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ABSTRACT 

 

INTEGRATION AND ANALYSIS OF BIOLOGICAL DATA FOR 

COMPUTATIONAL DRUG DISCOVERY 

 

Ataş Güvenilir, Heval 

Ph.D., Department of Health Informatics 

Supervisor: Prof. Dr. Mehmet Volkan Atalay 

Co-Supervisor: Assoc. Prof. Dr. Tunca Doğan 

 

June 2023, 161 pages 

 

Drug discovery and development is a slow and costly process that comprises 

identifying bioactive compounds against biomolecular targets and evaluating their 

efficacy and safety. Computational drug/compound–target/protein interaction 

(DTI/CPI) prediction approaches have emerged as valuable tools to streamline this 

process and minimize expenses. In recent years, the integration of artificial intelligence 

(AI) based methods in DTI prediction has gained considerable attention, but challenges 

persist due to limitations in existing approaches and the complex nature of this 

biological problem. This thesis study aims to contribute to the effective utilization of 

AI in drug discovery by addressing current obstacles and developing innovative DTI 

prediction models. The main goal is to establish a reliable standard for designing robust 

and industry-applicable computational systems. The study is divided into three parts, 

each addressing a different aspect of the problem. In the first part, we performed a 

comprehensive benchmark for machine learning-based DTI prediction to achieve 

better data representations and more successful learning, and proposed high-quality 

bioactivity datasets for a fair and reliable comparison. In the second part, we utilized 

the knowledge graph (KG) data structure to leverage heterogeneous biological data for 

improved drug discovery, and constructed the KG module of our biological data 

integration system (CROssBAR) by incorporating essential relationships among 

multiple types of biomedical entities. In the last part, we proposed HetCPI, a systems-

level CPI representation and prediction framework, which utilizes cutting-edge 

heterogeneous graph representation learning algorithms to extract hidden knowledge 

from multi-layered biomedical data, i.e., CROssBAR KGs, and demonstrates a 

considerable performance improvement in challenging scenarios. The outputs of this 

thesis study are expected to aid experimental and computational work in biomedical 

sciences, especially in drug discovery and repurposing. 

Keywords: machine/deep learning, bioactivity modeling, protein representation, 

biomedical knowledge graph, heterogeneous graph representation learning 
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ÖZ 

 

İŞLEMSEL İLAÇ KEŞFİ İÇİN BİYOLOJİK VERİNİN  

ENTEGRASYONU VE ANALİZİ 

 

 

Ataş Güvenilir, Heval 

Doktora, Sağlık Bilişimi Bölümü 

Tez Yöneticisi: Prof. Dr. Mehmet Volkan Atalay 

Tez Eş Yöneticisi: Doç. Dr. Tunca Doğan 

Haziran 2023, 161 sayfa 

 

İlaç keşfi ve geliştirme süreci, biyomoleküler hedeflere karşı biyoaktif bileşiklerin 

tanımlanması ve etkinlik ile güvenliklerinin değerlendirilmesini içeren yavaş ve 

maliyetli bir süreçtir. Hesaplamalı ilaç/bileşik-hedef/protein etkileşimi (İHE/BPE) 

tahmin yaklaşımları, bu süreci hızlandırmak ve maliyetleri azaltmak için değerli 

araçlar olarak ortaya çıkmıştır. Son yıllarda, İHE tahmininde yapay zeka (YZ) temelli 

yöntemlerin entegrasyonu önem kazanmıştır, ancak mevcut yaklaşımlardaki 

sınırlamalar ve bu biyolojik problemin karmaşıklığı nedeniyle İHE tahminindeki 

zorluklar devam etmektedir. Bu tez çalışması, mevcut sorunları ele alarak ve yenilikçi 

İHE tahmin modelleri geliştirerek YZ’ nin ilaç keşfi alanında etkili bir şekilde 

kullanımına katkıda bulunmayı amaçlamaktadır. Temel hedef, sağlam ve endüstriye 

uygun hesaplamalı sistemlerin tasarımı için güvenilir bir standart oluşturmaktır. 

Çalışma, problemin farklı yönlerini ele alan üç bölümden oluşmaktadır. İlk bölümde, 

daha iyi veri temsilleri elde etmek ve daha başarılı öğrenme sağlamak amacıyla makine 

öğrenmesi temelli İHE tahmini için kapsamlı bir karşılaştırma yapılmış ve adil ve 

güvenilir bir kıyaslama için yüksek kaliteli biyoaktivite veri setleri oluşturulmuştur. 

İkinci bölümde, heterojen biyolojik veriyi daha etkili bir şekilde kullanarak ilaç keşfini 

iyileştirmek için bilgi çizgesi (BÇ) veri yapısından yararlanılmış ve çeşitli 

biyomedikal olgular arasındaki temel ilişkileri bir araya getiren biyolojik veri 

entegrasyon sistemimizin (CROssBAR) BÇ modülü oluşturulmuştur. Son bölümde 

ise, CROssBAR BÇ' leri üzerinden çok katmanlı biyomedikal veride gömülü bilgiyi 

ortaya çıkarmak için modern çizge tabanlı temsil öğrenme algoritmalarını kullanan 

HetCPI adlı sistem düzeyinde bir BPE temsil ve tahmin yapısı geliştirilmiş ve zorlu 

senaryolarda önemli bir performans artışı elde edilmiştir. Bu tezin çıktılarının, 

biyomedikal bilimlerdeki -özellikle ilaç keşfi ve yeniden konumlandırmada- deneysel 

ve hesaplamalı çalışmalar için oldukça faydalı olması beklenmektedir. 

Anahtar Sözcükler: makine öğrenmesi, derin öğrenme, biyoaktivite modelleme, 

protein temsili, biyomedikal bilgi grafiği, heterojen çizge tabanlı öğrenme 
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CHAPTER 1 

CHAPTERS 

1. INTRODUCTION 

1. Drug Discovery and Development Process 

The discovery and development of new drugs is one of the most crucial and demanding 

objectives of modern medicine, requiring extensive research efforts to overcome 

various scientific and regulatory obstacles. It is a multi-stage and long-term process 

(Figure 1.1) that involves (i) the identification and validation of a biomolecular target, 

(ii) finding potential drug candidates that interact with the target, (iii) optimizing the 

chemical structure and properties of the lead compound, (iv) preclinical studies 

including animal trials and (v) clinical studies including human trials to test its efficacy 

and safety, following with (vi) FDA approval to be released to the market if 

successfully passing all stages (Blass, 2015). The average cost of developing a new 

drug is around $1.8 billion over approximately 13 years. The high failure rate of drug 

candidates in clinical trials due to their low efficacy and high toxicity levels makes 

drug discovery an extremely challenging, high-risk, and expensive endeavor (Paul et 

al., 2010). 

The goal of drug design is to develop drugs that can bind to the target with high affinity 

and specificity, and thereby modulate its activity in a desirable way. As the initial step 

in the process (i.e., step i and ii), the identification of interactions between drug 

candidate molecules (e.g., compounds) and the target (e.g., druggable protein) 

constitutes the basis of drug discovery. It is achieved by measuring the bioactivity 

levels of these compounds via screening assays. With the advancements in high-

throughput screening technology, it is now possible to scan thousands of compounds 

simultaneously; but still, it is not feasible to fully analyze a certain portion of the target 

and compound spaces due to the excessive number of possible protein-compound 

combinations (Rifaioglu et al., 2019). Thus, there is a need for the design of more 

efficient screening assay setups to reduce the time and cost required for successfully 

introducing a drug to the market. 
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Figure 1.1. The pipeline of drug discovery and development process (Rifaioglu et al., 

2019)  

2. In Silico Prediction of Drug-Target Interactions (DTIs) 

2.1. Modelling Approaches in DTI Prediction  

The increasing availability of biological data and the development of computational 

methods offer new opportunities for accelerating drug discovery. In order to aid in 

designing screening experiments more effectively, computational approaches have 

become crucial in recent years to identify potential drug candidates worth considering 

in the experimental stages. The technique used for in silico prediction of unknown 

drug/compound-target interactions (DTIs) is called virtual screening (VS). 

Conventional VS methods are roughly categorized as ligand-based (e.g., QSAR 

modeling) and structure-based (e.g., molecular docking), which aim to predict 

interactions between a set of compounds and a predefined target protein. Ligand-based 

approaches utilize molecular property-based compound similarities, while structure-

based approaches employ 3-D structures of targets and compounds for predicting these 

interactions (Lavecchia & Di Giovanni, 2013). In these applications, off-target effects 

are generally overlooked, and other possible targets of the compounds cannot be 

identified. However, it is known that most of the bioactive compounds act on multiple 

targets, and identification of off-targets is important, especially for drug repurposing 

and side-effect identification studies.  

Differently from conventional VS methods, proteochemometric (PCM) modeling, as 

a relatively new approach in this area, overcomes this limitation by incorporating both 

compound and target features without requiring 3-D structures and dynamic 

information for DTI prediction. It can predict bioactivity relationships between large 

sets of compounds and targets under a single system instead of building a separate 

prediction model for each target protein (Cortés-Ciriano et al., 2015). There are 

promising studies that state PCM models outperform conventional quantitative 

structure-activity relationship (QSAR) models in DTI prediction modeling (van 

Westen et al.,2013; Paricharak et al.,2015).  
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There are multiple factors affecting the success of a drug candidate, mainly due to the 

extremely dynamic and complicated structure of biological systems. Considering this 

fact, network-based approaches utilizing omics data gain importance in DTI prediction 

with the development of systems biology and network pharmacology. These 

approaches differ from the abovementioned methods in terms of the input data type. 

Traditional VS methods and PCM modeling only utilize compound and/or protein 

knowledge for the inference of bioactivity data. However, network-based approaches 

integrate heterogeneous biological data, including protein-protein interactions, 

drug/compound-target protein interactions, and signaling/metabolic pathways, 

together with high-level concepts such as protein-disease relationships, drug-disease 

indications, pathway-disease modulations, and phenotypic implications. The direct 

and indirect relationships in molecular and cellular processes may carry hidden 

patterns affecting the interactions of proteins and compounds; thus, their involvement 

in bioactivity modeling has the potential to increase the success rate in drug discovery 

(Ye et al., 2021). 

2.2. Utilization of Artificial Intelligence (AI) in DTI Prediction 

The remarkable ability of artificial intelligence (AI) to process vast amounts of data 

and extract valuable insights has led to its widespread adoption in all steps of drug 

discovery including target identification and validation (Jeon et al., 2014), small-

molecule design and optimization (Olivecrona et al., 2017; Segler et al., 2018), drug 

sensitivity prediction and biomarker discovery (B. Li et al., 2015), prediction of 

ADME-Tox properties (Wenzel et al., 2019), as well as prediction of clinical response 

(E. W. Huang et al., 2020) and drug approvals (Ciray & Doğan, 2022). Both VS and 

systems-based DTI prediction methods heavily rely on AI-centric modelling 

techniques, including classical machine learning and cutting-edge deep learning 

algorithms. Developing an AI-centric DTI prediction model involves several key 

steps, which are displayed in Figure 1.2.  

The first step is to construct/select an appropriate bioactivity dataset, typically derived 

from publicly available data repositories such as DrugBank (Law et al., 2014), 

BindinDB (Gilson et al., 2016), ChEMBL (Mendez et al., 2019), and PubChem (Y. 

Wang et al., 2017). The bioactivity dataset includes information on experimentally 

validated drug/compound-target interactions along with the corresponding labels for 

supervised learning, where the system is trained using labeled samples to yield the 

expected output (Vamathevan et al., 2019). Depending on the type of the prediction 

task (i.e., classification/regression), these labels can be in binary format as “active (1)” 

and “inactive (0)” for classification, or real value format corresponding bioactivity 

measurements (e.g., pKd, pKi, pIC50, etc.) for regression. The dataset must also be 

preprocessed to filter out low-quality or irrelevant data and normalized for consistency 

if required. Then, it needs to be split into train/validation/test sets using specific 

strategies such as random split, stratified split, or temporal split. 

The next step is the featurization of the input samples (i.e., proteins and/or compounds) 

into numerical representations (i.e., fixed-length feature vectors) to be processed by 

supervised learning algorithms. These feature vectors are traditionally constructed by 
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applying specific rules or calculations on various molecular characteristics of the 

samples, including their physicochemical, structural, topological, or functional 

properties, and are derived from sequences of proteins and line notations of 

compounds (e.g., SMILES), or their 3-D atomic coordinates (Rifaioglu et al., 2019). 

Recently, learned embedding approaches have emerged as a promising alternative to 

traditional methods in obtaining effective feature representations without using any 

domain-specific knowledge. They employ natural language processing (NLP) 

algorithms for generating “word embeddings” to extract hidden molecular knowledge 

directly from raw textual chemical and biological data (i.e., line notations and 

sequences) (Unsal et al., 2022). Additionally, they leverage the structural information 

and relationships between nodes (i.e., protein or compound entries) in a graph through 

graph-based algorithms to generate "graph embeddings". These methods allow for a 

more comprehensive representation of complex data and have demonstrated 

considerable potential in a wide range of applications in the chemical and biological 

domains (Nelson et al., 2019). 

After the featurization of the data, selecting an appropriate algorithm is crucial to 

develop an effective prediction model. In DTI prediction, classical machine learning 

(ML) algorithms such as support vector machines (SVMs), random forest (RF), and 

neural networks (NNs) have been widely utilized with successful applications. 

However, the increasing availability of data and computational power has made deep 

learning (DL) algorithms, such as deep neural networks (DNNs), convolutional neural 

networks (CNNs), and recurrent neural networks (RNNs), a more attractive option (H. 

Chen et al., 2018). Graph learning algorithms, as a special type of DL algorithms, have 

also been employed in DTI prediction. These algorithms, including graph 

convolutional networks (GCNs) and graph attention networks (GATs), can handle 

graph-structured data and enable the integration of graph topology information into 

the learning process to be used for a variety of graph-related tasks, such as node 

classification and link prediction (Nguyen et al., 2021).  

Once a suitable algorithm is selected relevant to the data and prediction task and the 

model architecture is designed (for DL models), the next step is to train the model on 

the prepared data to identify patterns and make predictions. During the training 

process, the model adjusts its internal parameters to enhance its predictions. In 

addition, there are external parameters known as “hyperparameters” (e.g., the number 

of hidden layers in a neural network or the number of trees in a random forest) that 

must be set before training the model. The adjustment of hyperparameters is an 

exhaustive process that requires trying various combinations of them, especially for 

DL models. However, it is crucial for optimizing the model performance, as 

hyperparameters control the complexity of the model and how it learns from the data 

(Andonie, 2019). 

After determining the best hyperparameter combinations based on the validation set 

performance and training the model with these hyperparameters on the training set, it 

is essential to evaluate the model performance on an independent test set to assess its 

generalizability, consistency, and applicability. Common performance metrics for 

classification tasks include accuracy, precision, recall, F1-score, AUROC, and MCC 
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score (Rifaioglu et al., 2019). For regression tasks, RMSE, r^2, Pearson/Spearman’s 

correlation coefficient, and CI are widely used (Cichońska et al., 2021; Rifaioglu et 

al., 2021).  

Each of these steps is critical to building accurate and reliable AI systems for a variety 

of applications including DTI prediction and should be considered carefully. 

 

Figure 1.2. The typical steps involved in constructing a supervised learning-based AI 

model for DTI prediction 

1.1. Problem Statement 

The application of AI for DTI prediction is an area of research with great potential to 

accelerate the drug discovery process. However, these methods have some limitations 

that hinder their applicability in real-world cases and highlight the need for more 

robust models. One of the major limitations of AI-based models is their reliance on 

training data, which may be biased or incomplete. In DTI prediction, this issue mainly 

arises due to low coverage of protein and compound spaces, and poor dataset design, 

generally leading to over-optimistic performance results. Additionally, AI models 

have limited ability to generalize beyond the training data, making them fail when 

encountering new, unseen samples. The multi-layer architecture of DL models allows 

them to handle vast amounts of data and recognize deeper patterns, which makes them 

preferable to the conventional ML methods for generalizing the data. However, they 

still suffer from data-related issues limiting their efficient use. Therefore, introducing 

gold-standard, large-scale benchmark datasets with high-quality and diversity, along 

with properly designed, realistic train/test split scenarios will be invaluable for the 

community to facilitate the development of reliable and applicable DTI prediction 

models. 

Another drawback of current AI models for the DTI prediction problem is their 

tendency to rely solely on bioactivity data, neglecting the potential benefits of 

incorporating multi-omics data. This may prevent the full capture of the complex 

interplay between compounds and the biological systems they interact with directly or 

indirectly. As a result, more advanced approaches such as graph-based deep learning, 

and new comprehensive representations are required to unveil non-linear relationships 

between target proteins and drug candidate compounds. To leverage heterogeneous 

biomedical data, the integration of distinct open-access data repositories (e.g., UniProt, 
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ChEMBL, KEGG, OMIM) is essential. These databases contain vast amounts of 

semantically complementary biomedical data that can offer further insights into human 

physiology and pathophysiology. However, most are technically disconnected from 

each other, having only cross-references, which restricts their holistic use. One of the 

most effective ways to conjugate and represent complex associations between different 

layers of biomedical data is to convert it into a knowledge graph (KG) structure as a 

network of interconnected entries. Once achieved, it can be utilized by network-based 

techniques for comprehensive analysis, and graph learning architectures to develop 

prediction models with the ultimate goal of proposing novel treatment options. 

1.2. Scope and Objectives 

Despite considerable progress in recent years, in silico prediction of DTIs remains a 

challenging problem due to the limitations of applied AI models and difficulties arising 

from the complex and dynamic nature of this biological issue. The primary objective 

of this study is to contribute to the successful utilization of AI in drug discovery by 

developing innovative predictive models that accurately predict bioactivities and 

overcome the current obstacles in the field. To achieve this, the study focuses on 

establishing a reliable standard for the design of robust and industry-applicable state-

of-the-art models. This standardization involves providing high-quality benchmark 

datasets that cover different train/test split scenarios with varying difficulty levels, 

considering the real-world challenges faced by the pharmaceutical industry. The goal 

is to enhance the comparability and practicality of different approaches, leading to 

more reliable and reproducible results. Additionally, the study comprehensively 

addresses the limitations in the current applications of AI for DTI prediction. This is 

achieved through classical ML models that employ well-established algorithms proven 

to be effective in DTI prediction. This study also introduces advanced DL approaches 

that utilize large amounts of heterogeneous biomedical data through cutting-edge 

graph learning algorithms to overcome the limitations of classical methods. 

