.49 89.29 0.07 2450.82 206.92 396.04 0.83 3600.00 548.48 

δ=35% 3092.57 3024.60 3085.46 8.74 0.04 245.42 21.01 48.85 0.49 1534.01 129.81 

δ=70% 3022.13 2851.77 2984.75 59.60 0.10 2450.82 207.73 340.64 0.76 3600.00 641.28 

 

To analyze the proposed exact solution methods of the Semi-Robust MCLP-P, we 

conducted t-test to compare the solution times of the SR − LP and the Benders 

decomposition algorithm. p-value found as 10−7 with 95% confidence level, 

meaning that the linear model is computationally more efficient than the Benders 

decomposition algorithm. 
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5.5 Impact of Robust Decision-Making on the Coverage Performance 

In this section, we demonstrate the practical impact of the proposed models on a 

single randomly generated dataset. We perform two different experiments to 

understand i) how the classical MCLP-P perform under coverage uncertainty, ii) how 

the proposed models perform under completely deterministic settings. 

To make the comparison clear, we utilize a single data set where certain parameters 

are fixed (|𝐼| = 500, |𝐽| = 50, 𝑝 = 15, 𝑆 = 5, 𝑇 = 10), while other parameters 

(𝛿 and 𝛤) are varying. 𝛿 parameter takes three values, %25,%60, and %90, and 𝛤 

parameter is gradually increased from 2 to 14. 

5.5.1 Robustness of the Classical MCLP-P 

In this experiment, we seek to understand how the classical MCLP-P performs under 

coverage uncertainty and compare its performance against the proposed models, R-

MCLP-P and SR-MCLP-P.   

We solve the generated instance with all three models. For a given MCLP-P solution, 

let 𝑥̅𝑖𝑗 denote the coverage assignment solution. Then let 𝑧𝑅 and 𝑧𝑆𝑅 represent the 

optimal solution of the robust models. To compare how the MCLP-P performs 

against the R-MCLP-P model, we first compute the R-MCLP-P objective with the 

MCLP-P solution, 𝑧1 = (∑ ∑ 𝑐𝑖𝑗𝑥̅𝑖𝑗𝑗∈𝐽𝑖∈𝐼 + 𝑚𝑖𝑛 
{𝑈|𝑈⊆𝐽,|𝑈|≤𝛤}

∑ ∑ −ĉ𝑖𝑗𝑥̅𝑖𝑗𝑗∈𝑈𝑖∈𝐼 ). Then to 

make the comparison, we compute 𝑀𝐶𝐿𝑃𝑅 =
𝑧𝑅−𝑧1

𝑧1
 to find out how the R-MCLP-P 

model performs against the classical MCLP-P. Similarly, to compare the coverage 

performance of the MCLP-P against the SR-MCLP-P model, we compute 𝑧2 =

(∑ ∑ 𝑐𝑖𝑗𝑥̅𝑖𝑗𝑗∈𝐽𝑖∈𝐼 − 𝑚𝑎𝑥 
{𝑈|𝑈⊆𝐽,|𝑈|=𝛤}

∑ ∑ ĉ𝑖𝑗𝑥̅𝑖𝑗𝑗∈𝑈𝑖∈𝐼 ). To make the comparison, we 

calculate 𝑀𝐶𝐿𝑃𝑆𝑅 =
𝑧𝑆𝑅−𝑧2

𝑧2
. Results of this experiment can be found in Table 5.4. 
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Table 5.4 Robustness of the Classical MCLP-P 

 𝛿 

 25% 65% 90% 

𝛤 𝑀𝐶𝐿𝑃𝑅 𝑀𝐶𝐿𝑃𝑆𝑅 𝑀𝐶𝐿𝑃𝑅 𝑀𝐶𝐿𝑃𝑆𝑅 𝑀𝐶𝐿𝑃𝑅 𝑀𝐶𝐿𝑃𝑆𝑅 

2 0.04% 0.03% 0.54% 0.70% 0.11% 0.57% 

4 0.11% 0.16% 1.42% 1.08% 1.11% 1.27% 

6 0.17% 0.25% 2.50% 2.10% 1.93% 2.78% 

8 0.22% 0.34% 3.47% 2.85% 2.72% 3.85% 

10 0.33% 0.43% 4.75% 3.75% 5.29% 5.15% 

12 0.56% 0.48% 5.46% 4.65% 7.68% 7.60% 

14 0.58% 0.49% 6.64% 5.22% 9.14% 18.73% 

 

The impact of the proposed models could be seen in Table 5.4. As the value of 

δ or 𝛤 increases, the proposed models provide significant coverage improvements 

when compared to the classical MCLP-P. 

