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ABSTRACT

ROBUST MAXIMAL COVERING LOCATION MODELS
CONSIDERING PARTIAL COVERAGE

Koksal, Burak
Master of Science, Industrial Engineering
Supervisor: Prof. Dr. Esra Karasakal
Co-Supervisor: Prof. Dr. Orhan Karasakal

May 2023, 90 pages

Maximal Coverage Location Problem (MCLP) attempts to find a predetermined
number of facilities to maximize the number of demand points that can be covered.
In MCLP, while all demand points within a critical distance of a facility are
completely covered, demand points exterior this region are not covered at all. In
Partial MCLP (MCLP-P), another critical distance is introduced which allows
coverage between two critical distances, monotonically decreasing with respect to
demand points’ distance from facilities. In this thesis, we study MCLP-P under
coverage uncertainty. We utilize robust optimization framework and introduce two
different strategies to hedge against uncertainty. We propose multiple solution
approaches for both strategies. We show interpretation of the proposed robust
optimization models from the perspective of game theory using payoff tables. We
present the impact of the models and compare the performance of the proposed
solution approaches on randomly generated datasets.

Keywords: Maximal coverage location problem, robust optimization, decision

making under uncertainty, facility location, combinatorial optimization
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KISMi KAPSAMA ALTINDA
GURBUZ MAKSIMUM KAPSAMA MODELLERI

Koksal, Burak
Yiiksek Lisans, Endiistri Miihendisligi
Tez Yoneticisi: Prof. Dr. Esra Karasakal
Ortak Tez Yoneticisi: Prof. Dr. Orhan Karasakal

Mayis 2023, 90 sayfa

Maksimum Kapsama Problemi (MCLP), kapsanacak talep miktarin1 maksimize
edebilecek en iyi tesisleri bulmaya ¢alisir. MCLP'de tesisler, kritik mesafe adi verilen
bir uzakliga kadar yer alan tiim talep noktalarin1 tamamen kapsarken, bu uzakligin
disindaki talep noktalarini hi¢ kapsamaz. Kismi MCLP'de (MCLP-P) tanimlanan
ikinci kritik mesafe, talep noktalarin tesislerden uzakligina gére monoton olarak
azalacak sekilde iki kritik mesafe arasinda kapsamaya izin verir. Bu tezde, MCLP-P
kapsama belirsizligi altinda incelenmistir. Giirbiiz optimizasyon kullanilarak iki
farkli ¢oziim yaklasim gelistirilmistir. Onerilen ¢dziim stratejileri igin farkli ¢ziim
yontemleri sunulmustur. Sunulan giirbliz optimizasyon modelleri, sonug tablolar1
kullanilarak oyun teorisi perspektifinden incelenmistir. Onerilen ¢dziim
yontemlerinin etkisi ve modellerin performansi rassal olarak iiretilmis verisetleri

tizerinde test edilmistir.

Anahtar Kelimeler: Maksimum kapsama problemi, giirbiiz optimizasyon, belirsizlik

altinda karar verme, tesis yerlestirme, kombinatoryal optimizasyon
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CHAPTER 1

INTRODUCTION

Facility locations problems aim to choose the "best” possible sites for a set of
facilities to meet a particular set of demand points. Maximal Coverage Location
Problem (MCLP) deals with finding a predetermined number of facilities to
maximize the number of demand points that can be covered. In the classical MCLP,
it is assumed that all demand points within a critical distance from a facility are
completely covered, while the demand points outside this critical distance are not
covered at all (Church and ReVelle, 1974).

Full
Coverage

K.
Coverage

Figure 1.1. Coverage in the classical MCLP (*: Open facility, @: Demand point)



However, in the classical MCLP problem, optimal solution is highly sensitive to the
choice of the critical distance. Any demand point is fully covered until it reaches a
certain critical distance from the center of the facility, but not covered at all exterior
of this critical distance. Therefore, determining a single critical distance value may
be problematic as it may lead to erroneous solutions. Based on this problem, Berman
et al. (2003) and Karasakal and Karasakal (2004) define a second critical distance by

introducing the idea of partial coverage.

In their study, while all demand points up to the minimum critical distance from the
center of the facility are fully covered, demand points between the minimum and
maximum critical distances to the facility are “partially” covered. This coverage
decreases along with the distance from the facility. Full coverage is achieved up to
the minimum critical distance. Between the minimum and the maximum critical
distances, coverage gradually decreases as demand point approaches the maximum
critical distance. Finally, facilities do not perform any coverage outside the

maximum critical distance.

Full
Coverage

M

No
Coverage

Figure 1.2. Coverage in the MCLP-P (%: Open facility, @: Demand point)



This approach clearly enables us to find more realistic solutions than the classical
MCLP approach. However, it is not easy to determine critical distances in real life.
Critical distances of facilities are typically under the influence of many exogenous
factors that are out of control of the decision-makers. Hence, disregarding their
varying nature may result in finding solutions that are impractical in real-life.
Therefore, the decision of selecting facilities that will cover the most demand points

should be taken while carefully acknowledging this uncertainty.

We adopt the robust optimization methodology to address this uncertainty. In robust
optimization, it is assumed that uncertain data belongs to an uncertainty set.
Uncertainty set is a set that contains all possible values for uncertain parameters
aimed to be dealt with in a robust optimization problem. Robust optimization is
widely popular as it is computationally tractable for many different types of

uncertainty sets and problems.

In this thesis, we introduce an approach to hedge against coverage uncertainty for
MCLP-P based on the robust optimization framework presented in Bertsimas and
Sim (2003). We propose two different models, namely robust and semi-robust
models to deal with uncertainty. For the robust model, we propose a mixed integer
linear programming formulation and a Benders decomposition algorithm to solve the
problem. For the semi-robust model, we present two exact and two heuristic solution
approaches. We propose a mixed integer linear program and a Benders
decomposition algorithm as exact methods. For the Benders decomposition
algorithm, we propose a method to obtain Benders cuts in linear time. Then, we
present Greedy Neighborhood Search and Random Neighborhood Search as
heuristics. We further investigate the process of finding robust solutions from the

perspective of game theory using payoff tables, and present its interpretation.

Organization of this thesis is as follows. In Chapter 2, we present the literature review
for the study. In Chapter 3, we introduce the robust model and the proposed solution
approaches. In Chapter 4, we present the semi-robust model, and the developed

solution methodologies. In Chapter 5, we present the computational experiments. In



Chapter 6, we present solution insights. In Chapter 7, we summarize our findings

and conclude the thesis.



CHAPTER 2

LITERATURE REVIEW

2.1 Maximal Covering Location Problem

Berman and Krass (2002) investigate the MCLP case where partial coverage is
allowed. In the study, degree of coverage for any demand point is a non-increasing
step function of the distance to the closest facility. They show that the problem is
equivalent to the uncapacitated facility location problem (UFLP).

Berman et al. (2003) study an extension of the generalized MCLP model analyzed
in Berman and Krass (2002). They consider general forms of the coverage decay
function in the paper. In addition to the UFLP-based formulation, authors develop

an alternative formulation that yields significant computational improvements.

Drezner et al. (2004) minimizes the total weighted non-coverage of demand points
instead of maximizing the coverage. They convert the formulation to the Weber

problem by imposing a special structure on its cost function.

Karasakal and Karasakal (2004) formulates the problem based on the classical p-
median formulation where they maximize the coverage of demand points instead of
minimizing the total distance. In their study, they relax the restriction on the coverage
function for their model by allowing the use of any coverage function if the coverage
level decreases as distance increases. Authors develop a solution procedure based on

Lagrangian relaxation.

Eydi and Mohebi (2018) examine the gradual MCLP with variable radius over multi-
periods. Each facility has a fixed cost together with a variable cost which depends



on the coverage radius of the facility. Authors attempt to maximize the coverage and

minimize the relocation cost at the same time.

Berman et al. (2009) studies the combination of ordered median location problem
and gradual coverage location problem. Ordered median location problem is a
generalization of most of the classical location problems such as p-median or p-
center which considers only relative customer-to-facility distance. By combining it
with gradual coverage, authors are able to obtain a model that takes both relative and
absolute customer-to-facility distances into account.

Drezner and Drezner (2014) discuss the gradual covering problem case where every
facility is allowed to cover multiple demand points and each demand point is allowed
to be covered by multiple facilities. Authors argue that partial coverage can be
interpreted as the probability that the full coverage will occur. In the paper, authors

aim to maximize the minimum coverage of each demand point.

Berman et al. (2019) discuss the multiple gradual cover location problem in the
presence of joint coverage. Formulations in the study is based on the work of Drezner
and Drezner (2014). However, different from the work of Drezner and Drezner
(2014), authors aim to maximize the total joint cover of all demand points in this
study.

Alvarez-Miranda and Sinnl (2019) propose an exact solution framework for the
multiple gradual cover problem. They consider the case where joint coverage is
allowed and build their formulations upon the work of Drezner and Drezner (2014)
and Drezner et al. (2019). Authors present four different mixed integer programming
formulations for the problem by exploiting the submodularity of the objective

function.

Peker and Kara (2015) demonstrate the concept of gradual coverage to p-hub
maximal covering problem. Authors present several mixed integer programming

models that are applicable for both binary and partial coverages.



Karatas (2017) studies a multi-objective facility location problem which combines
gradual coverage, cooperative coverage, and variable coverage concepts. Objectives
in this study consists of covering demand points at a satisfactory level inexpensively

and maintaining balanced workload among facilities.

Drezner et al. (2019) investigates the case where demand points are represented by
circular discs instead of mathematical points. In the study, demand covered by a
facility is obtained as the intersection area of the disc centered at the demand and the
disc centered at the facility. Partial cover of the demand is the intersection area

divided by the area of the demand’s disc.

