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ABSTRACT 

 

LEVERAGING DIVERGENCES:  

BUILDING CONTROL, PERSONAL COMFORT AND INDOOR CLIMATE 

 

 

Topak, Fatih 

Doctor of Philosophy, Building Science in Architecture 

Supervisor: Assist. Prof. Dr. Mehmet Koray Pekeriçli 

 

 

June 2023, 176 pages 

 

Over the last two decades, major advances in technology have allowed researchers 

to develop strategies for automating the operational tasks in buildings to improve the 

overall system efficiency. However, the stochastic nature of human needs and 

standardized, one-size-fits-all configurations in current control approaches lead to 

disharmony in human-automation coexistence in buildings. Although well-

established interaction between control systems and occupants is acknowledged as 

one of the core elements of intelligent buildings, defined borderlines of the prevailing 

automation modalities fail to satisfy this primary feature. To this end, this research 

conceptualizes a collaborative building control framework, which establishes a 

communication ground between people and buildings. To assess comfort and energy 

related implications of the proposed framework, a simulation based and data driven 

research was conducted in the thermal domain, considering the need for investigating 

the personalized dimensions of building control, human comfort, and indoor climate. 

A multi-occupancy office space shared by six occupants was adopted as a case study. 

Probabilistic personal comfort profiles were used to quantify the likelihood of each 

occupant being comfortable in diverse conditions. Thermal distribution 

characteristics of the space were investigated using computational fluid dynamics 

(CFD) simulations under varying supply airflow rates, supply airflow directions, and 
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occupancy settings. Through performing an optimization analysis, achievable 

comfort improvements and energy savings were presented. The results confirmed 

that considering the divergences in personal comfort and indoor climate with a 

dynamic control strategy, where occupants are kept in the loop, has great potential 

for providing comfortable indoor environmental conditions and improving energy 

efficiency. 

 

Keywords: Building Control, Thermal Comfort, Energy Efficiency, Personal 

Comfort Models, Computational Fluid Dynamics, Occupant-Centric Building 

Operation  
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ÖZ 

 

FARKLILIKLARDAN YARARLANMAK:  

BİNA KONTROLÜ, KİŞİSEL KONFOR VE İÇ MEKÂN İKLİMİ 

 

 

Topak, Fatih 

Doktora, Yapı Bilimleri, Mimarlık 

Tez Yöneticisi: Dr. Öğr. Üyesi Mehmet Koray Pekeriçli 

 

 

Haziran 2023, 176 sayfa 

 

Son yirmi yılda, teknolojideki büyük ilerlemeler araştırmacıların genel sistem 

verimliliğini artırmak için binalardaki operasyonel görevleri otomatikleştirmeye 

yönelik stratejiler geliştirmelerine olanak sağlamıştır. Bununla birlikte, insan 

ihtiyaçlarının stokastik doğası ve mevcut kontrol yaklaşımlarındaki 

standartlaştırılmış, herkese uyacağı düşünülen tek tip konfigürasyonlar, binalarda 

insan-otomasyon birlikteliğinde uyumsuzluğa yol açmaktadır. Kontrol sistemleri ve 

bina kullanıcıları arasında iyi kurulmuş etkileşim, akıllı binaların temel 

unsurlarından biri olarak kabul edilse de mevcut otomasyon yöntemlerinin 

tanımlanmış sınırları bu ana özelliği karşılamakta başarısız olmaktadır. Bu amaçla, 

bu araştırma, insanlar ve binalar arasında iletişim zemini oluşturan, ortaklaşmaya 

dayalı bir bina kontrol çerçevesini kavramsallaştırmaktadır. Önerilen çerçevenin 

konfor ve enerji ile ilgili getirilerini değerlendirmek için, bina kontrolü, insan 

konforu ve iç mekân ikliminin kişiselleştirilmiş boyutlarını araştırma ihtiyacı göz 

önünde bulundurularak termal alanda simülasyona ve veriye dayalı bir araştırma 

yürütülmüştür. Altı kişi tarafından paylaşılan çok kişilik bir ofis alanı, vaka çalışması 

olarak kabul edilmiştir. Her bir bina kullanıcısının farklı koşullarda konforlu olma 

ihtimallerini belirlemek için olasılıksal kişisel konfor profilleri kullanılmıştır. 

Seçilen mekânın termal dağılım özellikleri, farklı besleme hava akış hızları, besleme 
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hava akış yönleri ve bina kullanıcısı doluluğu düzenlemeleri altında hesaplamalı 

akışkanlar dinamiği simülasyonları kullanılarak incelenmiştir. Optimizasyon analizi 

yapılarak, insan konforu ve enerji tasarrufu bakımından ulaşılabilir iyileştirmeler 

sunulmuştur. Sonuçlar, bina sakinlerinin kontrol döngüsüne dahil edildiği dinamik 

bir kontrol stratejisi çerçevesinde kişisel konfor ve iç mekân iklimi farklılıklarının 

dikkate alınmasının konforlu iç mekân koşulları sağlama ve enerji verimliliğini 

artırma konusunda büyük potansiyele sahip olduğunu doğrulamıştır. 

 

Anahtar Kelimeler: Bina kontrolü, Termal Konfor, Enerji Verimliliği, Kişisel 

Konfor Modelleri, Hesaplamalı Akışkanlar Dinamiği, Kullanıcı Merkezli Bina 

İşletimi 
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CHAPTER 1  

1 INTRODUCTION  

Building control, personal comfort, and indoor climate are interdependent subjects 

that have received considerable attention in the building industry over the last two 

decades (Figure 1.1). Although the specific focus of research has been remarkably 

diverse amongst the scholars, they are all in pursuit of a common goal at a higher 

level, which is to provide a comfortable and healthy indoor climate for people while 

ensuring the efficient use of energy resources for lessening the negative impacts of 

buildings on the environment. As an overarching contribution to this common 

purpose, this research conceptualizes an occupant-centric building control 

framework and leverages its implementation for climatization systems by coupling 

the non-uniformity of individuals’ comfort needs and the heterogeneity of thermal 

conditions in shared indoor spaces.  

 

Figure 1.1. Three interdependent subjects in building practice 
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1.1 Research Motivations and Problem Statement 

Divergences in Building Control 

The energy demand of the building sector constitutes nearly 40% of total energy use 

globally, and energy is primarily utilized to satisfy occupants’ comfort needs. 

Heating, ventilation, and air conditioning (HVAC) systems alone are accountable for 

nearly 75% of electricity consumption and 40% of total energy consumption in 

buildings in the United States (DOE, 2011). With the intention of reducing energy 

consumption and minimizing inefficacies in the operation of building systems, 

adopting a centralized automated control has been introduced as a possible 

technology aided solution (Wang, 2010). However, such approaches did not gain 

popularity and high acceptance levels amongst the occupants due to the decreased 

perceived control, ever-changing dynamic individual needs and standardized, one-

size-fits-all approach in current automation systems. Depriving occupants 

completely of building control affects both energy efficiency and occupant comfort 

in a negative manner (Day and Heschong, 2016). It is crucial to note that occupants 

and their complex nature have significant impacts on building energy performance, 

and they are the major factors contributing to the excessive energy consumption of 

building systems (Hong et al., 2017). Considering these, it can be claimed that 

maintaining efficient operation of building systems and human comfort 

simultaneously requires an inclusive approach, where both the control capacity of 

technology-powered methods and flexibility granted by incorporating occupants in 

the loop are ensured. 

Divergences in Personal Comfort 

Among various human dynamics, thermal comfort can be claimed as the paramount 

subject considering its effects on overall human satisfaction (Frontczak & Wargocki, 

2011; Wagner et al., 2007) and the account of HVAC systems on building energy 

use. Providing thermal comfort in buildings is quite a complex task, which is still 

unresolved and studied by many. Building researchers have concentrated on 
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developing empirical models, which link the thermal variables (temperature, air 

velocity, etc.) of indoor environments and other factors with the comfort states of 

occupants. Two main models, namely the predicted mean vote (PMV) and adaptive 

models, underpin the current thermal comfort approaches and were adopted in 

international standards like ASHRAE 55 (2017) and ISO 7730 (2005). However, 

both are pre-defined aggregate models, and their prediction only demonstrates the 

average comfort of large populations. They fail to accurately predict individuals' 

thermal comfort in multi-occupancy indoor environments, where occupants with 

varying comfort profiles share the same thermal zones. In recent years, the 

developments in the Internet of Things (IoT) concept have enabled the collection and 

analysis of real-time personal data, and this paved the way for a new paradigm in 

thermal comfort modeling, called personal comfort models (Kim, Schiavon, et al., 

2018). Personal comfort models eliminate the over-simplified assumptions in PMV 

and adaptive models by demonstrating a highly granular, individualistic approach. 

Through directly making use of the data collected in everyday environments, it 

utilizes machine learning algorithms to learn individuals' comfort profiles and 

creates the base for occupant-centric building control (Jung & Jazizadeh, 2019a). 

Divergences in Indoor Climate 

One of the primary assumptions in current studies on occupant-centric building 

control is the uniform temperature distribution in the spaces under investigation, 

which does not take dynamic conditions specific to particular positions into 

consideration. Although a single thermostat or a local sensor is attributed to be 

representative for the entire room for assessing the thermal conditions, micro-

thermal conditions may vary by location, especially in large offices with multiple 

occupants (Zhou et al., 2015). Many parameters can affect micro-climate around 

different occupants, including proximity to windows, furniture layout, solar 

radiation, supply air inlet placement, and heat flux aroused from electronic 

appliances. These factors can lead to variations in indoor environmental parameter 

values within the same space, making occupant location an essential aspect for 
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continuous comfort. In the absence of proper control strategies, occupants may have 

varying sensations (cold, warm, et.) in the same room caused by the uneven thermal 

distribution. The worst-case scenario would be not being able to provide comfort for 

any occupants while consuming an excessive amount of energy for conditioning the 

space. In that sense, just like regarding the nonuniformity in personal comfort, taking 

the heterogeneity of indoor climate conditions into consideration in building control 

holds great potential for improving occupant comfort and reducing energy 

consumption.   

Nevertheless, limited research exists questioning the potential of incorporating 

micro-thermal condition data in control loops for system efficiency in buildings. The 

reason may be the high cost associated with acquiring controlled measurements and 

implementing complex sensor infrastructures to comprehensively analyze the 

patterns and distributions of thermal parameters in indoor environments. However, 

with advances in technology facilitating greater accessibility to high computational 

power, it is becoming increasingly feasible to leverage computational fluid dynamics 

(CFD) simulations as a more economical and efficient alternative for obtaining the 

necessary thermal variables.  CFD simulation is a powerful tool that solves a set of 

partial differential equations for conservation of mass (the continuity equation), 

momentum (Navier-Stokes equations), and energy with applicable turbulence 

models. Although this simulation tool is extensively used to design and optimize 

HVAC systems in buildings (Duan & Wang, 2019; Shan et al., 2019; Zhou et al., 

2014), its employment to elaborate occupant-centric control is relatively limited.  

1.2 Objectives 

This research argues that an occupant-centric building control framework, which 

allows bi-directional communication and control negotiation between building 

management systems and occupants, can increase human comfort while enhancing 

energy efficiency. To assess the potential benefits of the framework, a data driven 

investigation was conducted in the thermal domain. This investigation involved 
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personalized evaluation of thermal comfort and dynamic operation of HVAC 

systems. The main objectives of this dissertation are identified as: 

• Developing a collaborative building control framework enabling 

collaboration and communication between building occupants and the 

automation to respond to the drawbacks of prevailing building control 

approaches. 

• Assessing the optimization of collective thermal comfort and efficient 

operation of conditioning systems, through leveraging nonuniformity of 

people’s personal comfort preferences and distribution of thermal parameters 

in shared spaces. 

• Demonstrating the influences of occupancy (number, position, etc.), supplied 

airflow parameters and potential human-building communication for 

improving collective thermal comfort and efficient system operation in multi-

occupancy scenarios. 

Accordingly, in pursuit of these aims: 

• A building control framework that aims to enhance human-building 

communication was conceptualized through reviewing existing human and 

automation related system issues. 

• Multiple personal comfort profiles were generated with Bayesian network 

modeling approach by employing available datasets collected from actual 

buildings in the literature. 

• Heterogeneity of thermal conditions in shared indoor spaces were 

demonstrated under various conditioning and occupancy settings, by carrying 

out CFD simulations in ANSYS Fluent software. 

• A data-driven optimization analysis within the scope of proposed framework 

was carried out using personal comfort profiles and thermal distribution 

datasets to present collective comfort and energy saving improvements. 
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1.3 Research Questions 

The main question of this research is: How can we improve occupant comfort while 

ensuring the efficient use of energy in building operation? 

In order to answer the main question, following sub-questions are formed:    

• What are the comfort and energy affiliated problems in prevailing building 

control approaches and how can they be tackled? 

• What are the implications of occupant comfort in shared indoor environments 

on building control? 

• What are the characteristics of thermal distribution patterns in multi-

occupancy office spaces? 

• Can we leverage varying comfort preferences of occupants and heterogeneity 

of thermal conditions to improve collective comfort and energy efficiency? 

1.4 Contribution 

Jendritzky and de Dear (2009) reported that even making small adjustments on 

temperature set points (i.e., tuning a few degrees) may have profound impacts on 

energy consumption and greenhouse gas emissions. Despite the considerable amount 

of energy used to provide comfort in buildings, the lack of thermal comfort is still 

one of the most common occupant complaints. Based on what this research provides, 

it is expected to demonstrate how building energy can be effectively used for 

optimum thermal comfort provision in multi-occupancy indoor environments. In 

doing so, a collaborative building control framework enabling control flexibility and 

providing desired comfort conditions for building occupants is proposed. The 

applicability of the proposed approach was validated in the thermal domain, through 

examining the primary assumptions made in building control, which are the 

averageness of thermal comfort sensations and homogeneity of thermal conditions 
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in indoor spaces. Within the scope of an optimization analysis, control strategies are 

elaborated to use the aroused potentials in favor of human comfort and energy 

efficiency.  

Throughout the progression of this research, three journal articles (Topak & 

Pekeriçli, 2021; Topak & Pekeriçli, 2022; Topak et al., 2023) were published, and 

the sections were partially presented in several conferences ( Topak et al., 2019; 

Topak & Pekeriçli, 2020;  Topak et al., 2022; Topak et al., 2023), the exhaustive list 

of which is given in Appendix-A. 

1.5 Research Structure and Disposition 

The structure of this dissertation is composed of four main sections, which is 

demonstrated in Figure 1.2. Following the introduction section, Chapter 2 provides 

an overview of occupant and system related issues of building automation systems 

in the literature and presents the conceptualized collaborative building control 

framework, which proposes a mixed-initiative approach in system operation. 

 

Figure 1.2. Overview of research structure 
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Chapter 3, Chapter 4, and Chapter 5 altogether constitute a dedicated workflow for 

demonstrating how the proposed framework may function for the thermal domain. 

In Chapter 3, the transition towards personal comfort models is explained, and 

multiple comfort profiles are presented, generated by applying Bayesian network 

modeling approach on existing real-world datasets in the literature to account for the 

individual differences in comfort needs and preferences.  

Chapter 4 addresses the nonuniformity of thermal conditions in shared indoor spaces. 

The procedural process of running numerical CFD simulations, simulation-based 

assessment of independent variables, main simulation scenarios and corresponding 

results are presented, respectively. The impacts of occupancy, supplied airflow rate, 

and supplied airflow direction in thermal distribution patterns are illustrated.  

Leveraging personal comfort profiles and indoor thermal distribution patterns 

datasets presented in Chapter 3 and Chapter 4, Chapter 5 elaborates a data-driven 

optimization assessment and analyzes the potential implications of human-building 

cooperation in the thermal domain. The range of achievable comfort improvement 

probabilities and energy-saving possibilities are demonstrated in comparison to the 

pre-determined baseline scenarios. 

The dissertation is concluded in the last chapter with the overall discussion, revisiting 

of research questions, limitations of the study, and projections on future work. 
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CHAPTER 2  

2 COLLABORATIVE BUILDING CONTROL 

In this chapter, through reviewing current human and automation related system 

issues, a conceptual mixed-initiative framework that aims to enhance human-

automation collaboration for the control of building systems was presented. The 

conceptualization is refined through analyzing related subjects, and the framework 

is elaborated upon the available evidence in the literature. The novelty of the 

proposed approach is to introduce “mixed-initiative” concept to the building control, 

which enables human-automation collaboration for achieving optimum efficiency-

comfort balance. This proposal may help researchers comprehend the integral 

components of mixed-initiative building control and grasp the prospective research 

directions, enhancing more human-centric built environments. Following the 

conceptualization, the building control scheme was concretized for the indoor 

environments shared by multiple occupants, which presents a unique challenge for 

personalized operation in building control due to the potential variations in people’s 

behaviors, preferences and tolerance levels.  

The chapter is structured as follows. First, the emergence of automation concept in 

buildings were reviewed and prevailing occupant-related building automation issues 

were introduced. Then, the concept of flexibility in automation was discussed by 

referring to the automation taxonomies in general. Subsequently, after critically 

reviewing the literature, the conceptualization of the mixed-initiative framework was 

demonstrated and the operational workflow was explained. Lastly, a potential 

application scenario of the proposed framework in the thermal domain was 

elaborated by structuring a simplified building control scheme and the chapter was 

finalized with some conclusive remarks and discussion. 
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2.1 Literature Review 

2.1.1 Intelligent Buildings 

Starting from the early 1980s, considerable advancements in computer, information, 

and communication technologies reflect themselves in the management and control 

of building services, evolving from simple function dedicated systems to today’s 

computerized buildings. The integration of cutting-edge technological tools in built 

environments has been studied in the literature under the umbrella term of intelligent 

buildings, the concept of which was born with the purpose of creating energy-

efficient, productive, and environmentally healthy spaces for people (Clements-

Croome, 2013). The early definitions of the term “intelligent building” were almost 

entirely related to technology integration and building automation. Many of the 

examples of so-called intelligent buildings were only representing the incorporation 

of increasing quantities of information technology into buildings (Wigginton & 

Harris, 2002). Later on, the definition of the intelligent building concept was 

expanded to cover the linkage between occupants, building systems, and the 

environment. From seeking technology integration, the main focus of the concept 

gradually shifted towards responding to occupant expectations, comfort needs, and 

quality of life enhancement. One of the very first comprehensive definitions of 

intelligent buildings was presented by Clements-Croome (1997) through referring 

CIB Working Group W98’s proceedings as: 

An intelligent building is a dynamic and responsive architecture that provides 

every occupant with productive, cost effective and environmentally approved 

conditions through a continuous interaction among its four basic elements: 

Places (fabric; structure; facilities); Processes (automation, control, systems); 

People (users, occupants) and Management (maintenance; performance) (p. 

396).  

In their intelligent environments manifesto, Augusto, Callaghan, Cook, Kameas, and 

Satoh (2013) defined intelligent buildings as the environments where intelligent 
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software agents control networked controllers to ensure holistic functionality and 

comfort for inhabitants. From our perspective, an intelligent building can be 

described as a dynamic immersive living machine, which incorporates numerous 

processes flexibly to respond to the various needs of its occupants through enabling 

human-machine cooperation, data-systems integration and technological 

articulation. In fact, one of the most fundamental characteristics of intelligent 

environments is to minimize the burden of occupants on controlling different 

operational tasks in buildings through the employment of technology, providing 

them more free time to spare other activities (Cole et al., 2012).  

The main component of intelligent buildings satisfying this characteristic is called 

building automation (Wang, 2010). The state-of-the-art technological developments 

supporting automation in buildings in recent years includes but not limited to 

artificial intelligence algorithms, ubiquitous sensing, actuation systems, cloud 

computing, big data engineering and the Internet of Things (IoT) products (Jia et al., 

2019). These tools enable to collect and analyze data from both occupants and built 

environments, and assist decision making in the control of various building systems 

and operations including heating, ventilation and air conditioning (HVAC), lighting, 

shading, plugged-in appliances and so on. 

Despite the advanced developments and wide-scale use of automation systems in 

various disciplines, the employment of automation in buildings has not gain 

popularity. This is mainly caused by the fact that automation has a low-acceptance 

level amongst the building occupants, which is the reflection of disharmony between 

human nature and the operation principles of current building automation systems 

(Brush et al., 2011; Mayra et al., 2006). Although well-established continuous 

interaction between building control systems and occupants is referred to as one of 

the core elements of intelligent environments (Clements-Croome, 1997), strictly-

defined borderlines of the prevailing automation systems fail to satisfy this primary 

feature (Ahmadi-Karvigh et al., 2017; E. S. Lee et al., 2013). 
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2.1.2 Building Automation Systems 

Building automation systems (also known as building management systems), refer 

to the installed technological infrastructure that monitor and administrate buildings’ 

physical environments and operations, including heating, ventilation and air 

conditioning, lighting, shading, auxiliary energy, and water supply. Automating the 

building systems and creating centralized control is generally favored by many 

engineers, designers, and facility managers, with an intended goal of enhancing 

system efficiency. Although automation systems’ capabilities have been extended in 

recent years (Aparicio-Ruiz et al., 2018; Naylor et al., 2018), their wide-scale 

employment by building occupants has remained unrealized (Meerbeek et al., 2014), 

which can be grounded by several reasons.  