Ultimately, these proposed models aim to be efficient and powerful tools that 

contribute to the discovery of new drugs and the advancement of medical science. The 

proposed thesis study can be divided into three subject parts:  

In the first part, we investigated the representation capability of various protein 

featurization techniques to be used for the automated prediction of DTIs. For this, we 

benchmarked different sets of conventional protein descriptors and cutting-edge 

learned protein embeddings by developing support vector machine (SVM) and random 

forests (RF) based bioactivity prediction models using two different modeling 

approaches: (i) the target feature-based approach, in which an individual predictive 

model is generated for each compound cluster; and (ii) the proteochemometric (PCM) 

approach, in which both compound-target feature pairs are fed to the system. As a 

significant contribution to the scientific community, we created gold-standard, 

reference bioactivity datasets on small-, medium-, and large-scale with challenging 

train/test splits. These datasets are intended to provide a fair basis for comparing the 

performance of different models and promoting the development of robust DTI 

prediction systems with real-world translational value in drug discovery. 
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In the second part, we built the biomedical knowledge graph (KG) construction 

pipeline for the CROssBAR system. CROssBAR serves as an integrated biological 

data resource that contains information on various biomedical entities, including 

genes/proteins, drugs/compounds, disease/phenotype terms, and pathways/biological 

processes. The KGs are constructed dynamically based on the user query, which 

allows for extracting relevant information from a large and diverse pool of biomedical 

data. To ensure the KGs are biologically relevant and informative, we applied specific 

filters, including overrepresentation analysis, to focus on the primary relationships 

between the entities in the graph. This filtering approach helps to maintain a reasonable 

node and edge size, making it easier for researchers to interpret and use. As a use-case 

study, we constructed COVID-19 KGs using the same methodology to provide a 

comprehensive and up-to-date resource for researchers who investigate the molecular 

mechanisms of this pandemic and seek to develop new treatment options.  

In the last part, we introduced a novel systems-level approach to predict compound-

protein interactions (CPIs) in a comprehensive and accurate manner. The proposed 

framework, named HetCPI, leverages information from large-scale biomedical 

knowledge graphs (KGs) constructed by the CROssBAR system. It processes the 

direct and indirect relationships between proteins and compounds via the 

heterogeneous graph transformer (HGT) algorithm and generates low-dimensional 

representations by preserving graph topology for the subsequent CPI prediction task. 

We trained, optimized, and tested HetCPI on our large-scale benchmark datasets of 

transferases and membrane-receptors families, and compared it to state-of-the-art 

models in the literature. The results demonstrate the effectiveness of HetCPI in 

predicting bioactivities and its potential to aid the discovery of new drug-target 

interactions. 

This study has significant contributions to the field of drug discovery and biomedical 

research, including the development of gold-standard benchmark datasets, 

comprehensive evaluation of protein featurization methods, construction of 

heterogeneous biomedical KGs through the CROssBAR system, and the development 

of the HetCPI model utilizing large-scale biomedical data for bioactivity prediction. 

These outputs and contributions are expected to assist experimental and computational 

work in biomedical science, eventually promoting progress in drug discovery. 

1.3. Structure of the Thesis 

This thesis comprises six main chapters. The first chapter provides background 

information on the drug discovery and development process and outlines the 

computational approaches used for the prediction of DTIs. The problem statement and 

the scope and objectives of this thesis are also presented in this chapter. In the second 

chapter, a review of previous work in the literature related to different machine/deep 

learning-based DTI prediction methods is provided. In the third chapter, we evaluate 

the representation capabilities of various protein featurization approaches for DTI 

prediction and construct large-scale protein family-specific benchmark datasets for 

bioactivity modeling. The fourth chapter describes the CROssBAR biomedical 

knowledge graph (KG) construction process and use-case studies including COVID-

19 KGs. In the fifth chapter, we propose our systems-based DTI prediction method 
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called HetCPI, employing heterogeneous graph learning algorithms. In the sixth and 

final chapter, we summarize the main findings of the study and discuss potential future 

research directions. Overall, this thesis provides a comprehensive perspective on AI-

based computational methods for DTI prediction and contributes to the development 

of new and improved techniques for this prediction task. 
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CHAPTER 2 

 

2. LITERATURE REVIEW 

Recently, a great number of AI-centric computational approaches have been proposed 

for DTI prediction. In this chapter, we present the recent work regarding DTI 

prediction under two sections, including classical ML applications and cutting-edge 

DL applications. 

2.1. Classical Machine Learning Applications in DTI Prediction 

Machine learning has become an essential tool in drug discovery, particularly in 

predicting DTIs. Various classical ML algorithms such as k-nearest neighbors, matrix 

factorization, support vector machines, random forest, and shallow neural networks 

have been widely applied to DTI prediction. Regarding the methodological usage of 

the input properties, ML approaches are broadly divided into two categories within the 

context of DTI prediction: similarity-based and feature-based methods.  

Similarity-based approaches rely on the assumption that similar compounds and/or 

targets tend to have similar biological activities, so that they utilize similarities to 

predict their interactions. These similarities are calculated via various metrics such as 

the Tanimoto coefficient, Euclidean distance, and Cosine similarity, and processed by 

different algorithms including bipartite local models (Bleakley & Yamanishi, 2009; 

Buza & Peška, 2017; Mei et al., 2013), regularized least squares (van Laarhoven et al., 

2011; van Laarhoven & Marchiori, 2013; Xia et al., 2010), and matrix factorization 

(Gönen, 2012; Y. Liu et al., 2016; Peska et al., 2017; Zheng et al., 2013). Among 

similarity-based ML models, SimBoost and KronRLS (also known as CGKronRLS) 

are two state-of-the-art bioactivity prediction models, which yield competitive results 

even with cutting-edge DL models on widely used benchmark datasets (Monteiro et 

al., 2022; Rifaioglu et al., 2021). SimBoost uses gradient-boosting regression trees to 

predict binding affinities by extracting three types of features: individual features for 

each drug and target protein, network-based features derived from drug similarity and 

target similarity matrices, and network-based features derived from DTIs where drug 

and target nodes are connected to each other via binding affinity values (He et al., 

2017).  

CGKronRLS is a regularized least squares-based regression model that employs the 

Kronecker product kernel to combine drug similarity and target similarity kernels into 

a larger kernel for predicting binding affinities, which enables faster model training. It 

utilizes 2-D structural similarities for compounds and Smith-Waterman alignment 

scores for target similarities (Cichonska et al., 2017). Similarity-based models have a 
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significant drawback in that they are unable to generalize well to new targets or 

compounds, as the similarity measures have a limited applicability domain. 

Additionally, they may struggle to handle complex molecular interactions that cannot 

be captured by simple similarity measures, which may lead to poor performance in 

predicting interactions for structurally diverse compounds or targets with low 

sequence homology. 

Feature-based ML approaches employ fixed-length numerical feature vectors of drugs 

and targets as input, unlike similarity-based models that rely on similarity matrices. 

These feature vectors are generated based on diverse properties of proteins and/or 

compounds, including their molecular, physicochemical, structural, and functional 

characteristics. The feature vectors are then processed by various ML algorithms to 

extract information for the prediction of DTIs or bioactivity values. SVM is one of the 

most widely used ML algorithms in DTI prediction known for its effectiveness in both 

regression and classification tasks (Geppert et al., 2009; Mousavian et al., 2016; Ning 

et al., 2009; Poorinmohammad et al., 2015; Shar et al., 2016; Strömbergsson et al., 

2008; Tabei & Yamanishi, 2013; Yabuuchi et al., 2011). It can deal with high-

dimensional variables in small data sets and can be used for linear and nonlinear 

problems to classify data points by setting decision boundaries (L. Zhang et al., 2017).  

Mousavian et al. developed an SVM model for DTI prediction using bigram Position 

Specific Scoring Matrix (PSSM) features for proteins and PubChem fingerprints for 

drugs. They compared PSSM features with pseudo-amino acid composition (PAAC) 

as one of the most widely used protein features and demonstrated the high-confidence 

prediction ability of the PSSM model specifically for enzymes and ion channels 

datasets. They also investigated the impact of the negative sample selection strategy 

on the accuracy of predictions, and they observed a reduction in performance when 

changing the sampling method from random to balanced. This suggests that the choice 

of sampling method can have a significant impact on performance for the 

classification-based DTI prediction task and needs to be carefully considered 

(Mousavian et al., 2016).  

RF is another state-of-the-art ML algorithm that has been extensively used for DTI 

prediction (Bosc et al., 2019; Kumari et al., 2015; Shar et al., 2016; Shi et al., 2019; 

Singh et al., 2015; Y. Wang et al., 2015; H. Yu et al., 2012). It is an ensemble method 

based on many decision trees generated from bootstrap samples of the training data 

and random subsets of the features, with each tree making independent predictions. 

Therefore, it promotes diversity among the decision trees, which leads to better 

performance compared to a single decision tree. RF has several advantages over other 

algorithms, such as being fast, robust against noise and overfitting, able to handle high-

dimensional data, and considered one of the most successful ensemble methods 

(Ballester & Mitchell, 2010; Shar et al., 2016).  
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Figure 2.1. The flowchart of the Pred-binding method (Shar et al., 2016) 

Wang et al. developed three family-specific RF regression models to predict protein-

ligand binding affinities for HIV-1 protease, trypsin, and carbonic anhydrase families, 

as well as two generic models for diverse protein families. The models were trained 

on a comprehensive set of features, including protein sequence, binding pocket, ligand 

structure, and intermolecular interaction. The study revealed that the selected 

important features differed greatly among the families due to their distinct functions. 

Moreover, the family-specific models outperformed the generic models. Overall, the 

findings emphasize the importance of considering the unique functions and features of 

different protein families in predicting binding affinity (Y. Wang et al., 2015).  

Shi et al. proposed a new RF classification model, LRF-DTI, for predicting DTIs. The 

method utilizes the pseudo-position specific scoring matrix (PsePSSM) and FP2 

molecular fingerprinting to extract features from drugs and targets. The extracted 

features are processed using Lasso to reduce dimensionality and SMOTE to handle 

unbalanced data. The model was evaluated on four different datasets, including 

enzymes, ion channels, G-protein-coupled receptors (GPCRs), and nuclear receptors, 

achieving high prediction accuracies ranging from 94.9% to 98.1%. The authors also 

demonstrated the method's ability to perform well on new datasets, highlighting its 

potential for new drug research and target protein development (Shi et al., 2019). 
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2.2. Cutting-edge Deep Learning Applications in DTI Prediction 

Deep learning (DL) is a subfield of ML that uses artificial neural networks (ANNs) 

with multiple hidden layers to learn hierarchical representations of data. These 

networks are capable of handling very large, high-dimensional data sets with billions 

of parameters that pass through nonlinear functions. This ability allows them to model 

high-level abstractions contained in data, resulting in improved performance, and have 

quickly surpassed classical ML approaches. In DL architectures, each data processing 

layer is trained on the features produced from the output of the previous layer. This 

enables the learning of high-level features without the need for any data preprocessing 

contrary to classical ML algorithms and reveals non-linear relationships in large and 

complex data (e.g., biological/biomedical datasets) (Rifaioglu et al., 2019). Successful 

applications of DL in many areas such as computer vision (Russakovsky et al., 2015), 

speech recognition (J. Huang & Kingsbury, 2013), and natural language processing 

(Y. Wu et al., 2016) have led to their widespread use in the field of drug discovery and 

development, as well.  There are various studies developed DTI prediction models 

utilizing different DL architectures, including deep feedforward neural networks 

(FNNs) (Koutsoukas et al., 2017; Ma et al., 2015; Ramsundar et al., 2015), 

convolutional neural networks (CNNs) (Goh et al., 2017; Öztürk et al., 2018, 2019; 

Wallach et al., 2015), pairwise input neural networks (PINNs) (Rifaioglu et al., 2021; 

C. Wang et al., 2014), and recurrent neural networks (RNNs) (Abbasi et al., 2020; 

Karimi et al., 2019; C. Wang et al., 2014; S. Zheng et al., 2020).  

As one of the earliest examples of FNNs, Ma et al. developed QSAR models based on 

single-task and multi-task FNNs for bioactivity prediction. They represented 

compounds as molecular descriptors based on atom pairs and donor-acceptor pair 

descriptors, and they used Merck's Kaggle challenge data set and in-house data sets. 

The authors created several models using different hyperparameters and found that 

using a single set of hyperparameters performed better than using optimized 

parameters for different data sets. The FNNs outperformed the RF classifier, and the 

multi-task FNNs generally performed better than the single-task FNNs. Additionally, 

the performance of the single-task FNNs increased with the increasing size of the 

training data sets (Ma et al., 2015). CNNs are specifically designed to work with 

images or other multidimensional inputs. The key idea behind CNNs is that they use 

convolutional layers to extract local features from input data. These convolutional 

layers are typically followed by pooling layers, which help to reduce the 

dimensionality of the feature maps and make the model more computationally efficient 

(Rifaioglu et al., 2019).  

DeepDTA (Öztürk et al., 2018) and WideDTA (Öztürk et al., 2019) are two popular 

CNN-based models developed by Öztürk et al. for predicting compound-protein 

binding affinity. DeepDTA uses drug SMILES and protein sequences as input, which 

are processed by two distinct stacked CNN blocks that learn latent features of the drugs 

and targets separately, followed by max-pooling layers. The obtained features are then 

concatenated and fed to three fully connected layers for prediction. In an attempt to 

enhance DeepDTA performance, WideDTA uses four different input representations 

of compounds and proteins, which are SMILES and ligand maximum common 

substructure (LMCS) for compounds, and aa sequences and protein domains and 
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motifs (PDM) for proteins. Moreover, it represents compound SMILES and protein aa 

sequences as sets of words rather than the character-based representation. It applies 

the same CNN architecture with DeepDTA to extract features from each 

representation. Both methods have been evaluated on Davis and KIBA benchmark 

datasets. The results showed that the word-based sequence representation in WideDTA 

is a promising alternative to the character-based sequence representation used in 

DeepDTA. However, including PDM information as well as LMCS words did not 

provide additional useful information for binding affinity prediction.  

Long short-term memory neural networks (LSTMs) are a specific type of RNN that 

are capable of learning long-term dependencies, making them particularly useful for 

tasks where understanding contextual relationships is critical (Vamathevan et al., 

2019). Abbasi et al. proposed DeepCDA (Figure 2.2) as an extension of DeepDTA 

with the integration of LSTM layers after CNN blocks that is followed by a two-sided 

attention mechanism to encode the mutual interaction of protein subsequences with 

compound substructures. It is proposed for accurate prediction of binding affinities, 

particularly in cases where the test and training data are sampled from different 

domains with different distributions. The method improves the generalizability of the 

model by utilizing the domain adaptation technique and achieves promising results 

compared to other state-of-the-art approaches (Abbasi et al., 2020).  

 

Figure 2.2. The overall view of the DeepCDA framework (Abbasi et al., 2020) 
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In a recent study by Rifaioglu et al., a PINN-based proteochemometric (PCM) model 

named MDeePred was proposed for compound–protein binding affinity prediction. 

The method incorporates multiple types of protein features including sequence, 

structural, evolutionary, and physicochemical properties as 2-D vectors, and employs 

ECFP4 fingerprints for compounds. As a PINN architecture, the system consists of a 

protein input CNN and a compound input FNN in the first stage. The second stage 

includes concatenating the flattened output of the inception module on the protein side 

with the last layer of the compound side, followed by two fully connected layers. 

MDeePred was evaluated on widely used benchmark datasets and showed sufficiently 

high predictive performance compared with state-of-the-art methods (Rifaioglu et al., 

2021).  

Graph neural networks (GNNs), a special type of DL architecture, have gained 

considerable attention in recent years for predicting DTIs due to their ability to capture 

structural and relational information in data (S. Li et al., 2020; Liao et al., 2022; Lin 

et al., 2020; Nguyen et al., 2021; Torng & Altman, 2019; Tsubaki et al., 2019; Yan & 

Liu, 2022; Yang et al., 2022). GNNs are designed to process graph-structured data and 

transform it into a low-dimensional feature space while preserving the geometric 

characteristics through representation learning, known as graph embedding (Z. Zhang, 

Chen, et al., 2022). Different variants of GNNs, such as graph convolutional networks 

(GCNs), graph attention networks (GATs), and graph recurrent neural networks 

(GRNNs), have been adopted from well-known DL architectures or mechanisms like 

CNNs, attention mechanisms, and RNNs. These variants differ in how they update and 

aggregate node features through message passing between neighboring nodes (Z. 

Zhang, Cui, et al., 2022). DTI prediction models employ GNNs predominantly for 

compound and/or protein structures represented as individual molecular graphs.  

One of the pioneering and widely recognized applications of GNNs in DTI prediction 

is the GCN framework developed by Torng and Altman (Torng & Altman, 2019). 

Their approach utilizes graph-autoencoders to learn general pocket features and 

encode protein pockets into a fixed-size latent space. The model then employs separate 

GCN modules for extracting features from protein pocket graphs and 2-D ligand 

graphs. The interaction layer combines the learned features from both GCNs and feeds 

them into a classifier for prediction. This approach demonstrates the ability of graph-

autoencoders to handle varying pocket sizes and the effectiveness of GCNs in 

capturing protein-ligand binding interactions, achieving comparable or superior 

performance than other methods on common benchmark datasets.  

A recent study by Liao et al. introduces a new framework called GSAML-DTA for 

drug-target binding affinity prediction (Liao et al., 2022). GSAML-DTA integrates 

GATs, GCNs, and a self-attention mechanism to capture structural information from 

drug and protein graphs. It considers the contribution of individual drug atoms and 

protein residues to the binding affinity and utilizes mutual information to filter out 

irrelevant information in the combined representations. The results show that 

GSAML-DTA outperforms existing methods on widely-used benchmark datasets and 

provides interpretability by identifying important binding atoms and residues.  

In another recent study, Yang et al. present MGraphDTA (Figure 2.3), a deep multi-

scale GNN for drug-target affinity (DTA) prediction (Yang et al., 2022). The model 
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incorporates a dense connection and utilizes a super-deep GNN with 27 graph 

convolutional layers to capture both local and global compound structures. It also uses 

a multi-scale CNN to extract target features. Additionally, a novel visual explanation 

method called gradient-weighted affinity activation mapping (Grad-AAM) is 

introduced to provide chemical insights for model interpretation. The performance of 

MGraphDTA is evaluated on seven benchmark datasets and compared to state-of-the-

art DL models. The results show significant enhancements in DTA prediction, 

emphasizing the improved generalization and interpretability of the proposed method. 