Drezner et al. (2020a) study an extension of the directional approach to gradual
cover. Unlike the work of Drezner et al. (2019), they aim to maximize the minimum

cover for all demand points.

Drezner et al. (2020b) discuss the gradual decline in attraction from 1 to O for the
competitive facility location problems. Authors indicate that in competitive location
problems, increasing function of market share is assumed as profit or revenue.
Hence, maximizing market share is equivalent to maximizing profit or revenue. In
this study, authors present formulations to maximize total market share for both

single-facility and multi-facility cases.
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2.2  Robust Optimization

In real life decision-making problems, it is not possible to know everything in
advance in a deterministic sense. Hence, solving problems assuming that the data is
precisely known and using exact parameters could yield impractical solutions. In
order for output of a model to be more applicable in practice, such uncertainties
should be taken into account and the goal should be to develop models that are
immune to these uncertainties as much as possible. Knowing that, if we correctly
define these uncertainties and try to hedge against them in the most appropriate way
possible, we would obtain significantly better solutions.

There are various ways to deal with uncertainty in the decision-making literature.
Two main approaches are stochastic and robust optimization. Stochastic
optimization is based on the assumption that the probability distribution of uncertain
data must be known. If this assumption holds for the data at hand, and if the
stochastic reformulation is tractable, then the problem can be solved by stochastic
optimization. However, it is not always the case. It may not be very straightforward
to fit a probability distribution to data. In addition, chance constrained problems
commonly are not computationally tractable. Yet, there are still many problems that
can be solved using stochastic optimization, and it is one of the most popular
approaches to handle uncertainty in optimization problems. The other common
methodology is robust optimization. In robust optimization, the assumption is that
the data belongs to an uncertainty set rather than a probability distribution. Robust
optimization is popular as it is tractable for many types of uncertainty sets and

problems. (Gorissen et al., 2015)

In this thesis, we address the coverage uncertainty in MCLP-P. In MCLP-P, coverage
values are defined for each demand-facility pair and is a function of the distance
between these pairs. Knowing that the MCLP-P is already NP-Hard, obtaining the
underlying probability distribution of each coverage value for all demand-facility

pairs and solving the resulting optimization problem would pose a significant



challenge. Therefore, we adopt the robust optimization methodology as it allows to

obtain rather tractable reformulations.

The first paper in robust optimizaton dates back to 1970s, however it has been mostly
developed in the last 20 years (Gorissen et al., 2015). In Soyster (1973), author
considers data uncertainty in columns. It aims protection at the highest level for each
constraint, thus it is one of the most conservative approaches in the robust
optimization literature. To overcome this over-conservatism, Ben-Tal and
Nemirovski (2000) proposed ellipsoid uncertainty sets and developed algorithms to
address convex optimization optimization problems with uncertain data. However,
as it contains conic quadratic formulation, it cannot be applied to combinatorial
optimization problems directly. Bertsimas and Sim (2004) introduce another
approach which not only enables adjusting conservatism level quite flexibly by
varying a single parameter, but also leads to computationally tractable
reformulations. Based on their work published in that paper, in Bertsimas and Sim
(2003), authors demonstrate that their approach can be adopted for discrete
optimization and network flow problems. They address data uncertainty both in cost
coefficients and constraints, and demonstrate that their approach retains the original
nominal problem’s complexity. In this thesis, we utilize the robust optimization

framework introduced in Bertsimas and Sim (2003).

In this thesis, we additionally demonstrate the connection between discrete robust
optimization and game theory for MCLP. In order to do that, we examine maximin
and maximax concepts over payoff tables and explain their possible interpretations

for discrete robust optimization along with illustrations.

10



2.3 Robust Optimization in Location Problems

Schmid and Doerner (2010) study ambulance location and relocation problem to
cover potential future demand in a time-efficient manner. They prefer to approach
this problem in a multi-period fashion since the travel times differ throughout the
day and solving the static ambulance location problem may not be sufficient to

address the problem effectively.

Dibene et al. (2016) extend this model by including multiple scenarios considering
factors such as the time of day and the day of the week. With the use of real-world
emergency data obtained from the Red Cross of Tijuana, the scenarios are generated.
Authors attempt to solve all these scenarios in a single optimization problem. To
solve this problem, authors propose static and robust versions of three different
coverage models: the MCLP, the Location Set Covering Model (LSCM), and the
Double Standard Model (DSM).

Vatsa and Jayaswal (2021) model the problem of assigning doctors to health centers
as a robust capacitated multi-period MCLP with server uncertainty. Demand nodes
can be covered fully or partially. Scenario dominance rules are presented to reduce
the size of the formulation. Minimax regret approach is adopted.

In Lei et al. (2014), authors aim to maximize the expected demand coverage while
considering possible facility failures. The suggested model considers geographically
varying facility failure probabilities.

Alvarez-Miranda et al. (2015) examine the recoverable robust facility location
problem. They define a location and allocation strategy in two stages such that the
first stage solution they obtain should be robust to the data which can only be
revealed in the second stage. Thereby, if required, it is possible to recover the
solution in the second stage at low cost. Authors state that the proposed model is

robust to any kind of provider-side, receiver-side, and in-between uncertainties.

11



Wang and Qin (2021) address partial coverage situation in the uncertain hub
maximal covering location problem. Authors introduce the partial coverage
parameter by considering travel times as uncertain variables. They present specific
decay functions for the expected value of partial coverage parameter. Their objective
is to maximize the service ability and economic effectiveness in a multi-objective

model.

Coco et al. (2018) investigate the min-max regret MCLP. They address a
generalization of the classical MCLP where they seek to find a set of columns with
the maximum benefit sum in a matrix of benefits. Benefits of each column are
uncertain and defined as interval data. They further define scenarios for all possible
benefit realizations of these data intervals defined for each column. In their study,
they enforce that each row is covered at least by a single column. Then they aim to
minimize the maximum regret over all possible scenarios in their study. They
propose exact and approximation algorithms. However, they indicate that even

though the large running times, they obtain results with high optimality gaps.

In Chauhan et al. (2019), authors study MCLP with drones that have limited battery
capacity. To acknowledge this fact, authors add a battery constraint which limits
drones’ travel distance. Chauhan et al. (2021) extends this work by considering
uncertainties in battery capacity and consumption aiming to find robust solutions.
Facilities act as launching sites for drones and have limited supply to cover the
customer demand. Drones make single delivery trips until their battery is exhausted.
They attempt to maximize the demand covered by drones while considering
uncertainties in battery availability and consumption. The uncertainty is modeled by

utilizing a penalty-based approach and gamma robustness.

Peng et al. (2017) formulate a two-stage robust facility location model that takes
demand and transportation cost uncertainties, and facility disruptions into account.

They address the uncertainty by introducing budget uncertainty set.

Saif and Delage (2021) discuss distributionally robust version of the capacitated

facility location problem, where customer demand is the uncertain parameter.

12



Models for both single and two-stage problems are presented. In the single-stage
problem, all decisions are made at the beginning, whilst in the two-stage problem
location decisions are made under distributional ambiguity and demands are
allocated to facilities once demands become known.

Santos et al. (2019) focus on the stochastic version of Equitable Sensor Location
Problem which is a unique type of MCLP. The objective of this problem is to cover
all locations equally given a limited number of sensors. Both ambiguous and resilient
versions are considered. While the resilient version attempts to solve the problem
under the assumption that the sensors are subject to partial or complete failure, the

ambiguous version investigates the problem under uncertain surveying probabilities.

Baldomero-Naranjo et al. (2021) examine the single-facility MCLP on a network.
They consider the case where the demand is uncertain with only a known interval
estimation and distributed along the edges. To hedge against uncertainty in demand,
authors propose a minmax regret model, where the facility can be located anywhere

in the network.

Du and Zhou (2018) study p-center facility location problem under cost uncertainty.
They adopt symmetric interval and multiple allocation strategy and utilize three
uncertainty sets for the robust problem: box uncertainty, ellipsoidal uncertainty, and
cardinality-constrained uncertainty. The objective is minimizing the maximum cost

of covering a demand node.

Robustness takes significant place in the hub location problems (HLP) as inadequate
applications most likely result in undesired outcomes such as high costs and
discontented customers. Hence, robust hub location problems have been studied

extensively in the literature.

Boukani et al. (2016) consider both single and multiple allocation HLP under fixed
set-up cost and capacity uncertainties. Five different scenarios were defined for each

uncertain parameter and minmax regret model is proposed.

13



Amin-Naseri et al. (2018) aim to minimize the overall transportation cost and
maximum uncertainty in network by selecting location of the hubs and allocation of
other nodes to the hubs. Authors employ a desirability function-based approach to
consider both objectives.

Li et al. (2020) consider HLP under flow and set-up cost uncertainties. Budget
uncertainty set is utilized to address the uncertainty. They offer formulations for both
single and multiple allocation situations. The set-up cost of a hub depends on the
total flow through the hub. They aim to obtain protected solutions against worst cases

of different uncertain parameters.

Merakli and Yaman (2016) investigate the robust multiple allocation p-hub median
problem under polyhedral demand uncertainty. They address the uncertainty by
utilizing hose and hybrid models. The hose model only imposes aggregate upper
bounds on inbound and outbound traffic of each node, whereas the hybrid model
additionally introduces lower and upper bounds on individual traffic demands. Their
objective is to minimize the cost of the network under the worst-case scenario by
employing a minmax criterion. In Merakli and Yaman (2017), authors consider the

capacitated hub location problem under hose demand uncertainty.