5.5.2 Nominal Coverage Performance of the Robust Models 

In this experiment, we aim to understand how the robust models perform if there 

were no coverage uncertainty.  

Similar to Chapter 5.5.1, we first solve the generated instance with all three models.  

For a given R-MCLP-P and SR-MCLP-P solution, let 𝑥̅𝑖𝑗
𝑅 and 𝑥̅𝑖𝑗

𝑆𝑅 denote the 

coverage assignment solutions. Then let 𝑧𝑀𝐶𝐿𝑃 represent the optimal solution of the 

MCLP-P model. 

To find out how the R-MCLP-P performs if there were no coverage uncertainty, we 

first compute the MCLP-P objective using the R-MCLP-P solution,  𝑧3 =

∑ ∑ 𝑐𝑖𝑗𝑥̅𝑖𝑗
𝑅

𝑗∈𝐽𝑖∈𝐼 . Then to compare with the classical MCLP-P, we compute 𝑅𝑛𝑜𝑚 =

𝑧𝑀𝐶𝐿𝑃−𝑧3

𝑧3
. Then, to compare the coverage performance of the SR-MCLP-P against 
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MCLP-P, we compute 𝑧4 = ∑ ∑ 𝑐𝑖𝑗𝑥̅𝑖𝑗
𝑆𝑅

𝑗∈𝐽𝑖∈𝐼  To make the comparison, we 

calculate 𝑆𝑅𝑛𝑜𝑚 =
𝑧𝑀𝐶𝐿𝑃−𝑧4

𝑧4
. Results of this experiment can be found in Table 5.5. 

Table 5.5 Nominal coverage performance of the MCLP-P model against Robust 

and Semi-Robust models 

 𝛿 

 25% 65% 90% 

𝛤 𝑅𝑛𝑜𝑚 𝑆𝑅𝑛𝑜𝑚 𝑅𝑛𝑜𝑚 𝑆𝑅𝑛𝑜𝑚 𝑅𝑛𝑜𝑚 𝑆𝑅𝑛𝑜𝑚 

2 0.02% 0.05% 0.38% 0.75% 0.50% 2.93% 

4 0.07% 0.45% 1.69% 3.20% 2.64% 6.38% 

6 0.07% 0.52% 2.37% 5.16% 4.12% 11.17% 

8 0.30% 1.00% 3.35% 7.73% 4.31% 17.00% 

10 0.53% 1.68% 3.76% 10.26% 8.10% 22.87% 

12 0.48% 1.76% 4.41% 13.02% 7.76% 30.00% 

14 0.43% 2.40% 3.56% 18.78% 9.55% 31.37% 

 

Table 5.5 demonstrates the nominal coverage performance of the classical MCLP-P 

against the robust models. Since the classical MCLP-P only aims to maximize the 

nominal coverage, it provides higher coverage performance when no facilities are 

under coverage uncertainty. However, in practice, this is usually not the case. Model 

parameters are not completely deterministic, hence assuming the model input are 

completely reliable may lead to undesirable solutions.  
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5.6 Impact of Critical Distance Selection 

The factors introduced in Section 5.2. are the main factors that have influence on 

solution and computational complexity. One last factor that could worth analyzing 

is the values of the critical distances, 𝑆 and 𝑇. As the experiment table already 

involves high number of instances, we found it appropriate to seperately present its 

influence over solutions and computation time. We demonstrate its impact on the 

linear models both for R-MCLP-P and SR-MCLP-P. To exclusively investigate the 

impact of critical distances, the following parameters are fixed |𝐼| = 500, |𝐽| = 16, 

𝑝 = 4, and 𝛿 = 0.5. In addition to varying critical distances, we also set three 

different parameters for the 𝛤 parameter. In Table 5.6, we present the impact of the 

critical distances on nominal coverage performance and the CPU time for varying 

𝑆, 𝑇, and 𝛤 parameters. 