First of all, people usually desire to have a control over their environments; they 

prefer manual adjustments rather than automated operation. An experimental study 

conducted by  Luo et al. (2016) demonstrated that the feeling of being in charge, 

which is often referred to as perceived control in the literature, affects people’s 

perception of comfort. Tamas, Ouf, and O’Brien (2019) reported that occupants are 

usually dissatisfied with building automation, and perceived comfort is correlated 

with perceived control. People accustomed to primitive building systems that are 

almost entirely transparent with their simple logic and physical interfaces (i.e., a light 

switch) become relatively unenlightened in the existence of advanced logic of 

automation systems operating in the background with no intervention possibilities. 

When people do not understand fundamentals of a system, they do not trust it, and 

their sense of control and satisfaction decreases dramatically (Karjalainen, 2013).  

Secondly, occupants’ automation needs and preferences are dynamic, and the level 

of autonomy that they desire may change depending on their physical, psychological, 

and emotional states (Callaghan, 2013). Although there have been some research 

efforts for enabling occupants to vary the level of technical assistance in the built 

environments (Ball & Callaghan, 2012b; Bradshaw et al., 2003), no widely-
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influential result or a comprehensive framework has been demonstrated so far, and 

current building automation systems still lack such flexibility.  

Lastly, building automation systems usually provide standardized indoor 

environmental conditions that are the mean preference of many people, following a 

“one-size-fits-all” management approach. Park and Nagy (2018) asserted that the 

research on building automation systems mostly focuses on energy savings rather 

than incorporating human comfort, demonstrating the recent discrepancy between 

indeed very much related two subjects. Despite the ongoing progress in developing 

personalized comfort models to improve occupant comfort using technology (Jung 

& Jazizadeh, 2019a; Kim, Schiavon, et al., 2018), most of them rely on physical 

sensor measurements and fail to centralize people in the control loop of their indoor 

habitats. Due to human beings’ stochastic nature, comfort is very individual and 

time-dependent, and standardized automation systems fail to fulfill occupants’ 

requirements. 

People have certain comfort expectations of their environments, and when these 

expectations are not met, they perform actions to adjust their surroundings. In 

modern buildings, occupants have been allowed to interact with static building 

components to adjust the environment according to their comfort levels. For 

example, individually controlled window ventilation has been a universal consent, 

and it was demonstrated as a beneficial strategy for ensuring a relaxed state for 

occupants (Brager et al., 2004). In the last two decades, it is revealed by many 

researchers that such human-building interactions have crucial influences on 

building energy performance, indoor environmental conditions, and occupant 

comfort (Hong et al., 2017). Building automation solutions were devised to 

overcome such impacts by dramatically decreasing the level of control handed over 

to occupants through centralizing the building controls and automating systems’ 

operation (Vasseur & Dunkels, 2010). However, recent researches demonstrated a 

high demand for direct personal control, which necessitates a change of perspective 

in the research agenda of building automation systems.  
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Since the unfamiliarity of occupants with the way automation works leads to 

inadequate human-building interactions, and resultantly, to system failures, human 

intervention could be considered a risky input for the proper functioning of building 

automation systems (Lazarova-Molnar & Mohamed, 2017). Occupants’ awareness 

and knowledge of technology is an essential aspect for obtaining the desired benefits. 

Day and Heschong (2016) emphasized that both energy efficiency and occupant 

comfort were negatively affected when occupants are deprived of building control 

without any prior clarification. Considering the core of implementation barriers of 

building automation systems and the impacts of occupant behaviors, the main issue 

to be concentrated on can be identified as the lack of a mechanism providing 

coordination and communication between occupants and building automation 

systems. In order to enhance the system robustness, efficient operation of building 

systems, and human comfort simultaneously, benefiting from both control capacity 

of computer-powered methods and flexibility granted by incorporating occupants in 

the loop holds a substantial potential.  

2.1.3 Flexibility in Automation 

Incorporating a coordination and cooperation mechanism between people and 

automation systems requires a certain level of system adjustability on the machine 

end. Such flexibility has been initially led with different taxonomies proposing 

varying levels of automation (LOA) in the literature. Starting from late 1950s, 

intermediate levels between the two extremes of full manual operation and full 

automation have been assessed to find solutions for control conflicts in various 

human-machine interaction scenarios (Vagia et al., 2016). Automation levels have 

been specified based on the discipline they are applied in, including avionics, 

advanced manufacturing, teleoperation, air traffic control, and piloting.  

A comprehensive general human-machine interaction model with no specified 

application was introduced by Riley (1989) in order to assist the investigation of 

automation-related issues. Accordingly, the author proposed twelve levels, through 
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combining automation degrees and system’s intelligence sophistication. The former 

six levels were categorized based on system’s information processing maturity and 

the level of displayed advising, while the latter six were collocated according to their 

ability of taking actions. Levels are labelled based on the system’s functional 

capability limits, including information fuser, advisor, servant, assistant, partner, and 

supervisor. A more recent and refined taxonomy was proposed by Vagia et al. 

(2016), intending a wider range of usability (Table 1). LOA described in this 

taxonomy is also created considering how and when the system would notify the 

user, share responsibilities and take actions. Although these different levels show 

how the computerized systems can provide adjusted forms of aid to humans based 

on their needs, designating automation systems though using the identified levels 

brings out a static situation yet again, which lacks flexibility in operation. 

Considering the ever-changing requirements in built environments due to the 

stochastic nature of occupant behaviors, facilitating dynamic arrangements in the 

level of supplied machine assistance is of the utmost importance.  

The possibility of dynamic shifts between different LOA has been studied under 

different key terms, including adaptive automation (Kaber & Endsley, 2004), 

adjustable (or adaptable) automation (Miller & Parasuraman, 2007), and mixed-

initiative systems (Barnes et al., 2015). Chen and Barnes (2014) explained that these 

three terms cover flexibility in automation and are differentiated depending on the 

delegation of authority between humans and machines on the management of the 

shifts between the automation levels. As depicted in Figure 2.1, which is elaborated 

upon the work of  Ahmadi-Karvigh et al. (2017),  automation modalities are 

categorized based on the trade-off between the amounts of human control and the 

automated operation. In adaptive systems, the automation is designated to invoke 

appropriate drifts between LOA based on analysis of the contextual and situational 

data. In adjustable systems, on the other hand, decisions of changing the automation 

levels are made by humans. Adaptive systems lack human involvement in the 

management of critical tasks and may lead to a reduced perceived control, whereas 
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adjustable systems require certain human capabilities and result in an unbalanced 

mental work load for people (Hussein & Abbass, 2018). 

 

Table 2.1. Levels of automation proposed by Vagia et al. (2016) 

LOA Description Explanation 

1 Manual Control  Computer offers no assistance 

2 Decision Proposal 

The computer offers some decisions to the 

operator. The operator is responsible to decide and 

execute. 

3 
Human decision 

select 

The human selects one decision and the computer 

executes. 

4 
Computer decision 

select 

The computer selects one decision and executes 

with human approval. 

5 

Computer execution 

and human 

information 

The computer executes the selected decision and 

informs the human 

6 

Computer execution 

and on call human 

information 

The computer executes the selected decision and 

informs the human only if asked 

7 

Computer execution 

and voluntarily 

human information 

The computer executes the selected decision and 

informs the human only if it decides to 

8 Autonomous control 

The computer does everything without human 

notification, except if an error that is not into the 

specifications arrives. In that case, the computer 

needs to inform the operator. 
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Figure 2.1. Comparison of different automation modalities 

As an eclectic solution combining the advantages of adaptive and adjustable systems, 

mixed-initiative systems were proposed to allow a balanced responsibility 

distribution in decision-making. Allen (1999) defined these systems as: “Mixed-

initiative refers to a flexible interaction strategy, where each agent (human or 

computer) can contribute to the task what it does best.” Accordingly, in the process 

of solving a problem, the roles are opportunistically negotiated between the agents 

to actualize the best possible solution. In some cases, one of the agents might have 

the full initiative as the other operates to assist it, while in some other, the roles might 

be reversed. The agents may also work independently in performing some tasks and 

dynamically adapt their interaction level based on the specifically asked assistance 

(Allen, 1999). 

Mixed-initiative systems require dynamic and adaptive function allocation, which 

are usually delegated to the automation due to their complex challenges. These 

challenges were pointed out by Horvitz (2007) as; recognition and decomposition of 

problems, identification of sub-problems that may be best solved either by the human 

or the automation, the task of sequentially and symphonically interleaving human 

and automation contributions, and enhancement of coordination and communication 

during the reasoning and problem solving processes. Such collaboration may be 

predicated on pre-scripted operational codes, and task distribution can be adjusted 
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according to particular conditions. Yet, if instant communication between the two 

sides can be provided where necessary, a more natural cooperation process for 

humans can be accomplished.  

2.2 Conceptualization of Mixed-Initiative Building Control 

The aforementioned researches in the previous section are mostly carried out to 

converge solutions to numerous problems in various disciplines where a certain level 

of automation is utilized. However, the achieved advances and developments were 

not fully reflected in building automation systems, which can be seen as a root cause 

of the fact that they are not widely adopted in the built environments. To the best of 

our knowledge, although studies focusing on LOA (Aryal et al., 2021), adaptive 

automation (Ahmadi-Karvigh et al., 2019) and adjustable autonomy (Ball & 

Callaghan, 2012a) in buildings exist, no previous research proposed a mixed-

initiative framework for the operational management of built environments.  

In intelligent buildings research, the focus is usually either on empowering the end-

user for building control or developing fully autonomous agent-driven systems that 

minimize occupant inference. However, people generally prefer to be given the 

ability to control their environments and choose the tasks to be delegated to the 

automation (Ball & Callaghan, 2011). The study of Aryal et al. (2020) revealed that 

no single automation level could satisfy all users, and the authority of building 

control should be shared between the intelligent system and the users to be regulated 

where necessary. Ahmadi-Karvigh et al. (2017) indicated that LOA preferences of 

occupants change by context, and certain demographic variables and personality 

traits impact their inclinations. Likewise, the occupant’s probable desire to vary the 

amount and the type of assistance they receive from intelligent building applications 

was predicated by Callaghan (2013) on two main reasons. First, the people’s mental 

or physical states that change according to age, health, mood, ability, etc. may affect 

the desired level of technological assistance. The second reason is that the accuracy 

of intelligent assistance may not be as high as it should be depending on the 
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repetitiveness of tasks and how spontaneous the occupant’s persona is, which may 

be best solved with adjustability through enabling communication between humans 

and the automated systems. Pritchett and Feary (2011) asserted that team play 

between people and automation systems is well-grounded, where both are expected 

to contribute their strengths and work in harmony to ensure the effective operation 

of building systems. For this teamwork, the authors emphasized the significance of 

several features including communication, cooperation, giving of suggestions or 

feedbacks, consensus formation and reassurance. In addition, Röcker et al. (2005) 

showed that occupants would favor the automation system that is easy to manage 

and configurable to adjust personal preferences and control settings.  

Although manual control has been shown to be energy inefficient and the automation 

is a need in the built environment, the level of user satisfaction dramatically 

decreases when the individual control is unavailable (Tabadkani et al., 2020). 

Perceived control, which is characterized by occupant’s awareness of available 

controls and the effectiveness of the feedback given by exercising control over the 

environment, is attributed as an essential factor for technology acceptance models 

and user satisfaction measures (Venkatesh et al., 2003). Similarly, it has also 

appeared to be one of the significant concepts in automated building control studies 

(Lolli et al., 2020). Researches have shown that both occupant comfort (Karjalainen, 

2009) and energy consumption in buildings (Yun, 2018) are affected by the level of 

perceived control. Occupants with higher levels of perceived control were reported 

to be more tolerant to the deviations from the comfortable indoor environmental 

conditions (Luo et al., 2016). On the contrary, when personal control is unavailable, 

or the complexity of the control interface leads to an inconvenience for usage, 

occupants become more likely to report discomfort or switch off the automated 

operation (Karjalainen & Koistinen, 2007; Meerbeek et al., 2014). Hellwig (2015) 

provided a comprehensive review, where the concept of perceived control and its 

implications for the buildings have been analyzed in detail. 
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Figure 2.2. Conceptual model of the mixed-initiative building control framework 

Considering the current evidence on the link between the automation and the 

occupant’s comfort, perceived control, cognitive load, and energy efficiency, there 

is a need to establish a coordination and communication framework, which allows 

for mixed-initiative interaction and encourages control negotiation between 

buildings automation systems and occupants. The critical point here is to provide the 

occupants with a sense of continuous control while allocating operational 

responsibility to the system where applicable. Such a scenario could enact concurrent 

assessment of occupant comfort and energy efficiency while making automated 

applications more favorable for building inhabitants. Naturally, designing every 

detail of such a framework requires the contribution of various disciplines with 

specialized proficiencies. Accordingly, this study approaches the need for 

conceptualizing a novel building control framework from a general perspective and 

defines the borderlines of the mixed-initiative system. As demonstrated in Figure 

2.2, this conceptual framework can be segregated and studied under two main 

sections, namely the machine side and the human side. 
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2.2.1 The Machine Side 

The implementation of the proposed conceptual framework is predicated on the 

existence of a Building Management System (BMS), appropriate sensor network, 

and compatible building components. One of the core elements to be integrated into 

BMS is agent-based control. Human comfort in buildings is tied to three factors that 

are thermal comfort, visual comfort, and indoor air quality. Satisfying comfort needs 

requires multiple building systems and components to be operated simultaneously 

with optimal performance. In order to enhance energy efficiency, possible conflicts 

that could arise between building subsystems or between the occupant’s needs and 

system operations should be avoided. One of the most advanced efforts towards 

ensuring the coordination in the operation of building systems has been agent-based 

control systems (Dounis & Caraiscos, 2009). Multi-agent based control, especially, 

is widely employed for sophisticated combined control of building systems in 

intelligent environments for achieving optimum performance under dynamic 

conditions (Qiao et al., 2007). The design of multi-agent based systems varies, and 

adapted logic and agent attribution differ based on the approach (J. Lee, 2010; R. 

Yang & Wang, 2013). Intelligent agents can represent physical devices, particular 

building zones, specific user profiles, or concepts such as conflict resolution or 

energy management, and they can communicate with each other for sharing 

information, making requests, or checking objectives. The defined task assignments 

to the agents result in a hierarchical and layered organization, where some agents 

execute simple tasks like controlling illuminance levels in a room, while others have 

more complex functionalities like generating decisions for the best possible control 

action based on the occupant feedback (Hurtado et al., 2014). Treado and Delgoshaei 

(2010) listed the possible benefits of utilizing agent-based building control as 

enabling subsystems to organize themselves for basic operation, optimizing building 

performance through an adaptive strategy based on dynamic human factors and 

environmental data, spontaneous fault detection and rectification, facilitating 

interactions with utility grids and city networks, allowing system upgradability and 
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promoting the integration of innovative building systems. As it has been asserted as 

a viable solution for handling the complex problems of dynamic environments, 

agent-based control should be an integral part of the mixed-initiative framework.  

The machine side of the proposed conceptual framework employs adaptive 

algorithms to assist building management system in analyzing the sensor data and 

adjusting operational setpoints. Ideally, an intelligent environment should have 

persistent awareness of human presence, activities, and personal comfort 

requirements and adjust indoor environment setpoints based on occupant 

preferences. In the last two decades, studies have focused on developing adaptive 

algorithms as predictive controls through recording and analyzing human actions in 

buildings (Haldi & Robinson, 2008; Mirakhorli & Dong, 2016). Predictive building 

control models usually utilize various machine learning algorithms, artificial neural 

networks, or fuzzy logic to learn patterns in occupant actions with regard to 

contextual parameters. Through continuously retraining themselves with new data to 

update control procedures, predictive control algorithms are to be incorporated in the 

mixed-initiative framework, for not only automating preference adjustments for 

adaptive system operation (Gunay et al., 2014), but also allowing flexible and 

efficient management of energy usage (Kathirgamanathan et al., 2021). Adaptive 

control algorithms assist building management through making use of the system 

inputs, state changes in building components, and collected environmental and 

human-related data. Evidently, configuring a compatible utilization of both agent-

based control and adaptive control algorithms, when combined with the central logic 

defining the building management flow, is promising to assure a competent 

composition in the machine side of the defined framework. 

2.2.2 The Human Side 

The main component of the human-side in the framework is the interface, through 

which all building systems might be controlled. The interface element is ascribed as 

a meta-control intermediary, which could be either mobile or well-integrated with 
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the building design, providing bidirectional feedback and communication between 

the occupants and the building systems. In conventional buildings, primitive building 

components that are almost entirely transparent with their simple logic and physical 

interfaces (i.e., light switches, operable windows) provided occupants sophisticated 

opportunities to regulate indoor environmental conditions, including temperature, 

lighting, and air quality. Traditional touch-input procedures will progressively be 

replaced with a common building interface that provides a cooperation ground 

between occupants and buildings and regulates interaction dynamics (Topak & 

Pekeriçli, 2021).   

The transition in the control modalities and the importance of building interfaces are 

currently very hot research topics and were extensively reviewed by Day et al. (2020) 

and Tabadkani et al. (2020). Considering the fact that the sole intermediary for bi-

directional communication and coordination between the automation and the human 

is the interface, which stands at the intersection of the sides (Figure 2.2), it is of the 

utmost importance to study the questions like “how do building interfaces, their 

context, and their underlying control logic affect behavior and perceived control?” 

and “what interface features and characteristics are most effective at delivering a 

comfortable environment, outstanding perceived control, and reductions in energy 

consumption?”, which are pursued by IEA Annex 79 research group and outlined by 

O’Brien et al. (2020). The most prevalent technologies to be used as a 

communication tool between occupants and intelligent environments were listed by 

Marson and McAllister (2021) as mobile apps, screens, dashboards, biometrics, 

implantables, gait identification, and thought control. However, it is not easy to list 

possible intermediary tools explicitly due to the pace that technological 

developments have reached in recent years. As appropriately designed and 

understandable control interfaces in buildings are claimed to be an effective way of 

matching building operations to actual occupant needs (Cohen et al., 1999), a 

common, user-friendly interface model enabling building occupants to have full 

control of their environments should be well-established within the demonstrated 

framework.  
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2.2.3 System Operation 

In order to actualize the control flow that is suggested in the framework, building 

management system should be supplied with continuous spatial and temporal data 

from compatible tools and systems, allowing spontaneous connection, coordination, 

actuation, and data exchange. As the internet revolution has evolved into 

interconnecting objects surrounding everyday life to furnish intelligent built 

environments, IoT can be considered as a primary enabler for the proposed 

conceptual framework. In his book, Mukhopadhyay (2014) explained that the 

connectivity IoT provides through improving access to information can increase 

reliability, sustainability, and efficiency in any system.  As pointed out by Moser, 

Harder, & Koo (2014), one of the paramount issues in intelligent buildings is the 

lack of interoperability between different sensors, devices, and building components. 

Internet-enabled communication can be considered as an effective solution to this 

interoperability problem. In the case where every building component, device or 

sensor, regardless of their vendors, is capable of communicating through the Internet, 

a smooth interaction and data exchange between systems and an integrated and 

coherent operational process could become possible. Moreover, IoT has been 

attributed to have human-related data collection functionality, including occupancy 

detection (Jeon et al. 2018), occupant monitoring (Akkaya et al. 2015), and activity 

recognition (Zou, Zhou, Yang, and Spanos 2018). Lilis et al. (2017) also asserted 

that the abundance of devices brought by the IoT extends the benefits of BAS with 

energy harvesting capabilities without the need for intervention, improved habit 

tracking, low-cost sensors for monitoring, and occupant-centric decision-making.  

The proposed framework can be implemented once the necessary hardware and 

software platforms are available. Building systems’ states, indoor and outdoor 

environmental conditions, and occupants can be monitored by installing the sensor 

network, the collected data of which is to be deployed in the central server. Agent-

based control models and adaptive algorithms can be implemented using the 

platform and protocols utilized by building management system, to process both the 



 

 

25 

sensor data and the event logs and control building systems and services. In order to 

hand over the overall control of the building to the occupants, a meta-interface should 

be provided that is connected to building management system, through which 

occupant requests, system suggestions, and bidirectional feedbacks are 

communicated. There exist continuous feedback-control loops between the interface, 

building management system, and the building services. The building systems and 

services (such as HVAC, lighting, or windows) could be controlled either directly 

by the occupant, ignoring system suggestions, or through consensus reached by the 

system and the occupant, depending on the personal inclination. 

 

Figure 2.3.  Workflow model of the proposed framework 

An explanatory possible scenario model is presented in Figure 2.3, in order to clarify 

the intended workflow of the system. Accordingly, when an occupant desires a 

cooler indoor environment on a windy summer day and delivers this request to the 

building through the interface, the most convenient action to satisfy this request can 

be determined by the building using the collected data from the environment and the 
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building systems. Instead of turning on the mechanical cooling, the building may 

decide or suggest opening the windows for cross-ventilation, which is a more energy-

efficient solution satisfying the same requirement. In other words, the system may 

respond to the needs of its occupants by invoking the most effective and efficient 

action. If the occupant does not comply with the system’s decision and desires to 

take a different action, the system can give related feedbacks through the interface 

and confirm the user’s preferences regardless. Every request-analysis-action event 

can be saved as an event log in the system and used to train the control algorithms 

and the central management logic. Such a scenario could be a convenient way to 

simultaneously enhance personal comfort, perceived control, and energy efficiency, 

as it grants comprehensive controllability on the human-side and data-driven 

automation adjustability on the machine side.  