Despite the impressive performance of DL methods in DTI prediction, their lack of 

interpretability due to the black-box nature of DL remains a challenge. Therefore, the 

emergence of GNN-based approaches that aim to enhance interpretability is extremely 

valuable and promising, particularly in biomedical applications. 

 

Figure 2.3. Overview of the MGraphDTA model (Yang et al., 2022) 

 

 

 

 

 

 

 

 



16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

 

 

 

CHAPTER 3 

 

3. A COMPREHENSIVE BENCHMARK ANALYSIS FOR ML-BASED 

DRUG-TARGET INTERACTION PREDICTION 

3.1. Chapter Overview 

The identification of drug/compound-target interactions (DTIs) constitutes the basis 

of drug discovery, for which computational predictive approaches have been applied. 

As a relatively new data-driven paradigm, proteochemometric (PCM) modeling 

utilizes both protein and compound properties as a pair at the input level and processes 

them via statistical/machine learning. The representation of input samples (i.e., 

proteins and their ligands) in the form of quantitative feature vectors is crucial for the 

extraction of interaction-related properties during the artificial learning and 

subsequent prediction of DTIs. Lately, the representation learning approach, in which 

input samples are automatically featurized via training and applying a machine/deep 

learning model, has been utilized in biomedical sciences. In this chapter, we performed 

a comprehensive investigation of different computational approaches/techniques for 

protein featurization (including both conventional approaches and the novel learned 

embeddings), data preparation and exploration, machine learning-based modeling, and 

performance evaluation with the aim of achieving better data representations and more 

successful learning in DTI prediction. For this, we first constructed realistic and 

challenging benchmark datasets on small, medium, and large scales to be used as 

reliable gold standards for specific DTI modeling tasks. We developed and applied a 

network analysis-based splitting strategy to divide datasets into structurally different 

training and test folds. Using these datasets together with various featurization 

methods, we trained and tested DTI prediction models and evaluated their performance 

from different angles. Our main findings can be summarized under 3 items: (i) random 

splitting of datasets into train and test folds leads to near-complete data memorization 

and produce highly over-optimistic results, as a result, it should be avoided, (ii) learned 

protein sequence embeddings work well in DTI prediction and offer high potential, 

even though no information related to protein structures, interactions or biochemical 

properties is utilized during their generation, and (iii) PCM models tend to learn from 

compound features and leave out protein features, mostly due to the natural bias in 

DTI data, indicating the requirement for new and unbiased datasets. We hope this 

study will aid researchers in designing robust and high-performing data-driven DTI 

prediction systems that have real-world translational value in drug discovery. The 

findings of this chapter were published in the Journal of Cheminformatics 

(https://doi.org/10.1186/s13321-023-00689-w). 

https://doi.org/10.1186/s13321-023-00689-w
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3.2. Introduction 

For the automated artificial learning of DTIs to be successful, input feature vectors 

should comprise information about the interaction-related properties of compounds 

and targets. The better the input data is represented, the better the model can learn and 

generalize the shared properties among the dataset. Therefore, the featurization of the 

input samples is crucial to construct models with high predictive performance. 

Various types of featurization approaches have been used for representing compounds 

and proteins. Due to the abundance of ligand-based DTI prediction methods, 

compound representations are extensively studied in the literature (Cereto-Massagué 

et al., 2015; Muegge & Mukherjee, 2016; Sawada et al., 2014). Therefore, this chapter 

focuses on protein representation techniques, a rapidly developing area lately. 

Sequence-based protein representations, which utilize amino acid sequences as input, 

are widely preferred in protein-associated predictive tasks since 3-D structural 

information is not available for many proteins and/or proteoforms. Additionally, the 

computational intensity of protein structured-based models is usually high. 

Considering algorithmic approaches, sequence-based protein representations can be 

grouped as conventional/classical descriptors (or descriptor sets) and learned 

embeddings. Conventional descriptors are mostly model-driven, meaning that they are 

generated by applying predefined rules and/or statistical calculations on sequences 

considering various molecular properties that include physicochemical (Chou, 2005; 

Ong et al., 2007; G. J. P. van Westen et al., 2013), geometrical (M. Sun et al., 2016; 

D. Wu et al., 2012) and topological (G. J. P. van Westen et al., 2013) characteristics 

of amino acids, as well as sequence composition (Ong et al., 2007; Saravanan & 

Gautham, 2015), semantic similarities (Perlman et al., 2011), functional 

characteristics/properties (Doğan, 2018; Doǧan et al., 2016; Doǧan, Güzelcan, et al., 

2021; Yamanishi et al., 2011), and evolutionary relationships (Saini et al., 2016; M. 

Sun et al., 2016) of proteins. Learned protein embeddings (a.k.a. representations) are 

constructed via data-driven approaches that project protein sequences into high-

dimensional vector spaces in the form of continuous feature representations using 

machine/deep learning algorithms. These protein representation learning (PRL) 

methods usually borrow their data modeling concepts from the field of natural 

language processing (NLP), where amino acids in a sequence are treated like words in 

a sentence/document. Due to this reason, many PRL methods are also called “protein 

language models”. These models usually process raw protein sequences within 

unsupervised learning, without any prior knowledge about their physical, chemical, or 

biological attributes (Unsal et al., 2022). Even though they are trained solely on the 

information about the arrangement of amino acids in the sequence, these models are 

still found to be successful in automatically extracting physicochemical properties 

(Asgari & Mofrad, 2015) and functional characteristics of proteins (Alley et al., 2019). 

PRL methods have a wide range of applications including the prediction of secondary 

structure (Alley et al., 2019; Heinzinger et al., 2019; Mirabello & Wallner, 2019; Rao 

et al., 2019), ligand-target protein interaction (Kim et al., 2021; Öztürk et al., 2019; 

Rifaioglu et al., 2021), splice junction prediction (Dutta et al., 2018), family 

classification (Asgari & Mofrad, 2015), protein function (You et al., 2018), remote 

homology detection (Rao et al., 2019; Strodthoff et al., 2020), and protein 

engineering/design (Alley et al., 2019; Rao et al., 2019). 
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For evaluating the effectiveness of different types of protein featurization in different 

areas of protein informatics, carefully designed benchmark studies are required. In 

contrast to studies that investigate compound featurization, only a few works are 

available for benchmarking protein representations. These studies mostly focus on 

tasks such as protein family prediction (Ong et al., 2007), bioactivity modeling (Ain 

et al., 2014; van Westen et al., 2013), and predicting biological properties for protein 

(re)design (Xu et al., 2020). Also, these studies mainly evaluate conventional 

descriptors rather than novel featurization approaches. As a result, there is an 

immediate requirement to evaluate cutting-edge protein language models and compare 

them against well-known conventional descriptors in the context of drug-target 

interactions for drug discovery/repurposing. 

PCM modeling has shown promising results compared to traditional approaches in 

DTI prediction (Ain et al., 2014; van Westen et al., 2013); however, it is still far away 

from conquering this problem. One of the reasons behind this (apart from the topic of 

featurization) is that the mechanism of learning is not well-understood in PCM, unlike 

ligand-based modeling. In ligand-based methods, the model predicts new interactors 

for a target protein based on molecular similarities to its known ligands. In PCM, there 

are two factors, i.e., the compound features and the protein features, and it is not clear 

to what degree similarities in-between protein samples and in-between compound 

samples contribute to the artificial learning of their interactions, and whether there is 

bias in this process. Another problem associated with data-driven DTI prediction is the 

reporting of over-optimistic performance results due to; (i) low coverage on compound 

and/or target spaces in training datasets, in terms of molecular and biological 

properties (i.e., limited variance), which prevents models from gaining the ability to 

generalize, and (ii) poorly planned and applied train/test dataset preparation (e.g., 

splitting data randomly) and model evaluation strategies. Most of the self-proclaimed 

high-performing DTI prediction models in the literature are not translated well into 

real-world cases due to these non-realistic assessments. Recently, there have been 

efforts in terms of applying different dataset-splitting strategies including temporal 

splitting (Lenselink et al., 2017), non-overlapped sampling (Liang & Yu, 2020; 

Sawada et al., 2014), cluster-cross-validation (Mayr et al., 2018), and scaffold-based 

splitting (Z. Wu et al., 2018) to build robust models. The temporal splitting strategy 

only considers time-dependent data point separation. In the non-overlapped sampling 

strategy, three different settings are applied: warm start (common drugs and targets are 

present in both the training and test sets), cold start for drugs (drugs in the training set 

are unseen in the test set while common proteins are shared in these sets), cold start 

for proteins (proteins in the training set are not involved in the test set, but common 

drugs are allowed to be present in both sets) (Ye et al., 2021). This strategy only 

differentiates samples in terms of identity and does not take similarities between 

compounds and/or proteins into account. Although cluster-cross-validation and 

scaffold-based splitting methods prevent the involvement of similar compounds in 

train and test sets, they do not take target protein similarities into consideration. These 

strategies are not sufficient for evaluating PCM-based DTI prediction models, in 

which there are three types of relationships to account for; (i) compound-target protein 

interactions, (ii) compound-compound similarities, and (iii) protein-protein 

similarities. 
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New computational approaches, evaluation strategies, and datasets are required in 

order to address the aforementioned issues in the data-centric evaluation and prediction 

of DTIs. With the aim of contributing to the field of data-driven bioactivity modeling 

for drug discovery and repurposing, here, we performed a rigorous benchmarking 

study. One of the goals of this chapter is to identify feature types with better 

representation capabilities to be used in the automated prediction of DTIs. To achieve 

this, we built prediction models for various sequence-based protein representations. 

We employed widely used conventional protein descriptors by selecting those that 

reflect different molecular aspects of proteins. We also utilized state-of-the-art protein 

representation learning methods (i.e., protein language models). Another goal of the 

chapter is the preparation of new challenging benchmark datasets with high coverage 

on both compound and protein spaces, which can also be utilized in future studies. We 

carefully prepared small-, medium- and large-scale datasets by applying extensive 

filtering operations and a network-based splitting strategy to acquire realistic and well-

balanced datasets. To our knowledge, this data-splitting strategy which considers 3 

types of relationships (i.e., drug-target interactions, protein-protein similarities, and 

compound-compound similarities), is proposed here for the first time. We used these 

datasets in our protein representation benchmarks. In this chapter, we also evaluated 

different forms of; (i) DTI modeling techniques, (ii) preliminary and explanatory data 

exploration approaches, and (iii) model performance evaluation and comparison 

strategies. 

The study in this chapter is summarized in a schematic workflow in Figure 3.1. Firstly, 

we prepared benchmark DTI prediction datasets by applying filters specific to each 

data scale and explored them via different data visualization techniques. We then split 

these datasets into train and test folds using different strategies to reflect the real-world 

data-centric challenges in drug discovery. For the construction of machine learning 

models, we implemented target feature-based and PCM modeling approaches, and 

trained/tested our models under various conditions. All details regarding the 

construction of datasets, representations and DTI prediction models are provided in 

the Methods section. In the Results and Discussion section, we evaluated the 

effectiveness of each protein featurization technique on different benchmarks and 

modeling approaches and discussed their strengths and weaknesses in comparison to 

each other. We shared our datasets, results, and source code in a reusable form under 

the “ProtBENCH” platform at https://github.com/HUBioDataLab/ProtBENCH. 

As the first comprehensive benchmark study including both conventional and novel 

protein representation methods in the context of drug discovery and repurposing, we 

hope this work will aid researchers in choosing suitable approaches and techniques 

according to their specific modeling tasks. Furthermore, our newly constructed 

challenging benchmark datasets can be used as reliable, reference/gold-standard 

datasets in further studies to design robust DTI prediction models with real-world 

translational value. 
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Figure 3.1. The schematic overview of the study in this chapter. 
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3.3. Materials and Methods 

In this section, we first explain the construction of benchmark datasets, with emphasis 

on the train/test data splitting strategies. Next, we explain featurization techniques used 

for representing proteins and compounds. Then, we summarize modelling approaches 

and algorithms employed for DTI prediction, along with additional explorative 

analysis such as the t-SNE projections. Finally, we mention performance evaluation 

metrics and the tools/libraries we employed. 

3.3.1. Dataset Construction and Splitting 

In machine learning applications, two significant factors that affect the generalization 

capability of models are the dataset content/size and the approach used in splitting data 

points to train/validation/test folds. We constructed and used three groups of datasets 

at different scales (i.e., small, medium, and large), each of which have distinctive 

characteristics. 

3.3.1.1. Small-scale: Compound-centric datasets 

Here, the aim is to construct datasets of target proteins to be used in DTI prediction 

models, in which the only input is target feature vectors, and the task is to classify 

them to their correct ligands. Each dataset is composed of targets of a specific 

drug/compound as reported in the ChEMBL (v24) database (Gaulton et al., 2017) 

considering experimentally measured bioactivities. Bioactivity data points with 

pChEMBL values, i.e., -log(IC50/EC50/Ki/Kd/Potency, …), greater than 5 

(equivalent to IC50/EC50/Ki/Kd/Potency <10 uM) are placed in the positives (actives) 

dataset, and instances with pChEMBL <= 5 are placed in the negatives (inactives) set. 

In most cases, sizes of these compound centric training datasets were too small to 

construct robust prediction models. In order to overcome this problem, we first 

selected compounds with the highest number of active and inactive bioactivity data 

points, which we called “center compounds''. Afterward, we constructed compound 

clusters around these center compounds by calculating pairwise molecular similarities 

between each center compound and all other compounds in the ChEMBL database 

using ECFP4 fingerprints and the Tanimoto coefficient. Compounds that are similar 

to a center compound with Tanimoto similarity >= 0.3 (as also used in previous studies 

such as (Jasial et al., 2016)) are placed in the cluster of the corresponding center 

compound and their bioactivity data (i.e., active and inactive targets) are incorporated 

into the cluster’s bioactivity dataset. Therefore, nine independent compound centric, 

single task classification datasets (with center compounds of Curcumin, Tamoxifen, 

Quercetin, Genistein, Econazole, Levoketoconazole, Amiodarone, Miconazole, 

Clotrimazole) were constructed, and their dataset sizes (i.e., the number of targets) 

range from 76 to 294. Statistics of these datasets, including cluster sizes, active and 

inactive number of targets, are summarized in electronic supplementary information 

(ESI) Table S1. In order to balance the number of active and inactive targets in each 

dataset (initially, the number of inactive targets were considerably low), new proteins 

which are less than 50% similar to positive targets and less than 80% similar to 

negative targets already existing in the dataset were selected from ChEMBL and added 

to the negatives dataset. Due to the small size of datasets, separating a hold-out test 

fold was not feasible. Therefore, a nested cross-validation approach (with 10-fold inner 
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loop in validation and 5-fold outer loop in testing) was applied during model 

evaluation. These datasets are used in the small-scale target feature-based analysis 

described in section 3.4.2. 

3.3.1.2. Medium-scale: mDavis kinase dataset 

We employed the previously proposed Davis kinase dataset (Davis et al., 2011) for 

performing benchmark analysis on medium-scale, which is a commonly used 

benchmark for regression-based DTI prediction. The original train-test instances in the 

Davis dataset are taken from the study by Ozturk et al. (Öztürk et al., 2018). This 

dataset includes ~30,000 DTI data points (real-valued bioactivities); however, the 

activity values of ~20,000 of them are recorded as 10 uM (i.e., pKd = 5). These are the 

data points correspond to cases in which an activity was not observed when the 

maximum dose of 10 uM is applied (so the highest dose is incorrectly recorded as the 

bioactivity value). In order to prevent bias, we removed these instances from both train 

and test portions of the dataset. For the train portion, three additional filters were 

applied to avoid data memorization. All bioactivities of a compound or target are 

discarded if the compound or target: 

1. only contains active or inactive data points based on the threshold pKd = 6.2, 

which is the median bioactivity value of the dataset, 

2. has an active-to-inactive ratio > 4 or < 1/4 considering its bioactivity data 

points, 

3. has a bioactivity distribution with standard deviation < 0.3, which means 

bioactivity values vary within a narrow range. 

A successful machine learning model is expected to learn general principles from data 

rather than memorizing it. The instances fulfilling the conditions above may not 

contribute to the learning process, as they can be easily predictable regardless of the 

algorithm or feature set, since they have very similar outcomes. We removed these 

instances from the dataset; otherwise, the model would perform well just by 

memorizing the outcome of these cases. After these filtering operations, the finalized 

set, which we call the modified Davis (mDavis) dataset, contains 6,706 train and 1,542 

test data points. This dataset is used in the medium-scale PCM-based analysis 

described in section 3.4.3. 

3.3.1.3. Large-scale: Protein family-specific datasets 

With the aim of constructing large-scale gold standard datasets, we applied rigorous 

filtering operations on the recorded bioactivities of target proteins from different 

protein families including membrane receptors, ion channels, transporters, 

transcription factors, epigenetic regulators, and enzymes with five subgroups (i.e., 

transferases, proteases, hydrolases, oxidoreductases, and other enzymes). Protein 

family information is taken from th ChEMBL (Gaulton et al., 2017) target protein 

classification. We excluded classes such as secreted proteins, other categories, and 

unclassified proteins which have inadequate number of bioactivity data points. Here, 

we actually mean protein super families; however, these terms are used in different 
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(but related) contexts in various resources, as a result, we use the term “family” 

throughout the article for convenience. 

For enzymes, subclasses belonging to the same main class were merged based on their 

EC number annotations. Bioactivity data of these families are retrieved from the 

ChEMBL (v24) database. Bioactivity data points that satisfy the following criteria, 

target type: “single protein”, standard relation: “=”, pChEMBL value: “not null”, and 

assay type: “B” (binding assay) are included in the dataset and the rest are discarded.  

For each protein family-based dataset, three types of train-test folds were extracted 

based on different dataset splitting strategies based on molecular similarities in-

between compounds and proteins. For this, we binarized pairwise similarity 

measurements as “similar” or “non-similar”. UniRef50 clusters (Suzek et al., 2015) 

were used for generating protein similarity matrices, where proteins in the same cluster 

were accepted as similar to each other (equivalent to a threshold of 50% sequence 

similarity). Otherwise, proteins were considered dissimilar to each other. For 

compounds, Tanimoto coefficient-based pairwise similarities were calculated using 

compound ECFP4 fingerprints and the RDKit library (Landrum, 2016). Compound 

pairs with a Tanimoto score >= 0.5 were accepted as similar to each other. Otherwise, 

compounds were considered dissimilar to each other. 

