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ABSTRACT

CLASSIFICATION OF IMBALANCED CREDIT DATA SETS WITH
BORROWER-SPECIFIC COST-SENSITIVE ALGORITHMS

Kanmaz, Yasemin Yaman
Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Ayşe Sevtap Selçuk-Kestel

Co-Supervisor : Prof. Dr. Şahap Kasırga Yıldırak

June 2023, 163 pages

The unequal class distributions result in two types of prediction errors that incur
different costs in imbalanced credit data sets. These are monetary losses for the
misclassified defaults and opportunity cost of interest income for the misclassified
non-defaults. Addressing these issues, this study proposes a novel approach to cost-
sensitive learning and imbalanced data classification in credit data sets, using new
borrower (instance)-specific cost/risk parameters to solve these two types of asym-
metries.

The main objective of this study is to create a weight-signaling risk level for each in-
stance by revealing instance-embedded information to strengthen ordinary algorithms
with the generated weight and breaking the dominance of the majority class in the loss
functions. The default probabilities of credit applicants provide valuable information
about their risk level, and thus new instance-specific cost/risk parameters based on
their default risk levels are proposed instead of class-specific ratios. Default prob-
abilities are estimated with sampled sub-datasets, and before this step, analyses for
the optimal class ratio of sub-datasets are conducted with the Simulated Annealing
stochastic process. To estimate the default probabilities, non-linear complex models
like logistic regressions, deep learning-based Graph Neural Networks, and Graph At-
tention Networks are employed. Three cost/risk parameters are generated with the
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target of equalizing the class losses based on their class-based default risk level ag-
gregations.

AdaBoost, XGBoost, and ANN algorithms are then modified to incorporate these
new parameters and the empirical analyses are conducted using eight credit data sets.
The success of the proposed algorithms is particularly evident in the classification of
data sets where the class ratios increase. The comparison analyses indicate that given
Specificity values, the decrease in the monetary loss by new cost-sensitive algorithms
can reach 33.7 % in the data set with the highest class imbalance.

Keywords: Instance-Specific, Default Probability, Logistic Regression, Graph Neu-
ral Networks, Graph Attention Networks, Articificial Neural Networks, XGBoost,
AdaBoost
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ÖZ

DENGESİZ KREDİ VERİ SETLERİNİN BORÇLUYA ÖZGÜ MALİYETE
DUYARLI ALGORİTMALARLA SINIFLANDIRILMASI

Kanmaz, Yasemin Yaman
Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ayşe Sevtap Selçuk-Kestel

Ortak Tez Yöneticisi : Prof. Dr. Şahap Kasırga Yıldırak

Haziran 2023, 163 sayfa

Dengesiz kredi veri setlerinde eşit olmayan sınıf dağılımları farklı maliyetlere yol
açan iki tür yanlış tahmin hatası ile sonuçlanmaktadır. Bunlar, yanlış sınıflandırılan
batık krediler için parasal kayıp ve yanlış sınıflandırılan kredisini ödeyecekler için
kaçırılan fırsat maliyeti olarak faiz geliridir. Bu çalışma, belirtilen sorunları ele ala-
rak kredi veri setlerinde maliyete duyarlı öğrenme ve dengesiz veri sınıflandırması
asitmetrilerine yönelik borçluya özgü maliyet/risk parametrelerini çözebilen yeni bir
yaklaşım önermektedir.

Çalışmanın temel amacı, her kredi başvurucusunun verilerinde saklı olan bilgileri
ortaya çıkararak risk seviyesini gösteren bir ağırlık oluşturmak ve kayıp fonksiyon-
larını bu ağırlık ile güçlendirmek ve çoğunluk sınıfının baskınlığını kırmaktır. Kredi
almak için başvuranların temerrüt olasılıkları, risk seviyeleri hakkında değerli bilgi-
ler sağlar. Bu çalışmayla, sınıfların veri büyüklük oranları yerine temerrüt risk se-
viyelerine dayalı her bir borçluya özgü maliyet /risk parametreleri önerilmektedir.
Kredi ödememe olasılıkları, örneklenmiş alt veri kümeleriyle tahmin edilmekte ve bu
aşamadan önce, Simüle Edilerek Kuvvetlendirilmiş (Annealing) stokastik süreciyle
örneklenmiş alt veri kümelerinin en uygun sınıf oranı belirlenmektedir. Krediye baş-
vuranların borçlarını ödememe olasılıklarını tahmin etmek için, lojistik regresyonlar
ve derin öğrenmeye dayalı Grafik Sinir Ağları ve Grafik Dikkat Ağları gibi doğru-
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sal olmayan karmaşık modeller kullanılmaktadır. Üç adet maliyet/risk parametresi,
sınıf bazındaki kayıpları yine sınıf bazında toplam risk seviyelerine dayalı eşitleme
hedefiyle oluşturulmaktadır.

AdaBoost, XGBoost ve ANN algoritmaları daha sonra bu yeni parametreleri içerecek
şekilde değiştirilerek sekiz kredi veri seti üzerinde ampirik analiz gerçekleştirilmiştir.
Bu algoritmaların başarısı, özellikle sınıf oranları giderek artan veri kümelerinin ka-
tegorizasyonunda daha belirgindir. Karşılaştımalı analizler, yeni maliyet duyarlı algo-
ritmalarla parasal kayıplardaki azalmanın verilmiş Özgüllük değerlerinde % 33.7’ye
ulaşabildiğini göstermektedir.

Anahtar Kelimeler: Örneğe-Özgü, Kredi Ödememe Olasılığı, Lojistik Regresyon,
Grafik Sinir Ağları, Grafik Dikkat Ağları, Yapay Sinir Ağları, XGBoost, AdaBoost
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CHAPTER 1

INTRODUCTION

Credit risk analysts have extensively been using machine learning (ML) techniques to

assess the financial risks in the financial system with various studies in the literature

[46]. The availability of a wide range of historical data on bank loans allows the good

use of machine learning techniques in such binary classification problems and credit

scoring.

The number of defaults in loan data may be severely low and disproportionate to non-

defaults, especially during the expansion and peak phases of the economic cycle. The

skewed class distributions certainly pose the problem of class imbalance, where well-

known machine learning techniques fail to develop the statistical inferences in depth

which are necessary to identify who is likely to default. In this context, the problem

of class imbalance appears as the first obstacle to be solved for a balanced detection

of all classes by the classification algorithms.

The other critical issue arises in the minimization of misclassification costs in credit

risk classification. Inaccurate estimates of binary classification in credit data do not

result in similar cost amounts for all classes. Defaults on loans create losses for banks

in terms of the principal and the interest payments, but the cost of the rejection of the

loan for the customer who would have repaid if not rejected is only an interest income

loss for the banks. As a result, the misclassification in credit risk management also

creates a cost-sensitive learning problem. Class imbalance and cost-sensitive learn-

ing problems appear as two types of asymmetries in machine learning applications

in credit risk management. Based on these obstacles, we question how ML can be

incorporated into the estimation of default risk with high performance.
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The proposed cost-sensitive classification design is built on a 2-stage algorithm level

modeling; risk/cost parameters are estimated in the first part, and they are used to

re-weight the data instances in three ordinary classification algorithms in the second

part. New instance-specific cost parameters are calculated taking into account each

individual’s default risk level.

The re-weighting of the samples with default probabilities is rationalized by the fact

that the riskiest ones should be out-weighted, and higher default probabilities of this

class ensure assigning higher weights to these instances. Conversely, the non-risky

class standing as the majority class should be lower-weighted, and their relatively

lower default probabilities decrease the importance given to this class. Furthermore,

the relative ratio of total default risk probabilities is used to re-weight the instances

and to strengthen the minority class.

This study consists of 5 main sections; Section 2 underlies the importance of con-

sumer credit default risk. Section 3 introduces the new method, the set-up of the

2-stage algorithm design, the generation of an instance-specific cost parameter with

logistic regressions, GNNs and GATs with sub-datasets in the first algorithm stage,

and the embedment of instance-specific cost parameters in the original algorithms

selected as ensemble learning machines of Adaptive Boosting (AdaBoost) [23] and

Extreme Gradient Boosting (XGBoost) [14], and Artificial Neural Networks (ANN)

of which backpropagation developed by [94]. Section 4 presents the empirical data

level classification results with comparisons of existing algorithms and the proposed

cost-sensitive models. Section 5 concludes with a summary of the method proposed

and its comparative success in detecting minority class instances.

1.1 Literature Review

In the literature, a number of hybrid methods have been proposed to address the issue

of imbalanced data in consumer credit risk determination, along with comparative

studies on decision rules for the classification of risky applicants.

Early methods, such as MetaCost [18], ‘Thresholding’ [76], and cost-sensitive deci-

sion rules based on Quinlan’s C4.5 decision tree model and Bayes classifier [101],
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are well known early cost-sensitive algorithms.

In addition to these early methods, example-dependent cost-sensitive SVM algorithm

designs have been proposed for cost-sensitive classification problems [12, 60, 41],

while [9] generated a cost-sensitive method for fraud detection in credit cards based

on real financial costs using Bayes minimum risk. [70] design a predictive model

called ‘Cost-Sensitive Online Multiple Kernel Classification’ for data sets incremen-

tally and sequentially updated in data streams.

Compared with the FICO credit scoring system which is a human expert-based sys-

tem, [62] highlight the success of machine-learning approaches and emphasize the su-

perior predictive success of the deep neural networks and XGBoost algorithm. Credit

risk classification models with ANN are designed with the use of different network

structures ([95],[103], [7], [6], [40], [61], [10]).

The study of [95] analyzes the performances of five neural network models of multi-

layer perceptron, a mixture of experts, radial basis function, learning vector quanti-

zation, and fuzzy adaptive resonance on credit data. The multi-layer network model

developed by [103] focuses on credit scoring and designs an Average Random Sam-

pling method for the class imbalance problem in the data pre-processing stage. [7]

develop a credit scoring model with a multi-layer perceptron (MP) network and eval-

uate the loss with the mean square errors and the misclassified costs which are found

lower when they are compared with the values in linear regression and discriminant

analysis. [6] analyze the customers’ missed credit card payments and generate a prob-

abilistic model indicating customer behavioral scores called bidirectional Long-Short

Term Memory (LSTM) neural network model. Recurrent Neural Networks (RNN)

used generally with time series data are claimed to have vanishing gradients in the

training stage which makes it difficult to capture the long-term dependencies. To use

bidirectional LSTM, time steps of the input are required, and credit card data for

sequential payment transactions are used in the dataset [6].

The classification algorithm design of [40] is based on a feed-forward artificial neural

network (ANN) with cross entropy and mean square error losses for credit datasets.

[61] investigate the performances of logistic regression, SVM, gradient boosting, ran-

dom forest deep feed-forward neural network, and XGBoosting on a credit data sep-
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arated as 2009-2013 as financial crisis period and 2014-2018 post-financial crisis pe-

riod. The last years of each period are used as test data and the default rates are

reported to be 4.16 % for the first period and 3.44 % for the second period. XG-

Boosting, and neural networks as non-linear models are evaluated as outperforming

the linear ones in most of the performance metrics. Model-Agnostic Meta-Learning

(MAML) is famous as being one of the few-shot algorithms in neural networks and

it has one inner loop determining the initial meta-parameters of the model and one

outer loop in which the model is tested on the query data and the meta-parameters

are updated. Based on MAML, [10] offer a MetaBalance algorithm in which outer-

loop and inner-loop loss functions are decoupled to make different class balancing

strategies possible. The algorithm is tested on different imbalanced data sets like

image classification, credit card fraud detection, loan default prediction, and facial

recognition data sets. The comparison of MetaBalance with random over-sampling,

under-sampling, SMOTE, SVMSmote, Edited Nearest Neighbors (EEN), and Cluster

Centroids (CC) indicates an improvement in ROC-AUC values, and the over-fitting

problem is prevented with this new algorithm.

The study of [8] proposes cost-sensitive logistic regression with a logistic cost-lost

function in which the coefficients of logistic regressions are estimated from the ex-

pected loss function. [36] choose the average expected cost as the objective func-

tion and use gradient-based optimization in the estimation of a cost-sensitive logistic

model.

On the other hand, the introduction of XGBoost by [14] is appreciated due to its faster

processing speed, minimum memory usage, and superior performance compared to

other learning systems. XGBoost is known as a scalable end-to-end tree boosting

system developed on gradient tree boosting and it is a solution for the over-fitting

problem. Various comparative analyses for credit risk prediction conducted with dif-

ferent algorithms conclude with the superior performance of XGBoost ([97], [33],

[96], [83], [89], [47], [68], [75], [59], [86], [61]).

The sequential ensemble credit scoring model developed by [97] uses XGBoost and

selects its parameters with Bayesian hyper-parameter optimization. [97] utilize Tree-

structured Parzen estimator (TPE) as Bayes optimization algorithm offered by [11].
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The model offered, XGBoost-TPE, is tested on four credit data sets and found to be

superior when compared with the algorithms of LR, NN, DT, SVM, bagging-NN,

bagging-DT, AdaBoost-DT, AdaBoost-NN, and RF.

The study of [96] proposes Easy-SMT algorithm (EasyEnsemble+SMOTE+XGBoost)

which combines the oversampling method SMOTE with the ensemble-based method

EasyEnsemble. [83] investigate various algorithms for multi-class classification with

an emphasis on modifications for imbalanced data, including AdaBoost.MH, SAMME

(a special variant of AdaBoost), LogitBoost [24], GradientBoost, XGBoost, Light-

GBM [43], CatBoost (Gradient Boost capable of processing categorical variables),

SMOTEBoost, RUSBoost, MEBoost (different weak classifiers are mixed), Ada-

Cost, AdaC1, AdaC2, and AdaC3. CatBoost is proved to be the first algorithm with

the highest performance metrics and SMOTEBoost is the second and XGBoost and

LogitBoost are the third algorithms in terms of MAUC (average of AUC), Gmean,

and MMCC values. [89] analyze the performance metrics of Imbalance-XGBoost

(Weighted-XGBoost or Focal-XGBoost) with 5 imbalanced datasets. F1−score and

Matthews Correlation Coefficient (MCC) are evaluated as more proper measures

than the accuracy in imbalance data, and they are reported as higher in Imbalance-

XGBoost when they are compared with the ordinary XGBoost.

The comparative study of [47] evaluating the classification performance of XGBoost

with logistic regression and tree-based models on credit data underlines the supe-

riority of XGBoost. [34] propose the Adaptive Swarm Optimization (APSO) algo-

rithm to optimize the hyper-parameters of random forest, while [68] use APSO to

determine the optimal values of multiple XGBoost hyper-parameters for imbalance

datasets. [59] generate a new hybrid method called SMOTEXGBoost and claim that

increasing the minority class with this method rather than duplicating prevents the

over-fitting problem. [61] compare the performances of logistic regression, SVM,

gradient boosting, random forest deep feed-forward neural network, and XGBoost-

ing on a credit data separated as 2009-2013 as financial crisis period and 2014-2018

post-financial crisis period. The last years of each period are used as test data and the

default rates are reported to be 4.16 % for the first period and 3.44 % for the second

period. The non-linear models, XGBoosting, and neural networks are evaluated as

outperforming the linear ones in most of the performance metrics.
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In their comparative study to analyze the performance of five well-known base clas-

sifiers (neural network, decision tree, logistic regression, Naïve Bayes, and support

vector machine) in credit scoring, [49] state the supremacy of ensemble learning al-

gorithms (random forest, AdaBoost, XGBoost, LightGBM [43], and Stacking), ex-

cept for AdaBoost. [31] explore the superior classification ability to boost algorithms

compared with other ensemble-learning methods and neural-network methods. [28]

state that their comparative analysis demonstrates the success of stochastic gradient

boosting, which outperformed decision trees and random forests.

The hybrid model proposed by [54] combine under-sampling and AdaBoost, and gen-

erate EasyEnsemble and BalanceCascade which are evaluated to be superior to other

algorithms in the classification of 16 imbalance datasets with several performance

metrics. [74] offer random under-sampling (RUS) technique as a simpler, faster, and

favorable technique in terms of performance when compared with the synthetic mi-

nority oversampling technique (SMOTE) offered by Chawla et al [13] and later im-

proved by [32] as BorderlineSMOTE and by [38] as Modified SMOTE. Sampling

methods of RUS and SMOTE are also combined with AdaBoost and they are called

RUSBoost and SMOTEBoost, respectively[38]. [33] strengthen the BalanceCascade

in terms of maintaining the class ratio and adjusting the imbalance ratio of positive

and negative classes in each iteration of the training data. Random forest and XG-

Boost are selected as the base classifiers and Particular Swarm Optimization (PSO)

is applied to the optimal combination of the base classifiers in the final classifica-

tion function. In the context of a search for the data imbalance problem, [96] pro-

pose a new algorithm called Easy-SMT (EasyEnsemble+SMOTE+XGBoost) which

is a combination of an oversampling method, SMOTE, and ensemble-based method,

EasyEnsemble. [59] generate a hybrid method of SMOTE and XGBoost called SMO-

TEXGBoost.

An improved version of the random forest offered by [105] assigns weights to deci-

sion trees in the forest during tree aggregation for prediction and out-of-bag errors to

facilitate the calculation of the weights. [90] apply ensemble learning with the logis-

tic regression as a base classifier to large unbalanced credit data (the ratio of defaults

to full payments is 1:14). [22] generate a new algorithm called Non-linear Boosting

(NLB) similar to boosted neural networks in which the embedding layer is learned
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with boosting. Different from gradient boosting (GB), in NLB, weak learners are

iteratively processed and fewer and weaker base classifiers with fewer iterations and

non-linear combinations of them in the final function can make the classification of

the inputs in NLB.

A comparative study of [21] investigates the performances of Logistic regression

(LR), support vector machines (SVM), and multilayer perceptrons (MLP) in im-

balanced data classification. Random, Condensed Nearest-Neighbor (CNN), Edited

Nearest-Neighbor (ENN), Tomek’s Links, One-side-selection (OSS), NearMiss-1,

and NearMiss-2 are used as the under-sampling methods. On the other hand, Random,

Subclass-based, SMOTE, and Adaptive synthetic (ADASYN) are the over-sampling

methods analyzed in the study. At the algorithm level, Easy Ensemble (sample size

adjustments made in AdaBoost), Bagging, Gradient boosting decision trees as ensem-

ble learning, and weighted loss functions (cross-entropy loss for LR and MLP, hinge

loss for SVM) as cost-sensitive approaches are all evaluated. In addition, kernel-

based SVM (Gaussian) and XGBoost (with a scale adjustment for the weights of the

minority class) as model-specific algorithms which cannot be integrated with ensem-

ble learning are also involved in the comparative analysis. The gradient-boosting

decision trees are stated to give the best results in two of three data sets.

The classification study of [102] undertakes 56 imbalanced datasets with 14 ensem-

ble algorithms designed with the dynamic selection strategy. A comparative anal-

ysis of the prediction capability of the ensemble classifications like AdaBoostNC,

AdaC2M1, FuzzyImbECOC, MHDDTECOC, HDDTOVA, ImECOCdense, ImECO-

COVA, ImECOCsparse, MCHDDT, MultiIMAO, MultiIMOAHO, MultiIMOVA, Mul-

tiIMOVO, and Piboost are made with the multi-class imbalance datasets and the most

of these algorithms are found to have better prediction results when the dynamic se-

lection strategy is applied. Furthermore, [102] design a patch learning in the scheme

of a dynamic selection ensemble classification with AdaC2M1 as the global classifier

and one-class SVM as the patch classifier.

The study of [50] offers to reshape the standard cross entropy loss and create a fo-

cal loss function to detect a sparse set of hard examples in the existence of a class

imbalance problem. [89] re-formulate the loss functions of weighted cross-entropy
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and focal loss with imbalance parameters and call the new algorithm as Imbalance-

XGBoost. [86] introduce Modified Focal Loss in which the class losses are bal-

anced with the inverse of class weights. [85] introduce an imbalance parameter from

Weighted-Cross Entropy Loss to the Focal Loss in XGBoost and name it Modified

Focal Loss. [85] claim that the proposed model based on the XGBoost algorithm is

superior to Vanilla XGBoost, Weighted-Imbalance XGBoost, and Imbalanced XG-

Boost with Focal Loss.

The comparative analysis conducted by [64] undertakes the imbalanced data and com-

pare the performances of 2 data re-sampling methods, namely SMOTE and Deep

Belief Network (DBN), and 2 successful cost-sensitive methods, namely focal loss

and weighted loss. Deep Belief Network is described as the unsupervised probabilis-

tic deep learning model composed of Restricted Boltzmann Machines (RBM) which

takes the inputs from the hidden layer of the previous RBM. AUC values indicate

that the data pre-processing methods of SMOTE and DBN are proven to improve the

performances of Logistic Regression and XGBoost. [63] and [53] minimize the fo-

cal loss functions in imbalanced credit data sets. The use of focal loss as a solution

for imbalanced data is also common in image and signal processing, and semantic

segmentation ([37], [51], [99], [66]).

The hybrid method of [17] combines the simulated annealing (SA) strategy as a data

level under-sampling and different algorithms like discriminant analysis, SVM, de-

cision tree, and k-NN. The simulated annealing strategy, one of the meta-heuristic

techniques, selects an optimal subset of the majority class instances and converges to

the global optimum. The experimental analysis is conducted on 51 real-world imbal-

anced datasets and the evaluation metrics used Gmean and F-score indicate a superior

performance for the SA algorithm.

Graph representation learning based on the main setting of information transfer be-

tween data instances is one of the successfully evolving techniques in deep learning

algorithms in recent years. Graph Neural Networks (GNNs) and Graph Attention

Networks (GATs) are also used for the estimations of expected default probabilities

of the instances. GNNs and GATs formulate the data instances in a graph structure

and the main motivation is to strengthen each data instance’s features with very close
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neighbor data instances ([27],[104],[30]).

Graph Convolutional Networks (GCN) offered by [93] aggregates and encodes the

nodes’ features with neighbors’ information directly and train the weight parame-

ters on the same weight matrix. [56] underline the significance of the structure of

combining the node embeddings and offer a pooling of the node features based on

graph Fourier transform in GCNs. [58] focus on the graphs with a dynamic structure

with changing vertices and edges, and propose a combination of Long Short-Term

Memory networks and GCNs. [16] generate graph clustering algorithm and restrict

the neighborhood with Cluster-GCN algorithm as a solution for the computational

difficulty of large-scale data sets.

Underlying the fact that some neighbors’ features can be more critical to the node

and the attention coefficients between each node and its neighbors can be included to

strengthen the information embedding, [98] emphasize the existence of different rela-

tions between nodes and their neighbors and generate GAT with multi-view network

embeddings with an attention mechanism.

An advanced deep learning design introduced by [78] combines GCN and RNN with

an attention mechanism for credit scoring. [45] apply GCN for credit default pre-

diction and undertake three separate categories as loan information, credit history

information, and soft information to identify the relationships between the borrowers.

Graph Sample and Aggregate (GraphSAGE) proposed by [29] emphasizes the notion

that a node can have different graph structures besides the selected neighbors for the

training stage and claim the inclusion of unseen graphs with sampling the neighbors.

The neighbors are uniformly sampled and the messages can be aggregated with dif-

ferent architectural functions like a mean aggregator, LSTM aggregator, and pooling

aggregator [29].

The study of [26] offers a new attention mechanism with a new edge matrix as edge

feature enhanced GNNs and it is different from the one of the ordinary design of

GNNs, since it is multidimensional and indicates the edges between the features of the

inputs. [42] embeds the weight and distance functions of kNN in GNN and designs

a kNNGNN model. A node has more than one edge set and messages are updated to
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find the optimal kNN distance and weight parameters in GNN design. [100] propose

GNNEXPLAINER as a new approach to explain the predictions of GNNs which can

be complex due to the graph structure and feature embedding. GNNEXPLAINER

undertakes the trained GNN with its predictions and generates a subgraph of the input

data indicating small subsets of node features being effective in the predictions.

The ordinary graph design offered by [71] is expanded with the vertex and edge sets,

and node embeddings with the inclusion of coordinate embeddings as squared dis-

tances between two inputs, and the new structure is called Equivariant Graph Neural

Networks. [15] focus on capturing a better graph structure with better node embed-

dings and insert cosine similarity learning function in the graph learning process to

reach better graph topology and introduce ‘Iterative Deep Graph Learning’.

Camouflage-Resistant GNN developed by [19] has fraudster camouflages as masking

features and the relations in fraud detection. Different from most of the studies, [19]

also utilize a different similarity measure called label-aware similarity measure esti-

mated with one-layer perceptron in which the node label is predicted and the distance

between prediction results is used as the similarity metric for the neighbor selection.

A GNN model designed by [106] incorporates a hierarchical node selection algorithm

to detect vulnerable nodes which have a high potential to attack security systems

in the Internet of Things (IoT) technologies. [39] introduce Embedding Clustering-

based Optimization (ECO), Graph Reconstruction-based Optimization (GRO), and

Hard Sample-based Knowledge Distillation methods for imbalanced data problems.

[81] focus on the imbalanced-graph structured data in Reinforcement Learning and

generate the model of Reinforced Contrastive GNNs to detect anomalies.

The study of [92] designs a GNN of GNNs for imbalanced data with the use of GNNs

in the first level and the topological similarity and different kernel functions for the

graphs in Graph Isomorphism Network (GIN) in the second level. [91] generate syn-

thetic minority nodes and apply cost-sensitive learning with a Gumbel distribution

(type-I generalized extreme value distribution) as an activation function for the im-

balanced data. [55] generate sub-graphs with the sampled nodes and edges for fraud

detection in imbalanced data.
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1.2 The Aim of The Study

In the literature, studies dealing with instance-specific cost-sensitive classification

algorithms are very few. The base of MetaCost [18] and cost matrix analysis by

[101] and example dependent cost-sensitive SVM by [41], the studies of [8] and [36]

based on logistic regressions all generate example dependent cost sensitive algorithm

designs with the estimations of expected costs which are generally inserted in the

algorithms as the monetary burden of the misclassification.

The main aim of this study is to introduce new cost-sensitive detection methods for

credit risk classification when traditional algorithms fail to classify in the presence of

severe class imbalance. In the literature, cost sensitivity is extensively applied with

re-weighting on a class basis in classification algorithms. The instances or the errors

resulting from predictions of these instances in the minority class are out-weighted

with pre-determined constants defined on no specific rule or a grid search is applied

for the optimal class weight. Instance-dependent cost-sensitive classification studies

are very few and focus on expected nominal costs calculated with credit amount dis-

bursed. It is important to notice that the nominal monetary costs might be misleading

since every high credit amount does not mean high risk. The applicant should also

be evaluated with his/her other financial features and relative comparisons of mon-

etary indicators should be made. There is no well-established methodology in the

literature that designs a classification algorithm built on sample-specific cost/risk in-

dicators based on expected default probabilities. This study raises the question of

whether it is possible to create an instance-specific cost parameter that reflects the

default risk level of the instances and contributes to well-known algorithms in the

process of diagnosing defaults in imbalanced credit data sets.

This study questions whether it is possible to improve the estimation of the default

probabilities in the ordinary models of AdaBoost, XGBoost, and ANN with instance-

specific data weights generated with default probabilities in sub-datasets. Logistic

regression, GNN, and GAT models are generated with sub-train data sets which are

equally distributed classes, and the maximums of the default probabilities of all data

instances are used for the proposed cost/risk parameters. The improvement with new

parameters in ordinary models can be observed with higher correct classification rates
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for both classes and with the identification of the riskiest applicants since their weight

will be relatively higher in the given data set due to their higher default probabilities

estimated in sub-datasets. The empirical findings of eight credit data set prove that the

proposed instance-specific cost parameters can outperform the existing algorithms if

the default probabilities in sub-datasets are successfully estimated. The success of

the models in the first stage depends on logistics models with higher R2 values, not

over-fitted GNN and GAT models, and higher Sensitivity and Specificity values both

for the train and test data.
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CHAPTER 2

PRELIMINARIES

2.1 Borrower’s Credit Default Risk

Consumer credits are one of the main crucial demand side supporting dynamics in the

economies as a source of liquidity. They facilitate the purchase of goods and services,

the repayment of existing debts, and prevent sharp reductions in household demand

when they encounter liquidity crunches. During boom periods of business cycles,

consumer credits tend to increase while they decrease during economic contractions.

Repayment of consumer credits is also linked to the soundness and the course of

the economy, and unexpected shocks can adversely affect the productive side of the

economy. Shocks in the economy can deeply force the aggregate output to drop and

increase unemployment, which can further cause credit defaults.

On the other hand, a high number of defaults in credit repayments can also cause a

widespread crisis in the economies. Massive, uncontrolled risky credit disbursements

along with their leverage with securities in the bonds market caused financial crises in

2007 with sub-prime mortgage crises which turned out to be a global financial crisis

and spread to the real sector creating a subsequent deep recessionary period.

Consumer credits constitute one of the highly profitable balance sheet items for the

lenders which are generally commercial banks or other financial institutions. How-

ever, it can be the riskiest balance sheet item for lenders if the default risks are not

properly measured. The incorrect assessment of default causes monetary loss for the

lender. Thus, this very fact should be taken into serious consideration when choosing

the classification approach and this is where we offer a novel cost-sensitive approach.
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Credit applicant assessments should certainly be done with close monitoring of the

expectations in the economy such as the response and the trend of the macro-variables

to existing and expected new policies and corresponding actions of the policymakers.

In the contractionary periods of the economy, the risky sectors can be determined, and

lenders can avoid lending to people working in these sectors, and other precautionary

measures like setting lower limits to credit amounts, charging higher interest rates,

and increasing the asset value demanded mortgages can be taken.

During the expansion periods, the economies, the interest rates tend to be relatively

lower if the inflation is low in a country, and as a result, people are more willing to bor-

row because the cost of borrowing is lower. Domestic banks can borrow from other

financial institutions abroad relatively easily due to the country’s well-performing

macro indicators like higher records in Gross Domestic Product (GDP) leading to

higher real growth rates, government spending, aggregate investments and employ-

ment, lower inflation, and lower current account deficit, and these all lead excess

liquidity and credit supply as well. The defaults in consumer credits also appear

relatively lower in booming periods of the business cycle when compared with the

contraction and trough periods. During the expansion periods, lenders have difficulty

identifying risky borrowers as the number of defaults is very few. Lenders such as

private commercial banks and financial institutions face the difficulty of identification

of risky borrowers as the ratio of defaults to non-defaults in credit data sets becomes

low in the economic expansion periods. The imbalanced data problem in credit data

sets requires analysts to focus on more advanced default recognition models for the

detection of the borrowers who are to default.

Personal information collection becomes very important for imbalanced credit data

sets. The advanced classification techniques assign a probabilistic estimate for the

default potentials of the credit applicants based on the personal attributes reported.

Financial institutions as lenders can also put the financial history of the borrower un-

der strict surveillance by checking the regularities and delays in credit card payments

delays, previous credit payments, bank account check-ins, and salary payments. To

extract more features besides the reflections on application reports, creditors can also

search non-reported data sources, such as social media activity, online behavior, and

social network to provide a more detailed view of an individual’s creditworthiness.
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2.2 Machine Learning Performance Metrics for Imbalanced Credit Data Sets

Assume Y denotes the binary class label of the borrower, where the non-default class

is labeled as O, otherwise as 1. Let (xi1, ...xiF ) ∈ Xi and Xi represent the feature

set of the borrower i, where i ∈ N , N , and F are the number of the borrowers and

the features, respectively, of a given credit data set. h(θ,X, Y ): X → (0, 1) repre-

sents the prediction of the selected classification algorithm with the loss minimizing

hyperparameter θ.

There are several metrics available for analyzing classification performances of Y .

The performance metrics can be computed with the four classification results reported

in the confusion matrix table, as given in Table 2.1, in which the positive class and

the negative class indicate the default class and the negative class, respectively:

Table 2.1: Confusion Matrix
True Classes

Positive (Y = 1) Negative (Y = 0)

Predicted Positive (Y = 1) True Positives (TPs) False Positives (FPs)
Classes Negative (Y = 0) False Negatives (FNs) True Negatives (TNs)

The correctly predicted borrowers of the default class are called True Positives, TPs,

and the correctly predicted borrowers of the non-default class are called True Nega-

tives, TNs. On the other hand, the falsely predicted borrowers of the default class are

called False Negatives, FNs, and the falsely predicted borrowers of the non-default

class are called False Positives, FPs.

The asymmetric class distributions in imbalanced data sets complicate the learning

parameters of the algorithms to focus on the default class since the non-defaults dom-

inate the loss functions in classification problems of credit data sets. This study aims

to address the issue of imbalanced class size in credit data sets by achieving bal-

anced correct classification results in both classes using offered cost/risk parameters

in classification algorithms. However, most of the performance metrics are reliable

and indicative of the actual success of the prediction task only when the class sizes

in the data sets are relatively balanced. The most commonly used metric is accuracy,

which represents the ratio of correct predictions to all data instances. The accuracy

score can be misleading when the data classes are imbalanced, as the majority class
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instances will dominate the score, while the correct classification of minority class

instances may be quite low. In credit data classification tasks, the priority is to detect

the default class, as financial institutions incur a significant real monetary cost when

an applicant fails to repay their loan. Nevertheless, classification algorithms should

aim to identify both classes as effectively as possible. Therefore, performance met-

rics of imbalanced credit data sets are chosen to be fair for both classes, such as True

Positive Rate or Sensitivity and True Negative Rate or Specificity.

Sensitivity =
TP

TP + FN
, (2.1)

Specificity =
TN

TN + FP
. (2.2)

Classification algorithms such as AdaBoost and XGBoost assign direct class labels

and make the binary classification with a threshold of 0.5 for the probability estima-

tions [23], [97]. Algorithms might not yield close Sensitivity and Specificity values at

a threshold of 0.5, and probability estimates may require a threshold adjustment for

final classification. Therefore, the first classification successes of all algorithms are

compared with the geometric mean of Sensitivity × Specificity:

Gmean = (Sensitivity× Specificity)1/2. (2.3)

Different from other classification tasks, the monetary Loss Given Defaults, LGD,

with predetermined Specificity value is evaluated as the real performance metric in

credit data classification comparisons. LGD is calculated as the sum of the defaulting

borrower-specific losses. That is, LGD is exactly the total credit amounts disbursed

to the borrowers categorized as FNs in the confusion matrix and expressed as:

LGD =
FN∑
k=1

Credit Amountk (2.4)

when h(θ,Xk, yk) = 0 and Yk = 1 for ∀ k ∈ (1, .., FN).

Moreover, the expected misclassified cost, MCY=1, for all classification algorithms

used in the experimental stage is computed as:

MCY=1 = Credit Amount(h(θ,X,Y )=0|Y=1) × P (Ŷ = 0 | Y = 1)× P (Y = 1).

(2.5)
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CHAPTER 3

PROPOSED METHODOLOGY

This section presents the methodology on how instance-specific cost/risk parameters

are generated in three selected machine learning algorithms. The reason behind the

necessity of the generation of these parameters lies behind the biased total loss mini-

mization of the ordinary algorithms in the presence of class imbalance. The proposed

cost/risk parameters aim to balance loss minimization in terms of class basis and in-

crease the detection of the minority (default) class instances which will further reduce

the monetary loss. Since the real financial loss in credit data sets stems from the mis-

classification of the minority/default class instances. This study is accomplished by

two stages at which the first one contains two major steps to estimate the parameters

and the second one embeds these outputs to minimize the binary classification costs

in the imbalanced credit data sets.

Given N borrowers or data instances in a given credit data set and F features or

attributes, let xij(i=1,...,N,J=1,...,F )
for ∀ xij ∈X are the predictors for ∀ i ∈N and ∀ j ∈

F . The binary classes is represented by yi ∈ Y = (0, 1) for ∀ i ϵ N are such that yi = 1

is the default class instance while yi = 0 is the non-default class instance. h(θ,X, Y ):

X → (0, 1) is the selected binary classification algorithm and Ŷ = h(θ1, ..., θn, X, Y )

denotes the predictions of this classification algorithm with n learning parameters θ.

The total loss is defined as L(Y, Ŷ ).

The classification algorithms, h(θ1, ..., θn, X, Y ), all optimize the learning parame-

ters, θ1, ..., θn, with the objective of minimization of pre-determined loss function,

L(Y, Ŷ ). In binary classification problems, the losses can be minimized for both

classes if the class sizes are almost equal. The loss function might not require an
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external factor to divert the parameters to minimize the losses for both classes. The

commonly selected loss function in binary classification tasks is the cross entropy

loss or the negative binomial loss given as ([52], [35], [82], [69], [89], [57]):

L(Y, Ŷ ) = − 1

N

N∑
i=1

[
yi log ŷi + (1− yi) log(1− ŷi)

]
. (3.1)

LetLi(yi, ŷi = h(θ, xi, yi)) be the prediction loss of the specific borrower xi. The sum

of the misclassification losses for the defaults and the non-defaults are demonstrated

as
∑

h(θ,Xi,yi)=0 and yi=1

Lj(yi, h(θ,Xi, yi)) and
∑

h(θ,Xj ,yj)=1 and yj=0

Lj(yj, h(Xj, yj)), respec-

tively. We define the corresponding total loss as:

L(Y, h(θ,X, Y )) =
∑

∀kϵN for h(θ,Xk,Yk )̸=Yk

Lk(yk, h(θ, xk, yk)) (3.2)

L(Y, h(θ,X, Y )) =
∑

h(θ,xi,yi)=0 and yi=1

Li(yi, h(θ, xi, yi)) +

∑
h(θ,xj ,yj)=1 and yj=0

Lj(yj, h(θ, xj, yj)). (3.3)

In imbalanced data sets, however, the loss function becomes biased toward the ma-

jority class due to the dominance of the majority class loss. Therefore, we introduce

the condition as:∑
h(θ,Xi,yi)=0 and Yi=1

Lj(yi, h(θ,Xi, yi)) <
∑

h(θ,Xj ,yj)=1 and yj=0

Lj(yj, h(θ,Xj, yj)).