2.3 Building Control in Shared Environments  

It is foreseen that the abovementioned system operation could have a smooth flow 

in cases where the space is occupied by a single person, as it allows indoor 

environmental parameters to be controlled based on individual-specific 

characteristics and feedbacks. However, considering the potential variations in 

people’s behaviors, preferences and tolerance levels, environments shared by 

multiple building occupants present a unique challenge for personalized operation in 

building control (Figure 2.4). Interaction patterns and feedback to BMS would differ 

based on each occupant’s personal traits. In scenarios where occupants have 

conflicting choices, a control dispute may arise that could be solved with an 

optimization strategy. 

In order to assess and study the control dispute in multi-occupancy environments 

under a manageable complexity and decrease the number of independent variables, 

the research scope was required to be narrowed down to a single domain. 

Considering thermal comfort’s massive impact on overall human well-being and the 

amount of energy used by HVAC to satisfy comfort needs of building occupants, the 
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research scope was determined as thermal domain. Although there are some studies 

proposing strategies for multi-occupancy comfort optimization in the literature (S. 

Lee et al., 2019; Nagarathinam et al., 2021), optimization of occupant comfort 

through utilizing personal comfort preferences in shared environments has still room 

for further investigation. 

 

Figure 2.4. Flowchart of the proposed building control framework 

The scope of the research in terms of building type is identified as office buildings, 

depending on the fact that commercial buildings is the leading sector in energy 

demand growth with a predicted increase rate of 1.6% per year from 2012 to 2040 

(EIA, 2016). They are dynamic environments where the number and type of 

occupants are unpredictable, and require real-time feedback-response control 

systems for efficient system operations. Moreover, the motivation of occupants to 

regulate their behaviors towards enhancing energy efficiency is different in 

commercial buildings from that of residential ones. Since occupants are not 

responsible for building control and its costs in commercial buildings, they may not 

be aware of the consequences of their energy-related interactions (Zanjani, 2017). 

2.3.1 Occupant-centric Approach 

In modern buildings, indoor climate is generally controlled based on pre-defined 

setpoints and schedules that are determined in the design phase with limited 
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knowledge about occupancy and user profiles. Regardless of the mismatch between 

the initial presumptions and the actual inputs during building operation, a defined set 

of control parameters are rarely updated or modified. This simplistic and 

conservative process was built upon the assumption that controlling buildings based 

on custom occupancy, average occupant characteristics, and so-called ideal 

conditions are adequate for improving energy efficiency and human comfort. 

However, certain suboptimal issues were demonstrated, including maximum 

occupancy assumption in spaces, continuous operation in unoccupied zones, and 

over-conditioning despite creating discomfort (Brager et al., 2015; Erickson et al., 

2009).  In recent years, occupant-centric building control has emerged as a novel 

approach, taking human dynamics such as presence, location, preferences, and 

behaviors as inputs to enhance overall occupant comfort and optimum system 

operation (Naylor et al., 2018; O'Brien et al., 2020). This approach has shifted the 

paradigm in indoor climate control from a one-size-fits-all perspective towards 

human-oriented merits. 

Although occupant-centric building control has been studied since the early 2000s 

(Dounis & Caraiscos, 2009; Guillemin & Morel, 2001), there has been significant 

growth in the number of researches over the past decade along with technological 

developments (Park, Ouf, et al., 2019; Wagner et al., 2018). As there is not a 

standardized approach about the level of occupant-related data integration to control 

loops (Naghiyev et al., 2014), various scopes have been defined by the researchers 

within the extent of occupant-centric building control depending on the utilized data 

characteristics. For example, Park et al. (2019) referred to systems that only use 

presence/absence states of occupants as occupancy-based controls, whereas defined 

the ones that employ data on occupant preferences as occupant behavior-based 

controls. Jung and Jazizadeh (2019b) used the term 'human-in-the-loop operation' to 

account for dynamics of occupants, including presence, count, position, and thermal 

comfort. To this end, a broader overview was presented by Naylor et al. (2018), 

categorizing occupant-centric control research into four based on implementation 

approaches, which are reactive response to occupancy in real-time, control to 
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individual occupant preference, control catered to individual behaviors/activity types 

and control based on the prediction of future occupancy/behaviors. As a common 

practice in occupant-centric control studies, occupant-related data is coupled with 

the data representing indoor and outdoor environmental conditions (such as 

temperature, humidity, air quality, illuminance, etc.) to ensure both human comfort 

and system efficiency (Jung & Jazizadeh, 2019a; Park, Dougherty, et al., 2019; Peng 

et al., 2019). Xie et al. (2020) reported that occupant-centric control research offers 

improvements on both comfort and energy efficiency with a median of 29% and 

22%, respectively.  

The scope of occupant-centric control studies oftentimes extends to occupant-related 

building performance metrics, including indoor air quality, thermal comfort, visual 

comfort, and acoustics comfort (Antoniadou & Papadopoulos, 2017; Azar et al., 

2020). Kong et al. (2022) tested an occupancy-based control approach with side-by-

side experiments to quantify perceived air quality and thermal comfort in 

commercial buildings. Park, Dougherty, et al. (2019) developed a reinforcement 

learning-based controller for lighting, which learns from and adapts to occupant 

behaviors and indoor conditions. Peng et al. (2019) proposed an adaptive operational 

strategy for climate control indoors, which considers dynamic aspects of occupant 

behaviors and environmental conditions. Acoustic comfort is usually assessed 

alongside other elements of personal comfort, providing a base for multi-sensory 

consideration in buildings (Bourikas et al., 2021; W. Yang & Moon, 2019). 

Among other occupant-related comfort aspects, thermal comfort attracted the 

attention of researchers the most due to its massive impact on overall human 

satisfaction and the account of HVAC systems on building energy use. Frontczak & 

Wargocki (2011) conducted a literature survey about the effects of indoor 

environmental quality (IEQ) on overall human comfort and reported that thermal 

comfort was the top ranked factor in most of the studies. Similarly, Leccese et al. 

(2021) revealed that thermal comfort was weighted as the most critical IEQ factor in 

more than half of the related studies published between 2002 to 2018.  On the other 

hand, according to the Department of Energy (DOE, 2011), HVAC systems consume 
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75% of electricity and 40% of total energy in buildings in the United States. 

However, despite the high levels of energy used by HVAC systems to provide 

comfort in buildings, the lack of thermal comfort is still one of the most common 

occupant complaints (ASHRAE, 2017). According to the study by Karmann et al. 

(2018) analyzing thermal comfort votes from 52980 occupants in 351 office 

buildings, only 2% of buildings meet the targeted satisfied occupant rate, which was 

determined as 80% by ASHRAE (2017). They reported that 43% of occupants were 

thermally dissatisfied with their working environments, which might be correlated 

with the inadequate personalized conditioning or control provided by prevailing 

HVAC systems. 

2.3.2 Proposed Structure for Thermal Domain 

Ideally, an intelligent building control framework should account for human 

presence, activities, and personal comfort requirements to adjust indoor environment 

conditions in all domains based on occupant preferences. Once the physical 

requirements such as a central building management system, appropriate sensor 

network, and compatible building components are properly installed, the operational 

logic of the building subsystems should be established in coordination with each 

other. In the last two decades, multi-agent-based control have become a prominent 

strategy for coordinating tasks in complex environments to ensure conflict-free 

operation of different subsystems (Duan & Lin, 2008; Micolier et al., 2019). This 

control strategy basically allocates individual tasks to autonomous entities, which 

are usually called as agents, and establishes a communication ground for agents’ 

interaction. Each agent has its internal mechanism with specific inputs, objectives, 

and decision-making triggers for taking necessary actions to complete defined tasks 

(Dorri et al., 2018). In multi-occupancy environments, the number of personal agents 

could be determined considering the room capacity to reflect the preferences of all 

individuals in building control. 
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In order to ground an optimization strategy for the operation of HVAC systems, we 

isolated the interaction between the HVAC agent and personal agents from the bigger 

multi-agent-based control scheme. In doing so, we outlined the data flow in agent 

interactions within the thermal domain to illustrate how building control can be 

framed in an occupant-centric manner (Figure 2.5). Accordingly, occupant-centric 

control framework requires data from both occupants and the environment. Utilizing 

Internet of Things (IoT) sensor network is a plausible strategy to collect real time 

data about indoor environmental conditions including temperature, air velocity, 

relative humidity, etc. and occupant characteristics such as behaviors, preferences 

and sensations. Together with information retrieval about personal factors such as 

age, gender, heart rate etc., collecting and leveraging such data in the building 

management system would allow the development of personal comfort models that 

would shape the base logic of personal agents. If continuous data flow with high 

granularity is enabled, developed models could be dynamically updated to account 

for the changes in occupant preferences in the long run. These models can be stored 

on the central database and retrained regularly with the dedicated machine learning 

algorithms.  

Similarly, HVAC agent could be formed based on the generated data and iterative 

outcomes of parameter combinations. As demonstrated later in Chapter 4, thermal 

dynamics of a space can be assessed using CFD simulations, by setting 

environmental conditions, contextual factors and HVAC system components as 

boundary conditions. Once all representative variations are modeled and simulated, 

thermal distribution patterns data could be stored in the central database. The base 

logic of HVAC agent could then be fed with thermal distribution input to make 

optimum control decisions based on instantaneous requirements of the space 

prescribed by real-time data. It is also possible to substitute thermal distribution 

patterns data generated using CFD simulations with a comprehensive sensor 

infrastructure in place. In such a scenario, the granularity and placement of sensors 

should be properly arranged to account for spatial and temporal variations. Although 

a sensor-based system development has the potential to be more accurate and robust 
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than a simulation-based approach, installation and maintenance of the infrastructure 

may be quite costly and complex to deal with. Regardless of the approach, machine 

learning algorithms could be employed for real-time processing and continuous 

learning based on the type and the quality of the data.  

 

Figure 2.5. Data flow and control framework for thermal domain 

Conventional design approaches aim to achieve relatively uniform thermal 

conditions at an average setpoint temperature throughout a space. This approach 

naturally implies that the thermal environment will likely be suboptimal for many of 
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the building occupants. Individuals who are thermally uncomfortable would interact 

with building controls to adapt their environments to retrieve their comfortable 

states. However, this may disrupt other occupants, and resultantly, lead to an iterative 

control problem in shared space conditioning. Considering these, we hypothesized 

that collective comfort in multi-occupancy environments could be provided by 

explicitly influencing and leveraging the development of non-uniform thermal 

conditions, together with accounting for the differences in personal comfort 

preferences of individuals. The nonuniformity of both personal comfort levels and 

climatic conditions indoors can be interpreted as an optimization problem, and could 

be solved through setting up an intelligent system scheme. Accordingly, once the 

control structure shown in Figure 2.5 is well-established and real-time dataflow from 

both the indoor environment and the occupants are ensured, a simplified workflow 

(Figure 2.6) could be used to assess the potentials of the proposed framework for 

improving collective comfort in shared indoor spaces.  

 

Figure 2.6. Workflow model for the thermal domain 
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The demonstrated workflow model in Figure 2.6 proposes that building occupants 

can be optimally assigned to micro-locations (i.e., workstation) at the start of each 

day, based on their personal comfort profiles stored in the central building system. 

Accordingly, once an occupant arrives to the room, BMS suggests an optimum 

location by processing multiple variables including individual’s profile, occupancy 

patterns for the day and micro-thermal conditions. If the occupant accepts the seat 

assignment, conditioning system can use pre-calculated optimum operational 

settings. If the occupant decides not to comply with the suggestion, then the system 

can recalculate the optimum settings; this time by including the position and personal 

comfort profile of that occupant within the inputs. At this decision-making stage, the 

‘optimum operation’ can be defined by setting the system priorities about energy use 

and occupant comfort. Since continuous relocation of occupants is neither practical, 

nor logical in real-life conditions, suggested flow assumes that occupants would not 

be relocated after they occupy a workstation for the day. As occupants have the 

initiative for complying with the system suggestions, BMS can adjust its operation 

to the optimum settings based on the given conditions and inputs, rather than 

enforcing the ideal scenario maximizing collective comfort or energy efficiency. It 

is worth mentioning that, the overall performance of the strategy would potentially 

improve over time, as the database on comfort preferences of the individuals expands 

and occupancy patterns are recognized by the system. For the initial employment, 

personal comfort models can be pre-trained by conducting comfort surveys. 

2.3.3 Case Selection 

In order to assess the viability of the proposed structure for thermal domain, a case 

study was described for carrying out a proof-of-concept analysis. An office space in 

the College of Engineering of Penn State University was selected, which houses 

workstations for six graduate students (as illustrated in Figure 2.7). The room is on 

the second floor of a three-story building located at University Park Campus in State 

College, the United States, the climatic zone of which can be described as cool-
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humid. It is surrounded by indoor spaces on three sides and it has five large windows 

on its wall facing outdoors. 

The office space is approximately ~53 m2. It has a conventional HVAC settling, 

where the fresh air is supplied through an inlet on the ceiling and return air is 

exhausted through an outlet on the west wall. The space use is not regular and 

occupancy pattern throughout the weekdays changes each academic term depending 

on students’ weekly programs. Depending on the given space characteristics, a 

comprehensive analysis requires accounting for the personal preferences of six 

different individuals and examining the thermal distribution dynamics under varying 

occupancy and conditioning scenarios.  

 

Figure 2.7. Three-dimensional model of the selected office space 
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Accordingly, Chapter 3, Chapter 4 and Chapter 5 were organized to (1) presenting 

dedicated personal comfort profiles, (2) composing the thermal distribution patterns 

dataset and (3) assessing the potentials for improving collective comfort through a 

data-driven analysis, respectively. Further details on the selected case are given in 

Chapter 4, where the geometric modeling process for simulations are provided. 

2.4 Discussion 

Technology has been continuously transforming the built environments, with 

changing magnitudes throughout the last century. Lately, this transformation has 

been accelerated and reached a considerable pace, with the developments in artificial 

intelligence, the Internet of Things concept, sensing, actuation, and information 

systems. In the built environment, building automation can be claimed as one of the 

primary concepts in terms of technology integration, which has been introduced to 

provide efficient management by centralizing building control and minimizing 

human intervention. However, researches have indicated a disharmony between the 

operating principles of prevalent building automation systems and people’s 

instinctive desires, which have slowed down the employment of automation in 

buildings. In order to demonstrate a refined solution scenario, this research outlined 

a composition for the collaborative building control system and conceptualized the 

borderlines of a mixed-initiative framework.  

According to the conceptual framework, the control of building systems is proposed 

to be managed through a human-automation collaboration, where occupant needs 

and preferences are prioritized. The most efficient and effective control action is 

invoked by the automation through analysis of occupant requests and feedbacks, as 

well as the collected environmental and human-related data. As it is an initial 

elaboration for speculating the need for a drastic shift in system operation, the study 

might help researchers comprehend the integral components of such a mixed-

initiative control in buildings and grasp the prospective research directions. 

Considering the comprehensiveness of the subject, the detailed configuration of 
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presented components can be achieved through compartmentalized analysis of the 

domains in buildings. To this end, thermal domain was identified for further 

investigation in the following sections of this research. The collaboration procedure 

was simplified for enabling a computationally applicable analysis in a multi-

occupancy indoor environment, which is shared by occupants with possibly varying 

personal traits. It is anticipated that assessing the technological viability of the 

proposed collaborative control approach can be predicated on the demonstrated 

achievements in the specified domains, the results of which could help to compound 

the overall structure of the integrated framework.
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CHAPTER 3  

3 PERSONAL COMFORT MODELING 

This chapter delves into the concept of thermal comfort in buildings and highlights 

the transition towards personalized models by reviewing the widely accepted 

approaches in the literature. It presents six personal thermal comfort profiles, which 

were used to represent six different individual occupants. These comfort profiles 

were designated to be used in collective comfort probability analysis in Chapter 5, 

to account for the individual differences in comfort needs and preferences of 

occupants. The presented unified probabilistic thermal comfort profiles were 

developed by processing available real-world datasets with Bayesian network 

modeling approach.  

In this section, firstly, the basics of the PMV and adaptive models were explained 

and the emergence of the personal comfort modeling concept was presented. Then, 

the employed dataset was introduced and the probabilistic modeling process was 

illustrated. Lastly, generated personal comfort profiles were demonstrated with a 

comparison on their characteristics. The chapter was concluded with a discussion on 

the importance of personalized models for improving occupant comfort in the built 

environment and potentials revealed by this new approach in the field. The author 

would like to acknowledge that the methodology used in this chapter was built upon 

the study of Jung & Jazizadeh (2019a). 

3.1 Literature Review 

3.1.1 Thermal Comfort in Buildings 

Thermal comfort is defined by ASHRAE (2017) as "that condition of mind which 

expresses satisfaction with the thermal environment". An individual who wishes to 
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feel neither warmer nor cooler when asked about their thermal state can be deemed 

as thermally comfortable. Contrary to its simple definition, providing thermal 

comfort in buildings is not a trivial task, as it depends on many environmental and 

personal factors. Since what is accounted as comfortable changes from one place, 

time, and person to another (Chappells & Shove, 2005), developing knowledge on 

thermal comfort in buildings has been a critical research subject over the years (De 

Dear et al., 2013).  

The overarching aims of research efforts in thermal comfort field listed by Taleghani 

et al. (2013) in their review include improving occupant satisfaction, productivity 

and work performance in indoor environments, achieving energy savings, reducing 

the negative impacts of buildings on the environment, and improving standards. 

Wang et al. (2019) demonstrated how thermal comfort can affect occupants’ 

productivity by influencing their mental workload. Lipczynska et al. (2018) explored 

the link between thermal comfort and self-reported productivity and indicated a 

direct correlation. Likewise, a field survey in an office building conducted by Tanabe 

et al. (2015) confirmed that improvements in work performance is closely related to 

individual thermal satisfaction. On the other hand, maintaining comfortable 

conditions for building occupants have great implications for energy consumption in 

buildings due to the proliferation of HVAC systems in most countries (Yang et al., 

2014). Although there have been many efforts to develop advanced intelligent 

building control systems that improve energy efficiency while maintaining thermally 

comfortable conditions, a completely satisfactory framework is yet to be achieved 

(Merabet et al., 2021). 

In modern buildings, the prevailing approach towards ensuring thermal comfort has 

been the development and optimization of proper mechanical systems. With the 

purpose of setting system requirements and control parameters for providing 

collectively acceptable conditions, the HVAC industry has defined comfort in terms 

of physical variables, i.e., temperature, airspeed, and humidity (Nicol & Roaf, 2017). 

Likewise, researchers have concentrated on developing empirical models that link 

such physical variables with the comfort states of building users to describe the 
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boundaries of comfort for average users. Among other thermal indices, two major 

approaches, the PMV and adaptive models, have been dominant in the current 

practice and effective in international standards. In recent years, however, comfort 

assessment paradigm has shifted towards being more granular and individualistic, 

and resultantly, a new approach called personal comfort modeling has become a 

point of interest for building researchers (Figure 3.1).  

 

Figure 3.1. Prevalent thermal comfort approaches in buildings 

3.1.2 The Predicted Mean Vote (PMV) and Adaptive Models 

The PMV, which was established through a series of experiments in climate 

chambers by Fanger (1970), is the most widely accepted model, and it served as the 

basis of ASHRAE 55 (2017) and ISO 7730 (2005) standards. The PMV explains 

human thermal sensation as an outcome of the heat transfer between the human body 

and the ambient environment and proposes a quantitative assessment by combining 

environmental factors (air temperature, airspeed, mean radiant temperature, 

humidity) and personal factors (metabolic rate, clothing insulation). Based on a 

steady-state physiological model, it simply predicts the mean thermal sensation votes 

of a large group of building users for any given environmental and personal factors, 

on a scale ranging from -3 to +3, corresponding to the sensations of cold, cool, 
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slightly cool, neutral, slightly warm, warm and hot (Van Hoof, 2008). Adaptive 

models, on the other hand, incorporate the assumption that building users would 

consciously react in ways to adapt their environments or themselves to changing 

conditions to retrieve their comfortable states. Developed through inferring a linear 

relationship between comfortable indoor temperature and prevalent outdoor 

temperature by analyzing field study data from naturally-ventilated buildings in 

different climate zones, adaptive model by de Dear & Brager (1998) was included in 

ASHRAE 55 (2017) standard and adaptive model by Nicol and Humphreys (2002) 

was placed in EN 15251 (2007) standard. Although the adaptive approach differs 

from the PMV in its underlying philosophy, both use simple linear scales to assess 

thermal comfort (Nicol & Roaf, 2017). 

Although the PMV and adaptive models were adopted successfully in the 

aforementioned international standards, both models have some inherent limitations. 

Kim et al. (2018) listed the main drawbacks of these approaches as the burdensome 

acquirement of input variables and simplified assumptions, their static nature that 

lacks capabilities of calibration and relearning from new field data at particular 

settings, and their inability to be modified with new input factors (such as sex, age, 

body mass index, etc.) beyond models' pre-defined variables. Above all, both are 

aggregate models whose comfort predictions are applicable to a group of people or 

a large population. They fail to predict individuals' thermal comfort in shared 

environments, where occupants with varying comfort profiles share the same 

environment (Van Hoof, 2008). A recent study showed that a simple linear model is 

about 40% more accurate than the PMV at predicting individual comfort (Guenther 

& Sawodny, 2019). Similarly, the prediction accuracy of the adaptive model for 

thermal preferences was reported as 50%, which is almost the same as random 

guessing (Kim, Zhou, et al., 2018). Moreover, André et al. (2020) noted that neither 

of these two approaches is suitable for evaluating the performance of personal 

comfort systems since they are designed for stable, uniform environments. 
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Figure 3.2. Aggregated models versus personal comfort models 

In response to the deficiencies of the conventional approaches in thermal comfort 

management in buildings, a new paradigm named personal comfort modeling has 

been proposed (Kim, Schiavon, et al., 2018). Benefiting from the developments in 

the data-driven technologies, personal comfort models eliminate the over-simplified 

assumptions in the PMV and adaptive models and suggest promising features for 

highly granular, individualistic, and context-relevant strategies in building control. 