Random-split dataset 

This dataset is constructed by applying a complete random splitting strategy, so that 

similar compounds and proteins are presented in both train and test sets. Random 

splitting is one of the most widely used dataset split strategies in machine learning 

applications; however, it eases the prediction task due to the sharing of highly similar 

instances between train and test sets. Thus, models usually display overoptimistic 

performance results. In our random-split protein family-specific datasets, at least 95% 

of proteins and 60% of compounds in test sets are found to be similar to the ones in 

their respective train sets. 

Dissimilar-compound-split dataset 

This dataset is constructed by applying a strategy that only considers compound 

similarities while distributing bioactivity data points into train-test splits. Compounds 

in train and test splits are dissimilar to each other (Tanimoto score < 0.5). Therefore, 

similar compounds are not allowed to take part in both train and test splits. This 

strategy makes the prediction task more difficult and realistic compared to random 

splitting and partly prevents the model from memorizing bioactivities over identical 

or highly similar compound fingerprints shared between train and test folds. 

Fully-dissimilar-split dataset 

The aim here is to create train test folds in a way that neither compounds nor proteins 

are similar to each other between train and test. This dataset is constructed using a 

network-based splitting strategy to separate bioactivity data points (i.e., compound-

target pairs) into disconnected components. Later, each component is either used in 

training or test splits. Actually, this dataset is extremely challenging for any DTI 
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prediction method. However, this approach is crucial to evaluate a DTI prediction 

model’s ability to accurately predict new targets and/or new ligands that are truly novel 

(i.e., there is no bioactivity information for these compounds and target proteins in 

source databases, moreover, there are no compounds and target proteins significantly 

similar to these compounds and targets in source bioactivity databases), as this is one 

of the most crucial expectations from the PCM modeling approach. The steps of the 

network-based splitting process are provided below: 

1) Protein-protein and compound-compound pairwise similarity matrices were 

constructed independently for each protein family, based on protein family 

membership information and interacting compounds for those proteins (obtained from 

ChEMBL bioactivity data points). Similarity values were binarized according to the 

procedure explained above (i.e., 50% sequence/molecular similarity threshold for both 

protein and compounds). 

2) A heterogeneous network was constructed for each protein family by merging 

similarity matrices and bioactivity data using the NetworkX Python library (Hagberg 

et al., 2008), where nodes represent proteins and compounds, and edges represent 

protein-protein or compound-compound similarities, and compound-protein 

interaction (bioactivity) relationships. It is ensured that any two components that are 

disconnected from each other in the network do not share any similarity at all (either 

directly or indirectly). As a result, all bioactivity data points in a particular component 

can be placed in the training fold, while the ones in another component can be placed 

in the test fold. As a result, bioactivity data points (i.e., compound-target pairs) in 

training and test folds are always guaranteed to be fully dissimilar from each other. In 

practice, the problem was that nearly all nodes in the network formed a giant connected 

component, which means that it was not possible to distribute data points to training 

and test folds over disconnected components. 

3) In order to overcome this issue, we preferred to discard some of the nodes (e.g., 

compounds) and edges (e.g., bioactivity data points) from the dataset to subdivide the 

giant connected components into smaller pieces. Instead of removing nodes and edges 

randomly, which may cause the loss of a high number of data points, we employed the 

Louvain heuristic algorithm (Blondel et al., 2008) to detect communities in the giant 

component. This algorithm computes the partition of graph nodes by maximizing the 

network modularity. By discarding bioactivity edges (or in some cases, discarding 

nodes if the edge of interest is a similarity-based edge between two compounds) 

between different communities, the number of disconnected components was 

increased. Finally, bioactivity data points in each component were assigned either to 

training or test sets in a way that the ratio of the number of training fold data points to 

the test fold could be held within reasonable values, which still varied considering 

different protein families (i.e., from the minimum of 8.70% to a maximum of 23.97%). 

Discarded data points of the fully-dissimilar-split dataset were also excluded from 

training-test folds of random-split and dissimilar-compound-split datasets for keeping 

instances of three sets exactly the same, to yield fully comparable results. The sizes of 

these datasets (after discarding data points) range from 18,164 to 206,175 depending 

on the protein family. Detailed split-based statistics are provided in ESI Table S4. 

These datasets are used in the large-scale PCM-based analysis described in section 3.4. 
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3.3.2. Types of Featurization for Proteins and Compounds 

We converted proteins and compounds into fixed-length numerical feature vectors to 

be used in our DTI prediction models as input samples. The following sub-sections 

describes different featurization approaches used in this study. 

3.3.2.1. Protein representations 

On the basis of sequence-based modeling approaches utilized, we divided this 

subsection into two categories as conventional protein descriptors and learned protein 

embeddings. These methods are explained below in terms of their molecular and 

technical aspects. Names, descriptions, and feature vector dimensions of these 

descriptors are given in Table 3.1. 

Conventional descriptor sets 

This category comprises methods that employ model-driven approaches. This is 

achieved by transforming various molecular properties of proteins, such as sequence 

composition, evolutionary relationships, functional characteristics, or 

physicochemical properties of amino acids, into fixed-length numerical feature vectors 

with the implementation of predefined rules or statistical calculations. Hence, they 

convert protein sequences into a quantitative and machine-processible format that 

stores the relevant molecular information. Ten conventional protein descriptor sets 

used in all 3 of the benchmark analyses of this study are briefly explained below.  

− apaac (amphiphilic pseudo amino acid composition) represents the amino acid 

composition of protein sequences without losing the residue order effect by using 

sequence-order factors. These factors are computed from correlation functions of 

hydrophobicity and hydrophilicity indices of amino acids. Therefore, apaac keeps 

the distribution of amphiphilic amino acids along the protein chain. It was 

proposed by Chou in 2005 and used for the prediction of enzyme subfamily 

classes (Chou, 2005). 

− ctdd (distribution) provides distribution patterns of amino acids in terms of the 

class they belong to considering a particular property. It utilizes 7 types of 

physicochemical properties including hydrophobicity with 7 different versions, 

normalized Van der Waals Volume, polarity, polarizability, charge, secondary 

structures, and solvent accessibility. Each property is divided into 3 classes and 

20 amino acids are distributed into these classes based on their values for 

corresponding property (i.e., helix -EALMQKRH-, strand -VIYCWFT-, and coil 

-GNPSD- classes for secondary structure property). The distribution patterns are 

determined according to five different positions (residues) for the corresponding 

class, which are the first residue, and the residues exactly at the 25%, 50%, 75%, 

and 100% of the sequence. These positions are divided by the length of the whole 

protein sequence for the calculation of fractions of each class. This descriptor set 

was first proposed by Dubchak for protein fold recognition task (Dubchak et al., 

1999). 
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− ctriad (conjoint triad) is based on the frequency of triple amino acid combinations 

in a protein sequence, where amino acids are first converted into a 7-letter reduced 

alphabet. These seven groups include {A,G,V}, {I,L,F,P}, {Y,M,T,S}, 

{H,N,Q,W}, {R,K}, {D,E}, and {C}. Amino acid groups are determined 

according to dipoles and volumes of the amino acid side chains. Ctriad was first 

used for the prediction of protein-protein interactions by Shen et al. (Shen et al., 

2007). 

− dde (dipeptide deviation from expected mean) is a type of sequence composition 

descriptor set that relies on the deviation of dipeptide compositions from the 

expected means. Three parameters, i.e., dipeptide composition (Dc), theoretical 

mean (Tm), and theoretical variance (Tv), are computed for the construction of the 

dde descriptor set. Saravanan and Gautham proposed it in 2015 for the use of B-

cell epitope prediction (Saravanan & Gautham, 2015). 

− geary utilizes the distribution of structural and physicochemical properties of 

amino acids along the sequence. It was first developed by Geary in 1954 (Geary, 

1954) as a measure of spatial autocorrelation that uses the square-difference of 

property values. Li et al. served it as a protein descriptor set via the PROFEAT 

web server (Z. R. Li et al., 2006). Also, Ong et. al. implemented it for the 

prediction of protein functional families (Ong et al., 2007). 

− k-sep_pssm (k-separated-bigrams-pssm) is a column transformation-based 

descriptor set that computes the bigram transition probabilities between residues 

in terms of their positional distances from each other, which corresponds to the 

“k” value. The transition probabilities are calculated from transformations on 

position-specific scoring matrix (pssm) profiles of proteins. Pssm profiles 

represent evolutionary conservation of amino acids in a protein sequence, which 

are derived from multiple sequence alignments of a homolog set of protein 

sequences. This descriptor set was first proposed in the study of Saini et al. for 

improving protein fold recognition (Saini et al., 2016). Wang et al. developed the 

POSSUM tool to calculate a set of PSSM-based descriptors including k-

sep_pssm, and they utilized these descriptors for the prediction of bacterial 

secretion effector proteins (J. Wang et al., 2017). 

− pfam represents domain profiles of proteins, according to protein domain 

annotations in the Pfam database (El-Gebali et al., 2019), in the form of binary 

feature vectors. For each protein, it encodes the presence (1) and absence (0) of a 

unique list of domains presented in proteins in the corresponding dataset. This 

descriptor set was employed in the studies of Yamanishi et al. (Yamanishi et al., 

2011) and Liu et al. (H. Liu et al., 2015) with the purpose of predicting drug-target 

interactions. 

− qso (quasi-sequence order) reflects the indirect effect of the protein sequence 

order by calculating coupling factors in terms of distances between contiguous 

residues in the sequence. The distances are determined using different amino acid 

distance matrices such as the Schneider–Wrede distance matrix (Schneider & 

Wrede, 1994), which is derived from hydrophobicity, hydrophilicity, polarity, and 
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side-chain volume properties of amino acids. It was first utilised by Chou for the 

prediction of protein subcellular locations (Chou, 2000). 

− spmap (subsequence profile map) is a feature space mapping method that 

represents sequence composition by calculating the distribution of fixed-length 

protein subsequence (with a length of 5 residues in the default version) clusters in 

a protein sequence. Subsequence clusters are generated using BLOSUM62 

matrix-based similarities of all possible subsequences in the given protein set, 

extracted by the sliding windows approach. It was proposed by Sarac et al. for 

functional classification of proteins (Sarac et al., 2008). Later, spmap was used 

for GO term (Rifaioglu et al., 2018) and EC number (Dalkiran et al., 2018) 

prediction. In this study, spmap-based feature vectors were generated using 

clusters of 5-residue subsequences of ChEMBL target proteins. 

− taap (total amino acid properties) represents the total sum of corresponding 

residue values in a protein sequence for the selected properties from the AAIndex 

database (Kawashima et al., 2008). It was first employed by Gromiha and Suwa 

for better discrimination of outer membrane proteins (Gromiha & Suwa, 2006). 

The properties used in our study are normalized average hydrophobicity scale, 

average flexibility indices, polarizability parameter, free energy of solution in 

water, residue accessible surface area in tripeptide, residue volume, steric 

parameter, relative mutability, hydrophilicity value and the side chain volume. 

iFeature stand-alone tool (Z. Chen et al., 2018) was employed for the calculation of 

apaac, ctdd, ctriad, dde, geary and qso feature vectors. Protein domain annotations 

were retrieved from the Pfam database (El-Gebali et al., 2019) for the construction of 

pfam feature vectors. Spmap feature vectors were calculated using our in-house 

algorithm explained above (Sarac et al., 2008). For the construction of k-sep_pssm and 

taap vectors, POSSUM (J. Wang et al., 2017) and PROFEAT (P. Zhang et al., 2017) 

web servers were used, respectively. 

Learned embeddings 

This category comprises protein representations that utilize solely data-driven 

approaches for the extraction of molecular information from protein sequences. 

Learned representations are constructed via the process of artificial learning, in which 

a model is trained on specific unsupervised/self-supervised tasks such as the prediction 

of the next amino acid in the sequence. For generating such protein representation 

models, deep neural network-based architectures and design choices that are 

frequently used in natural language processing (NLP) field are preferred. During the 

training process, the model takes protein sequences as input, projects them into a high-

dimensional vector space, and generate output in the form of fixed-length numerical 

feature vectors called “embeddings”. These numerical feature vectors can later be used 

for representing proteins in other predictive tasks (mostly supervised) such as DTI 

prediction.  

Four protein representation learning methods (making 6 models in total, as 2 of these 

methods have 2 versions each) used in this study are briefly explained below. Names, 
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descriptions, and feature vector dimensions of these embeddings are given in Table 

3.1. 

− unirep is one of the best-known learned protein representations, which was 

developed in 2019 by Alley et al. using a variation of recurrent neural networks 

(RNN) called the multiplicative long-/short-term-memory (mLSTM) architecture 

(Alley et al., 2019). Alley et al. trained the model on approximately 24 million 

protein amino acid sequences in the UniRef50 clusters of UniProt, with the 

objective of predicting the next amino acid in these sequences. They evaluated the 

representation capability of unirep on various tasks including the prediction of 

protein stability, semantic similarity, secondary structure, evolutionary and 

functional information. In our study, we constructed both 1900- and 5700-

dimensional unirep protein embeddings (obtained by averaging and summing the 

output embedding of size 1900x3, respectively) for sequences in our datasets and 

evaluated them as independent representation methods. The unirep model is 

available at https://github.com/churchlab/UniRep. 

− transformer is a deep architecture that utilizes the attention mechanism in a way 

to allow the extraction of context without depending on the sequential order 

information in the input samples (Vaswani et al., 2017), and it is the current state-

of-the-art in the representation learning and generative modelling of natural 

languages. As part of the “Tasks Assessing Protein Embeddings (TAPE)” study, 

Rao et al. developed a transformer-based protein representation learning model 

using the Bidirectional Encoder Representations from Transformers (BERT) 

algorithm (Rao et al., 2019). This model was trained on approximately 32 million 

protein sequence fragments taken from the Pfam domain annotation database (El-

Gebali et al., 2019), via masked-token prediction. It was also tested on tasks such 

as secondary structure prediction, contact prediction, remote homology detection, 

fluorescence landscape prediction, and stability landscape prediction. For each 

sequence, the model returns two different versions of representation vectors: (i) 

averaged, and (ii) pooled, both in 768-dimensions. We used both of these 

embeddings in our study as independent representation methods. TAPE 

transformer model is accessible at https://github.com/songlab-cal/tape. 

− protvec was developed by Asgari and Mofrad (Asgari & Mofrad, 2015) as one of 

the first models used in the construction of learned protein embeddings. It was 

trained on 546,790 sequences in the UniProtKB/Swiss-Prot database using the 

skip-gram modelling approach, in which, given a target residue, the model 

predicts the surrounding amino acids in the sequence. In protvec, protein 

sequences were embedded into 100-D vectors of 3-gram subsequences (i.e., 3 

consecutively located amino acids) as biological words. For characterizing 

biophysical and biochemical properties of sequences, these 3-grams were 

analyzed qualitatively and quantitatively in terms of mass, volume, van der Waals 

volume, polarity, hydrophobicity, and charge. Protein feature extraction capability 

of protvec was also evaluated in terms of protein family classification and 

disordered sequence characterization tasks by representing each protein sequence 

as the summation of 100-D vectors of its 3-grams. 100-D vector representation of 

protvec can be retrieved from http://dx.doi.org/10.7910/DVN/JMFHTN. 

https://github.com/churchlab/UniRep
https://github.com/churchlab/UniRep
https://github.com/songlab-cal/tape
https://github.com/songlab-cal/tape
http://dx.doi.org/10.7910/DVN/JMFHTN
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− seqvec utilizes bi-directional language model architecture of the “Embeddings 

from Language Models (ELMo)” method for extracting features relevant to per-

residue and per-protein prediction tasks. Heinzinger et al. developed the seqvec 

model by training on approximately 33 million UniRef50 sequences with the goal 

of predicting the next amino acid in the sequence (Heinzinger et al., 2019). The 

authors evaluated the success of seqvec on the prediction of secondary structures 

and regions with intrinsic disorder at the residue level, and subcellular localization 

prediction at the protein level. 1024-dimensional seqvec protein embeddings can 

be computed using the seqvec data repository at 

https://github.com/rostlab/SeqVec. 

Random feature vectors 

We constructed dummy feature vectors (to be used in baseline prediction models) for 

performance comparison against real representations, with the aim of observing to 

what degree proteins descriptors are utilized by DTI prediction models. The one for 

proteins, namely random200, is a descriptor that constructs a feature vector (with the 

size of 200x1) for each protein sequence containing randomly generated continuous 

values ranging from 0 to 1 in each dimension. A similar random descriptor has also 

been constructed for compounds (i.e., 1024x1 sized binary vectors), which is explained 

below, in section 3.3.2.2. 

3.3.2.2. Compound representations 

We employed the (circular) fingerprinting approach, and used Extended-Connectivity 

Fingerprints (ECFPs) as feature vectors (representations) of compounds. ECFPs are 

circular topological fingerprints that are widely used for molecular characterization, 

similarity searching, and structure-activity relationship modeling. ECFPs represent the 

presence of particular substructures by considering circular atom neighborhoods 

within a diameter range (Rogers & Hahn, 2010). We constructed 1024-bit ECFP4 

fingerprints (corresponding to a radius of 2) using RDKit (Landrum, 2016), for which 

compound SMILES notations were used as input. As output, a fixed-length binary 

fingerprint vector was generated for each compound by applying a hash function on 

its substructures. For the medium- and large-scale PCM models, we also generated 

1024-bit “random compound fingerprints” to be used in dummy (baseline) models for 

evaluating the effect of compound information on DTI prediction performances. To 

be able to simulate ECFP4 fingerprints more realistically, we adjusted the frequency 

of ones and zeros in the vectors to 0.1 and 0.9, respectively (similar to real ECFP4 

feature vectors in our datasets) by introducing prior probabilities during vector 

construction. 

3.3.3. Modelling Approaches 

In order to evaluate different protein featurization methods on DTI prediction, we 

utilized 2 different modelling approaches: (i) target feature-based modelling, and (ii) 

proteochemometric (PCM) modelling. Below, we summarized each approach together 

with the implementation details. 