(3.4)

As a result, the algorithms with the objective of total loss minimization generally

cannot successfully solve the classification problem for the minority class. If there is

a direct feature specific to a minority class, the classification algorithm can separate

the instances of the minority class based on this feature and the skewed distribution

of the class sizes cease to be a problem for the loss function. The lack of information

and insufficient past data records usually prevent the determination of the minority

class with just features. This study focuses on the binary classification problem for

imbalanced data sets which can not be solved with only the selected features and

requires a deep analysis of the classification algorithms.
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The motivation behind the generation of the instance-specific cost parameter, Ci ∀ i ϵ
N , lies behind balancing the loss function in terms of class basis given as:

L(Y, h(θ,X, Y )) =
∑

h(θ,Xi,yi)=0 and yi=1

CiLi(yi, h(θ,Xi, yi))+

∑
h(Xj ,yj)=1 and yj=0

CjLj(yj, h(θ,Xj, yj)). (3.5)

Here ∀ Ci for ∀ i ∈ N is expected to ensure a well-recognized minority class as well

as the majority class in classification tasks.

3.1 Use of Default Probabilities as Instance-Specific Cost/Risk Parameters

A well-estimated instance-specific cost/risk parameter aims to reflect the real default

possibility of the borrower to the loss function of the classification algorithm. If the

default probability of the borrower is considerably high, then its contribution to the

loss function should be relatively high and the optimization process of loss minimiza-

tion should end with the decision to reject this customer.

Let P (Di) define the probability of default for borrower i where i ∈ N and then, the

expected default probability, E[P (Di)] = h(Xi1, ..., XiF , Y ), is estimated with the

features reported to the lender and it gives a probabilistic estimate of whether the loan

will be paid off. The use of the default probability as an instance-specific default risk

level indicator appears as the first option in the search for an instance-specific metric

that is rational for balancing the classes for two reasons. Firstly, it is a direct measure

signaling the relative risk embedded in the applicant attributes, and its estimations are

instance-specific. Secondly, the default classes are generally the minority classes in

imbalanced credit data sets, and the default probabilities are expected to be higher

for the default classes when compared with the ones of non-default class instances.

For this reason, we define the expected values of default probabilities as E[P (D)] as

follows:

E[P (D)Y=1] > E[P (D)Y=0] (3.6)

which is equivalent to h(X | Y = 1) > h(X | Y = 0) (3.7)
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The boosting of the minority class instances is crucial in the sense that the loss func-

tion should treat both classes equally and produce balanced classification results.

Therefore, the use of the expected default probabilities stands as serving the purpose

of the cost/risk parameter for boosting the weights of the minority class and reducing

the weight of the majority class to balance the loss function.

The existence of a severe class imbalance problem also arises as a problem in ordi-

nary classification algorithms in which the default probabilities of minority classes

can not be estimated on a well-distributed higher default probability range. There-

fore, default probability estimations are conducted with small subsets generated with

minority class and sampled majority class. In this step, the determination of class ra-

tio in subsets appears as an important decision rule since the subsets generated should

reflect as much information for both classes and not cause to miss significant infor-

mation loss. Moreover, the selected sampling size of the non-default class also should

lead the algorithm to recognize the minority class instances and assign them higher

probabilities which are to be used for boosting purposes of this class.

The determination of the class ratio of the sub-datasets, the sampling method, and

the default probability estimation techniques are the first steps of the generation

of instance-specific cost/risk parameters. Rejection sampling based on the credit

amounts of the applicants is preferred as the sampling method. Sub-datasets with

different class ratios are generated, they are modeled with selected algorithms, and

default probability estimation results are compared to determine an optimal class ra-

tio. Logistic regressions (LRs) and Simulated Annealing stochastic process is used

for the analysis of the optimal class ratio of sub-datasets.

LRs, Graph Neural Networks (GNNs), and Graph Attention Networks (GATs) are

used for the default probability estimations. There are several reasons for the selection

of these estimation methods. Firstly, the coefficients of the data inputs in LRs can

be easily evaluated for the feature selections. The statistically insignificant features

in LR models are excluded to facilitate the computation task for all algorithms and

increase the explanatory power of the models. The estimations of the models using the

train data and making predictions for the test data instances with the LRs are very fast.

The over-fitting problem in LRs is not critically observed as it is observed in ANN and
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other boosting algorithms. After estimating cost parameters with LR models, feed-

forward ANNs are also used for the default probability estimations in sub-datasets.

However, the estimations of ANN are not fast as LRs and their prediction results are

observed not to surpass the results of LRs. On the other hand, the reason for the

use of GNNs and GATs is that they have different approaches to each data instance

by concatenating each instance’s information with their close neighbor information

to strengthen the explanatory power of the models. The motivation behind the use

of these clustering-based deep learning of these models is that they are relatively

more complex and are expected to catch a higher level of information for a borrower,

and therefore, they can better reflect the real default probabilities of the borrowers.

We have witnessed that clustering-based deep learning techniques have improved the

reflection of the real default probabilities in some data sets when compared with LRs.

After the estimation of default probabilities, the cost parameters specified on an in-

stance basis are constructed with the target of obtaining balanced losses for the algo-

rithms. This study offers a methodology of two stages. Stage 1: The cost parameters

are generated. Stage 2: Parameters obtained in Stage 1 are embedded in the ordinary

algorithms of ANN, AdaBoost, and XGBoost. Algorithm 1 and Figure 3.1 summarize

the proposed methodology of the cost parameter generation process with the use of

LR. Furthermore, keeping the optimal class ratio analysis the same, the stages of the

proposed methodology using GNNs and GATs for the default probability estimations

are described in Algorithm 2 and Figure 3.2.
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Algorithm 1 Instance-Specific Cost Sensitive Algorithms

The Cost Parameters are Estimated with LRs
Require: The predictors are N borrowers with F features, XN×F , with the binary classes,

Y N×1, represented with Y = 0 and Y = 1 for the non-defaults and defaults, respectively.

1: Initialize the First Step: Generation of instance-specific cost parameters with sub-datasets.

2: Determine the optimal class ratio, cr, for sub-datasets: cr= Non-defaults
Defaults .

3: for cr = 0.5 to 4 do

4: for t = 1 to I do

Sample cr× Number of Defaults borrowers from non-defaults by rejection sampling.

Generate sub-datasets, (Xs, Ys), with the sampled non-defaults and all default instances.

Estimate LR models: hLR(Θ, Xs, Ys) =
1

1+e−(Θ0+
∑N

i
ΘiXs)

5: end for

6: end for

7: Analyze the optimal threshold, thrS, giving the maximum Gmean with Gmean and R2 values and

decide the optimal class ratio.

8: Estimate LR models with Nsim sub-datasets to get a probability estimation for each borrower.

9: for t = 1 to Nsim do

Apply rejection sampling to non-defaults keeping the optimal class ratio.

Generate sub-datasets, (Xs, Ys), with all defaults and sampled non-defaults.

Estimate LR models: hLR(Θ, Xs, Ys) =
1

1+e−(Θ0+
∑N

i
ΘiXs)

.

10: end for

11: Set the expected default probability, E[Yi | Xi], as the maximum default probability estimations,

P (DLR)i, in LR models for each borrower i:

P (DLR)i = max

{
hLR1

(Θ1, Xi, Yi), hLR2
(Θ2, Xi, Yi), ..., hLRNSim

(ΘNSim, Xi, Yi)

}
12: Compute the total class-based default risk adjusting parameter, βRAW :

βRAW =

∑
i E[P (Yi | Xi)]1Y =0∑
j E[P (Yj | Xj)]1Y =1

for default class instances, Y = 1

βRAW = 1 for non-default class instances, Y = 0

13: Generate the instance-specific cost parameters, C1 = (P (DLR)× βRAW )m,

C2 = [exp(P (DLR)×βRAW

thrs − 1)]m and C3 = exp(P (DLR))× (βRAW )m

14: Initialize the second step: Embed the instance-specific cost parameters in AdaBoost, XGBoost,

and ANN algorithms.
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STAGE 1

Estimation of the Instance Specific Cost Parameters

Default Class

+

Sampled Non-Default Class

LR Model
Estimations

with
Sub-Datasets

Expected Default
Probabilities of
Each Borrower/
Instance: P (D)

Rejection Sampling
Based on Credit Amount
Applied to Majority Class

Optimal Class Ratio
Choice for Sub-datasets:

Simulated Annealing
and LR Analysis

Class-Based
Total Default

Risk Adjusting
Parameter: βRAW

Generation of
Instance-Specific
Cost Parameters

The Minimum of the
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Giving the Maximum
Gmean for the LR is
used for thrs in C2

STAGE 2

Embedding the Instance Specific Cost Parameters in Classical Algorithms

Modifications to
AdaBoost and

XGBoost

Modifications
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Re-weight the
Initial Instance

Weights with the Instance-
Specific Cost Parameter

Re-weight the
Instance Error

Weights in Loss Functions
with Instance-Specific

Cost Parameter

Figure 3.1: Instance-Specific Cost Sensitive Algorithms Design with LRs
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Algorithm 2 Instance-Specific Cost Sensitive Algorithms

The Cost Parameters are Estimated with GNNs and GATs
Require: The predictors are N borrowers with F features, XN×F , with the binary classes,

Y N×1, represented with Y = 0 and Y = 1 for the non-defaults and defaults, respectively.

1: Initialize the First Step: Generation of instance-specific cost parameters with sub-datasets.

2: Determine the optimal class ratio, cr, for sub-datasets: cr= Non-defaults
Defaults .

3: for cr = 0.5 to 4 do

4: for t = 1 to I do

Sample cr× Number of Defaults borrowers from non-defaults by rejection sampling.

Generate sub-datasets, (Xs, Ys), with the sampled non-defaults and all default instances.

Estimate LR models: hLR(Θ, Xs, Ys) =
1

1+e−(Θ0+
∑S

i
ΘiXs)

5: end for

6: end for

7: Analyze the optimal threshold, thrS, giving the maximum Gmean with Gmean and R2 values and

decide the optimal class ratio.

8: Estimate GNNs and GATs with Nsim sub-datasets to get a default probability for each borrower.

9: for t = 1 to Nsim do

Apply rejection sampling to non-defaults and defaults keeping the optimal class ratio.

Generate sub-datasets, (Xs, Ys), with sampled defaults and sampled non-defaults.

Estimate GNN models: Ŷs = hGNN (θ1, θ2, θ3, η1, η2, η3, σ1, σ2, σ3, Xs, Ys)

Estimate GAT models: Ŷs = hGAT (a,W,φ,Xs, Ys)

10: end for

11: Set the expected default probability, E[Yi | Xi], as the maximum default probability estimations,

P (DGNN )i and P (DGAT )i, for each borrower i as:

P (DGNN )i =max

{
hGNN1

(..., Xi, Yi), ..., hGNNNSim
(..., Xi, Yi)

}
P (DGAT )i =max

{
hGAT1

(..., Xi, Yi), ..., hGATNSim
(..., φNSim, Xi, Yi)

}
12: Compute the total class-based default risk adjusting parameter, βRAW :

βRAW =

∑
i E[P (Yi | Xi)]1Y =0∑
j E[P (Yj | Xj)]1Y =1

for default class instances, Y = 1

βRAW = 1 for non-default class instances, Y = 0

13: Generate the instance-specific cost parameters, C1 = (P (DGNN )× βRAW )m,

C2 = [exp(P (DGNN )×βRAW

thrs − 1)]m and C3 = exp(P (DGNN ))× (βRAW )m

14: Generate the instance-specific cost parameters, C1 = (P (DGAT )× βRAW )m,

C2 = [exp(P (DGAT )×βRAW

thrs − 1)]m and C3 = exp(P (DGAT ))× (βRAW )m

15: Initialize the Second Step: Embed the instance-specific cost parameters in AdaBoost, XGBoost,

and ANN algorithms.
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STAGE 2

Embedding the Instance Specific Cost Parameters in Classical Algorithms

Modifications to
AdaBoost and

XGBoost

Modifications
to ANN

Re-weight the
Initial Instance

Weights with the Instance-
Specific Cost Parameter

Re-weight the
Instance Error
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Figure 3.2: Instance-Specific Cost Sensitive Algorithms Design with
GNNs and GATs
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3.2 Generation of Sub-data Sets for Default Probability Estimations

The sampling method and the optimal class ratio are significant for the well-estimated

models with superior predictive parameters. Rejection sampling based on the credit

amounts disbursed to the applicants is applied to ensure the instances in the samples

reflect the distribution of credit amounts to all applicants.

The class ratio of the sub-sampled data sets appears as an important problem to be

solved since the default probabilities will change as the sub-sampled majority class

dominates the minority class. Different class ratios of sub-datasets are analyzed with

the prediction results of LR models and the optimal threshold analysis conducted with

the Simulated Annealing Stochastic (SA) process. The values of the target function in

SA can be the best (minimum in SA process) for a wide range of thresholds. There-

fore, the reason for the use of a stochastic process for the class ratio analysis is to

capture the range of the optimal thresholds minimizing the objective function in SA.

3.2.1 Rejection Sampling

The sub-datasets should reflect the best sample with similar distributions of credit

amounts when compared with the complete data set. Therefore, a rejection sampling

method based on XCA= CreditAmount
max(CreditAmount)

, is applied for each data set.

Rejection sampling can be preferred when there is no pre-defined density function

for a variable. The target density q of XCA, is evaluated with a candidate density g,

supported by Xg, of which density is already built-in and matches closely with q and

serves as Xq⊂Xg. To ensure that g covers q with heavier tails, the condition given in

Equation 3.8 should be satisfied [77]:

M = sup
x∈Xq

q(x)

g(x)
<∞ (3.8)

The basic application of the rejection sampling can be described with A ∼ U(0, 1)

and X ∼ g(x). If A ≤ q(x)
Mg(x)

holds, X is accepted, otherwise, it is rejected. The

probability of X being accepted is 1/M and the smaller M , the higher the chance of
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it being accepted [77].

P (Xaccepted) = P (A ≤ q(x)

Mg(x)
)

=

∫
P (A ≤ q(x)

Mg(x)
|X = x)g(x)dx

=

∫
q(x)

Mg(x)
g(x)dx

=
1

M

The samples accepted with rejection sampling also have the same distribution with

the target density q, F (z) =
∫ z
−∞ q(x)dx [77].

P (X ≤ z|Xaccepted) =
P (X ≤ z,Xaccepted)

P (Xaccepted)
(3.9)

=
P (X ≤ z,Xaccepted)

1/M

=MEg
[
E
[
1{x ≤ z}1

{
A ≤ q(x)

Mg(x)

}
|X = x

]]
=MEg

[
1{X ≤ z}E

[
1

{
A ≤ q(x)

Mg(x)

}
|X = x

]]
=MEg

[
1{X ≤ z} q(x)

Mg(x)

]
=

∫ ∞

−∞
1{x ≤ z}q(x)

g(x)
g(x)dx

=

∫ z

−∞
q(x)dx

= F (z)

This shows that such a shift of the candidate density,g, to generate the target density,

q, does not influence the distribution.

3.2.2 Stochastic Approach to Optimal Class Ratio: Simulated Annealing

Simulated Annealing (SA) is inspired by the annealing of metallurgy in which the

atoms rapidly move around the whole space when the temperature is the highest but

as the temperature falls the moves of the atoms decrease and they take place in a

more stable place [65], [25]. SA is a meta-heuristic algorithm with a stochastic global
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search design and it is easily used for the optimization of non-linear objective func-

tions. SA changes the initial assigned solution with its neighbor points and if the new

point is lower than the previous, SA accepts this new point. If the neighbor point

is worse than the previous result, the algorithm may still accept the new one with

some probability, and its estimation is known as a cooling strategy calculated with an

objective cost function. In the initial steps when the temperature is the highest, the

algorithm moves on the points to a large extent, but as the temperature decreases the

search scale narrows and the algorithms stop at the global minimum.

SA is used for the determination of optimal the class ratio for the sub-datasets. These

sub-datasets, (Xs, Ys) where s is the size of the sub-data (s < N ), are generated using

a targeted algorithm based on the default and non-default cases. Sub-samples with

different class ratios are formed and all of them are estimated with the LR models.

Since the attributes of data are not completely independent, the conditional default

probabilities can not be estimated with the Bayesian risk classifier. Therefore, well-

known LR, hLR(Θ, Xs, Ys), is used to estimate the default probabilities as:

hLR(Θ, Xs, Ys) =
1

1 + e−(Θ0+
∑N

i ΘiXs)
(3.10)

log
pi

1− pi
= θ0 +

F∑
j

θjXij and (3.11)

pi = E[Yi | Xi] =
1

1 + e−(Θ0+
∑N

i ΘiXi)
(3.12)

where pi is the expected default probability of borrower i and pi
1−pi denotes the odds

of the probability of default against the probability of non-default for the borrower i.

The features with statistically significant coefficients are included in all models and

the models with higherR2 are selected. After the estimation of an LR model, negative

of Gmean (-Gmean) minimization is set as an objective function in SA and the optimal

thresholds maximizing Gmean are analyzed together with the estimated R2s.

The elements and the stages of this optimization process are described as follows: For

every threshold, thr ∈Ω, Ω∈ (0, 1) is the solution space andG(thr) = −Gmean(thr),

| G(thr) | <∞ and G(thr) : Ω→ R is the objective function. The aim is to find the

global minimum thrS∗: G(thr) => G(thrS∗) for → ∀ thr ∈ Ω, where N(thr) is

the neighborhood function for thr ∈ Ω.
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The simulated annealing optimization process starts with an initial random thr ∈ Ω.

The objective function moves to a neighbor threshold, thr′ , randomly selected or

selected on a certain pre-defined rule. The neighbor thr′ is accepted based on the

Metropolis acceptance criterion [73]:

P (thrS
′

accepted) =

 e

[
−[G(thr

′
)−G(thr)]/Tk

]
if G(thr′)−G(thrS) > 0

1 if G(thr′)−G(thr) ≤ 0
(3.13)

Tk is defined as the temperature parameter and k represents the iteration, Tk > 0 for

∀ k and lim
k→∞

Tk = 0. thrS∗ ∈ Ω is the optimal threshold holding the system in state

at T = T ∗ with the probability following Boltzmann distribution [87]:

P (thrOptimal = thrS∗ | T = T ∗) =
exp(−G(thrS∗)/Tk)∑

thr′′∈Ω
exp(−G(thr′′)/Tk)

(3.14)

where thr′′ represents the all thresholds accessible in the solution space Ω.

g(thr, thrS∗) is defined as the probability of thrS as a solution among the neighbors

and
∑

thrS′∈N(thrS)

gk(thrS, thrS
∗) = 1 for ∀ thrS ∈ Ω, k = 1, 2, ..., the stochastic

transition probability matrix Pk can be defined as:

Pk(thr, thrS
∗) =



gk(thr, thrS
∗)e(−△thr,thrS∗/Tk ), thrS∗ ∈ N(thr), thrS∗ ̸= thr

0, thrS∗ /∈ N(thr), thrS∗ ̸= thr

1−
∑

thr′′∈N(thrS)
thr′′ ̸=thrS∗

Pk(thrS, thrS
∗), thrS∗ = thr

The SA algorithm starts with the initial parameters of thr0 = 0.5, lower bound=0.1

and upper bound=0.9, and T0 = 100 with annealing schedule T = T0 ∗ 0.95k, ki =
log

T0maxj(sj)

Tisi
where ki is the annealing parameter for component i and si = gradient

of objective in direction i times difference of bounds in direction i. Reanneal Interval

is 50 and the stopping criteria is selected to be Function Tolerance annealing process

is set to continue as the condition of (thrt+1)−G(thrt) ≤ 1e− 6 holds.

Simulation of LR estimations with at least 3,000 sub-data is conducted. The subsets

include all minority class instances and majority class instances sampled with the

rejection sampling method. Each data instance in the non-default class is almost used
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in at least one of the model estimations and all instances can appear in more than one

model and have more than one default probability.

Sub-samples with different class ratios are selected from 0.5 to 3.75 for the sampled

majority/minority ratio. Figures 3.3-3.5 display the changes in the optimal thresholds,

thrS, maximum Gmean, and R2 values for eight credit data set subject to the experi-

mental analysis of this study. The optimal thresholds in simulations are observed to

decrease as the class ratio increases in the samples. The maximum Gmean values also

decrease considerably in the first three data sets as the class ratio increases. As the

non-defaults class size exceeds the default class size more than 1.5 times, the ordinary

R2 and the adjusted R2 in LR estimations are also observed to decrease significantly.

The classification results of LR estimations with the Gmean maximizing threshold are

evaluated with the Sensitivity and the Specificity values for different class ratios. As

the majority/minority ratio increases in sample data sets, correctly classified minority

class instances decrease with the optimal threshold choice giving maximum Gmean.

The aim is to detect the minority class and not severely deteriorate recognition of the

majority class instances. Therefore, the class ratio is selected as 1 and the number

of majority class instances is equally included as the minority class instances in the

LR estimations. The maximums of default probabilities in LR model simulations

are also assigned to each loan applicant for the instance-specific cost parameter. The

minimum of optimal thresholds, thrs, is also used in the design of cost parameters.
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Figure 3.3: Class Ratio (Non-defaults/Defaults) Analysis for Sub-Data Sets with LR
and the Optimal Thresholds Estimated by SA
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Figure 3.4: Class Ratio (Non-defaults/Defaults) Analysis for Sub-Data Sets with LR
and the Optimal Thresholds Estimated by SA
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Figure 3.5: Class Ratio (Non-defaults/Defaults) Analysis for Sub-Data Sets with LR
and the Optimal Thresholds Estimated by SA

3.2.3 Graph Neural Networks

A graph in Graph Neural Network (GNN) is represented with nodes and neighbors

defined on pre-determined distance metrics. The basic idea is that a node collects

information from its neighbors, combines it with its own features, and sends the ag-

gregated data to the neural network model. If the class labels are utilized in the train-

ing stage, GNNs are modeled in the supervised setting, and if some of the labels are

used and most of them not, then the GNNs are evaluated as semi-supervised learning

([27],[104],[30]).
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The data in GNN is processed as formatted graph data named ‘a graph embedding’.

The graph embeddings are vectors of numerical values representing the relevant in-

formation of the neighbor data instances in addition to the nodes’ own features.

The nodes are defined in a finite Vertex Set, V , and their neighbors are defined in the

Edge Set, E. A node ν∈V has an edge with u ∈ V , if ∀u ∈ N(ν). A graph G is

demonstrated as G = (V,E).

Figure 3.6 illustrates data instances with six nodes and with their connected neighbors

on a simple graph. 1st node has edges with all other nodes except node 6 and 2nd only

has an edge with node 4. A is the adjacency matrix and shows which node has an edge

with which node if node i is connected to node k, Aik is 1, and if it is not connected

to the node j, Aij is 0. Moreover, Aii = 0 for ∀ i ∈ V .

1

42

3

5

6

A =


0 0 1 1 1 0
0 0 0 1 0 0
1 0 0 0 1 1
1 1 0 0 0 0
1 0 1 0 1 1
0 0 1 0 1 0



Figure 3.6: Nodes, Edges and Adjacency Matrix

Let zν define the encoder function, ENC : V → Rd, which maps the data instances

with their aggregated neighbor data information, ν ∈ V , to vector embeddings zν

and they represent the embedding of the node ν, ENC(v) = zν , [30]. The node

embedding of data instance ν at level k is generally formulated as hkν . There is a graph

embedding representation of every node as hkν for ∀ ν ∈ V , for every node embedding

level k ∈ R. The working process of how the GNN works can be described with

equations 3.15− 3.17.

h0ν = xν (3.15)

hkν = σ([Ak.AGG(h
k−1
u ,∀u ∈ N(ν)), Bkh

k−1
ν ]),∀k ∈ 1, 2, ..., K (3.16)
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hkν = σ(Wk

∑
∈N(ν)

hk−1
u

|N(ν)|
), Bkh

k−1
ν ) if AGG(hk−1

u ) =
∑

u∈N(ν)

hk−1
u

|N(ν)|

zν = hKν (3.17)

X is the input set, X ∈ RNxF → R, N is the number of the inputs and F is the

number of features. In the 0th level node embedding, the representation of the node

ν is the numerical feature vector of the data instance, h0ν = xν , xν ∈ X and ν ∈ N .

hk with k > 0 is the representation for inner node embeddings. The superscript of

hk, k, indicates at what level the embedding is. The increase in k means information

is transformed to a node ν from the neighbors, ∀ u ∈ N(ν), and their consecutive

neighbors, and finally, the message transfer stops after kth level neighbors. Figure 3.7

displays node embeddings of a GNN model with 3 message passing levels with 5

neighbors for each node.

h1
C
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C

h2
F

h2
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h2
G

h3
A = ZA
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D

F

G
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A

A

Figure 3.7: Illustration of Node Embeddings in GNN with kNN=5 for node A, zA
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A simple neighbor information aggregation function can be defined as a function

averaging the neighbor messages and is given as:

AGG(hk−1
u ) =

∑
u∈N(ν)

hk−1
u

|N(ν)|
. (3.18)

We define σ(.) as a non-linear transformation function for the aggregated neighbor

messages in the previous level, AGG(hk−1
u ), and the node embedding from the pre-

vious layer, hk−1
ν . Wk and Bk are trained weight parameters and shared for all nodes,

therefore, they can be used for any new node in test data. The final layer representa-

tion for the node embedding is the zν = hKν .

The computation of the aggregation and the transfer of the neighbor messages layer

by layer is not an easy task. The use of the adjacency matrix A and the normalization

degree matrix D facilitates the information embeddings from the neighbors in GNN

operations.

AGG(hk−1
u ) =

∑
u∈N(ν)

hk−1
u

|N(ν)|
→ Hk = D−1AHk−1where, (3.19)

Hk−1 = [hk−1
1 , hk−1

2 , ..., hk−1
n ] (3.20)

The study of [93] proposes a direct graph embedding structure with the convolution

of the weighted aggregation of the node’s own features and its neighbor’s features in

Graph Convolution Networks (GCN). The adjacency matrix, A, is normalized with

the degree matrix D as D̂−1/2ÂD̂−1/2 in both of the GNN and GCN. The difference

of GCN demonstrates itself in the adjacency matrix, Ã = A + IN . GCN treats all

neighbors and the node itself equally and there is only one Wk parameter matrix for

optimization.

GNN : hkν = σ([D̂−1/2ÂD̂−1/2XWk +XBk]) ∀k ∈ 1, 2, ..., K (3.21)

GCN : hkν = σ([D̂−1/2ÃD̂−1/2XWk]) ∀k ∈ 1, 2, ..., K (3.22)

The decoder function, DEC : Rd × Rd → R+, predicts the relationship between the

nodes such as zν and zu as follows:

DEC(zν , zu) ≈ S[zu, zν ] (3.23)

L =
∑
u,ν∈X

ℓ(DEC(zu, zν), S[zu, zν ]). (3.24)
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The aim of the optimization process in GNN is to minimize the loss between the

prediction and the real similarity measure of S[zu, zν ] [30].

3.2.3.1 Link Prediction

The adjacency matrix requires the determination of the linkages between the data in-

stances. The neighborhoods of data instances are analyzed with k-means clustering

with different distance metrics like Euclidean, Cityblock, Chebychev, Minkowski,

Cosine, Hamming, and Jaccard. Figures 3.8-3.10 demonstrate which distance metric

brings the same class instances for the data instances. The graphs in the right col-

umn display the non-defaults in the 30 nearest neighbors of non-default instances as

percentages and the left ones indicate the defaults in the 30 nearest neighbors of de-

fault instances as percentages. The reason for the 30 neighbors is that increasing the

neighbors beyond 30 generally causes over-fitting problems in the train data in the

experimental stage.

In most of the data sets, the cosine distance metric among the seven metrics is ob-

served to capture higher default neighbors in the closest 30 neighbors of the default

class borrowers. Cosine distance [67] displayed with green dots in Figures 3.8- 3.10

brings more than 70 % of the neighbors as the default neighbors for the default class

borrowers for most of the data sets. Therefore, the linkages between the data instances

are constructed with respect to the cosine distance in all data sets in the experimental

stage. It is defined as:

Cosine Distance = 1− Cosine Similarity (3.25)

= 1− A.B

∥A∥∥B∥
= 1−

∑n
i AiBi√∑n

i A
2
i

√∑n
i B

2
i

The neighbors in GNN are also weighted inversely with their cosine distance to the

nodes and the contributions of the data instances become inversely proportional to

their distance. In the training stage, GNNs with non-weighted adjacency matrices

are observed to over-fit easily and the prediction performances for the test data are

observed to be significantly different from the training data results. Weighting the

neighbor messages with respect to their distances is observed to improve the GNN

estimations of sub-datasets.
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Figure 3.8: The 30 Nearest Neighbors (%) with Different Distance Metrics
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Figure 3.9: The 30 Nearest Neighbors (%) with Different Distance Metrics

39



Figure 3.10: The 30 Nearest Neighbors (%) with Different Distance Metrics

3.2.3.2 GNN Model Design for Sub-Data Sets

The data instances in imbalanced data can not be transformed to graph-structured

node embeddings, since the neighborhoods of the minority class instances are exten-

sively dominated by the majority class instances, and GNNs can not perform, and

neither GATs nor GCNs. Therefore, the dominant class instances should be sparse

enough for setting up graph designs enabling information transformation with well-

functioning vertex and edge sets for the minority class instances.
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Sub-data sets with predictors, XSxF
s , and their corresponding class labels, Y SxF

s ,

which have the input size S and the feature size F are generated with a class ratio

of 1. Given the predictors as xij where ∀ i ∈ S, j ∈ F , Xi represents the feature

set of the borrower i. The class labels are indicated by yi ∈ Ys = (0, 1) for the bor-

rower i. Both classes are sampled for the large data sets to enable Matlab to fulfill the

adjacency matrix operations. Rejection sampling based on the credit amount or the

random sampling methods is utilized with the consideration of the test data results.

The GNN estimation process starts with the definition of the graph structure defined

as G = (XG
s , V

G, EG). Let E(Vi) denote the edge set, for ∀ i ∈ S and Vi represents

the vertex set of the borrower i. E(Vik) = 1 if Xk ∈N(Xi), otherwise 0, for ∀ k ∈ S.

V G is constructed with the Cosine Distance in k-NN means clustering. The optimal

numbers for the neighbors are determined in the empirical model estimations con-

sidering the model performances in the test data and the over-fitting problem in train

data. The empirical test data findings of GNN estimations are observed to improve

when the neighbors’ information is weighted inversely with the cosine distance and

then concatenated with the target data instance. Therefore, the normalized weighted

adjacency matrix Ãw is used in all data sets and given as:

Ãw =
A×WCos∑
j∈N(i)

WCosi

(3.26)

where WCos =
1

Cosine Distance
(3.27)

The node embeddings are all indicated with the matrix Zℓ, ℓ is the node embedding

level (embedding layer), where Z1 = X and h0i = Xi for ∀ i ∈ Xs.

Zℓ =
[
hℓ−1
1 hℓ−1

ν · · · hℓ−1
N

]T
(3.28)

Initially, GNN models for all data sets in the empirical stage are designed with 3

message-passing levels described:
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Z1 = Xs (3.29)

Z2 = Ãw × Z1 × θ1, Z2 = σ1(Z2 + Z1 × η1), (3.30)

Z3 = Ãw × Z2 × θ2, Z3 = σ2(Z3 + Z2 × η2), (3.31)

Z4 = Ãw × Z3 × θ3, Z4 = Z4 + Z3 × η3, (3.32)

Ŷs = σ3(Z4). (3.33)

GNN model searches the optimal values for the learning parameters of θ1, θ2, θ3, η1,

η2 and η3, and the optimal activation functions, σ1(.), σ2(.), σ3(.), with the target

of loss minimization. The sampling size of Xs, the sampling method, the iteration

numbers of the model, the learning rate, and the number of estimated GNNs for the

simulation are all significant parameters for a good fit of the estimation of the default

probabilities of credit applicants.

Let Ŷs be defined as:

Ŷs = hGNN(θ1, θ2, θ3, η1, η2, η3, σ1, σ2, σ3, Xs, Ys) (3.34)

= σ3(Ãw × σ2(Ãw × σ1(Ãw ×X × θ1 +Xs × η1)× θ2

+ σ1(Ãw ×Xs × θ1 +Xs × η1)× η2)× θ3

+ σ2(Ãw × σ1(Ãw ×X × θ1 +Xs × η1)× θ2

+ σ1(Ãw ×Xs × θ1 +X × η1)× η2)× η3).

Sigmoid function, 1

1+e−(θ0+
∑N

i
(θi∗Xi)

has proved to be the optimal activation function

for all node embeddings for all data sets. The final node embedding/output layer

activation function for the binary classification is the "softmax" function and it is

calculated as σ3(Z4ij) = softmax(Z4ij) =
exp(Z4ij)∑

k∈Z4i

exp(Z4ik)
. The algorithm design of

GNN with 3 node embeddings is displayed in Figure 3.11 as an illustration.

GNN model estimation process, hGNN for sub-datasets, (Xs, Ys), initializes the sys-

tem with randomly assigned learning parameters, θ1, θ2, θ3, η1, η2 and η3 σ1, σ2, σ3

and the model searches to reach to minimum loss between the target Ys and the esti-

mated default probability, hGNN(θ1, θ2, θ3, η1, η2, η3, Xs, Ys) with "Adam Optimizer".

The objective loss function for this classification task is the cross entropy loss func-
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XTrain = Z1

AdjacencyTrain

Weight with
Cosine

Distances
Normalize

ÃwZ2 = Ãw x Z1 x θ1

Z2 = sigmoid(Z2 + Z1 x η1)

Z3 = Ãw x Z2 x θ2

Z3 = sigmoid(Z3 + Z2 x η2)

Z4 = Ãw x Z3 x θ2

Z4 = softmax(Z4 + Z3 x η2)

Y = Z4

Figure 3.11: Design of GNN Models

tion, L(Ys, hGNN(θ1, θ2, θ3, η1, η2, η3, Xs, Ys)), given as:

L(Ys, hGNN(θ1, θ2, θ3, η1, η2, η3Xs, Ys))

= − 1

S

S∑
n=1

[
Yn log Ŷn + (1− Yn) log(1− Ŷn)

]
(3.35)

"Adam Optimizer", a stochastic adaptive moment optimization process, utilizes the

first and second-moment estimations of the gradient, mt and vt, respectively. The

gradient vector of the loss function is computed at the initial iteration t = 0 and the

learning parameters are updated with moment estimates and the initially set learning

rate δ in each subsequent iteration. The biased first and second moment estimates, mt

and vt, are converted to bias-corrected estimates of m̂t and v̂t with the parameters of

β1 and β2. β1 = 0.9 and β2 = 0.999 are set in all optimization processes. The update

continues until the parameters converge.
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∇L = ∇L(y, hGNN(θ1, θ2, θ3, η1, η2, η3, Xs, y))

=



∂L
∂θ1

(y, hGNN(θ1, θ2, θ3, η1, η2, η3, Xs, y))

∂L
∂θ2

(y, hGNN(θ1, θ2, θ3, η1, η2, η3Xs, y))

∂L
∂θ3

(y, hGNN(θ1, θ2, θ3, η1, η2, η3, Xs, y))

∂L
∂η1

(y, hGNN(θ1, θ2, θ3, η1, η2, η3, Xs, y))

∂L
∂η2

(y, hGNN(θ1, θ2, θ3, η1, η2, η3, Xs, y))

∂L
∂η3

(y, hGNN(θ1, θ2, θ3, η1, η2, η3, Xs, y))


(3.36)

mt = β1 ×m(t−1) + (1− β1)×∇L (3.37)

vt = β2 × vt−1 ++(1− β2)×∇L2
t (3.38)

m̂t = mt/(1− βt1) (3.39)

v̂t = vt/1− βt2 (3.40)

θ1t

θ2t

θ3t

η1t

η2t

η3t


=



θ1t−1

θ2t−1

θ3t−1

η1t−1

η2t−1

η3t−1


− δ × m̂t√

v̂t + ϵ
(3.41)

The node embeddings in GNNs are reduced if the over-fitting problem with the con-

siderable divergence between train and test data predictions is observed in data sets.

The increase in the node embeddings, iterations, learning rates, and assigning su-

perfluous learning parameters can cause the train data to learn and memorize itself in

detail, but the parameters of this kind of model can not identify the new data instances

in test data. Therefore, it is vital to avoid over-fitting when focusing on loss minimiza-

tion, and the gap between the performance metrics of SensitivityTrain-SpecificityTrain

and SensitivityTest-SpecificityTest should be minimum. This rule actually increases

the instance-specific cost parameters in the final classification algorithms.

It is necessary to underline the fact that all test data used in this study also have

unbalanced classes. Generating graph structures within test data instances does not

support the basic designs of GNNs, the dominant class will be the neighbors mostly

surrounding the data instances. This problem can be tackled if each test data instance
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is evaluated to appear one by one not as a group. In this context, the test data graph

structure can be established with the search of neighbors in the existing train data

instances. The neighbors of one test data instance are searched through the instances

of sub-datasets of the train data. Generation of node embeddings of test data instances

within the equally distributed train data sets solves the difficulty and impossibility of

prediction of test data through graph structures.

The medians of the predictions of all data instances in 1,000 GNN model simulations

are also used for classification. The aggregated GNN prediction for the borrower i,

E(Yi | Xi)Agg. GNNs, is computed as:

E(Yi | Xi)Agg. GNNs =median
{
hGNN1(...., Xi, Yi), hGNN2(...., Xi, Yi),

...., hGNN1000(...., Xi, Yi)

}
, (3.42)

The threshold for the classification is determined as the Gmean maximizing threshold

in train data and it is also applied to the medians of the predictions of the test data.