As can be seen from the Table 5.6, greater critical distances leads to higher coverage 

and increased computation times as expected. Then, as the distance between 𝑆 and 

𝑇 decreases, both the R-MCLP-P and the SR-MCLP-P provides closer nominal 

coverage to the classical MCLP-P model. This is also another anticipated outcome 

since if 𝑆 and 𝑇 would be equivalent, there would be no need for introducing 

robustness to the problem. 

In Table 5.7, we present how critical distances affect robust coverage performance.  

From Table 5.7, we can observe that, as the difference between 𝑆 and 𝑇 increases 

(especially when both parameters are reasonably high) the need for the robust models 

becomes clearer under our experiment setting.  
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5.7 Impact of Iteration Limit on the RNS 

 In the RNS algorithm, we first randomly select facilities and then implement the 

Neighborhood Search Algorithm repeatedly until we reach the iteration limit. Hence, 

the number of iterations affects the success of the solutions found. In this section, we 

investigate the impact of iteration limit by defining four different levels, 1, 5, 10, and 

25. We work on 8 different cases. 

Table 5.6 Iteration limit experiment instances 

Case |𝐼| |𝐽| 𝑃 𝛤 𝛿 

1 8000 8 4 2 35% 

2 8000 8 4 2 70% 

3 8000 16 4 1 35% 

4 8000 16 4 1 70% 

5 8000 16 8 2 35% 

6 8000 16 8 2 70% 

7 8000 16 8 4 35% 

8 8000 16 8 4 70% 

 

For each case, we solve the linear model, the GNS, and the RNS with different 

iteration limits and compare the solutions and present the results in Table 5.9. 

As can be seen from the Table 5.9, the RNS algorithm was able to obtain better 

results when compared to the GNS algorithm for the given problems. The RNS found 

good starting solutions in first iterations for some instances, however it is clear that 

as the number of iterations increases, it provides solutions with smaller optimality 

gap. According to this experiment, using 10 iterations gives reasonably well results 

for most instances in short time periods. Since the computational efficiency of the 

RNS algorithm is going to be valid for larger problem sizes, it may be a reasonable 

choice to use it against the linear model for such instance. Yet it is quite clear that 

when the number of iterations increases the solutions get better.
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5.8 The Performance of SR-MCLP-P Models for Large Instances 

In this experiment, for the SR-MCLP-P model, we test the impact of obtaining 

Benders cuts in linear time as proposed in Section 4.2. We compare its performance 

against the 𝑆𝑅 − 𝐿𝑃 for realistic large instances. Large instances parameters are 

selected in a way that the number of customers are much larger than the number of 

potential facility locations. 

Table 5.8 Large Instance Performance 

      
𝑺𝑹 − 𝑳𝑷 𝑩𝒆𝒏𝒅𝒆𝒓𝒔 

Case |𝐼| |𝐽| 𝑃 𝛤 𝛿 𝑡𝑡𝑜𝑡𝑎𝑙  
# 𝑜𝑓 

𝑐𝑢𝑡𝑠 

 𝑡𝑠𝑜𝑙 
 𝑡𝑡𝑜𝑡𝑎𝑙 

𝑡𝑠𝑢𝑏 𝑡𝑚𝑎𝑠𝑡𝑒𝑟 

1 50,000 8 4 1 0.70 735.71 30 6.03 0.41 48.29 

2 50,000 8 4 1 0.35 756.96 24 5.22 0.30 43.09 

3 50,000 8 4 2 0.70 1574.8 38 7.09 0.54 92.13 

4 50,000 8 4 2 0.35 995.42 27 5.37 0.46 65.02 

5 50,000 8 4 3 0.70 1305.2 31 5.08 0.57 96.30 

6 50,000 8 4 3 0.35 805.40 28 5.13 0.45 88.83 

 

From Table 5.8, we can clearly see that being able to add Benders cuts in linear time 

can provide significant advantages in terms of computational advantage, especially 

under the realistic cases where number of demand points are much higher than 

potential facilities. 
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CHAPTER 6  