Aggregated group models differs from personal models in the main comfort 

assessment approach (Figure 3.2), and Xie et al. (2020) emphasized that shifting 

from the former to the latter can help the practice of occupant-centric control, despite 

the recency of the latter. 

3.1.3 Personal Comfort Models 

The advancements in the Internet of Things (IoT) concept have enabled easy and 

low-cost collection and generation of personal data, which formed a foundation for 

more context-based, tailor-made approaches. Personal comfort modeling is a data-
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driven strategy that predicts an individual's thermal comfort based on direct feedback 

(e.g., thermal sensation, preference, pleasure) and specific data (e.g., personal, 

contextual) from a single person (Kim, Schiavon, et al., 2018). Using the data 

collected in daily life environments, it utilizes machine learning algorithms to learn 

individuals' comfort responses, reveals variations between comfort needs of different 

occupants, and allows to achieve higher satisfaction rates and energy efficiency 

(André et al., 2020). Contrary to the conventional approaches, personal comfort 

models are flexible, enabling the application of different modeling methods and 

having the capacity to adapt new input variables and additional data. According to 

the review by Martins et al. (2022), the most frequently used input variables in these 

models include environmental factors such as indoor temperature, airspeed, relative 

humidity, outdoor temperature, and personal features such as skin temperature, heart 

rate, activity level, clothing level, and metabolic rate. It has also been shown that 

thermal comfort prediction performance escalates when environmental and personal 

factors are combined as inputs in the model development (Aryal & Becerik-Gerber, 

2019; Jung et al., 2019). 

Developing personal comfort models with high predictive performance has been a 

prominent objective for many researchers in the last two decades. The main 

prediction logic of developed models is predicated on correlating environmental and 

personal sensor data with the occupant feedbacks collected through various mediums 

(Daum et al., 2011; Ghahramani et al., 2015; Kim, Zhou, et al., 2018; W. Liu et al., 

2007). Kim, Schiavon, et al. (2018) explained the process of developing personal 

comfort models in their pivotal work as data collection, data preparation, model 

selection, model evaluation, and continuous learning, respectively, as shown in 

Figure 3.3. Accordingly, once the model is established, it could be integrated into 

building control loops with the help of connected sensors, controllers, a local 

network, and a central server. However, both Kim, Schiavon, et al. (2018) and 

Martins et al. (2022) highlighted that there is still no consensus on a unified and 

systematic framework for personal comfort modeling in the field. 
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Figure 3.3. Development of personal comfort models  

(adapted from Kim, Schiavon, et al.(2018)) 

In recent years, many researchers have developed personal comfort modelling 

strategies using various methods. Zhao et al. (2014) utilized a physical human-

machine interface to model occupants’ thermal complaints. Jazizadeh et al. (2014a) 

employed a participatory sensing application for smartphones to learn occupants’ 

comfort preferences. Kim et al (2018) used occupants’ heating and cooling behaviors 

as comfort feedback to establish personalized models with high accuracy. Feng et al. 

(2023) leveraged wearable sensors and smartphone applications to collect 

individualized comfort measurements from both occupants and their micro-

environments.  Regardless of the approach, the common practice at this field is to 

fuse occupants’ comfort feedback and indoor environmental data, and apply machine 

learning algorithms to establish personalized comfort models.  

One of the early studies for personal comfort modeling was published by Liu et al. 

(2007). They trained a neural network model with occupant responses at varying air 

temperature, humidity and air velocity values to predict individuals’ thermal 

sensations under different thermal conditions and demonstrated a high prediction 

performance. From there on, various models were developed employing different 

machine learning algorithms. Some of the commonly employed machine learning 
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algorithms in personal comfort models are random forest (Chaudhuri et al., 2018), 

support vector machine (Jiang & Yao, 2016), fuzzy classification (Jazizadeh et al., 

2014a), neural networks (W. Liu et al., 2007), Gaussian process (Guenther & 

Sawodny, 2019), Bayesian network (Ghahramani et al., 2015) and logistic regression 

(Daum et al., 2011). In a considerable number of studies, multiple machine learning 

algorithms were comparatively tested to achieve the best prediction performance and 

avoid algorithm-biased deviations (Aryal & Becerik-Gerber, 2019; Kim, Zhou, et 

al., 2018; S. Liu et al., 2019). Among others, random forest algorithm has been 

demonstrated to have a higher preference rate (Martins et al., 2022) and better 

accuracy (Kim, Zhou, et al., 2018; S. Liu et al., 2019). 

3.2 Material and Method 

In order to capture the diversity in thermal preferences of six occupants within the 

selected case (described in section 2.3.3), six different personal comfort profiles were 

developed by utilizing available datasets in the literature. A probabilistic modeling 

approach was adopted and Bayesian network was employed as the machine learning 

algorithm to process the data. It is worth mentioning that since the main aim of 

generating personal comfort profiles in this section is to account for the differences 

in individuals’ comfort preferences, some steps of developing personal comfort 

models such as model evaluation and continuous learning process were not 

considered within the research scope.  

3.2.1 Dataset 

In order to accurately evaluate the potential of occupants' having different thermal 

comfort preferences in multi-occupancy scenarios, considering actual human 

subjects and using realistic data is of utmost importance. In ideal conditions, the 

proposed framework in this research enhances real-time monitoring with continuous 

data collection for generating personal comfort models and flexibility augmentation 
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by integrating numerical simulations for occupant-centric building control. 

However, since the outlined case methodology was designated to reveal the possible 

strategies towards these goals with an offline procedure, using an existing dataset for 

developing personal comfort models was deemed as a plausible option. To this end, 

we used several probabilistic personal thermal comfort profiles that represent the 

individual differences in thermal comfort perceptions. These profiles were generated 

using a probabilistic approach and data presented in previous studies. The approach 

used to generate the profiles is as follows. A personal comfort feedback dataset 

compiled through field measurements carried out for several months by Daum et al. 

(2011) has been utilized. They adopted a multinomial logistic regression model to 

separate three thermal perception vote types: uncomfortably cool, comfortable, and 

uncomfortably warm. Leveraging the data obtained from comfort profiles reported 

by Daum et al. (2011), together with actual thermal votes dataset extracted from 

previous studies (Jazizadeh et al., 2014a; Pazhoohesh & Zhang, 2018), unique 

personal comfort profiles have been developed to represent different occupants. In 

this process, air temperature and thermal sensations were taken as input variables for 

calculating the probability distribution of comfort. 

3.2.2 Probabilistic Modeling  

As an individual could have both comfort and discomfort votes under the same 

thermal conditions in different occasions, a stochastic modeling approach were 

adopted to reflect the uncertainty of occupant sensations. A Bayesian network 

modeling process proposed by Ghahramani et al. (2015) was employed to create 

unified probabilistic thermal comfort profiles. This method leverages the Bayes rules 

and combines occupants’ votes reported for being uncomfortably cool, comfortable 

and uncomfortably warm across different ranges of temperatures to calculate overall 

comfort probability for a given temperature (Figure 3.4).  
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Figure 3.4. Graphical representation of the Bayesian network 

In order to form the overall thermal comfort profiles, three probability distributions 

were created, representing reported comfort states of individuals within the defined 

spectrum (comfortable, uncomfortably cool and uncomfortably warm), using 

Equation (1), Equation (2) and Equation (3). Normal distribution was used for the 

probability distribution of comfortable votes to account for the variance in 

probability distributions of comfort, and two half-normal distributions were used for 

the probability distributions of uncomfortably cool and uncomfortably warm votes 

overlapping with comfortable votes. The mean value for half-normal distribution of 

uncomfortable cool votes denotes to minimum temperature that an occupant voted 

as comfortable ( min( )ct ), while the mean value for half-normal distribution of 

uncomfortable warm votes denotes to maximum temperature that an occupant voted 

as comfortable ( max( )ct ). Accordingly: 

• Probability distribution of comfortable votes (P(c|t)): 
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• Probability distribution of uncomfortably cool votes (P(uc|t)): 

 

2

2

2 ( min( ))
( / ) ( : ) exp   min( )

2

uc c
uc uc uc c

ucuc

t t
P uc t f t t t

 

 −
= = −   

 
 (2) 

 2

1

1
( max( ))

tuc

uc

n

uc uc c

t

t t
n

 = −        

 , where 
uct  is any indoor temperature value that were voted as uncomfortably 

 cool within the comfortable temperature range, 
uc  represents standard 

 deviation of 
uct with respect to min( )ct , and 

uctn denotes to the number of 
uct  

• Probability distribution of uncomfortably warm votes (P(uw|t)): 
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uwt  is any indoor temperature value that were voted as uncomfortably 

 warm within the comfortable temperature range, 
uw  represents standard 

 deviation of 
uwt with respect to max( )ct , and 

uwtn denotes to the number of 
uwt . 

Using the probability distributions for three thermal vote types and conditional 

probability rules, a joint probability distribution compiling comfort profile for each 

occupant were generated using Equation (4). 
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In Equation (4), P(oc|t) denotes to the probability of the overall comfort for a given 

temperature, P(uc|t) is the probability distribution of uncomfortably cool votes, 

P(c|t) refers to the probability distribution of comfortable votes and P(uw|t) indicates 

the probability distribution of uncomfortably warm votes. Having added a 

normalization step, each comfort profile employs a Gaussian distribution defined by 

the average and the standard deviation of corresponding temperatures for the votes.  

 

Figure 3.5. Graphical representation of the comfort profiling process 

 (Jung & Jazizadeh, 2019a) 
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The steps of creating thermal comfort profiles were established by Jung & Jazizadeh 

(2019a), which are compiling the thermal votes dataset, creating probability 

distributions for the defined comfort spectrum and Bayesian network modeling, as 

shown in Figure 3.5. Each personalized profile created using this method 

demonstrates how an occupant’s thermal satisfaction probability changes with 

respect to the changes in room temperature.  

3.3 Personal Comfort Profiles 

As illustrated in Figure 3.6, six comfort profiles with different thermal behaviors 

were generated to assign a unique profile for each occupant within the scope of 

selected case. Each colored curve represents an occupant’s thermal comfort 

probabilities across the given air temperature range. Occupants can be assumed to 

be most comfortable at the temperature where the curve reach its top point. 

Correspondingly, the temperature that each occupant is most comfortable at are 

20.5°C, 24.2°C, 22.0°C, 24.4°C, 22.7°C, and 23.3°C, respectively.  

 

Figure 3.6. Personal comfort profiles for six occupants 
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Although some of the occupants have similar comfort preferences like occupant #2 

and occupant #4, or occupant #5 and occupant #6, their thermal comfort sensitivities 

have appeared to be different. Occupant #2 had a better tolerance towards both lower 

and higher temperatures in comparison to occupant #4, whereas occupant #6 had a 

much better tolerance toward higher temperatures in contrast to occupant #5. This 

study assumes that these personal comfort profiles, which are generated by the 

models ideally developed over a certain period of time and have updateability 

features with continuous learning (Kim et al., 2018), could reflect thermal comfort 

dynamics of occupants.  

Interpreting ASHRAE (2017)’s required comfortable occupant rate indices which is 

80%, comfort probability of 80% could be claimed as the lower boundary for 

defining each occupant’s comfortable thermal range. Based on this assumption, 

thermal comfort sensitivities of occupants were illustrated in Figure 3.7. 

Accordingly, temperature range that Occupant #1, occupant #4 and occupant #5 are 

comfortable at is narrower when compared to those of the other three occupants. It 

is also notable that Occupant #3 has the highest tolerance level, while being more 

sensitive to lower temperatures. Temperature range meeting each occupant’s 

comfort probability with a rate of at least 80% are 20.0°C - 22.2°C, 22.5°C - 25.8°C, 

21.1°C - 24.7°C, 23.3°C - 25.5°C, 21.8°C - 24.0°C and 22.0°C - 25.3°C, respectively. 

This difference between occupants’ comfort sensitivities can be leveraged to provide 

comfortable conditions for all individuals in shared environments by balancing gain 

and loss trade-offs between comfort probabilities. The importance of comfort 

sensitivity for improving collective comfort in buildings was asserted by (Jung & 

Jazizadeh, 2019a), who demonstrated its statistically crucial role for determining 

temperature setpoints in multi-occupancy indoor spaces. 
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Figure 3.7. Thermal comfort sensitivity differences between the six occupants 
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3.4 Discussion 

As individual differences result in variations in the comfort needs of occupants, 

shifting from centralized to personalized conditioning is a prime subject for 

providing comfort and energy efficiency in indoor built environments (Wang et al., 

2018). Personal comfort models have been a significant step forward in terms of 

leveraging more individual-specific data collection and utilization in comfort 

management.  

In practice, the thermal comfort profiles for each occupant would need to be 

established ahead of time and dynamically fed into building control system. Lately, 

various personal comfort modelling approaches have appeared using various tools 

including physical human-machine interface (Zhao et al., 2014), smartphones 

(Jazizadeh et al., 2014a), and wearables (Feng et al., 2023). With the advancing 

technology, tools used for collecting feedback from the occupants may transform 

into new forms. It is anticipated that thermal comfort profiles will be stored in 

personal devices in near future like a comfort fingerprint, readily available to be fed 

into the control system in any indoor space. 

The time required for generating personal comfort profiles depend on the employed 

tools, modeling types, and training methods. These include different sensing (e.g., 

participatory sensing using mobile devices, ambient conditions sensing, and 

wearable sensing) and data analytics methods (e.g., probabilistic or supervised 

machine learning techniques). The key issue is the quality and quantity of the 

collected data. For example, Jazizadeh et al. (2014b) developed thermal comfort 

profiles with a data collection process of two weeks using participatory and ambient 

sensing. Similarly, Liu et al. (2019) defined the data collection duration as 14 days 

and stated that model performance is improved with more data. Another study by 

Feng et al. (2023) collected 300 data points in three to four weeks to generate thermal 

comfort profiles. On the other hand, in their pivotal study, Daum et al. (2011) 

demonstrated that an initial default profile can be generated with a few data points, 

and it can then be converged towards the real thermal comfort profile in time. They 



 

 

55 

indicated that 90 data points would be sufficient for such a convergence. As pointed 

out, these data points could be obtained through wearable sensing, participatory 

sensing, or even smart thermostats, such as Google Nest. Once sufficient data points 

(composed of comfort feedback and environmental conditions data) are collected, 

they are processed with statistical or machine learning algorithms to generate 

personal comfort profiles. However, it is important to note that personal comfort 

profile development is not a static process. These profiles are supposed to be updated 

continuously with the incoming personal and environmental data, which will help 

maintain their predictive performance over time. 

Previous research have demonstrated that integrating personal comfort models into 

HVAC control loops for a comfort-driven operation both improves human comfort 

and enhances efficient energy use by providing conditioning at the needed level 

(Jazizadeh et al., 2014b; Li et al., 2017; Z. Yang & Becerik-Gerber, 2014). In single-

occupancy spaces, personal comfort models suggest huge benefits for ensuring the 

desired indoor climate with high sensitivity. However, although there are some 

studies proposing strategies for multi-occupancy comfort optimization in the 

literature (S. Lee et al., 2019; Nagarathinam et al., 2021), optimization of occupant 

comfort through utilizing personal comfort preferences in shared environments has 

still room for further investigation. Considering these, in this chapter, six personal 

comfort profiles representing comfort probabilities of six individuals across a range 

of temperature values were developed, using a Bayesian network modeling 

approach. Although conventional HVAC systems generally do not offer high 

granularity for individual-specific comfort assessment in multi-occupancy spaces, 

effective strategies and upgrades enabling the integration of personalized comfort 

data in building control have a huge potential to shift the current paradigm. Insightful 

research efforts in this field will encourage the building industry towards this 

transition to seek new paths for optimizing and transforming conventional 

mechanical systems in shared environments.  
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CHAPTER 4  

4 ANALYSIS OF THERMAL DISTRIBUTION PATTERNS 

This chapter focuses on the heterogeneity of thermal conditions in shared indoor 

spaces. Through studying the selected case study (presented in section 2.3.3) in 

depth, spatial variations in thermal parameters were analyzed. In doing so, CFD 

simulations were adopted to assess the influences of different parameters including 

supply airflow rate, supply airflow direction and occupancy. Following an initial 

analysis of the independent variables, a total number of 432 scenarios were defined 

and simulated to compile a dataset revealing thermal distribution characteristics in a 

multi-occupancy environment under varying occupancy and HVAC settings. 

The chapter starts with introducing the importance of non-uniformity of thermal 

conditions in multi-occupancy environments. Then, CFD simulation framework, 

governing equations, grid independence study and initial parameter assessment were 

presented. After defining the scenarios created with parameter combinations, the 

thermal distribution patterns were visualized and temperature variations at occupant 

locations were illustrated. The importance of defined parameters was analyzed using 

Random Forest algorithm, and the section was concluded with a brief discussion on 

the results. 

4.1 Literature Review 

4.1.1 Spatial Heterogeneity in Shared Spaces 

Thermal comfort in multi-occupancy spaces is a challenge as comfort optimization 

is usually limited by the granularity and flexibility of the existing building systems. 

In conventional HVAC control loops, when the thermostat is set to a specific 
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temperature, conditioning adjustments are made based on the measurements from a 

single sensor placed at a pre-defined point. Yet, as thermal conditions are not 

homogenous in indoor spaces (Zhou et al., 2014), temperature gradients may lead to 

a discrepancy between the temperature buildings occupants are subject to and the 

temperature setting on the thermostats (Du et al., 2015). The dynamics of indoor 

environmental conditions affect both human comfort and energy use. Especially in 

large shared environments, many parameters can affect micro-climate around 

different occupants, including proximity to windows, furniture layout, solar 

radiation, supply air inlet placement, and heat flux aroused from electronic 

appliances. These factors lead to fluctuations in indoor environmental parameter 

values in the same space, making occupant location an essential aspect for 

continuous comfort. Due to the influencing factors around their immediate 

surroundings and resultant micro-climate, occupants may be subjected to different 

thermal conditions within the very same indoor environment (Figure 4.1).  

 

Figure 4.1. Factors causing micro-climate variations in shared spaces  
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Regardless, most of the current studies on occupant-centric building control are 

predicated on the assumption that temperature is uniformly distributed in the 

considered zones, ignoring the dynamic local conditions of particular positions. 

Although a single thermostat or a local sensor is attributed to be representative for 

the entire room for assessing the indoor environmental parameters, thermal 

conditions may vary by location (Zhou et al., 2015). The spatial heterogeneity in 

buildings requires a high number of distributed measurements for making comfort 

implications based on occupant location. 

In the absence of proper control strategies, individuals occupying the same room 

may experience diverse thermal sensations, such as cold or warmth, owing to uneven 

thermal distribution. The most unfavorable outcome of this scenario would be the 

inability to provide satisfactory comfort for any occupants, coupled with the 

excessive energy consumption to regulate the indoor environment. Hence, analogous 

to addressing the nonuniformity in personal comfort, accounting for the 

heterogeneity of indoor climatic conditions in building control holds a promising 

opportunity for enhancing occupant comfort and decreasing energy consumption.  

Moreover, flexible working hours and remote working have been a common practice 

for many firms since the beginning of the Covid-19 pandemic. As dynamic 

occupancy patterns are expected to remain in effect in large offices even in the post-

pandemic era (Mantesi et al., 2022), the operation of HVAC systems can be adjusted 

according to the demand to avoid conditioning unoccupied locations while ensuring 

comfort for the positions that are occupied. 

Despite the potential benefits of using micro-thermal data to optimize building 

control systems for enhanced efficiency, the current body of research on this topic is 

relatively limited. The reason may be the costly requirement of controlled 

measurements with complex sensor infrastructures to understand the patterns and 

distributions of thermal parameters in indoor environments. As the high 

computational power gets more accessible with advanced technology, it has become 

more viable to utilize computational fluid dynamics (CFD) simulations to obtain the 

required thermal variables in an economical and efficient manner. 
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4.1.2 Computational Fluid Dynamics Simulations 

Research efforts towards assessing thermal dynamics in indoor spaces are mainly 

conducted by on-site measurements and computer simulations. In recent years, due 

to the complex physical requirements and time-intensive nature of field studies, CFD 

simulation has been a very useful tool for understanding and visualizing the air 

distribution patterns of thermal parameters. When compared with field studies, 

which relies on a limited number of specific point measurements, it enables to 

capture indoor thermal parameters with a much higher granularity. Although its 

introduction in HVAC industry dates back to the 1970s, it has become widely 

popular in the last two decades (Nielsen, 2015). 

Through solving a set of partial differential equations for conservation of mass, 

momentum, and energy with suitable turbulence models, CFD simulation allows to 

analyze and visualize airflow dynamics and temperature distribution within a defined 

environment. With the increasing availability and advancements in high-power 

computing and processing tools, CFD has become a prominent way of dealing with 

the complex flow problems within the built environment in the last decades (Nielsen, 

2015). Building researchers adopted this approach for assessing various subjects. 

including indoor environmental factors Sevilgen and Kilic (2011), HVAC design 

(Duan & Wang, 2019), personalized systems (J. Liu et al., 2019), occupant comfort 

(Hajdukiewicz et al., 2013; Shan et al., 2020) and energy use (Zhou et al., 2014). 