3.2.4 Graph Attention Networks

Graph Attention Networks (GATs) are developed with the consideration of the fea-

tures of some neighbors can be more explanatory for the node. Attention coefficients

are incorporated in GNN models to uncover the explanatory power of the neighbor

not by its whole feature set but by a specific feature. Therefore, eνu for ∀ν and ∀u
∈ V , are computed with the attention mechanism a : RFxF → R and linear weight

matrix, W ∈ RFxF as:

eνu = a(Wkh
k−1
u ,Wkh

k−1
ν ) (3.43)

ανu = softmaxν(eνu) =
exp(eνv)∑

k∈N(ν) exp(eνk)
(3.44)

ανu =
exp(LeakyRELU(

→
a [W

→
hνW

→
hu]))∑

k∈Nν
exp(LeakyRELU(

→
a [W

→
hνW

→
hu]))

(3.45)

ανu are the normalized attention weights and they are the byproducts of an attention

mechanism a, and they linearly combine the features of two inputs [88]. The adja-

cency matrix in GAT is utilized in the normalization process of the attention weights,
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and the softmax normalization with the data instances only in the neighborhood is

applied. The node embedding of ν at the embedding level ℓ in the GAT model is:

hℓν = σ(
∑

∀u∈N(ν)

ανuWhℓ−1
u ) (3.46)

GATs can be extended to multi-head attention with K-independent attention learning

weight matrices to make the learning process stable as shown:

hℓν =
K

∥
k=1

σ(
∑

∀u∈N(ν)

αℓνuW
khℓ−1

u ) (3.47)

The estimation outputs of the multi-head mechanism are finally concatenated or sim-

ply averaged. Figure 3.13 displays multi-head node embedding with K=3 for level

k + 1 in a GAT model.
K

∥
k=1

sign indicates the concatenation of the multi-head atten-

tion, it can be a pre-defined function or simply an average function.

Figure 3.12: Attention Weights in GATs

hk
u

hv1hv2

hv3

hv4 hv5 hv6

hk+1
u

self-attention

Figure 3.13: Multi-head Attention GAT
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3.2.4.1 GAT Model Design for Sub-Data Sets

The predictors and their corresponding classes, (Xs, Ys), in sub-datasets are defined

as in GNN models. The parameters in GAT models can be listed as the size of the

sub-datasets, the method of sampling, the neighbors generating the adjacency matrix,

A, for the graph structure G = (XG, V G, EG) and well-performing model design

with the activation functions and their learning parameters, node embedding levels,

learning rate, δ, and the optimal iteration numbers. Different from the GNN model

design, attention coefficients and multi-head attention interactions with mean function

are included in GATs. The node embeddings are all indicated with the matrix Zℓ, ℓ is

the node embedding level (embedding layer), where Z1 = X and h0i = Xi for ∀ i ∈
X , expressed as:

Zℓ =
[
hℓ−1
1 hℓ−1

ν · · · hℓ−1
N

]T
. (3.48)

The initial GAT estimations are conducted with three levels of node embeddings with

the given model design in Equations 3.49-3.53. The attention coefficients and the

linear weights in the first, second, and third level of node embeddings are α1NxN
,

W1FxF
, φ1FxF

, α2NxN
, W2FxF

, φ2FxF
and α3NxN

, W1Fx2
, φ3Fx2

, respectively.

Z1 = Xs, (3.49)

Z2 = σ11(α1 × Z1 ×W1) + Z1 × φ1 , Z2 = σ12(Z2), (3.50)

Z3 = σ21(α2 × Z2 ×W2) + Z2 × φ2 , Z3 = σ22(Z3), (3.51)

Z4 = σ31(α2 × Z3 ×W3) + Z3 × φ3, (3.52)

Ŷs = softmax(Z4). (3.53)

GAT models with 3 layers are observed to learn the train data successfully due to

learning parameters assigned to the feature-matching mechanism of each data in-

stance. However, the optimal learning parameters of the train data models can not

detect the test data instances, the performance metrics are observed to be very low for

the test data predictions. The over-fitting problem of GAT models is directly solved

by decreasing the node embedding levels to one and changing the sampling method

from rejection sampling to random sampling for some data sets, and the changing

sub-data sizes also contributed to test data prediction performances. All GAT mod-
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els are designed with one node embedding levels but the other parameters such as

the number of the neighbors, activation functions before the output layer and etc are

determined as specific to each data set.

The set-up of the attention mechanism starts with the computation of non-normalized

attention coefficients, eij for ∀ i ∈ Xs and for ∀ j ∈ N(i):

eij = (XiW1Fx2
, XjW1Fx2

)⃗a2x2 (3.54)

⃗eNxN = [( ⃗XNxF · ⃗WFx2) · ⃗a12x1 ] + [( ⃗XNxF · ⃗WFx2) · ⃗a22x1 ]
T (3.55)

⃗eNxN =



a⃗11 [W11 ×X11 +W21 ×X12 + ...+WF1 ×X1F ] + a⃗12 [W12 ×X11 + ...+WF2 ×X1F ]

a⃗11 [W11 ×X21 +W22 ×X22 + ...+WF1 ×X2F ] + a⃗12 [W12 ×X21 + ...+WF2 ×X2F ]

a⃗11 [W11 ×X31 +W22 ×X32 + ...+WF1 ×X3F ] + a⃗12 [W12 ×X31 + ...+WF2 ×X3F ]

...

a⃗11 [W11 ×XN1 +W22 ×XN2 + ...+WF1 ×XNF ] + a⃗12 [W12 ×XN1 + ...+WF2 ×XNF ]



+



a⃗21 [W11 ×X11 +W21 ×X12 + ...+WF1 ×X1F ] + a⃗22 [W12 ×X11 + ...+WF2 ×X1F ]

a⃗21 [W11 ×X21 +W22 ×X22 + ...+WF1 ×X2F ] + a⃗22 [W12 ×X21 + ...+WF2 ×X2F ]

a⃗21 [W11 ×X31 +W22 ×X32 + ...+WF1 ×X3F ] + a⃗22 [W12 ×X31 + ...+WF2 ×X3F ]

...

a⃗21 [W11 ×XN1 +W22 ×XN2 + ...+WF1 ×XNF ] + a⃗22 [W12 ×XN1 + ...+WF2 ×XNF ]



T

(3.56)

e11 = a⃗11 [W11 ×X11 +W21 ×X12 + ...+WF1 ×X1F ] + a⃗12 [W12 ×X11 +W22 ×X12 + ...+WF2 ×X1F ]

+ a⃗21 [W11 ×X11 +W21 ×X12 + ...+WF1 ×X1F ] + a⃗22 [W12 ×X11 +W22 ×X12 + ...+WF2 ×X1F ]

(3.57)

e21 = a⃗11 [W11 ×X21 +W22 ×X22 + ...+WF1 ×X2F ] + a⃗12 [W12 ×X21 +W22 ×X22 + ...+WF2 ×X2F ]

+ a⃗21 [W11 ×X11 +W21 ×X12 + ...+WF1 ×X1F ] + a⃗22 [W12 ×X11 +W22 ×X12 + ...+WF2 ×X1F ]

(3.58)

e31 = a⃗11 [W11 ×X31 +W22 ×X32 + ...+WF1 ×X3F ] + a⃗12 [W12 ×X31 +W22 ×X32 + ...+WF2xX3F ]

+ a⃗21 [W11 ×X11 +W21 ×X12 + ...+WF1 ×X1F ] + a⃗22 [W12 ×X11 +W22 ×X12 + ...+WF2 ×X1F ]

(3.59)

...

eNN = a⃗11 [W11 ×XN1 +W22 ×XN2 + ...+WF1 ×XNF ] + a⃗12 [W12 ×XN1 ++...+WF2 ×XNF ]

+ a⃗21 [W11 ×XN1 +W22 ×XN2 + ...+WF1 ×XNF ] + a⃗22 [W12 ×XN1 + ...+WF2 ×XNF ] (3.60)
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αij =
exp(LeakyRELU(eij)∑

k∈Ni
exp(LeakyRELU(eik))

(3.61)

h1i = σ1(
∑

∀j∈N(i)

αijW1Xj) (3.62)

h1i =
K

∥
k=1

1

K

∑
∀j∈N(i)

α1
ijW

1
kh

1
jk−1

(3.63)

One-level node embedding, Z2, and the prediction class, Ŷs, are computed as:

Z1 = Xs, (3.64)

Z2 = σ1(α ∗ Z1 ×W1) + Z1 × φ, Z2 = σ2(Z2), (3.65)

Ŷs = softmax(Z2). (3.66)

Activation functions improving the performance metrics are an exponential linear

unit (elu) and rectified linear unit reLU function, and the final output layer activation

function is the softmax function for the binary classification. The algorithm design

for GAT is displayed in Figure 3.14. The details of the components in the flowchart

are expressed in equations 3.57-3.69.

elu : σ(Xi) = Xi for Xi ≥ 0 and (3.67)

σ(Xi) = α(exp(Xi)− 1) for Xi < 0

reLU : σ
′
(Xi) = max(0, Xi) (3.68)

softmax : σ”(Zℓij) =
exp(Zℓij)∑

k∈Zℓi

exp(Zik)
(3.69)

GAT estimation process, Ŷ = hGAT (a,W, φ,Xs, Ys) for sub-datasets, (Xs, Ys), ini-

tializes the system with randomly assigned learning parameters, a12x2 , W1Fx2
, φ1Fx2

and the model searches to reach to minimum loss between the target Ys and the esti-

mated default probability, Ŷs, with Adam Optimizer. The objective loss function for

this classification task is the cross entropy loss function and it is given as:

L(Ys, hGAT (a,W, φ,Xs, Ys)) = −
1

S

S∑
n=1

[
Yn log Ŷn + (1− Yn) log(1− Ŷn)

]
(3.70)
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XTrain = Z1

AdjacencyTrain A

Attention Weights : a
for ∀i∈Xtrain

and ∀ j ∈ N(i)

eNxN = a[WZ1 || WZ1]
eij =

a(Wkh
k−1
j ,Wkh

k−1
i )

eNxN = LeakyRELU(eNxN)

αij = exp(eij/k)∑
j∈N(i)

exp(eij/k)

αij = 0 if j /∈ N(i)

Z2 =
1
K

K∑
k=1

αWX

Z2 = relu[elu(Z2) + Z1 × φ]

Ŷ = softmax(Z2)

Figure 3.14: Design of GAT Models

The loss function is minimized with "Adam Optimizer", a stochastic adaptive moment

optimization process, as in GNN models. The first and second-moment estimations

of the gradient and their bias-corrected estimates, mt, vt, m̂t, and v̂t are used, re-

spectively. The gradient vector of the loss function, ∇L(y, hGAT (a,W, φ,Xs, y)), is

computed at the initial iteration t = 0 and in each subsequent iterations the learning

parameters updated with moment estimates.

∇L(y, hGAT (a,W, φ,Xs, y)) =


∂L
∂a1

(y, hGAT (a,W, φ,Xs, y))

∂L
∂W1

(y, hGAT (a,W, φ,Xs, y))

∂L
∂φ1

(y, hGAT (a,W, φ,Xs, y))

 (3.71)
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mt = β1 ×m(t−1) + (1− β1)×∇L (3.72)

vt = β2 × vt−1 + (1− β2)×∇L2
t (3.73)

m̂t = mt/(1− βt1) (3.74)

v̂t = vt/1− βt2 (3.75)
at

Wt

φt

 =


at−1

Wt−1

φt−1

− δ × m̂t√
v̂t+ ∈

(3.76)

The learning rate, δ, is specific to each data set. β2. β1 = 0.9 and β2 = 0.999 are set

in all optimization processes. The update continues until the parameters converge.

Loss minimization is not the only crucial point in selecting the optimal initial pa-

rameters in GAT model estimations. GAT models can easily over-fit and the loss in

the train data predictions can converge to zero. The performance of these neural net-

work designs is controlled by the prediction performances in validation and test data.

The imbalance problem in test data prevents the conversion of it to graph-structured

data. Therefore, as in GNNs, the node embeddings of each test data instance are

generated in the sub-datasets of the train data. The initial parameters and the design

of the models are selected such as the divergence in the metrics of SensitivityTrain-

SpecificityTrain and SensitivityTest-SpecificityTest are the minimum. The strictly over-

fitting models in the train data are eliminated since the default probability estimations

of these models are observed to produce unsatisfying instance-specific cost parame-

ters. The simulations of GAT models are conducted with 1,000 sub-datasets. More-

over, the GAT model estimations are aggregated and medians of the estimations are

used for the aggregated GAT model results. The expected default probability of bor-

rower i, E(Yi | Xi)Agg. GATs is computed as:

E(Yi | Xi)Agg. GATs =median
{
hGAT 1(...., Xi, Yi), hGAT 2(...., Xi, Yi),

...., hGAT 1000(...., Xi, Yi)

}
, (3.77)

Gmean maximizing threshold in the train data classification is applied to test data for

the classification of the aggregated GAT results.
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3.3 Generation of Instance-Specific Cost/Risk Parameter

The usual implementation for the class imbalance problem is re-weighting all in-

stances in the minority class with the class ratio (majority class size/minority class

size). [44], [86], and [48] offer balancing the classes with the cross multiplication

with the class ratio. The latest studies of [89] and [86] dealing with imbalance data

and XGBoost assign weights to lose functions on a class basis. This class-balancing

approach for solving the imbalanced data problem inspired this study to determine

whether classes could be balanced with instance-specific weights instead of some

fixed numbers like class ratio. The instance-specific weight should represent the

characteristics of this instance, in other words, it should carry some embedded in-

formation about itself with its features as a whole and should not be weighted as a

constant number determined by a trial error method.

In this study, the expected default probabilities of each instance are selected as a risk

indicator to generate cost-sensitive algorithms. The rationale behind the choice of

expected default probability for the re-weighting adjustment can be explained with

four reasons. Firstly, the expected default probability is a risk level identifier which

is a more distinct, more precise measure to link the individual applicant’s features

directly to his/her potential class with a certain probability. Secondly, the expected

default probability can arrange the weights in a convenient ranking for the instances.

If the applicant has a higher expected default probability due to his/her features, the

classification algorithm will attach a higher weight and give priority to this borrower

for his/her correct classification. Thirdly, if the default instance is falsely classified,

the error correction for this instance will take a higher weight in the following itera-

tions of the algorithm. Finally, expected default probability is not a nominal monetary

indicator, and the comparisons between instances do not require conversions of nom-

inal values to real values. Therefore, instance-specific cost parameter is generated

based on the default probabilities of each applicant.

In this part of the study, the generation of three cost/risk parameters with the use of

default probability estimates is explained. In addition to default probability estimates,

the other parameters required for a balanced classification evolved during the empir-

ical studies of eight data sets. Moreover, cost parameters are all first generated with
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LRs, GNN and GAT model estimations are conducted with the question of whether

the cost parameters can be improved further with deep learning methods.

3.3.1 Cost Parameter C1

The borrower or instance-specific risk weight for borrower i, Xi, is represented with

ŕi and it is calculated with the expected default probabilities of instances, P (D)i =

E[Yi | Xi], and it might arise as one of the candidates for the cost parameter that is

being searched. That is,

ŕi =
E[Yi | Xi]∑
i E[Y | X]

(3.78)

The default probabilities of a borrower i, P (DLR)i, P (DGNN)i and P (DGAT )i, are

selected to be the maximums of the default probability observed in the LR, GNN, and

GAT model estimations conducted with the sub-datasets, respectively. The numbers

of the generated sub-data set are represented with NSim. The medians of the de-

fault probabilities are also selected but the maximums of the default probabilities of

the borrowers are observed to be more effective in the generation of successful cost

parameters.

P (DLR)i =E[Yi | Xi]

=max

{
hLR1(Θ1, Xi, Yi), hLR2(Θ2, Xi, Yi), ...,

hLRNSim
(ΘNSim, Xi, Yi)

}
(3.79)

P (DGNN)i =E[Yi | Xi]

=max

{
hGNN1(θ11 , θ12 , θ13 , η11 , η12 , η13 , Xi, Yi),

hGNN2(θ21 , θ22 , θ23 , η21 , η22 , η23 , Xi, Yi), ...,

hGNNNSim
(θNSim, θNSim1 , θNSim2 , θNSim3 ,

ηNSim1 , ηNSim2 , ηNSim3 , Xi, Yi)

}
(3.80)
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P (DGAT )i =E[Yi | Xi]

=max

{
hGAT1(a1,W1, φ1, Xi, Yi), hGAT2(a2,W2, φ2, Xi, Yi), ...,

hGATNSim
(aNSim,WNSim, φNSim, Xi, Yi)

}
(3.81)

A well-operating cost-sensitive algorithm should ensure balanced recognition/classi-

fication of both classes. Nevertheless, inserting ŕ as an instance-specific cost parame-

ter to algorithms and re-weighting all data with this parameter is observed to improve

the detection of the minority class but not sufficiently, since the majority class keeps

dominating the loss function in all credit data sets subject to experimental study. The

potential reason is evaluated such that the sum of default probabilities of non-default

instances continues to dominate the sum of default probabilities of the default class.

In other words, the number of instances in the dominant class is so high that the total

error caused by default class instances remains small as a percentage of the total error.

The class equalization in terms of default risks and total error in lost functions are not

attained with only ŕ.

It becomes clear what has been required for the construction of new cost parameters

when the ratios of total default risks of classes are still so high. [86] offer equalizing

the class losses with cross multiplication of class ratio in Modified Focal Loss (LMF )

with ϕ parameter. ϕ parameter is inserted in the loss function as the inverse of class

weights to balance the class losses and it is described as [86]:

LMF = −
N∑
i=1

ϕYi(1− Ŷi)γ log(Ŷi) + (1− Yi)Ŷi
γ
log(1− ŷi) (3.82)

where ϕ =
1

N

N∑
i=1

βi, and N is the data size

and here, βi =


Positives+Negatives

Positives for Y = 1,

Positives+Negatives
Negatives for Y = 0.

Here, Positives is the class size with the label Y = 1 and Negatives shows the class

size with the label Y = 0.

LMF inspires about the incompleteness of the cost parameter, and the necessity of an

additional adjustment for balancing the classes in terms of classed-based total risks.
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In other words, the ratio of class-based total risk, (sum of default probabilities in ma-

jority class)/(sum of default probabilities in minority class), can be used to balance the

class-based risk levels and the loss functions. Consequently, a new ‘Risk Adjusting

Weight′ (RAW ) parameter, βRAW , is proposed to equalize the total cost/risk of both

classes.

βRAW =


∑

i E[P (Yi|Xi)]1Y =0∑
j E[P (Yj |Xj)]1Y =1

for Y = 1,

1 for Y = 0.
(3.83)

First cost parameter, C1 is obtained with the multiplication of βRAW and P (D) to

equalize the sum of the total probability of defaults on a class basis. The empirical

findings indicate βRAW values are low if the class ratios are not high, but they are

considerably high for the data sets with severely unbalanced classes. Moreover, the

distributions of the probability predictions, P (D)i, and their divergence from the real

class labels can change with the model used and βRAW values also change but not

with a high deviation. The empirical findings indicate that high βRAW values can

over-boost the minority class while the low βRAW values might be insufficient to

balance the minority class losses. Therefore,m parameter, 0 < m <∞, is introduced

to control the effects of the P (D) and βRAW . m is specific to each data set and the

classification algorithm used and it has to be optimized with the objective function

that is maximized or minimized. The first cost/risk parameter for borrower i is defined

as:

C1(i) = (P (D)i × βRAW i
)m (3.84)

3.3.2 Cost Parameter C2 and C3

In the literature, most of the earlier studies dealing with cost-sensitive classification

algorithms have been conducted with the modifications to Adaptive Boosting (Ad-

aBoost) algorithm. AdaBoost’s error correction design with exponential weight up-

dating function has inspired this study for the formulation of the second and the third

instance-specific cost/risk parameters, C2 and C3, respectively.

AdaBoost algorithm, one specific method of boosting, is listed among the top ten suc-

cessful algorithms. [72] set up an error correction system based on the weak classi-
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fiers, h(x) and weight updating mechanism focusing on false predictions with boosted

weights for their corrections in the final aggregated prediction function, H(x). Ad-

aBoost first selects a base learner/weak classifier which has the prediction success

of at least 1/2 and it assigns equal weights to every instance in the data. After the

observation of false predictions, AdaBoost algorithm makes iterative calls, modifies

the initial weights and increases the weights of false predictions in the next iteration,

and decreases the truly classified instances.

The elements of AdaBoost can be described with the given predictors and the classes

of the data with size N as (x1, y1), ....(xN , yN), where xi ∈ X is the input set, yi ∈
(−1,+1) represents the class for the data instance i. t ∈ (1, T ) is the number of itera-

tions. ht(x): X → (−1, 1) represents the prediction of the weak learner at iteration t

and it is the weak learner like a decision stump. f t(x) = αth(x) denotes the corrected

prediction of ht(x) with the weight Dt. εt = Pri∼Dt [ht(xi) ̸= yi] =
∑

iht(xi )̸=yi

Dt(i) is

the error at iteration t. H(x) = sign

(
T∑
t=1

αtht(x)

)
is the final prediction. Here,

D1(i) = 1/N is the initial weights for ∀ i ∈ (1, 2, ...., N) and weight updating mech-

anism of AdaBoost, Dt+1, is computed as:

Ht−1(xi) = α1h1(xi) + α2h2(xi) + ...+ αt−1ht−1(xi) (3.85)

Ht(xi) = Ht−1(xi) + αt−1h(xi) (3.86)

εt =
∑
i

ε[Ht−1(xi) + αh(xi)] (3.87)

εt =
N∑
i=1

e−yiHm(xi) =
N∑
i=1

e−yiHm−1(xi)e−yiαmhm(xi) (3.88)

w
(1)
i = 1 and w(m)

i = e−yiHm−1(xi) for m > 1 (3.89)

ε =
N∑
i=1

w
(m)
i e−yiαmhm(xi) (3.90)

ε =
∑

yi=hm(xi

w
(m)
i e−αm +

∑
yi ̸=hm(xi

w
(m)
i eαm (3.91)

=
N∑
i=1

w
(m)
i e−αm +

∑
yi ̸=hm(xi

w
(m)
i (eαm − e−αm) (3.92)

∂ε

∂αm
=

∂
∑

yi=hm(xi

w
(m)
i e−αm +

∑
yi ̸=hm(xi

w
(m)
i eαm

∂αm
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α =
1

2


∑

yi=hm(xi

w
(m)
i∑

yi ̸=hm(xi

w
(m)
i

 (3.93)

εm =
∑

yi ̸=hm(xi

w
(m)
i

N∑
i=1

w
(m)
i

(3.94)

αm =
1

2
ln

(
1− εm
εm

)
(3.95)

Dt+1(i) =
Dt(i)

Zt
×

exp(−αt if ht(xi) = yi

exp(αt if ht(xi) ̸= yi

(3.96)

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
(3.97)

where Zt is the normalization factor, Zt =
N∑
i=1

Dt(i) exp(−αtyiht(xi)), so Dt+1 be-

comes a distribution.

The weight update equations of the original AdaBoost algorithm and its cost-sensitive

modifications are displayed in Table 3.1. In the literature, it is observed that there is

no specific rule defining what cost parameter should be in cost-sensitive modifications

of AdaBoost, they usually focus on creating a cost ratio based on no rule but setting

higher any constant number for all the instances in minority class which is generally

based on trial error basis. The cost parameter Ci is inserted in the original weight

equation of Dt+1 as a direct multiplier, with its exponential or both and with several

other functional forms.

Table 3.1: Cost Sensitive Modifications of AdaBoost

αt =
1
2
log(

∑
i,yi=ht(xi)

Dt(i)∑
i,yi ̸=ht(xi)

Dt(i)
, Dt+1: Weights at t+ 1

AdaBoost [72]: Dt+1(i) = Dt(i) exp(−αtht(xi)yi
Zt

AdaC1 [79]: Dt+1(i) = Dt(i) exp(−αtCiht(xi)yi
Zt

AdaC2 [80]: Dt+1(i) = CiD
t(i) exp(−αtht(xi)yi

Zt

AdaC3 [80]: Dt+1(i) = CiD
t(i) exp(−αtCiht(xi)yi

Zt

AdaCost [20]: Dt+1(i) = Dt(i) exp(−αtht(xi)yiβsgn(ht(xi), yi)
CSB1 [84]: Dt+1(i) = Csgn(ht(xi),yi)D

t(i) exp(−yiht(xi)
Zt

CSB2 [84]: Dt+1(i) = Csgn(ht(xi),yi)D
t(i) exp(−αtyiht(xi)

Zt
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The second cost Parameter, C2, is built on the first cost parameter and AdaBoost

error correcting weight updating process. In the original AdaBoost algorithm, the

weight updating parameter, Dt+1(i), for each instance is used and the weights of

truly classified instances are reduced and the weights of the false classified instances

are increased in the next iteration.

Dt+1(i) =
Dt(i) exp(−αtht(xi)yi

Zt
where, (3.98)

αt =
1

2
log(

∑
i,yi=ht(xi)

Dt(i)∑
i,yi ̸=ht(xi)D

t(i)
(3.99)

where, yi is the class label and ht(xi) is the base classifier prediction.

The cost parameter in AdaC1 [79] is used to strengthen the exponential power of the

error correcting α parameter as Dt+1(i) = Dt(i) exp(−αtCiht(xi)yi
Zt

. Based on AdaC1,

exponentially scaled risk parameters of C2 and C3 are computed. Re-weighting with

only exp((́PD) does not result in balanced classification like ŕ and the reinforcement

of βRAW is found critically important in C2 and C3.

Different from the original AdaBoost algorithm, C2 is designed such that it now also

interferes with the weights on a class basis, it assigns weights lower than 1 to the

instances of the non-default (majority) class and weights higher than 1 to the instances

in the default (minority) class. A threshold parameter, thrs, is inserted in C2 which

is the minimum of optimal thresholds maximizing Gmean estimated in a simulated

annealing process conducted with LRs of samples with a class ratio of 1. On the

other hand, thrs is the Gmean maximizing threshold for the medians of probability

estimations in the aggregated GNN and GAT models.

The second weight updating instance-specific cost parameter for borrower i, C2, is

designed as:

C2(i) = [exp(
P (D)i × βRAWi

thrs
− 1)]m, 0 < m <∞ (3.100)

C2(i) = [exp(
C1(i)

thrs
− 1)]m (3.101)

thrs acts as a breaking point since the main intuition for exp(P (D)×βRAW

thrs
−1) to make

it greater than 1 for the default class and less than 1 for the non-default class which

ensures C2 < 1for Y = 0 and C2 > 1 for Y = 1. Moreover, m in C2 stands for the
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control of excess weighting for the default class, since exponentially scaling raises too

high weights for these instances leading the non-defaults to become minority class.

According to the data level experiments, m changes on a data basis, if the imbalance

is severely high, βRAW is also seriously high causing m to be relatively lower.

P (D) = h(parameters,Xi, Yi) (3.102)

P (DLR) = max{hLR1(..., Xi, Yi), ..., hLRNSim
(..., Xi, Yi)} (3.103)

P (DGNN) = max{hGNN1(..., Xi, Yi), .., hGNNNSim
(..., Xi, Yi)} (3.104)

P (DGAT ) = max{hGAT1(..., Xi, Yi), .., hGATNSim
(..., Xi, Yi)} (3.105)

1 <C2(i) <∞ for thrs < P (D) and 1 < βRAW

0 <C2(i) < 1 for P (D) < thrs and βRAW = 1

The third Cost Parameter, C3, is generated with the multiplication of exponentially

scaled default probabilities and βRAW . Re-weighting with exp(P (D)× βRAW ) over-

boosts the minority class and the loss function becomes biased towards this class

instances. Therefore, scaling only P (D) exponentially and multiplying it with m

powered βRAW , where 0 < m < ∞ and m controls excess weighting, generates a

well-functioning third cost/risk parameter for borrower i, C3:

C3(i) = exp(P (Di))× (βRAWi
)m (3.106)

It is crucial to underline the fact that if a default instance appears to have very low

default probability due to the insufficient identification of the features reported, the

cost parameter might not strongly boost its weight above 1, but the error correcting

mechanism of AdaBoost, XGBoost, and ANN are expected to fortify the detection

power of the cost-sensitive algorithms.

3.3.3 Can Expected Nominal Costs be Instance-Specific Cost Parameter?

The credit amount approved by the bank is certainly the actual real loss if the borrower

defaults and it should be one of the indicators defining the risk level of the loan. The

cost parameter could be defined as the expected default costs of the applicants. How-

ever, the use of nominal values of credit amounts might be misleading in designating
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the real expected risk level of applicants. As a simple example, a consumer with

the default probability of 0.1 and 1,000 units of credit amount has an expected cost

of 100 units. On the other hand, a consumer with a default probability of 0.9 and

100 units of credit amount has an expected cost of 90 units. This example indicates

that cost-sensitive algorithms designed on the expected nominal losses, even if they

are converted to relative ratios, can be misleading. Since nominal credit amounts

can lead the less risky applicants to be evaluated as riskier than they are when the

comparisons are made in terms of nominal expected losses. In fact, there are sev-

eral attributes asked to be reported by the applicant and the high credit amount can

be ignorable if the applicant already belongs to a high-income group and has other

satisfying conditions.

In the data experimental stage, expected costs for each instance in the trained data are

calculated with estimated default probabilities and credit amounts as:

E[Costi] = E[Yi = 1 | Xi]× Credit Amounti. (3.107)

Besides different logarithmic transformations of each expected cost, different cost

ratios like E[Costi]∑
i E[Cost]

, E[Costi]
maxE[Cost] ,

E[Costi]
minE[Cost] ,

E[Costi]−minE[Cost]
maxE[Cost]−minE[Cost] are calculated and in-

cluded as a cost parameter in the estimations of AdaC1, AdaC2, and AdaC3. How-

ever, the results are unsatisfactory and even worse than the original AdaBoost algo-

rithm.

The cost sensitivity parameter should be generated in real terms indicating the real

risk of the applicant. In fact, in most of the data sets, the default probabilities for each

instance are estimated with the attributes of the nominal credit amounts, the ratio of

nominal credit amount to nominal income, or the ratio of annuity to income. Default

probabilities in LRs already carry the information about the credit amounts. There-

fore, in the cost-sensitive setting, the cost parameter is constructed on the estimated

default probability which is also accepted as the indicator of the risk level for each

applicant.
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3.3.4 The Generation of Cost-Sensitive Algorithms

The instance-specific cost/risk parameters are embedded in boosting algorithms of

AdaBoost and XGboost, and ANN models to improve the minority class weight in

the loss functions and lead to balanced classification results for both classes. The

choice of these algorithms can be reasoned with three basic points. Firstly, very early

cost-sensitive modifications in algorithms exist in AdaBoost studies. The generation

of exponentially scaled cost parameters has been inspired by the weight-update mech-

anism of AdaBoost and the new parameters are first tested on AdaBoost. Secondly,

XGBoost is evaluated as the most successful and the fastest algorithm in most of the

empirical studies in recent years. Therefore, the impact of the offered parameters is

also analyzed with XGBoost. Thirdly, ANN models allow very complex non-linear

model designs which might increase the classification performances beyond the other

algorithms, and the effect of the new cost parameters are analyzed with these neural

network models.

3.3.4.1 Risk Adjusted Cost Sensitive AdaBoost-1

The initial weights for each instance in the original AdaBoost are attained equally as

1/N,N is the sample size [72] and [44] propose initial weight adjustment in Ad-

aBoost which is based on the asymmetry in class ratios. In this study, as a first

modification to the original AdaBoost, the new initializing weight vector (cost-based

instance weights), is changed from D0 = 1/N to D0
RAW . It is calculated with the de-

fault probability of instances, P (D), and risk-adjusted class weights of the instances,

βRAW . Since total weights of instances should sum up to 1, P (D)i × βRAW i
is di-

vided by the total adjusted cost,
∑N

i P (D)i×βRAW i
. This modified version is called

‘Risk-Adjusted Cost Sensitive AdaBoost-1’ (RCS-AdaB1) and is expressed as:

D0
RAW (i) =

(P (D)i × βRAWi
)m∑N

i (P (D)i
× βRAWi

)m or D0
RAWi

=
C1(i)∑N
i C1(i)

(3.108)

The progress in RCS-Ada1 takes place with (X1, Y1), ...., (XN , YN) predictors and

classes where Xi ∈ XNxF , Yi ∈ Y = (−1, 1), N is the data size, F is the feature size

and base learner of ht → Y . I is the number of iterations, t = 1 to I and Zt is the
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normalization factor. The algorithm initializes the instances with D0 = D0
RAW , and

α and Dt+1 are updated as in the original AdaBoost as follows:

D0(i) = D0
RAW (i) (3.109)

αt =
1

2
log(

∑
i,yi=ht(xi)

Dt(i)∑
i,yi ̸=ht(xi)D

t(i)
) (3.110)

Dt+1(i) =
Dt(i) exp(−αtht(xi)yi)

Zt
(3.111)

H(x) = sign(
∑
t

αtht(x)) (3.112)

3.3.4.2 Risk Adjusted Cost Sensitive AdaBoost-2

Beyond the initial weight adjustments, the cost-sensitive modifications of AdaBoost

are mostly focused on adjusting instance weights, Dt+1, with a cost parameter Ci in

each iteration as given in Table 3.1. Similar to these interventions in each iteration,

weights are also adjusted in each iteration with a cost parameter C2 to strengthen the

algorithm in the recognition of default classes. However, inserting C2 in the updating

weight equation leads to a severe over-weighting for the default class in the first 10

iterations and a decrease in true classifications of non-defaults (True Negative Rate:

TNrate) significantly. Therefore, the effect of this cost parameter, C2, is reduced with

a parameter of ψ in the subsequent iterations to prevent a reduction in the specificity

and to keep strengthening the sensitivity rate without distorting the specificity rate in

all data sets. This can be expressed as:

Dt+1(i) =
Dt(i)C2 exp(−αtht(xi)yi

Zt
where, (3.113)

Ct=1
2 = [exp(

P (D)× βRAW
thrs

− 1)]m for t = 1 and (3.114)

Ct+1
2 = (Ct

2)
ψ for t > 1

The progress in RCS-Ada2 takes place with (x1, y1), ...., (xm, ym) predictors and

classes where xi ∈ X , yi ∈ Y = (−1, 1) and base learner of ht → Y . I is the

number of iterations, t = 1 to I and Zt is the normalization factor. The algorithm

initializes the instances with D0 = DRAW 0 , and α and Dt+1 are updated as in the

Equations 3.116-3.117. The instance weight update equation in the second modified
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algorithm, Risk Adjusted Cost Sensitive AdaBoost-2 (RCS-Ada2) is:

D0(i) = D0
RAW (i) (3.115)

αt =
1

2
log(

∑
i,yi=ht(xi)

Dt(i)∑
i,yi ̸=ht(xi)D

t(i)
) (3.116)

Dt+1(i) =
Dt(i)C2 exp(−αtht(xi)yi

Zt
where, (3.117)

H(x) = sign(
∑
t

αtht(x)) (3.118)

3.3.5 Risk Adjusted Cost Sensitive XGBoost

XGBoost is designed on traditional gradient boosting with the addition of regular-

ization parameters to the loss function [14]. Defined as a scalable end-to-end tree

boosting system, XGBoost has an efficient calculation for parallel tree learning with

a novel sparsity-aware algorithm for sparse data.

XGBoost classification is a process with predictors-classes: (X1, Y1), ...., (XN , YN)

predictors and classes where Xi ∈ XNxF , Yi ∈ Y = (0, 1), N is the data size, F

is the feature size and it proceeds with K additive decision tree classifier functions,

f(x). The prediction for Yi is Ŷi = ϕ(Xi) =
K∑
k=1

fk(Xi), fk ∈ F where F = {f(x) =

wq(x)}(q : Rm → T,w ∈ RT ) is defined as the space of classification trees [14]. q is

the structure of each tree mapping an example to the corresponding leaf index and T

is the number of leaves in the tree. Each fk represents an independent tree structure q

with leaf weights w. The leaf weights are computed with the loss minimization target

function with regularization parameters and they are specific to leaves and are added

to previous predictions for the new prediction. Lt is the loss function at iteration

t and it is the sum of the borrower-specific prediction losses, l(Yi, Ŷ
(t−1)
i ), where i

represents the borrower i, i ∈ N :

Lt =
N∑
i

l(Yi, Ŷ
(t−1)
i + ft(Xi)) + Ω(ft) where Ω(f) = γT +

1

2
λ|w| (3.119)

To make a faster optimization, the loss function is computed with second-order Taylor
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approximation:

Lt ≈
N∑
i

[l(Yi, Ŷ
(t−1)
i ) +

∂l(Yi, ŷ
(t−1)
i )

∂Ŷ (t−1)
ft(Xi) +

1

2

∂2l(Yi, Ŷ
(t−1)
i )

∂l(Yi, Ŷ
(t−1)
i )2

f 2
t (Xi)] + Ω(ft)

(3.120)

Lt ≈
N∑
i

[l(Yi, Ŷ
(t−1)
i ) + gift(Xi) +

1

2
hif

2
t (Xi)] + Ω(ft) (3.121)

The instance set of leaf j is defined with Ij = {i | q(xi) = j} and re-formulates the

loss function with weight wj for the leaf j [14]:

Lt ≈
N∑
i

[l(Yi, Ŷ
(t−1)
i ) +

T∑
j=1

[(
∑
i∈Ij

gi)wj +
1

2
(
∑
i∈Ij

hi + λ)w2
j ] + γT (3.122)

The optimal weight for weight j of a tree structure q(x), wj:

∂L
∂wj

=
∑
i∈Ij

gi + (
∑
i∈Ij

hi + λ)wj = 0, wj = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
(3.123)

The loss function can be re-formulated as the Equation 3.124:

Lt =
N∑
i

[l(Yi, Ŷ
(t−1)
i )− 1

2

T∑
j=1

(
∑
i∈Ij

gi)
2∑

i∈Ij
hi + λ

+ γT (3.124)

Score = −1

2

T∑
j=1

(
∑
i∈Ij

gi)
2∑

i∈Ij
hi + λ

+ γT (3.125)

The second part of the loss function, Score, computed with the sum of gradients and

hessian values of the instances split on the same leaf is used as a scoring function for

the quality of a tree with q(x) with the optimal wj . The split candidates for the nodes

are evaluated with a greedy algorithm which initializes the process with a single leaf

and makes iterative branch additions to the tree. The instances in the right and left

sides of the nodes after the split are evaluated with the loss function given in Equation

3.126.