 

https://github.com/rostlab/SeqVec
https://github.com/rostlab/SeqVec
https://github.com/rostlab/SeqVec
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3.3.3.1. Target feature-based modelling 

In this modelling approach (which is also known as "in silico target-fishing” or 

“reverse-screening based modelling" in the literature), we trained an independent DTI 

prediction model for each selected drug/compound cluster (please see section 2.1.1 for 

more information about the dataset). Feature vectors of proteins that are in the 

positives and negatives dataset of the compound of interest are given to the model as 

input for training and testing. Here, the model predicts whether a query protein could 

be the target of the corresponding compound, via binary classification. Hence, the 

system input is solely composed of protein features, where compounds are just used 

as labels. 

We generated separate models for each protein descriptor set using support vector 

machine (SVM) and random forests (RF) classifiers, as these are widely used and well-

performing machine learning algorithms. The models  are implemented with scikit-

learn python library (Pedregosa et al., 2011). For SVM models, “rbf” kernel was 

applied with optimized C and gamma parameters within ranges of [1,10,100] and 

[0.001,0.01,0.1,1], respectively. RF models were constructed by adjusting the 

parameters as; number of trees: 200, and the maximum feature number: the square root 

of the total number of features. Nested cross-validation (with 10-fold inner loop in 

validation and 5-fold outer loop in testing) was applied for model evaluation. In the 

end, we trained and tested 1935 RF and 1935 SVM models (i.e., 43 protein descriptor 

sets -including random200- for 9 different drug/compound clusters, 5-fold outer loop 

in nested cross validation:  43*9*5). 

3.3.3.2. Proteochemometric (PCM) modelling 

We constructed PCM models for both medium-scale and large-scale datasets (please 

see sections 3.3.1.2 and 3.3.1.3 for more information about these datasets). Here, we 

only used the RF regression algorithm, since we observed that RF models performed 

better than SVM models in the previous analysis of target feature-based modelling. 

For parameters, we adjusted the number of trees to 100 and maximum ratio of features 

to 0.33 (corresponding to one third of the total number of features). 

Here, the task is predicting the actual binding affinity (bioactivity) values of the input 

samples (i.e., compound-target pairs) in terms of pKd/pChEMBL values. We 

constructed PCM models for 10 conventional protein descriptor sets, including apaac, 

ctdd, ctriad, dde, geary, k-sep_pssm, pfam, qso, spmap and taap, and 6 learned 

representations including protvec, seqvec, transformer-avg, transformer-pool, 

unirep1900, and unirep5700. Since PCM models are based on compound-target pairs, 

protein representations were concatenated with 1024 bits ECFP4 representations of 

compounds to construct the finalized input feature vectors. 

We generated two baseline models (to be used in both medium-scale and large-scale 

analysis) by concatenating random200 protein feature vectors with (i) real ECFP4 

fingerprints, and (ii) random compound fingerprints, which are named “random200” 

and “random200_random-ecfp4” models, respectively. Furthermore, we constructed 

two additional baseline models to be used in the large-scale analysis, in which the 

protein features are not utilized at all. In the first one, we used the real ECFP4 
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fingerprint of the compound in the corresponding compound-target pair to represent 

the pair (called “only-ecfp4”), and in the second one, we used random compound 

fingerprints to represent input pairs (called “only-random-ecfp4”). Thus, we trained 

and tested 18 PCM models for the medium-scale analysis using the mDavis kinase 

dataset (i.e., models built on 10 conventional descriptor sets, 6 learned representations, 

and 2 baseline models). For the large-scale analysis, we trained and tested models for 

20 featurization types (10 conventional descriptor sets + 6 learned embeddings + 4 

baseline models) on 10 protein family-specific datasets each having 3 versions of train-

test split folds (explained in section 3.3.1.3 in detail). Therefore, we constructed 600 

PCM models (i.e., 3 splits * 10 families * 20 types of featurization). 

3.3.4. t-SNE Projection of Protein Representations on Large-Scale Datasets 

t-distributed stochastic neighbor embedding  (t-SNE) is a non-linear dimensionality 

reduction technique that is frequently employed for the visualization of high 

dimensional datasets (Van Der Maaten & Hinton, 2008). For exploratory analysis of 

protein family-specific large-scale datasets, we applied the t-SNE algorithm on the 

feature vectors of each protein featurization method and colored nodes according to 

protein (sub)families and train-test fold data points in two different analyses. For the 

application of t-SNE, we employed the scikit-learn (Pedregosa et al., 2011) manifold 

module with default parameters (i.e., 2-D embedding space, perplexity=30, and 

Euclidean distance metric). We investigated different perplexity values in the range of 

40 to 100, and decided that the default value performed sufficiently well for all 

projections. 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

Table 3.1. Properties of the selected protein descriptor sets and representations used 

in our benchmarks. 

Name Approach Description Dimension 

apaac 
Model-driven 

(physico-chemistry) 

Amino acid composition regarding the sequence order 

correlated factors computed from hydrophobicity and 

hydrophilicity indices of a.a* 

80 

ctdd 
Model-driven 

(physico-chemistry) 

Chain length-based distribution of a.a for selected 

physicochemical properties 
195 

ctriad  
Model-driven 

(physico-chemistry) 

Triad frequency of residues classified on dipoles and 

volumes of aa side chains 
343 

dde  
Model-driven 

(sequence comp.**) 
Dipeptide composition deviation 400 

geary  
Model-driven 

(physico-chemistry) 

Autocorrelation regarding the distribution of 

physicochemical properties of a.a 
240 

k-sep_ 

pssm  

Model-driven 

(sequence homology) 

Column transformation-based position specific 

scoring matrix (pssm) profiles 
400 

pfam  
Model-driven 

(functional 

properties) 

Protein domain profiles 
38-294 

*** 

qso  
Model-driven 

(physico-chemistry) 

Sequence order effect based on physicochemical 

distances between coupled residues 
100 

spmap  
Model-driven 

(sequence comp.*) 
Subsequence-based feature map 544 

taap  
Model-driven 

(physico-chemistry) 

Summation of corresponding residue values for 

selected physicochemical properties 
10 

random 

200 
- 

Randomly generated continuous numbers between 0 

and 1 with uniform distribution 
200 

protvec  
Data-driven (learned 

embedding) 

Sequence embedding utilizing skip-gram modelling 

approach 
100 

seqvec   
Data-driven (learned 

embedding) 

Sequence embedding based on bi-directional 

language model architecture “ELMo” 
1024 

transformer  
Data-driven (learned 

embedding) 

Transformer-architecture based embedding method 

that utilizes attention mechanism 
768 

unirep  
Data-driven (learned 

embedding) 

Sequence embedding based on mLSTM architecture 

as a variation of recurrent neural networks 

1900 & 

5700 

* amino acids, ** compositon, *** size varies depending on the dataset, since pfam vectors only include 

the domains presented in the given protein dataset. 
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3.3.5. Performance Evaluation 

The performance of target feature-based classification models (in small-scale analysis) 

was evaluated via accuracy, precision, recall, F1-score, and Matthews Correlation 

Coefficient (MCC) metrics via nested cross-validation. F1-score is the harmonic mean 

of precision and recall; thus, it takes both false positive and false negative predictions 

into account. MCC incorporates all true and false predictions into the equation, and it 

is preferred over both accuracy and F1-score due to its robustness and reliability, 

especially in the cases of dataset imbalance (Chicco & Jurman, 2020). 

The performance of PCM-based regression models (in both medium-scale and large-

scale analysis) was evaluated using Root Mean Square Error (RMSE) and Spearman 

rank correlation (rs) metrics over the hold-out test sets. RMSE computes the deviation 

of predictions from the actual values, and lower RMSE scores indicate better model 

performance. Spearman correlation evaluates the relationship between the ranks of the 

predicted and actual values. One of the problems related to regression-based prediction 

models is that, the distribution of predicted values can have a shifted average (i.e., the 

rank of predictions is in correlation with the true labels; however, the mean/median 

prediction value is either higher or lower than the true mean). Value-based 

performance metrics suffer from this problem and report underestimated scores. In 

order to handle this problem in the large-scale analysis (where the problem is evident), 

we calculated an additional version of RMSE via median correction, so that the median 

value of predictions becomes equal to the median of the true value distribution (i.e., 

the median corrected RMSE score). 

We also evaluated the results of PCM-based regression models on the basis of 

classification, using F1-score and MCC metrics. To achieve this in the medium-scale 

analysis (on the mDavis dataset), samples were classified as active (1) or inactive (0) 

based on an activity cut-off value of pKd = 7 (i.e., 100 nM in terms of Kd) using the 

RF classification algorithm. For the large-scale analysis over protein family-specific 

datasets, regression-based prediction results were converted into binary class and 

multiclass formats, as it was not possible to retrain 600 models due to high 

computational requirements. For the binary class, median pChEMBL values of the 

data points in the training datasets were used as threshold values to separate actives 

and inactives from each other (i.e., compound-target pairs with bioactivity values 

higher than the median value of the dataset are accepted as actives, and the ones equal 

to or lower than the median are accepted as inactives). We also calculated corrected 

version of MCC using the procedure explained above for “median corrected RMSE” 

score, and similarly called this metric the “median corrected MCC”. For the 

calculation of multi-class scores, samples were placed into six different classes based 

on their true pChEMBL values (class1: <5.0, class2: 5.0 - 5.5, class3: 5.5 - 6.0, class4: 

6.0 - 6.5, class5: 6.5 - 7.0, and class5: >=7.0) and calculated average MCC scores over 

all 6 classes. The reason behind using such a variety of performance metrics was to 

evaluate models from as many different aspects as possible. 

The equations for the basic versions of these metrics are given below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 
           (1) 
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𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
                          (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
                             (3) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                   (4) 

 

𝑀𝐶𝐶  =
𝑇𝑃 𝑥 𝑇𝑁 − 𝐹𝑃 𝑥 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
             (5) 

 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1                                               (6) 

 

      𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 𝑟𝑎𝑛𝑘 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (𝑟𝑠)  =  1 −
6 ∑ 𝐷𝑖

2𝑛
𝑖=1

𝑛(𝑛2−1)
                              (7) 

where Di = R(𝑦𝑖) - R(𝑦�̂�); Di denotes the difference between ranks of true (𝑦𝑖) and 

predicted (𝑦�̂�) values of samples with the dataset size n. TP, TN, FP, and FN represent 

the total counts of true positive, true negative, false positive, and false negative 

predictions, respectively. 

In this study, we used Python (v3) programming language, scikit-learn library 

(Pedregosa et al., 2011) for the t-SNE projection and machine learning applications, 

NetworkX package (Hagberg et al., 2008) for splitting protein family-specific datasets, 

RDKit toolkit (Landrum, 2016) for compound featurization and clustering, POSSUM 

(J. Wang et al., 2017) and PROFEAT (P. Zhang et al., 2017) web tools as well as 

iFeature stand-alone tool (Z. Chen et al., 2018) for protein featurization, and seaborn 

(Waskom, 2021) and matplotlib (Hunter, 2007) libraries for the heatmap analysis and 

data visualization. 

3.4. Results and Discussion 

In this section, we evaluate and discuss the results of our benchmark experiments. For 

this, we first carried out a data exploration analysis. Next, we trained DTI prediction 

models under different settings and measured their performance. At each subsection, 

we discussed our findings from various aspects to address shortcomings in bioactivity 

modelling studies. 

Here, we employed random forest (RF) as our main machine learning algorithm (along 

with support vector machine—SVM, in some of the cases) for predicting DTIs. The 

reasons behind using a classical machine learning algorithm in this benchmark study 
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rather than more complex deep learning-based architectures is that: (i) RF has been 

used in this field for a long while and shown to work well on numerous occasions, (ii) 

deep learning-based complex architectures have already been used in the training stage 

of learned representations (i.e., protein embeddings); thus, the use of additional 

complex architecture in the supervised DTI prediction stage could have prevented the 

observation of the ability of learned representations in extracting ligand interaction-

related properties of proteins, and also, hinder the evaluation of model-driven (i.e., 

conventional descriptor sets) and data-driven (i.e., learned representations) approaches 

on common ground, and (iii) hyperparameter value selection have a significant effect 

on the performance of deep learning models. If we had used deep learning models in 

this benchmark study, the model performances would have been heavily influenced by 

the specific hyperparameter settings used, and any differences in performances could 

not be attributed solely to the representation capabilities of the featurization 

approaches. In this study, the main aim is to fairly compare and evaluate different 

representation approaches rather than constructing a single DTI prediction model with 

maximized performance. As a result, we used classical machine learning algorithms, 

which do not require the same level of hyperparameter tuning as their deep learning-

based counterparts. 

3.4.1. Exploration of Data Characteristics 

In this subsection, we first visualized members of protein family-specific datasets on 

2-D via t-SNE projection. Then, we analyzed split-based characteristics of our datasets 

by plotting pairwise similarity distributions of proteins and compounds, bioactivity 

distributions of train-test folds, together with their respective t-SNE embeddings. 

3.4.1.1. t-SNE projection of protein families 

For each protein representation, two independent t-SNE projections (one for the 

enzyme, and another one for the non-enzyme protein families) were carried out (Figure 

3.2a and 3.2b). Projections for 8 protein featurization methods are shown in Figure 2. 

As displayed in these t-SNE plots, generally, protein families are well clustered in both 

enzyme and non-enzyme projections, with slightly less apparent clusters in enzymes, 

probably due to the sharing of enzyme-specific properties between proteins. Also, 

members of the other-enzymes class are scattered among other clusters as its members 

do not have distinctive characteristics. Although the majority of protein 

representations are successful at separating at least some of the families, projections 

of learned embeddings have clearer clusters in general, which indicates their ability of 

extracting family-specific features. Considering conventional descriptor sets, 

homology (i.e., k-sep_pssm) and domain profiles (i.e., pfam) are observed to have 

more distinctive abilities for the classification of protein families, compared to 

physicochemistry (e.g., apaac, ctdd, ctriad, geary, qso) and sequence composition (i.e., 

dde). The t-SNE projection of spmap, being a sequence composition-based descriptor 

set based on protein subsequence (5-mer) clusters, is similar to the projection of 

random200 descriptor set. This result indicates that 5-residue subsequences of proteins 

cannot capture family-specific patterns. Highly distinct from other representations, 

taap has a projection in the form of an S-shaped curve. Feature vectors of proteins with 

similar residue content and sequence length are similar to each other (independent 

from the actual order of amino acids on the sequence) according to the taap descriptor 
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set, since taap uses the total sum of the amino acid-based property values to represent 

a protein. Due to the fact that t-SNE aims to preserve local neighborhoods, proteins 

form a continuous curve similar to time-series data when represented by taap. 

3.4.1.2. Split-based characteristics of protein family-specific datasets 

Pairwise similarity distributions 

To explore protein and compound diversity in our datasets, we evaluated protein-

protein and compound-compound pairwise similarities of the members of a selected 

representative protein family (i.e., transferases), in terms of “train vs. train”, “test vs. 

test”, and “train vs. test” dataset comparisons for each split strategy (i.e., random-split, 

dissimilar-compound-split, and fully-dissimilar-split). For this, we aligned protein 

sequences using EMBOSS Needle global pairwise sequence alignment tool (Rice et 

al., 2000) and plotted histograms based on identity values of unique protein pairs in 

the corresponding datasets. We extracted pairwise compound similarities by 

calculating Tanimoto coefficient between fingerprint representations using the 

simsearch function of the Chemfp python package (Dalke, 2019). Since it was highly 

infeasible to calculate pairwise similarities for billions of compound pairs, we 

randomly sampled 10% of all compounds in the transferases dataset and set the 

minimum similarity detection threshold as 0.1. Again, we only considered a unique 

list of compound pairs. 

Figure 3.3 displays similarity distributions of pairs of proteins and compounds 

involved in the transferases dataset, in which the values may be greater than one since 

the plot is normalized to equalize the total area to one (i.e., the density plot). Having a 

similarity value in the range of 0 - 0.5 for the majority of protein and compound pairs 

in all plots demonstrates the high diversity of samples which is a desirable 

characteristic for computational bioactivity modelling. As displayed in Figure 3.3, 

similarity distributions only slightly change between different split methods, 

considering “train vs. train” and “test vs. test” sample similarities, whereas there are 

significant differences between the samples of “train vs. test”, for both compounds and 

proteins, in terms of different splits. The absence of similarity values greater than 0.5 

for compound “train vs. test” pairs in the dissimilar-compound-split dataset, and both 

protein and compound “train vs. test” pairs in the fully-dissimilar-split dataset 

validates the similarity-centric characteristics of our datasets. Exceptional pairs of 

proteins with high similarity values in the fully-dissimilar-split dataset stem from the 

discrepancies between UniRef50 clusters and our pairwise alignment results, and their 

number is found to be insignificant (please note that the frequencies are given on 

logarithmic scale in Figure 3.3). These results validate the capability of our 

methodology in terms of producing challenging (and presumably realistic) train-test 

datasets, so that the bioactivity prediction models trained and tested on these datasets 

hopefully reflect the real-world performances while discovering novel drug candidates 

and/or new targets. 
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Figure 3.2. t-SNE based visualization of conventional (apaac, k-sep_pssm, pfam, 

taap) and learned (protvec, seqvec, transformer-avg, unirep1900) protein 

representations on; (a) enzymes including hydrolases, oxidoreductases, proteases, 

transferases, and other-enzymes groups, and (b) non-enzyme protein families 

including epigenetic regulators, ion channels, membrane receptors, transcription 

factors, and transporters, in different colors. 
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Figure 3.3. Pairwise similarity distributions of (a) proteins and (b) compounds for 

“train vs. train”, “test vs. test”, and “train vs. test” samples in random-split, dissimilar-

compound-split, and fully-dissimilar-split of the transferases dataset (shown in the 

logarithmic scale). 
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The assessment of the IID assumption 

Most of the traditional machine learning algorithms such as RF and SVM operate on 

the independent and identically distributed data (IID) assumption for the samples in 

training and test splits. In other words, the values of the variables in a dataset are 

assumed to be independent of each other and have the same probability distribution. 

This assumption may be violated if there is a shift in the distribution of the input or 

output variables between train/test splits, which may affect the performance of the 

model (Darrell et al., 2015). Therefore, it is important to evaluate the IID assumption 

while developing a machine learning model. 

To explore the IID assumption in terms of output variables (i.e., bioactivity values as 

target labels), we plotted bioactivity distributions of protein family-specific datasets 

based on train-test samples of each split. Figure 3.4 displays pChEMBL value-based 

histograms for transferases, ion channels, and membrane receptors. Median 

bioactivities vary between 5.7 and 7.1 for different protein families. When comparing 

bioactivities of train and test sets of each family, it is observed that distributions have 

similar shapes, regardless of the dataset split strategy. In addition, they generally have 

very similar mean and median values, although the difference is slightly higher in the 

fully-dissimilar-split datasets of some families. Having bioactivity distributions that 

are consistent with each other in training and test folds implies good coverage of 

bioactivity data and supports the suitability of our large-scale datasets for bioactivity 

modelling. These results also indicate that a stratified-split strategy is not required for 

our datasets. 