6 INSIGHTS 

6.1 Maximin and Its Interpretation for Robust MCLP-P 

Game theory is a field of mathematics that studies how individuals or groups make 

decisions in situations where the outcome depends on the choices of others. In game 

theory, strategy shapes the decisions players make to achieve a desired outcome, 

taking into account the potential choices of other players and the possible 

consequences of their actions. There exists different strategies, and maximin is one 

of the strategies players might adopt in game theory. In this section, we demonstrate 

the relation between the discrete robust optimization and maximin strategy in game 

theory through payoff tables. 

In game theory, equilibrium refers to a state where each player's strategy is optimal 

given the strategies of all the other players. Assume there exists a unique, yet 

dangerous equilibrium point which player might find risky. 

Table 6.1 Payoff Table 

  Player II 

  B1 B2 

P
la

y
er

 I
 A1 2, 1 2, -20 

A2 3, 0 -10, 1 

A3 -100, 2 3, 3 

 

First values represent the payoff value for Player I, second values represent the 

payoff value for Player II. 
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In this case, unique equilibrium is (A3, B2) with a payoff of (3, 3). However, it may 

not be the most likely outcome. Player I has the greatest payoff in (A3) with (3), 

however there exists a risk that Player II selects (B1) to obtain his/her greatest payoff. 

Given that option (A3, B1) could be catastrophic for Player I, he/she could choose 

the option (A1). But under this scenario, if Player II is aware of that Player I might 

avoid option (A3) and will select (A1), he/she might not prefer to select option (B2) 

since then there is a risk of receiving a very low payoff value (-20). Therefore, Player 

II will likely select option (B1). 

Under maximin strategy, each player attempts to maximize their minimum payoff in 

each scenario and choose their actions accordingly. This strategy aims to guarantee 

the best possible result without relying on the rationality of the other players, and 

even making the most pessimistic assessment of their potential behavior. 

Let 𝑢𝑖 denote the utility function for player 𝑖. Then, let 𝑆𝑖 be the set of possible 

strategies of player i, and 𝑆−𝑖 be the set of possible strategies for rest of the players. 

Similarly, let 𝑠𝑖 denote the selected strategy for player 𝑖 and 𝑠−𝑖 denote the selected 

strategy vector of all the players except player 𝑖.  

If player 𝑖 chooses strategy 𝑠𝑖, the utility he/she will recieve is going to depend on 

the strategies of the other players. Given that 𝑠𝑖 is selected, the worst possible utility 

player 𝑖 can obtain is min
𝑡−𝑖∈𝑆−𝑖

𝑢𝑖(𝑠𝑖, 𝑡−𝑖). And, under the maximin strategy, the payoff 

value is calculated as max
𝑠𝑖∈𝑆𝑖

min
𝑡−𝑖∈𝑆−𝑖

𝑢𝑖(𝑠𝑖, 𝑡−𝑖). 

The calculation of the best actions under the maximin strategy of both players is 

given in Table 6.2. 
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Table 6.2 Maximin calculation in payoff table  

  Player II  

  B1 B2 min
𝑠𝐼𝐼∈𝑆𝐼𝐼

𝑢𝐼(𝑠𝐼 , 𝑠𝐼𝐼) 
P

la
y
er

 I
 A1 2, 1 2, -20 2 

A2 3, 0 -10, 1 -10 

A3 -100, 2 3, 3 -100 

 min
𝑠𝐼∈𝑆𝐼

𝑢𝐼𝐼(𝑠𝐼 , 𝑠𝐼𝐼) 0 -20 (2,0) 

 

There could be applications of this strategy in situations with a single decision-

maker. Next, we propose the interpretation of the maximin strategy in terms of 

Robust MCLP-P. 

6.2 Maximin Approach in Robust MCLP-P 

In this section, we demonstrate with a practical example that if we define the possible 

worst-case scenarios instead of players, we can compute the maximin value through 

payoff tables. This allows utilizing matrix operations while computing the solution 

rather than solving the actual model.  