Lsplit =
1

2

[ T∑
j=1

(
∑
i∈IL

gi)
2∑

i∈IL
hi + λ

+
T∑
j=1

(
∑
i∈IR

gi)
2∑

i∈IR
hi + λ

−
T∑
j=1

(
∑
i∈I
gi)

2∑
i∈I
hi + λ

]
− γ (3.126)
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Exact greedy algorithm for split finding is computed from k = 1 to m as: G←
∑
i∈I
gi,

H ←
∑
i∈I
hi and GL ← 0, HL ← 0

All instances in each leaf, ∀j ∈ I , are sorted and the gradients and hessians are

computed as GL ← GL + gi, HR ← HL + hj , GR ← G−GL, HR ← H −HL

score← max(score, G2
L

HL+λ
+

G2
R

HR+λ
− G2

H+λ
)

where f(x) is the split with the maximum score.

The instance-specific cost-sensitive modifications of XGBoost with the estimated cost

parameters are generated by re-weighting the cross entropy loss function becomes:

L(Y, ϕ(f(x) = wq(X)), K)) = − 1

N

N∑
n=1

Ci

[
Yn log Ŷi + (1− Yi) log(1− Ŷi)

]
(3.127)

+ γT +
1

2
∗ λ

T∑
j=1

Ŷj
2

The cost-sensitive modifications of XGBoost are called Risk-Based Cost-Sensitive

XGBoost (RCS-XGB1) if C= C1 RCS-XGB2 if C2 and RCS-XGB3 if C3.

pi = Ŷi is the default probability of an instance and pi/(1 − pi) is the odds of the

probability of default against the probability of non-default for the borrower i. Cross

entropy loss function can be defined with the log(odds) and the update of the predic-

tions, Ŷ , in each iteration t can be defined as:

L(Yi, pi) = −Ci

[
Yi log(pi) + (1− Yi) log(1− pi)

]
, (3.128)

L(Yi, log(odds)i) = Ŷ ) = −Ci

[
Yi log(odds)i + (1− Yi) log(1− elog(odds)i)

]
,

(3.129)

where
∂L(Y, log(odds)i
∂ log(odds)i

= Ci × (−Yi +
elog(odds)i

1 + elog(odds)i
)

gi = −Ci(Yi − Ŷi)

(3.130)
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∂2L(Yi, log(odds)i
∂(log(odds)i)2

= Ci ×
elog(odds)i

1 + elog(odds)i
× 1

1 + elog(odds)i
(3.131)

hi = Ci × Ŷi × (1− Ŷi)

wj = −

∑
i∈Ij

gi∑
n∈Ij

hi + λ
=

∑
i∈Ij

Ci(Yi − Ŷi)∑
i∈Ij

Ci × Ŷi × (1− Ŷi) + λ
(3.132)

where λ is the regulation parameter.

log(odds)t+1
i = log(odds)ti + δ × wt+1

i (3.133)

= log(odds)t+1
i + δ ×

∑
i∈Ij

Ci(Yi − Ŷi)∑
i∈Ij

Ci × Ŷi × (1− Ŷi) + λ

Ŷi
t+1

=
elog(odds)

t
i

1 + log(odds)t+1
i

(3.134)

3.3.6 Risk Adjusted Cost Sensitive ANN

A multilayer perceptron feedforward artificial neural network (ANN) can be designed

with different layer and activation function choices for binary classification, but the

output layer of the network is the function of Softmax (Xij) =
exp(Xij)∑

k∈Xi
exp(Xik)

∈ [0, 1].

The nonlinear transformations of the input data start with randomly assigned weights,

W , and the selected activation functions, σ(.), as illustrated with the first hidden layer

operation for data instance X0
1 as given in Figure 3.15. The non-linearity increases as

the hidden layers and the neurons in each layer increase.

ANN classification process for binary classification of defaults and non-defaults in

credit data sets are set up with the predictors and classes: (X1, Y1), ...., (XN , YN)

where Xi ∈ XNxF , Yi ∈ Y = (0, 1), N is the data size, F is the feature size. A

feedforward neural network with the non-linear function

Ŷ = hANN(Y,X, θ1, θ2, ..., θℓ, σ1(.), σ2(.), ..., σℓ(.)) is designed with ℓ − 1 hidden

layers and optimal neurons in layers, activation functions for each hidden layers, σ1(.),

σ2(.),..., σℓ−1(.) and output layer with softmax function, σℓ(.). The network starts

with random weights, W = [W0,W1,W2, ...,Wℓ] and a pre-determined learning rate,
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Figure 3.15: First Layer Interactions in ANN

δ. The weights corresponding to each layer are updated at each iteration as they

propagate back into the neural network to adjust the weight parameters to minimize

loss by the amounts allowed by loss gradient descent and learning rate.

X(1) = σ1
(
W(0)X(0) + b(0)

)
(3.135)

X(2) = σ2
(
W(1)X(1) + b(1)

)
(3.136)

...

X(ℓ−1) = σℓ−1

(
W(ℓ−2)X(ℓ−2) + b(ℓ−2)

)
(3.137)

Ŷ = σℓ(X
(ℓ−1)) where , (3.138)

σℓ(X
(ℓ)) =

exp(Xij)∑
k∈Xi

exp(Xik)
∈ [0, 1]

The study of [89] utilizes ‘Weighted Cross Entropy Loss’, given in Equation 3.139,

and calls the new algorithm as ‘Imbalance-XGBoost’. α parameter in the weighted

cross entropy loss function is the imbalance parameter, and α greater than 1 lead

to higher misclassification cost for the instances belonging to class 1. On the other

hand, α less than 1 causes the loss to be dominated by the falsely predicted instances

of class 0.

LWCE(Y, h(Y,X), α) = −
m∑
i=1

αYi log(Ŷi) + (1− Yi) log(1− Ŷi) (3.139)

ANN algorithms for binary classification can be specialized as instance-specific cost-

sensitive with changing α in LWCE with the new instance-specific cost parameters,
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C1, C2 and C3. The cost parameters modify the instance-specific errors as illustrated

in Figure 3.16.
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Figure 3.16: Multilayer perceptron feedforward ANN

The new cost-sensitive loss cross entropy loss function, LCS−CEL, for ANN classifi-

cation algorithm design, Ŷ = hANN(.), is:

hANN(.) = hANN(Y,X,W1,W2, ...,Wℓ, σ1(.), σ2(.), ..., σℓ(.)) (3.140)

LCS−CE(Y, hANN(.), C) = −
m∑
i=1

Ci(Yi log(Ŷi) + (1− Yi) log(1− Ŷi)). (3.141)

which uses instance-specific C, and the algorithm is called as RCS-ANN1 if C=C1,

RCS-ANN2 if C=C2, and RCS-ANN3 if C=C3. The weight update takes place with

the gradient descent of the loss function and it is computed as:

∇LCS−CE(Y, hANN(.), C) =


∂LCS−CE(Y,hANN (.),C)

∂hANN (X)
× ∂hANN (X)

W1

∂LCS−CE(Y,hANN (.),C)

∂hANN (X)
× ∂hANN (X)

W2

...
∂LCS−CE(Y,hANN (.),C)

∂hANN (X)
× ∂hANN (X)

Wℓ

 (3.142)


W1t

W2t

...

Wℓt

 =


W1t−1

W2t−1

...

Wℓt−1

− δ ×∇LCS−CE(Y, hANN(.), C) (3.143)

Focal loss function has also been extensively used in classifications of imbalanced

data [50, 37, 51, 99, 66, 63, 53]. ANN models can also be modified as cost-sensitive
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algorithms with the use of focal loss in the final classification layer. In addition to

re-weighting cross-entropy loss, the ANN classification algorithm, Ŷ = hANN(.), is

also transformed into cost-sensitive by re-weighting the focal loss, LCS−F , with the

use of instance-specific cost parameters, C = C1 and C = C3.

hANN(.) = hANN(Y,X,W1,W2, ...,Wℓ, σ1(.), σ2(.), ..., σℓ(.)) (3.144)

LCS−F (Y, hANN(.), C, γ1, γ2) = −
m∑
i=1

Ci

[
Yi(1− Ŷi)γ1 log(Ŷi) +

(1− Yi)Ŷi
γ2
log(1− Ŷi)

]
(3.145)

The update of the weights with the gradients of the focal loss function is expressed

as:

∇LCS−F (Y, hANN(.), C) =


∂LCS−F (Y,hANN (.),C)

∂hANN (X)
× ∂hANN (X)

W1

∂LCS−F (Y,hANN (.),C)

∂hANN (X)
× ∂hANN (X)

W2

...
∂LCS−F (Y,hANN (.),C)

∂hANN (X)
× ∂hANN (X)

Wℓ

 (3.146)


W1t

W2t

...

Wℓt

 =


W1t−1

W2t−1

...

Wℓt−1

− δ ×∇LCS−F (Y, hANN(.), C) (3.147)
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CHAPTER 4

EMPIRICAL DATA ANALYSIS

In this chapter, the effect of new cost parameters on three common algorithms of Ad-

aBoost, XGBoost, and ANN are empirically tested by using eight credit data sets.

These data sets are selected due to their certain diverse characteristics such as differ-

ent features, loan issue years, and scales for the monetary attributes such as the credit

amount and the income of the borrower due to the differences in the countries of the

lenders and the loan issue years. The countries of the borrowers are not reported in all

data sets but some data sets report the states of the borrower as a location and some of

them have no information about where the borrower is located. The monetary units

for credit amounts are not specifically defined in the data description files. The diver-

sity of information in the datasets and their public availability is the reason why these

datasets were chosen for empirical purposes. These data sets are summarized in Table

4.1 with information on their sizes, feature numbers, class ratio, sub-data set sizes,

and the number of simulations for LR, GNN, and GAT models. It is also important to

note that the class distributions, the ratio of non-default instances to default instances,

are kept the same for the train and the test data set in all classifications.

The data sets exhibit varying imbalanced class ratios in their original forms, but some

of them have been further imbalanced without distorting their original distributions

to investigate how the impact of the proposed parameters changes as the imbalance

becomes more severe. The deleted default instances are selected with random sam-

pling and they are all reported in data information features tables. Histograms of the

credit amounts of non-defaults and defaults are also graphed except the Data Set 5:

Freddie Mac Single Family Loan Data in which loan amounts are not reported. The
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Table 4.1: Data Sets
Data Number of Class Sample Size3/ Sample Size3/Num.

Data Sets Size1 Features2 Ratio Num. of LRs4 of GNNs-GATs4

Home Credit Risk D. Data 307,217 30 11.4:1 34,726/3,000 3,000/1,000
Risky Loans Data 231,285 13 8.8:1 33,060/3,000 3,000/1,000
Irish Loan DataY =2013 124,381 12 15.0:1 10,888/5,000 4,400/1,000
Irish Loan DataY =2014 235,626 12 9.5:1 31,550/5,000 3,000/1,000
Irish Loan DataY =2015 421,092 11 33.8:1 16,936/3,000 3,000/1,000
Freddie Mac S. F. Loans 500,137 12 26.8:1 25,188/4,000 3,000/1,000
SBA N. Loans5

Y =2004,2005,2006 164,021 8 40.0:1 5,602/10,000 3,600/1,000
SBA N. Loans5

Y =2002,2003 95,932 8 50.0:1 2,634/10,000 2,634/1,000
1Source: Kaggle.com.
1The size of the data used might change compared to the original data size due to reducing the default instances
to increase the class imbalance.
2Number of features found to be explanatory and used in the classification models
3The data size of the subsets generated with sampling.
4The number of estimated LR, GNN, and GAT models for the estimation of default probabilities.
5A loan data set served by U.S. Small Business Administration.

correlation coefficients between the numerical variables of the features are presented

in Appendix A tables A.1-A.8.

The optimization of the hyperparameters in ANN models is conducted with the choice

of optimal hidden layer sizes, activation functions, loss functions, training functions,

iterations, and proposed m parameter. The optimal parameters are selected with the

main goal of maximum the Gmean values with the maximum Sensitivity and Speci-

ficity values in test data. The optimal layer sizes, iteration numbers, andm parameters

are observed to change in all data sets but sigmoid transfer function, cross-entropy,

and focal loss functions are the common parameters for the optimal models. More-

over, resilient backpropagation is found to be the optimal function for network train-

ing to update weight and bias values among the other functions of quasi-Newton back-

propagation, conjugate gradient backpropagation with Powell-Beale restarts, con-

jugate gradient backpropagation with Fletcher-Reeves updates, conjugate gradient

backpropagation with Polak-Ribiére update, gradient descent with adaptive learn-

ing rate backpropagation, gradient descent with momentum backpropagation, gradi-

ent descent with momentum and adaptive learning rate backpropagation, Levenberg-

Marquardt backpropagation, one-step, secant backpropagation, and scaled conjugate

gradient backpropagation.

The optimal hyper-parameters of the boosting algorithms are searched through an ex-

panded grid search of the predetermined ranges for the learning rates, depth from a
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root to leaf, the sub-sample ratio of columns, maximum delta value, number of esti-

mators, and the proposed new parameters of m. The objective is to reach maximum

Gmean with maximum Sensitivity and Specificity values in test data predictions in all

data sets. The optimized hyper-parameters of all models are reported after the data

information tables. Moreover, detailed information about the sub-dataset simulations

with the models of LR, GNN, and GAT models are reported in the first sections of the

tables reporting the performances of the algorithms.

To evaluate and compare the success of the classification algorithms, the medians of

the aggregated predictions of model simulations of LR, GNNs, and GATs are reported

as well as cost-insensitive algorithms such as AdaBoost, XGBoost, ANN, CatBoost,

and LightGBM. In addition, the prediction results of boosting algorithms that are

specifically designed for imbalanced data, such as SMOTEBoost, RUSBoost, and

XGBoost scaled with class ratio, XGBoostscaled, and CatBoost scaled with class ratio,

CatBoostscaled, are presented for comparative purposes.

The cost/risk parameters in cost-sensitive algorithms are defined as CLR, CGNN and

CGAT if the default probabilities are estimated with LRs, GNNs, and GATs, respec-

tively. In the data analysis section, the abbreviations for risk-based cost-sensitive

algorithms (RCS) have also been removed to make it easier to read the algorithm

comparisons and discussions. The proposed cost-sensitive algorithms also have LR,

GNN, and GAT as sub-scripts to indicate which model is used in the estimation of

default probabilities such as ANN2LR, AdaB1GNN , XGB3GAT and etc.

The class predictions of default probabilities of all algorithms are the classification

of the threshold 0.5 for AdaBoost and XGBoost algorithms. Thus, the same thresh-

old is applied for ANN classifications. The class predictions of the most successful

algorithms are converted to probability estimates and the results are analyzed with

thresholds ranging between 0.4 and 0.6. Additionally, k-50 fold cross-validations are

conducted for the competing algorithms, and the medians of the thresholds that max-

imize Gmean for the validation data sets are also applied to the test data predictions,

which are also reported in the classification results tables. Furthermore, k-10 fold

cross-validations of the cost-sensitive XGBoost algorithms are given in Appendix B

tables B.1-B.8.
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The most successful ordinary algorithms are found to be XGBoostscaled, CatBoostscaled

in all data sets, and RUSBoost is also successful in two data sets, and they are com-

pared with the most successful cost-sensitive algorithms which are found to be the

modifications of XGBoost in all data sets. Comparative analyses are reflected in four

main graphs for each cost-sensitive XGBoost for seven data sets. The first graph

demonstrates the sensitivity-specificity values of successful ordinary algorithms with

thresholds of 0.4-0.6, while the second one displays the Sensitivity and Specificity val-

ues for the successful cost-sensitive XGBoost algorithms. The third graph indicates

how the LGD changes as the threshold changes for the selected prominent algorithms.

The data information specifically marked on the first three graphs shows the Sensi-

tivity and Specificity values maximizing Gmean with their corresponding thresholds.

The final graph, on the other hand, discloses how the non-default class predictions,

Specificity values, change as the LGD value increases for the thresholds of 0.4-0.6.

4.1 DATA SET 1: Home Credit Default Risk Data

Unlike the others, Home Credit Default Risk data is the only set specific to housing

loans and has detailed information tables that report the bank account history of the

applicants which is retrieved from kaggle.com website [2]. The number of features

are deleted if they are not reported by many applicants. Six numerical features not

reported by 41,519 applicants and one numerical feature unreported by 60,965 appli-

cants, as well as 44 numerical features unreported by more than 148,000, are deleted.

Thirty features are found explanatory for the models and after defining categorical

variables with dummy variables, the data has numerical 67 numerical features. Table

4.2 displays the details about the size and type of the data set and the explanatory

features selected for the classification algorithms.

Home Credit Default Risk Data reports the credit amounts disbursed to the applicants

but does not give its monetary unit. Figure 4.1 demonstrates the histograms of the

credit amounts of non-defaults and defaults and the exponentially decaying distribu-

tions are found to be expressed best by Gamma(α = 1.8, β = 0.05) with M = 1 for

the rejection sampling.
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Table 4.2: Home Credit Default Risk Data

Data Information

Original Data File Name: Application Train

Original Data Data Size After Number of Number of Class
Size the Cleansing Categorical Variables Numerical Variables Ratio

307,511 307,217 16 104 11.4:1

30 features found explanatory for the models, they are:

Credit Amount - Monthly Income Amount - Age - Days After Credit ID Given - Work Phone
Region Rating Client - External Source2 - Social Circle60 Days Last Phone Change - Flag Document3
Flag Document5 - Flag Document6 - Flag Document9 - Flag Document13 - Flag Document15
Flag Document16 - Flag Document18 - Contract Type-Gender - Flag Own Car - Income Type
Family Status - Occupation Type - Emergency State - Interest Rate - Term
Goods Price/Credit Amount - Credit Card Debt/Monthly Income - Days Employed × Age
Interest Rate2×Term

Figure 4.1: Home Default Credit Risk Data
Histograms of Credit Amounts

Tables 4.3-4.5 present the optimized hyperparameters of ANN, AdaBoost, and XG-

Boost with the target of maximum Gmean values in the test data. The common charac-

teristic which can be a comparison base is the iteration number which is the smallest

in cost-sensitive XGBoost algorithms generated with LR models. Also, the optimal

value of m is found to be as m > 1 for C1 and C3, while m < 1 for C2 for all cost-

sensitive algorithms.
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Table 4.3: Home Credit Default Risk Data: ANN Optimized Hyperparameters
Activation Functions: Sigmoid
Learning Rate: 0.001 and 0.01 for ANN with Focal Loss and Cross Entropy Loss, respectively.
Number of Hidden Layers: 32 16 8 2
Training Function: Resilient Back Propagation
Increment to weight change: 1.2
Decrement to weight change: 0.5
Initial weight change: 0.07
Maximum weight change: 50.0
Classification Threshold 0.5

Focal Loss Function Cross Entropy Loss Function
Iterations m α γ1 γ2 Iterations m thr

ANN 750 - 1 1 1 1000 - -
RCS-ANN1LR 368 1.7 C1 0.1 2 1000 1.82 -
RCS-ANN2LR - - - - - 1000 0.7 0.42
RCS-ANN3LR 350 1.7 C3 0.1 2 1000 1.83 -

RCS-ANN1GNN 880 1.48 C1 0.1 2 1000 1.38 -
RCS-ANN2GNN - - - - - 1000 0.55 0.45
RCS-ANN3GNN 800 1.7 C3 0.1 2 1000 1.8 -

RCS-ANN1GAT 900 1.48 C1 0.1 2 1000 1.4 -
RCS-ANN2GAT - - - - - 1000 0.6 0.43
RCS-ANN3GAT 823 1.72 C3 0.1 2 1000 1.75 -

Table 4.4: Home Credit Default Risk Data: AdaBoost Optimized Hyperparameters
Iterations m thr

RCS-AdaB1LR 1000 1.75 -
RCS-AdaB2LR 1000 0.22 0.42

RCS-AdaB1GNN 1000 1.37 -
RCS-AdaB2GNN 1000 0.13 0.45

RCS-AdaB1GAT 1000 1.4 -
RCS-AdaB2GAT 1000 0.12 0.43

Table 4.5: Home Credit Default Risk Data: XGBOOST Optimized Hyperparameters
Evaluation Metric: Log Loss/Cross Entropy Loss Function.

Depth Sub-sample Number Scale
Learning from a Root Ratio of Maximum of Positive

Rate: to Leaf Columns Delta Estimators Weight m thrs

XGBoost 0.05 6 1 1 1000 - - -
CatBoost 0.05 6 - - 400 - - -
LightGBM 0.05 - 1 0 800 - - -
XGBoostScaled 0.05 6 1 1 300 11.4 - -
CatBoostScaled 0.05 6 - - 400 11.4 - -

RCS-XGB1LR 0.1 7 0.6 0 91 C1 1.75 -
RCS-XGB2LR 0.1 10 0.5 3 55 C2 0.78 0.42
RCS-XGB3LR 0.1 7 0.6 1 91 C3 1.8 -

RCS-XGB1GNN 0.05 4 1 3 600 C1 1.35 -
RCS-XGB2GNN 0.025 10 0.4 3 188 C2 0.55 0.45
RCS-XGB3GNN 0.025 6 0.4 6 613 C3 1.7 -

RCS-XGB1GAT 0.1 5 0.4 3 302 C1 1.4 -
RCS-XGB2GAT 0.025 10 0.3 2 188 C2 0.52 0.43
RCS-XGB3GAT 0.025 6 0.4 5 603 C3 1.7 -

Sampling Random k Number of
Strategy State Neighbors Estimators

SMOTHEBoost Only Minority np.random generator of Python 5 1000
RUSBoost Only Majority Class np.random generator of Python - 1000
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The algorithm classification results for the train and test data are reported in tables

4.6-4.8. Table 4.6 informs about the train and test data sizes, class ratio, and simula-

tions with LR, GNN, and GAT models and also it presents the cost-insensitive algo-

rithm results and cost-sensitive ANN model results. The cost-insensitive algorithms

have higher Specificity values but lower Specificity values, therefore, LGD values are

not reported for these ordinary algorithms. ANN3LR and ANN1GAT algorithms esti-

mated with cross-entropy loss function are observed to have lower LGD values when

compared with all cost-sensitive ANNs.

Table 4.7 displays the classification performances of boosting algorithms of SMOTE-

Boost, RUSBoost, XGBoostscaled, CatBoostscaled and cost-sensitive boosting algo-

rithms with the first results of the algorithms classified with the threshold of 0.5. The

prediction performances of these boosting algorithms are found to be superior to the

other algorithms reported in Table 4.6 due to lower losses given default values in test

data.

It is shown that borrower (instance)-specific risk-based cost-sensitive modifications

of XGBoost have relatively lower LGD values for test data, but the Specificity val-

ues of XGBoostscaled and CatBoostscaled are the highest allowing a threshold move

for improving Sensitivity. Therefore, the prediction results for Sensitivity-Specificity

and LGD values are analyzed with the thresholds of 0.4-0.6 where the maximums of

Gmean values are also analyzed in the test data. A detailed comparative analysis of the

results displayed with Figures 4.2, 4.3 and 4.4 indicates that XGB1LR and XGB3LR

are the best-performing algorithms with their higher Gmean values and lower LGD val-

ues given in the third graph of Figure 4.2. Moreover, LGD values for given Specificity

values as shown with the fourth graph in Figure 4.2 are also relatively lower when

compared with the other successful algorithms of XGBoostscaled and CatBoostscaled.

The monetary unit is not reported in the data set but given the maximum Gmean values

in test data, XGB3LR saves 5.9 million loss with Gmean/LGD: 92.48/257.0 million

when compared with the CatBoostscaled algorithm with Gmean/LGD: 92.34/262.9

million.
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Table 4.6: Home Credit Default Risk Data
Performances of Algorithms

Train Data Size=215, 052, Test Data Size=92, 165, Train Data/Test Data = 7/3

Non-defaults/Defaults=11.4
Numbers of LR/GNN/GAT Models with Sub-Data Sets = 3, 000/1, 000/1, 000

Sub-data Sizes for LR/GNN/GAT Models with Sub-Data Sets=34, 726/3, 000/3, 000
LR: Models with R2

ordinary >= 0.450, R2
adjusted >= 0.450, R2

AdjustedGeneralized >= 0.530

LR: thrs = 0.42 for C2

Levels of Node Embeddings in GNN/GAT: 3/1
βRAW used in C2 estimated with LR/GNN/GAT: 4.536/4.202/4.275
GNN: Iterations= 120, knn = 5, lR = 0.01 thrs = 0.45 for C2

GAT: Iterations=100, knn = 25, K = 1, lR = 0.02, thrs = 0.43 for C2

Threshold for ANNs: 0.5

Cost-Insensitive Algorithms

TRAIN DATA TEST DATA

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean

LR 80.1 80.1 80.1 79.6 80.0 79.8
GNN 84.0 83.1 83.5 78.0 84.6 81.2
GAT 82.7 82.8 82.8 81.0 81.2 81.1

ANNCrossEntropyLoss 79.0 99.9 88.9 77.3 99.8 87.8
ANNFocalLoss 47.0 99.0 68.2 47.7 99.4 68.9

AdaBoost 75.8 99.9 87.1 75.8 99.9 87.0
XGBoost 87.6 100 93.6 79.6 100 89.1
CatBoost 79.7 100 89.3 79.2 100 89.0
LightGBM 85.5 100 92.5 79.5 100 89.1

Cost-Sensitive ANNs with Focal Loss Function

TRAIN DATA TEST DATA
Loss Given

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 80.7 76.9 78.8 80.2 77.0 778.6 87.2 62.619 904.004
RCS-ANN2LR 81.0 81.4 81.2 80.1 81.4 80.8 89.4 62.829 890.009

RCS-ANN1GNN 82.3 82.7 82.5 81.3 82.7 82.0 90.7 60.064 871.144
RCS-ANN2GNN 81.5 80.8 81.2 80.7 80.8 80.8 89.5 59.406 859.424

RCS-ANN1GAT 81.5 82.8 82.2 80.4 82.8 81.6 90.1 64.059 909.052
RCS-ANN2GAT 82.4 83.2 82.8 81.4 83.1 82.3 91.3 55.439 823.943

Cost-Sensitive ANNs with Cross Entropy Loss Function

TRAIN DATA TEST DATA
Loss Given

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 91.4 87.6 89.5 89.0 87.5 88.2 96.4 12.458 390.208
RCS-ANN2LR 91.3 91.0 91.1 88.1 90.7 89.4 97.1 13.635 400.272
RCS-ANN3LR 93.4 89.6 91.5 90.6 89.5 90.0 97.4 8.843 317.713

RCS-ANN1GNN 90.7 89.8 90.2 88.1 89.5 88.8 96.5 14.764 430.121
RCS-ANN2GNN 91.0 89.6 90.3 88.4 89.5 88.9 96.7 10.292 392.460
RCS-ANN3GNN 92.5 89.5 91.0 89.6 89.3 89.5 97.0 10.061 372.298

RCS-ANN1GAT 91.5 89.9 90.7 88.6 89.6 89.1 96.9 12.952 294.211
RCS-ANN2GAT 92.0 89.3 90.7 89.7 89.3 89.5 97.2 9.259 361.372
RCS-ANN3GAT 92.5 89.4 90.9 89.5 89.3 89.4 97.0 10.355 367.144
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Table 4.7: Home Credit Default Risk Data
Performances of Algorithms
Boosting Algorithms for Imbalanced Data

TRAIN DATA TEST DATA
Loss Given

Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

SMOTEBoost 78.4 99.4 88.3 78.4 95.0 92.3 98.0 76.828 703.047
RUSBoost 91.1 93.3 92.2 89.9 93.3 91.6 98.2 17.321 342.016

XGBoostscaled 92.6 95.5 92.2 89.3 95.3 92.2 98.5 13.369 366.439
CatBoostscaled 92.2 95.3 93.7 89.6 95.1 92.3 98.5 12.694 353.570

RCS-Ada1LR 90.9 90.4 90.6 90.2 90.3 90.3 97.2 10.839 359.906
RCS-Ada2LR 91.0 90.4 90.7 90.3 90.3 90.3 97.3 9.789 382.748

RCS-AdaB1GNN 91.3 91.3 91.3 90.5 91.2 90.9 97.8 10.917 348.958
RCS-AdaB2GNN 91.6 90.8 91.2 90.9 90.8 90.8 97.8 9.621 330.008

RCS-Ada1GAT 91.3 91.4 91.3 90.7 91.2 91.0 97.9 10.676 346.629
RCS-Ada2GAT 91.5 90.9 91.2 90.7 90.9 90.8 97.9 10.080 338.941

RCS-XGB1LR 94.8 93.1 93.9 92.0 92.9 92.5 98.5 7.999 272.514
RCS-XGB2LR 96.3 92.3 94.2 91.9 91.7 91.8 98.3 6.236 295.471
RCS-XGB3LR 94.9 92.9 93.9 92.2 92.8 92.5 98.5 7.470 265.944

RCS-XGB1GNN 93.3 93.9 93.6 90.8 93.7 92.2 98.4 10.645 334.653
RCS-XGB2GNN 96.0 93.8 94.9 91.3 93.4 92.4 98.4 8.244 294.549
RCS-XGB3GNN 95.2 94.4 94.8 90.7 94.3 92.5 98.5 10.033 321.553

RCS-XGB1GAT 94.6 94.0 94.3 90.6 93.7 92.1 98.4 10.659 341.157
RCS-XGB2GAT 95.5 94.2 94.9 90.8 93.7 92.3 98.3 9.236 307.336
RCS-XGB3GAT 94.2 94.0 94.1 91.1 93.9 92.5 98.5 9.940 317.118

Figure 4.2: Cost Parameters are Estimated with LRs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data
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The cost-sensitive parameters estimated with GNN and GAT models are not success-

ful as the ones estimated with the LR. Comparing with CatBoostscaled which reaches

its maximum Gmean at 92.3 with 262.9 million LGD, XGB2GNN saves 715 thousand

with Gmean/LGD: 92.25/262.2 million and XGB2GAT saves only 106 thousand with

Gmean/LGD: 92.18/262.8 million. The reason is that the discrepancies in train and

test data predictions are minimum in the LR models, and the LR does not cause an

over-fitting problem for any of the sub-data models as the aggregated median values

of LR also prove these facts. Despite the several different designs and node embed-

ding levels for GNN and GAT models, their cost-sensitive parameter estimates could

not be improved further. The empirical findings indicate that the success of the pa-

rameter estimates increases if Sensitivity-Specificity values in test data exceed 85−85

% in sub-data model simulations.

Figure 4.3: Cost Parameters are Estimated with GNNs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data

A threshold decision for class labeling might be given for a fixed Specificity and the

corresponding LGD might be the secondary importance or for a fixed Sensitivity with

the maximum LGD. Considering almost balanced correct classification percentages

for both classes, Gmean maximization thresholds of validation data of k-50 fold are

computed, and the medians of the thresholds are applied for the test data classifica-

tion. Table 4.8 presents how the balanced classification thresholds of validation data
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Figure 4.4: Cost Parameters are Estimated with GATs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data

result in Sensitivity-Specifcity and LGD for the test data.

Table 4.8: Home Credit Default Risk Data
Competing Performances of Algorithms After a Threshold Adjustment

TRAIN DATA TEST DATA
Loss Given

Algorithms
Weights

1
,thr

2 Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

XGBoostClassRatio,thr=0.422 95.4 92.7 94.1 92.2 92.6 92.4 98.5 6.130 268.489
CatBoostClassRatio,thr=0.425 94.9 92.5 93.7 92.3 92.4 92.4 98.5 6.206 263.844

RCS-XGB1LR,thr=0.492 95.1 92.7 93.9 92.3 92.6 92.4 98.5 7.369 263.430
RCS-XGB2LR,thr=0.498 96.3 92.2 94.2 91.9 91.7 91.8 98.3 6.162 294.405
RCS-XGB3LR,thr=0.494 95.1 92.6 93.9 92.4 92.6 92.5 98.5 7.044 259.416

RCS-XGB1GNN,thr=0.461 94.8 92.2 93.5 92.2 92.1 92.1 98.4 7.407 291.060
RCS-XGB2GNN,thr=0.465 96.5 92.7 94.6 92.2 92.3 92.3 98.4 6.189 262.460
RCS-XGB3GNN,thr=0.446 96.7 92.4 94.5 92.4 92.3 92.3 98.5 6.551 272.286

RCS-XGB1GAT,thr=0.454 96.0 92.1 94.0 92.1 91.9 92.0 98.4 7.248 296.761
RCS-XGB2GAT,thr=0.453 96.6 92.6 94.6 92.2 92.1 92.2 98.3 6.175 261.653
RCS-XGB3GAT,thr=0.460 95.6 92.4 94.0 92.7 92.3 92.5 98.5 6.204 261.589
1P (DLR), P (DGNN ) and P (DGAT ) in weights are the default probabilities of the instances estimated with LR, GNNs, and GATs, respectively.
2Optimal Threshold: It is the median of Gmean maximizing thresholds of validation data sets predicted in k-50 fold cross validations.
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4.2 DATA SET 2: Risky Loans Data

Risky Loans Data contains 74 features of which 2 variables are identity numbers of

applicants, 5 variables are in date format and 1 is the status of the loan. This data

set consists of 887,379 instances with the non-defaults, the default, and current loans.

Current loans are deleted in the data set and non-defaults (Fully Paid) and defaults

(Default + Charged Off + Does not meet the credit policy. Status: Charged Off) are

chosen for the study in the data set. the source of the data is kaggle.com [4]. The

ratio of non-defaults to defaults is about 4.4:1. In fact, to make the data set more

skewed in class distributions, half of the default instances are deleted so that the class

ratio becomes 8.80, as the main goal of this study is to investigate the classification

in imbalance data sets.

The reason for the significant decrease in the feature size is that some of the features

are repeated in different formats in the data set such as categorical variables are also

reported in dummy variables format. Thirteen features are found explanatory for the

models of which 2 categorical features are defined with dummy variables and 11

numerical features generate 33 numerical variables for the classification of this data

set. Table 4.9 presents the size and feature types of the data set and the explanatory

features selected for the classification algorithms.

Table 4.9: Risky Loans Data

Data Information

Original Data File Name: Loan

Original Data Data Size After Number of Categorical/ Number of Class
Size the Cleansing String Variables Numerical Variables Ratio

254,951 231,285 9/17 40 8.8

13 features are found explanatory for the models, they are:

Credit Amount - Term - Interest Rate The ratio of Monthly Debt to All Debt Obligations -
The number of Inquiries in the Past 6 Months (except auto and mortgage) - Number of Derogatory
Public Records - Interest Received to Date Late Fees Received to Date -
Last Payment Amount of Credit - Purpose of Credit-
Days Between the Last Credit Use and This Credit Issue Year of the Credit -
Ratio of Annuity to Income

Risky Loans Data reports the credit amounts disbursed to the applicants but does not

give its monetary unit. Figure 4.5 demonstrates the histograms of the credit amounts
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of non-defaults and defaults and their distributions are found to be expressed best by

Gamma(α = 2.6, β = 0.14) with M = 1 for the rejection sampling.

Figure 4.5: Risky Loans Data
Histograms of Credit Amounts

The optimized hyperparameters of ANN, AdaBoost, and XGBoost are reported in

Tables 4.10-4.12. One of the general comparison basis is the optimal sub-sample ra-

tios of columns which are observed to be less than for the best-performing instance-

specific cost-sensitive XGBoost algorithms. The optimal delta values of these algo-

rithms are also found to be greater than zero. Moreover, the optimal iteration numbers

in cost-sensitive ANNs are observed to be relatively higher. Also, the optimal value

of m for C1, C2 and C3 is greater than 1 for all cost-sensitive algorithms, except

RCS-ANN2GAT .
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Table 4.10: Risky Loans Data: ANN Optimized Hyperparameters
Activation Functions: Sigmoid
Learning Rate: 0.001 and 0.01 for ANN with Focal Loss and Cross Entropy Loss, respectively.
Number of Hidden Layers: 32 16 8
Training Function: Resilient Back Propagation
Increment to weight change: 1.2
Decrement to weight change: 0.5
Initial weight change: 0.07
Maximum weight change: 50.0
Classification Threshold 0.5

Focal Loss Function Cross Entropy Loss Function
Iterations m α γ1 γ2 Iterations m thrs

ANN 700 - 1 1 1 1000 - -
RCS-ANN1LR 1800 2.4 C1 0.1 2 1000 2 -
RCS-ANN2LR - - - - - 1000 1.24 0.52
RCS-ANN3LR 1400 2.85 C3 0.1 2 2500 2.55 -

RCS-ANN1GNN 1000 1.35 C1 0.1 2 1000 1.4 -
RCS-ANN2GNN - - - - - 1000 1.8 0.462
RCS-ANN3GNN 1000 1.65 C3 0.1 2 1000 1.4 -

RCS-ANN1GAT 1634 1.38 C1 0.1 2 1000 1.25 -
RCS-ANN2GAT - - - - - 1200 0.5 0.485
RCS-ANN3GAT 1410 1.65 C3 0.1 2 1500 1.4 -

Table 4.11: Risky Loans Data: AdaBoost Optimized Hyperparameters
Iterations m thrs

RCS-AdaB1LR 500 2.28 -
RCS-AdaB2LR 500 0.5 0.52

RCS-AdaB1GNN 500 1.2 -
RCS-AdaB2GNN 500 0.075 0.462

RCS-AdaB1GAT 500 1.25 -
RCS-AdaB2GAT 500 0.09 0.485

Table 4.12: Risky Loans Data: XGBOOST Optimized Hyperparameters
Evaluation Metric: Log Loss/Cross Entropy Loss Function.