Ghaffarinasab (2022) approaches this problem with the same objective by using
budget of uncertainty parameter which allows adjusting the level of conservatism.
They utilize the budget of uncertainty approach to cope with uncertainty. Minimax

criterion is used.
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2.4 Contributions to the Literature

Different from the studies presented in this chapter, we adopt robust optimization
framework to address coverage uncertainty in MCLP-P. We propose two models to
hedge against uncertainty, namely robust and semi-robust approach. For the robust
approach, we propose a mixed integer linear optimization formulation and a Benders
decomposition algorithm. For the semi-robust strategy, we present a mixed integer
linear optimization formulation and a Benders decomposition algorithm as exact
methods and two heuristic solution approaches. In Benders decomposition
algorithm, we propose a method to obtain Benders cuts in linear time. Then, using
game theory payoff tables, we demonstrate how the suggested robust optimization
model may be interpreted from the game theory standpoint. Finally, we discuss the
impact of our model and compare the proposed solution approaches.
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CHAPTER 3

ROBUST MCLP-P

In this chapter, we consider MCLP-P under coverage uncertainty within the robust
optimization framework. In MCLP-P, coverage is a function of the distance between
each facility-demand point pair and the provided coverage level depends on the
critical distance of each facility. Proposed robust MCLP-P model assumes that upper
and lower bounds of critical distances are the only available information. Given this
limited information, motivation of this study is to obtain the best possible coverage
levels under worst-case scenarios. The level of conservatism could be simply
adjusted with I parameter. In the following two sections we define the problem and
provide a mathematical formulation of it. Then, we propose a mixed integer linear
programming reformulation and a Benders decomposition algorithm to solve the
problem.

3.1 Problem Definition

For the sake of completeness, we begin this chapter by presenting the deterministic
MCLP-P formulation. Let I denote the set of demand points, / denote the set of all
potential facility locations. S is the minimum critical distance, and T is the maximum
critical distance for any potential facility j. Let c;; represent the coverage level
provided by potential facility j at demand point i and d;; represent the distance from
a demand point i to a potential facility j. M; is the set of facilities that are eligible to

cover demand point i. P is the number of facilities to be opened.
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The MCLP-P modeled by Karasakal and Karasakal (2004) is as follows:

(MCLP — P): max Z Z CijXij (1)
icl jeJ
S. t.Zyj =P (2)
Jjej

xUSy] Viel,jeEM,; (3)
Z xij =1 Viel (4)

JEM;
xij 6{0,1} ViEI,jE] (5)
y; €{0,1} vj €] (6)

where

o {1, if demand point i is either partially or fully covered by facility j
u o, otherwise

o {1, if a facility is sited at j
Yi o, otherwise

Coverage function under the MCLP-P is as follows:

1, ifdij;<S§
cj=1f(dy), ifS<d;<T
0, otherwise

Partial coverage function is represented as f (dij) € RO, Partial coverage value

for a demand point depends on the employed partial coverage function. The selected

function should be monotonic, and nonincreasing within the increasing distance from

18



the facility. Berman et al. (2003) utilize linear decay function. In Karasakal and
Karasakal (2004), authors compare four different possible coverage functions,
sigmoid, classical, linear, and weighted linear partial coverage functions. For their
computational study they use sigmoid function. In this study, we utilize a linear
coverage function. However, as long as the partial coverage function is monotone
decreasing with the increase in distance, any nonlinear function could also be

utilized.

Objective function in Eq.(1) maximizes the coverage level within the maximum
critical distance. Eq. (2) enforces that P facilities are opened. Eq.(3) ensures that
if facility j covers demand point i, facility j must be open. Eq. (4) limits the number
of facilities that can cover any demand point i simultaneously to 1. Eq.(5) and

Eq.(6) enforces x;; and y; to take binary values.

MCLP-P extends the classical MCLP by introducing novel coverage levels. Let R
denote the critical distance under the classical MCLP, its coverage function would
be defined as follows:
s = {1, if di s. R
0, otherwise
Since MCLP only takes coverage as a binary function, it does not permit facilities to
cover demand points that are exterior to their critical distance, even if they are away
by a very small margin. However, this is not quite practical in real life. Facilities
would be willing to cover such demand points since they would be able to cover
many more demand points only by slightly extending their critical distance. In order
to address this problem, in MCLP-P authors propose another critical distance which

enables facilities to operate under more realistic settings.

In MCLP-P, as in MCLP, the performance of the proposed solutions could
deteriorate if critical distances are selected inaccurately. In such a case, if the critical
distances are selected assuming the best-case scenario, we may try to cover demand

points that could be impractical in real-life, at least under certain scenarios. On the
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other hand, if the critical distances are chosen assuming the worst-case scenario, we
may end up being too pessimistic and disregard possible coverage opportunities.

Hence, both of these cases could lead to suboptimal solutions.

However, selecting critical distances is not a simple task. They are under the
influence of many exogenous factors and vary all the time. Hence, it is highly
unlikely define the critical distances that reflect the real-life situations perfectly. In
this study, we address this issue in MCLP-P and aim to find solutions that are robust
to such changes in the critical distances. Since MCLP-P is a generalization of the

classical MCLP, the proposed approach is applicable to the classical MCLP as well.

Characterization of uncertainty accurately is the first step to tackle this problem
effectively. Since the coverage values are a function of distance between each
demand point-facility pair, we aim to address uncertainty in the critical distances. To
explain our proposition in a coherent way, we only focus on uncertainty in the
maximum critical distance in this thesis. Yet, the proposed model is valid for both
critical distances, and applying the proposed approach to the minimum critical

distance is straightforward.

We utilize the robust optimization framework demonstrated in Bertsimas and Sim
(2003), which is developed to address the uncertainties in discrete optimization
problems. We aim to obtain solutions that are robust to exogenous factors. Any
solution found by this model is expected be practical under various real-life
situations. To achieve that, we define two scenarios for the maximum critical
distance, i.e., the worst-case scenario and the average-case scenario. We represent
these distances by T and T, respectively. f(d;;) and f'(d;;) are the partial coverage

functions under average-case and worst-case scenarios, respectively.

3.1.1 Coverage in the Average-Case Scenario

For the average-case scenario, the coverage occurs as follows:
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1, dj<S
cij =1f(dij), S<dy; <T
0, T <d
This is the equivalent coverage definition to MCLP-P. In average-case scenario we
assume that facilities can serve demand points as they usually do and no significant
exogenous factor can deterioate this coverage level. To give a practical example, we
can think of average-case scenarios as hospitals covering demand points in a

particular region while the traffic congestion is moderate or relatively low.

Under this scenario, demand point i can be completely covered by facility j within
the minimum critical distance S, can be partially covered between the minimum and
the maximum critical distances T, and no coverage can take place after the maximum

critical distance.

The partial coverage function f(dij) should be monotonic and nonincreasing in the
increasing distance from the facility. This would ensure that for given demand points

i! and i? and a potential facility j, if d;1; > d;2

J j =
3.1.2 Coverage in the Worst-Case Scenario

For the worst-case scenario, the coverage function is as follows:

1, d; <S
ci;=13f(dy), S<dy<T

0, T' < d
In the worst-case scenario, we define a novel maximum critical distance T"'. Different
than the average-scenario, in this case we assume that the coverage level of facilities
is affected by exterior elements. Thus, the facilities can only provide service to
smaller regions. As a practical example, this would be the case where hospitals
serving demand points while traffic congestion takes place. This would lead
ambulances to be able to only reach shorter distances in a given time, resulting in the

decreased level of coverage.
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Preferred partial coverage function characteristics defined in section 3.1.1. is also

valid for the worst-case scenario.

a) The average-case scenario b) The worst-case scenario

Figure 3.1. Comparison of coverage under the average-case scenario (a) and the
worst-case scenario (b) using heat map visualization. (%: Open facility, @: Demand

point)

3.1.3 Uncertainty Set for Each Demand Point-Potential Facility Pair

To accurately identify the uncertainty set, we can investigate loss in coverage based
on incorrect choice of the critical distances. We can define the coverage loss value

as variation and denote it as &;. For each demand point-potential facility pair,

variation becomes:

0, dij<S
= f(dij)—f(dij), S<dyy <T'
! f(dy), T'<dj; <T
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a) Average-case scenario b) Worst-case scenario c) Variation

Figure 3.2. Visual demonstration of coverage under different scenarios and the

variation

In Figure 3.2, let the blue dots on the top represent the location of facility j.
Semicircles from top to bottom are the minimum critical distance, the maximum
critical distance under the worst-case scenario and the maximum critical distance
under the average-case scenario. For any demand point-facility pair, this figure
visualizes the coverage values under the average-case scenario, the worst-case
scenario, and the variation values respectively. Note that to accurately incorporate
distance uncertainty the same coverage function should be preferred both for the

average and the worst-case scenarios.

We can analyze the set of coverage values for each demand point and potential
facility pair by utilizing the coverage values that have been specified so far. We know
that coverage values should take a value between the worst-case and the average-
case scenarios. So, if we denote c;; € R[] as the actual coverage value for any

demand point-facility pair, we can investigate the four possible cases as follows:

. dUSS CijE[l,l].SO, Cl'jzl.
e S dl] < T Cij € [f,(dl])’ f(dU)]
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e T'< dl] <T-: Cij € [0, f(dl])]
° T<dij:CijE[0»0]-Cij:0-

coverage ‘ coverage
s T T distance S T T distance

a) Coverage in the average-case scenario  b) Coverage in the worst-case scenario

Figure 3.3. Coverage values against distance

After defining the uncertainty set, the next step is to find an appropriate way to
incorporate that knowledge in the model and then formulate the problem to obtain

solutions that are robust to exogenous factors.