Assume that there are two demand points to be covered. We are going to open two 

facilities, 𝑦𝐼 = 1, 𝑦2 = 1, and let 𝛤 = 1. So, the problem is to decide the coverage 

assignments that will yield the highest maximin values and find the facility that will 

be in its worst-case scenario. 

For this example, we randomly generated the coverage and variation values given in 

Table 6.3. 
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Table 6.3 Generated coverage data  

 𝑐𝑖𝑗 ĉ𝑖𝑗 

𝑖 = 1, 𝑗 = 1 0.10568 0.06775 

𝑖 = 2, 𝑗 = 1 0.16325 0.07056 

𝑖 = 1, 𝑗 = 2 0.18202 0.07175 

𝑖 = 2, 𝑗 = 2 0.19219 0.07036 

 

Let 𝑎𝑖𝑗 denote the coverage assignment of demand point 𝑖 to facility 𝑗. If two 

facilities are to be opened and if each demand point is covered at most by one facility, 

there could be only four possible instances of coverage assignments, which are {(𝑎11, 

𝑎21), (𝑎11, 𝑎22), (𝑎21, 𝑎12), (𝑎12, 𝑎22)} (E.g., (𝑎11, 𝑎21) represents the case where 

x11 = 1, x21 = 1, x12 = 0, x22 = 0.). 

Now, if we calculate the objective values under these scenarios, we obtain: 

Table 6.4 Objective values under different scenarios  

 𝑤1 𝑤2 

(𝑎11, 𝑎21)  0.13062 0.26893 

(𝑎11, 𝑎22) 0.23012 0.22751 

(𝑎21, 𝑎12) 0.27471 0.27352 

(𝑎12, 𝑎22) 0.37421 0.23210 

 

Each row (𝑎𝑖𝑗, 𝑎𝑘𝑙) of the Table 6.4 represents a possible coverage assignment 

instance, and the column 𝑤𝑗 represents the facility with the worst-case scenario. E.g. 

the cell in (𝑎11, 𝑎22) row and 𝑤1 column is the instance that  𝑥11 = 1, 𝑥21 = 1, 𝑥12 =

0, 𝑥22 = 0, and 𝑤1 = 1, 𝑤2 = 0. (𝑎11, 𝑎22) row values are calculated as respectively: 

(𝑐11 ∗ 𝑥11 − ĉ11 ∗ 𝑥11 ∗ 𝑤1) + (𝑐22 ∗ 𝑥22 − ĉ22 ∗ 𝑥22 ∗ 𝑤2) 

= (0.10568 ∗ 1 − 0.06775 ∗ 1 ∗ 1) + (0.19219 ∗ 1 − 0.07036 ∗ 1 ∗ 0) 

= 0.23012 
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and 

(𝑐11 ∗ 𝑥11 − ĉ11 ∗ 𝑥11 ∗ 𝑤1) + (𝑐22 ∗ 𝑥22 − ĉ22 ∗ 𝑥22 ∗ 𝑤2) 

= (0.10568 ∗ 1 − 0.06775 ∗ 1 ∗ 0) + (0.19219 ∗ 1 − 0.07036 ∗ 1 ∗ 1) 

= 0.22751 

Now, if we apply the maximin strategy, we obtain the results given in Table 6.5. 

Table 6.5 Maximin value calculation  

 𝑤1 𝑤2 𝑚𝑖𝑛
𝑠∈𝑈

𝑢(𝑥, 𝑠) 𝑚𝑎𝑥
𝑥∈𝑋

𝑚𝑖𝑛
𝑠∈𝑈

𝑢(𝑥, 𝑠) 

(𝑎11, 𝑎21)  0.13062 0.26893 0.13062 0.27352 

(𝑎11, 𝑎22) 0.23012 0.22751 0.22751  

(𝑎21, 𝑎12) 0.27471 0.27352 0.27352  

(𝑎12, 𝑎22) 0.37421 0.23210 0.23210  

 

Even though there actually is a single decision maker in making a location decision,  

this robust problem has a nature of a game involving two players (Sniedovich, 2016). 