Depth Sub-sample Number Scale
Learning from a Root Ratio of Maximum of Positive

Rate: to Leaf Columns Delta Estimators Jobs m thrs

XGBoost 0.1 6 1 1 1000 - - -
CatBoost 0.1 6 - - 1000 - - -
LightGBM 0.1 6 - - 1000 - - -
XGBoostScaled 0.025 7 0.6 3 180 8.8 - -
CatBoostScaled 0.1 7 - - 185 8.8 - -

RCS-XGB1LR 0.1 7 0.6 3 105 C1 3.2 -
RCS-XGB2LR 0.1 7 0.8 1 300 C2 2.5 0.52
RCS-XGB3LR 0.1 7 0.6 3 82 C3 3.75 -

RCS-XGB1GNN 0.05 7 0.6 2 198 C1 1.78 -
RCS-XGB2GNN 0.1 7 0.8 5 237 C2 1.0 0.462
RCS-XGB3GNN 0.05 8 0.5 2 145 C3 2.1 -

RCS-XGB1GAT 0.1 7 0.6 3 162 C1 2 -
RCS-XGB2GAT 0.1 7 0.8 1 200 C2 1 0.485
RCS-XGB3GAT 0.05 6 0.8 5 185 C3 2.1 -

Sampling Random k Number of
Strategy State Neighbors Estimators

SMOTHEBoost Only Minority np.random generator of Python 5 1000
RUSBoost Only Majority Class np.random generator of Python - 1000
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Table 4.13 presents the train and test data details such as the data sizes, class ratio, and

simulations with LR, GNN, and GAT models. It also reports the cost-insensitive algo-

rithm results and cost-sensitive ANN model results. The cost-insensitive algorithms

have higher Specificity values but lower Specificity values, therefore, LGD values are

not reported for these ordinary algorithms. ANN3LR and ANN2GNN algorithms esti-

mated with cross-entropy loss function are observed to have lower LGD values when

compared with all cost-sensitive ANNs.

The results of boosting algorithms which are observed to be superior to the cost-

sensitive ANN algorithms are reported in Table 4.14. SMOTEBoost, RUSBoost,

XGBoostscaled, CatBoostscaled, and cost-sensitive boosting algorithms are classified

with the threshold of 0.5. The test data predictions in this table result in lower

LGD and make these boosting algorithms superior to the other algorithms. Instance-

specific risk-based cost-sensitive modifications of XGBoost have higher Gmean values

and relatively lower LGD for the test data, but the Specificity value of CatBoostscaled

with 96.3 is the highest and a threshold adjustment will certainly improve the Sensi-

tivity. Therefore, a threshold analysis is conducted to observe how Sensitivity, Speci-

ficity, and LGD values change with the thresholds of 0-4-0.6. The reason for the

choice of this range for the thresholds is that the maximums of Gmean values are

observed in this range in k-50 fold cross-validations.

The best performing cost-sensitive algorithms giving the maximum Gmean values and

the lowest LGD values given the Specificity values are analyzed with figures 4.6,

4.7 and 4.8. The monetary unit is not reported in the data set, therefore, LGD are

reported in unit values. Comparing the results with the Gmean/LGD: 96.0/3.744 mil-

lion reported by CatBoostscaled as the best performing algorithm among the previ-

ously developed classification algorithms, XGB3LR saves 119.1 thousand loss with

Gmean/LGD: 96.1/3.625 million, XGB2GNN reduces the loss by 160.0 thousand loss

with Gmean/LGD: 96.2/3.584 million XGB3GNN decreases the loss by 101.1 thou-

sand loss with Gmean/LGD: 96.1/3.643 million and XGB2GAT leads a decrease in

the loss by 156.7 thousand loss with Gmean/LGD: 96.1/3.588 million.
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Table 4.13: Risky Loans Data
Performances of Algorithms

Train Data Size=161, 884, Test Data Size= 69, 401, Train Data/Test Data = 7/3

Non-defaults/Defaults=8.8
Numbers of LR/GNN/GAT Models with Sub-Data Sets= 3, 000/1, 000/1, 000

Sub-data Sizes for LR/GNN/GAT Models with Sub-Data Sets= 33, 060/3, 000/3, 000

Levels of Node Embeddings in GNN/GAT: 1/1
βRAW used in C2 estimated with LR/GNN/GAT: 1.857/2.805/2.849
LR: Models with R2

ordinary >= 0.668, R2
adjusted >= 0.668, R2

AdjustedGeneralized >= 0.758

LR:thrs = 0.52 for C2

GNN: Iterations= 25, knn = 5, lR = 0.01, thrs = 0.462 for C2

GAT: Iterations=80, knn = 25, K = 1, lR = 0.02, thrs = 0.485 for C2

Threshold for ANNs: 0.5

Cost-Insensitive Algorithms

TRAIN DATA TEST DATA

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean

LR 90.3 90.2 90.2 90.2 90.2 90.2
GNN 89.9 90.0 89.9 89.8 88.1 89.0
GAT 90.4 89.7 90.0 89.7 88.0 88.8

ANNCrossEntropyLoss 83.2 97.1 89.1 81.8 96.9 89.1
ANNFocalLoss 72.3 97.6 84.0 71.4 97.5 83.4

AdaBoost 73.1 98.0 84.6 72.5 98.0 84.3
XGBoost 97.0 99.7 98.4 89.7 99.0 94.2
CatBoost 92.9 99.3 96.0 88.9 99.0 93.8
LightGBM 95.9 99.0 97.4 90.0 98.4 94.0

Cost-Sensitive ANNs with Focal Loss Function

TRAIN DATA TEST DATA
Loss Given

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 93.2 92.9 93.0 92.5 92.8 92.6 97.3 0.149 5.153
RCS-ANN1LR 93.6 93.8 93.7 93.3 93.8 93.5 97.6 0.118 4.846

RCS-ANN1GNN 93.2 93.5 93.3 92.9 93.4 93.2 97.5 0.142 5.228
RCS-ANN2GNN 93.4 93.3 93.4 93.3 93.3 93.3 97.4 0.118 4.665

RCS-ANN1GAT 93.6 94.1 93.9 93.3 94.0 93.7 97.7 0.122 4.980
RCS-ANN2GAT 93.8 93.8 93.8 93.6 93.7 93.7 97.6 0.100 4.409

Cost-Sensitive ANNs with Cross Entropy Loss Function

TRAIN DATA TEST DATA
Loss Given

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 94.0 93.6 93.8 92.6 93.6 93.1 97.6 0.112 5.903
RCS-ANN2LR 94.6 93.6 94.1 93.4 93.5 93.4 97.5 0.077 5.250
RCS-ANN3LR 95.6 94.5 95.0 94.7 94.3 94.5 98.0 0.041 3.896

RCS-ANN1GNN 95.1 93.6 94.4 94.1 93.4 93.8 97.8 0.070 4.916
RCS-ANN2GNN 95.2 94.2 94.7 94.5 94.0 94.3 97.7 0.041 3.780
RCS-ANN3GNN 95.1 94.5 94.8 93.9 94.4 94.1 98.0 0.063 4.557

RCS-ANN1GAT 94.7 94.4 94.6 93.6 94.4 93.8 97.9 0.079 5.308
RCS-ANN2GAT 94.7 94.4 94.6 93.8 94.4 94.1 97.7 0.061 4.323
RCS-ANN3GAT 95.3 94.4 94.8 94.1 94.3 94.2 97.7 0.058 4.580
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Table 4.14: Risky Loans Data: Performances of Algorithms
Boosting Algorithms for Imbalanced Data

TRAIN DATA TEST DATA
Loss Given

Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

SMOTEBoost 89.9 94.8 92.3 89.2 94.9 92.0 97.7 0.495 9.199
RUSBoost 95.7 92.4 94.0 95.3 92.4 93.9 97.9 0.090 3.845

XGBoostscaled 97.3 95.4 96.3 95.9 95.3 95.6 98.9 0.050 3.664
CatBoostscaled 99.7 98.3 99.0 95.7 96.3 96.0 99.1 0.051 4.061

RCS-Ada1LR 93.1 93.1 93.1 92.6 93.2 92.9 97./ 0.148 6.582
RCS-Ada2LR 93.3 93.2 93.3 93.0 93.4 93.2 97.8 0.129 6.320

RCS-AdaB1GNN 93.4 93.1 93.2 93.1 93.3 93.2 97.9 0.124 6.125
RCS-AdaB2GNN 93.6 92.8 93.3 93.2 93.0 93.1 97.9 0.119 5.942

RCS-Ada1GAT 93.2 93.2 93.2 92.8 93.4 93.1 97.9 0.132 6.266
RCS-Ada2GAT 93.7 93.0 93.4 93.3 93.2 93.2 97.9 0.115 5.701

RCS-XGB1LR 97.9 95.2 96.5 96.0 94.0 95.5 98.8 0.044 3.526
RCS-XGB2LR 98.7 96.2 97.4 96.5 95.7 96.1 99.2 0.026 3.466
RCS-XGB3LR 98.4 96.1 97.2 96.4 95.9 96.1 99.1 0.034 3.361

RCS-XGB1GNN 98.5 95.5 97.0 96.5 95.3 95.9 99.1 0.035 3.608
RCS-XGB2GNN 99.0 96.8 97.9 96.3 96.0 96.2 99.2 0.028 3.441
RCS-XGB3GNN 98.8 96.1 97.5 96.3 95.9 96.1 99.0 0.037 3.386

RCS-XGB1GAT 99.0 96.0 97.5 96.4 95.6 96.0 99.2 0.034 3.690
RCS-XGB2GAT 98.5 96.0 97.3 96.5 95.6 96.1 99.2 0.027 3.253
RCS-XGB3GAT 98.0 95.5 96.7 96.4 95.4 95.9 99.1 0.035 3.378

Figure 4.6: Cost Parameters are Estimated with LRs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data
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Figure 4.7: Cost Parameters are Estimated with GNNs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data

Figure 4.8: Cost Parameters are Estimated with GATs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data
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The proposed cost parameters, C3(P (DLR))
, C2(P (DGNN ))

and C2(P (DGAT ))
, improve XG-

Boost modifications with lower LGD values for given Specificity values. Considering

almost balanced classification performances for both classes, a threshold adjustment

is made with an optimal threshold choice determined with validation data sets. Gmean

maximization thresholds of validation data of k-50 fold are computed, and the medi-

ans of the thresholds are applied for the test data classification. Table 4.15 presents

how the Gmean maximizing thresholds of validation data result in test data predic-

tions of Sensitivity-Specifcity and LGD for the test data. The results indicate that

the proposed cost-sensitive models with C2 and C3 leads lower LGD and C2(P (DGNN ))

appears as the most successful instance-specific cost parameter.

Table 4.15: Risky Loans Data
Competing Performances of Algorithms After a Threshold Adjustment

TRAIN DATA TEST DATA
Loss Given

Algorithms
Weights

1
,thr

2 Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

XGBoostscaled,thr=0.517 97.0 95.6 96.3 95.4 95.6 95.5 98.9 0.066 4.048
CatBoostscaled,thr=0.477 99.7 98.2 99.0 96.0 96.0 96.0 99.1 0.042 3.774

RCS-XGB1LR,thr=0.528 95.6 92.5 92.5 95.6 95.4 95.5 98.8 0.055 3.829
RCS-XGB2LR,thr=0.525 97.6 95.7 96.7 96.3 95.9 96.1 99.1 0.046 3.749
RCS-XGB3LR,thr=0.517 98.2 96.2 97.2 96.1 96.1 96.1 99.1 0.042 3.639

RCS-XGB1GNN,thr=0.541 98.1 96.2 97.1 95.9 95.9 95.9 99.1 0.049 4.016
RCS-XGB2GNN,thr=0.522 98.9 97.0 97.9 96.2 96.2 96.2 99.2 0.032 3.572
RCS-XGB3GNN,thr=0.514 98.7 96.3 97.5 96.1 96.1 96.1 99.0 0.044 3.643

RCS-XGB1GAT,thr=0.533 98.8 96.5 97.6 96.2 96.1 96.1 99.2 0.042 3.997
RCS-XGB2GAT,thr=0.516 98.4 96.2 97.3 96.4 95.8 96.1 99.2 0.031 3.359
RCS-XGB3GAT,thr=0.526 97.6 95.9 96.7 96.1 95.8 95.9 99.1 0.044 3.642
1P (DLR), P (DGNN ) and P (DGAT ) in weights are the default probabilities of the instances estimated with LR, GNNs, and GATs, respectively.
2Optimal Threshold: It is the median of Gmean maximizing thresholds of validation data sets predicted in k-50 fold cross-validations.

4.3 DATA SET 3: Irish Loan Data2013

The next three data set belongs to Irish Loan Data and it is analyzed separately for

the years 2013, 2014, and 2015. Irish Loan Data is the largest credit data set in this

empirical analysis with 3,387,379 credit data instances starting with credit issue dates

in 2007 and ending in 2015. The reason for selecting data on a yearly basis is that the

defaults in 2007 and the following years are dominant in the data set, and this might

be the effect of the global mortgage crisis. Therefore, the analysis could not be made

with the use of all data set instances. Moreover, these years are chosen since the data

sets become more homogeneous so that LR, GNN, and GAT models of sub-datasets
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of each year’s data can be estimated better.

The data source is available at: kaggle.com [3]. The ratio of non-defaults/defaults is

observed to be 6.45 for the credits issued in 2013 in the original Irish Loan Data. The

default class instances are deleted with random selection to increase the imbalance in

class sizes for this year and the class ratio is adjusted to be 15. Moreover, the reason

for the significant decrease in the feature size is that most of the features are reported

both in categorical and numerical data formats. Moreover, some features are stated

in a general and more specific format like loan issue date, loan issue year and etc.

Ten features are found explanatory for the models of which three categorical features

are defined with dummy variables and seven numerical features generate twenty-five

numerical variables for the classification of this data set. Table 4.16 demonstrates

data-specific properties with the explanatory features selected for the classification

algorithms.

Table 4.16: Irish Loan Data2013

Data Information

Original Data File Name: Irish Loan Data

Original Data Data Size After Number of Number of Class
Size the Cleansing Categorical Variables Numerical Variables Ratio

134,755 124,381 10 19 15

10 features found explanatory for the models, they are:

Credit Amount - Term - Interest Rate - Employment Length - Grade - Total Principal Received to Date -
Region - Days Between the Credit Issue and Final Date - Ratio of Annuity to Income - Home Ownership

Irish Loan Data2013 reports the credit amounts disbursed to the applicants but does not

give its monetary unit. Figure 4.9 demonstrates the histograms of the credit amounts

of non-defaults and defaults and their distributions are found to be expressed best by

Gamma(α = 2.6, β = 0.14) with M = 1.2 for the rejection sampling.

Tables 4.17-4.19 summarize the optimized hyperparameters of ANN, AdaBoost, and

XGBoost with the target of maximum Gmean values for the test data. The optimal

hyperparameters change as the cost parameters change but the optimal sub-sample

ratios of columns are observed to be 1 and the optimal delta values of most of these

algorithms are also found to be greater than zero for all XGBoost algorithms. More-

over, the optimal iteration numbers in all RCS3-XGB are relatively higher, but they
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Figure 4.9: Irish Loan Data2013
Histograms of Credit Amounts

are relatively lower in all RCS-ANN2 and RCS-ANN3 estimated with the cross en-

tropy loss function. Also, the optimal value of m > 1 for C1 and C3, while m < 1 1

for C2 for all cost-sensitive algorithms.

Data-specific information such as train and test data sizes, class ratio, and simulations

with LR, GNN, and GAT models are reported in Table 4.20. The cost-insensitive

algorithm results and cost-sensitive ANN model results are also presented in this

table. The cost-insensitive algorithms have higher Specificity values but lower Speci-

ficity values, therefore, LGD values are not reported for these ordinary algorithms.

Instance-specific cost-sensitive ANN algorithms estimated with the focal loss func-

tion have higher Gmean values when compared with the ones estimated with the cross-

entropy loss function. ANN3LR, ANN3GNN and ANN3GAT using focal loss function

are observed to have lower LGD values when compared with all cost-sensitive ANNs.
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Table 4.17: Irish Loan Data2013: ANN Optimized Hyperparameters
Activation Functions: Sigmoid
Learning Rate: 0.001 and 0.01 for ANN with Focal Loss and Cross Entropy Loss, respectively.
Number of Hidden Layers: 64 32 8
Training Function: Resilient Back Propagation
Increment to weight change: 1.2
Decrement to weight change: 0.5
Initial weight change: 0.07
Maximum weight change: 50.0
Classification Threshold 0.5

Focal Loss Function Cross Entropy Loss Function
Iterations m α γ1 γ2 Iterations m thr

ANN 500 - 1 1 1 2000 - -
RCS-ANN1LR 800 2 C1 0.1 2 1000 1.75 -
RCS-ANN2LR - - - - - 50 0.5 0.49
RCS-ANN3LR 1000 1.75 C3 0.1 2 100 1.8 -

RCS-ANN1GNN 1000 1.85 C1 0.1 2 1000 1.75 -
RCS-ANN2GNN - - - - - 50 0.5 0.46
RCS-ANN3GNN 1000 1.75 C3 0.1 2 100 1.8 -

RCS-ANN1GAT 1200 1.7 C1 0.1 2 1000 1.85 -
RCS-ANN2GAT - - - - - 50 0.5 0.44
RCS-ANN3GAT 1000 1.76 C3 0.1 2 100 1.86 -

Table 4.18: Irish Loan Data2013: AdaBoost Optimized Hyperparameters
Iterations m thr

RCS-AdaB1LR 1000 1.35 -
RCS-AdaB2LR 1500 0.125 0.49

RCS-AdaB1GNN 1000 1.45 -
RCS-AdaB2GNN 1000 0.167 0.46

RCS-AdaB1GAT 1000 1.45 -
RCS-AdaB2GAT 2000 0.167 0.44

Table 4.19: Irish Loan Data2013: XGBOOST Optimized Hyperparameters
Evaluation Metric: Log Loss/Cross Entropy Loss Function.

Depth Sub-sample Number Scale
Learning from a Root Ratio of Maximum of Positive

Rate: to Leaf Columns Delta Estimators Weight m thrs

XGBoost 0.1 6 1 1 1000 - - -
CatBoost 0.1 8 - - 1000 - - -
LightGBM 0.05 - - - 2000 - - -
XGBoostScaled 0.025 6 1 3 184 15 - -
CatBoostScaled 0.025 8 - - 195 15 - -
RCS-XGB1LR 0.005 8 1 2 250 C1 1.26 -
RCS-XGB2LR 0.01 8 1 5 372 C2 0.66 0.49
RCS-XGB3LR 0.02 4 1 3 1358 C3 2.1 -
RCS-XGB1GNN 0.01 8 1 0 650 C1 1.7 -
RCS-XGB2GNN 0.05 8 1 5 180 C2 0.75 0.46
RCS-XGB3GNN 0.02 4 1 3 1165 C3 2 -
RCS-XGB1GAT 0.01 8 1 3 534 C1 1.7 -
RCS-XGB2GAT 0.05 8 1 3 170 C2 0.73 0.44
RCS-XGB3GAT 0.02 4 1 3 1270 C3 2.05 -

Sampling Random k Number of
Strategy State Neighbors Estimators

SMOTHEBoost Only Minority np.random generator of Python 5 1500
RUSBoost Only Majority Class np.random generator of Python - 1500
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Table 4.20: Irish Loan Data2013
Performances of Algorithms

Train Data Size=87, 050, Test Data Size=37, 331, Train Data/Test Data = 15

Non-defaults/Defaults=15
Numbers of LR/GNN/GAT Models with Sub-Data Sets=5,000/1,000/1,000
Sub-data Sizes for LR/GNN/GAT Models with Sub-Data Sets=10,888/4,400/4,400
Levels of Node Embeddings in GNN/GAT: 15
βRAW estimated with LR/GNN/GAT: 4.75/4.68/4.84
LR: R2

ordinary >= 0.7079, R2
adjusted >= 0.7076 and R2

AdjustedGeneralized >= 0.7613

LR: thrs = 0.49 for C2

GNN: Iterations= 100, knn = 5, lR = 0.01, thrs = 0.46 for C2

GAT: Iterations=150, knn = 15, K = 1, lR = 0.02, thrs = 0.44 for C2

Threshold for ANNs: 0.5

Cost-Insensitive Algorithms

TRAIN DATA TEST DATA

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean

LR 86.2 86.3 86.2 86.0 86.2 86.1
GNN 88.6 89.4 89.0 89.6 88.2 88.9
GAT 88.8 87.5 88.3 88.0 87.7 87.9

ANNCrossEntropyLoss 82.2 99.8 90.6 77.0 99.3 87.5
ANNFocalLoss 67.4 99.9 82.1 69.1 99.9 83.1

AdaBoost 82.0 99.9 90.5 81.4 99.9 90.2
XGBoost 99.1 100 99.6 89.3 100 94.5
CatBoost 91.2 99.9 95.5 88.7 99.9 94.2
LightGBM 99.9 100 99.9 89.4 99.9 94.5

Cost-Sensitive ANNs with Focal Loss Function

TRAIN DATA TEST DATA
Loss Given

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 92.6 93.3 92.8 92.5 93.1 92.8 97.7 0.052 2.638
RCS-ANN2LR 93.0 93.0 93.0 93.0 92.9 92.9 97.7 0.045 2.501
RCS-ANN1GNN 93.1 92.1 92.6 93.1 92.2 92.6 97.2 0.046 2.615
RCS-ANN2GNN 93.1 92.8 93.0 93.0 92.8 92.9 97.7 0.045 2.462
RCS-ANN1GAT 92.5 92.9 92.7 92.6 92.8 92.7 97.4 0.049 2.705
RCS-ANN2GAT 93.1 92.8 93.0 93.1 92.8 92.9 97.7 0.043 2.411

Cost-Sensitive ANNs with Cross Entropy Loss Function

TRAIN DATA TEST DATA
Loss Given

Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 94.7 94.2 94.4 87.7 93.6 90.6 98.3 0.072 4.281
RCS-ANN2LR 90.6 91.6 91.1 91.0 91.9 91.4 95.8 0.045 3.492
RCS-ANN3LR 93.2 92.5 92.9 92.3 92.5 92.4 97.6 0.045 2.698

RCS-ANN1GNN 96.6 93.3 94.9 88.1 92.4 90.2 98.8 0.073 4.462
RCS-ANN2GNN 91.3 91.5 91.4 90.8 91.5 91.2 96.2 0.072 3.202
RCS-ANN3GNN 92.4 92.5 93.9 92.3 93.5 92.4 97.4 0.040 2.674

RCS-ANN1GAT 97.0 93.1 95.0 89.1 92.4 90.7 98.8 0.065 4.121
RCS-ANN2GAT 90.7 90.3 90.4 90.6 90.4 90.5 96.1 0.069 3.200
RCS-ANN3GAT 94.5 91.9 93.2 92.5 91.8 92.2 97.8 0.037 2.563
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Table 4.21: Irish Loan Data2013
Performances of Algorithms
Boosting Algorithms for Imbalanced Data

TRAIN DATA TEST DATA
Loss Given

Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

SMOTEBoost 88.1 99.9 93.8 88.8 99.9 94.2 98.8 0.230 4.107
RUSBoost 94.3 95.9 93.1 94.0 95.7 94.9 98.8 0.064 2.141

XGBoostscaled 94.8 94.9 94.8 93.4 94.8 94.1 98.5 0.034 2.418
CatBoostscaled 93.6 94.3 94.0 93.4 94.2 93.8 98.2 0.039 2.545

RCS-Ada1LR 92.5 92.5 92.5 92.6 92.3 92.4 97.9 0.045 2.413
RCS-Ada2LR 93.2 93.8 93.5 93.4 93.5 93.4 98.3 0.032 2.184

RCS-Ada1GNN 93.6 94.3 93.9 93.8 94.0 93.9 98.5 0.033 2.157
RCS-Ada2GNN 94.6 94.4 94.5 94.6 94.2 94.4 98.8 0.021 1.805

RCS-Ada1GAT 93.4 93.8 93.6 93.9 93.6 93.7 98.4 0.030 2.031
RCS-Ada2GAT 94.7 93.2 93.9 94.6 93.1 93.8 98.5 0.022 1.781

RCS-XGB1LR 93.5 93.4 93.5 92.2 93.3 92.8 97.6 0.060 2.605
RCS-XGB2LR 95.3 93.7 94.5 93.5 93.5 93.5 98.0 0.026 2.567
RCS-XGB3LR 97.0 95.5 96.3 94.5 95.3 94.3 98.8 0.024 1.980

RCS-XGB1GNN 97.4 93.0 95.2 93.0 92.9 92.9 98.0 0.039 2.519
RCS-XGB2GNN 97.6 95.9 96.7 94.0 95.3 94.7 98.5 0.018 2.227
RCS-XGB3GNN 96.5 95.6 96.0 94.5 95.5 95.0. 98.7 0.025 2.040

RCS-XGB1GAT 97.3 95.6 96.4 93.4 95.2 94.3 98.3 0.033 2.320
RCS-XGB2GAT 97.3 95.6 96.5 93.9 95.1 94.5 98.5 0.021 2.263
RCS-XGB3GAT 96.8 95.7 96.2 94.4 95.6 95.0 98.8 0.026 2.035

In a comparison with the cost-sensitive ANN algorithms, the results of outperforming

SMOTEBoost, RUSBoost, XGBoostscaled, CatBoostscaled, and cost-sensitive boosting

algorithms classified with the threshold of 0.5 are shown in Table 4.21. RUSBoost has

the highest Gmean value and the XGBoostscaled comes second when compared with all

other algorithms, but they are not superior to all cost-sensitive algorithms. Instance-

specific risk-based cost-sensitive modifications of AdaBoost and XGBoost have rela-

tively lower LGD values for the test data, but the Specificity values of XGBoostscaled

is higher than its Sensitivity value and a threshold move for improving the classifi-

cation of the defaults is required. Therefore, the prediction results for Sensitivity,

Specificity, and LGD values are analyzed with the thresholds of 0-4-0.6 where the

maximums of Gmean values are also observed in k-50 fold cross-validations.

The last graphs of Figures 4.10, 4.11 and 4.12 display how LGD values change as

Specificity changes. The success of cost-sensitive algorithms has lower LGD values

given Specificity values for the thresholds of 0.4-0.6.
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Figure 4.10: Cost Parameters are Estimated with LRs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data

Figure 4.11: Cost Parameters are Estimated with GNNs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data
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Figure 4.12: Cost Parameters are Estimated with GATs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data

The default probability predictions of RUSBoost are not dispersed in the interval

[0,1], but they appear in a very narrow interval [0.45-0.55] as Figure 4.13 displays.

Figure 4.13: RUSBoost Sensitivity-Specificity and LGD with Different Thresholds in
Test Data
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XGBoostscaled can reach to its maximum Gmean value in the test data predictions with

Gmean/LGD: 93.8/2.297 million loss and other proposed cost-sensitive algorithms

can have higher Gmeanvalues with lower LGD. For example, XGB3LR saves 374.4

thousand with Gmean/LGD: 94.7/1.922 million loss, XGB3GNN reduces the loss

322.3 thousand with Gmean/LGD: 94.7/1.975 million loss, XGB2GNN decreases the

loss by 181.2 thousand with Gmean/LGD: 94.4/2.116 million loss, XGB3GAT leads

the loss to drop by 364.3 thousand with Gmean/LGD: 94.8/1.933 million loss, and

XGB2GAT saves 185.4 thousand with Gmean/LGD: 94.3/2.112 million loss. Finally,

the less effective cost-sensitive algorithm appears as XGB1GAT and it decreases the

loss by 96.0 thousand with Gmean/LGD: 93.8/2.201 million loss.

Cross-validations are conducted with k-50 fold for the threshold analyses. The op-

timal thresholds maximizing Gmean in the validation data sets are evaluated and the

medians of the optimal thresholds are applied for the test data. Table 4.22 presents the

classification results with new thresholds. AdaB1GNN , AdaB2GNN , AdaB1GAT and

AdaB2GAT presented in Table 4.21 and XGB3LR, XGB2GNN , XGB3GNN , XGB1GAT ,

XGB2GAT and XGB3GAT presented in Table 4.22 all result in lower LGD values with

higher Specicificty values when compared to XGBoostscaled and CatBoostscaled.

Table 4.22: Irish Loan Data2013
Competing Performances of Algorithms After a Threshold Adjustment

TRAIN DATA TEST DATA
Loss Given

Algorithms
Weights

1
,thr

2 Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx107

Y =1 Defaultx107

XGBoostClassRatio,thr=0.429 95.6 93.5 94.6 94.0 93.4 93.7 98.4 0.0252 2.234
CatBoostClassRatio,thr=0.468 94.3 93.5 93.9 94.0 93.5 93.8 98.2 0.287 2.310

RCS-XGB1LR,thr=0.466 94.3 92.1 93.2 92.8 91.9 92.4 97.6 0.050 2.436
RCS-XGB2LR,thr=0.463 95.6 93.1 94.3 93.9 93.0 93.4 98.0 0.021 2.452
RCS-XGB3LR,thr=0.450 97.7 94.4 96.0 95.0 94.2 94.6 98.8 0.020 1.864

RCS-XGB1GNN,thr=0.486 97.5 92.6 95.0 93.1 92.5 92.8 98.0 0.036 2.472
RCS-XGB2GNN,thr=0.383 98.0 94.3 96.1 94.6 93.8 94.2 98.5 0.012 2.028
RCS-XGB3GNN,thr=0.437 97.2 94.2 95.7 94.9 94.1 94.5 98.7 0.020 1.917

RCS-XGB1GAT,thr=0.434 97.9 93.6 95.7 94.0 93.3 93.7 98.3 0.024 2.111
RCS-XGB2GAT,thr=0.373 97.9 93.8 95.9 94.7 93.4 94.0 98.5 0.011 1.958
RCS-XGB3GAT,thr=0.44 97.5 94.3 95.9 94.9 94.2 94.6 98.8 0.020 1.880
1P (DLR), P (DGNN ) and P (DGAT ) in weights are the default probabilities of the instances estimated with LR, GNNs, and GATs, respectively.
2Optimal Threshold: It is the median of Gmean maximizing thresholds of validation data sets predicted in k-50 fold cross-validations.

97



4.4 DATA SET 4: Irish Loan Data2014

The ratio of non-defaults/defaults is observed to be 9.54 for the credits issued in

2014 in the original Irish Loan Data. Similar to Irish Loan Data2013, ten explanatory

features of three are categorical features and seven are the numerical features and

they generate 25 numerical variables. Table 4.23 shows details of the data with the

explanatory features selected for the classification algorithms.

Table 4.23: Irish Loan Data2014

Data Information

Original Data File Name: Irish Loan Data

Original Data Data Size After Number of Number of Class
Size the Cleansing Categorical Variables Numerical Variables Ratio

235,628 235,626 10 19 9.54

10 features are found explanatory for the models, they are:

Credit Amount-Term-Interest Rate-Employment Length-Grade-Total Principal Received to Date-
Region-Days Between the Credit Issue and Final Date-Ratio of Annuity to Income-Home Ownership

Irish Loan Data2014 reports the credit amounts disbursed to the applicants but does not

give its monetary unit. Figure 4.14 demonstrates the histograms of the credit amounts

of non-defaults and defaults and their distributions are found to be expressed best by

Gamma(α = 2.2, β = 0.15) with M = 1.5 for the rejection sampling.

Figure 4.14: Irish Loan Data2014: Histograms of Credit Amounts
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Tables 4.24-4.26 present the hyperparameters of ANN, AdaBoost, and XGBoost and

they are optimized with the target of maximum Gmean values in the test data. The

iteration numbers of cost-sensitive ANN are the highest when compared with cost-

sensitive XGBoost algorithms. The optimal learning rate and the delta values of most

of XGBoost algorithms are the common characteristics of cost-sensitive XGBoost

algorithms.

Table 4.24: Irish Loan Data2014: ANN Optimized Hyperparameters
Activation Functions: Sigmoid
Learning Rate: 0.001 and 0.01 for ANN with Focal Loss and Cross Entropy Loss, respectively.
Number of Hidden Layers: 64 32 8
Training Function: Resilient Back Propagation
Increment to weight change: 1.2
Decrement to weight change: 0.5
Initial weight change: 0.07
Maximum weight change: 50.0
Classification Threshold 0.5

Focal Loss Function Cross Entropy Loss Function
Iterations m α γ1 γ2 Iterations m thrs

ANN 1500 - 1 1 1 2000 - -
RCS-ANN1LR 500 1.95 C1 0.1 2 1000 2.5 -
RCS-ANN2LR - - - - - 1000 1.2 0.5
RCS-ANN3LR 500 2 C3 0.1 2 1000 2.85 -

RCS-ANN1GNN 500 1.65 C1 0.1 2 1000 2.2 -
RCS-ANN2GNN - - - - - 1000 1 0.56
RCS-ANN3GNN 500 1.7 C3 0.1 2 1000 2.5 -

RCS-ANN1GAT 500 1.4 C1 0.1 2 1000 1.9 -
RCS-ANN2GAT - - - - - 1000 0.7 0.6
RCS-ANN3GAT 500 1.4 C3 0.1 2 1000 2 -

Table 4.25: Irish Loan Data2014: AdaBoost Optimized Hyperparameters
Iterations m thrs

RCS-A1LR 500 1.68 -
RCS-A2LR 500 0.25 0.5

RCS-A1GNN 500 1.6 -
RCS-A2GNN 500 0.225 0.56

RCS-A1GAT 500 1.3 -
RCS-A2GAT 500 0.1 0.6

Table 4.27 reports the train and test data sizes, class ratio, and simulations with LR,

GNN, and GAT models. It also presents prediction results of the cost-insensitive al-

gorithms and cost-sensitive ANN models The cost-insensitive algorithms have higher

Specificity values but lower Specificity values, therefore, LGD values are not reported

for these ordinary algorithms. Instance-specific cost-sensitive ANN algorithms es-

timated with the cross entropy loss function have higher Gmean values when com-

pared with the ones estimated with the focal loss function. ANN3LR, ANN2GNN ,
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Table 4.26: Irish Loan Data2014: XGBOOST Optimized Hyperparameters
Evaluation Metric: Log Loss/Cross Entropy Loss Function.

Depth Sub-sample Number Scale
Learning from a Root Ratio of Maximum of Positive

Rate: to Leaf Columns Delta Estimators Weight m thrs

XGBoost 0.1 6 1 1 2000 - - -
CatBoost 0.1 7 1 - 2000 - -
LightGBM 0.1 - - - 2000 - -
XGBoostScaled 0.1 7 1 2 53 9.5 - -
CatBoostScaled 0.05 7 1 - 220 9.5 - -

RCS-XGB1LR 0.05 7 1 1 200 C1 2 -
RCS-XGB2LR 0.05 7 1 0 260 C2 1.25 0.5
RCS-XGB3LR 0.05 8 0.9 5 148 C3 2.8 -

RCS-XGB1GNN 0.05 7 1 1 99 C1 1.7 -
RCS-XGB2GNN 0.05 7 0.8 2 110 C2 0.8 0.56
RCS-XGB3GNN 0.05 7 0.8 4 117 C3 2.25 -

RCS-XGB1GAT 0.05 8 1 4 89 C1 1.7 -
RCS-XGB2GAT 0.05 7 0.8 2 302 C2 0.8 0.6
RCS-XGB3GAT 0.05 7 1 3 309 C3 2.25 -

Sampling Random k Number of
Strategy State Neighbors Estimators

SMOTHEBoost Only Minority np.random generator of Python 5 2000
RUSBoost Only Majority Class np.random generator of Python - 2000

ANN3GNN and ANN2GAT using cross entropy loss function are observed to have

lower LGD values when compared with all cost-sensitive ANNs.