The study by  Buratti et al. (2017) demonstrated that spatial variations in thermal 

comfort can be accurately simulated using CFD tools. Other researchers employed 

CFD simulations to make thermal comfort predictions in various indoor environment 

typologies including lecture halls (Cheong et al., 2003), stadiums (Stamou et al., 

2008), offices (Myhren & Holmberg, 2008; Semprini et al., 2019) and residential 

spaces (Z. Chen et al., 2020). A recent study by Jazizadeh et al. (2020) tested the 

applicability of adaptive HVAC operation using CFD simulations and demonstrated 

promising insights for employing this method for occupant-centric building control 

research. 
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4.2 Material and Method 

In this section, CFD simulations were employed to analyze thermal distribution 

characteristics in a shared office space. Simulation procedure and setup components 

including solver settings, governing equations, and boundary conditions were 

explained in detail. In order to confirm the reliability and validity of the simulations, 

grid independence test and setting validation study were carried out. After simulating 

eight initial cases to understand the influence of the independent variables, 432 

different scenarios were defined using the combinations of different supplied airflow 

rates, supplied airflow directions and occupancy cases. The variations of 

independent variables were intentionally kept at a manageable level, considering the 

cumulative increase in the number of combinations and computing time. 

4.2.1 Simulation Framework 

In this study, commercial software ANSYS Fluent (ANSYS Inc., 2021) is used for 

performing CFD simulations. It is one of the most popular software packages for 

assessing indoor air parameter distributions, with its user-friendly function 

allocations (Y. Zou et al., 2018). The simulation process starts with developing three-

dimensional geometry and mesh generation, which are then followed by simulation 

setup, grid independence study, mesh refinement, and running the simulations 

(Figure 4.2). The finite volume method embedded in the software is used to solve 

the governing equations by decomposing the fluid domain into small control 

volumes. The partial differential equations are discretized into algebraic equations at 

each point of the generated mesh grid, and these algebraic equations are solved 

through iterations to obtain thermal distribution and airflow patterns within the 

defined boundaries (Shan et al., 2020). In this study, a steady-state simulation setup 

was employed, which provides a snapshot of the conditions within the defined space 

at a given time under selected boundary conditions. 
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Figure 4.2. CFD simulation framework 

 

 

Figure 4.3. The architectural layout of the selected office space 
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An office space in the College of Engineering of Penn State University is selected as 

the simulation case (Figure 4.3). Shared by six occupants, space dimensions are 8.8m 

in length, 6m in width, and 4m in height. The room's only side subjected to the 

exterior conditions is the south wall, having five large windows. There is one supply 

air inlet and a return outlet in the room, both having dimensions of 0.5m x 0.5m. 

4.2.2 Governing Equations and Boundary Conditions 

Based on the real-world parameters of the selected space, a three-dimensional 

geometric model is developed using the SpaceClaim platform in ANSYS Fluent. 

Walls, windows, tables, computers, HVAC components, and occupants are 

abstracted in the model to reduce complexity and avoid irrelevant details in meshing 

(Figure 4.4). Occupant surface area is modeled as 1.8 m2, representing an average 

human body (ASHRAE, 2017). 

 

Figure 4.4. Simulated geometry and generated mesh in ANSYS Fluent 



 

 

64 

The governing equations used in simulations, which are conservation of mass (5), 

conservation of momentum (6a, 6b, 6c), and conservation of energy (7), were 

explained in detail by Versteeg and Malalasekera (2007). Referring to Duan & Wang 

(2019), equations can be written as: 

 

Continuity equation (conservation of mass): 
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, where   is the density, V  is the velocity, and  resembles divergence. 
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, where u, v, w is the velocity in x, y, z directions, P  is the pressure force per unit 

area, ij  stands for a stress in j-direction exerted on a plane perpendicular to the i-

axis; 
if  denotes the body force on the fluid element acting in the i-direction, 

respectively. 
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Conservation of energy equation: 
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, where 
2

( )
2

V
e +  is the total energy, k is the thermal conductivity, T is the local 

temperature, q  is the rate of volumetric heat addition per unit mass.  

The pressure-based segregated solver is used for the incompressible flow equations, 

and the Boussinesq approximation is employed to model natural convection. The 

realizable -k  model is used for turbulence modeling under full buoyancy effects, 

and solar radiation is solved using a surface-to-surface (S2S) model with solar ray 

tracing.  

The semi-implicit method for pressure-linked equation (SIMPLE) is applied as the 

pressure-velocity coupling algorithm. Least squares cell based (LSCB) is used for 

discretizing gradients, and the pressure staggering option (PRESTO!) is selected for 

pressure. Second-order upwind methods are utilized for the discretization of 

momentum, turbulent kinetic energy, turbulent dissipation rate, and energy. The 

selection of these methods is predicated on the previous validations by Wang et al. 

(2017) and Jazizadeh et al. (2020). 

Boundary conditions and material properties for the baseline scenario are defined, as 

shown in Table 3.1. Accordingly, air with a flow rate of 0.1625 m3/s and a 

temperature of 13 degrees Celsius is supplied to the space from the inlet, uniformly 

in all directions with an angle of 30 degrees from the ceiling. The surface of walls, 

slabs, and tables are set as adiabatic, presuming no-slip conditions for fluid-surface 
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interactions. The heat sources in the space are determined as occupants with a heat 

flux of 60 W/m2 per individual, computers with a generated heat of 60 W/m2 per 

device, and the windows exposed to the exterior temperature and radiation effects. 

The windows are designated with a heat transfer coefficient of 5.6 W/m2 and a solar 

radiation transmittance feature of 80%. The global position of the selected office 

space is defined in the solar calculator of the S2S model to have accurate solar 

radiation effects applied on the windows. The exterior temperature is set as 28OC, 

considering a hot summer day in the case location. The date and time were arranged 

as June 21st, 13:00. As indicated in Table 4.1, density, specific heat, and conductivity 

parameters are defined for a low-insulation window. 

 

Table 4.1. Boundary conditions used in the baseline simulation  

Boundary Properties Conditions 

Supply Inlet n/a airflow rate=0.1625 m3/s  

air temperature = 13°C 

Return Outlet n/a pressure outlet 

Walls n/a adiabatic, no-slip condition 

Windows density = 2700 kg/m3 

specific heat = 840 J/kg.K 

conductivity = 0.14 W/m.K 

heat transfer coeff.: 5.6W/m2K 

exterior temperature: 28°C 

transmittance: 80% 

Occupants density = 998 kg/m3 

specific heat = 4182 J/kg.K 

conductivity = 50 W/m.K 

heat flux = 60 W/m2 

Computers density = 115 kg/m3 

specific heat = 1810 J/kg.K 

conductivity = 0.181 W/m.K 

heat flux = 60 W/m2 
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4.2.3 Grid Independence Study and CFD Validation 

As the quality of the generated mesh is quite critical for the accuracy of simulation 

results and the computational cost, determining a reasonable grid size is crucial. In 

order to ensure the robustness of the solution and determine the suitable mesh to be 

used in the simulations, a grid independence study is performed. Four different 

meshes are generated considering the grid refinement ratio, starting from coarse 

quality towards the fine. 

1

3
fine

coarse

mesh
r

mesh

 
=  
 

            (8) 

Table 4.2. Grid parameters for different mesh sizes  

Mesh-1 Mesh-2 Mesh-3 Mesh-4 r43 r32 r21 

174 136 411 336 964 995 2 150 072 1.31 1.33 1.33 

 

The grid refinement ratio (r) for three-dimensional meshes is calculated for two 

consecutive meshes (i.e., fine and medium, or medium and coarse), as defined in 

Equation (8). In order to assess the discretization error in isolation, the refinement 

ratio is required to be greater than 1.3 (Hajdukiewicz et al., 2013). Accordingly, four 

successively refined meshes are created using unstructured elements, with the 

maximum element sizes of 0.17 m, 0.12 m, 0.08 m, and 0.06 m, respectively. The 

number of elements in each mesh and grid refinement ratios is shown in Table 4.2. 

A qualitative grid independence assessment is conducted by comparing vertical 

temperature profiles along the room height at two random locations. As 

demonstrated in Figure 4.5 and Figure 4.6, profiles simulated with mesh-2, mesh-3, 

and mesh-4 are very close, implying a very small discretization error. Considering 

the trade-off between the number of elements and high computational cost with 

calculation time, mesh-2 (411 k elements) is adopted for simulations. The selected 

mesh size is further refined in the vicinity of the supply inlet, return outlet, and 

occupants. 
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Figure 4.5. Vertical temperature profiles simulated with four meshes – random location-1 

 

Figure 4.6. Vertical temperature profiles simulated with four meshes – random location-2 
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The convergence of the solution is checked through monitoring the residual root 

mean square error values for mass, momentum, and energy equations, together with 

relevant variables including average temperature, average velocity, and mass flow 

rate at inlet and outlet surfaces. The criterion for convergence is set as 1e-6 for energy 

and 1e-3 for x-velocity, y-velocity, z-velocity, k, and epsilon. The solutions are 

assumed to satisfactorily converge once the numerical results of the monitored 

variables between the consecutive iterations become negligibly small. After 

performing numerous initial simulations, it is acknowledged that the calculations in 

the defined case can be terminated after 2000 iterations, where the residuals reach 

converged values and the monitored variables have a steady solution. 

In order to validate the effectiveness of CFD modeling approach adopted in this 

study, the experiments conducted in a climate chamber by Loomans (1998) was 

replicated by modeling and simulating the described office space. Loomans (1998) 

comprehensively documented the experiment characteristics and reported 

temperature and velocity measurements at certain locations within the test bed, for 

which researchers employed his work for verifying their CFD models (Jazizadeh et 

al., 2020; Stamou & Katsiris, 2006). As shown in the developed 3D model for 

replicating the experiment in Figure 4.7, the space has an inlet under the desk table 

that supplies air with a rate of 0.047 m3/s at 19.8°C and a return outlet on the upper 

corner just below the ceiling. As the heat sources, there are one occupant (59.8 W), 

two PC simulators (61.5W each), three ceiling lights (18.1W each) and a light source 

(10.9W). The temperatures of the walls, floor, and ceiling were set constant values 

between 22.2°C - 23.2°C. 

Select experimental data recorded by Loomans (1998)  was compared with the 

predictions made with our CFD simulations. CFD calculations were compared to the 

temperature values measured using T thermocouples (with an accuracy of ±0.1°C) at 

x = 1.5 m at three z-locations, and to the velocity values measured using a hot sphere 

anemometer (with an accuracy of ±0.0.25 m/s) at x = 2.40 at three z-locations. As 

demonstrated in Figure 4.8, a very satisfactory agreement between the experiment 
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measurements and CFD calculations were achieved, which validates the modeling 

approach adopted in this study to simulate HVAC system of an office space. 

 
Figure 4.7. CFD model geometry created for simulating the experiments of Loomans 

(1998) 

 

Figure 4.8. Vertical profiles comparing the measurement of (Loomans, 1998) and 

CFD calculations for temperature at x=1.50 m and velocity at x = 2.40 m 
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4.2.4 Initial Analysis for Independent Variables 

Prior to proceeding to define scenarios, initial CFD simulations were performed to 

gain an overall perspective on how different independent variables affect the 

distribution of thermal parameters in shared environments. Airflow rate, airflow 

direction, and occupancy states were evaluated with comparative analysis. 

   

Figure 4.9. CFD simulations for supplied airflow rate variations 

First, the impact of the supplied airflow rate was assessed by running two simulations 

cases created based on the baseline scenario. Airflow direction, supply air 

temperature, and occupancy were kept constant in both cases. In the first case, 

supplied-air velocity was defined as 0.65 m/s, which creates a flow rate of 

0.1625m3/s. In the second case, supplied-air velocity was decreased to 0.5 m/s, 

leading to an airflow rate of 0.125 m3/s. While the average temperature of the room 

was 24.7°C in the first case, it increased to 26.8°C in the latter. Temperature gradients 

and air circulation were impacted as well, implying the influence of flow rate in 
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thermal distribution patterns in indoor spaces. Figure 4.9 demonstrates the resultant 

plan views at neck-level and air velocity streamlines. 

Secondly, we checked whether the occupant presence is an influential factor for the 

indoor environmental parameters. Keeping all other settings, boundary conditions, 

and variables as constants, we remodel the room as an unoccupied space. It was 

observed that the average temperature in the unoccupied case is dropped by four 

degrees Celsius compared to the baseline (Figure 4.10). These results were 

interpreted to be correlated with the heat flux created by the occupants. In addition, 

air circulation patterns were affected by the absence of human bodies. It was 

recognized that keeping the system operation static could lead to uncomfortable 

conditions in case of occupancy variations.  

     

Figure 4.10. CFD simulations for occupancy variations 
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Figure 4.11. Comparative analysis of airflow direction variations 
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Lastly, alterations of supplied airflow direction were evaluated. As mentioned 

before, airflow is assumed to be uniformly distributed in all directions with an angle 

of 30 degrees from the ceiling in the baseline scenario. In order to determine the 

influence of airflow direction, four cases were created. Directed airflow is adopted 

towards only one direction in each case, north, south, east and west directions, 

respectively. Simulation results showed that airflow direction changes average 

temperature and distribution gradients. As illustrated in Figure 4.11, the longer the 

supplied cool air travel inside the space, the cooler the room becomes, depending on 

the placement of the pressure outlet. As the return outlet was placed on the upper 

part of the interior wall on the west side, directional airflow towards the east side 

creates the coolest conditions, while the one towards the west side leads to 

comparatively higher indoor temperature. 

Initial CFD simulations have proven that spatial distributions of indoor 

environmental parameters are influenced by different independent variables, 

including supplied airflow rate, airflow direction, and occupancy. Results also 

verified the heterogeneity of thermal conditions in large shared spaces, endorsing the 

aforementioned research motivation towards discovering optimization strategies for 

more comfortable and efficient built environments. 

4.2.5 Scenarios 

In order to discover strategies for the optimization of collective comfort in shared 

environments and leverage occupant-centric HVAC control strategies, a total 

number of 432 scenarios were created using combinations of independent variables, 

as shown in Figure 4.12. Firstly, for the occupancy variable, we created 16 scenarios. 

While one of the scenarios was for the fully occupied state with six occupants, the 

rest were created with the assumption that only two occupants were present in the 

space. This assumption was made considering the fact that two is the minimum 

number creating the multi-occupancy state. The allocation probabilities of two 
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occupants between 6 seats compose 15 scenarios, based on the combination theory 

(Figure 4.13, Figure 4.14).  

 

Figure 4.12. Variable combinations for simulation scenarios 

Secondly, three different supply airflow rates were determined, keeping the 

simulated average room temperature within acceptable limits and satisfying the 

standard ventilation requirements. The airflow rates of 0.125 m3/s, 0.1625 m3/s, and 

0.2 m3/s, correspond to air change rates (ACH) of 2.31, 2.77, and 3.41, respectively, 

for this space. As the amount of supplied cold air can be directly correlated with the 

consumed energy, it is possible to assess the energy saving possibilities with these 

setting variations. The previous researches on ventilation rates in office spaces 

asserted that an airflow rate of 0.025 m3/s per individual reduces the prevalence of 

sick-building-syndrome symptoms (Sundell et al., 2011). Since reducing the amount 

of supplied air comes with the risk of decreased occupant well-being and low 

productivity, the range of airflow rates were defined considering the requirements to 

ensure a healthy environment for a maximum of six occupants. 
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Figure 4.13. Six occupant locations in the multi-occupancy office space 

 

Figure 4.14. Occupancy scenarios 
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Lastly, four cardinal directions: north, south, west, and east, four intermediate 

directions that are northwest, northeast, southwest, and southeast, and uniform 

distribution towards all directions were used as alternatives for the directional flow 

of supplied air. The combination of these three variables' options led to a total 

number of 432 scenarios. For each of 432 scenarios, CFD simulations will be 

performed by making related modifications in the geometric model and applying 

defined boundary conditions. 

4.3 CFD Simulation Results 

After compiling the results of the CFD simulations as a dataset, various analyses 

were performed. To start with, a density diagram was plotted in order to visualize 

how much variation there is across all of the simulation cases for each occupant 

location (Figure 4.15). The distributions are quite wide for all six locations, which 

demonstrates the sensitivity of temperatures at each location to the simulation 

settings. This result suggests that there should be some good opportunities in 

relocating occupants for optimization, provided that we have similar variation in 

occupant thermal comfort profiles. 

While there is a wide distribution for each position, occupant locations near windows 

have clearly higher operative temperature values. Density of the temperature values 

for near-windows positions (loc-1, loc-2, loc-3) ranges between 18.5°C to 28°C and 

culminates at 22°C. On the other hand, the interval for loc-4, loc-5 and loc-6 is 

between 17.5°C to 27°C and 20.5°C has the highest density. This difference between 

two sets of occupant locations is in tune with the fact that positions near windows 

are affected more from the solar radiation and they are subjected to higher mean 

radiant temperatures. 
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Figure 4.15. Density plot for all six occupant positions 

4.3.1 Visualization of Thermal Distribution Patterns 

In order to evaluate the spatial variation of temperature in the selected space, 

temperature contours at neck height (1.25m) in scenarios for maximum occupancy 

and minimum multi-occupancy baseline cases were visualized using ANSYS 

Fluent’s post-processor. The colored temperature legends were kept same (between 

18°C – 32°C) in each simulation case and all plan views were arranged together for 

an accurate and legible comparative analysis, as shown in Figure 4.16 and Figure 

4.17. 

Accordingly, higher supplied airflow rates create cooler conditions given that airflow 

direction and the occupancy case are constant. However, the average room 

temperature decreases by one to two degrees Celsius when the number of occupants 

drops from six (Figure 4.16) to two (Figure 4.17), even with the same supplied 

airflow characteristics. The observed difference could be explained with the fact that 

occupants are important heat sources in indoor environments with the heat flux 
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released from their bodies. This result reflects the importance of occupancy and 

demonstrates how pre-defined static operation of climatization systems may lead to 

unintended thermal conditions in case of occupancy fluctuations in indoor spaces, 

which in return could affect human comfort and satisfaction. In addition, regardless 

of occupancy case, airflow rate or airflow direction, temperature is nonuniform in all 

of the cases. Temperature gradients do exist in this relatively small-scale office space 

with a conventional HVAC system, proving that people can be subjected to different 

thermal conditions in the very same environment, depending on desk positions. 

As demonstrated in Figure 4.16 and Figure 4.17, the supplied airflow direction has a 

direct influence in thermal conditions and temperature distribution. The critical 

parameters here were considered to be the placement of supply air inlet and the return 

outlet. As illustrated in Figure 4.13, the outlet is located on the west wall whilst the 

inlet is in the center of the room with a small drift to the west. As a natural 

phenomenon, if the supplied airflow direction is towards to the opposite side of the 

return outlet, fresh cold air circulates more in the conditioned space and make it 

cooler. The changes in room temperatures in Figure 4.16 and Figure 4.17 for 

different airflow directions seem to be well in line with this. Accordingly, supplying 

air towards the east direction created the coldest conditions while adjusting the 

airflow direction to the west resulted in the highest room temperatures in all the cases 

with varying airflow rates and occupancy. Keeping the airflow rate constant (using 

same amount of energy), modifying the direction of supplied air has the potential to 

fluctuate the average room temperature up to two degrees Celsius. As expected, 

temperature contours were also affected with the airflow direction alterations due to 

air circulation shifts. 
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Figure 4.16. Temperature distribution gradients in scenarios for maximum occupancy 
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Figure 4.17. Temperature distribution gradients in scenarios for minimum multi-occupancy 

(one of the fifteen scenarios with two occupants) 
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4.3.2 Temperature Variations at Occupant Locations 

In Figure 4.18, Figure 4.19 and Figure 4.20, operative temperature variations in 

minimum multi-occupancy scenarios at airflow rate=0.125m3/s, airflow 

rate=0.1625m3/s and airflow rate=0.2 m3/s are presented, respectively. The 

temperature values at neck height (1.25 m) in fifteen occupancy cases with two 

occupants are illustrated in subplots, each of which is devoted to a certain airflow 

direction setting. The figure shows that thermal conditions are not uniform in the 

studied space in most of the cases, considering the temperature differences between 

two occupant positions and the average room temperatures. Despite the fact that 

average room temperatures do not show much fluctuation between different 

occupancy cases with constant airflow direction within each subplot, the temperature 

that each occupant is subjected to varies up to two degrees Celsius depending on 

their positions in the very same environment. Although this variance may pose a 

challenge for occupant-centric studies that assume homogenous thermal conditions 

in indoors, it also holds a great potential for improving collective comfort in multi-

occupancy scenarios given the differences in occupants’ thermal preferences.  

In addition, the direct influence of the supply airflow direction on temperature 

variations is also observable in these figures, which is associated with the placement 

of supply air inlet and the return outlet.  