The robustness variable 𝑤, embodies uncertainty and the realized value of 𝑤 is not 

controlled by the decision maker. So, in this game, the decision maker plays first by 

selecting a decision 𝑥 ∈ 𝑋. As a consequence, a worst-case scenario takes place 

associated with this decision. Hence, the goal of the decision maker is to select an 

𝑥 ∈ 𝑋 that provides the greatest payoff by anticipating the worst-case scenario 

response. 

We found that the resulting value of the payoff table is equivalent to the model 

solution. We demonstrated the relation between payoff tables and discrete robust 

optimization only for the maximin approach which is valid for the Robust MCLP-P. 

Yet, by using the maximax payoff tables instead of maximin tables, this is directly 

applicable to Semi-Robust MCLP-P as well. This approach is beneficial as it enables 

us to utilize matrix operations rather than solving the actual model. We observed that 

it is especially useful for the Semi-Robust MCLP-P. 
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CHAPTER 7  

7 CONCLUSION 

In this thesis, we address the MCLP-P under coverage uncertainty. In MCLP-P, 

coverage depends on the distance between each demand-facility point pair and the 

critical distances defined for each facility. In our model, we assume that the critical 

distances are subject to change and upper and lower bounds of critical distances are 

the only available information. We adopt the discrete robust optimization framework 

to deal with this problem and we propose two different approaches to hedge against 

uncertainty, namely Robust MCLP-P and Semi Robust MCLP-P.  

In the Robust MCLP-P, we maximize the overall coverage while assuming that in 

the worst-case scenario the variation is going to be maximized as well. For the 

Robust MCLP-P we propose two exact solution approaches, a primal dual approach 

and a Benders decomposition algorithm.  

In the Semi Robust MCLP-P, we aim to select facilities that are going to maximize 

the coverage while being affected by the worst-case scenario variation at the least. 

For the Semi-Robust MCLP-P we propose two heuristic and two exact solution 

approaches. We propose a mixed integer program, a Benders decomposition 

algorithm, greedy neighborhood search algorithm and random neighborhood search 

algorithm.  

We also investigate the process of finding robust solutions from the perspective of 

game theory using payoff tables. We present the relation between discrete robust 

optimization and game theory. We demonstrate that we can utilize payoff tables for 

computation instead of solving the actual model. 

In computational experiments section, we show the factors that have influence in our 

problem and their effect on both solutions and computational cost. We compare each 

solution method and present their performance under many different instances. In 
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the Semi-Robust MCLP-P experiments, we demonstrate that our proposed way of 

obtaining Benders cuts allows us to significantly outperform the linear model for the 

realistic large instances. Proposed heuristic algorithms, the GNS and the RNS 

provide 1.49% and 1.08% optimality gaps in average respectively and we were able 

to obtain optimal or near-optimal solutions for most of the cases in very short time 

frames. Then, we present the impact of the proposed models and make practical 

comparisons among themselves and the classical MCLP-P. If there is coverage 

uncertainty, we show that our models outperform the classical MCLP-P up to 

18.73%.  

This study can be extended along several directions. We define the coverage 

uncertainties over the critical distances in the MCLP-P. Future studies may change 

the source of uncertainty. Another future research direction could be to utilize the 

stochastic optimization framework to solve the MCLP-P under coverage uncertainty, 

if there is available data. For instance, the parameters of the partial coverage function 

of the classical MCLP-P could be replaced with random variables that are assumed 

to be distributed according to the available data. Then, the expected coverage could 

be maximized. This could provide a different perspective for the decision-makers. 

However, this could increase the computational difficulty and enforce developing 

other solution approaches. Another interesting future study could be to implement 

the robust approach developed in this thesis to different location problems. As an 

example, double coverage models could be taken into consideration, which is 

commonly used in ambulance location problems, where handling uncertainty carries 

critical importance.
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APPENDIX A 

8                 Robust MCLP-P Experiment 

Computational experiments made for the Robust MCLP-P can be found in Table 

8.1.
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APPENDIX B 

9                   Semi-Robust MCLP-P Experiment 

Computational experiments made for the Semi-Robust MCLP-P can be found in 

Table 8.2. 
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APPENDIX C 

10                  Impact of Robustness on Solutions 

Investigation of the impact of robustness on solutions can be found in Table 8.3. 
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