Table 4.28 displays the classification performances of boosting algorithms which are

observed to be superior to the cost-sensitive ANN algorithms due to lower LGD val-

ues in test data. The prediction probabilities of SMOTEBoost, RUSBoost, XGBoostscaled,

CatBoostscaled, and cost-sensitive boosting algorithms are classified with the threshold

of 0.5. RUSBoost has the highest Gmean value and the lowest LGD values when com-

pared with all other ordinary algorithms. Instance-specific risk-based cost-sensitive

modifications of XGBoost have relatively lower LGD values for test data, but the

Specificity values of RUSBoost and XGBoostscaled are higher allowing a threshold

move for improving Sensitivity. Therefore, the prediction results for Sensitivity,

Specificity, and LGD values are analyzed with the thresholds of 0-4-0.6 where the

maximums of Gmean values are also observed in the test data.
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Table 4.27: Irish Loan Data2014
Performances of Algorithms

Train Data Size=164, 938, Test Data Size=70, 688, Train Data/Test Data = 7/3

Non-defaults/Defaults=9.5
Numbers of LR/GNN/GAT Models with Sub-Data Sets=5000/1000/1000
Sub-data Sizes for LR/GNN/GAT Models with Sub-Data Sets=31,550/3,000/3,000
Levels of Node Embeddings in GNN/GAT: 2/1
βRAW estimated with LR/GNN/GAT: 2.676/2.751/3.641
LR: R2

ordinary >= 0.663, R2
adjusted >= 0.663 and R2

AdjustedGeneralized >= 0.737

LR: thrs = 0.5 for C2

GNN: Iterations= 80, knn = 10, lR = 0.02, thrs = 0.56 for C2

GAT: Iterations=100, knn = 25, K = 1, lR = 0.02, thrs = 0.6 for C2

Threshold for ANNs: 0.5

Cost-Insensitive Algorithms

TRAIN DATA TEST DATA

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean

LR 87.0 87.0 87.0 87.6 86.7 87.2
GNN 91.4 86.5 88.9 88.1 88.2 88.2
GAT 88.3 88.1 88.2 88.4 86.7 87.5

ANNCrossEntropyLoss 83.7 99.9 91.4 82.7 99.7 90.1
ANNFocalLoss 60.3 98.5 77.1 61.3 98.5 77.7

AdaBoost 74.7 99.8 86.3 75.2 99.7 86.6
XGBoost 95.4 100 97.7 83.7 99.9 91.4
CatBoost 89.2 100 94.4 83.5 99.9 91.4
LightGBM 99.7 100 99.8 83.6 99.9 91.4

Cost-Sensitive ANNs with Focal Loss Function

TRAIN DATA TEST DATA
Loss Given

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 88.2 90.0 89.1 89.1 89.9 89.5 95.2 0.339 12.428
RCS-ANN2LR 89.9 89.4 89.7 90.6 89.3 89.9 95.6 0.246 10.378
RCS-ANN1GNN 89.4 89.9 89.7 90.2 89.8 90.0 95.6 0.315 11.642
RCS-ANN2GNN 89.1 90.0 89.5 89.6 89.9 89.7 95.5 0.319 11.563
RCS-ANN1GAT 90.5 89.3 89.9 91.1 89.2 90.2 95.7 0.255 10.372
RCS-ANN2GAT 89.7 89.5 89.6 90.3 89.3 89.8 95.5 0.275 10.697

Cost-Sensitive ANNs with Cross Entropy Loss Function

TRAIN DATA TEST DATA
Loss Given

Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 91.4 91.8 91.6 90.1 91.5 90.8 96.5 0.196 11.296
RCS-ANN2LR 92.4 89.9 91.1 91.9 89.7 90.8 96.7 0.092 9.736
RCS-ANN3LR 93.7 91.1 92.4 91.8 90.8 91.3 97.0 0.150 8.947

RCS-ANN1GNN 92.6 92.4 92.0 90.9 91.0 90.9 96.8 0.209 10.342
RCS-ANN2GNN 93.1 91.0 92.0 91.8 90.6 91.2 97.0 0.118 9.328
RCS-ANN3GNN 93.0 91.9 92.4 91.6 91.6 91.6 97.1 0.159 9.396

RCS-ANN1GAT 93.2 91.3 92.3 91.0 91.1 91.1 96.8 0.217 9.798
RCS-ANN2GAT 93.2 91.0 92.1 91.6 90.7 91.2 97.0 0.126 8.975
RCS-ANN3GAT 93.5 90.4 92.0 91.6 90.2 90.9 97.0 0.172 9.115
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Table 4.28: Irish Loan Data2014
Performances of Algorithms
Boosting Algorithms for Imbalanced Data

TRAIN DATA TEST DATA
Loss Given

Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

SMOTEBoost 81.0 98.9 89.5 81.7 98.9 89.9 97.5 1.728 18.931
RUSBoost 91.4 93.7 92.6 91.6 93.7 92.6 97.9 0.362 8.609

XGBoostscaled 93.0 92.9 93.0 91.7 92.5 92.1 97.6 0.164 9.064
CatBoostscaled 92.1 92.0 92.1 91.9 91.9 91.9 97.5 0.161 8.927

RCS-Ada1LR 90.5 90.2 90.3 90.8 89.9 90.4 96.5 0.195 9.201
RCS-Ada2LR 90.7 91.0 90.8 90.9 90.8 90.9 96.8 0.184 9.497

RCS-AdaB1GNN 91.0 91.0 91.0 91.3 90.8 91.0 97.1 0.212 9.298
RCS-AdaB2GNN 91.2 91.2 91.2 91.6 91.1 91.3 97.3 0.172 9.052

RCS-Ada1GAT 91.3 91.3 91.3 91.7 91.2 91.4 97.3 0.184 8.980
RCS-Ada2GAT 91.2 91.6 91.4 91.5 91.5 91.5 97.4 0.178 9.001

RCS-XGB1LR 91.0 90.2 90.6 88.8 89.6 89.2 96.1 0.361 11.292
RCS-XGB2LR 93.9 92.5 93.2 92.1 92.1 92.1 97.5 0.095 8.971
RCS-XGB3LR 95.9 92.3 94.4 92.2 92.2 92.2 97.8 0.152 8.263

RCS-XGB1GNN 91.3 91.3 91.3 90.2 90.9 90.6 96.8 0.300 10.373
RCS-XGB2GNN 93.2 92.6 92.9 92.0 92.2 92.1 97.4 0.121 8.705
RCS-XGB3GNN 93.6 92.7 93.1 92.1 92.3 92.2 97.6 0.156 8.602

RCS-XGB1GAT 94.7 92.7 93.7 92.0 92.1 92.1 97.6 0.183 8.498
RCS-XGB2GAT 95.1 92.9 94.0 92.2 92.3 92.3 97.8 0.132 8.577
RCS-XGB3GAT 97.0 92.7 94.8 92.5 92.1 92.3 97.8 0.148 8.112

The success of cost-sensitive algorithms with lower LGD values given Specificity val-

ues are demonstrated with the last graphs of Figures 4.15, 4.16 and 4.17. In addition,

although RUSBoost has the highest Gmean values, default probability predictions of

this algorithm do not result in a dispersed in the interval [0,1] but they appear in a

very narrow interval [0.45-0.55] as Figure 4.18 displays.

The comparisons with XGBoostscaled (Gmean/LGD: 91.9/8.853 million ) for the case

of maximum Gmean values in the test data demonstrate that XGB3LR saves 590.7

thousand with Gmean/LGD: 92.2/8.263 million, XGB2GNN reduces the loss by 190.3

thousand with Gmean/LGD: 92.1/8.663 million, XGB3GNN leads a decrease in the

loss by 306.1 thousand with Gmean/LGD: 92.1/8.547 million, XGB1GAT saves 440.1

thousand with Gmean/LGD: 92.1/8.413 million , XGB2GAT decreases the loss by

290.3 thousand with Gmean/LGD: 92.3/8.563 million, and the most successful algo-

rithm, XGB3GAT , saves 594 thousand with Gmean/LGD: 92.3/8.230 million.
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Figure 4.15: Cost Parameters are Estimated with LRs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data

Figure 4.16: Cost Parameters are Estimated with GNNs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data
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Figure 4.17: Cost Parameters are Estimated with GATs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data

Figure 4.18: RUSBoost Sensitivity-Specificity and LGD with Different Thresholds in
Test Data
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A threshold adjustment in test data predictions can be made with the optimal thresh-

olds maximizing Gmean values in the validation data sets in k-50 fold validations.

The medians of the optimal thresholds are applied for the test data classification and

Table 4.29 presents test data results. XGB3LR, XGB2GNN , XGB3GNN , XGB1GAT ,

XGB2GAT and XGB3GAT result in lower LGD values with given Specicificty values

when compared to XGBoostscaled and CatBoostscaled. The success of the cost param-

eters estimated by GAT models can be attributed to their superior predictions in test

data when compared with LR estimation results and they do not over-fit in the train

data as GNN models as its aggregated results in Table 4.27 display.

Table 4.29: Irish Loan Data2014
Competing Performances of Algorithms After a Threshold Adjustment

TRAIN DATA TEST DATA
Loss Given

Algorithms
Weights

1
,thr

2 Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

XGBoostClassRatio,thr=0.471 93.7 91.8 92.8 92.1 91.4 91.8 97.6 0.139 8.651
CatBoostClassRatio,thr=0.493 92.3 91.8 91.1 92.2 91.6 91.9 97.5 0.149 8.713

RCS-XGB1LR,thr=0.475 91.7 89.3 90.5 89.5 88.6 89.0 96.1 0.304 10.661
RCS-XGB2LR,thr=0.480 94.1 92.1 93.1 92.3 91.6 91.9 97.5 0.088 8.829
RCS-XGB3LR,thr=0.492 96.0 92.6 94.3 92.3 91.9 92.1 97.8 0.146 8.180

RCS-XGB1GNN,thr=0.475 92.0 90.1 91.1 90.9 89.6 90.3 96.8 0.246 9.660
RCS-XGB2GNN,thr=0.480 93.5 91.9 92.7 92.3 91.6 91.9 97.4 0.108 8.467
RCS-XGB3GNN,thr=0.492 93.8 92.3 93.1 92.2 91.9 92.1 97.6 0.148 8.469

RCS-XGB1GAT,thr=0.494 94.7 92.5 93.6 92.2 91.9 92.1 97.6 0.171 8.289
RCS-XGB2GAT,thr=0.480 95.3 92.4 93.8 92.5 91.8 92.1 97.8 0.118 8.299
RCS-XGB3GAT,thr=0.490 97.1 92.4 94.7 92.6 91.7 92.1 97.8 0.143 8.036
1P (DLR), P (DGNN ) and P (DGAT ) in weights are the default probabilities of the instances estimated with LR, GNNs, and GATs, respectively.
2Optimal Threshold: It is the median of Gmean maximizing thresholds of validation data sets predicted in k-50 fold cross-validations.

4.5 DATA SET 5: Irish Loan Data2015

The ratio of non-defaults/defaults is found to be 33.81 for the credits issued in 2015

in the original Irish Loan Data. Different than years 2013 and 2014, 11 features are

found explanatory for the models of which 2 categorical features defined with dummy

variables and 9 numerical features generate 21 numerical variables for the classifica-

tion of this data set. Table 4.30 displays the data size and the features evaluated as

explanatory for the classification algorithms.

As in Data Set 4 and 5, Irish Loan Data2015 reports the credit amounts disbursed to

the applicants but does not give its monetary unit. The credit amounts of non-defaults

105



Table 4.30: Irish Loan Data2015

Data Information

Original Data File Name: Irish Loan Data

Original Data Data Size After Number of Number of Class
Size the Cleansing Categorical Variables Numerical Variables Ratio

421,092 420,577 10 19 33.81

11 features are found explanatory for the models, they are:

Credit Amount - Term - Interest Rate - Employment Length - Grade - Total Payments-
Total Principal Received to Date - Region - Days Between the Credit Issue and Final Date - Ratio of Annuity
to Income - Ratio of Loan to Annual Income

and defaults and their distributions are expressed best by Gamma(α = 2.2, β = 0.15)

with M = 1.5 for the rejection sampling (Figure 4.19).

Figure 4.19: Irish Loan Data2015
Histograms of Credit Amounts

Tables 4.31-4.33 present the optimized hyperparameters of ANN, AdaBoost, and XG-

Boost with the target of maximum Gmean values in the test data. Common values for

hyperparameters can be specified as cost-sensitive ANNs using focus loss function

have the highest optimal iteration numbers and cost-sensitive XGBoost algorithms

have the lowest. Similarly, the optimal value of m are found to be as m > 1 for C1

and C3, while m < 1 for C2 for all cost-sensitive algorithms.
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Table 4.31: Irish Loan Data2015: ANN Optimized Hyperparameters
Activation Functions: Sigmoid
Learning Rate: 0.001 and 0.01 for ANN with Focal Loss and Cross Entropy Loss, respectively.
Number of Hidden Layers: 64 32 8
Training Function: Resilient Back Propagation
Increment to weight change: 1.2
Decrement to weight change: 0.5
Initial weight change: 0.07
Maximum weight change: 50.0
Classification Threshold 0.5

Focal Loss Function Cross Entropy Loss Function
Iterations m α γ1 γ2 Iterations m thr

ANN 1500 - 1 1 1 1000 - -
RCS-ANN1LR 1500 1.25 C1 0.1 2 1000 1.15 -
RCS-ANN2LR - - - - - 100 0.2 0.5
RCS-ANN3LR 1500 1.25 C3 0.1 2 500 1.34 -

RCS-ANN1GNN 1500 1.18 C1 0.1 2 1000 1.15 -
RCS-ANN2GNN - - - - - 100 0.2 0.5
RCS-ANN3GNN 1500 1.25 C3 0.1 2 500 1.34 -

RCS-ANN1GAT 1500 1.25 C1 0.1 2 1000 1.15 -
RCS-ANN2GAT - - - - - 100 0.2 0.54
RCS-ANN3GAT 1500 1.25 C3 0.1 2 500 1.34 -

Table 4.32: Irish Loan Data2015: AdaBoost Optimized Hyperparameters
Iterations m thr

RCS-AdaB11LR 500 1.25 -
RCS-AdaB2LR 500 0.33 0.5

RCS-AdaB1GNN 500 1.25 -
RCS-AdaB2GNN 1000 0.33 0.5

RCS-AdaB1GAT 500 1.132 -
RCS-AdaB2GAT 500 0.2 0.54

Table 4.33: Irish Loan Data2015: XGBOOST Optimized Hyperparameters
Evaluation Metric: Log Loss/Cross Entropy Loss Function.

Depth Sub-sample Number Scale
Learning from a Root Ratio of Maximum of Positive

Rate: to Leaf Columns Delta Estimators Weight m thrs

XGBoost 0.1 6 1 1 2000 - - -
CatBoost 0.05 6 - - 2000 - - -
LightGBM 0.05 - - - 2000 - - -
XGBoostScaled 0.025 6 1 3 184 33.8 - -
CatBoostScaled 0.05 6 - - 268 33.8 - -

RCS-XGB1LR 0.05 7 0.5 0 76 C1(P (DLR)) 1.352 -
RCS-XGB2LR 0.1 6 1 0 40 C2(P (DLR)) 0.224 0.5
RCS-XGB3LR 0.05 6 0.6 5 78 C3(P (DLR)) 1.356 -

RCS-XGB1GNN 0.1 6 0.6 4 66 C1(P (DGNN )) 1.36 -
RCS-XGB2GNN 0.1 6 1 0 50 C2(P (DGNN )) 0.222 0.5
RCS-XGB3GNN 0.1 6 1 4 68 C3(P (DGNN )) 1.45 -

RCS-XGB1GAT 0.05 7 0.6 2 130 C1(P (DGAT )) 1.28 -
RCS-XGB2GAT 0.1 6 1 0 50 C2(P (DGAT )) 0.187 0.54
RCS-XGB3GAT 0.1 6 1 0 72 C3(P (DGAT )) 1.34 -

Sampling Random k Number of
Strategy State Neighbors Estimators

SMOTHEBoost Only Minority np.random generator of Python 5 1000
RUSBoost Only Majority Class np.random generator of Python - 1000
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The detailed information for the train and test data sizes, class ratio, and simulations

with LR, GNN, and GAT models are all reported in Table 4.34. The prediction re-

sults of the cost-insensitive algorithm and cost-sensitive ANN model are also given

in this table. The cost-insensitive algorithms have higher Specificity values but lower

Specificity values, therefore, LGD values are not reported for these ordinary algo-

rithms. Instance-specific cost-sensitive ANN algorithms estimated with the focal loss

function have higher Gmean values when compared with the ones estimated with the

focal loss function. Table 4.35 shows the classification performances of boosting

algorithms with the threshold of 0.5 which are observed to be superior to the cost-

sensitive ANN algorithms.

Table 4.35 presents the classification performances of boosting algorithms offered for

imbalanced data problems and their prediction results are observed to be higher for

Sensitivity and Specificity values when compared with the results reported in Table

4.34. The reported class predictions of SMOTEBoost, RUSBoost, XGBoostscaled,

CatBoostscaled and cost-sensitive boosting algorithms are the first prediction results

of the algorithms classified with the threshold of 0.5.

The last graphs of Figures 4.20 and 4.21 clearly demonstrate the success of cost-

sensitive algorithms with lower LGD values given Specificity values for the thresh-

olds of 0.4-0.6. RUSBoost has the lowest LGD value but lower Specificity and the

XGBoostscaled has the second lower LGD but higher Specificity when compared with

all ordinary algorithms. XGBoostscaled can reach to the highest Gmean = 87.0 with

LGD = 7.832 million in test data predictions and the comparisons with XGBoostscaled

for the case of maximum Gmean values in the test data demonstrate that XGB3GNN

saves 44.6 thousand with Gmean/LGD: 87.3/7.788 million, XGB2GAT decreases the

loss by 129.6 thousand with Gmean/LGD: 86.9/7.703 million and XGB3GAT leads a

decrease in the monetary loss by 233 thousand with Gmean/LGD: 87.3/7.599 million.

Gmean maximizing optimal thresholds in the validation data sets are computed in k-50

fold validations. The medians of the thresholds are applied for the test data classifi-

cation and Table 4.36 presents how the new thresholds affect the test data prediction

results. XGB3GNN , XGB2GAT and XGB3GAT result in lower LGD values with given

Specicificty values when compared to XGBoostscaled and CatBoostscaled.
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Table 4.34: Irish Loan Data2015
Performances of Algorithms

Train Data Size=294, 249, Test Data Size=126, 328, Train Data/Test Data = 7/3

Non-defaults/Defaults=33.8
Numbers of LR/GNN/GAT Models with Sub-Data Sets=3000/1000/1000
Sub-data Sizes for LR/GNN/GAT Models with Sub-Data Sets=16,936/3,000/3,000
Levels of Node Embeddings in GNN/GAT: 2/1
βRAW estimated with LR/GNN/GAT: 12.41/13.79/13.03
LR: R2

ordinary >= 0.51, R2
adjusted >= 0.51 and R2

AdjustedGeneralized >= 0.59

LR: thrs = 0.49 for C2

GNN: Iterations= 100, knn = 5, lR = 0.02 thrs = 0.5 for C2

GAT: Iterations=150, knn = 15, K = 2, lR = 0.02, thrs = 0.54 for C2

Threshold for ANNs: 0.5

Cost-Insensitive Algorithms

TRAIN DATA TEST DATA

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean

LR 82.5 82.7 82.6 80.8 82.9 81.8
GNN 86.3 82.1 84.2 80.8 84.1 82.5
GAT 84.7 84.3 84.5 83.5 82.2 82.8

ANNCrossEntropyLoss 37.3 99.9 61.0 35.3 99.9 59.4
ANNFocalLoss 0.7 100 8.37 0.8 100 8.94

AdaBoost 37.3 99.9 61.0 35.3 99.9 59.4
XGBoost 82.3 100 90.7 59.9 100 77.4
CatBoost 60.9 100 78.0 58.7 100 76.6
LightGBM 69.6 100 83.4 59.6 100 77.2

Cost-Sensitive ANNs with Focal Loss Function

TRAIN DATA TEST DATA
Loss Given

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 84.2 84.2 84.2 83.2 84.2 83.7 90.0 0.548 10.258
RCS-ANN3LR 84.0 84.4 82.7 83.5 84.4 83.5 90.4 0.587 10.685
RCS-ANN1GNN 83.1 85.2 84.1 81.6 85.2 83.4 90.0 0.710 11.432
RCS-ANN3GNN 83.8 84.7 84.2 82.4 84.6 83.5 90.4 0.610 10.912
RCS-ANN1GAT 87.9 81.3 84.5 87.0 81.2 84.0 90.0 0.377 8.083
RCS-ANN3GAT 86.2 82.9 84.5 85.0 82.8 83.9 90.3 0.448 9.197

Cost-Sensitive ANNs with Cross Entropy Loss Function

TRAIN DATA TEST DATA
Loss Given

Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 84.9 85.5 85.2 80.9 85.5 83.1 89.9 0.500 11.868
RCS-ANN2LR 80.9 85.6 82.3 78.9 85.6 82.2 88.8 0.409 13.648
RCS-ANN3LR 87.0 82.9 84.9 83.7 82.9 83.3 89.0 0.329 9.788

RCS-ANN1GNN 86.8 83.8 81.9 80.3 83.5 81.9 91.3 0.536 12.630
RCS-ANN2GNN 80.1 85.6 83.2 78.9 85.6 82.2 89.0 0.409 13.648
RCS-ANN3GNN 87.0 82.9 84.9 83.7 82.9 83.3 90.9 0.329 9.788

RCS-ANN1GAT 84.3 88.0 86.1 78.5 87.9 83.1 92.7 0.687 13.095
RCS-ANN2GAT 80.9 85.6 83.2 78.9 85.6 82.2 89.0 0.408 13.648
RCS-ANN3GAT 87.0 82.9 84.9 83.7 82.9 83.3 90.9 0.329 9.788
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Table 4.35: Irish Loan Data2015
Performances of Algorithms
Boosting Algorithms for Imbalanced Data

TRAIN DATA TEST DATA
Loss Given

Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

SMOTEBoost 59.6 97.3 76.2 59.9 97.3 76.3 93.6 4.778 23.838
RUSBoost 88.0 84.8 86.4 87.9 84.9 86.4 94.5 0.432 7.156

XGBoostscaled 88.2 87.1 87.6 87.0 87.0 87.0 94.6 0.268 7.832
CatBoostscaled 87.6 87.0 87.3 87.0 87.0 87.0 94.7 0.282 8.016

RCS-AdaB1LR 85.8 85.7 85.7 86.0 85.6 85.8 94.1 0.302 8.033
RCS-AdaB2LR 85.9 85.8 85.8 86.2 85.8 86.0 94.1 0.269 8.199

RCS-AdaB1GNN 86.3 85.7 86.0 86.5 85.6 86.1 94.5 0.317 7.952
RCS-AdaB2GNN 85.8 86.3 86.0 86.2 86.2 86.2 94.1 0.303 8.195

RCS-AdaB1GAT 86.1 86.1 86.1 86.3 86.1 86.2 94.3 0.337 8.238
RCS-AdaB2GAT 86.6 85.6 86.1 86.9 85.6 86.2 94.3 0.293 7.801

RCS-XGB1LR 89.5 87.1 88.3 87.0 87.0 87.0 94.4 0.334 7.980
RCS-XGB2LR 88.8 84.6 86.7 86.9 84.6 85.8 92.0 0.238 8.765
RCS-XGB3LR 88.1 87.0 87.5 86.9 86.9 86.9 94.3 0.309 8.134

RCS-XGB1GNN 90.4 87.0 88.7 87.1 87.0 87.0 94.8 0.310 8.130
RCS-XGB2GNN 89.4 86.0 87.6 87.2 85.9 86.5 94.2 0.143 7.837
RCS-XGB3GNN 90.5 87.2 88.8 87.5 87.1 87.3 95.0 0.251 7.684

RCS-XGB1GAT 92.9 87.5 90.2 87.1 87.3 87.2 94.8 0.322 8.172
RCS-XGB2GAT 90.8 87.1 89.0 87.0 86.6 86.8 94.5 0.197 7.562
RCS-XGB3GAT 89.7 86.7 88.2 87.7 87.0 87.3 95.0 0.254 7.415

Figure 4.20: Cost Parameters are Estimated with GNNs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data
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Figure 4.21: Cost Parameters are Estimated with GATs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data

Table 4.36: Irish Loan Data2015
Competing Performances of Algorithms After a Threshold Adjustment

TRAIN DATA TEST DATA
Loss Given

Algorithms
Weights

1
,thr

2 Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

XGBoostClassRatio,thr=0.488 88.6 86.6 87.6 87.4 86.5 87.0 94.6 0.247 7.630
CatBoostClassRatio,thr=0.495 87.9 86.8 87.3 87.3 86.8 87.0 94.7 0.260 7.762

RCS-XGB1LR,thr=0.49 90.0 86.7 88.3 87.2 86.6 86.9 94.4 0.318 7.830
RCS-XGB2LR,thr=0.55 87.9 85.4 86.7 86.0 85.4 85.7 92.0 0.304 9.433
RCS-XGB3LR,thr=0.485 88.6 86.4 87.5 87.3 86.4 86.9 94.3 0.281 7.845

RCS-XGB1GNN,thr=0.489 90.8 86.5 88.6 87.6 86.4 87.0 94.8 0.280 7.526
RCS-XGB2C2(P (DGNN )),thr=0.53 88.9 86.6 87.7 86.6 86.5 86.6 94.2 0.176 8.208
RCS-XGB3GNN,thr=0.488 91.0 86.7 88.8 87.8 86.6 87.2 95.0 0.232 7.461

RCS-XGB1GAT,thr=0.484 93.4 86.7 90.0 87.6 86.5 87.0 94.8 0.292 7.898
RCS-XGB2GAT,thr=0.498 90.9 87.0 88.9 87.0 86.6 86.8 94.5 0.197 7.562
RCS-XGB3GAT,thr=0.495 89.7 86.6 88.1 87.9 86.7 87.3 95.0 0.241 7.286
1P (DLR), P (DGNN ) and P (DGAT ) in weights are the default probabilities of the instances estimated with LR, GNNs, and GATs, respectively.
2Optimal Threshold: It is the median of Gmean maximizing thresholds of validation data sets predicted in k-50 fold cross validations.
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4.6 DATA SET 6: Freddie Mac Single Family Loan Data

Freddie Mac Single Family Loan Data is the largest credit data set among the other

7 data sets. It contains 500,137 credit applicants with 26 features in other credit data

sets in this empirical analysis. The data set is obtained from kaggle.com [1]. The

number of explanatory variables for the models is 14 of which 8 categorical features

are defined with dummy variables and 6 numerical features generate 108 numerical

variables for the classification of this data set. Table 4.37 gives brief summary of the

data set and the attributes evaluated as explanatory for the classification algorithms.

Table 4.37: Freddie Mac Single Family Loan Data

Data Information

Original Data File Name: loan level 500k

Original Data Data Size After Number of Number of Class
Size the Cleansing Categorical Variables Numerical Variables Ratio

500,137 500,137 14 12 26.8

14 features are found explanatory for the models, they are:

Credit Score - Interest Rate - Mortgage Insurance Percentage - Occupancy Status - Original Debt to Income
Ratio - Original Loan to Value - Property State - Loan Purpose - Number of Borrowers -
Loan Servicer Name - Prepaid Status - Loan Issue Date (First Payment Date)

Tables 4.38-4.40 present the hyperparameters of the models which are optimized with

the objective of maximum Gmean values in the test data. Common values for hyper-

parameters can be specified as cost-sensitive ANNs using focal loss function have the

highest optimal iteration numbers and cost-sensitive XGBoost algorithms have the

lowest. All cost-sensitive XGBoost algorithms have a sub-sample ratio of columns

less than 1 and a maximum delta higher than 0. Furthermore, the optimizations indi-

cate m > 1 for C1 and C3, while m < 1 for C2 for all cost-sensitive algorithms.

Table 4.41 informs about the train and test data sizes, class ratio, and simulations with

LR, GNN, and GAT models. It also presents the cost-insensitive algorithm results and

cost-sensitive ANN model results. Table 4.49 shows the classification performances

of boosting algorithms with the threshold of 0.5 which are observed to be superior to

the cost-sensitive ANN algorithms.
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Table 4.38: Freddie Mac Single Family Loan Data
ANN Optimized Hyperparameters

Activation Functions: Sigmoid
Learning Rate: 0.001 and 0.01 for ANN with Focal Loss and Cross Entropy Loss, respectively.
Number of Hidden Layers: 32 16 8
Training Function: Resilient Back Propagation
Increment to weight change: 1.2
Decrement to weight change: 0.5
Initial weight change: 0.07
Maximum weight change: 50.0
Classification Threshold 0.5

Focal Loss Function Cross Entropy Loss Function
Iterations m α γ1 γ2 Iterations m thrs

ANN 1000 - 1 1 1 100 - -
RCS-ANN1LR 1000 1.64 C1 0.1 2 500 1.65 -
RCS-ANN2LR - - - - - 500 0.4 0.44
RCS-ANN3LR 1200 1.68 C3 0.1 2 500. 1.68 -
RCS-ANN1GNN 1000 1.45 C1 0.1 2 500 1.44 -
RCS-ANN2GNN - - - - - 500 0.245 0.467
RCS-ANN3GNN 1000 1.54 C1 0.1 2 500. 1.52 -
RCS-ANN1GAT 1000 1.425 C1 0.1 2 500 1.44 -
RCS-ANN2GAT - - - - - 500 0.275 0.44
RCS-ANN3GAT 1000 1.6 C3 0.1 2 400 1.56 -

Table 4.39: Freddie Mac Single Family Loan Data:
AdaBoost Optimized Hyperparameters

Iterations m thrs

RCS-AdaB1LR 1000 1.525 -
RCS-AdaB2LR 200 0.1 0.44

RCS-AdaB1GNN 1000 1.46 -
RCS-AdaB2GNN 300 0.075 0.467

RCS-AdaB1GAT 500 1.35 -
RCS-AdaB2GAT 300 0.06 0.44

Table 4.40: Freddie Mac Single Family Loan Data
XGBOOST Optimized Hyperparameters

Evaluation Metric: Log Loss/Cross Entropy Loss Function.

Depth Sub-sample Number Scale
Learning from a Root Ratio of Maximum of Positive

Rate: to Leaf Columns Delta Estimators Weights m thrs

XGBoost 0.1 6 0.5 0 1000 - - -
CatBoost 0.05 6 0 1000 - - -
LightGBM 0.05 - - 1000 - - -
XGBoostScaled 0.1 6 0.5 0 72 26.8 - -
CatBoostScaled 0.1 6 1 0 65 26.8 - -
RCS-XGB1LR 0.1 8 0.5 1 61 C1 1.55 -
RCS-XGB2LR 0.1 9 0.5 1 56 C2 0.36 0.44
RCS-XGB3LR 0.1 7 0.51 1 61 C3 1.65 -
RCS-XGB1GNN 0.1 7 0.49 1 58 C1 1.4 -
RCS-XGB2GNN 0.1 7 0.49 1 56 C2 0.24 0.467
RCS-XGB3GNN 0.1 7 0.49 1 59 C3 1.5 -
RCS-XGB1GAT 0.1 7 0.51 1 63 C1 1.4 -
RCS-XGB2GAT 0.11 7 0.51 1 61 C2 0.27 0.44
RCS-XGB3GAT 0.12 8 0.51 1 38 C3 1.58 -

Sampling Random k Number of
Strategy State Neighbors Estimators

SMOTHEBoost Only Minority np.random generator of Python 5 1000
RUSBoost Only Majority Class np.random generator of Python - 1000
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Table 4.41: Freddie Mac Single Family Loan Data
Performances of Algorithms

Train Data Size=350, 096, Test Data Size=150, 041, Train Data/Test Data = 7/3

Non-defaults/Defaults=26.8
Numbers of LR/GNN/GAT Models with Sub-Data Sets=4000/1000/800
Sub-data Sizes for LR/GNN/GAT Models with Sub-Data Sets=25,188/3,000/3,000
LR: Models with R2

Ordinary >= 0.550, ordinary R2
Adjusted >= 0.550, R2

AdjustedGeneralized >= 0.640

LR: thrs = 0.44 for C2

Levels of Node Embeddings in GNN/GAT: 1/1
βRAW used in C2 estimated with LR/GNN/GAT: 8.669/9.696/8.464
GNN: Iterations= 30, knn = 5, lR = 0.01 thrs = 467 for C2

GAT: Iterations=100, knn = 15, K = 1, thrs = 0.44 for C2

Threshold for ANNs: 0.5

Cost-Insensitive Algorithms

TRAIN DATA TEST DATA

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean

LR 83.9 83.9 83.9 84.1 83.6 83.9
GNN 84.0 84.1 84.0 83.4 83.8 83.6
GAT 85.6 85.4 85.5 83.5 84.3 83.9

ANNCrossEntropyLoss 47.5 99.5 68.8 47.8 99.4 69.0
ANNFocalLoss 47.7 99.5 68.9 48.5 99.5 69.5

AdaBoost 53.2 98.9 72.6 54.1 98.8 73.1
XGBoost 53.2 99.7 72.8 48.0 99.4 69.1
CatBoost 49.4 99.6 70.2 48.1 99.5 69.2
LightGBM 50.8 99.6 71.1 48.1 99.5 69.2

Cost-Sensitive ANNs with Focal Loss Function

TRAIN DATA TEST DATA

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean AUC

RCS-ANN1LR 85.5 83.8 84.6 84.1 83.6 83.9 92.2
RCS-ANN2LR 86.9 84.5 85.7 83.0 84.3 83.7 92.2
RCS-ANN1GNN 87.1 83.6 85.3 83.8 83.4 83.6 92.1
RCS-ANN2GNN 86.7 84.3 85.5 83.5 84.1 83.8 92.2
RCS-ANN1GAT 86.8 84.3 85.5 83.4 84.0 83.7 92.0
RCS-ANN2GAT 86.6 84.5 85.5 83.3 84.2 83.8 92.2

Cost-Sensitive ANNs with Cross Entropy Loss Function

TRAIN DATA TEST DATA

Sens. Spec. Gmean Sens. Spec. Gmean AUC

RCS-ANN1LR 86.6 83.4 85.0 82.9 83.3 83.1 90.8
RCS-ANN2LR 84.9 84.4 84.6 83.4 84.3 83.8 92.1
RCS-ANN3LR 87.6 82.3 84.9 83.3 82.0 82.7 91.3

RCS-ANN1GNN 87.0 82.4 83.4 82.1 82.6 90.9 91.1
RCS-ANN2GNN 86.1 84.0 85.0 83.7 83.8 83.8 92.1
RCS-ANN3GNN 86.7 83.6 85.1 82.7 83.2 83.0 91.4

RCS-ANN1GAT 86.9 82.0 84.6 82.6 82.2 82.4 90.3
RCS-ANN2GAT 85.8 84.0 84.9 83.5 83.8 83.7 91.9
RCS-ANN3GAT 86.4 83.7 85.0 83.1 83.5 83.3 91.6
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Table 4.42: Freddie Mac Single Family Loan Data
Performances of Algorithms
Boosting Algorithms for Imbalanced Data

TRAIN DATA TEST DATA
Sens. Spec. Gmean Sens. Spec. Gmean AUC

SMOTEBoost 80.4 87.5 83.9 79.8 87.4 83.5 91.6
RUSBoost 80.4 87.5 83.9 79.8 87.4 83.5 91.7

XGBoostscaled 81.2 89.1 85.1 79.2 89.0 84.0 92.3
CatBoostscaled 79.6 88.7 84.0 79.5 88.6 83.9 92.2

RCS-Ada1LR 82.3 83.6 82.9 82.9 83.5 83.2 91.3
RCS-Ada2LR 82.7 83.2 82.9 83.4 83.2 83.3 91.4

RCS-AdaB1GNN 83.5 83.3 83.4 83.8 83.2 83.5 91.6
RCS-AdaB2GNN 83.5 83.2 83.3 83.9 83.2 83.6 91.7

RCS-Ada1GAT 83.0 83.4 83.2 83.5 83.4 83.4 91.5
RCS-Ada2GAT 83.2 83.0 83.1 84.0 83.0 83.5 91.6

RCS-XGB1LR 86.1 86.2 86.1 82.1 85.9 84.0 92.0
RCS-XGB2LR 85.6 84.0 84.8 84.0 83.9 83.9 92.0
RCS-XGB3LR 85.8 84.3 85.0 84.2 84.1 84.2 92.3

RCS-XGB1GNN 86.5 84.0 85.3 83.9 83.8 83.8 92.1
RCS-XGB2GNN 85.1 84.0 84.5 83.9 83.9 83.9 92.1
RCS-XGB3GNN 85.4 84.8 85.1 83.7 84.6 84.2 92.3

RCS-XGB1GAT 86.7 84.1 85.4 83.9 83.9 83.9 92.1
RCS-XGB2GAT 85.2 84.2 84.7 84.1 84.1 84.1 92.2
RCS-XGB3GAT 86.6 84.4 85.5 83.9 84.2 84.1 92.1

The credit data set under consideration does not include the credit amount disbursed

to the borrower as one of its features. As a result, sub-datasets could not be gen-

erated using rejection sampling based on credit amounts and were instead formed

using random sampling. Furthermore, LGD analyses could not be performed for

model comparisons. Table 4.42 demonstrates that the instance-specific cost-sensitive

algorithms resulted in balanced classification when compared to XGBoostscaled and

CatBoostscaled; however, the threshold analyses in Figure 4.22 indicate that the pro-

posed algorithms only marginally improved the Sensitivity-Specificity values in test

data. Furthermore, k-50 fold cross-validations are applied for these algorithms and

the medians of thresholds that maximize the Gmean values for the validation data sets

are applied for the test data. Table 4.43 shows that threshold adjustments also indicate

a very small improvement in the test data predictions.

In all credit data sets, except for the one under consideration, credit amount has been

identified as a significant explanatory variable for LR, GNN, GAT models, and all

other algorithms. Therefore, the absence of this feature may have impacted the pre-

dictive capabilities of the proposed algorithms.
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Figure 4.22: Sensitivity-Specificity and LGD with Different Thresholds in
Test Data

Table 4.43: Freddie Mac Single Family Loan Data
Competing Performances of Algorithms After a Threshold Adjustment

TRAIN DATA TEST DATA
Algorithms

Weights
1
,thr

2 Sens. Spec. Gmean Sens. Spec. Gmean AUC

XGBoostClassRatio,thr=0.422 85.5 84.2 84.8 84.0 84.0 84.0 92.3
CatBoostClassRatio,thr=0.428 84.0 83.9 83.9 83.7 83.7 83.7 92.2

RCS-XGB1LR,thr=0.472 87.6 84.0 85.8 83.8 83.8 83.8 92.0
RCS-XGB2LR,thr=0.510 85.5 84.0 84.8 83.9 83.9 83.9 92.0
RCS-XGB3LR,thr=0.501 85.8 84.3 85.1 84.2 84.2 84.2 92.3

RCS-XGB1GNN,thr=0.498 86.6 83.9 85.2 84.1 83.6 83.8 92.1
RCS-XGB2GNN,thr=0.499 85.1 84.0 84.5 83.9 83.8 83.8 92.1
RCS-XGB3GNN,thr=0.494 85.8 84.3 85.1 84.1 84.2 84.1 92.3

RCS-XGB1GAT,thr=0.498 86.9 83.9 85.4 84.0 83.6 83.8 92.1
RCS-XGB2GAT,thr=0.510 85.1 84.3 84.7 84.1 84.1 84.1 92.2
RCS-XGB3GAT,thr=0.497 86.8 84.2 85.5 84.0 84.0 84.0 92.1
1P (DLR), P (DGNN ) and P (DGAT ) in weights are the default probabilities of the instances estimated with LR, GNNs, and GATs,
respectively.
2Optimal Threshold: It is the median of Gmean maximizing thresholds of validation data sets predicted in k-50 fold cross-validations.
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4.7 DATA SET 7: SBA National Loan Data2004−2006

SBA National Loan Data has information on 899,164 credit applicants with 26 re-

ported attributes. Credit issue dates start from 1962 to 2014. The source of the data

set is kaggle.com [5]. In the empirical studies, increasing the credits issued in differ-

ent years is observed to result in unsuccessful estimations in the LR models, therefore,

the credit issue years are selected as close to each year to obtain more homogeneous

data. The credits issued in 2004, 2005, and 2006, and 2002 and 2003 generate the

first and the second data set, respectively.