3.2 The Mathematical Model

We devise the mathematical model based on the robust optimization framework for
discrete optimization problems presented in Bertsimas and Sim (2003). We
formulate the model in a way that while the overall objective function aims to find
solutions that will maximize the total coverage level, the lower level objective
attempts to penalize this coverage given a conservatism level parameter, I'. When
the I' parameter is equal to 0, we obtain the same result as MCLP-P, and as we

increase I', the coverage level decreases.
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Nomenclature

Sets:

I: Set of demand points; i € {1, 2, ..., ||}

J: Set of facility sites; j€ {1, 2, ..., |/}

U: Set of facilities that are subject to uncertainty. UZ].

M;: Set of facility that are eligible to cover demand point i fully or partially, j € {1,
2, ., |M;|}.M; < J.

Parameters:

c;j: Average-case coverage level of demand point i provided by facility /.

¢;;- Difference of coverage level between the average and the worst-case scenarios

of demand point i provided by facility j.

ci;- Worst-case coverage level of demand point i provided by facility .
d;;: Distance between demand point i and facility ;.

S : The minimum critical distance.

T: The maximum critical distance in the average-case scenario.

T': The maximum critical distance in the worst-case scenario.

I': Level of conservatism, i.e., the number of facilities that will function in the

worst-case scenario.

P: Number of facilities to be opened.
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Decision Variables:

o {1, if demand point i is either partially or fully covered by facility j
U 0, otherwise

. {1, if facility j is opened
] 0, otherwise

{1, if facility j is in its worst — case scenario
J

0, otherwise

3.21 Formulation

The proposed formulation for the robust MCLP-P is as follows:

X,y zz YT yuey vy ijXij (7)

i€l jeJ i€l jeU

Constraints (2) — (6)

Eq. (7) aims to find solutions that maximize the coverage while ensuring the impact

of uncertainty is maximized. We allow variations up to I parameter.

To write the subproblem in the open form, a new variable, w;, is introduced. w; is

the variable that allows robustness and takes the value of 1 if facilty j is in its worst-

case scenario and takes the value of O if facility j is in the average-case scenario.

This variable, coupled with the bilevel form of the problem, allows us to incorporate

coverage variation that is caused by exogenous factors. Then, we can write the

proposed model equivalently as follows:

(R—MCLP—P): n}C,c}lIx ZZCl]xU+mM£n Zz—éuxuwj (8)

il jeJ i€l jeu
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S.t.ZWj <T 9)

jeu

0<w <1 vjeU (10)

Constraints (2) — (6)

In this formulation, Eq. (8) maximizes the overall coverage level while minimizing
the negative coverage variation. Minimizing the negative variation would lead
maximizing the worst-case scenario which is the aim of the robust optimization
framework. Hence, the objective is to maximize coverage under the worst-case
scenario. Eq.(9) limits the total number of facilities that are in their worst-case
scenario to I'. Eq.(10) does not allow any facility to perform any worse than their
worst-case scenario. The inner optimization problem ensures that we maximize the
coverage variation while allowing us to adjust the level of conservatism. As we are
maximizing the total coverage variation, this model is going to select facilities in a

robust way assuming that the worst-case scenarios are likely to take place.

3.2.2 A Primal-Dual Solution Approach

The problem is in the form of bilevel optimization problem. Since the inner
minimization problem is a linear optimization problem, we can convert it to a single

level problem as follows.

Given that x € X is fixed, we apply strong duality and formulate the dual of the inner

minimization problem. We obtain the following formulation:
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(R — LP): max ZZcijxij+max F0+ZZJ- (11)

x,y,0,z
il je JeU
s.t.zi+6 < Z —Cijxij VjeU (12)
iel
8<0 (14)

Constraints (2) — (6)

Since the overall objective function is already maximization type, we can remove

the inner maximization and write it directly as follows:

i€l jej jeu

Constraints (2) — (6),(12) — (14)

Now, we have a mixed integer linear programming problem. Next, we propose a

Benders decomposition algorithm by keeping x;; and y; variables in the master

problem, and taking the remaining variables 6 and z; to the subproblem.

3.3 Benders Decomposition Algorithm

Benders decomposition is an exact solution approach for large-scale combinatorial
optimization problems based on row generation. The procedure involves solving two

problems, namely master problem and subproblem, iteratively until a solution is
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found. As the computational difficulty increases with problem size, rather than
solving a single large-scale problem, Benders decomposition algorithm iteratively
solves smaller problems to become more efficient in terms of computational effort.
In Benders decomposition algorithm, variables in the original formulation are
divided into two sets and splitted among these two problems. Master problem is
solved using one of these variable sets and subproblem is solved given the solution
output of master problem. Depending on the solution of the subproblem, feasibility
or optimality cuts are generated and added to the master problem. Each iteration
provides a lower and upper bound for the optimal solution and the algorithm is
repeated until either the gap between these bounds are sufficiently small or there is

no optimal solution.

In the Benders decomposition algorithm, we keep the decision variables related to

the coverage assignment and facility selection, x;; and y;, in the master problem
whilst we take 6 and z; variables as complicating variables and project them out to
the subproblem. The decomposition of the problem is equivalent to (R — MCLP —

P). Our master problem would be:

(R— MP): Tg%c Z z CijXij — q (16)
i€l jej
j€U i€l

Constraints (1), (6)

Here, we introduce a new continuous variable, g. For a given solution found in the
master problem, this new variable tracks the solution of the subproblem and allow
us to obtain the maximum possible coverage whilst incorporating the variation
knowledge acquired from the subproblem. Hence, Eq. (17) is an optimality cut that

is generated at each iteration after solving the subproblem. As the subproblem cannot
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be unbounded for any combination of x;; or y; solutions, infeasibility cuts are not

required.

After solving the master problem and obtaining a feasible solution of coverage
assignments, which are shown by x, the maximum variation in coverage for this

given solution can be obtained using the following subproblem:

(R—-SP(X)): max roe + Z zj (18)
jEU

s.t.zj+0 < Z —CiXy  vieljeM;  (19)
i€l

Constraints (13), (14)

This subproblem attempts to maximize the variation in coverage for the coverage
assignment solution, x;;, obtained in the master problem. Note that this problem
always yields feasible and bounded solutions. Therefore, its dual is always has to be
feasible and bounded. Then, the dual formulation of this subproblem for a given x is

as follows:

jEU ‘iel

Constraints (9), (10)

This subproblem is equivalent to the subproblem given in (R — MCLP — P), where
we explain the constraints and the objective function in detail. After solving the dual

subproblem, we add optimality cuts to the master problem. We iteratively continue
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this process until a solution is found. Implemetation of the proposed Benders

decomposition algorithm can be found in Algorithm 1.

ALGORITHM 1: BENDERS DECOMPOSITION ALGORITHM FOR THE ROBUST MCLP-P

1 Data: LB = —oo0, UB = o, ¢ =0.05

2 While: UB—-LB> ¢

3 Step 1: Solve the master problem, obtain x;;* and y;".

4 Set x;; < x;;”

5 Sety; « y;*

6 Setq « q*

7 Set UB « Y jcj Yier CijXij —

8 Step 2: Solve the subproblem with the updated master problem variables, X;;.
9 Set w; — w;”

10 Set LB « X jej Xier CijXij — Xjev Dier —CijXij Wj

11 Step 3: Add the following optimality cut to the master problem.
12 | q < Yjeu Zier —Cijxijw;

13 End

31






CHAPTER 4

SEMI-ROBUST MCLP-P

In this chapter, we consider MCLP-P under coverage uncertainty in an optimistic
manner. As we have shown in Chapter 3, the robust optimization framework aims to
find solutions while maximizing the variation caused by worst-case scenario. In this
chapter, we present an approach that acknowledges worst-case scenario for each
possible coverage and provide solutions that are affected by the worst-case scenarios
at the least. Here the basic idea is to evade the effect of the worst-case scenarios as
much as possible instead of mitigating the impact of the worst-case scenarios on the
system when it happens. We utilize the uncertainty definition presented in Chapter
3. After we model the problem, we propose a nonlinear programming formulation
and its linearization. Then, we propose a Benders decomposition algorithm and two
heuristic methods to solve this problem. In Benders decomposition algorithm, we
propose an approach to obtain cuts in linear time which provides significant

improvements in computational performance for realistic large instances.

4.1 The Mathematical Model

Using the notation given in Chapter 3, the proposed model Semi-Robust MCLP-P,

is given as follows:

i€l jeJ i€l jeU
S. t.z Yi =D (22)
jej
xiijj Viel,je M, (23)
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z xij =1 Viel (24)

JEM;
x;j € {0,1} viel,je] (25)
yj € {0,1} VjEe] (26)

Obijective function given in Eq.(21) aims to find the solution that maximizes
coverage while ensuring the impact of uncertainty is minimized. We allow variations
up to I' facilities. Eq. (22) limits the total number of facilities to be opened to P.
Eq.(23) ensures that facility j can only cover demand point i, if facility is j is

opened. Eq. (24) enforces that each demand point i is covered at most once.

The objective function is different than the objective function of the model proposed
in Chapter 3. Thus, we need certain modifications in our model. First, we need to
ensure that the worst-case can only occur for the facilities that are open. As we are
minimizing the total variation, the model would be inclined to select potential
facilities to be in their worst-case scenarios even though they are not open if we do
not specify otherwise. Because of that, we need to add the following logical

constraint to our subproblem,
i =Y

Then, as the overall objective function is of maximization type and there is a minus
in front of the subproblem, the model would not select any potential facility to be in
their worst-case scenario since it deterioates the overall objective value. Hence, for
the sum of number of selected worst-case facilities, rather than less than or equal to
relationship we need equality type constraint. Therefore, we need to enforce that into

the subproblem as follows:

jeu
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Now, we apply a simple mathematical operation on Eq.(21) and obtain an
equivalent formulation. We convert the sign prior the subproblem to positive and
multiply the subproblem objective coefficient by negative. We retain the constraints.