In cases of the presence of a shift in output variables, models require extrapolating 

beyond the minimum and maximum target values in the training datasets. This may be 

a limiting factor for regression-based algorithms that can only generate predictions 

within the boundaries of training output values (Hengl et al., 2018). Therefore, we 

recommend checking this issue before constructing DTI prediction models. 

We also compared the distributions of protein representations and ecfp4 compound 

fingerprints in-between training and test splits to check the IID assumption for input 

variables. For protein representations with continuous values, we applied 

Kolmogorov–Smirnov (KS) test and calculated KS distance scores for each feature 

(i.e., each dimension in a representation) of train and test samples along with 

corresponding p-values. Figure 3.5 displays the distributions of these scores for apaac 

and transformer-avg representations (i.e., feature dimension sizes are 80 and 768, 

respectively) on three different train/test splits of the transferases family dataset. 

Although maximum KS distance scores are generally lower for conventional 

descriptors (i.e., around 0.2) than learned embeddings (i.e., around 0.5), they have 

similar distributions overall, where the variance is much lower in the random-split 

dataset compared to dissimilar-compound and fully-dissimilar split sets. There was a 

significant (p-value < 0.01) shift between the KS distance value distributions of train 

and test samples for 19 (for fully-dissimilar-split) and 7 (for dissimilar-compound-

split) features out of the total 80 features in apaac, and 558 (for fully-dissimilar-split) 

and 189 (for dissimilar-compound-split) features out of the total 768 transformer-avg 

features; whereas, none of the variables were significantly shifted in the random-split 

dataset, considering both representations. 
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For compound fingerprints, we applied the chi-square test, since they are composed of 

binary variables rather than continuous ones. We didn’t plot the score distributions of 

the chi-square test since it doesn't provide a direct distance measure. Instead, we 

evaluated these shifts based on their p-values. Therefore, 743 and 689 of a total of 

1024 compound fingerprints were significantly shifted on the fully-dissimilar and 

dissimilar-compound splits, respectively, whereas this number was 47 for the random 

split. For significance, we accepted a p-value < 0.001 since the chi-square test is 

sensitive to sample size, which has the risk of falsely defining significant relationships 

in the presence of large sample size, as in our case. 

The observation of a shift between the KS distance score distributions of models 

trained on fully-dissimilar and dissimilar-compound splits was not surprising since this 

is a common issue in real-world drug discovery applications, where the general aim is 

to seek completely novel small molecules that are bioactive against the targets of 

interest. It is also one of the reasons why most of the models, well-performing on 

“easy” datasets (i.e., random split), start to fail in realistic scenarios. It is possible to 

mitigate the shifting problem by applying preprocessing techniques such as feature 

dropping or importance weighting (Dharani et al., 2019), especially where the goal is 

to develop a model using simple descriptors and algorithms based on linear operations. 

 

Figure 3.4. Histogram plots displaying bioactivity distributions of transferase, ion 

channel, and membrane receptor families based on train (green bars) and test (orange 

bars) samples of; (a) random-split, (b) dissimilar-compound-split, and (c) fully-

dissimilar-split datasets, along with their median values shown as vertical dashed lines. 
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     (a)                                                               (b) 

 

Figure 3.5. KS distance (between train and test samples) score distributions of (a) 

apaac, and (b) transformer-avg representations among random, dissimilar-compound, 

and fully-dissimilar splits in the transferases family proteins. 

t-SNE projection of train-test datasets for three splits 

In this analysis, we visualized the distribution of bioactivity data points (i.e., 

compound-protein pairs) on 2-D via t-SNE projections to observe how train and test 

fold samples are separated from each other under different splitting settings. For each 

protein family-based dataset, 1,500 data points were randomly selected (from both 

train and test folds), since the number of training samples dominates test samples in 

the original datasets. Each bioactivity data point was represented by the concatenation 

of its protein and compound feature vectors, and used as input to the t-SNE algorithm. 

In Figure 3.6, t-SNE plots of transferases and ion channels (i.e., the representative 

families, as these are two widely utilized target families in drug discovery) are given 

for k-sep_pssm and unirep1900 representations. Panel a, b, and c correspond to the 

random-split, dissimilar-compound-split, and the fully-dissimilar-split datasets, 

respectively. For the random-split dataset, 2-D embeddings of the train and test 

samples largely overlap, since they share similar proteins and compounds. These 

overlaps significantly decrease in dissimilar-compound-split dataset and almost 

disappear in the fully-dissimilar-split dataset, as expected. This analysis can be 

considered as a visual validation of the implemented splitting strategies, and it 

provides clues about the difficulty levels of our prediction tasks. 
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Figure 3.6. t-SNE projections of train-test samples (i.e., compound-protein pairs) of 

transferase and ion channel families for k-sep_pssm and unirep1900 representations 

on; (a) the random-split, (b) dissimilar-compound-split, and (c) the fully-dissimilar-

split datasets. 
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3.4.2. Small-Scale Analysis (Target Feature-based Modelling) 

There are numerous conventional descriptor sets for proteins in the literature, most of 

which can be utilized for DTI prediction. Evaluating all descriptor sets on our large-

scale datasets would not be feasible considering the computational cost; as a result, we 

decided to carry out a small-scale analysis to pre-select the descriptor sets that are 

successful in DTI prediction, and use the selected descriptors in both the medium-scale 

and large-scale analysis later. Additionally, it was required to determine the supervised 

learning algorithm to be used for DTI prediction in this study, and due to, again, the 

computational complexity related issues, we decided to make a performance 

comparison (between SVM and RF) on these small-scale datasets. 

In this analysis, we assessed the success of SVM- and RF-based DTI prediction 

models, each utilizing one of the 42 conventional protein descriptor sets (including the 

ones explained in section 3.3.2.1. and additional ones that fall into the same categories 

as these), and a baseline (i.e., the random200 descriptor). The models are trained and 

tested on 9 independent compound-centric datasets (i.e., the clusters of Curcumin, 

Tamoxifen, Quercetin, Genistein, Econazole, Levoketoconazole, Amiodarone, 

Miconazole, and Clotrimazole) via nested cross-validation using the target feature-

based modelling approach (please see section 3.3.3.1). In this approach, the system 

only employs protein features as input, so it eliminates the effect of compound 

representations on the model prediction performance, which is expected to provide a 

suitable setting for an initial comparison of protein representations. Here, the task of 

each model is the binary classification of input proteins, as active or inactive, against 

the corresponding compound cluster. 

Figure 3.7 displays mean F1-score and MCC values of 9 datasets for each 

representation model, in which orange and blue colors correspond to SVM and RF 

models, respectively (all results including accuracy, precision, recall, F1-score, and 

MCC metrics are given in Appendix A Table 3.3). The ranking of protein descriptor 

sets on the horizontal axis was done according to decreasing RF model scores. Figure 

6 clearly displays that RF models outperform SVM models with a few exceptions such 

as the pfam model in terms of the MCC score. When model performances are 

compared in terms of protein representations, pssm-based descriptors perform better 

than other descriptors in general. These results indicate that evolutionary relationships 

of proteins carry important knowledge regarding bioactivity/interaction mechanisms. 

Some of the sequence composition-based descriptors such as dde, tpc, and spmap, and 

physicochemistry-based descriptors such as apaac and paac, also performed well. 

Moreover, obtaining scores that are significantly higher than the baseline (i.e., 

random200), even for the models with the lowest performance, implies that protein 

representations carry signals/patterns relevant to bioactivity modelling. However, 

these results cannot be generalized as they cover only a small portion of the bioactivity 

space; thus, it is important to observe how these models behave when the data scale is 

changed. 

At the end of this analysis, we decided to continue with RF, to be used throughout the 

study. Also, we selected 10 conventional descriptor sets with both high and low 

performances, and distinct properties regarding the protein features they incorporated 

and used them in the following benchmarks (i.e., apaac, ctdd, ctriad, dde, geary, k-
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sep_pssm, pfam, qso, spmap and taap). Here, instead of simply selecting the best-

performing descriptors, we sought a diverse set of descriptors that are constructed 

using different types of information (i.e., physicochemistry, sequence homology, etc.). 

Another criterion was that the selected descriptors should not have similar 

performance scores (especially when they are based on the same type of information). 

Therefore, rather than comparing similar approaches with a high probability of 

yielding similar results on medium- and large-scale analyses, we attempted to acquire 

a representative set of descriptors, each of which has the potential to reveal a different 

characteristic presented in target protein sequences. 

 

Figure 3.7. Mean (a) MCC and (b) F1-score test results of RF- and SVM-based DTI 

prediction models constructed via target feature-based modelling approach. 
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3.4.3. Medium-Scale Analysis (PCM Modelling) 

PCM modelling approach can handle high numbers of training instances, belonging to 

different compounds and proteins, within a single predictive model, in contrast to 

ligand- and target feature-based modelling which requires the generation of separate 

models for each protein or compound (or compound cluster), respectively. Thus, PCM 

modeling brings the advantage of learning from larger datasets, which is a critical 

requirement in machine learning, in general. Another advantage of PCM modeling is 

the joint utilization of compound and protein features to better model their interaction-

related properties, without the requirement of scarce and difficult to analyze 3-D 

structural information, unlike target-based structure modelling approaches. In the 

following benchmarks, we aimed to evaluate protein representations in terms of PCM 

modeling, over the problem of regression-based DTI prediction. 

Here, we constructed PCM models for 10 selected conventional protein descriptor sets, 

6 learned protein embeddings, and 2 baseline models (i.e., random representations, 

please see “Methods” section) using RF regression algorithm on the mDavis kinase 

dataset (please see section 3.3.3.2). 

Model performance results based on RMSE, Spearman rank correlation, MCC and F1-

score (all computed on the hold-out test set of the mDavis dataset) are given in Figure 

3.8 (also available in Appendix A Table 3.4). The results indicate that the rankings of 

models are mostly consistent among both classification and regression metrics with 

slight differences, excluding pfam. As a domain profile-based descriptor set, pfam is 

the best performing model in terms of F1-score (0.538) and has a moderately high 

MCC score (0.41); however, it is also one of the worst performers in terms of RMSE 

(0.854) and Spearman (0.497) scores. It can be inferred from these results that domain 

profiles of proteins might not contain sufficient information to make precise 

bioactivity value predictions, but it can be useful if the aim is just to classify protein-

compound pairs as active or inactive (i.e., binary prediction). The results also indicate 

that the seqvec model displays the best performance for almost all metrics (RMSE: 

0.794, Spearman: 0.571, MCC: 0.445, F1-score: 0.53). Apart from seqvec, other 

learned embeddings also have higher performance scores compared to conventional 

descriptors in general. Mean Spearman rank correlation and MCC scores of learned 

representations are 0.530 and 0.417, respectively, whereas the same scores are 0.511 

and 0.388 for conventional descriptor sets. Learned embeddings do not utilize any 

molecular or biological knowledge during their self-supervised training, but still, they 

are capable of representing proteins that yield high performance DTI prediction. Well 

performing descriptors in the previous small-scale analysis, k-sep_pssm (homology) 

and apaac (physicochemistry), also have competitive performance results here 

(Spearman: 0.545 and 0.532, respectively). On the other hand, dde (Spearman: 0.508) 

and spmap (Spearman: 0.491) could not yield their high ranks here in the medium-

scale analysis (i.e., dde and spmap had the ranks of 1 and 8 on the small-scale, whereas, 

they ranked 9 and 16 on the medium-scale, respectively). It is possible to state that 

while homology- and physicochemistry-based descriptors gained from increased 

dataset size (i.e., for apaac and k-sep_pssm, small-scale analysis mean MCCs are 0.361 

and 0.374, respectively, whereas their medium-scale analysis mean MCCs are 0.418 

and 0.434), sequence composition could not improve its performance when trained on 

larger datasets. 
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Also, there is an overall increase in MCC scores of conventional descriptor sets 

(excluding dde and spmap) when we compare the results of small- and medium-scale 

analyses. In addition to the contribution of the increased sample size, this situation can 

be associated with the involvement of compound features in PCM-based models, 

which probably led to a better learning over the joint protein-compound interaction 

space. On the other hand, PCM models here had lower F1 scores than the target 

feature-based models in the small-scale analysis. In order to calculate MCC and F1-

scores for PCM models, we converted real-valued predictions into binary format at the 

cut-off value pChEMBL = 7, which is also used in other studies as a bioactivity 

threshold for kinase inhibitors (Cichońska et al., 2021). However, only 27% of the test 

samples became active at this threshold, causing a class imbalance in the mDavis 

kinase dataset. Therefore, the decrease in F1-scores on the medium-scale analysis 

might be related to this issue, since F1-score is sensitive to imbalanced datasets (see 

“Performance evaluation” section in “Methods”). To further explore the conflict 

between MCC scores and F1-scores for the small-scale vs. medium-scale comparison, 

we calculated the mean performances of conventional descriptors on the medium-scale 

(F1-score: 0.493, MCC: 0.388), and compared them to the results of the same set of 

descriptors on the small-scale (F1-score: 0.672, MCC: 0.337). Then, we recalculated 

MCC and F1-scores of the medium-scale models based on the median pKd value of 

the test set to evaluate the results in such a scenario as if we had a balanced number of 

positive (i.e., active) and negative (i.e., inactive) samples in the test set. We obtained 

the mean scores of F1-score: 0.705 and MCC: 0.355 based on the cut-off pKd = 6.21 

(the median value). The increase in F1-score, which is even higher than the mean F1-

score in the small-scale analysis, together with the fact that there is no significant 

change in MCC, supports the idea that MCC is the more appropriate option in the 

presence of the class imbalance problem. It also highlights the importance of selecting 

suitable evaluation metrics depending on the case at hand. 

Finally, the baseline models displayed the lowest performances in this analysis, similar 

to the results of the target feature-based modelling experiment. 
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Figure 3.8. Test performance results of medium-scale PCM models (on the mDavis 

dataset) based on RMSE (the scores are reported as 1-RMSE, so higher values 

represent better performance), Spearman’ s rank correlation, MCC and F1-score; (a) 

each color corresponds to an evaluation metric, and (b) scores are displayed only for 

the selected representative models (marked with asterisk in the legend). The ranking 

in the legend is based on the models' performance from best to worst according to their 

RMSE scores. Shades of red and blue represent conventional descriptors and learned 

representations, respectively. 
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3.4.4. Large-Scale Analysis (PCM Modelling) 

The main goal of this analysis is evaluating protein representations over a highly 

realistic scenario, especially in terms of discovering new drugs and/or targets, using 

our carefully prepared large-scale datasets, and to compare their overall performance 

in machine learning-based DTI prediction. Secondly, we aimed to display how model 

performances can change dramatically when the same samples are distributed to train 

and test sets differently, to point out the importance of train-test data split. 

Furthermore, we evaluated the suitability of various performance metrics under 

different modeling approaches. 

In this analysis, we constructed protein family-specific bioactivity datasets including 

enzyme (i.e., transferases, hydrolases, oxidoreductases, proteases, and other enzymes) 

and non-enzyme groups (i.e., membrane receptors, ion channels, transporters, 

transcription factors, and epigenetic regulators). For each family, three versions of 

train-test splits with differing difficulty levels were constructed by considering 

pairwise similarities of proteins and/or compounds (please see section 3.3.1.3 for 

details). PCM models were trained independently on each of these splits using the 

same protein representations employed in the previous (medium-scale) analysis. As a 

result, 600 DTI prediction models were built, trained, and tested in total (please see 

section 3.3.3.2 for details). 

We evaluated model performances from several perspectives using multiple scoring 

metrics. Median corrected RMSE and Spearman correlation scores are displayed as 

line plots in Figure 3.9, in which the light colored (transparent) circles indicate 

individual model performances on each protein family, and the dark colored diamonds 

represent mean scores averaged over all families. The models are ranked according to 

descending performance on the fully-dissimilar-split dataset (for both metrics). In 

Figure 3.10, model performances are provided as box plots over three different forms 

of the MCC metric. The models are ranked according to descending mean values of 

median corrected MCC scores for the fully-dissimilar-split and dissimilar-compound-

split datasets, and according to multiclass MCC scores for the random-split dataset. 

Protein family-specific performances are available in Appendix A Table 3.3. 

3.4.4.1. Investigation of performance metrics 

The intra-family rankings of models are generally consistent with each other among 

five different metrics (Table 3.5). However, there are some discrepancies between the 

scores depending on the data split. Considering regression metrics, some of the models 

trained/tested on the fully-dissimilar-split and dissimilar-compound-split datasets 

show high performance in terms of RMSE (i.e., low RMSE values), whereas at the 

same time, they displayed low Spearman correlations, which indicates inconsistency. 

RMSE is a measure of the difference between predicted and actual values, and is 

utilized when the goal is to predict continuous values and measure the overall error in 

predictions. On the other hand, Spearman’s rank correlation is a measure of the 

strength and direction of the relationship between two ranked variables. Spearman’s 

correlation is commonly used when the goal is to determine the degree to which two 

variables are related. In challenging scenarios (e.g., on the fully-dissimilar-split and 

dissimilar-compound-split datasets), continuous value-based prediction of 
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bioactivities (via regression) is unstable and unreliable due to the difficulty of the task. 

Thus, it would be a better choice to evaluate the success of the models in terms of the 

correlation and consistency between actual and predicted values using correlation 

scores (e.g., Spearman’s). On the random-split dataset, the prediction task is not 

considered to be difficult (relative to the other two splits), as a result, the predicted 

values are expected to be more stable and reliable. Using RMSE metric in this scenario 

allows us to directly measure the accuracy of the predictions and differentiate the 

model performances in a more precise manner. As a result, both types of scores can be 

considered for easy cases (i.e., the random-split dataset). In classification-based 

assessment, the single-class MCC metric is not as restrictive as the regression or 

multiclass evaluation metrics since it is less sensitive to deviations in prediction values. 