SBA National Loan Data2004−2006 has a class ratio of 2.79. The default class in-

stances are deleted with random selection and a data set with non-defaults/defaults

of 40 is generated for severely imbalanced data. Furthermore, the reason for the

significant decrease in the feature size is that some of the features are repeated in

different formats in the data set. For this reason, 15 features are deleted (The deleted

features are Name, City, Zip, NAICS, FranchiseCode, MIS Status, ChgOffDate, Ap-

provalFY, LoanNrChkDgt, ApprvDate, DisburseDate, ApprovalDate, Disbursement-

Date, ChgOffPrinGr, and BalanceGross). Eight features are found explanatory for the

models of which two categorical features are defined with dummy variables and six

numerical features generate sixty numerical variables for the classification. Table 4.44

summarizes SBA National Loan Data2004−2006 used in the classification algorithms.

Table 4.44: SBA National Loan Data2004−2006

Data Information

Original Data File Name: SBAnational

Original Data Data Size After Number of Number of Class
Size the Cleansing Categorical Variables Numerical Variables Ratio

221,855 164,021 11 15 40

8 features found explanatory for the models, they are:

Term - Credit Amount (Disbursement Gross) - Guarantee for the Loan by SBA (US Small Business
Administration) - Days between the Approval and the Disbursement of the Loan - State -
Number of Business - Employees - The Number of Retained Jobs - Urban/Rural

SBA National Loan Data2004−2006 reports the credit amounts disbursed to the appli-

cants but does not give its monetary unit. Figure 4.23 demonstrates the histograms
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of the credit amounts of non-defaults and defaults and their distributions are found to

be expressed best by Gamma(α = 0.834, β = 0.0236) with M = 1 for the rejection

sampling.

Figure 4.23: SBA National Loan Data2004−2006

Histograms of Credit Amounts

The hyperparameters of ANN, AdaBoost and XGBoost are optimized with the tar-

get of maximum Gmean values in the test data and they are reported in tables 4.45-

4.47. The hyperparameters vary in all models but all XGBoost algorithms have a

sub-sample ratio of columns less than 1 and a maximum delta higher than 0. The

optimal value of m is observed as m > 1 for C1 and C3, while m < 1 for C2 for all

cost-sensitive algorithms.

The algorithm classification results for the train and test data are listed in tables 4.48-

4.50. Table 4.48 informs about the train and test data sizes, class ratio, and simulations

with LR, GNN, and GAT models and also it presents the cost-insensitive algorithm

results and cost-sensitive ANN model results. The cost-insensitive algorithms have

higher Specificity values but lower Specificity values, therefore, LGD values are not

reported for these ordinary algorithms. Table 4.49 shows the classification perfor-

mances of boosting algorithms with the threshold of 0.5 and they are observed to be

superior to the cost-sensitive ANN algorithms.
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Table 4.45: SBA National Loan Data2004−2006

ANN Optimized Hyperparameters
Activation Functions: Sigmoid
Learning Rate: 0.001 and 0.01 for ANN with Focal Loss and Cross Entropy Loss, respectively.
Number of Hidden Layers: 64 32 8
Training Function: Resilient Back Propagation
Increment to weight change: 1.2
Decrement to weight change: 0.5
Initial weight change: 0.07
Maximum weight change: 50.0
Classification Threshold 0.5

Focal Loss Function Cross Entropy Loss Function
Iterations m α γ1 γ2 Iterations m thrs

ANN 500 - 1 1 1 2000 - -
RCS-ANN1LR 248 1.17 C1 0.1 2 1000 1 -
RCS-ANN2LR - - - - - 2000 0.125 0.53
RCS-ANN3LR 211 1.18 C3 0.1 2 500 1 -
RCS-ANN1GNN 149 1.09 C1 0.1 2 1000 1 -
RCS-ANN2GNN - - - - - 2000 0.125 0.555
RCS-ANN3GNN 174 1.16 C3 0.1 2 1000 1 -
RCS-ANN1GAT 177 1.11 C1 0.1 2 1000 1 -
RCS-ANN2GAT - - - - - 2000 0.125 0.5
RCS-ANN3GAT 166 1 .165C3 0.1 2 1000 1 -

Table 4.46: SBA National Loan Data2004−2006

AdaBoost Optimized Hyperparameters
Iterations m thrs

RCS-AdaB1LR 1000 1.0 -
RCS-AdaB2LR 500 0.008 0.53
RCS-AdaB1GNN 1000 1 -
RCS-AdaB2GNN 1000 0.09 0.555
RCS-AdaB1GAT 1000 1 -
RCS-AdaB2GAT 1500 0.009 0.5

Table 4.47: SBA National Loan Data2004−2006

XGBOOST Optimized Hyperparameters
Evaluation Metric: Log Loss/Cross Entropy Loss Function.

Depth Sub-sample Number Scale
Learning from a Root Ratio of Maximum of Positive

Rate: to Leaf Columns Delta Estimators Jobs m thrs

XGBoost 0.1 6 0.6 1 2000 - -
CatBoost 0.05 8 - - 2000 - - -
LightGBM 0.1 - - -1000 - - -
XGBoostScaled 0.05 5 0.4 1 400 40 - -
CatBoostScaled 0.025 8 - - 598 40 - -
RCS-XGB1LR 0.025 5 0.55 5 625 C1 1.1 -
RCS-XGB2LR 0.05 6 0.4 3 310 C2 0.155 0.53
RCS-XGB3LR 0.015 6 0.6 3 566 C3 1.15 -
RCS-XGB1GNN 0.025 5 0.5 4 620 C1 1.1 -
RCS-XGB2GNN 0.02 6 0.5 3 412 C2 0.128 0.555
RCS-XGB3GNN 0.015 6 0.6 2 572 C3 1.2 -
RCS-XGB1GAT 0.025 5 0.5 3 610 C1 1.1 -
RCS-XGB2GAT 0.05 6 0.4 2 358 C2 0.16 0.5
RCS-XGB3GAT 0.015 6 0.6 3 566 C3 1.2 -

Sampling Random k Number of
Strategy State Neighbors Estimators

SMOTHEBoost Only Minority np.random generator of Python 5 2000
RUSBoost Only Majority Class np.random generator of Python - 2000
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Table 4.48: SBA National Loan Data2004−2006

Performances of Algorithms
Train Data Size=114, 815, Test Data Size=49, 206, Train Data/Test Data = 7/3

Non-defaults/Defaults=40
Numbers of LR/GNN/GAT Models with Sub-Data Sets=10, 000/1, 000/1, 000
Sub-data Sizes for LR/GNN/GAT Models with Sub-Data Sets=5602/3, 600/3, 600
LR: Models with ordinary R2

ordinary >= 0.45, R2
adjusted >= 0.45, R2

AdjustedGeneralized >= 0.49

LR:thrs = 0.53 for C2

Levels of Node Embeddings in GNN/GAT: 3/1
βRAW used in C2 estimated with LR/GNN/GAT: 22.145/18.811/19.718
GNN: Iterations= 100, knn = 20, lR = 0.05 thrs = 0.555 for C2

GAT: Iterations=150, knn = 20, K = 1, lR = 0.02 thrs = 0.5 for C2

Threshold for ANNs: 0.5

Cost-Insensitive Algorithms

TRAIN DATA TEST DATA

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean

LR 81.0 81.0 81.0 81.6 80.2 80.9
GNN 83.8 83.8 83.8 82.7 82.7 82.7
GAT 83.3 81.7 82.5 83.3 80.6 82.0

ANNCrossEntropyLoss 4.1 99.9 20.2 3.1 99.9 17.6
ANNFocalLoss 0.0 100 0 0.0 100 0

AdaBoost 16.4 99.7 40.4 16.9 99.7 41.1
XGBoost 91.0 100 95.40 36.6 99.3 60.3
CatBoost 60.2 99.8 77.5 35.8 99.4 59.7
LightGBM 97.2 99.9 98.6 34.2 99.4 58.3

Cost-Sensitive ANNs with Focal Loss Function

TRAIN DATA TEST DATA
Loss Given

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 82.5 83.2 82.9 83.2 83.2 83.2 88.2 2.090 54.976
RCS-ANN2LR 83.3 82.1 82.7 83.7 82.0 82.8 88.0 2.067 49.203
RCS-ANN1GNN 83.2 82.6 82.9 82.9 82.6 82.9 87.9 2.516 55.355
RCS-ANN2GNN 83.1 82.0 82.6 83.6 82.0 82.8 87.9 2.162 50.236
RCS-ANN1GAT 81.8 83.5 82.6 82.4 83.5 83.0 88.0 2.463 51.640
RCS-ANN2GAT 81.9 82.9 82.4 82.8 82.9 82.9 87.8 2.044 46.617

Cost-Sensitive ANNs with Cross Entropy Loss Function

TRAIN DATA TEST DATA
Loss Given

Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 85.0 87.5 86.2 80.3 87.3 83.8 92.5 2.165 59.483
RCS-ANN2LR 90.6 88.3 89.4 85.0 88.2 87.6 92.8 0.466 53.442
RCS-ANN3LR 90.1 86.3 88.2 85.7 86.0 85.8 93.7 0.935 45.439

RCS-ANN1GNN 90.3 83.4 84.8 86.5 83.2 84.8 93.0 0.824 44.570
RCS-ANN2GNN 95.4 84.0 89.5 88.3 83.8 86.0 93.5 0.299 49.231
RCS-ANN3GNN 87.3 88.0 87.6 83.3 87.7 85.5 93.8 1.400 51.826

RCS-ANN1GAT 90.4 85.2 87.7 86.7 85.0 85.8 93.6 1.186 49.086
RCS-ANN2GAT 89.9 89.3 89.6 84.1 89.1 86.5 94.6 0.955 56.490
RCS-ANN3GAT 89.1 88.8 89.0 83.7 88.5 89.1 94.6 0.873 39.852
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Table 4.49: SBA National Loan Data2004−2006

Performances of Algorithms
Boosting Algorithms for Imbalanced Data

TRAIN DATA TEST DATA
Loss Given

Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

SMOTEBoost 75.4 96.7 85.4 76.1 96.7 85.8 95.3 2.124 65.841
RUSBoost 93.9 89.5 54.6 92.8 89.4 91.1 95.7 0.984 27.490

XGBoostscaled 96.4 92.7 94.6 92.8 92.6 92.7 97.4 0.532 26.252
CatBoostscaled 97.2 92.6 94.9 92.7 92.5 92.6 97.3 0.542 31.162

RCS-Ada1LR 89.7 90.1 89.9 90.8 90.3 90.5 96.8 1.018 29.969
RCS-Ada2LR 90.4 90.4 90.4 91.8 90.4 91.1 96.8 1.107 34.063

RCS-Ada1GNN 90.4 91.9 91.2 91.3 92.0 91.7 96.8 0.767 27.788
RCS-Ada2GNN 91.8 90.2 91.0 93.1 90.3 91.7 96.7 0.405 24.753

RCS-Ada1GAT 90.4 92.2 91.3 91.1 92.3 91.7 96.8 0.731 26.869
RCS-Ada2GAT 91.9 90.7 91.3 92.9 90.8 91.8 96.8 0.404 22.336

RCS-XGB1LR 95.6 93.1 94.3 92.7 92.9 92.8 97.3 0.461 22.592
RCS-XGB2LR 94.8 92.0 93.4 91.8 91.8 91.8 96.5 0.386 39.445
RCS-XGB3LR 96.5 93.0 94.7 92.9 93.0 92.9 97.4 0.499 24.699

RCS-XGB1GNN 96.7 92.6 94.6 93.5 92.4 93.0 97.4 0.362 20.404
RCS-XGB2GNN 95.3 92.3 93.8 92.1 92.2 92.2 97.0 0.542 38.109
RCS-XGB3GNN 97.3 92.5 92.9 93.3 92.4 92.9 97.4 0.448 23.232

RCS-XGB1GAT 96.7 92.4 94.5 93.3 92.2 92.8 97.4 0.455 23.268
RCS-XGB2GAT 96.4 92.3 94.3 92.6 92.0 92.3 97.1 0.569 32.186
RCS-XGB3GAT 97.1 92.7 94.9 93.1 92.6 92.8 97.4 0.484 23.992

The results of SMOTEBoost, RUSBoost, XGBoostscaled, CatBoostscaled and cost-

sensitive boosting algorithms presented in 4.49 are the first results of the algorithms

that the probability predictions are classified with the threshold of 0.5. The prediction

results of XGBoostscaled are superior to other existing ordinary algorithms with the

highest Gmean. The prediction results for Sensitivity-Specificity and LGD values are

analyzed with the thresholds of 0-4-0.6 since the maximums of Gmean values in k-50

fold cross-validations are observed in the test data.

Figures 4.25 and 4.26 display the maximum Gmean values of the successful algo-

rithms in the first graphs and the third graph of each figure shows how LGD values

change as the threshold changes. The last graphs in these figures clearly demon-

strate the instance-specific cost-sensitive modifications of XGBoost have relatively

lower LGD values given Specificity values when compared with the successful ordi-

nary algorithms of XGBoostscaled, CatBoostscaled. The monetary unit is not reported

in the data set, therefore, LGD are reported in unit values. Considering the maxi-

mum Gmean values in the test data, XGBoostscaled can reach the highest Gmean value
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Figure 4.24: Cost Parameters are Estimated with LRs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data

as 92.6 where LGD is 26.599 million and comparing the proposed algorithms with

XGBoostscaled, XGB1LR reduces the loss by 4.807 million unit with Gmean/LGD:

92.8/21.792 million loss. This cost-saving corresponds to 18.1 % of the LGD value

of XGBoostscaled. Moreover, XGB3LR decreases the loss by 1.899 millions with

Gmean/LGD: 92.9/24.699 million loss, XGB1GNN saves 3.313 millions unit with

Gmean/LGD: 92.7/23.286 million loss, XGB3GNN drops the loss by 406 thousand

unit with Gmean/LGD: 92.7/26.193 million loss, XGB1GAT leads a decrease in the

loss by 620 thousand unit with Gmean/LGD: 92.8/25.979 million loss and XGB3GAT

saves 1.450 millions unit with Gmean/LGD: 92.9/25.149 million loss.

k-50 fold validations are conducted and Gmean maximizing optimal thresholds for the

validation data are computed. The medians of the thresholds are applied for the test

data classification and Table 4.50 presents how the optimal thresholds of validation

data result in Sensitivity-Specifcity and LGD for the test data. XGB1LR, XGB3LR,

XGB1GNN , XGB3GNN , XGB1GAT and XGB3GAT result in lower LGD values with

the given Specicificty values when compared to XGBoostscaled and CatBoostscaled.
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Figure 4.25: Cost Parameters are Estimated with GNNs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data

Figure 4.26: Cost Parameters are Estimated with GATs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data
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Table 4.50: SBA National Loan Data2004−2006

Competing Performances of Algorithms After a Threshold Adjustment
TRAIN DATA TEST DATA

Loss Given

Algorithms
Weights

1
,thr

2 Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

XGBoostClassRatio,thr=0.488 96.6 92.5 92.6 92.9 92.4 92.6 97.4 0.514 26.076
CatBoostClassRatio,thr=0.430 97.8 91.4 94.5 93.0 91.3 92.1 97.3 0.506 30.829

RCS-XGB1LR,thr=0.453 96.5 91.9 94.2 93.7 91.8 92.7 97.3 0.331 20.373
RCS-XGB2LR,thr=0.504 94.8 92.1 93.4 91.8 91.9 91.9 96.5 0.386 39.445
RCS-XGB3LR,thr=0.460 97.2 92.4 94.8 93.5 92.3 92.9 97.4 0.421 23.524

RCS-XGB1GNN,thr=0.470 97.2 91.9 94.5 94.8 91.8 93.3 97.4 0.187 16.233
RCS-XGB2GNN,thr=0.45 95.8 91.6 93.7 92.8 91.5 92.1 97.0 0.430 36.162
RCS-XGB3GNN,thr=0.483 97.4 92.2 94.8 93.6 92.1 92.8 97.4 0.416 22.454

RCS-XGB1GAT,thr=0.483 97.0 92.0 94.5 93.8 91.9 92.9 97.4 0.310 19.590
RCS-XGB2GAT,thr=0.459 98.8 91.6 94.2 92.8 91.4 92.0 97.1 0.531 31.482
RCS-XGB3GAT,thr=0.486 97.4 92.5 94.9 93.6 92.3 92.9 97.4 0.415 22.593
1P (DLR), P (DGNN ) and P (DGAT ) in weights are the default probabilities of the instances estimated with LR, GNNs, and GATs, respectively.
2Optimal Threshold: It is the median of Gmean maximizing thresholds of validation data sets predicted in k-50 fold cross-validations.

4.8 DATA SET 8: SBA National Loan Data2002−2003

SBA National Loan Data2002−2003 generated with the credits issued in 2002 and 2003

has a class ratio of 6.52. The default class instances are deleted with random selection

and a data set with non-defaults/defaults of 50 is generated for severely imbalanced

data. Furthermore, the reason for the significant decrease in the feature size is that

some of the features are repeated in different formats in the data set. The deleted

features are the same as in Data Set 7 as well as the feature properties. Table 4.51

presents the details of SBA National Loan Data2002−2003 with the features found ex-

planatory for the classification algorithms.

Table 4.51: SBA National Loan Data2002−2003

Data Information

Original Data File Name: SBAnational

Original Data Data Size After Number of Number of Class
Size the Cleansing Categorical Variables Numerical Variables Ratio

102,584 95,932 11 15 50

8 features are found explanatory for the models, they are:

Term - Credit Amount (Disbursement Gross) - Guarantee for the Loan by SBA (US Small Business
Administration)-Days between the Approval and the Disbursement of the Loan - State - Number of Business
Employees - The Number of Retained Jobs - Urban/Rural

Figure 4.23 demonstrates the histograms of the credit amounts of non-defaults and

defaults and their distributions are found to be expressed best by Gamma (α = 0.737,
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β = 0.0507) with M = 1 for the rejection sampling.

Figure 4.27: SBA National Loan Data2002−2003

Histograms of Credit Amounts

Tables 4.52-4.54 present the optimized hyperparameters of ANN, AdaBoost, and XG-

Boost with the target of maximum Gmean values in the test data. The characteristics

of the hyperparameters cannot be fully generalized but iteration numbers of cost-

sensitive ANNs estimated with focal loss function are the lowest in algorithms. All

XGBoost algorithms have a maximum delta higher than 0. The optimal value of m

is observed to be as m > 1 for C1 and C3, while m < 1 for C2 for all cost-sensitive

algorithms.

Table 4.55 summarizes data-specific information, LR, GNN, and GAT models details

and the cost-insensitive algorithm results as well as cost-sensitive ANN model re-

sults. The cost-insensitive algorithms have higher Specificity values but lower Speci-

ficity values, therefore, LGD values are not reported for these ordinary algorithms.

Table 4.56 shows the classification performances of outperforming boosting algo-

rithms when compared with the cost-sensitive ANN algorithms. The predictions of

SMOTEBoost, RUSBoost, XGBoostscaled, CatBoostscaled, and cost-sensitive boosting

algorithms presented in Table 4.56 are classified with a threshold of 0.5.
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Table 4.52: SBA National Loan Data2002−2003: ANN Optimized Hyperparameters
Activation Functions: Sigmoid
Learning Rate: 0.001 and 0.01 for ANN with Focal Loss and Cross Entropy Loss, respectively.
Number of Hidden Layers: 64 32 8
Training Function: Resilient Back Propagation
Increment to weight change: 1.2
Decrement to weight change: 0.5
Initial weight change: 0.07
Maximum weight change: 50.0
Classification Threshold 0.5

Focal Loss Function Cross Entropy Loss Function
Iterations m α γ1 γ2 Iterations m thr

ANN 200 - 1 1 1 1000 - -
RCS-ANN1LR 150 1.11 C1 0.1 2 500 1.1 -
RCS-ANN2LR - - - - - 500 0.1 0.51
RCS-ANN3LR 131 1.12 C3 0.1 2 500 1.2 -
RCS-ANN1GNN 151 1.12 C1 0.1 2 500 1.15 -
RCS-ANN2GNN - - - - - 500 0.118 0.55
RCS-ANN3GNN 130 1.14 C3 0.1 2 500 1.12 -
RCS-ANN1GAT 144 1.114 C1 0.1 2 500 1.15 -
RCS-ANN2GAT - - - - - 500 0.126 0.52
RCS-ANN3GAT 135 1.154 C3 0.1 2 500 1.27 -

Table 4.53: SBA National Loan Data2002−2003

AdaBoost Optimized Hyperparameters
Iterations m thr

RCS-AdaB1LR 1500 1.0 -
RCS-AdaB2LR 1500 0.05 0.5
RCS-AdaB1GNN 1000 1.125 -
RCS-AdaB2GNN 600 0.1 0.55
RCS-AdaB1GAT 1000 1.115 -
RCS-AdaB2GAT 1200 0.012 0.52

Table 4.54: SBA National Loan Data2002−2003

XGBOOST Optimized Hyperparameters
XGBoost
Evaluation Metric: Log Loss/Cross Entropy Loss Function.

Depth Sub-sample Number Scale
Learning from a Root Ratio of Maximum of Positive

Rate: to Leaf Columns Delta Estimators Weight m thrs

XGBoost 0.1 6 1 1 2000 - - -
CatBoost 0.05 6 - - 2000 - - -
LightGBM 0.05 - - -2000 - - -
XGBoostScaled 0.01 5 1 1 598 50 - -
CatBoostScaled 0.01 5 - - 600 50 - -

RCS-XGB1LR 0.1 5 0.65 5 129 C1 1.2 -
RCS-XGB2LR 0.05 5 0.6 3 90 C2 0.1 0.51
RCS-XGB3LR 0.05 5 0.6 3 102 C3 1.16 -

RCS-XGB1GNN 0.05 5 1 1 246 C1 1.22 -
RCS-XGB2GNN 0.01 5 1 5 312 C2 0.12 0.55
RCS-XGB3GNN 0.02 5 1 4 165 C3 1.15 -

RCS-XGB1GAT 0.05 5 0.6 1 257 C1 1.2 -
RCS-XGB2GAT 0.01 5 1 2 482 C2 0.152
RCS-XGB3GAT 0.02 5 1 6 173 C3 1.2 -

Sampling Random k Number of
Strategy State Neighbors Estimators

SMOTHEBoost Only Minority np.random generator of Python 5 2000
RUSBoost Only Majority Class np.random generator of Python - 2000
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Table 4.55: SBA National Loan Data2002−2003

Performances of Algorithms
Train Data Size=67, 153, Test Data Size=28, 779, Train Data/Test Data = 7/3

Non-defaults/Defaults=50
Numbers of LR/GNN/GAT Models with Sub-Data Sets=10, 000/1, 000/1, 000
Sub-data Sizes for LR/GNN/GAT Models with Sub-Data Sets=2, 634/2, 634/2, 634
LR: Models with R2

ordinary >= 0.477, R2
adjusted >= 0.468, R2

adjustedGeneralized >= 0.540

LR: Models with thrs = 0.51 for C2

Levels of Node Embeddings in GNN/GAT: 3/1
βRAW used in C2 estimated with LR/GNN/GAT: 28.223/26.170/21.404
GNN: Iterations= 80, knn = 5, lR = 0.02 thrs = 0.55 for C2

GAT: Iterations=80, knn = 10, K = 1, lR = 0.03 thrs = 0.52 for C2

Threshold for ANNs: 0.5

Cost-Insensitive Algorithms

TRAIN DATA TEST DATA

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean

LR 80.9 80.8 80.9 82.3 78.9 80.6
GNN 79.8 79.3 79.6 76.1 82.0 79.0
GAT 80.3 81.7 81.0 81.8 78.4 80.1

ANNCrossEntropyLoss 8.9 99.9 29.8 2.8 99ç9 16.8
ANNFocalLoss 0.00 100 0 0.00 100 0

AdaBoost 15.3 99.6 39.0 15.2 99.6 39.0
XGBoost 99.2 100 99.6 34.0 99.5 58.2
CatBoost 71.8 100 84.7 34.2 99.5 58.4
LightGBM 99.9 100 100 31.4 99.6 55.9

Cost-Sensitive ANNs with Focal Loss Function

TRAIN DATA TEST DATA
Loss Given

Algorithms Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 81.9 79.3 80.6 81.4 79.6 80.5 87.5 1.153 22.507
RCS-ANN2LR 81.9 78.6 80.3 81.2 78.9 80.0 87.2 1.225 22.358
RCS-ANN1GNN 82.2 80.0 81.1 82.4 80.2 81.3 87.6 1.218 22.220
RCS-ANN2GNN 82.5 78.7 80.6 81.7 79.1 80.4 87.3 1.116 22.150
RCS-ANN1GAT 81.9 79.8 80.8 81.4 80.2 80.8 87.4 1.261 22.791
RCS-ANN2GAT 80.0 80.7 80.3 80.1 81.0 80.5 87.2 1.283 22.811

Cost-Sensitive ANNs with Cross Entropy Loss Function

TRAIN DATA TEST DATA
Loss Given

Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

RCS-ANN1LR 88.6 80.8 84.6 81.0 80.6 80.5 85.8 0.640 22.815
RCS-ANN2LR 90.4 80.2 85.1 81.4 80.2 80.8 87.1 0.416 25.885
RCS-ANN3LR 89.0 79.1 83.9 82.8 79.2 81.0 87.0 0.556 19.136

RCS-ANN1GNN 92.1 81.7 86.7 83.0 81.4 82.2 87.6 0.467 21.247
RCS-ANN2GNN 89.9 81.7 85.7 82.4 82.0 82.2 86.4 0.359 29.021
RCS-ANN3GNN 87.5 81.9 84.7 82.3 81.9 82.1 88.4 0.626 22.154

RCS-ANN1GAT 90.8 82.6 86.6 81.2 82.6 81.9 87.7 0.715 23.821
RCS-ANN2GAT 88.5 83.0 85.7 81.4 83.3 82.3 87.3 0.546 30.915
RCS-ANN3GAT 91.6 82.0 86.7 83.0 82.1 82.5 87.8 0.617 25.647
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Table 4.56: SBA National Loan Data2002−2003

Performances of Algorithms
Boosting Algorithms for Imbalanced Data

TRAIN DATA TEST DATA
Loss Given

Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

SMOTEBoost 68.6 97.4 81.8 68.6 97.3 81.7 96.2 5.567 35.506
RUSBoost 95.7 87.8 91.6 89.4 87.8 88.6 95.1 0.641 12.054

XGBoostscaled 95.6 90.9 93.2 90.8 90.7 90.8 96.4 0.388 15.362
CatBoostscaled 91.4 87.3 89.4 89.4 87.4 88.4 95.1 0.663 19.275

RCS-Ada1LR 90.0 90.0 90.0 89.4 90.0 89.7 95.7 0.465 15.796
RCS-Ada2LR 91.6 87.2 89.4 90.2 87.2 88.7 95.7 0.445 14.832

RCS-Ada1GNN 91.4 89.4 90.4 90.4 89.3 89.9 96.2 0.329 15.125
RCS-Ada2GNN 90.8 89.9 90.3 91.0 89.8 90.4 96.2 0.325 16.520

RCS-Ada1GAT 91.7 89.7 90.7 91.3 89.8 90.5 96.1 0.319 14.311
RCS-Ada2GAT 91.4 90.2 90.8 90.6 90.2 90.4 96.2 0.389 15.438

RCS-XGB1LR 98.5 90.9 94.6 90.8 90.6 90.7 96.2 0.217 10.179
RCS-XGB2LR 95.7 87.3 91.4 91.5 87.3 89.4 95.9 0.430 17.319
RCS-XGB3LR 95.9 90.8 93.3 91.5 90.5 91.0 96.6 0.294 12.290

RCS-XGB1GNN 97.2 90.4 93.7 91.5 90.2 90.8 96.7 0.293 12.898
RCS-XGB2GNN 92.9 86.8 89.8 90.2 86.9 88.6 94.8 0.383 20.178
RCS-XGB3GNN 93.6 90.6 92.1 91.0 90.3 90.6 96.4 0.364 14.360

RCS-XGB1GAT 97.5 90.4 93.9 91.3 90.3 90.8 96.8 0.266 11.384
RCS-XGB2GAT 93.5 87.6 90.5 90.8 87.6 89.2 95.7 0.474 20.539
RCS-XGB3GAT 93.6 91.1 92.3 91.1 90.8 91.0 96.4 0.373 14.354

The success of cost-sensitive algorithms arises with lower LGD values given Speci-

ficity values which are clearly observed in the fourth graphs of figures 4.28, 4.28 and

4.29 when compared with higher LGD values give Specificity values of XGBoostscaled

and CatBoostscaled. The monetary unit is not reported in the data set, therefore, LGD

are reported in unit values. XGBoostscaled has a higher Gmean value than CatBoostscaled

but they are not superior to all cost-sensitive algorithms. The predictions reported

with the maximum Gmean values in the test data indicate that the proposed algo-

rithms decrease the costs when they are compared with Gmean/LGD: 90.8/15.362

million reported by XGBoostscaled. XGB1LR has Gmean/LGD: 90.7/10.179 mil-

lion and this result is evaluated as the best result. Since XGB1LR leads a reduc-

tion in the financial loss by 5.183 million which amounts to 33.7% of 15.362 million

loss of XGBoostscaled. Furthermore, XGB3LR decreases the loss by 1.321 millions

with Gmean/LGD: 90.7/14.040 million, XGB1GNN reduces the loss by 2.331 mil-

lion with Gmean/LGD: 91.0/13.031 million, XGB3GNN drops the loss by 817 thou-

sands unit with Gmean/LGD: 90.6/14.545 million, XGB1GAT saves 3.602 million
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with Gmean/LGD: 91.0/11.759 million and XGB3GAT decreases the loss by 1.007

million with Gmean/LGD: 90.9/14.354 million.

Figure 4.28: Cost Parameters are Estimated with LRs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data

Figure 4.29: Cost Parameters are Estimated with GNNs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data
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Figure 4.30: Cost Parameters are Estimated with GATs
Sensitivity-Specificity and LGD with Different Thresholds in Test Data

The thresholds maximizing Gmean values in the validation data in k-50 fold valida-

tions are analyzed and the medians of the thresholds are applied for the test data and

Table 4.57 presents how the balanced classification thresholds of validation data result

in Sensitivity-Specifcity and LGD for the test data. XGB1LR, XGB3LR, XGB1GNN ,

XGB3GNN , XGB1GAT and XGB3GAT result in lower LGD values with given Speci-

cificty values when compared to XGBoostscaled and CatBoostscaled.

Table 4.57: SBA National Loan Data2002−2003

Competing Performances of Algorithms After a Threshold Adjustment
TRAIN DATA TEST DATA

Loss Given

Algorithms
Weights

1
,thr

2 Sens. Spec. Gmean Sens. Spec. Gmean AUC MCx106

Y =1 Defaultx106

XGBoostClassRatio,thr=0.508 95.4 91.2 93.2 90.8 90.9 90.8 96.4 0.388 15.362
CatBoostClassRatio,thr=0.535 89.4 88.4 88.9 88.3 88.4 88.4 95.1 0.922 22.468

RCS-XGB1LR,thr=0.508 98.3 91.0 94.6 90.8 90.7 90.8 96.2 0.217 10.179
RCS-XGB2LR,thr=0.508 95.4 87.7 91.5 91.0 87.6 89.3 95.9 0.489 18.044
RCS-XGB3LR,thr=0.507 95.9 91.0 93.4 90.8 90.7 90.7 96.6 0.407 14.040

RCS-XGB1GNN,thr=0.530 97.0 91.0 94.0 91.1 90.8 90.7 96.7 0.312 13.031
RCS-XGB2GNN,thr=0.56 91.8 87.8 89.8 88.7 87.9 88.3 94.8 0.617 23.052
RCS-XGB3GNN,thr=0.511 93.5 90.9 92.2 90.6 90.7 90.7 96.4 0.387 14.548

RCS-XGB1GAT,thr=0.488 97.5 90.1 93.7 91.3 90.0 90.7 96.8 0.266 11.383
RCS-XGB2GAT,thr=0.463 94.0 87.0 90.4 91.3 87.0 89.1 95.7 0.352 18.301
RCS-XGB3GAT,thr=0.498 93.5 90.8 92.1 91.1 90.8 91.0 96.4 0.373 14.354
1P (DLR), P (DGNN ) and P (DGAT ) in weights are the default probabilities of the instances estimated with LR, GNNs, and GATs, respectively.
2Optimal Threshold: It is the median of Gmean maximizing thresholds of validation data sets predicted in k-50 fold cross-validations.
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4.9 Discussion

Common performance metrics computed for the algorithm results are generally ex-

pressed as the percentage of correct identification of borrowers (instances) and they do

not fully represent the true success of machine learning. The success of the algorithms

should be evaluated by considering the financial losses in the credit dataset classifi-

cations. Therefore, the comparative analysis is predominantly done with the LGD

values given the Specificity values. The proposed instance-specific cost-sensitive al-

gorithms surpass XGBoostscaled and CatBoostscaled which are found to be the most

successful ones as the ordinary algorithms.

Table 4.58 reports the financial savings of the proposed algorithms in test data pre-

diction results. The cost savings or the decrease in the monetary losses are computed

based on the monetary losses of the most successful ordinary algorithms, XGBoostscaled

and CatBoostscaled. In addition, the comparisons are based on the maximum Gmean

values observed in test data predictions, and LGD values are reported as units and

percentages. The most significant findings are that RCS-XGB1LR, RCS-XGB1GNN

and XGB1GNN decrease the monetary loss by 33.7 %, 23.4 %, and 15.2 %, respec-

tively when compared with the loss of XGBoostscaled in SBA LoansY=2002−2003 data

set which has the highest data imbalance among all data sets. The second best success

of the proposed algorithms appears in the data set with the second highest class im-

balance, SBA LoansY=2004−2006, in which RCS-XGB1LR, RCS-XGB1GNN and RCS-

XGB3LR lead a decrease in the monetary loss by 18.1 %, 12.5 % and 7.13 %, respec-

tively. Furthermore, RCS-XGB2LR, RCS-XGB3GNN , XGB3GNN and XGB2GNN

reduce the monetary loss by 16.3 %, 15.9 %, 14 % and 8.1 % in Irish Loan Data2013.

The success of the instance-specific cost-sensitive models strictly depends on the suc-

cess of the LRs, GNN, and GAT models in sub-datasets. If the LRs have higher R2

values with higher Sensitivity and Specificity values in test data predictions, the cost

parameters estimated with LRs are observed to lead to higher performance, and lower

LGD given Specificity in the final predictions for the test data. Moreover, if the prob-

ability estimations of the sub-datasets are well-dispersed around their target labels

and the classification is successful with Sensitivity and Specificity values of more than

85% in GNNs and GATs, the proposed algorithms can outperform the class ratio ad-
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Table 4.58: Cost Savings of Instance-Specific Cost Sensitive Algorithms in
Test Data Predictions Where the Gmean Values are Maximized

Data Number of Class Successful Decrease in the
Data Sets1 Size Features Ratio Algorithms Loss

Home Credit Risk D. Data 307,217 30 11.4:1 RCS-XGB3LR 5.9 million-2.2 (%)

Risky Loans Data 231,285 13 8.8:1 RCS-XGB2GNN 160.0 thousand-4.2 (%)

RCS-XGB2GNN 156.7 thousand-4.2 (%)

RCS-XGB3LR 119.1 thousand-3.2 (%)

RCS-XGB3GNN 101.1 thousand-2.7 (%)

Irish Loan Data2013 124,381 12 15.0:1 RCS-XGB3LR 374.4-thousand-16.3 (%)

RCS-XGB3GNN 364.3 thousand-15.9 (%)

RCS-XGB3GNN 322.3 thousand-14.0 (%)

RCS-XGB2GNN 185.4 thousand-8.1 (%)

RCS-XGB2GNN 181.2 thousand-7.9 (%)

RCS-XGB1GNN 96.0 thousand-4.2 (%)

Irish Loan Data2014 235,626 12 9.5:1 RCS-XGB3GNN 594.0 thousand-6.7 (%)

RCS-XGB3LR 590.7 thousand-6.7 (%)

RCS-XGB1GNN 440.1 thousand-5.0 (%)

RCS-XGB3GNN 306.1 thousand-3.5 (%)

RCS-XGB2GNN 290.3 thousand-3.3 (%)

RCS-XGB2GNN 190.3 thousand-2.1 (%)

Irish Loan Data2015 421,092 11 33.8:1 RCS-XGB3GNN 233 thousand-3.0 (%)

RCS-XGB2GNN 129.6 thousand-0.3 (%)

SBA N. Loans2004−2006 164,021 8 40.0:1 RCS-XGB1LR 4.807 million-18.1 (%)

RCS-XGB1GNN 3.313 million-12.5 (%)

RCS-XGB3LR 1.899 million-7.1 (%)

RCS-XGB3GNN 1.450 million-5.5 (%)

RCS-XGB1GNN 620 thousand-2.3 (%)

RCS-XGB3GNN 406 thousand-1.5 (%)

SBA N. Loans2002−2003 95,932 8 50.0:1 RCS-XGB1LR 5.183 million-33.7 (%)

RCS-XGB1GNN 3.602 million-23.4 (%)

RCS-XGB1GNN 2.331 million-15.2 (%)

RCS-XGB3LR 1.321 million-8.6 (%)

RCS-XGB3GNN 1.007 million-6.6 (%)

RCS-XGB3GNN 817 thousand-5.3 (%)

1Source: Kaggle.com.

justed XGBoost and CatBoost. The aggregated results of LRs, GNNs, and GATs of

sub-datasets in Irish Loan DataY=2015 have Sensitivity and Specificity values lower

than 85 % and the proposed cost-sensitive parameters are not successful as they are

in other data sets.
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It is also important to underline the fact that if LR, GNN, and GAT models can not

exceed 80 − 82% for Sensitivity-Specificity in both train and test data, this does not

indicate these models are not well-designed at all. Some data sets have a high number

of instances that are hard to separate for both classes such as default instances with

the features signaling he/she is not to default with default probability close to 0, or

vice versa. These inseparable instances for both classes can also reduce the success

of the sub-data models in simulations. Furthermore, the credit amount disbursed to

the borrower is one of the important explanatory features indicating the financial cost

for the default instances and it is included in seven data sets. Data Set 6: Freddie Mac

Single Family Loan does not report the credit amount in its feature list. The proposed

borrower-specific cost-sensitive algorithms do not considerably improve the test data

predictions in this data set and the lack of this attribute might prevent good estimations

for the default probabilities and finally the cost-sensitive algorithms.