The resulting model is as follows:

. . 27
max $) ) g+ max NN <ty (@0)

i€l jeJ i€l jeu

Constraints (22) — (26)

If we write this model in the open form, we obtain the following single-level

formulation.

max Z Z(ci,-xi,- — &jxywj) (28)

i€l jej

ZWJ =T (29)
jeu

wj < Y; VjieUu (30)

w; € {0,1} VjieuU (31)

Constraints (22) — (26)

Differently than the model presented in Chapter 3, we end up with a nonlinear model.
Nonlinear problems can be challenging to solve due to their complex mathematical
nature. In contrast, linear problems are simpler to solve and have well-established
solution methods that can find the global optimum more easily when compared to
nonlinear problems. Therefore, we next give the linearization of the proposed model

to be able to tackle the problem more effectively.
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41.1 Linearization

Nonlinearity in the model is caused by the multiplication of x;; and w; variables in
Eq.(28). To linearize the model, we introduce a new variable, z;;, and eliminate this

nonlinear term in the objective function. The following are the linearization

constraints:
Zij < w;j
Zij < Xij
zij = x;j+w;—1

Among these constraints, since z;; = 0 and it has a negative objective coefficient in
a maximization problem as given in Eq. (37), we can safely remove the first two
constraints, since z;; is already going to be minimized. Hence, the resulting

optimization model is as follows:

(SR — LP): xmy‘jvxzz Z(Cijxij — &j7ij) (32)
i€l jeJ
zij=20 viel,jeU (34)

Constraints (22) — (26),(29) — (31)

Now, we have a mixed integer linear programming problem. In the sequel, we

propose a Benders decomposition algorithm by keeping y; and w; variables in the
master problem, and taking the remaining variables x;; and z;; to the subproblem.

Then, for realistic instances where the number of demand points are very high and
number of potential facilities are reasonably low, we propose an approach to obtain

Benders cuts in linear time.
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4.2 Benders Decomposition Algorithm

In the Benders decomposition algorithm, we keep only variables related to facility
selection, y; and wj, in the master problem. We take x;; and z;; variables as
complicating variables and transfer them to the subproblem. Our premiere focus is
to select the average-case and the worst-case facilities in this algorithm. Our master

problem is as follows:

— . max
(SR — MP): maxq (35)
S-t-qSzz(l—wj)aiﬁzzyjﬁu +27_Ti VielLVjeU (36)
jeu iel jeJ i€l i€l

Constraints (22),(26),(29) — (31)

A new variable g is being introduced, which is used to monitor the subproblem
solution and to update the master problem accordingly. Thus, after solving the
subproblem, Eq. (36) is introduced as an optimality cut in each iteration. There is no
requirement for infeasibility cuts since the subproblem cannot be unbounded for any

given value of the master problem variables, y; and w;.

The following subproblem is utilized to determine the best possible coverage values

for a given 7}. and w; values obtained by the master problem:

(SR—-SP(y,w)): Tr}lch ZZcuxU—ZZéi}-ZU (37)

i€l jej i€l jeU
S.t. ZUZXU'i‘W]—l ViEI,jEMi (38)
xijsyj Viel,jeEM, (39)
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Constraints (24),(25), (34)

(SR — SP(y,w)) is an assignment problem for a given set of facility variables y;
and robustness variables w;. In this problem, the integrality constraints on x;; can be
relaxed and problem can be converted into a linear program. This is due to the fact
that, for fixed ¥ and w, problem could be decomposed into seperate problems for
viel. If w; =1, then z;; = x;; due to Eq. (38), also the objective function of
(SR — SP(y,w)) (Eq.(37)) for the given facility j becomes mgx(zie, CijXij —
Yier Cijxij). If w; =0, then z;; = 0 due to Eq. (38), and the objective function
Eq.(37), for the given facility j becomes mgx(zie, cijx;j). Hence, the problem
becomes seperable for Vi € I again due to Eq. (24) and (39), and can be solved by
inspection. Let us define J1 = U:¥;, =1, w; = 0} and Ul = Uy, =1, w =1}
For a given demand point i, the maximum coverage is obtained by

max {mc}{c(cij),m%c(c'ij)} and we decide coverage assignments depending on the
J€E J€E

highest coverage for the solution vectors y and w. This proves two points: i) if we
know solution vectors y and w, we can compute the objective value of the SR — SP
in linear time, ii) relaxing the integrality constraints on x;; yields exactly the same
objective value as the binary problem. As a result, it would be safe to relax the
integrality constraints Eq.(25) for this subproblem as its linear relaxation would
yield the same solution as its discrete form. We use the relaxation approach to solve

the subproblem.

Note that for any given value of y and w, (SR — SP(y,w)) is always both feasible
and bounded. Therefore, the dual of this subproblem is always feasible and bounded.
Let a;;, Bl.j, and ; denote the dual variables for Eq.(38), Eq.(39),and Eq. (24),

respectively. Then, the dual formulation of (SR — SP(y, w)) is as follows:
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(SR — DSP(3,W)): g’}gﬁz z(l — Wai; + Z Z yiBij + Z Ti  (40)

JEU i€l j€J i€l i€l
s.t. —o; = =& Viel,jeU (41)
o+ Bij + 1 = ¢y Viel,je] (42)
a;; =0 Viel,jeU (43)
B, =0 VielLje]  (44)
m; =0 Viel (45)

Next, we provide an approach to obtain Benders cuts in linear time similar to
Cordeau et al. (2017). According to the complementary slackness theorem, the
following equations must hold at optimality for the variables of the primal and the

dual subproblem:

Bl-j*(xij* —:)_/]) =0 Vi € I,] E] (47)
Tl'i* (Z xl-j* - 1) =0 Vi€l (48)
Jj€J

Both utilizing Eq. (46) — (48) and SR — DSP, we can obtain the dual solution in
linear time. Next, we show the computation of the SR — DSP solution utilizing these

information.

Recall that J! = U:y; =1, w; =0} and Ut = U:y; =1, w; =1} If a given

demand point i is covered, let us denote the index of the covering facility by k.
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If Xjem, 7}. < 1, meaning that if demand point i cannot be covered by any open

facilities, then we are certain that all x;;* = 0, z;;* = 0 for demand point i. Then, we

can see that:

e «;;"=0forvjej\U' and a;;* = 0 for vj € U' due to Eq. (46).
e B;=0 for vje JtuUh), and B; =0 for vje/\(J'uU"') due to
Eq.(47).
e 1;" =0dueto Eq.(48).
If 2 jem, 7}. > 1, then there are two possibilities. Facility k that covers demand point
i could be in i) the average-case scenario (k € J1) or ii) the worst-case scenario (k €
Uub).

If Y jem, y;=1andk € J* we can deduce that:

e ;" =0 for vjeE (Ut u {k}), and o;;" =0 for vj € J\(U* U {k}) due to
Eq. (46).

e B;=0forvje/\J'uU*—{k}), and B;; = 0 for vj € J* UU" - {k})
due to Eq. (47).

e ;" > 0dueto Eq.(48).

IfYjem,y; 2 1, and k € U, we can infer that:
e ;" =0forvjeU' and a;;* = 0 for vj € J\U" due to Eq. (46).
e B;=0forvje/\J'uU'—{k}), and B;; =0 for vj € J* U U — {k})

due to Eq. (47).
e ;" > 0dueto Eq.(48).

Utilizing these information and considering Eq.(40) — (45), we can generate

optimal solutions and obtain the dual variable values as follows:

aij* = 0 for ] E]\Ul, and al’j* € [O, él]] for Vj € Ul
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o B;j=0forvje (tuU') andB;; =c;forvj e J\JtuUh.

L] T[i* =0.
If Yjem,¥; 2 1, and k € JL

o O(l'j* € [O’Cik — BU] for V] € (Ul U {k}), and aij* =0 for V] E]\(Ul U
{k}).

e B €[0,cy — oy ] for vj e \J* v U —{k}), and B;; = 0 for Vj € (J1 U
Ut — ).

* " = C.

IfYjem,y; 2 Land k € Ut

° aij*:éij fOijEUl,and aij* =Of0erE]\U1.
L4 BU € [0, Cik —T[i] for V] E]\Ul U U1 - {k}), and BU = 0 for V] € (]1 U
Ut — k3.

o 1" €[0,cy — Byjl-

Note that dual variables may take any value in the specified intervals each yielding
an alternative optimal solution. This approach is especially useful for realistic cases
where the number of demand points is very high and the number of potential facilities
are reasonably low. For these instances, computational experiment made for this

approach is given in Chapter 5.
The proposed Benders decomposition algorithm first solves the master problem to
optimality, obtains 7}. and w; values from the master solution. Then, these values are

transferred to the dual subproblem. After solving this dual subproblem, we add
optimality cuts to the master problem. We repeat this process until we find the

optimal solution. The algorithm of the proposed approach is given in Algorithm 2.
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ALGORITHM 2: BENDERS DECOMPOSITION ALGORITHM FOR THE SEMI-RoOBUST MCLP-P

1 Data: LB = —o0, UB = o0, & =0.05

2 While: UB—-LB > ¢

3 Step 1:  Solve the master problem, obtain y;* and w;".

4 Sety; < yj*

5 Set w; « w;”

6 Setq « q*

7 Set UB « g

8 Step 2:  Solve the subproblem with the updated variables, y; and w;.
9 Set @;; < a;;”

10 Set B;; — Bi;”

11 Set 7; «— m;*

12 Set LB «— Y jey Yier(1 = W)&j + X jej Xier i Bij + Lier s
13 Step 3:  Add the following optimality cut to the master problem.