However, it may suffer from the shifted mean problem when applied to regression-

based PCM models by binarizing bioactivity values. Obtaining MCC values close to 

0 (Figure 3.10) despite moderate Spearman correlation scores (Figure 3.9) on 

challenging datasets is a sign of a systematic shift in model prediction outputs, which 

we handled by conducting median correction on the real-valued prediction results. In 

Figure 3.10, it can be observed that median correction provided a significant increase 

in single-class MCC scores of the fully-dissimilar-split and dissimilar-compound-split 

datasets. Also, median corrected MCC scores are highly consistent with the Spearman 

correlation scores (Appendix A Table 3.5). Considering the multiclass MCC metric, 

prediction scores are around zero for most of the models on challenging split sets. 

Since this metric expects prediction values to fit narrow intervals, it is more restrictive 

than the single class-based metrics. However, this seems to be an advantage for 

evaluating models on the random-split set. As seen in Figure 9a, on the random-split 

dataset, the variance of the mean multiclass MCC score distribution is greater than the 

single-class MCC scores (i.e., models are better separated from each other). 

Furthermore, its ranking is highly consistent with the results of the medium-scale 

experiments, in which the top performers were learned representations, together with 

k-sep_pssm and apaac conventional descriptor sets. Thus, it can be inferred that the 

multiclass MCC metric discerns models better than binary class MCC in the random 

data split setting, and it partly handles the overfitting problem which frequently occurs 

on randomly split large-scale datasets. 

5.4.6.2. Evaluation of protein representations 

Performance results in Figure 3.9 and 3.10 indicate that the representation capability 

of different protein descriptor sets depends on the protein family and the difficulty 

level of the split used for training and testing. Also, there is no significant difference 

between the mean performances of different protein representations for a particular 

dataset split, with a few exceptions. Considering family-based performance averages, 

pfam is one of the best representations on the fully-dissimilar-split and dissimilar-

compound-split datasets, while it is the lowest performer on the random-split dataset 

(Figure 3.9 and 3.10). Contrary to pfam, k-sep_pssm is one of the best performers on 

the random-split and dissimilar-compound-split datasets but the worst one on the fully-

dissimilar-split dataset (Figure 3.9 and 3.10), though the performance results on the 

random-split dataset are very close to each other. As a homology-based descriptor set, 

k-sep_pssm is expected to capture hidden similarities between evolutionarily related 

sequences, especially by taking advantage of the presence of highly similar proteins 
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between the train and test splits. On the other hand, the utilization of protein domain 

profiles seems to make pfam more suitable for acquiring bioactivity related 

information from evolutionarily distant sequences, probably due to highly sensitive 

HMM-based domain/family profile search procedures implemented in Pfam and 

similar databases. Interestingly, taap, which is a simple descriptor set, is involved in 

the top-performing PCM models for all dataset splits. However, taap was one of the 

lowest performers in the small- (among the selected 10 conventional descriptor sets) 

and medium-scale analyses. Its simplicity is observed to become an advantage with 

the increase in bioactivity dataset size and complexity. Apart from these, 

physicochemistry-based descriptors including apaac (in all splits), ctriad (on the fully-

dissimilar-split dataset) and qso (on both the fully-dissimilar-split and dissimilar-

compound-split datasets), and learned representations perform well in the large-scale 

analyses. In particular, the top performance results of unirep5700 and transformer-avg 

on the fully-dissimilar-split dataset demonstrate the potential of protein representation 

learning methods in the data-driven DTI prediction. 

We also conducted protein family-specific evaluations to understand whether different 

protein representations display similar results across families. In Figure 3.11, we 

plotted the performance of the models of protease and the ion channel families, in the 

form of a conventional descriptor set vs. learned representation comparison, using the 

Spearman and median corrected MCC scores, for all three dataset splits. Ion channels 

are known for their transmembrane regions and specific ion selectivity, whereas 

proteases are enzymes involved in catalyzing peptide bond cleavage. For a fair 

comparison, we selected four well-performing conventional descriptors instead of 

including all of them, since we have only four different types of learned 

representations. For this, we involved apaac, k-sep_pssm, pfam, and taap as 

conventional descriptor sets and protvec, seqvec, transformer-avg, and unirep5700 as 

learned representations. Figure 3.11 shows that learned representations outperform 

conventional descriptors in the challenging splits of proteases, considering both 

metrics. However, the results are the opposite for the ion channel family, on which the 

conventional descriptor sets performed better. One possible reason for this might be 

due to distinct structural and functional characteristics of ion channels that can be 

detected more easily via conventional descriptors, which leverage the physicochemical 

properties of amino acids, evolutionary information, or domain profiles of proteins. In 

contrast, learned embeddings may struggle to capture these characteristics, particularly 

when the dataset sizes are relatively small, as in this case (i.e., around 30K training 

data points for ion channels, while substantially larger for proteases, with 

approaximately 85K data points). On the random-split dataset, there is no observable 

difference between conventional descriptor sets and the learned representations, 

probably due to the non-discriminative characteristic of this data splitting strategy, 

which poses non-challenging cases for all models. 
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Figure 3.9. Regression-based test performance results of protein family-specific PCM 

models (each using a different representation type as input feature vectors) for random-

split, dissimilar-compound-split, and fully-dissimilar-split datasets based on (a) 

median corrected RMSE, and (b) Spearman correlation scores. The models are ranked 

according to decreasing performance on the fully-dissimilar-split dataset. 
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Figure 3.10. Classification-based test performance results of protein family-specific 

PCM models (each using a different representation type as input feature vectors) in 

terms of MCC scores for (a) random-split, (b) dissimilar-compound-split, and (c) 

fully-dissimilar-split datasets. The models are ranked according to decreasing 

performance on the fully-dissimilar-split dataset. 
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Figure 3.11. Performance comparison of well-performing conventional descriptor sets 

and learned representations for three different splits of ion-channel and protease family 

datasets in terms of; (a) Spearman rank correlation, and (b) median corrected MCC 

scores. 

Results presented in Figure 3.11 are also correlated with the scores on other protein 

families (Appendix A Table 3.5). For non-enzyme families, the average Spearman’s 

correlation values (based on the representations in Figure 3.11) are 0.29 (cd: 

conventional descriptors) and 0.26 (le: learned embeddings) in the fully-dissimilar-

split, 0.40 (cd) and 0.34 (le) in the dissimilar-compound-split, and 0.84 (cd) and 0.87 

(le) in the random-split datasets. For enzyme families, these values are 0.23 (cd) and 

0.26 (le) in the fully-dissimilar-split, 0.51 (cd) and 0.52 (le) in the dissimilar-

compound-split, and 0.84 (cd) and 0.86 (le) in the random-split datasets. The results 

show that, in challenging datasets, conventional descriptors perform better on non-

enzyme families, while learned embeddings perform better on enzyme families. It 

suggests that the type of protein representation used can have an impact on the model 

performance depending on the type/family of protein being studied, possibly due to 

the intrinsic properties of these protein families. This observation can be useful for 

developing new strategies to improve model performances. All of the learned 

representations in our study were obtained from unsupervised deep learning models 

trained on large datasets including all protein families. Limiting the training datasets 
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of these methods to specific families (or fine-tuning the pre-trained models on these 

families) would increase their representation power towards that family.  

When taking all these findings into account, we can clearly state that the representation 

capabilities of different featurization approaches considerably vary among protein 

families and splitting strategies, even though some common inferences can be made. 

We believe that, while choosing a featurization approach in DTI prediction, protein 

family-specific findings should be taken into account, rather than considering the 

overall (i.e., average) results. Regarding learned representations, re-training (or fine-

tuning) the models using a distinct dataset with desired characteristics (e.g., members 

of a certain family) may be a good choice to better learn the features associated with 

that group of proteins. 

3.4.4.3. Comparison of data splitting strategies 

To compare models across three dataset splits, we plotted performance scores by 

pooling 200 models of each split (including the baseline models) without grouping by 

families or representation methods. The results are displayed in Figure 3.12 via violin 

plots. This figure shows a significant decrease in overall performances with the 

increasing difficulty levels of splits, which is not a surprising outcome. Nevertheless, 

it highlights the importance of splitting datasets into train/test folds for performance 

evaluation, with the aim of preventing the reporting of over-optimistic results and 

yielding a fair assessment of model successes. Figure 3.12 also displays that the model 

performances are distributed more evenly over the whole range of scores in the fully-

dissimilar-split and dissimilar-compound-split datasets, compared to the random-split 

dataset, in which most of the models produced very similar scores, creating a dense 

region on the plot. This observation indicates that random splitting has less power in 

distinguishing different models from each other. 

In the fully-dissimilar split, neither similar proteins nor similar compounds are shared 

between train and test folds. As a result, this dataset is suitable to evaluate the 

performance of DTI prediction models in terms of predicting novel ligands to 

understudied targets (or completely new target candidates). Whereas in the dissimilar-

compound split, similar proteins are presented in between train and test sets. 

Nevertheless, it is useful for discovering novel ligands against well-studied target 

proteins, or proteins for which structurally highly similar and well-studied targets 

exist. 
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Figure 3.12. Split-based test performance scores of family-specific PCM models in 

terms of RMSE, Spearman rank correlation, and median corrected MCC metrics. 

3.4.4.4. Examination of baseline models 

Table 3.2 contains family-based average Spearman scores of the best-performing 

models and the baseline models, for each dataset split. The models based on randomly 

generated protein and/or compound representations have lower performance scores on 

the fully-dissimilar-split dataset, which is mainly due to the absence of identical 

proteins and compounds (or ones with high similarity) in between train and test 

samples. One of the baseline models included in this analysis uses only compound 

representations (i.e., only-ecfp4 model). This model does not utilize a protein vector. 

As a result, the model learns activities over the compound features only, without any 

information regarding which protein this compound interacts with. This is different 

from a conventional ligand-based DTI prediction model, in which target proteins 

would be used as labels of the input compounds (i.e., as “a target of protein X” or “not 

a target of protein X”). Here, since the information about proteins is not utilized at all, 

the model tries to learn interactions blindly and make predictions without knowing 

which target it is giving predictions for.  

The average Spearman correlation score of the best-performing model on the fully-

dissimilar-split dataset is around 0.3, which is quite close to the only-ecfp4 model. 

This indicates that the success obtained by even the best model has mostly originated 

from the characteristics of compounds (i.e., a certain compound being active no matter 

which target it has been screened against, or another compound being inactive in most 

of the experiments). Thus, these results reveal the requirement for; (i) unbiased model 

training datasets, and (ii) novel/improved featurization techniques, to construct robust 

DTI prediction models that can be utilized in the pharmaceutical industry, especially 

under these challenging scenarios. 

Model performances are higher on the dissimilar-compound-split dataset compared to 

the fully-dissimilar-split dataset, due to the inclusion of similar (and identical) proteins 
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between training and test. Also, models based on completely random vectors (on both 

the compound and protein sides) have lower performances, expectedly. On both of the 

challenging datasets, the best model is well differentiated from the random vector-

based baseline models. Although the overall mean difference between the best model 

and the random200 model is considerably low on the dissimilar-compound-split, the 

differences are distinct when making protein family-specific comparisons rather than 

taking the average of all families (e.g., for ion channels; the average Spearman score 

of the top performing models including k-sep_pssm, pfam, taap, and protvec is 0.52, 

and the Spearman score of random200 model is 0.37). On the dissimilar-compound-

split dataset, the random200 model outperformed the only-ecfp4 model by learning 

the relationship between the bioactivity data points of the same proteins which are 

shared between training and test. As experimental bioactivity measurements are 

mainly obtained from target-based assays, the number of bioactivity data points per 

protein is considerably high, compared to the number of bioactivity data points per 

compound (Table S3 and S4). Also, in many assays, different derivatives of the same 

compound are tested, which results in similar bioactivity values. Due to this bias in 

experimental assays, memorization over protein identity yields falsely successful 

results, as reflected in the performance of the random200 model on the dissimilar-

compound-split dataset (average Spearman score = 0.436). 

On the random-split dataset, the best model displays a high success rate (Spearman 

score: 0.868). However, high performance scores of the baseline models, including 

those based on randomly generated vectors (e.g., random200), clearly indicate the 

over-optimistic evaluation, and emphasize the importance of train-test data splitting, 

once again. These results also demonstrate the importance of baseline model-based 

investigation in the field of DTI prediction, for a fair and realistic performance 

evaluation. It is possible to state that, the results reported in previous DTI prediction 

studies in which (i) the models are only evaluated based on random splitting (including 

both hold-out testing and fold-based cross-validation), and (ii) there is no proper 

baseline model comparisons, may be invalid. 

Table 3.2. Protein family-based average Spearman scores of the best models and 

baseline models in each dataset split. 

 

 

Name of the descriptor set/representation 

(explanation) 

Fully-

dissimilar-split 

Dissimilar- 

compound-split 

Random- 

split 

Best performing protein representation 

(compound: ECFP4) 
0.363 0.518 0.868 

random200 (protein: random continuous vectors, 

compound: ECFP4) 
0.193 0.436 0.861 

only-ecfp4 (no protein vector, compound side: ECFP4) 0.302 0.379 0.709 

random200-random-ecfp4 (protein: random 

continuous vectors, compound: random binary vectors) 
0.056 0.272 0.504 

only-random-ecfp4 (no protein vector, compound 

side: random binary vectors) 
0.002 -0.002 0.315 
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3.4.4.5. Exploration of the prediction similarities between family-specific PCM 

models 

In this experiment, we plotted heatmaps based on pairwise similarities between the 

protein family-specific PCM model predictions via calculating their intersections, 

using a categorization composed of six classes (i.e., pChEMBL value bins of <5, 5.0 

to 5.5, 5.5 to 6.0, 6.0 to 6.5, 6.5 to 7.0, and 7.0>=). To calculate the similarity between 

a pair of models, for each bioactivity data point, we count a similar prediction if both 

models predict pChEMBL values in the same bin (no matter they are correct or not), 

otherwise we count a non-similar prediction. We then calculate percent similarity 

values based on all counts. To emphasize prediction similarity values between model 

pairs, color scales were arranged so that the darkest color corresponds to the maximum 

value, and the lightest color was set to 85%, 65%, and 20% similarity for the random-

split, dissimilar-compound-split, and the fully-dissimilar-split datasets, respectively. 

In Figure 3.13, heatmaps of transferase and ion channel families are given for all three 

dataset splits (heatmaps for the remaining families are available in Appendix B Figure 

3.1). As observed from Figure 3.13, the overall consensus between models decreases 

with increasing difficulty levels (i.e., the average similarity is over 80% for most of 

the models in the random-split dataset, while this value drops to 30-60% in the fully-

dissimilar-split dataset). Although clusters vary across different splits and protein 

families, generally the learned embeddings and physicochemistry-based conventional 

descriptors are clustered among themselves. Considering the fully-dissimilar-split 

dataset of transferases; the average prediction similarity between the models that 

utilize learned representations (except protvec) is 60.8%, and among the models that 

use physicochemistry-based conventional descriptor sets (i.e., qso, apaac, geary, 

ctriad) is 68.2%, whereas the average prediction similarity between the 

physicochemistry-based conventional vs. learned representations (considering the 

same models) is 46.5%. These findings are also parallel to the t-SNE projection results 

provided in Figure 3.2. Considering the type of utilized information, all learned 

representations exploit the arrangement of amino acids on the protein sequence. On 

the other hand, physicochemistry-based descriptors aggregate pre-calculated amino 

acid-based features to construct protein feature vectors. This difference is also 

reflected in their prediction similarities. Spmap and random200 representations are 

often clustered together and have similar t-SNE projections, as well. Finally, models 

that utilize pfam and taap descriptor sets are quite differentiated from the rest on the 

random-split and dissimilar-compound-split datasets, which is expected based on their 

distinct featurization strategies. 

The results of this analysis can be used to obtain rational combinations of featurization 

approaches to better represent proteins in DTI prediction models (e.g., concatenating 

feature vectors that have a low correct prediction overlap). This may yield a more 

successful learning of interaction-relevant properties of proteins, and significantly 

improve the overall model performances. 
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Figure 3.13. Clustered heatmaps of different protein featurization approaches for 

transferase and ion channel families on; (a) the random-split, (b) dissimilar-

compound-split, and (c) the fully-dissimilar-split datasets. 
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3.4.4.6. Applicability domain (AD) analysis of family-specific PCM models 

The concept of AD is used to define the boundaries of a model within which is 

expected to provide accurate and reliable predictions, and to assess its usability. It has 

been included as an essential requirement for QSAR models by the Organization of 

Economic Co-operation and Development (OECD). In the scope of QSAR modeling, 

AD is defined as the chemical structure space in which the model produces reliable 

predictions (Hanser et al., 2016). It is significant because the reliable predictions of a 

QSAR model are typically restricted to query compounds that share high structural 

similarities with the training compounds (Sahigara et al., 2012). In contrast to QSAR 

models, PCM modeling approach takes both protein and compound space into account 

and has the potential to reveal complex relationships between them since the model 

performance is not solely based on the similarity of compounds. Although the concept 

of AD is not directly applicable to PCM modeling, there have been some efforts to 

evaluate the AD of PCM models using k-nearest neighbors (k-NN) (Ain et al., 2014; 

Subramanian et al., 2017) and Gaussian processes (GP) (Cortes-Ciriano et al., 2014). 

In this study, we employed the k-NN approach to assess the AD of our models. For 

this, we first calculated Tanimoto similarities between test and training compounds 

based on their ecfp4 fingerprints. For each test compound, we calculated the average 

Tanimoto score of the most similar five training compounds (i.e., 5 nearest neighbors), 

as described in the study by Subramanian et al. (Subramanian et al., 2017). Then, we 

applied the same strategy for test proteins using sequence similarities mentioned in the 

“Pairwise similarity distributions” sub-section. In Figure 3.14, we plotted compound 

and protein similarities vs. prediction errors for each test datapoint in random-split, 

dissimilar-compound-split, and fully-dissimilar-split sets of the transferases family 

dataset for transformer-avg based models. 

The figure displays that most of the data points with high similarities of proteins and 

compounds have low prediction errors, but there is no direct correlation between 

similarity and error values as usually observed in QSAR models. At each similarity 

percentage interval, there are data points with low and high prediction errors at varying 

frequencies, even at extremely low similarities. This confirms the extrapolation ability 

of the PCM modeling approach. However, the number of data points with higher error 

increases in challenging datasets, which narrows the applicability domain of the 

models on these datasets. The average prediction error (e) and similarity values of 

proteins (p) and compounds (c) based on Figure 3.13 are 0.48 (e), 66% (p), 77% (c) 

for random-split, 0.92 (e), 64% (p), 35% (c) for dissimilar-compound-split, and 0.94 

(e), 23% (p), 33% (c) for the fully-dissimilar-split, respectively. These values also 

indicate that the changes in the similarity of compounds have a higher impact on the 

error, compared to proteins. The results were similar in our other models, as well. It is 

possible to infer from these results that PCM models tend to utilize compound features 

more than protein features, mostly due to the natural bias in DTI data. 