As a natural phenomenon, if the supply airflow direction is towards to the opposite 

side of the return outlet, fresh cold air circulates more in the conditioned space and 

make it cooler. Accordingly, the cases in which the fresh air is supplied towards the 

east direction has the lowest temperature values, while the cases where airflow 

direction was set to the west has the highest. To this end, it can be claimed that 

changing the supply airflow direction, which do not require any additional energy at 

neither the cooling coil nor the fan levels, could be seen as a promising energy 

efficient strategy, instead of modifying the airflow rate to adjust the temperature.  
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Figure 4.18. Operative temperature values in case of minimum multi-occupancy for 

different airflow direction and occupancy case scenarios (for airflow rate=0.125 m3/s) 
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Figure 4.19. Operative temperature values in case of minimum multi-occupancy for 

different airflow direction and occupancy case scenarios (for airflow rate=0.1625 m3/s) 
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Figure 4.20.  Operative temperature values in case of minimum multi-occupancy for 

different airflow direction and occupancy case scenarios (for airflow rate=0.2 m3/s) 
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Comparing the temperature values in three figures reveals that higher supply airflow 

rates create cooler conditions as expected, given that airflow direction and occupancy 

positions are fixed. Yet, it also presents that supplying airflow at a higher level is not 

the only way for decreasing the room temperature, if the supply airflow direction is 

adjustable. Allowing a modest alteration possibility at diffuser level is shown have a 

promising potential in terms of ensuring occupant comfort without using more 

energy in multi-occupancy scenarios. 

   

Figure 4.21. Operative temperature values in case of maximum multi-occupancy for six 

occupant locations 
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Similar to the minimum multi-occupancy scenarios, thermal conditions are not 

homogenous in maximum multi-occupancy scenario. Although temperature values 

are higher in maximum occupancy, the variances between the micro-thermal 

conditions that occupants are subjected to are almost the same with the minimum 

multi-occupancy cases. For example, average room temperature at airflow 

rate=0.1625 m3/s and airflow direction=Uniform at minimum multi-occupancy is 

21.5 degrees Celsius, whereas the same setting at maximum occupancy results in an 

average room temperature of 23.2 degrees Celsius. In both occupancy cases, 

however, the temperature difference between occupant locations goes up to two 

degrees Celsius. This similarity suggests that the indoor thermal conditions are non-

uniform regardless of the number of occupants present in the space, while the 

temperature values on average naturally rises with the increasing number of 

occupants due to the heat release from their bodies.  As shown in Figure 4.21, 

operative temperature values between six occupant locations varies up to two and a 

half degrees Celsius in different cases with constant supply airflow settings. As 

expected, supplying airflow at a higher level, which means using more energy, 

generally created cooler conditions when the airflow direction is fixed. However, the 

results also demonstrate that creating cooler conditions does not always require an 

increase in supply airflow rate. For example, average room temperature at airflow 

rate=0.2 m3/s and airflow direction=Uniform, could also be achieved by setting 

airflow rate=0.1625 m3/s and airflow direction=East. It is important to note that, 

regardless of the room averages, operative temperature at each occupant location 

varies depending on the defined supply airflow settings and adjustments at the 

diffuser level have the potential of altering the temperature that each occupant is 

subjected to. Accordingly, once the personal preferences are accounted for in 

building control, it could be possible to determine optimum settings in multi-

occupancy scenarios to improve collective comfort. Depending on the relative 

thermal comfort characteristics of the occupants, wasting valuable energy could be 

prevented without sacrificing human well-being. 
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4.3.3 Analysis of Variable Importance 

 With the purpose of investigating the significance of defined parameters on CFD 

simulation results, we developed statistical models using Random Forest (RF) 

method, which is a machine learning algorithm. To account for the impact of 

occupant locations, separate models for each of the six locations were generated, 

together with the main model that employs data from all locations. These models 

could be considered as a proxy for assessing predictive building control potentials. 

 

Figure 4.22. Pseudo code for Random Forest algorithm 
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RF algorithm (Breiman, 2001) is a method that is used for both classification and 

regression tasks. It uses Bootstrap and Aggregation technique, which is commonly 

known as bagging. Bootstrap is a resampling method, which involves repeatedly 

drawing samples from a training dataset and refitting a model on each sample. 

Bagging refers to drawing a number of bootstrap datasets, fitting each to a decision 

tree and averaging prediction of all trees. The algorithm basically generates multiple 

decision trees trained over the same data and determine the final output by averaging 

the results of each model. RF introduces two types of randomness: (1) to data so that 

each tree is fit to a somewhat different dataset and (2) to predictors when making a 

split at any point in a given tree. The former reduces variance and controls over-

fitting, whereas the latter makes it robust and reliable against correlated predictors. 

The algorithm also enables to analyze the relative importance of the model inputs for 

the model predictions. RF procedure was implemented using Python software, the 

pseudo code of which is illustrated in Figure 4.22. 

 

Table 4.3. Results of RF models for each location 

 

Random Forest Model for Each Location 

Loc-1 Loc-2 Loc-3 Loc-4 Loc-5 Loc-6 

Mean Squared Error 0.07 0.06 0.05 0.06 0.12 0.17 

feature_importance: Airflow Rate 0.62 0.69 0.72 0.66 0.65 0.56 

feature_importance: Airflow 

Direction 
0.28 0.21 0.19 0.20 0.24 0.30 

feature_importance: Occupancy 

Case 
0.10 0.10 0.09 0.14 0.11 0.14 
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Figure 4.23. Predictive performance of Random Forest models, developed for each 

occupant location 
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We developed a dedicated multi-input-single-output prediction model using RF 

regressor for each occupant location in the defined space. In order to derive the 

temperature values as the predicted output, we used the independent variables that 

we’ve adopted in CFD simulations as model inputs, which are airflow rate, airflow 

direction and occupancy case. One-hot encoding was applied for occupancy case and 

all variables were treated as continuous. The Relative statistical importance of these 

features are given in Table 4.3. Accordingly, while all three inputs were found to be 

influential on predictions, airflow rate is clearly the dominant feature for all models. 

2

1

1
MSE ( ' )

n

i i

i

Y Y
n =

= −         (9) 

To determine the amount of error in the generated models, mean squared error (MSE) 

values were also calculated. The MSE is simply an estimator measuring the average 

squared difference between the model predictions and the actual values, and can be 

formulated as in Equation (9). It refers to the empirical risk, and better accuracy is 

assessed by the closeness of MSE values to zero. Based on the results, MSE values 

demonstrates an acceptable accuracy for the models. However, to better interpret the 

accuracies, we created plots to visualize how the predictions of our models compare 

to the test values of perfect prediction models. As illustrated in Figure 4.23, each 

model has a good performance overall, indicating a promising potential for 

predictive building control. 

After evaluating the models for each occupant location, we also developed a main 

RF model with available data from all six locations. The difference of the main 

model is the additional variable that is added to account for locations. Similar to the 

location-specific models, airflow rate was also found to be the most influential factor, 

followed by airflow direction, location and occupancy case (Table 4.4). Although 

the MSE value for the main model is somewhat higher than the previous ones, the 

fit could still be considered as good considering the model predictions versus test 

data plot illustrated in Figure 4.24. 
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Table 4.4. Results of the main RF model 

 Random Forest Model for all locations 

with additional ‘Location’ feature 

Mean Squared Error 0.086 

feature_importance: Airflow Rate 0.57 

feature_importance: Airflow 

Direction 
0.2 

feature_importance: Occupancy 

Case 
0.1 

feature_importance: Location 0.13 

 

 

 

Figure 4.24. Predictive performance of Random Forest model, developed with data from 

all locations 
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4.4 Discussion 

In the current practice, thermal zones are usually controlled using data from a single 

sensor, the reading of which is attributed to be representative of the entire zone for 

assessing indoor environmental parameters. However, the results of this study 

demonstrated that temperature is not uniform throughout the indoor environment and 

occupants may be subjected to different thermal conditions within the same space. 

The variance in thermal conditions were shown to be influenced by the studied 

independent variables, which are the supplied airflow rate, supplied airflow direction 

and occupancy. As expected, increasing the supplied airflow rate led to cooler 

conditions and the number of occupants was directly proportional to the room 

temperature. Interestingly, it was demonstrated that changing the supplied airflow 

direction could be adopted as an alternative strategy to adjust the indoor temperature. 

In contrast to the supplied airflow rate alteration, adjustments in the supplied airflow 

direction would not require consuming additional energy, making it an efficient 

strategy to provide desired indoor conditions. Moreover, placements of supply air 

inlet and return outlet were also found to be crucial, given their impact on the air 

circulation characteristics in the conditioned zones. 

According to analysis conducted with Random Forest modeling, it can be claimed 

that once thermal distribution data under defined settings are compiled to a certain 

degree, machine learning algorithms could be leveraged to predict the relevant 

results for the settings that were not simulated. This kind of a strategy could lessen 

the need for simulating each and every possible variation in the boundary conditions, 

allowing for a more robust and efficient control mechanism. Moreover, the 

developed models have the potential to be continuously updated with new field data. 

This adaptability could be used to better account for the dynamics of airflow with 

changing conditions in indoor environments. In the literature, such approaches are 

studied under the term ‘predictive building control’, which were shown to have huge 

benefits in terms of comfort improvements and energy savings in buildings (Drgoňa 

et al., 2020). 
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Considering the results of this chapter, it can be claimed that if the spatial 

heterogeneity was accounted for by having sensors at each desk location, or 

employing a type of thermal scanning sensor, building control system could seek to 

maintain a particular thermal asymmetry based on the personal comfort profiles to 

provide collectively acceptable thermal conditions in shared indoor spaces. Apart 

from providing desired conditions at where it is actually required, consuming energy 

unnecessarily for conditioning vacant spaces could also be prevented with such 

strategies. 
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CHAPTER 5  

5 OPTIMIZATION OF COLLECTIVE COMFORT IN SHARED SPACES 

In this chapter, through leveraging the personal comfort profiles and the thermal 

distribution patterns dataset that were created in Chapter 3 and Chapter 4, a data 

driven optimization analysis were conducted to reveal collective thermal comfort 

improvement potentials. Three control strategies with an incremental complexity 

were introduced to assess comfort and energy efficiency implications of adjustability 

at different degrees. Temporal impacts were analyzed through performing CFD 

simulations for additional 108 cases. Collective comfort probabilities for both 

minimum multi-occupancy and maximum occupancy conditions under varying 

settings were comparatively presented. This chapter may help researchers to fathom 

the potentials that lies in accounting for the nonuniformity of thermal conditions and 

personal preferences. It also underlines the importance of a communication ground 

between the building control and the occupants, by reporting the difference made by 

intelligent allocation of individuals to the workstations in a multi-occupancy indoor 

environment. 

In this chapter, firstly, previous studies focusing on developing strategies for 

collective comfort improvement and energy efficiency were reviewed, and the 

position of this research in comparison to the existing approaches was demonstrated. 

After outlining thermal comfort assessment agenda, overall framework of the 

optimization analysis was described. Then, control strategies were introduced and 

related collective comfort probability analysis results were discussed. Collective 

comfort probability changes in one of the cases was visualized to further elaborate 

the results. Subsequently, details and results of the follow-up study, which was 

conducted to evaluate the implications of temporal variations on collective comfort 

probabilities, were illustrated. The chapter was concluded with a discussion on 

possible practical reflections of the research outcomes. 
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5.1 Literature Review 

5.1.1 Comfort Improvement Strategies 

In the pursuit of generating collectively comfortable indoor conditions, several 

operational strategies were proposed in the literature. Jung and Jazizadeh (2020) 

listed the four main strategies, which are the majority rule, error minimization, 

collective learning and thermal comfort sensitivity based optimization. 

The majority rule strategy was proposed by Murakami et al. (2007), who referred it 

as ‘logic for building a consensus’. In a multi-occupancy office space with 50 

occupants, they adopted an interactive system to collect thermal comfort feedback 

from the occupants, and determined the setpoint temperature in a way to respond to 

the requests of the majority. Although demonstrating a promising energy-saving 

potential of 20%, their strategy did not provide any improvement in terms of 

collective thermal comfort. The error minimization strategy, on the other hand, was 

used by Jazizadeh et al. (2014b), who identified the temperature preferences of 

occupants by adopting a participatory sensing approach through a user interface. 

Their strategy was to minimize the gap between desired temperature values and the 

setpoints and they reported 39% reduction in daily average airflow, which 

corresponds to a considerable energy saving. Despite demonstrating improvements 

in terms of both energy efficiency and occupant comfort, the proposed strategy was 

employed to identify separate setpoints for single-occupancy office spaces and did 

not cover the dynamics exist in shared spaces. Similarly, although collective learning 

strategy proposed by Erickson and Cerpa (2012) utilized collective thermal feedback 

for updating the PMV model and achieved setpoint improvements, it assumed 

homogeneous conditions in the considered spaces and did not account for individual 

differences.  

In their overarching study, Jung and Jazizadeh (2020) proposed thermal comfort 

sensitivity based optimization and comparatively analyzed their approach with the 
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majority rule and the error minimization strategies. They integrated personal comfort 

profiles into the control loop of HVAC systems and evaluated the energy 

implications of the control strategies. Accordingly, the majority rule strategy was 

demonstrated to achieve the best performance in terms of energy savings, followed 

by thermal comfort sensitivity based optimization. The error minimization strategy 

was shown to have the highest energy demand, due to the relatively higher 

conditioning loads brought by selecting the setpoint in between all the preferred 

temperatures. 

Nonetheless, all of the abovementioned strategies were designated to optimize the 

setpoint temperatures, and they left the heterogeneity of indoor environmental 

parameters beyond their scopes. However, in recent years, assessing the differences 

in micro-climates within shared indoor spaces and variances in personal comfort 

preferences have attracted more attention from building researchers. 

5.1.2 Strategies Accounting for Nonuniformity 

Researchers introduced various solutions to minimize the potential negative impacts 

of uneven thermal distribution and optimize occupant comfort in indoor 

environments.  Zhou et al. (2014) proposed a demand-driven control strategy to 

substitute the conventional HVAC control logic, building upon the developments in 

wireless sensors and occupant localization field (Topak et al., 2018). The authors 

observed progress in energy savings through setting the temperature control based 

on the breathing level and avoiding to condition the unoccupied zones. Shan et al. 

(2020) indicated the improvements achieved by increasing the number of 

thermostats and separating setpoints in subzones to recognize thermal 

nonuniformity. Another approach adopted by the researchers is to provide micro-

location-based solutions, such as directing the airflow towards occupant’s positions. 

Jazizadeh et al. (2020) investigated the implications of operating modalities, airflow 

direction, and individual-level feedback in HVAC system operation. They explained 

that integrating directed airflow and micro-location feedback-based control at the 
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diffuser level results in a 25% reduction in energy demand and improvements in 

thermal comfort. Likewise, Hu et al. (2020) presented an intelligent air conditioning 

system configuration, employing multiple air vents to flexibly create desired micro-

thermal conditions at target indoor positions. On the other hand, localized personal 

comfort systems have offered improvements in energy use and overall satisfaction 

by providing manageable micro-thermal settings (Shahzad et al., 2018). Melikov 

(2016) argued that a paradigm shift from conventional systems designed for total 

volume climatization towards individually controlled distributed conditioning is a 

necessity for saving energy and improving comfort. However, the combined impact 

of employing personal comfort devices for individuals on the overall indoor climate 

is unforeseeable and requires exhaustive research. In addition, the wide-scale 

applicability and acceptability of personal comfort systems are questionable in terms 

of maintainability and cost-efficiency. 

Research efforts also sought to explore the applicability of utilizing personal 

preferences in the presence of multiple thermal zone control loops. Z. Yang & 

Becerik-Gerber (2014) presented the potential improvements of assigning occupants 

with similar schedules to the rooms that are in the same mechanical zone. 

Nagarathinam et al., (2021) assessed the same problem in an open-plan office 

without any partition walls, and they proposed clustering occupants into groups 

based on their thermal preferences and assigning them to the presumptive cells, each 

of which has a separate actuator and dynamic setpoint selection feature. Although 

demonstrating promising insights for optimized control in very large spaces with 

over hundred occupants, their approach lacks high sensitivity for personalized 

comfort and micro-climatic conditions, as temperature setpoints for defined cells are 

determined through averaging the profiles of a group of occupants. S. Lee et al. 

(2019) developed a method for personalized HVAC control in a shared open-plan 

office space by learning occupants’ comfort preferences and operating a conditioning 

system with multiple control loops. However, their study employs a radiant-based 

floor cooling system and air-mixing and flow dynamics are not assessed. 
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Table 5.1. Comparison of previous studies in the literature 

Study 
Research 

method 

System 

controll

ed 

 Variables 

Thermal 

comfort 

assessment 

Thermal 

heterogeneity 

consideration 

Occupant 

location 

assignment 

Zhou et al.  

(2014) 

Simulation, 

Experiment 

Room-

level air 

diffusers 

Supply 

airflow rate 

Occupancy 

No Yes No 

Yang & 

Becerik-

Gerber (2014) 

Simulation 

Zone-

level air 

diffusers 

Occupancy No No 
Yes - at 

room level 

Ghahramani 

et al. (2014) 
Experiment 

Zone-

level air 

diffusers 

Supply 

airflow rate 

Occupancy 

Personal 

comfort 

models 

No No 

Jazizadeh et 

al. (2014) 
Experiment 

Zone-

level air 

diffusers 

Supply 

airflow rate 

Occupancy 

Personal 

comfort 

models 

No No 

Lee et al. 

(2019) 
Experiment 

Room-

level 

radiant 

cooling 

Occupancy 

Personal 

comfort 

models 

Yes No 

Jung & 

Jazizadeh 

(2019) 

Simulation 

Room-

level air 

diffuser 

Setpoint 

temperature 

resolution 

Personal 

comfort 

models 

No No 

Shan et al. 

(2019) 
Simulation 

Room-

level air 

diffusers 

Setpoint 

temperature 
PMV Model Yes No 

Jazizadeh et 

al. (2020) 
Simulation 

Room-

level air 

diffuser 

Supply 

airflow rate 

Supply 

airflow 

direction 

Control 

actuation 

logic 

Predefined 

setpoint 

values 

No No 

Nagarathinam 

et al. (2021) 
Simulation 

Room-

level air 

diffusers 

Occupancy 

Personal 

comfort 

models 

Yes 

Yes - at 

subzone 

level 

This study Simulation 

Room-

level air 

diffuser 

Supply 

airflow rate 

Supply 

airflow 

direction 

Occupancy 

Personal 

comfort 

models 

Yes 

Yes - at 

workstation 

level 
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Although there are studies querying the optimization potentials in multi-occupancy 

spaces based on individual preferences (Ghahramani et al., 2014; Jung & Jazizadeh, 

2019a), the potentials of coupled utilization of personal comfort models and thermal 

distribution patterns in building control to maximize collective occupant satisfaction 

and enhance energy efficiency have not been systematically examined. Table 5.1 

compares the previous studies focusing on improving human comfort while being 

cognizant of consumed energy in office buildings. As a direct correlation between 

individuals' positions and their satisfaction levels has already been demonstrated 

(Abdelrahman et al., 2022), this study aims to further reveal possible strategies and 

potentials for collective comfort optimization in shared environments. Once the 

personal differences between occupants are accounted for with personal comfort 

models, they can be addressed at individual level with control alterations in room-

level HVAC operation or allocating occupants to the adequate locations.  

5.2 Material and Method 

This research adopted a simulation-based quantitative approach for evaluating the 

potentials aroused from uneven temperature distribution and nonuniformity in 

individuals' thermal comfort preferences. The methodology in this section is 

complementary to the ones in Chapter 3 and Chapter 4. In this post-processing phase, 

a data-driven optimization analysis was conducted by leveraging the personal 

comfort profiles and thermal distribution patterns datasets created in Chapter 3 and 

Chapter 4 to generate occupant-centric strategy deductions and uncover collective 

comfort improvement potentials. 

5.2.1 Thermal Comfort Assessment 

Although thermal comfort is influenced by many factors, operative room 

temperature is considered as an acceptable proxy for comfort implications. Given the 

airflow direction and airflow rate manipulations in the simulated scenarios, air 
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velocity values were also checked to confirm that air speed around occupants are 

within the comfortable limits (< 0.20m/s) defined by ASHRAE (2017), as shown in 

Figure 5.1.  

 

Figure 5.1. Air velocity values in all simulations 

Operative temperature, which is defined as “the uniform temperature of an 

imaginary black enclosure, where an occupant would exchange the same amount of 

heat by radiation and convection as in the actual non-uniform environment”, is 

calculated by combining ambient air temperature and mean radiant temperature 

(Djongyang et al., 2010). For cases where there is no exposure to air velocities 

greater than 0.20m/s, the calculation oftentimes approximated as:  

2

a r
o

t t
t

+
=                   (10) 

, where 
ot  , 

at   and 
rt  represent operative temperature, ambient air temperature and 

mean radiant temperature, respectively. 
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In this study, ambient air temperature values were obtained by CFD simulations and 

mean radiant temperatures were calculated using a 3D mean radiant temperature 

(MRT) tool, developed by Center for Built the Environment (CBE) (Hoyt, 2016). 

The ambient temperatures at occupant locations were defined by averaging ten 

representative points at neck height (1.25 m) near each occupant, considering a 

similar approach used in Jazizadeh et al. (2020). Related boundary conditions and 

surface temperatures extracted from CFD simulation results for each case were used 

as inputs for MRT calculation using CBE’s online tool (Figure 5.2). MRT is an 

important physical parameter that may vary spatially depending on the indoor 

environmental factors, just like ambient air temperature.  In order to account for their 

joint impact on occupants’ thermal comfort, operative temperature calculations were 

made through averaging these values at given occupant locations, using Equation 

(10). 