14 | q < Yjev Ziet(1 = W) + Xje; Yier ViBij + Zier i

15 End

The linearized model and the Benders decomposition algorithm can be
computationally expensive and may take a long time to solve problems for certain
instances. On the other hand, heuristics are computationally less expensive and can
find near-optimal solutions very quickly. Hence, to obtain good solutions in shorter
time periods, we propose two heuristic algorithms. The proposed heuristics are not

applicable for the Robust model since it has different objectives in its bilevel form.

4.3  Greedy Adding with Neighborhood Search (GNS)

In the GNS algorithm, we attempt to find optimal solution by iteratively selecting

facilities that provide the greatest coverage and then seek for possible coverage
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improvements at each step. We begin this approach with the selection of the average-
case facilities and continue with selecting the worst-case facilities until we reach the

facility limit P.

For a given problem (assuming P — I' > 1, meaning that there is at least one facility
to be opened in the average-case scenario.), this algorithm starts with selecting the
facility with the highest total coverage value for the average-case scenario. In each
subsequent iteration, the algorithm first selects the facility that provides the
maximum average-case coverage for the remaining uncovered demand points.
Selected facilities are added to the set. After selecting these facilities according to
their coverage, in each iteration, the GNS algorithm seeks if swapping selected
facilities with non-selected facilities provides coverage improvements. If there exists
any coverage improvements, swapping takes places and the selected facilities are
updated. If there is no improvements, they are retained. This process is repeated until
either number of selected facilities reaches to P —I' or all demand points are
covered. Once the number of average-case facilities is equal to P —I', the GNS
algorithm seeks to find I' number of worst-case facilities in the same way with a
single difference that is the selected average-case facilities are fixed and cannot be

swapped or selected again.

After we select facilities utilizing this algorithm, we find the best solution by solving
the problem only for the selected facilities. Solution can be obtained in linear time

as shown in Section 4.2.

Flowcharts of the GNS and the Neighborhood Search Algorithms are given in Figure
4.1 and Figure 4.2 respectively.
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Select the candidate average-case facility that covers the
most uncovered demand

\ 4

v

Has more than 1 average-
case facility been located?

Perform the neighborhood search algorithm

v

Update covered demands

v

Have p — I' average-case
facilities opened or all
demand points covered?

Select the candidate worst-case facility that covers the most
uncovered demand

v

Has more than 1 worst-case
facilitv been located?

Perform the neighborhood search algorithm for the worst-
case facilities

v

Update covered demand points

Have I" worst-case facilities
opened or all demand
points covered?

Find the best solution for the selected facilities

v

Figure 4.1. GNS Algorithm Flowchart

44



Set: cov_improved = False

A 4

Set:m =1, Setn = 1.

Does the total coverage
improve if we exchange
non-selected facility n
for selected facility m?

\ 4

Set: n+=1

Swap facility n for facility m.
Update total coverage.
Set cov_improved = True

Isn less than | — Q?

Set: m+=1
Set:n=1

Yes

Is n less than Q?

Yes

Is cov_improved = True?

Figure 4.2. Neighborhood Search Algorithm Flowchart. (J: Number of candidate
facilities, Q: Number of selected facilities)
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4.4  Random Selection with Neighborhood Search (RNS)

In the RNS algorithm, we initially begin with arbitrarily selecting P — I' facilities
for the average-case and I" facilities for the worst-case scenario. For the given set of
average-case facilities, we obtain max (X X.jejr €ijx;j). Next, for the given set of
worst-case facilities and the remaining uncovered demand points, we calculate
max (Xie; Ljevr CijXij). Summation of these two values becomes the initial
solution. The RNS algorithm continues by seeking coverage improvements by
performing the Neighborhood Search Algorithm given in Figure 4.2 for both
average-case and worst-case facilities. Then, we find the incumbent solution by
solving the problem for the selected facilities. Solution can be found in linear time
as shown in Section 4.2. We start again by arbitrarily generating a set of facilities.
We repeat this process until we reach the iteration limit. Flowchart of the RNS

algorithm is given in Figure 4.3.
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Set: iter_limit =n
Set: iter_no =1
Set: best_sol =0

!

Generate an arbitrary facility set by selectingp — I
average-case and I worst-case facilities. Compute

Set: iter_no+=1

v

Yes

current_sol

v

Perform the neighborhood search algorithm for the
average-case facilities. Update current_sol.

v

Perform the neighborhood search algorithm for the
worst-case facilities. Update current_sol.

v

Find the best solution for the selected facilities.

Is current_sol >
best_sol?

Set: best_sol = current_sol

Is iter_no <

iter_limit?

Figure 4.3. RNS Algorithm Flowchart
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CHAPTER 5

COMPUTATIONAL EXPERIMENTS

In this chapter, we test the presented models on different instances and report their
results. In each instance, along with the proposed models we also compare our
solutions to the MCLP-P solutions to have a better idea about the effect of the
proposed approaches. Time limit allowed for each solution approach was set to 3600
seconds. We executed all computational operations on Python 3.10 via CPLEX
22.1.0. The runs were conducted on a Windows 11 PC with a 2.60 GHz Intel Core
i7 CPU and 8 GB RAM.

Some abbreviations used in the solution tables of the experiments. z corresponds to
objective value, Gap(%) is the optimality gap, ts, denotes the CPU time (in
seconds) spent solving any given model, t;,:,; denotes total CPU time spent while
solving any model (including initialization processes such as creating a mathematical
model), tgyp and tascer are CPU times for solving subproblems and master
problems of Benders decomposition algorithms, respectively. z denotes the average
solution value for all three models. zZ,,,, represents the nominal coverage value for
the robust models. t, t,in, tmax and s denotes average, minimum, maximum and the

standard deviation of the CPU time values.

5.1 Data Generation

We test the proposed approaches on randomly generated data sets. Let X, Y be the
random variables for corresponding x, y coordinates of any point in datasets. Data
are generated as Xgemana~U[0, 50], Yaemana~U[0,100], X¢qcitiey~U[5,45], and
Yracitity~U[10,90]. Euclidean distance is used to compute the distance between

each demand-facility points and calculate the coverage values. Partial coverage
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T4 g, els,T]

functions used in this study are f(dij) =) -5’ U *" for the average-case
0, dij €[S, T

scenario, and f'(d;;) = { s 4 €[S, T]

0, dij € [S,T']

for the worst-case scenario.

5.2  Experiment Design

Effects of five different factors are investigated, number of demand points |I],

number of potential facility points |J|, magnitude of the worst-case scenario %
denoted as 6, number of facility points to be opened P, and robustness parameter I".
All the results are compared to MCLP-P to investigate the effect of uncertainty on

solutions.

Each factor has a certain number of levels, and we investigate all possible
combinations of these factor levels. All factors and their corresponding factor levels

are presented in Table 1.

Table 5.1 Factors and their levels of the experiment

7] /1 P r 5
500 8 0.25|J] 0.25P 35%
2000 16 0.5/ 0.5P 70%
8000 32 0.75(J] 0.75P

In this experiment S and T were set to 15 and 25. For fractional I" values, we round
them to the higher nearest integer value. And if there exists any duplication instances
caused due to rounding fractional values, we remove such instances from our
experiment. Plus, the instances where p = I' which were the result of the rounding

are also omitted.
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5.3 Robust MCLP-P

From the experiments of the Robust MCLP-P we can observe that the primal-dual
model performs well for almost all instances. Increase in the number of decision
variables and constraints does not seem to have a strong impact on the solution time.
The greatest effect on computation time for the primal dual model seems to be the

number of demand points.

Benders decomposition algorithm seems to provide slightly higher computational
times than the Primal Dual model for most instances. We note that in a few instances
it was not able to find the optimal solution in the time limit. Robust MCLP-P

experiment summary is given in Table 5.2.

Table 5.2. shows important experiment results against every factor level. Complete

experiment can be found in Appendix A.

We employed t-test with 95% confidence level to compare the performance of the
proposed solution approaches. For this given experiment, p-value of the t-test is
found to be 0.007. Hence, we can say that the primal dual formulation performs
better than the Benders decomposition algorithm in a statistically significant manner.

5.4 Semi-Robust MCLP-P

In the experiments of the Semi-Robust MCLP-P, we compared four different
solution approaches. Summary of the findings are given in Table 5.3. This summary
provides a bird-eye view for the proposed models and their performance. Complete

experiment can be found in Appendix.

As can be seen from Table 5.3, proposed heuristic algorithms provides optimal or
near-optimal solutions for most of the instances. Average optimality gap for all
instances were found as 1.49% and 1.08% for the GNS and the RNS algorithms

respectively.