The sub-datasets of LR, GNN, and GAT model simulations differ and the success

of LRs can also be attributed to these dimensional choices of the sub-datasets. The

reason for the higher sub-data sizes for LR simulations is that all non-default instances

are included in all sub-datasets and there is no time problem for test data predictions

with the estimated LR models. However, the sizes of the sub-datasets in GNN and

GAT models are lower due to the longer time required for the computation of the

test data adjacency matrix with the search of the neighbors in the trained sub-dataset.

The lower the dimension of the sub-datasets, the quicker to estimate the test data

predictions which is essential for controlling the over-fitting problem of the GNN and

GAT models. Since GNN and GAT models can easily overfit in the train data, these

models are very sensitive to neighbors in the clustering, the node-embedding levels,

learning parameter sizes, learning rate, number of epochs, and the sub-data sizes. An

increase in any of these parameters causes the model to memorize the details in the

train data and the optimized parameters through the loss minimization process in the

train data estimations can not be generalized for the new data instances.

To generate well-functioning instance-specific cost parameters, it is significant to

avoid the discrepancy between the train and test data predictions since the default

probabilities in cost parameters are extracted from the train data estimates. The over-

fitted train data default estimates can not generate cost parameters identifying the test
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data. To illustrate this crucial point, one example from the experimental stage can be

given. GNN models of Risky Loans Data are estimated with two different designs.

In the first one, k-NN=20, iteration=60, node embeddings=2, and learning param-

eter size=60 × 60 are selected. The aggregated prediction results with the median

values of predictions are observed to be SensitivityTrain-SpecificityTrain: 94.7-94.7,

SensitivityTest-SpecificityTest: 93.9-90.2. In the second design, the parameters are ad-

justed as k-NN=5, iteration=25, node embeddings=1, learning parameter size=30×30
and the aggregated prediction results with the median values of predictions are Sen-

sitivityTrain-SpecificityTrain: 89.9-90.0, SensitivityTest-SpecificityTest-SpecificityTest:

89.8-88.1.

Figure 4.31 demonstrates the sub-dataset results for both GNN designs on four graphs.

The blue dots display the first model results and the red dots display the second model

results. The first and the second graphs display the Sensitivity and the Specificity val-

ues for the train data, and the third and the fourth graphs show the same metrics for

the test data. Sensitivity and the Specificity values in the first two graphs are relatively

higher in the first model design whereas Sensitivity values for the test data set are

also higher in the first model design but Specificity values of the first model are not

high as they are in the train data. They drop to lower levels compared to the second

model results. This issue remarks that the GNN models with the first design learn the

train data very well but they cannot make generalizations for the test data instances.

Moreover, the aggregated median value of prediction data results of the first model

has a higher discrepancy between the train and test data results. It is crucial to notice

that the proposed cost-sensitive parameters are computed with the P (D) of the train

data. Over-estimations of the P (D) in train data do not reflect the real values for the

borrowers’ default risk levels. Over-fitting in the train data results, in other words,

the higher discrepancy between the train and test data predictions in LRs, GNNs, and

GATs prevents the generation of a generalized weight adjustment mechanism for the

test data instances.

Figure 4.32 displays LGD given Specificity values for both GNN model designs. LGD

given Specificity graph given on the left displays that the instance-specific cost param-

eters are not well-operating. Even though the prediction performances in test data are

superior in the previous estimations, the decrease in the discrepancy in the train and
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Figure 4.31: Sensitivity-SpecificityValues Over-fitted and Not Over-Fitted GNN
Models

test data predictions given in the second model design has been reflected in the cost

parameters. The graph in the right column of Figure 4.32 shows that LGD Speci-

ficity values lie behind the ones of XGBoostscaled and CatBoostscaled when the cost

parameters are estimated with the GNN’s second model design.

Figure 4.32: The Effects of the Cost Parameters Estimated with
Over-fitted and Not Over-Fitted GNN Models

The experimental studies of eight data sets are conducted with MacBook Pro(M1,

2020)-Version 12.0.1. MATLAB 2021b is used for AdaBoost and ANN and their

cost-sensitive modifications and PYTHON 3.7-Spider is used for XGBoost and its

cost-sensitive modifications. The cost parameters are estimated faster with LRs when

compared with ones estimated by GNNs and GATs. The monetary cost saving with-

out decreasing the number of correctly identified non-defaults is the most principal

target of the lender. If LR models can not be estimated with higher Sensitivity and

Specificty values in the test data, the generation of GNN and GAT models will cer-

tainly increase the computation time but the lenders are more interested in the mini-

mization of the monetary loss.
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CHAPTER 5

CONCLUSION

Consumer credit risk in the financial sector appears as a binary classification problem

in which risk level changes for every instance. The amount of the credit line and the

interest rate charged change for each individual, therefore, the expected earnings and

possible defaults differ as well. Credit risk identification differs from other binary

classifications with its imbalance data problem and requires a cost-sensitive approach

for the minority class of default instances.

The related literature suggests different pre-algorithm levels and various distinct hy-

brid models of combining sampling and classical algorithms for imbalance data prob-

lems, but there are no sophisticated, cost-sensitive algorithm recommendations at-

taching a specific valuation to each instance remarking its default risk level. The

use of the expected nominal credit amount of each instance might be misleading in

instance-specific cost-sensitive algorithms since the high amount of credit with low

default probability can cause the applicant to be assessed in the risky group. The mon-

etary values should be better evaluated with relative indicators, and the high credit

amount might not indicate a high-risk level if the applicant already has a high income

and enough assets to repay the loan.

This study presents unique instance-specific risk identifiers to be used in classical

algorithms. The method proposed with its distinctive approach to the classification

problem of imbalanced data has not been encountered in the literature. The methodol-

ogy does not depend on trying different constant positive scalars for the out-weighting

of the minority class with grid-search applications. The proposed methodology fo-

cuses on the extraction of an original weight parameter that is specific to each data
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instance. Each data uses the relevant information of its features and takes the new

weight following its relative risk in the whole data set. The use of the ‘cost/risk pa-

rameter’ refers to the relative default risk of the instances/borrowers and implies that

the misclassification errors do not incur the same level of cost but one is significantly

more costly or fatal. Therefore, the main goal is to shift the priority of the algorithm

toward this more important class without distorting the identification of other classes

severely.

Equalizing the classes not on a class size basis but a relative default risk basis is

the crucial part distinguishing this study from other studies dealing with imbalanced

data. The default probabilities of each borrower are used for the default risk level

indicators. LRs and deep learning methods of GNN and GAT models are used for

the estimations of default probabilities. The default probabilities are insufficient to

boost the minority class alone and therefore, relative total class-based default risk

levels are incorporated in the new cost/risk parameter to strengthen the minority class

instance weights and equalize the loss function for both classes. The second and third

cost parameters are generated in the settings of AdaBoost cost-sensitive modifications

offered in the literature.

The generated instance/borrower-specific cost/risk parameters are embedded in the

classical algorithms through the initial instance weight initialization and instance-

specific error re-weighting in cross entropy and focal loss functions. The weights of

the minority class have to be boosted and high default probabilities of the default in-

stances are compatible with this weight adjustment process. Therefore, outweighing

the instances according to their risk levels is very rational; the real effect is that the

share of the majority class in the total loss decreases while the share of the minority

one increases.

The instance/borrower-specific cost-sensitive modifications of AdaBoost, ANN, and

XGBoost are analyzed with their cost-insensitive designs. The empirical results indi-

cate that class weight-adjusted XGBoost and CatBoost outperform the ordinary algo-

rithms in all data sets and the proposed models are compared with these algorithms.

The algorithm results are analyzed with thresholds ranging between 0.4-0.6 with LGD

values and correct predictions in the non-default class. The success of the proposed
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borrower-specific cost-sensitive algorithms is directly related to sub-train data prob-

ability estimates which are not over-fitted and also have Sensitivity-Specificity values

higher than 85 % in test data predictions.

The performance of the measure of the new models is not only the Sensitivity-Specificity

values but the real financial burden caused by LGD and the corresponding Specificity

value. The actual success of the instance-specific cost-sensitive algorithms in iden-

tifying the defaults becomes more remarkable as the class ratios in the data set in-

crease. In other words, the proposed instance-specific cost-sensitive algorithms can

even classify the minority and the majority class more successfully as the data sets

become more unbalanced with lower LGD values given the Specificity values in test

data. The empirical findings prove the success of the proposed methodology by de-

creasing the monetary loss by 18% and 33.7 % when the non-defaults to default ratio

is 40 and 50, respectively.
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APPENDIX B

CROSS VALIDATIONS: K-10 FOLD

Table B.1: Home Credit Default Risk Data: Sensitivity/Specificity (%)
RCS-XGB1Ć1( ´PDLR) RCS-XGB3Ć3( ´PDLR)

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 95.0/93.1 92.7/92.6 91.8/92.9 95.1/92.9 91.3/92.7 92.0/92.9
2 94.9/93.1 92.2/92.7 91.8/92.9 95.1/92.8 91.7/92.5 92.2/92.7
3 95.1/93.0 91.5/92.8 91.9/92.9 95.1/92.9 91.6/92.7 91.8/92.9
4 94.9/93.0 91.4/93.0 91.8/92.8 94.9/93.0 92.0/92.7 91.8/92.9
5 94.8/93.1 91.6/93.1 91.8/92.9 95.1/92.9 93.4/92.4 92.1/92.8
6 95.1/93.0 91.9/92.8 91.8/92.8 95.1/93.1 92.3/92.8 92.0/93.0
7 95.0/92.9 92.9/92.8 91.8/92.7 95.2/93.1 91.3/92.8 91.8/93.0
8 95.0/93.1 92.3/92.9 91.7/92.9 95.1/93.1 91.1/93.1 91.5/93.1
9 95.1/92.9 92.0/92.3 92.2/92.8 94.9/93.0 93.0/92.7 92.0/92.9
10 95.0/93.2 91.4/92.7 91.7/93.0 95.0/93.0 92.0/93.1 92.0/93.0

RCS-XGB2Ć2( ´PDGNN )

Train Validation Test
Sens/Spec Sens/Spec Sens/Spec

1 96.1/94.0 91.0/93.4 90.8/93.5
2 96.2/94.2 89.1/93.7 90.9/93.7
3 96.1/94.0 91.3/93.3 90.9/93.5
4 96.1/94.1 91.1/93.4 91.0/93.6
5 96.0/94.1 90.7/93.6 91.0/93.6
6 96.1/94.2 91.2/93.5 90.8/93.6
7 96.1/94.1 90.9/93.1 90.9/93.5
8 96.0/94.2 91.3/93.6 90.9/93.7
9 96.1/93.9 91.1/93.4 90.9/93.4
10 96.0/94.2 91.1/93.8 90.8/93.7

RCS-XGB2Ć2( ´PDGAT ) RCS-XGB3Ć3( ´PDGAT )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 95.5/94.6 90.1/94.0 90.4/94.0 94.4/94.1 91.0/93.6 90.7/93.9
2 95.7/94.5 90.1/94.0 90.4/93.9 94.3/94.1 92.0/93.6 90.9/93.9
3 95.6/94.5 90.3/93.9 90.4/93.9 94.6/94.0 91.4/93.5 90.8/93.8
4 95.5/94.5 90.6/93.8 90.4/93.9 94.3/94.0 91.8/94.2 90.8/93.9
5 95.7/94.5 89.7/93.9 90.4/94.0 94.3/94.1 91.6/94.0 90.8/94.0
6 95.7/94.4 90.6/93.5 90.6/93.8 94.3/94.1 90.4/93.7 90.9/93.9
7 95.7/94.3 90.2/93.5 90.6/93.8 94.4/94.1 90.4/93.8 90.8/94.0
8 95.6/94.4 90.9/93.6 90.4/93.8 94.4/94.1 90.6/93.7 90.7/93.9
9 95.7/94.4 89.8/94.1 90.4/93.9 94.4/94.1 91.0/94.1 90.8/94.0
10 95.6/94.5 91.3/94.0 90.7/94.0 94.5/94.1 89.9/94.2 90.9/94.0
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Table B.2: Risky Loans Data: Sensitivity/Specificity (%)
RCS-XGB2Ć2( ´PDLR) RCS-XGB3Ć3( ´PDLR)

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 98.7/96.5 96.3/95.8 96.2/95.9 98.4/96.1 95.9/96.0 96.1/95.9
2 98.7/96.5 96.9/95.6 96.6/95.8 98.5/96.1 96.2/95.5 96.4/95.8
3 98.7/96.3 96.3/95.3 96.5/95.6 98.5/96.1 96.5/95.7 96.2/95.9
4 98.7/96.5 96.9/95.6 96.4/95.8 98.4/96.0 96.5/95.7 96.2/95.9
5 98.8/96.2 96.1/96.0 96.4/95.6 98.5/96.0 96.9/95.6 96.4/95.8
6 98.7/96.3 96.8/95.9 96.6/95.6 98.5/96.1 96.3/95.7 96.1/95.9
7 98.8/96.5 95.9/95.6 96.3/95.9 98.5/96.1 96.0/95.5 96.3/95.8
8 98.6/96.4 96.6/95.8 96.4/95.8 98.5/96.0 95.4/95.8 96.1/95.8
9 98.7/96.4 96.9/95.7 96.6/95.8 98.4/96.1 95.0/95.6 96.3/95.9
10 98.6/96.1 96.9/95.2 96.6/95.5 98.4/96.1 96.8/95.7 96.2/95.9

RCS-XGB2Ć2( ´PDGNN ) RCS-XGB3Ć3( ´PDGNN )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 98.9/96.8 96.7/95.6 96.1/95.9 99.0/96.3 95.3/95.8 96.0/96.0
2 99.0/96.9 95.7/96.4 96.0/96.2 98.9/96.1 95.7/95.8 96.1/95.9
3 99.0/96.8 96.8/96.0 96.2/96.0 98.9/96.2 96.3/95.6 96.0/95.9
4 98.9/96.8 96.4/96.2 96.0/96.1 98.8/96.3 95.3/95.8 96.1/96.0
5 98.9/96.8 96.6/96.0 96.1/95.9 98.9/96.2 96.1/95.9 95.9/96.0
6 99.0/96.9 95.8/96.0 95.9/96.1 98.8/96.2 95.9/95.5 96.0/95.9
7 99.0/96.8 96.6/95.9 96.1/96.0 99.0/96.2 96.4/95.9 95.9/95.9
8 99.0/96.8 96.6/96.0 96.1/96.0 98.9/96.2 95.5/95.4 96.1/95.9
9 99.0/96.9 96.0/96.2 96.1/96.1 98.9/96.1 96.4/95.9 96.1/95.9
10 98.9/96.9 96.6/96.0 96.1/96.1 98.9/96.2 95.9/96.0 96.1/95.9

RCS-XGB2Ć2( ´PDGAT ) RCS-XGB3Ć3( ´PDGAT )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 98.6/96.1 96.3/95.5 96.5/95.8 98.1/95.6 96.6/95.4 96.3/95.5
2 98.5/96.2 97.1/95.8 96.5/95.9 97.9/95.6 95.6/95.4 96.3/95.5
3 98.6/96.2 96.2/95.7 96.3/95.8 98.0/95.5 96.2/95.3 96.5/95.3
4 98.6/96.0 96.7/95.5 96.3/95.6 98.0/95.7 96.5/95.1 96.3/95.5
5 98.6/96.3 96.5/95.9 96.3/95.9 98.0/95.6 96.4/95.6 96.4/95.5
6 98.5/96.2 96.4/95.4 96.4/95.8 98.0/95.5 96.6/95.6 96.3/95.5
7 98.6/96.1 97.6/95.5 96.5/95.7 98.1/95.5 96.7/95.1 96.4/95.4
8 98.6/96.3 96.4/95.7 96.5/95.9 98.1/95.6 96.1/95.3 96.3/95.4
9 98.6/96.1 97.0/95.5 96.5/95.6 98.0/95.5 97.3/95.3 96.5/95.3
10 98.6/96.1 96.3/95.9 96.4/95.7 98.1/95.5 96.2/95.1 96.3/95.4
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Table B.3: Irish Loan Data2013: Sensitivity/Specificity (%)
RCS-XGB3Ć3( ´PDLR) RCS-XGB2Ć2( ´PDGNN )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 97.3/95.8 91.4/95.7 94.0/95.6 97.7/96.1 91.5/95.7 93.4/95.7
2 97.4/95.6 93.5/95.1 94.1/95.4 97.6/96.0 93.9/95.4 93.6/95.4
3 97.4/95.4 93.9/94.9 94.0/95.2 97.5/95.9 92.8/95.1 93.3/95.4
4 97.5/95.6 92.4/95.6 93.9/95.4 97.8/96.1 92.7/95.8 93.4/95.5
5 97.3/95.8 93.0/95.8 93.9/95.5 97.7/96.0 93.0/95.4 93.3/95.5
6 97.3/95.7 92.5/94.9 94.2/95.4 97.8/96.3 92.1/95.7 93.4/95.8
7 97.2/95.6 94.1/95.0 93.9/95.4 97.8/96.2 91.3/95.8 93.2/95.7
8 97.0/95.7 94.0/95.5 94.0/95.5 97.8/96.0 91.9/95.5 93.6/95.7
9 97.3/95.6 92.4/95.7 93.8/95.5 97.8/96.1 92.0/95.4 93.5/95.5
10 97.2/95.6 93.5/95.2 94.0/95.4 97.7/96.0 92.5/95.6 93.4/95.5

RCS-XGB3Ć3( ´PDGNN ) RCS-XGB1Ć1( ´PDGAT )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 96.6/95.7 93.4/95.5 94.2/95.5 97.3/95.1 90.7/94.9 92.9/94.8
2 96.8/95.7 92.4/95.3 93.6/95.5 97.6/96.4 88.8/95.8 92.9/96.0
3 96.5/95.7 94.2/95.9 94.1/95.5 97.3/95.4 94.7/95.2 93.2/95.1
4 96.6/96.0 92.5/95.5 93.9/95.8 97.4/94.9 93.0/94.7 93.1/94.7
5 96.7/95.7 93.8/95.2 94.0/95.6 97.3/96.0 90.1/95.7 92.7/95.6
6 96.5/95.7 92.2/95.5 94.1/95.6 97.6/95.5 89.9/95.4 93.0/95.1
7 96.6/95.7 91.2/95.4 94.1/95.6 97.4/95.1 93.8/94.7 93.1/94.9
8 96.5/95.9 92.1/95.9 93.5/95.8 97.4/95.4 90.9/94.7 92.9/95.2
9 96.4/95.9 93.0/95.5 94.0/95.7 97.4/95.0 93.6/94.6 93.4/94.8
10 96.7/95.8 92.6/95.7 94.1/95.7 97.2/95.6 94.1/94.8 93.1/95.2

RCS-XGB2Ć2( ´PDGAT ) RCS-XGB3Ć3( ´PDGAT )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 97.5/96.0 93.2/95.5 93.3/95.6 96.9/95.9 92.4/95.5 94.0/95.7
2 97.6/96.2 89.3/95.4 93.5/95.7 97.1/95.9 89.8/95.8 94.1/95.7
3 97.3/95.9 93.6/95.5 93.4/95.5 96.9/95.8 93.9/95.4 93.9/95.7
4 97.4/96.0 92.1/95.7 93.1/95.7 97.2/95.5 93.8/95.4 94.2/95.3
5 97.5/95.9 91.5/95.5 93.5/95.5 96.8/95.8 93.4/95.4 93.9/95.6
6 97.5/96.0 90.3/95.4 93.5/95.6 97.0/95.7 90.6/95.3 94.3/95.5
7 97.2/95.9 93.5/95.2 93.3/95.4 96.8/95.8 93.3/95.6 93.9/95.7
8 97.2/96.1 91.3/95.7 92.9/95.5 96.6/95.7 95.5/95.6 94.3/95.5
9 97.4/96.0 92.6/95.4 93.4/95.5 97.1/95.8 93.0/95.5 93.9/95.6
10 97.3/95.8 95.0/95.5 93.7/95.5 96.8/95.6 93.4/95.7 93.7/95.4
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Table B.4: Irish Loan Data2014: Sensitivity/Specificity (%)
RCS-XGB2Ć2( ´PDLR) RCS-XGB3Ć3( ´PDLR)

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 94.1/92.7 90.2/92.6 91.8/92.2 95.9/92.8 91.2/91.9 92.0/92.0
2 93.8/92.7 91.5/92.3 91.9/92.1 96.1/92.8 92.5/92.3 91.9/92.1
3 94.0/92.7 90.5/92.8 91.8/92.2 95.9/93.2 91.5/92.7 92.0/92.5
4 93.9/92.7 91.4/91.8 91.8/92.1 95.8/92.8 91.7/92.3 92.2/92.2
5 94.0/92.9 90.1/92.5 91.7/92.3 95.9/93.0 91.7/91.9 91.9/92.3
6 93.9/92.8 92.0/92.1 91.7/92.3 95.9/93.0 91.3/92.6 91.9/92.3
7 93.9/92.9 91.2/91.9 91.9/92.3 95.8/93.1 91.1/92.3 91.9/92.4
8 93.8/92.7 92.0/91.9 91.9/92.2 96.1/93.0 92.0/92.6 91.8/92.3
9 94.0/92.7 89.5/92.5 91.9/92.3 96.0/92.6 91.3/92.5 91.9/92.0
10 93.9/92.8 91.7/92.6 91.9/92.2 96.0/92.9 89.6/92.4 91.8/92.3

RCS-XGB2Ć2( ´PDGNN ) RCS-XGB3Ć3( ´PDGNN )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 93.3/92.4 92.2/91.8 91.9/92.0 93.9/92.6 91.3/92.4 91.9/92.1
2 93.4/92.7 90.0/92.6 91.8/92.3 93.9/92.6 91.8/92.5 92.0/92.1
3 93.3/92.7 90.2/91.9 91.7/92.3 93.7/92.8 91.8/92.3 92.1/92.3
4 93.4/92.5 91.1/92.4 91.8/92.1 93.7/92.7 92.3/92.4 91.8/92.3
5 93.5/92.4 91.0/92.4 91.9/92.1 93.9/92.8 90.6/92.4 91.9/92.3
6 93.2/92.6 91.8/92.2 91.8/92.3 93.7/92.9 90.1/92.9 91.8/92.5
7 93.3/92.7 90.5/92.7 91.7/92.4 93.7/92.6 91.1/92.0 91.8/92.2
8 93.2/92.7 90.8/92.5 91.7/92.3 93.6/92.9 91.5/92.4 91.9/92.4
9 93.4/92.5 91.4/92.0 91.9/92.1 93.7/92.5 91.6/92.2 91.9/92.1
10 93.3/92.4 91.5/92.2 91.7/92.1 93.8/92.8 89.3/92.3 91.6/92.3

RCS-XGB1Ć1( ´PDGAT ) RCS-XGB2Ć2( ´PDGAT )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 94.6/92.9 92.2/92.5 91.9/92.4 95.3/93.2 91.6/92.5 91.8/92.4
2 94.8/92.8 89.5/92.1 91.8/92.1 95.2/93.2 91.2/92.9 92.2/92.6
3 94.8/92.6 90.1/92.6 92.0/92.1 95.3/93.2 91.4/92.7 92.2/92.5
4 94.7/92.7 91.3/91.9 91.7/92.2 95.4/93.2 90.4/92.5 92.0/92.5
5 94.9/92.6 91.2/92.1 92.1/92.0 95.2/93.2 91.1/92.4 92.0/92.4
6 94.7/92.9 92.3/92.2 92.0/92.3 95.3/93.3 92.0/92.6 92.1/92.5
7 94.7/92.9 91.6/92.3 91.8/92.5 95.2/93.2 91.3/92.3 92.0/92.5
8 94.8/92.7 91.6/92.1 91.9/92.1 95.4/93.0 90.9/92.1 92.2/92.2
9 94.8/92.9 91.2/92.4 91.6/92.3 95.3/93.2 90.8/92.4 92.0/92.4
10 94.8/92.6 91.9/91.9 92.0/92.0 95.3/93.0 92.1/92.5 92.1/92.3

RCS-XGB3Ć3( ´PDGAT )

Train Validation Test
Sens/Spec Sens/Spec Sens/Spec

1 97.3/92.9 92.0/92.2 92.4/92.1
2 97.2/93.1 92.5/92.0 92.2/92.2
3 97.2/93.1 92.3/92.1 92.5/92.2
4 97.2/93.2 91.6/92.5 92.1/92.3
5 97.2/93.2 90.7/92.7 92.3/92.4
6 97.2/92.9 91.7/92.3 92.3/92.0
7 97.2/93.1 91.8/92.1 92.2/92.3
8 97.2/93.1 89.9/92.8 92.4/92.4
9 97.3/93.1 90.9/92.7 92.0/92.2
10 97.0/93.2 91.1/92.4 92.1/92.3
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Table B.5: Irish Loan Data2015: Sensitivity/Specificity (%)
RCS-XGB3Ć3( ´PDGNN ) RCS-XGB2Ć2( ´PDGAT )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 90.7/87.6 85.8/87.8 86.9/87.5 89.6/86.7 86.2/86.5 87.0/86.6
2 90.6/87.1 85.6/87.1 87.2/87.1 89.6/86.6 86.5/86.4 87.0/86.5
3 90.7/87.2 87.3/86.9 87.2/87.0 89.6/86.7 86.1/86.7 86.9/86.6
4 90.9/87.3 87.1/86.6 87.0/87.1 89.6/86.6 86.9/86.6 87.2/86.5
5 90.6/87.4 87.5/87.5 87.0/87.3 89.6/86.6 87.0/86.4 87.1/86.5
6 90.8/87.4 84.7/87.4 87.0/87.3 89.7/86.8 85.3/86.8 86.6/86.7
7 90.7/87.2 87.5/87.2 87.3/87.1 89.6/86.5 87.5/87.0 87.0/86.5
8 90.7/87.3 85.8/87.1 87.0/87.3 89.7/86.7 85.3/86.6 86.7/86.6
9 90.5/87.4 85.3/87.3 87.0/87.3 89.6/86.8 86.4/86.3 86.9/86.7
10 90.9/87.3 85.1/87.3 87.1/87.2 89.6/86.7 87.2/86.3 87.1/86.5

RCS-XGB3Ć3( ´PDGAT )

Train Validation Test
Sens/Spec Sens/Spec Sens/Spec

1 91.1/87.4 85.2/87.3 86.9/87.3
2 90.9/87.3 87.2/86.9 87.3/87.2
3 91.2/87.4 85.6/87.3 87.2/87.3
4 91.2/87.3 87.2/87.2 86.9/87.2
5 91.1/87.4 86.4/87.2 87.1/87.3
6 91.0/87.4 86.4/87.3 87.1/87.2
7 91.1/87.1 87.8/87.3 87.4/87.0
8 91.4/87.2 85.3/87.1 87.4/87.1
9 90.9/87.5 85.4/87.4 87.3/87.3
10 91.0/87.3 85.7/87.4 87.1/87.2

Table B.6: Freddie Mac Single Family Loan Data: Sensitivity/Specificity (%)
RCS-XGB3Ć3( ´PDLR) RCS-XGB3Ć3( ´PDGNN )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 86.2/84.3 84.8/84.1 83.5/84.1 85.6/84.9 81.9/84.7 83.4/84.7
2 85.9/84.3 83.6/84.3 83.5/84.2 85.8/84.7 84.9/84.9 83.6/84.5
3 86.2/84.3 81.9/84.6 83.9/84.2 85.6/84.9 83.4/84.5 83.5/84.7
4 86.1/84.5 82.4/84.4 83.6/84.3 85.8/84.8 82.8/84.5 83.3/84.5
5 85.9/84.3 84.1/84.4 83.8/84.2 85.7/84.8 82.9/84.5 83.5/84.6
6 86.0/84.5 82.5/84.2 83.8/84.2 85.7/85.1 81.0/85.0 83.2/84.9
7 86.2/84.4 82.2/84.2 84.0/84.1 85.8/84.7 83.3/84.7 83.4/84.5
8 85.8/84.5 83.2/84.4 83.8/84.3 85.6/84.8 84.7/84.5 83.5/84.6
9 85.9/84.3 83.1/84.2 83.9/84.1 85.8/85.0 81.8/85.2 83.4/84.8
10 86.1/84.2 85.2/84.1 83.9/84.0 85.6/85.0 82.1/84.9 83.2/84.8

RCS-XGB2Ć2( ´PDGAT ) RCS-XGB3Ć3( ´PDGAT )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 85.2/84.3 84.3/84.4 83.7/84.1 87.1/84.6 82.7/84.7 83.4/84.5
2 85.2/84.4 83.3/84.0 83.8/84.2 86.9/84.8 82.3/84.8 83.4/84.5
3 85.1/84.3 84.5/84.2 83.7/84.2 86.6/84.7 83.2/84.3 83.4/84.5
4 85.3/84.3 83.4/84.0 83.8/84.1 86.8/84.7 82.6/84.4 83.3/84.5
5 85.2/84.3 83.9/84.3 83.8/84.1 86.8/84.6 82.7/84.3 83.4/84.4
6 85.3/84.3 82.1/84.2 83.8/84.1 86.9/84.5 82.5/84.7 83.7/84.3
7 85.2/84.3 83.0/84.1 83.8/84.1 86.9/84.5 82.4/84.4 83.3/84.3
8 85.5/84.2 81.7/84.1 83.8/84.0 86.7/84.7 83.4/84.7 83.3/84.4
9 85.4/84.2 83.6/84.3 84.0/84.1 86.8/84.7 82.8/84.7 83.2/84.5
10 85.2/84.4 81.5/84.7 83.6/84.3 86.8/84.6 84.7/84.3 83.7/84.3
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Table B.7: SBA National Loan Data2004−2006: Sensitivity/Specificity (%)
RCS-XGB1Ć1( ´PDLR) RCS-XGB3Ć3( ´PDLR)

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 95.7/92.3 91.8/92.0 92.0/92.2 96.7/93.2 92.1/92.6 91.7/93.0
2 95.4/93.1 87.8/93.1 91.6/93.0 96.8/93.4 89.6/92.9 92.0/93.2
3 95.8/93.3 90.7/93.2 92.1/93.2 96.8/93.1 92.7/92.9 92.4/92.9
4 96.1/92.9 92.0/92.7 92.5/92.7 97.0/93.2 87.3/93.2 92.0/93.1
5 95.7/93.1 90.3/92.8 91.8/92.9 96.7/93.2 88.5/93.3 92.1/93.1
6 95.8/92.7 91.0/92.5 92.1/92.6 96.6/93.0 94.0/93.3 92.6/92.9
7 95.8/92.6 92.5/92.8 92.2/92.5 6.9/93.1 90.6/92.6 92.5/93.0
8 95.9/93.2 89.9/92.9 91.8/93.0 6.7/93.1 90.6/93.2 92.2/93.0
9 95.8/93.1 89.1/92.9 91.7/92.9 96.8/93.1 87.9/93.1 92.3/93.0
10 95.9/93.1 90.0/92.5 92.3/92.9 96.8/93.3 90.7/93.0 92.5/93.1

RCS-XGB1Ć1( ´PDGNN ) RCS-XGB3Ć3( ´PDGNN )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 97.1/92.6 91.3/92.6 93.1/92.4 97.3/92.6 91.6/92.4 92.6/92.5
2 97.1/92.8 90.1/92.5 92.8/92.7 97.2/92.8 89.3/92.3 92.3/92.6
3 97.0/92.8 88.6/92.7 92.8/92.6 97.5/92.7 91.5/91.9 93.0/92.6
4 96.7/92.8 90.5/92.0 93.2/92.5 97.0/92.5 90.2/92.7 92.4/92.4
5 96.8/92.6 94.4/92.4 93.2/92.4 97.3/92.8 93.1/92.4 92.9/92.6
6 96.6/92.7 92.6/92.6 92.9/92.6 97.3/92.7 89.2/92.1 92.7/92.5
7 96.5/92.7 93.5/92.5 92.7/92.5 97.1/92.7 91.8/92.9 92.8/92.6
8 97.1/92.5 89.9/92.3 93.3/92.4 97.5/92.6 92.7/92.9 93.2/92.5
9 97.0/92.9 84.2/92.8 92.6/92.8 97.2/92.6 90.7/93.0 93.1/92.5
10 97.0/92.7 89.9/92.8 92.7/92.6 97.7/92.6 91.0/92.4 93.1/92.5

RCS-XGB1Ć1( ´PDGAT ) RCS-XGB3Ć3( ´PDGAT )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 97.0/92.4 92.0/92.6 93.5/92.3 97.4/92.8 92.2/92.2 93.0/92.5
2 96.8/92.5 90.7/91.7 92.9/92.3 97.7/92.8 91.0/92.8 92.6/92.6
3 96.9/92.4 89.6/92.4 93.3/92.3 97.2/92.8 89.5/92.9 92.8/92.7
4 97.2/92.3 91.6/92.3 93.5/92.2 97.2/92.7 93.2/92.6 92.5/92.6
5 96.7/92.5 93.0/92.3 93.4/92.4 97.3/92.8 93.4/92.7 92.6/92.7
6 96.8/92.5 90.6/92.4 92.6/92.3 97.4/92.9 89.3/92.5 92.2/92.7
7 96.8/92.6 89.3/92.7 93.1/92.5 97.4/92.8 90.7/92.4 92.8/92.6
8 96.7/92.4 92.9/92.3 93.1/92.2 97.4/92.7 88.5/92.6 93.1/92.5
9 96.8/92.6 91.0/92.4 93.2/92.5 97.3/92.9 90.2/92.6 92.6/92.8
10 96.9/92.5 87.1/92.4 93.4/92.4 97.4/92.7 91.7/92.5 93.2/92.6
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Table B.8: SBA National Loan Data2002−2003: Sensitivity/Specificity (%)
RCS-XGB1Ć1( ´PDLR) RCS-XGB3Ć3( ´PDLR)

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 98.4/91.0 89.6/91.1 90.4/90.7 95.6/90.6 82.1/91.4 89.7/90.4
2 98.3/91.2 89.2/90.4 90.2/90.9 96.4/90.5 93.8/90.0 91.3/90.1
3 98.4/90.8 86.9/91.1 89.7/90.7 96.4/90.5 93.8/90.0 91.3/90.1
4 98.1/90.9 96.6/90.4 90.1/90.5 95.9/90.8 89.8/90.9 89.7/90.7
5 98.3/91.8 86.5/91.4 88.8/91.4 94.9/91.1 86.9/90.9 90.1/90.9
6 98.3/90.6 92.2/90.2 89.9/90.1 96.3/90.5 90.7/90.3 90.6/90.3
7 98.3/91.0 88.6/90.9 88.8/90.8 96.0/90.7 87.1/90.3 90.6/90.5
8 98.5/90.9 88.3/90.7 89.9/90.7 95.8/90.8 94.4/90.6 90.2/90.4
9 98.4/91.4 88.1/91.1 89.4/91.2 95.8/90.9 92.8/90.9 90.6/90.6
10 98.3/90.8 89.3/90.4 90.4/90.4 95.6/91.1 91.6/90.6 90.4/90.7

RCS-XGB1Ć1( ´PDGNN ) RCS-XGB3Ć3( ´PDGNN )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 97.4/90.5 90.6/90.9 91.1/90.3 93.8/91.0 87.6/90.5 89.0/90.8
2 97.5/90.8 87.8/90.4 91.8/90.6 94.0/90.4 93.6/90.9 90.1/90.2
3 97.5/90.7 90.0/90.2 91.3/90.5 93.6/90.7 91.2/91.1 90.1/90.5
4 97.4/90.7 92.1/90.5 91.0/90.6 94.5/90.9 84.6/90.2 90.1/90.6
5 97.2/90.7 92.0/91.2 91.0/90.6 93.6/91.2 90.4/91.0 90.1/91.1
6 97.0/90.8 94.6/90.2 90.6/90.4 93.8/90.8 87.0/90.9 90.6/90.6
7 97.3/90.6 91.5/90.4 91.3/90.4 93.6/90.6 92.0/90.9 90.6/90.5
8 97.7/90.5 86.7/90.4 90.6/90.3 93.6/90.9 91.0/90.3 89.9/90.6
9 97.4/90.6 89.2/90.5 90.1/90.4 4.4/90.5 87.9/90.9 91.0/90.4
10 97.2/90.7 93.5/90.1 91.0/90.5 93.9/90.7 88.3/90.5 89.5/90.5

RCS-XGB1Ć1( ´PDGAT ) RCS-XGB3Ć3( ´PDGAT )

Train Validation Test Train Validation Test
Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec Sens/Spec

1 97.6/91.6 86.0/91.2 90.2/91.2 96.7/88.8 88.3/88.0 91.8/88.5
2 97.7/90.6 94.4/90.4 90.6/90.3 96.2/88.4 90.8/88.6 91.7/88.3
3 97.6/90.9 90.2/90.7 91.0/90.8 96.8/88.3 94.9/88.2 92.7/88.1
4 97.8/90.6 91.3/90.4 89.7/90.4 93.9/90.2 91.4/89.6 90.8/90.0
5 97.9/91.6 86.5/91.7 89.4/91.3 94.5/90.3 87.7/89.9 90.6/90.1
6 98.0/90.7 87.8/90.5 89.9/90.4 96.5/88.2 89.3/88.7 91.5/88.0
7 97.6/90.9 90.5/90.5 90.6/90.7 94.5/90.1 90.2/89.5 91.1/89.8
8 97.5/90.8 96.1/90.2 90.6/90.5 96.5/89.5 91.7/89.5 90.8/89.4
9 97.8/90.9 90.6/90.7 89.5/90.7 96.9/85.5 94.7/86.0 93.3/85.4
10 97.6/90.7 93.9/90.8 90.2/90.5 94.4/90.1 90.0/90.8 90.8/90.1
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