 

Figure 5.2. MRT tool developed by CBE (Hoyt, 2016) 

5.2.2 Energy Saving Assessment 

Energy performance changes brought by altering supply airflow rates were estimated 

by assuming a single-zone system with reference system parameters from ASHRAE 
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90.1-2022 Appendix L: Mechanical System Performance Rating Method (ASHRAE, 

2022). Accordingly, following conditions were adopted: 

▪ From ‘Total System Performance Ratio (TSPR) Reference Building Design 

HVAC – Medium Office (cold)’ table in ASHRAE (2022): 

- System type: Packaged VAV – Hydronic reheat 

- Fan control: VSD, no static pressure reset 

- Main fan power: (>MERV13 filter) 1.285 W/cfm 

- Cooling source: DX, multistage, COPcooling = 3.40 

- 30% minimum flow fraction 

▪ From Fan and Pump Power Curve Coefficients table in ASHRAE (2022), the 

fan power curve coefficients for the ‘VSD, no static pressure reset’ are as in 

Equation (11). 

 
2 30.0013 0.147*( ) 0.9506*( ) 0.0998*( )

ElecPowFrac

FlowFrac FlowFrac FlowFrac

=

+ + −
  (11) 

 , where ElecPowFrac is the fraction of power at full flow and FlowFrac is 

 the fraction of design flow. 

▪ The Summer Design Conditions for University Park (725128), where the 

selected office space is located, are: 

- 0.4%: 31.4 C DB 

- 1.0%: 29.9 C DB 

- 2.0%: 28.0 C DB 

- Climate Zone 5A (Cool-Humid), but near the border of 6A (Cold-

Humid) 

As illustrated earlier in table 4.1, CFD results were generated using an ambient dry 

bulb temperature of 28C, occupant heat gain of 60 W/m2, computer heat gain of 60 

W/m2, window heat transfer coefficient of 5.6 W/m2K, and solar transmittance of 
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80%. The simulated airflow rates of 0.125 m3/s, 0.1625 m3/s, and 0.2 m3/s all kept 

the average room temperature within the acceptable thermal comfort limits. 

5.2.2.1 Maximum Fan Energy Change 

The maximum change in fan energy across flow rates were estimated by assuming 

that the largest flow used in our simulation (0.2 m3/s) is the design air flow rate (i.e., 

the fan is operating at max power at our highest flow rate). This was not completely 

inconceivable, since the 2.0% cooling design condition is equivalent to the ambient 

temperature used for our studies. This gave a design fan power of: 

3 31.285 W/cfm * 2118.88 cfm×s/m  * 0.2 m /s = 545 W            (12) 

With 0.2 m3/s as the design flow, the three flows of 0.125 m3/s, 0.1625 m3/s, and 0.2 

give flow fractions of 0.625, 0.8125, and 1.0, respectively. The ElecPowFrac were 

then 0.44, 0.69, and 1.0, respectively, based on the fan curve in Equation-11. Thus, 

if 0.1625 m3/s case were taken as the reference point, increasing to 0.2 m3/s would 

result in 44% more fan energy and decreasing to 0.125 m3/s would result in 37% less 

fan energy (assuming same runtime for the snapshot analyzed). 

5.2.2.2 Low Fan Energy Change 

In order to create a lower estimate for the change in fan energy, we assumed that the 

smallest flow used in our simulation (0.125 m3/s) corresponds to the minimum 30% 

required flow rate, and that the fan is operating at a minimum flow fraction of 30%. 

The design flow rate in this case would be 0.417 m3/s, with a design fan power of, 

3 31.285 W/cfm * 2118.88 cfm s/m  * 0.417 m /s = 1135 W                      (13) 

(i.e., about twice as large). This represents the case where the fan is operating in its 

lowest part of the performance curve. The corresponding flow fractions would be 
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0.3, 0.39, and 0.48, with power fractions of, 0.13, 0.20, and 0.28, respectively. Again, 

taking 0.1625 m3/s as the reference, results in the low flow rate would save 35% fan 

energy and the higher flow rate would lead to 42% more fan energy use. 

We forgo analyzing a multi-zone case, as the results would be highly dependent on 

the size of the other zones relative to the zone of interest, the relative load diversity, 

and assumptions about multizone air-handler controls. 

5.2.2.3 Cooling Coil Energy Savings 

When airflow is reduced, the cooling coil energy would also be reduced. To estimate 

the change in energy, we assumed that the coil entering and leaving air conditions 

are the same so that the change in enthalpy of the air stream is the same for the three 

flow rate cases. With this assumption, the change in total cooling coil load is directly 

related to the change in mass flow rate (Equation (14)). Thus, reducing the flow to 

the lower flow rate would result in 23% energy savings, while increasing to the 

higher flow rate would require 23% more energy. 

totalQ = m * Δh                             (14)  

(𝑄 𝑡𝑜𝑡𝑎𝑙 denotes to total load, 𝑚 ̇ refers to mass flow rate and Δh is enthalpy) 

In these calculations, the assumption of constant enthalpy was an approximation. It 

is conceivable that the dry bulb temperature leaving the coil would be the same in all 

cases, if the coil were capacity controlled based on a supply air temperature setpoint. 

However, the humidity leaving the coil depends on the conditions of the air entering 

the coil and the latent performance of the coil at part load operating conditions. At 

the low flow rate, the average zone temperature would be higher and the temperature 

entering the coil would also be higher. Similarly, under the high flow scenario, the 

air would return to the air handler in a cooler state. Detailed modeling and analysis 

of coil latent performance and zone/AHU moisture balance is out of the scope of this 
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work, as the intent is to generate approximate figures for relative changes in energy 

use. The calculations presented did capture the dominant variable that impacts coil 

energy use (i.e., the supply air flow rate.) 

In summary, it was calculated that lowering the flow rate would save around 35% 

fan energy and 23% cooling coil energy. Raising the supply air flow rate would 

require around 44% more fan energy and 23% more cooling coil energy.  It is worth 

mentioning that the calculations are made based on the aforementioned assumptions 

and the actual energy savings on fan and cooling coils need to be comprehensively 

analyzed for each individual flow rate supplied to the zone. 

5.2.3 Compiled Datasets and Data Flow 

As illustrated in Figure 5.3, the overall framework of the methodology consists of 

three parts. First, personalized thermal comfort profiles (PCP) were developed using 

a probabilistic modeling approach for six occupants, each of which was assigned to 

a fixed workstation in the baseline scenario regardless of room population (see 

Figure 4.13).  

Secondly, possible combinations of the selected parameters were simulated using 

CFD and micro-thermal conditions at occupant locations were extracted for all cases. 

A prior grid independence test and verification study were also performed to 

demonstrate the reliability of the modeling approach. Lastly, a data-driven analysis 

was carried out to compute collective comfort probabilities under different 

conditioning (i.e., HVAC control) and occupancy settings. The first and the second 

parts were presented in Chapter 3 and Chapter 4, respectively. This chapter 

demonstrates the last part of the defined methodology, in which the compiled 

datasets were processed using a comparative analysis approach. Personalized 

comfort profiles were combined with micro-thermal conditions data for comfort 

probability calculations and the compiled data was filtered to contrast the baseline 

and proposed control strategies. 
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PXY: Neck-level temperature (X: simulation case, Y: Occupant location #) 

PXY
A: Comfort probability (A: personal comfort profile #, X:simulation case, Y:occupant location #) 

Figure 5.3. Overall framework of the comfort optimization analysis  

5.2.4 Control Strategies for Data Analysis 

Given the simulation scenarios, the baseline and three control strategies were 

established. The baseline scenarios represent conventional operational settings in 

office buildings, where every occupant has a fixed position and climatization is 

performed with a static airflow rate and uniform air distribution towards all 

directions. A dedicated baseline scenario for each occupancy case was defined to 
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account for occupant location alterations, compiling sixteen baseline scenarios in 

total. In order to assess comfort and energy efficiency implications of adjustability 

in (1) airflow direction, (2) airflow direction and airflow rate and (3) airflow 

direction, airflow rate and occupant locations, three control strategies were defined 

with an incremental complexity (Figure 5.4).  

 

Figure 5.4. Characteristics of the baseline and control strategies 

The number of strategies was determined considering the scope of the thermal 

distribution dataset such that an accumulative complexity was established between 

the strategies by enlarging the included extent of the simulation results at each 

consecutive strategy. While control strategy-1 and control strategy-2 were 

established to analyze how modest adjustments on HVAC operation like changing 

supply airflow rate or direction influence collective comfort probability, control 

strategy-3 was predicated on the intelligent allocation possibility of occupants 

between working desks. Recent studies on the interfaces enabling human-building 

communication creates a ground for generating such strategies and understanding 

the potentials of keeping the occupants in the loop for control efficiency (Day et al., 

2020; Marson & McAllister, 2021). 

Collective comfort probabilities in each control strategy were calculated by 

averaging the comfort probabilities of occupants based on the assigned comfort 

profiles. To this end, we calculated the collective comfort probabilities for sixteen 

baseline scenarios considering the occupying individuals. We performed a data-
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driven analysis for assessing improvements achieved by the defined control 

strategies, through reorganizing the thermal distribution dataset constructed with 

CFD simulations based on given strategy characteristics. 

5.3 Results 

Determining a proper strategy to enhance collective comfort in multi-occupancy 

environments has been a key question for building researchers (Shin et al., 2017). 

Many approaches have been proposed for collective comfort improvements over the 

years. Although proven to have diverse implications based on the contextual factors 

in different cases in the literature, many of the strategies have certain drawbacks, 

such as being designated to find an optimal setpoint temperature, assuming the 

uniformity of the thermal conditions indoors or disregarding the individual 

differences between building occupants.  

To date, very few studies have assessed the implications of accounting for the 

nonuniformity of both personal preferences and indoor conditions for improving 

collective comfort and energy efficiency. According to the outcomes of the study 

presented in Chapter 4, it was demonstrated that temperature is not uniformly 

distributed in large multi-occupancy spaces, and thermal conditions that occupants 

are subjected to varies based on the contextual factors in their immediate 

surroundings. In order to leverage this condition in favor of collective thermal 

comfort, we concentrated on the temperature values at occupant locations rather than 

the room averages, and analyzed the potentials of coupling temperature distribution 

patterns and personal comfort profiles to improve occupant comfort while ensuring 

energy efficiency. In doing so, we assigned a unique comfort profile for each of the 

six occupants and assessed collective comfort probabilities in different occupancy 

scenarios considering the related operative temperatures at the occupied locations. 

Table 5.1 presents the collective comfort probabilities at minimum multi-occupancy 

scenarios with two occupants. Accordingly, collective comfort probability at the 
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baseline, where occupant positions are fixed and supply airflow rate is constant with 

uniform distribution towards all directions, was calculated as 68% on average. 

Introducing adjustability to the supply airflow direction at the diffuser level in 

control strategy-1 increased the probability of achieving collective comfort to 79%, 

while allowing alterations in both rate and direction of supplied airflow in control 

strategy-2 resulted in 91% probability on average.  

In accordance with ASHRAE (2017), a building zone is considered to satisfy comfort 

requirements if the comfortable occupants compile at least 80% of the room 

population. Translating this to the approach adapted in this study, achieving 

collective comfort with a probability of at least 80% could be claimed as the targeted 

level. Although control strategy-1 and control strategy-2 provided collective comfort 

probability improvements, both failed to satisfy 80% comfort probability for all 

occupancy scenarios.  This implies that, in some cases, occupants would be 

dissatisfied with the thermal conditions of the space regardless of the supply airflow 

settings. However, control strategy-3, which allows dynamic allocation of the 

occupants between six positions together with supply airflow alterations, offered 

substantial improvements in collective comfort probabilities and complied with the 

minimum comfort requirements in all scenarios. With a probability of 98% on 

average, utilizing control strategy-3 was shown to provide almost seamless operation 

for ensuring comfort in minimum multi-occupancy. 

In Table 5.1, changes in supplied airflow rate were illustrated as changes in energy 

use, due to their correlation based on the cubic relationship between flow rate and 

fan power. Accordingly, control strategy-1 does not have any implications on energy 

use, in which the supplied airflow rate was fixed. Control strategy-2 offered energy 

savings in nine out of fifteen cases, while improving the collective comfort 

probabilities. A superior energy performance was suggested by control strategy-3, 

with which the collective comfort was shown to be improved while saving energy in 

twelve out of fifteen cases. There is one exceptional case for both control strategy-2 

and control strategy-3, where the supplied airflow rate was increased.  



 

 

111 

Table 5.2. Collective comfort probabilities for the baseline and three control 

strategies (for minimum multi-occupancy, in cases of two occupants) 

Occ. 

Case 
O1 O2  Baseline 

(%) 
 CS -1 

(%) 
 CS-2 

(%) 

Energy 

Use 
 

CS-3 

(%) 

Energy 

Use 

1 Occ-1 Occ-2  67  83  83 ─  95 ↓ 

2 Occ-1 Occ-3  79  95  95 ─  99 ↑ 

3 Occ-1 Occ-4  33  48  52 ↓  90 ↓ 

4 Occ-1 Occ-5  57  82  82 ─  99 ↓ 

5 Occ.-1 Occ-6  71  80  86 ↑  97 ↓ 

6 Occ-2 Occ-3  94  94  97 ↓  98 ↓ 

7 Occ-2 Occ-4  43  53  94 ↓  99 ↓ 

8 Occ-2 Occ-5  89  92  98 ↓  99 ↓ 

9 Occ-2 Occ-6  90  90  99 ↓  99 ↓ 

10 Occ-3 Occ-4  49  58  85 ↓  98 ↓ 

11 Occ-3 Occ-5  78  98  98 ─  99 ↓ 

12 Occ-3 Occ-6  79  99  99 ─  99 ─ 

13 Occ-4 Occ-5  70  70  99 ↓  99 ↓ 

14 Occ-4 Occ-6  40  53  93 ↓  99 ↓ 

15 Occ-5 Occ-6  76  97  99 ↓  99 ─ 
    

 
 

 
 

 
    

 Average:  68  79  90   98  
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Although the priority was given to achieve the highest collective comfort probability 

in our calculations, the proposed strategies have offered considerable improvements 

in terms of energy efficiency. Considering the calculations in section 4.6.2.1 and the 

illustrated changes in energy use (i.e., the supplied airflow rate) in Table 5.1, the best 

performing strategy (control strategy-3) offered savings with a rate of 35% fan 

energy and 23% cooling energy in 80% of simulated scenarios with two occupants. 

This result confirmed that valuable energy could be wasted if HVAC systems are 

operated in a static manner with full occupancy assumption. Once the number of 

occupants decreases in an indoor environment, the load of conditioning system could 

be reactively lowered by adjusting the relevant parameters. On the other hand, in the 

maximum occupancy scenario, improving collective comfort probability led to an 

increase in fan energy by 44% and cooling coil energy by 23%. However, it should 

be noted that the proposed control strategies were designated to maximize the 

collective comfort and the energy saving was not prioritized, which could have an 

influence on this outcome. 

To further elaborate the results, we visualized how temperature distributions and 

comfort probabilities changes under different control settings in one of the 

occupancy scenarios with two occupants (occupancy case-10 at Table 5.1). In the 

occupancy case illustrated in Figure 5.5, occupant-3 and occupant-4 are at their 

preassigned locations and air is supplied uniformly towards all directions with a rate 

of 0.1625 m3/s in the baseline case. To this end, occupant-3 had a comfort probability 

of 98%, whereas thermal conditions that occupant-4 is subjected to were not within 

the acceptable limits considering the personal comfort profiles, resulting in an 

average comfort probability of 49%. Although allowing supply airflow direction 

alterations in control strategy-1 provided a slight improvement for occupant-4 while 

not diminishing the comfort probability of occupant-3, it did not suggest a 

satisfactory achievement on average.  

On the other hand, enabling adjustability on both direction and rate of supplied cool 

air in control strategy-2 presented a dramatic collective comfort improvement for the 

two occupants. In the given case, reducing supplied airflow rate from 0.1625m3/s to 
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0.125m3/s increased the collective comfort probability by 27%. This result implies 

that operating multi-occupancy spaces based on full-occupancy assumption settings 

may create uncomfortable conditions for occupants and occupant-centric strategies 

in HVAC control have a great potential for energy savings. 

Although collective comfort probability that was calculated by averaging the 

comfort probabilities of the occupants increased to 85% in control strategy-2, the 

comfort probability of occupant-3 decreased from 97% to 81%, which is not desired. 

With control strategy-3, in which occupants are optimally assigned to workstations, 

a collective comfort probability of 98% was achieved. Accordingly, both occupants’ 

locations were reassigned based on their thermal comfort profiles, occupant-4 is to 

location-1 and occupant-3 is to location-4. Desired non-uniform thermal conditions 

were achieved by adjusting the supply airflow direction towards the south wall while 

keeping the airflow rate at 0.125m3/s. It is assumed that occupant schedules were 

known at the start of the date. It is also worth noting that occupants are subjected to 

different operative temperature values in all cases with a variation ranging from 

0.8°C to 1.7°C, illustrating how heterogenous thermal conditions can be in spaces of 

such scale. 
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Figure 5.5. Temperature distributions (at plane y = 1.25 m) and comfort probabilities under 

the baseline and three control strategies settings (occupancy case-10) 
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The probability analysis for maximum occupancy produced parallel results to the 

ones in minimum multi-occupancy, as illustrated in Figure 5.6. As the initial supply 

airflow rate was designated for six occupants, collective comfort probability in the 

baseline at maximum occupancy was found as 82%, which is 14% higher in 

comparison to the minimum multi-occupancy scenarios. This result reflects the 

importance of occupancy and demonstrates how pre-defined static operation of 

climatization systems may lead to unintended thermal conditions in case of 

occupancy changes in indoor spaces. While control strategy-1 and control strategy-

2 did not offer a considerable improvement at maximum occupancy, control strategy-

3 increased the collective comfort probability of 12%, leading to the level of 94%.  

 

Figure 5.6. Collective comfort probabilities for the control strategies 

(For minimum multi-occupancy (on average) and maximum occupancy) 
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Overall, these results confirms that collective comfort is enhanced if a control 

strategy where occupants are allocated to the positions considering both personal 

comfort preferences and micro-thermal conditions is employed in multi-occupancy 

spaces. In addition to comfort improvement, redundant HVAC energy use or waste 

due to conditioning vacant spaces can be avoided through dynamically determining 

operational shifts based on occupant data in buildings. 

5.4 Follow-up Study for Assessing Temporal Variations 

As mentioned earlier, CFD simulations were conducted using a steady-state mode, 

the result of which provides a snapshot of the thermal conditions in the defined space 

under given boundary conditions at a particular time. In order to confirm the 

applicability of the proposed control strategies under temporal variations, a follow-

up study was designated. The primary intention here was to assess whether the 

collective comfort levels that were achieved with the proposed strategies at a certain 

time of the day (ToD) could be maintained throughout the working hours in any day. 

Within the defined borderlines of the proposed framework, it is expected that once 

the occupants are intelligently allocated to the workstations at the start of the day, 

the adjustability of the supplied airflow rate and supplied airflow direction should be 

sufficient to dynamically respond to occupants’ comfort needs. 

5.4.1 Additional Simulation Scenarios 

The aforementioned 432 simulations were performed by setting the date and time as 

June 21st, 13:00. For the follow-up study, keeping the date as constant, ToD was 

introduced as a new variable and four different times of day, which are 09:00, 11:00, 

15:00 and 17:00, were added as ToD alternatives. Considering the accumulative 

increase in the number of combinations and resultant computing time, including only 

the maximum occupancy case was deemed adequate. Alternatives for the supplied 

airflow rates (0.125 m3/s, 0.1625 m3/s, and 0.2 m3/s) and the supplied airflow 
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direction (uniform, north, south, west, and east, northwest, northeast, southwest and 

southeast) were used as they were defined in Chapter 4. Correspondingly, the 

combinations of three supplied airflow rates, nine supplied airflow directions and 

four out of five ToD alternatives (scenarios for ToD:13:00 were previously 

simulated) composed 108 additional scenarios, as illustrated in Figure 5.7. 

 

Figure 5.7. Simulation scenarios for temporal variation analysis 

5.4.2 Analysis of Temporal Impacts 

The control strategies defined in section 5.2.4 were used to evaluate collective 

comfort probability changes with respect to temporal variations. By averaging the 

comfort probabilities of occupants based on the assigned comfort profiles, comfort 

probabilities at ToD alternatives were calculated for the baseline and three control 

strategies. For control strategy-3, which was predicated on the relocation of 

occupants to the workstations based on their comfort profiles, the relevant 
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calculations were not done through isolating each ToD alternative. Instead, the 

intelligent allocation was done through considering all five ToD cases to maximize 

the performance of the control strategy. Seat assignment was determined to be done 

at the start of the day, and the occupant locations were considered to be fixed 

afterwards. The seat allocation maximizing the collective comfort probability for the 

day was computed by averaging the comfort probabilities at all ToD alternatives. 