51



Table 5.2 Robust MCLP-P experiment summary

MCLP R—-LP Benders
Z Z Znom t tmin tmax s t tinin tmax s

1=500 429.89 | 41247 42759 0.38 0.04 3.45 0.55 434 0.49 69.56 10.02
1=2000 1745.07 1677.15 1732.90 3.78 0.23 41.15 7.03 108.60 2.17 2252.32 390.20
1=8000 6997.10 6724.92 6944.83 98.35 1.65 2450.82 361.83 471.29 10.23 3600.00 1026.15

J=8 2607.86 2433.42 2579.61 2.56 0.04 23.80 2.87 17.55 0.49 205.95 22.91

J=16 3027.36 2890.28 3004.03 15.66 0.07 245.42 27.34 184.05 0.76 3600.00 368.15

J=32 3387.00 3322.59 3369.85 73.76 0.12 2450.82 207.21 323.57 1.39 3600.00 549.01
P=0.25)J| 3014.05 2878.90 2999.91 105.87 0.23 2450.82 203.27 513.99 1.54 3600.00 561.72
P=0.5|J| 3063.29 2943.17 3041.24 17.31 0.10 598.44 49.11 152.15 0.59 3600.00 347.49
P=0.75|J| 3080.29 2972.71 3052.44 3.23 0.04 20.70 3.53 24.50 0.49 249.71 29.40
r=0.25P | 314091 | 3069.78 312971  12.62  0.08  251.32 21.45 91.91 0.75  2581.92  212.11
I=0.5P 3010.04 2891.19 2986.15 13.08 0.05 255.97 22.33 155.68 0.55 3383.37 306.90
=0.75P | 3127.88 | 2973.15 310149 8929  0.07 2450.82 206.92 | 396.04  0.83  3600.00  548.48
5=35% | 309257 | 3024.60  3085.46 8.74 0.04 24542 21.01 48.85 0.49 153401  129.81
8=70% | 3022.13 | 2851.77 298475  59.60  0.10  2450.82 207.73 | 34064  0.76  3600.00  641.28

To analyze the proposed exact solution methods of the Semi-Robust MCLP-P, we

conducted t-test to compare the solution times of the SR — LP and the Benders

decomposition algorithm. p-value found as 107 with 95% confidence level,

meaning that the linear model is computationally more efficient than the Benders

decomposition algorithm.
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55 Impact of Robust Decision-Making on the Coverage Performance

In this section, we demonstrate the practical impact of the proposed models on a
single randomly generated dataset. We perform two different experiments to
understand i) how the classical MCLP-P perform under coverage uncertainty, ii) how

the proposed models perform under completely deterministic settings.

To make the comparison clear, we utilize a single data set where certain parameters
are fixed (]I| =500,|/| =50, p =15, S =5,T = 10), while other parameters
(6 and I') are varying. 6 parameter takes three values, %25, %60, and %90, and I

parameter is gradually increased from 2 to 14.

55.1 Robustness of the Classical MCLP-P

In this experiment, we seek to understand how the classical MCLP-P performs under
coverage uncertainty and compare its performance against the proposed models, R-
MCLP-P and SR-MCLP-P.

We solve the generated instance with all three models. For a given MCLP-P solution,
let x;; denote the coverage assignment solution. Then let z; and zg represent the
optimal solution of the robust models. To compare how the MCLP-P performs
against the R-MCLP-P model, we first compute the R-MCLP-P objective with the

MCLP-P solution, z; = (X;e; X jej Cij%ij + {U|UT£]L,|T%]|SF}ZiEI Yjev —C;X;;). Thento

make the comparison, we compute MCLPy = % to find out how the R-MCLP-P
1

model performs against the classical MCLP-P. Similarly, to compare the coverage
performance of the MCLP-P against the SR-MCLP-P model, we compute z, =
Yier Xjeu CijXij). To make the comparison, we

ier Xjej Cij%ij {ujucy,|ul=r}

calculate MCLPgp = ===, Results of this experiment can be found in Table 5.4.

2
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Table 5.4 Robustness of the Classical MCLP-P

o)
25% 65% 90%
r MCLP,  MCLPg; | MCLPg MCLPg; | MCLP; ~ MCLPsg
2 0.04% 0.03% 0.54% 0.70% 0.11% 0.57%
4 0.11% 0.16% 1.42% 1.08% 1.11% 1.27%
6 0.17% 0.25% 2.50% 2.10% 1.93% 2.78%
8 0.22% 0.34% 3.47% 2.85% 2.72% 3.85%
10 0.33% 0.43% 4.75% 3.75% 5.29% 5.15%
12 0.56% 0.48% 5.46% 4.65% 7.68% 7.60%
14 0.58% 0.49% 6.64% 5.22% 9.14% 18.73%

The impact of the proposed models could be seen in Table 5.4. As the value of
§ or I" increases, the proposed models provide significant coverage improvements

when compared to the classical MCLP-P.

55.2 Nominal Coverage Performance of the Robust Models

In this experiment, we aim to understand how the robust models perform if there

Were no coverage uncertainty.

Similar to Chapter 5.5.1, we first solve the generated instance with all three models.

For a given R-MCLP-P and SR-MCLP-P solution, let x;;® and x;;*" denote the
coverage assignment solutions. Then let zy,-.p represent the optimal solution of the
MCLP-P model.

To find out how the R-MCLP-P performs if there were no coverage uncertainty, we
first compute the MCLP-P objective using the R-MCLP-P solution, 2z; =

Yiel Xjej cl-jfl-jR. Then to compare with the classical MCLP-P, we compute R,,,,, =

ZMELET Then, to compare the coverage performance of the SR-MCLP-P against

Z3
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MCLP-P, we compute z, = Y;e; e Cij%;°« To make the comparison, we

calculate SR,,,, = ZMLP~% Results of this experiment can be found in Table 5.5.

Zs

Table 5.5 Nominal coverage performance of the MCLP-P model against Robust
and Semi-Robust models

6
25% 65% 90%
r Ryom SRnom Ryom SRnom Ryom SRnom
2 0.02% 0.05% 0.38% 0.75% 0.50% 2.93%
4 0.07% 0.45% 1.69% 3.20% 2.64% 6.38%
6 0.07% 0.52% 2.37T% 5.16% 4.12% 11.17%
8 0.30% 1.00% 3.35% 7.73% 4.31% 17.00%
10 0.53% 1.68% 3.76% 10.26% 8.10% 22.87%
12 0.48% 1.76% 4.41% 13.02% 7.76% 30.00%
14 0.43% 2.40% 3.56% 18.78% 9.55% 31.37%

Table 5.5 demonstrates the nominal coverage performance of the classical MCLP-P
against the robust models. Since the classical MCLP-P only aims to maximize the
nominal coverage, it provides higher coverage performance when no facilities are
under coverage uncertainty. However, in practice, this is usually not the case. Model
parameters are not completely deterministic, hence assuming the model input are

completely reliable may lead to undesirable solutions.
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5.6  Impact of Critical Distance Selection

The factors introduced in Section 5.2. are the main factors that have influence on
solution and computational complexity. One last factor that could worth analyzing
is the values of the critical distances, S and T. As the experiment table already
involves high number of instances, we found it appropriate to seperately present its
influence over solutions and computation time. We demonstrate its impact on the
linear models both for R-MCLP-P and SR-MCLP-P. To exclusively investigate the
impact of critical distances, the following parameters are fixed |I| = 500, |J| = 16,
p =4, and § = 0.5. In addition to varying critical distances, we also set three
different parameters for the I' parameter. In Table 5.6, we present the impact of the
critical distances on nominal coverage performance and the CPU time for varying

S,T,and I' parameters.

As can be seen from the Table 5.6, greater critical distances leads to higher coverage
and increased computation times as expected. Then, as the distance between S and
T decreases, both the R-MCLP-P and the SR-MCLP-P provides closer nominal
coverage to the classical MCLP-P model. This is also another anticipated outcome
since if S and T would be equivalent, there would be no need for introducing

robustness to the problem.
In Table 5.7, we present how critical distances affect robust coverage performance.

From Table 5.7, we can observe that, as the difference between S and T increases
(especially when both parameters are reasonably high) the need for the robust models

becomes clearer under our experiment setting.
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5.7 Impact of Iteration Limit on the RNS

In the RNS algorithm, we first randomly select facilities and then implement the
Neighborhood Search Algorithm repeatedly until we reach the iteration limit. Hence,
the number of iterations affects the success of the solutions found. In this section, we
investigate the impact of iteration limit by defining four different levels, 1, 5, 10, and

25. We work on 8 different cases.

Table 5.6 Iteration limit experiment instances

Case | |/ P r 6
1 8000 8 4 2 35%
2 8000 8 4 2 70%
3 8000 16 4 1 35%
4 8000 16 4 1 70%
5 8000 16 8 2 35%
6 8000 16 8 2 70%
7 8000 16 8 4 35%
8 8000 16 8 4 70%

For each case, we solve the linear model, the GNS, and the RNS with different

iteration limits and compare the solutions and present the results in Table 5.9.

As can be seen from the Table 5.9, the RNS algorithm was able to obtain better
results when compared to the GNS algorithm for the given problems. The RNS found
good starting solutions in first iterations for some instances, however it is clear that
as the number of iterations increases, it provides solutions with smaller optimality
gap. According to this experiment, using 10 iterations gives reasonably well results
for most instances in short time periods. Since the computational efficiency of the
RNS algorithm is going to be valid for larger problem sizes, it may be a reasonable
choice to use it against the linear model for such instance. Yet it is quite clear that

when the number of iterations increases the solutions get better.
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5.8  The Performance of SR-MCLP-P Models for Large Instances

In this experiment, for the SR-MCLP-P model, we test the impact of obtaining
Benders cuts in linear time as proposed in Section 4.2. We compare its performance
against the SR — LP for realistic large instances. Large instances parameters are
selected in a way that the number of customers are much larger than the number of

potential facility locations.

Table 5.8 Large Instance Performance

SR—-LP Benders
#of Esol
Case ] P r g total cuts ttotal
Csub tmaster
1 50,000 8 4 1 070 | 73571 30 6.03 0.41 48.29
2 50000 8 4 1 035 | 756.96 24 5.22 0.30 43.09
3 50000 8 4 2 0.70 | 15748 38 7.09 0.54 92.13
4 50000 8 4 2 035 | 99542 27 5.37 0.46 65.02
5 50000 8 4 3 0.70 | 13052 3 5.08 0.57 96.30
6 50000 8 4 3 035 | 80540 28 5.13 0.45 88.83

From Table 5.8, we can clearly see that being able to add Benders cuts in linear time
can provide significant advantages in terms of computational advantage, especially
under the realistic cases where number of demand points are much higher than

potential facilities.
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CHAPTER 6

INSIGHTS

6.1 Maximin and Its Interpretation for Robust MCLP-P

Game theory is a field of mathematics that studies how individuals or groups make
decisions in situations where the outcome depends on the choices of others. In game
theory, strategy shapes the decisions players make to achieve a desired outcome,
taking into account the potential choices of other players and the possible
consequences of their actions. There exists different strategies, and maximin is one
of the strategies players might adopt in game theory. In this section, we demonstrate
the relation between the discrete robust optimization and maximin strategy in game
theory through payoff tables.