 

Figure 5.8. Temporal variations of collective comfort probabilities at baseline and three 

control strategies 

Collective comfort probabilities in the baseline and three control strategies are 

illustrated in Figure 5.8. Accordingly, the calculated collective comfort probabilities 

for the baseline, in which the HVAC settings were fixed with static occupancy 

assumption, range between 73% to 82%. This result demonstrates that the baseline 

settings fail to maintain the minimum comfort range (80%, as mentioned earlier) 

throughout the day, owing to the variations in exterior conditions (i.e., solar 

radiation). Despite slightly increasing the probabilities granted by the baseline, 

improvement implications of control strategy-1 and control strategy-2 did not show 
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a notable fluctuation between different times of the day. However, it was observed 

that the employment of control strategy-2, which implies adjustability in supplied 

airflow rate and direction, keeps the collective comfort level above the minimum 

required comfort threshold regardless of the time of the day. 

What stands out in Figure 5.8 is that, with control strategy-3, seat assignment 

procedure performed by considering the changes brought by temporal variations 

increases the comfort probabilities dramatically and collective comfort could be 

maintained throughout the day with a probability range between 90% to 96%. This 

strategy, naturally, requires the compliance of the occupants with the seat assignment 

procedure. If occupants did not collaborate with the building control system and 

choose to have their workstations fixed, then the maximum achievable collective 

comfort would be provided with control strategy-2, with a probability between 80% 

to 84%. In an unlikely case where occupants randomly change their seats based on 

their likings, the building control system could take a reactive action and adjust 

HVAC settings providing the highest collective comfort probability, provided that 

the occupant comfort is prioritized in the system logic. 

In order to further investigate the collective comfort improvement brought by control 

strategy-3, temperature values at occupant locations were comparatively analyzed. 

In this regard, operative temperature changes with respect to temporal variations in 

the baseline settings and control strategy-3 are depicted in Figure 5.9 and Figure 

5.10, respectively. In the baseline settings, the difference between temperature values 

that occupants are subjected to fluctuates during the day and reaches up to 2.7 

degrees Celsius at 11:00. This fluctuation is caused by the temporal impacts on 

operative temperatures at each occupant location. Accordingly, in the baseline 

settings, operative temperature values at six locations throughout the day range 

between 23.7°C to 25.2°C, 23.2°C to 24.6°C, 22.2°C to 23.9°C, 22.8°C to 24.5°C, 

21.3°C to 23.2°C and 23.2°C to 24.2°C, respectively.  The temporal variations were 

observed to influence the thermal conditions at all occupant locations, with the 

highest impact at location-5 (1.9 degrees Celsius) and the lowest impact at location-

6 (1.0 degrees Celsius). Readers may refer to Figure 4.13 for occupant locations. 
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Figure 5.9. Temporal variations of operative temperature in baseline settings 

 

Figure 5.10. Temporal variations of operative temperature in Control Strategy-3 

Apart from the relocation of occupants based on their personal comfort profiles 

(Figure 5.11), what control strategy-3 grants is to reduce the temporal impacts and 

minimize the operative temperature fluctuations to the extent possible at each 
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occupant location. Compared to the baseline settings, in control strategy-3, operative 

temperature ranges at defined locations drop significantly, stretching between 

23.5°C to 24.6°C, 23.0°C to 24.0°C, 22.3°C to 23.0°C, 22.5°C to 23.5°C, 21.3°C to 

21.9°C and 21.9°C to 23.9°C, respectively.  What can be clearly seen in Figure 5.10 

is the sharp temperature drop at loc-6 at 11:00. This drop can be correlated with the 

airflow dynamics influenced by the increased supplied airflow rate, which is implied 

by the control action to flatten the rising temperature at 11:00. 

 

Figure 5.11. Relocation of occupants in control strategy-3 

5.4.3 Individualistic Comfort Evaluation 

As mentioned earlier, collective comfort probabilities were calculated by averaging 

the comfort probabilities of occupants based on their assigned comfort profiles. 

Although the averaged probability value could allow a plausible interpretation for 

overall comfort assessment in shared indoor environments, further analysis at 

individual level may reveal the personal implications of the proposed strategies. It 

may also provide insights for improving building control. Having analyzed the 

temporal impacts on operative temperature values at the defined locations, comfort 

probabilities of each occupant at five ToD alternatives were computed. The changes 

in personal thermal comfort levels in the baseline settings and control strategy-3 are 

demonstrated in Figure 5.12 and Figure 5.13, respectively. It is worth noting that the 

relocation of occupants (Figure 5.11) was taken into account while performing the 

calculations for the control strategy-3 in Figure 5.13.   
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Figure 5.12. Occupants’ comfort probabilities in the baseline setting 

 

Figure 5.13. Occupants’ comfort probabilities in control strategy-3 



 

 

123 

What is striking in Figure 5.12 is the continuous discomfort of occupant-1 

throughout the day in the baseline settings. Even at 13:00, when the collective 

comfort probability was reported as 82% that was considered to be above the 

minimum required comfort range, occupant-1 suffers from the lack of thermal 

comfort. Moreover, the comfort probabilities of occupant-4 and occupant-5 seem to 

fall below the minimum required range at 09:00 and 15:00, while other times their 

comfort levels are satisfactory. These results show that temporal variations have 

impacts on thermal comfort, and individual occupant assessment in building 

operation would decrease the risk of leaving out some occupants while providing 

comfortable conditions in shared environments. 

Since neither control strategy-1 nor control strategy-2 demonstrate a remarkable 

improvement for the collective comfort (see Figure 5.8), analysis of individual 

comfort assessment for these strategies were not presented. Figure 5.13 demonstrates 

that control strategy-3 has some dramatic improvement implications for thermal 

comfort at an individual level. When compared with the baseline settings, the 

obvious improvement is achieved on the comfort probability of occupant-1, without 

sacrificing the remaining occupants’ well-being. The only notable downside that is 

observable in control strategy-3 is that, the comfort level of occupant-6 falls slightly 

below the minimum comfort range at 11:00 with a probability of 75%. This can be 

related with the aforementioned unexpected drop of operative temperature at 

location-6 due to the airflow dynamics, as illustrated in Figure 5.10. Apart from that, 

the individual comfort probabilities are quite satisfactory with a range between 84% 

to 99% with a solid inclination towards the upper limit. 

To wrap up, it can be argued that thermally comfortable conditions could be provided 

regardless of the temporal variations with the proposed building control strategy, if 

the occupants comply with the relocation procedure at the start of the day based on 

their personal comfort preferences. It is of utmost importance to take an additional 

step and include individual comfort assessment while determining the collectively 

comfortable conditions in multi-occupancy indoor spaces. Trusting solely on the 

collective comfort probability calculation may result in overlooking the discomfort 
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of an individual in the studied space. Although not observed in our current analysis, 

considering occupants with different comfort profiles than reported in this work 

could have changed the situation, and may have led to this problem. 

5.5 Discussion 

In the conventional practice, offices have occupants assigned to certain workstations. 

In such settings, HVAC system operations could be configured to provide the 

comfortable conditions based on personal preferences of individuals. On the other 

hand, in recent years, with the boosting impact of Covid-19 pandemic, flexible 

working and hot-desking have become a popular space usage strategy for many 

offices. Instead of providing permanent offices, occupants are dynamically allocated 

to the workstations with the purpose of reducing operational costs, minimizing 

energy use and promoting work efficiency (Candido et al., 2019; Sood et al., 2020). 

This growing trend have the potential to both necessitate and enable adopting new 

operational strategies in buildings for maintaining comfort requirements and 

efficient use of resources. In this research, it was demonstrated that personal 

differences between individuals’ comfort needs and natural spatial variations in 

thermal conditions can be leveraged in shared environments to establish novel 

building control strategies to overcome the limitations of conventional approaches 

and to meet the incurring operational needs without additional energy use. Both for 

the conventional office settings and the lately popular operational strategies, the 

proposed framework demonstrates more flexible, efficient and sustainable 

operational flow, without overlooking the personal needs of building inhabitans. 

In the optimization analysis presented in this chapter, although the employed datasets 

and analysis procedure were carried out with an offline procedure, the primary 

intention was to establish the scientific base for an occupant-centric building control 

mechanism that would dynamically respond to the needs of all individuals within 

shared indoor environments. Based on what this section provides, further 
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elaborations and interpretations that were discussed in Chapter 2 could be made to 

actualize an integrated building control framework. 

In a practical application, it is anticipated that the supplied airflow rate and direction 

can be adjusted at the diffuser level, based on the required thermal asymmetry 

implied by the differences in occupants’ personal comfort preferences. Personalized 

air conditioning has been getting attention in the past recent years as a method to 

provide more efficient energy management in buildings considering the diversity in 

individual preferences. The active diffusers providing flexibility of airflow 

adjustments (for both throughput and airflow direction) can be employed to create 

the desired temperature distribution. Active diffuser is a relatively new concept, the 

development of which received attention from both researchers (Jazizadeh et al., 

2020)  and commercial initiatives (Lindinvent, 2023) in recent years. By controlling 

the rate and the direction of supplied fresh air, the required thermally heterogeneous 

environment could be achieved to respond to the comfort needs of all individuals in 

a shared space. In addition, such diffusers can shut themselves off if the space is 

detected to be vacant by the occupancy sensors. Various control techniques, from 

rule-based to reinforcement learning, could be developed to configure the indoor 

environment using such technologies. 
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CHAPTER 6  

6 CONCLUSION 

This research has focused on conceptualizing a building control framework and 

analyzing its applicability in the thermal domain, as an overarching contribution to 

the efforts of providing comfortable climatic conditions in buildings and being 

cognizant of consumed energy. Responding to the drawbacks of the one-size-fits-all 

approaches in the current practice, personalized dimensions of building control, 

thermal comfort, and indoor climate were investigated. Researches have shown that 

relying solely on automating the operation of building systems is not a very efficient 

control strategy, as the needs of occupants are not static, and standardized settings 

do not provide satisfactory indoor environmental conditions for every individual. It 

was also demonstrated that keeping the occupants completely out of the control loops 

leads to decreased perceived control, which impacts both energy consumption and 

human comfort in a negative manner. To this end, a collaborative control framework, 

which establishes a communication ground between people and buildings were 

conceptualized. In order to analyze how such a framework could enable 

improvements in human comfort and energy efficiency, a simulation-based and data-

driven research was conducted in the thermal domain. Differences in personal 

comfort preferences and micro-climatic conditions in multi-occupancy indoor spaces 

are accounted for by developing personal thermal comfort profiles and investigating 

thermal distribution patterns. Through performing an optimization analysis, 

achievable comfort improvements and energy savings were presented in case of both 

occupants’ incorporation and sole automation. The results of the data-driven analysis 

confirmed that considering the nonuniformity of personal comfort and indoor 

climate in a dynamic building control strategy where the occupants are kept in the 

loop have great potential for providing comfortable indoor environments without 

wasting valuable energy excessively. 
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6.1 Revisiting the Research Questions 

The main research question that this research focused on was: How can we improve 

occupant comfort while ensuring the efficient use of energy in building operation? 

To answer the main research question, the following sub-questions were addressed: 

What are the comfort and energy affiliated problems in prevailing building 

control approaches and how can they be tackled? 

With the aim of answering this question, a literature review was performed to 

investigate human and automation-related system issues in building control. It was 

revealed that the main focus of current approaches is either on empowering the 

occupants for building control or developing fully automated system operation 

minimizing human inference. While relying on manual control has been shown to be 

inefficient in terms of energy use, the full automation also has crucial disadvantages, 

such as decreased perceived control leading to lower satisfaction levels, and 

standardized operational assumptions. To address these drawbacks, a collaborative 

building control mechanism that provides a sense of continuous control for 

occupants and allocates operational decisions to the building management system 

was proposed, and system components were discussed. The outlined control 

framework was predicated on a communication ground between the occupants and 

the building, which would enable automation adjustability at the desired level and 

allow bidirectional feedbacks, suggestions and notifications. 

What are the implications of occupant comfort in shared indoor environments 

on building control? 

Satisfying occupant comfort needs in personal offices or single-occupancy spaces is 

achievable by configuring the building operation based on the individual specific 

preferences. However, providing comfortable conditions for all occupants in multi-

occupancy indoor environments is a unique challenge for building control. In 

consideration of the possible differences in comfort preferences of occupants, 
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available personal comfort feedback datasets were processed with Bayesian network 

modeling approach to generate personal comfort profiles of multiple individuals. The 

illustrated variations in the thermal comfort sensitivities of six people revealed that 

controlling the thermal domain in shared spaces based on generic and averaged 

assumptions will create suboptimal conditions for many of the occupants. 

Individuals sharing the same zone may have different thermal comfort preferences, 

and this imply personalized system configuration requirement for building control. 

What are the characteristics of thermal distribution patterns in multi-

occupancy office spaces? 

This inquiry was addressed by performing CFD simulations in ANSYS Fluent 

software. Thermal distribution patterns in a multi-occupancy office space were 

investigated under varying climatization and occupancy settings. Based on the 

outcomes of the numerical and visual analysis, it was demonstrated that the 

temperature is not uniform in the selected office space and the distribution is 

influenced by the supplied airflow rate, the supplied airflow direction, the number 

and positions of occupants, and the placement of diffusers. In keeping with the 

anticipated outcome, the increase in the supplied airflow rate and the number of 

occupants led to higher room temperatures. It was also revealed that changing the 

supplied airflow direction has a direct impact on the indoor temperature, and setting 

the directional airflow configuration considering the inlet and outlet locations could 

be used as an alternative strategy for providing required thermal conditions. 

Can we leverage varying comfort preferences of occupants and heterogeneity 

of thermal conditions to improve collective comfort and energy efficiency? 

 A data-driven optimization analysis was performed to test the potentials of 

leveraging the nonuniformities in personal comfort preferences and distribution of 

thermal parameters.  A baseline setting and three control strategies were defined with 

an incremental complexity. The quantitative analysis performed demonstrated 

improvements in collective comfort probabilities for almost all occupancy cases, 

brought by the proposed control strategies compared to the baseline. While 
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substantial energy saving potential was revealed for minimum multi-occupancy 

scenarios, a trade-off between collective comfort and energy consumption was 

observed for maximum occupancy. The results confirmed that if building 

management system can communicate with the occupants and the individuals 

cooperate by complying with its suggestions (i.e., seat assignment), achievable 

comfort and energy improvements are maximized. Without this communication 

ground, the optimization strategies that account for personal preferences and micro-

climatic conditions still offered improvements but they were relatively limited. 

6.2 Limitations and Future Work 

This study also has several limitations. To start with, the proposed building control 

scheme was only assessed in the thermal domain with a simplified collaboration 

component, which is the assignment of occupants to the workstations. The 

communication between the building and the occupants may be configured in a more 

complex fashion by designating a dedicated interface in an experimental study. The 

field of human-building interaction could be investigated further to discover the 

different dimensions of bidirectional communication between buildings and 

occupants, including influential parameters, energy and comfort affiliated potentials 

and achievable improvements.  

Although this work only focused on thermal comfort, other indoor environmental 

conditions such as lighting, acoustics, or privacy concerns can affect occupants’ 

overall comfort levels and their seat selections. Other domains could also be studied 

in isolation to understand their specific implications first, and then multi-domain 

studies could be conducted to reveal the overall configuration requirements of the 

integrated control framework. Establishing a seamless flow and well-configured 

compatibility between various building systems serving different domains could 

enable BMS to take the most efficient and effective action in response to the 

feedback received from the building occupants. 
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Personal comfort profiles utilized in this research have a direct impact on the 

optimization results. Having different personal comfort profiles than the ones 

defined in the optimization analysis could lead to changes in the selected settings by 

the control strategies. Based on the available evidence in the literature (Wang et al., 

2018), it was assumed that occupants usually have different thermal comfort 

preferences and tolerances. However, it can be claimed that in the cases where 

thermal preferences of the individuals sharing the same environment are very similar, 

indoor thermal conditions may not be optimal for all occupants, given the 

heterogeneity in thermal conditions. For such a consideration, further research is 

required to reveal the strategies that would provide uniform thermal conditions in 

shared indoor spaces. Moreover, in order to confirm the inclusivity of the 

methodology, more personal characterictics such as age, sex, body mass index, etc. 

could be incorporated in personal comfort profiles. Having more personal traits 

embedded in personal comfort profiles could also lead to profound improvements on 

the predictive performance of the generated models, and decrease the required data 

collection time to reach accurate representations. 

The methodology proposed in this research was validated in an office space at an 

educational facility, the scale and dimensions of which may have an influence on the 

numerical results. Accordingly, building type, location, defined space volume, 

selected time of the year and number of occupants can be variated in further studies 

to investigate the applicability of the methodology in the presence of different 

contextual factors. 

In CFD simulations, due to the cumulative increase in the number of combinations 

and computing time, only minimum and maximum multi-occupancy cases with three 

supply airflow rates were modeled and analyzed. Incorporating all possible 

occupancy scenarios and increasing supply airflow rate resolution by adding more 

levels could reveal further explorations for ensuring collective comfort in an energy-

efficient manner. Moreover, the positions of the supply air inlet and the return outlet 

were modeled considering the real-world parameters of the studied space, and they 

were kept constant. Considering their influence on air mixing and flow dynamics, 
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the impact of the HVAC components’ placement could be assessed to reveal possible 

design strategies. In addition, we have analyzed thermal distribution patterns through 

a steady state simulation setup, which provides a snapshot of the environment at a 

given time under defined boundary conditions. A further study with a transient 

simulation setup could make it possible to assess more granular time-dependent 

fluctuations of indoor environmental conditions, which was not viable within the 

scope of this research.  

Applicability of the proposed control strategies under different conditions could be 

verified through longitudinal field studies enabling continuous data acquisition with 

adequate sensor infrastructure, which is anticipated as a future research direction for 

this study. For further investigation, we also plan to incorporate more parameters, 

including the time of the day at four seasons, the scale of the multi-occupancy spaces, 

the arrangement of venting components, and the positioning of the working desks to 

account for more contextual factors. 

6.3 Conclusive Remarks 

It is of the utmost importance for building researchers to consider the human 

dimension in any attempts leaning towards achieving technological improvements 

in buildings. As the most fundamental parameter of the built environment is the 

occupants, laying the bricks on a human-centered foundation would always be a 

good step forward for disposing of potential obstacles in integrating new 

advancements to buildings. Considering the interdependency between building 

control, indoor climate, and human comfort, operational codes of building systems 

should be configured with a comprehensive understanding.  

In an effort to develop an occupant-centric building control framework enhancing 

human involvement, this study tackled with the challenges in the thermal domain, 

posed by the differences in personal comfort preferences and nonuniformity of 

micro-thermal conditions, and leveraged them for comfort provision at an individual 
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level in shared environments. In doing so, an office space with six occupants was 

adopted as a case study, and a unique comfort profile was developed to be assigned 

to each individual within the defined environment. Thermal distribution 

characteristics of the space were investigated using CFD simulations under varying 

supply airflow rates, supply airflow direction, and occupancy settings. Three control 

strategies were proposed with an incremental complexity to delve into the potentials 

of adjustability in supply airflow direction, supply airflow direction, and supply 

airflow rate, and supply airflow direction, supply airflow rate, and occupant 

locations. Collective comfort probabilities were examined under three control 

strategies at the minimum and maximum multi-occupancy and assessed the findings 

in comparison to the defined baseline scenarios. Simulation results illustrated that 

temperature is not uniformly distributed in multi-occupancy spaces, and occupants 

are subjected to different thermal conditions depending on their locations and related 

contextual factors. Although adjustability of supply airflow direction and supply 

airflow rate implies comfort improvements in minimum multi-occupancy scenarios, 

their sole employment was ineffective in full occupancy. However, it was revealed 

that adjusting supply airflow direction could be used as an alternative strategy for 

adjusting thermal conditions in shared indoor environments instead of altering 

supply airflow rate, which typically implicates higher energy use due to the cubic 

relationship between flow rate and fan power. According to the analysis results, 

coupling personal comfort preferences and thermal distribution patterns in building 

control increases the probability of achieving collective comfort considerably, if 

individuals are intelligently allocated between six occupant positions.  

This study showed that keeping occupants in the loop while determining the control 

actions in buildings has profound improvement potential. For the thermal domain, 

assuming the uniformity of thermal conditions in multi-occupancy spaces may be 

misleading for occupant-centric building control studies, and the comfort 

requirements of occupants should be assessed based on micro-conditions at their 

positions rather than representative room thermostat measurements. 
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B. Temperature Distribution Patterns in All Occupancy Scenarios 

 

Figure A.1. Temperature distribution gradients in minimum multi-occupancy scenario-1 
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Figure A.2. Temperature distribution gradients in minimum multi-occupancy scenario-2 
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Figure A.3. Temperature distribution gradients in minimum multi-occupancy scenario-3 
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Figure A.4. Temperature distribution gradients in minimum multi-occupancy scenario-4 
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Figure A.5. Temperature distribution gradients in minimum multi-occupancy scenario-5 
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Figure A.6. Temperature distribution gradients in minimum multi-occupancy scenario-6 
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Figure A.7. Temperature distribution gradients in minimum multi-occupancy scenario-7 
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Figure A.8. Temperature distribution gradients in minimum multi-occupancy scenario-8 
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Figure A.9. Temperature distribution gradients in minimum multi-occupancy scenario-9 
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Figure A.10. Temperature distribution gradients in minimum multi-occupancy scenario-10 
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Figure A.11. Temperature distribution gradients in minimum multi-occupancy scenario-11 
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Figure A.12. Temperature distribution gradients in minimum multi-occupancy scenario-12 
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Figure A.13. Temperature distribution gradients in minimum multi-occupancy scenario-13 
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Figure A.14. Temperature distribution gradients in minimum multi-occupancy scenario-14 
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Figure A.15. Temperature distribution gradients in minimum multi-occupancy scenario-15 
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