In game theory, equilibrium refers to a state where each player's strategy is optimal
given the strategies of all the other players. Assume there exists a unique, yet
dangerous equilibrium point which player might find risky.

Table 6.1 Payoff Table

Player Il
Bl B2
— Al 2,1 2,-20
% A2 3,0 -10,1
a A3 -100, 2 3,3

First values represent the payoff value for Player I, second values represent the
payoff value for Player II.
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In this case, unique equilibrium is (A3, B2) with a payoff of (3, 3). However, it may
not be the most likely outcome. Player | has the greatest payoff in (A3) with (3),
however there exists a risk that Player 11 selects (B1) to obtain his/her greatest payoff.
Given that option (A3, B1) could be catastrophic for Player I, he/she could choose
the option (Al). But under this scenario, if Player Il is aware of that Player | might
avoid option (A3) and will select (A1), he/she might not prefer to select option (B2)
since then there is a risk of receiving a very low payoff value (-20). Therefore, Player
I will likely select option (B1).

Under maximin strategy, each player attempts to maximize their minimum payoff in
each scenario and choose their actions accordingly. This strategy aims to guarantee
the best possible result without relying on the rationality of the other players, and

even making the most pessimistic assessment of their potential behavior.

Let u; denote the utility function for player i. Then, let S; be the set of possible
strategies of player i, and S_; be the set of possible strategies for rest of the players.
Similarly, let s; denote the selected strategy for player i and s_; denote the selected

strategy vector of all the players except player i.

If player i chooses strategy s;, the utility he/she will recieve is going to depend on
the strategies of the other players. Given that s; is selected, the worst possible utility

player i can obtain is trr_leisp (s, t-;). And, under the maximin strategy, the payoff

1

value is calculated as max min u;(s;,t_;).
S{ES; t_;ES_;

The calculation of the best actions under the maximin strategy of both players is

given in Table 6.2,
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Table 6.2 Maximin calculation in payoff table

Player Il
B1 B2 Jnin w;(sp, i)
_ Al 2,1 2,-20 2
Z% A2 3,0 -10, 1 -10
o A3 -100, 2 3,3 -100
min u;; (s, S;7) 0 -20 (2,0)

SIEST

There could be applications of this strategy in situations with a single decision-
maker. Next, we propose the interpretation of the maximin strategy in terms of
Robust MCLP-P.

6.2 Maximin Approach in Robust MCLP-P

In this section, we demonstrate with a practical example that if we define the possible
worst-case scenarios instead of players, we can compute the maximin value through
payoff tables. This allows utilizing matrix operations while computing the solution

rather than solving the actual model.

Assume that there are two demand points to be covered. We are going to open two
facilities, y, = 1, y, = 1, and let I' = 1. So, the problem is to decide the coverage
assignments that will yield the highest maximin values and find the facility that will

be in its worst-case scenario.

For this example, we randomly generated the coverage and variation values given in
Table 6.3.
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Table 6.3 Generated coverage data

Cij &y

i=1j=1 0.10568 0.06775
i=2j=1 0.16325 0.07056
i=1j=2 0.18202 0.07175
i=2,j=2 0.19219 0.07036

Let a;; denote the coverage assignment of demand point i to facility j. If two
facilities are to be opened and if each demand point is covered at most by one facility,
there could be only four possible instances of coverage assignments, which are {(a,,
az1), (11, azz), (21, a12), (a12, az2)} (E.Q., (ay1, a,,) represents the case where

X11 = 1, X21 = 1,X12 = 0, Xop = 0.)
Now, if we calculate the objective values under these scenarios, we obtain:

Table 6.4 Objective values under different scenarios

wy w,
(@11, azy) | 0.13062 0.26893
(@11, azp) | 023012 0.22751
(@51, a1,) | 027471 0.27352
(@15, azp) | 0.37421 0.23210

Each row (a;;, ay;) of the Table 6.4 represents a possible coverage assignment
instance, and the column w; represents the facility with the worst-case scenario. E.Jg.

the cell in (a4, a,,) row and w; columnis the instance that x;;, = 1,x,; = 1,x45, =

0,x,, =0,andw; = 1,w, = 0. (a1, a,,) row values are calculated as respectively:
(c11 % x11 — €11 * X110 * W) + (Cap * Xpp — Cpp * X35 * W3)
= (0.10568 * 1 — 0.06775 * 1 * 1) + (0.19219 * 1 — 0.07036 * 1 * 0)

= 0.23012
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and
(C11 * X110 = €11 * X1 * W) + (Cap * X — Cpp * Xp * W)
= (0.10568 * 1 — 0.06775 * 1 % 0) + (0.19219 x 1 — 0.07036 * 1 * 1)
= 0.22751
Now, if we apply the maximin strategy, we obtain the results given in Table 6.5.

Table 6.5 Maximin value calculation

wy W, Ygélgl u(x,s) max T;(lglgl u(x,s)
(a11, az1) 0.13062 0.26893 0.13062 0.27352

(@11, az) | 0.23012 022751 | 0.22751
(ayq, arp) | 0.27471 027352 | 0.27352
(@15, azp) | 0.37421 023210 | 0.23210

Even though there actually is a single decision maker in making a location decision,
this robust problem has a nature of a game involving two players (Sniedovich, 2016).
The robustness variable w, embodies uncertainty and the realized value of w is not
controlled by the decision maker. So, in this game, the decision maker plays first by
selecting a decision x € X. As a consequence, a worst-case scenario takes place
associated with this decision. Hence, the goal of the decision maker is to select an
x € X that provides the greatest payoff by anticipating the worst-case scenario

response.

We found that the resulting value of the payoff table is equivalent to the model
solution. We demonstrated the relation between payoff tables and discrete robust
optimization only for the maximin approach which is valid for the Robust MCLP-P.
Yet, by using the maximax payoff tables instead of maximin tables, this is directly
applicable to Semi-Robust MCLP-P as well. This approach is beneficial as it enables
us to utilize matrix operations rather than solving the actual model. We observed that
it is especially useful for the Semi-Robust MCLP-P.
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CHAPTER 7

CONCLUSION

In this thesis, we address the MCLP-P under coverage uncertainty. In MCLP-P,
coverage depends on the distance between each demand-facility point pair and the
critical distances defined for each facility. In our model, we assume that the critical
distances are subject to change and upper and lower bounds of critical distances are
the only available information. We adopt the discrete robust optimization framework
to deal with this problem and we propose two different approaches to hedge against
uncertainty, namely Robust MCLP-P and Semi Robust MCLP-P.

In the Robust MCLP-P, we maximize the overall coverage while assuming that in
the worst-case scenario the variation is going to be maximized as well. For the
Robust MCLP-P we propose two exact solution approaches, a primal dual approach

and a Benders decomposition algorithm.

In the Semi Robust MCLP-P, we aim to select facilities that are going to maximize
the coverage while being affected by the worst-case scenario variation at the least.
For the Semi-Robust MCLP-P we propose two heuristic and two exact solution
approaches. We propose a mixed integer program, a Benders decomposition
algorithm, greedy neighborhood search algorithm and random neighborhood search

algorithm.

We also investigate the process of finding robust solutions from the perspective of
game theory using payoff tables. We present the relation between discrete robust
optimization and game theory. We demonstrate that we can utilize payoff tables for
computation instead of solving the actual model.

In computational experiments section, we show the factors that have influence in our
problem and their effect on both solutions and computational cost. We compare each

solution method and present their performance under many different instances. In
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the Semi-Robust MCLP-P experiments, we demonstrate that our proposed way of
obtaining Benders cuts allows us to significantly outperform the linear model for the
realistic large instances. Proposed heuristic algorithms, the GNS and the RNS
provide 1.49% and 1.08% optimality gaps in average respectively and we were able
to obtain optimal or near-optimal solutions for most of the cases in very short time
frames. Then, we present the impact of the proposed models and make practical
comparisons among themselves and the classical MCLP-P. If there is coverage
uncertainty, we show that our models outperform the classical MCLP-P up to
18.73%.

This study can be extended along several directions. We define the coverage
uncertainties over the critical distances in the MCLP-P. Future studies may change
the source of uncertainty. Another future research direction could be to utilize the
stochastic optimization framework to solve the MCLP-P under coverage uncertainty,
if there is available data. For instance, the parameters of the partial coverage function
of the classical MCLP-P could be replaced with random variables that are assumed
to be distributed according to the available data. Then, the expected coverage could
be maximized. This could provide a different perspective for the decision-makers.
However, this could increase the computational difficulty and enforce developing
other solution approaches. Another interesting future study could be to implement
the robust approach developed in this thesis to different location problems. As an
example, double coverage models could be taken into consideration, which is
commonly used in ambulance location problems, where handling uncertainty carries

critical importance.
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APPENDIX A

Robust MCLP-P Experiment

Computational experiments made for the Robust MCLP-P can be found in Table
8.1.
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APPENDIX B

Semi-Robust MCLP-P Experiment

Computational experiments made for the Semi-Robust MCLP-P can be found in
Table 8.2.
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APPENDIX C

Impact of Robustness on Solutions

Investigation of the impact of robustness on solutions can be found in Table 8.3.
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