Overall, these results indicate that models can reliably predict a considerable amount 

of the test dataset (i.e., 88%, 59%, and 61% of test samples are predicted with 

errors < 1 in random-split, dissimilar-compound-split, and fully-dissimilar-split sets, 

respectively; Table 3.3). However, it is also possible to state that the applicability is 

limited in challenging datasets. The shift between the input feature value distributions 
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can be one of the main reasons behind obtaining a lower performance and a narrower 

range of applicability for the models trained on fully-dissimilar and dissimilar-

compound splits (Figure 3.5). At the same time, this is a natural part of the problems 

at hand, which are discovering truly novel drugs and/or effectively targeting 

understudied proteins. While it is possible to improve performances to some extent by 

applying preprocessing techniques, classical machine learning methods, and available 

representation approaches are only partially sufficient to handle the DTI prediction 

problem in realistic scenarios. Therefore, more advanced approaches such as multi-

modal deep learning and new comprehensive representations, specifically developed 

for bioactivity modeling, are required to effectively unveil non-linear relationships 

between target proteins and drug candidate compounds. 

Table 3.3. Prediction error percentages of transformer-avg models with different 

thresholds on random, dissimilar-compound, and fully-dissimilar splits of transferases 

family dataset. 

 PE: Prediction error 

 

 PE > 0.5 (%) PE > 1 (%) PE > 1.5 (%) PE > 2 (%) 

Random-split 36.6 11.8 3.6 0.9 

Dissimilar-compound-

split 
69.6 40.8 17.8 6.9 

Fully-dissimilar-split 64.9 39.0 22.5 10.7 
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Figure 3.14. Scatter plots of compound similarities and protein similarities against 

prediction errors of test data points in (a) random-split, (b) dissimilar-compound-split, 

and (c) fully-dissimilar-split sets of transferases for transformer-avg models 

3.5. Conclusion 

In this chapter, we performed a rigorous benchmark analysis to investigate; (i) 

bioactivity datasets at different scales and their splitting into train-test folds, (ii) 

preliminary and explanatory analysis of data, (iii) different modeling and algorithmic 
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approaches, (iv) the representation capability of various protein featurization 

techniques, and (v) robust and fair performance evaluation strategies, for machine 

learning-based DTI prediction modelling. For this, we built target feature-based and 

PCM-based models, and trained/tested them on carefully constructed datasets with 

varying sizes and difficulty levels, using numerous protein representations, and 

evaluated them from different perspectives. Datasets, results and the source of the 

study in this chapter is fully shared in our “ProtBENCH” platform at 

https://github.com/HUBioDataLab/ProtBENCH. 

Below, we summarized the major contributions of this chapter to the literature: 

(i) We proposed challenging benchmark datasets with high coverage on both 

compound and protein spaces that can be used as reliable, reference/gold-standard 

datasets for DTI modelling tasks. These datasets are protein family-specific, and each 

has three versions in terms of train/test splits for different prediction tasks (i.e., random 

split for predicting known inhibitors for known targets, dissimilar-compound split for 

predicting novel inhibitors for known targets, and fully-dissimilar split for predicting 

new inhibitors for new targets). Thus, they yield fair evaluation of models at multiple 

difficulty levels and facilitate the prevention of over-optimistic performance results. 

We evaluated these datasets in the framework of PCM modeling, which is a highly 

promising data-driven approach for high performance ML-based drug discovery. 

These datasets can be used in future studies to evaluate newly proposed modeling 

and/or algorithmic techniques for DTI prediction. 

(ii) We employed a network-based strategy for splitting data into train-test folds, by 

considering both protein-protein and compound-compound pairwise similarities, 

which is proposed here for the first time, according to our knowledge. This strategy 

ensures that train and test folds are totally dissimilar from each other with a minimum 

loss of data points. One of the current limitations in drug development is the problems 

related to discovering novel molecules that are structurally different from existing 

drugs and drug candidates. The network-based splitting strategy we applied here forces 

prediction models to face this limitation by supplying more realistic, hard-to-predict 

test samples. Hence, it can aid researchers in designing more powerful and robust DTI 

prediction models that have a real translational value. 

(iii) Protein representation learning have a wide range of applications with promising 

results in different sub-fields of protein science, despite being a relatively new 

approach. However, the studies regarding their usage in DTI prediction modeling are 

limited, and there is no comprehensive benchmark study to evaluate their performance 

against well-known and widely used featurization approaches. Due to this reason, we 

extended the scope of our study by involving state-of-the-art learned representations 

and discussed their potential in DTI prediction. 

One of the critical observations of this study is the dramatic change in performance 

scores when the samples are distributed to train and test sets differently, (i.e., scores 

on datasets with challenging splits are significantly lower compared to the results on 

randomly split datasets), which highlights the importance of data splitting to conduct 
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realistic evaluations for drug and/or target discovery. This study also emphasizes the 

importance of exploratory analysis of datasets and the usage of multiple scoring 

metrics as well as the inclusion of baseline models for a proper discussion of model 

successes. 

Regarding the performance-based comparison of different protein featurization 

approaches, it is not possible to put forward an outstanding representation method, as 

their success largely depends on the dataset and the applied splitting strategy. Although 

both conventional descriptor sets and learned embeddings have their own strengths 

and weaknesses depending on the case, competitive results of learned embeddings 

display their potential widespread utilization in drug discovery and development in the 

near future. On the other hand, considerably low performance results on challenging 

datasets (e.g., fully-dissimilar-split) in the overall evaluation revealed the requirement 

for unbiased bioactivity datasets and further improved protein representation 

techniques to capture hidden and complex features shared between highly distant 

homologs. 

We hope that the results of this chapter, together with the data-driven approaches 

proposed, and the benchmark datasets prepared and shared, will aid the ongoing work 

in computational drug discovery and repurposing. 
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CHAPTER 4 

 

4. CROSSBAR: GENERATION AND ANALYSIS OF BIOMEDICAL 

KNOWLEDGE GRAPHS 

4.1. Chapter Overview 

This chapter was performed as part of the CROssBAR project, which is co-funded by 

TÜBİTAK-Katip Çelebi & British Council-Newton fund and conducted jointly with 

METU, Hacettepe University and EMBL-EBI as an international project. CROssBAR 

(Comprehensive Resource of Biomedical Relations with Deep Learning Applications 

and Knowledge Graph Representations) is a comprehensive system that integrates 

large-scale biomedical data from various resources including relations between 

numerous biomedical entities such as genes/proteins, drugs/compounds, 

disease/phenotype terms and pathways/biological processes. The main goal of the 

CROssBAR project is to build an open access, user-friendly and online web-service 

that obtains user query-specific biologically meaningful modules using integrated data 

enriched with deep learning-based predictions, and to display them to the user via 

easy-to-interpret, interactive, and heterogenous biomedical knowledge graphs (KGs), 

which will be constructed on-the-fly, in real-time. The CROssBAR project comprises 

multiple modules, each serving a specific purpose for the development of the 

CROssBAR system: (i) the construction of the CROssBAR database, and its API 

service to serve the integrated biomedical data, (ii) the development of deep-learning-

based DTI prediction models for large-scale prediction of unknown DTIs, (iii) 

network-based organization and analysis of large-scale biomedical data using 

knowledge graph representations, (iv) in vitro wet-lab experiments to validate the 

relevance of in silico generated knowledge, and (v) the establishment of an open access 

web-service, with on-the-fly generation and visualization of query-based knowledge 

graphs. 

In this chapter, we worked on the knowledge graph (KG) construction procedure of 

the CROssBAR system (module iii). The term KG defines a specialized data 

representation approach, in which a collection of entities is linked to each other in a 

semantic context. To determine the data retrieval steps and filters required to generate 

KGs, we first built a prototype network for hepatocellular carcinoma (HCC) disease 

with manual processing. Then, all operations applied for the construction of this 

prototype network were automatized so that a generic underlying query runs in the 

background when the CROssBAR database is searched, and a KG is generated from 

the resulting dataset using the CytoScape web-browser plug-in. We also performed 

extensive analyses to evaluate the diversity, stability, and practicality of CROssBAR 
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KGs. By applying the same methodology with manual curation to a certain extent, we 

constructed COVID-19 KGs as a use-case to better understand the molecular 

mechanisms of this new coronavirus (SARS-CoV-2) pandemic. Finally, we provided 

an example search from the CROssBAR web-service and roughly evaluated the output 

KG in a biological manner to exemplify the potential uses of the web-service. The 

findings of the CROssBAR project were published in Nucleic Acids Research journal 

(https://doi.org/10.1093/nar/gkab543), and the open-access CROssBAR web-service 

is available at https://crossbar.kansil.org. Through the web service 

(https://crossbar.kansil.org/covid_main.php), CROssBAR COVID-19 KGs can be 

interactively explored, visualized, and downloaded. They are also included in the 

European COVID-19 Data Portal (https://www.covid19dataportal.org/related-

resources). 

This chapter focuses exclusively on the aspects I contributed to the CROssBAR 

project. The comprehensive overview of the entire research and analysis conducted 

can be reached from our publication. My specific contributions to CROssBAR include; 

(i) Constructing the prototype Hepatocellular Carcinoma (HCC) network, (ii) 

Designing and developing a pipeline for automating the query-based KG construction 

process (iii) Implementing overrepresentation analysis for node filtering (iv) 

Generating CROssBAR COVID-19 KGs (v) Conducting an in-depth analysis of graph 

diversity and stability, and (vi) Performing graph construction runtime tests. 

4.2. Introduction  

The data explosion that originated in the -omics era of biological research necessitated 

the development of more systemic approaches for the analysis of biomedical data to 

develop novel and effective treatment approaches. However, different layers of the 

available data are produced using different technologies and maintained by different 

organizations, thus the data is scattered across individual computational resources, and 

the connections between them are not well-established although the entities in these 

resources are biologically related and complementary to each other. This connectivity 

problem hinders the effective usage and systemic analysis of multi-omics data for 

better understanding biological mechanisms. In addition to the connectivity problem, 

another issue is the incompleteness of the knowledge space (e.g., unknown interactions 

between ligands and target biomolecules, or missing associations among proteins).  

There are some studies in the literature that integrate large-scale biological data and 

communicate it via textual or visual representations. One of the early applications of 

these data integration approaches is BioGraph data mining platform (Liekens et al., 

2011), which allows for searching biomedical concepts to find relevant functional 

paths and identify disease gene prioritizations. In Bio4j project (Pareja-Tobes et al., 

2015), a graph-based platform was constructed by integrating data from different 

public resources such as UniProt, Gene Ontology and Expasy to provide an 

infrastructure for querying and managing protein related information. In project 

Rephetio (Himmelstein et al., 2017), researchers built the Hetionet resource by 

combining biomedical data from various sources in a systematic way and storing it in 

a graph database with the main goal of deducing new drug/compound-disease 

relations. A similar strategy is employed in the BioGrakn project (Messina, Pribadi, et 

https://doi.org/10.1093/nar/gkab543
https://crossbar.kansil.org/
https://crossbar.kansil.org/covid_main.php
https://www.covid19dataportal.org/related-resources
https://www.covid19dataportal.org/related-resources
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al., 2018) to develop a biomedical knowledge graph (KG) utilizing the Grakn database 

infrastructure. Another system also called BioGraph (Messina, Fiannaca, et al., 

2018) gathers gene/protein, function and cancer related miRNA data from several 

databases and enables users to query the data to generate basic network-based 

visualizations on returned entities.  

While these studies provide useful tools and techniques for the life sciences research 

community, the majority of them demand complex database queries specific to the 

language of the related graph database, which can be challenging for researchers with 

little or no programming experience. Some of them require local installation, do not 

provide an easily interpretable visualization, or involve only a small portion of the 

biological resources. Such issues limit their comprehensiveness, functionality and/or 

practicality that prevent them from becoming widely used tools or services. 

In the CROssBAR project, we aimed to address these shortcomings by developing a 

comprehensive integrated biomedical system enriched with in silico predictions and 

generating informative knowledge graphs based on particular biomedical entities such 

as genes/proteins, drugs/compounds, biological pathways, diseases/phenotypes, or 

specific combinations of them. It is a freely available, open-access, and user-friendly 

online biomedical data integration and representation tool with a coding-free interface 

designed to be easily used by the life sciences research community. 

As a part of the CROssBAR project, we carried out the knowledge graph construction 

sub-module in this chapter. Knowledge graphs are a way of representing 

heterogeneous data that can be considered as multi-partite networks involving the 

relationships (edges) between different types of entities (nodes) in a semantic context. 

In CROssBAR knowledge graphs (CROssBAR-KGs), nodes represent biological 

components/terms, and edges represent known or predicted pairwise relationships 

between these terms. Nodes and edges are directly obtained from the CROssBAR 

database (CROssBAR-DB) during the construction of KGs. A number of data sources 

including UniProt, Ensembl, InterPro, IntAct, PubChem, ChEMBL, DrugBank, 

Reactome, KEGG, Orphanet, OMIM, Experimental Factor Ontology (EFO), Gene 

Ontology and Human Phenotype Ontology (HPO) are integrated into CROssBAR-DB 

to provide a broad spectrum of biological information. We first constructed a prototype 

hepatocellular carcinoma (HCC) disease network with manual processing to designate 

the data retrieval steps and filters necessary to produce KGs. All procedures used for 

building this prototype network were then automated; so that,  a KG is generated and 

visualized on-the-fly based on the query term(s) of the user on the CROssBAR web-

service while data retrieval and filtration operations are run simultaneously in the 

background. At each step of the process, an overrepresentation-based enrichment 

analysis is applied to select the terms that are significantly associated with the growing 

graph, and to discard the rest. With the aim of examining diversity, stability, and 

practicality of CROssBAR KGs, some qualitative and quantitative analyses as well as 

runtime tests were also performed. As a use case of the system, we constructed 

COVID-19 CROssBAR-KGs for a systemic assessment of the current knowledge 

about SARS-CoV-2 infection to better understand its molecular mechanisms and to 

aid the research community for the development of effective treatment strategies. 

Finally, we provided an example search on the CROssBAR web-service and basically 

analyzed the output KG in terms of the relation between query drug (trifluoperazine) 



68 

 

and disease (gastric cancer) terms to illustrate possible applications of the CROssBAR 

system. 

The CROssBAR system, which assembles relevant pieces of biological data and 

allows its comprehensive analysis at the systemic level, can assist experimental and 

computational work in biomedical research with the ultimate goal of providing novel 

treatment solutions. 

4.3. Materials and Methods  

4.3.1. Construction of the Prototype Hepatocellular Carcinoma (HCC) Network 

The prototype HCC network was created in 8 main steps: 

1) The selection of HCC related genes/proteins: 61 HCC-related genes were 

identified from 4 different biological databases (i.e., KEGG (Kanehisa et al., 

2016), OMIM (OMIM - Online Mendelian Inheritance in Man, n.d.), 

OpenTargets (Carvalho-Silva et al., 2019), TCGA (The Cancer Genome Atlas 

Program - National Cancer Institute, n.d.)), some of which were common 

among the databases. These genes were uploaded into CytoScape network 

analysis and visualization software (Shannon et al., 2003) and connected to HCC 

disease node to generate a bi-partite network based on the disease-gene 

relationships as the initial step. 

- KEGG (Kanehisa et al., 2016) (H00048-Hepatocellular Carcinoma): 20 

genes  

- OMIM  (OMIM - Online Mendelian Inheritance in Man, n.d.) (Phenotype 

MIM 114550 - Hepatocellular Carcinoma + Hepatoblastoma): 9 genes 

- OpenTargets (Carvalho-Silva et al., 2019) (EFO_0000182 - Hepatocellular 

Carcinoma): 18 genes were selected with scores higher than 0.2 based on 

the “genetic associations” column filter. 

- TCGA_HCC (The Cancer Genome Atlas Program - National Cancer 

Institute, n.d.): 34 genes were selected based on expert knowledge. 

2) The involvement of protein-protein interactions: The protein-protein interactions 

(PPIs) between HCC-related genes were retrieved from STRING application 

(Szklarczyk et al., 2015) on CytoScape. Only interactions with a confidence 

score of 0.95 and above were integrated into the network. Hence, 45 PPIs 

between 31 proteins were included. 

3) The determination of HCC related pathways and their gene associations: 

Signaling pathways associated with HCC disease pathway (hsa05225) in the 

KEGG database were incorporated into the network as pathway-disease and 

pathway-gene associations. These signaling pathways were uploaded from 

KEGGParser application on CytoScape. Apart from these, other KEGG 

signaling pathways associated with HCC-related genes were also added to the 
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network using STRING enrichment application on CytoScape with FDR cutoff 

= 0.05 and with at least 5 enriched genes. Therefore, 66 interactions between 22 

genes and 10 pathways were mapped to the network. 

4) The inclusion of other diseases associated with HCC related genes: Associations 

between HCC-related genes and other diseases were also identified via STRING 

enrichment application for diseases on the KEGG database, and integrated into 

the network as disease-gene associations. From the enrichment results, disease 

terms with at least 10 enriched genes were included (i.e., 72 interactions between 

27 genes and 5 diseases). EFO disease terms were retrieved from GWAS 

(Genome-Wide Association Studies) Catalog (Buniello et al., 2019). For each 

EFO term, enrichment score and p-value were calculated based on the ratios of 

EFO terms in HCC genes and in total GWAS gene set using the formula (1) and 

(2) in Methods Section 4.4.4. EFO terms belonging to “disease” root, and having 

enrichment score > 20 and p-value < 0.005 were considered. 35 interactions 

between 20 genes and 7 EFO disease terms were mapped to the network. 

5) The involvement of associations between pathways and diseases: In addition to 

associations of genes with pathways and diseases, KEGG database includes 

disease-pathway associations, as well. Therefore, 26 interactions between 10 

pathways and 5 diseases of the network were obtained from KEGG, and 

integrated into the network.  

6) The determination of associations between HCC related genes and HPO terms: 

HPO terms were retrieved from Human Phenotype Ontology database (Köhler 

et al., 2019). For each HPO term, enrichment score and p-value were calculated 

based on ratios of HPO terms in HCC genes and in total HPO gene set using the 

same formula in step 4. Only HPO terms with enrichment score > 65 and p-value 

< 10^-5 were considered. The top 10 HPO terms, which have not a parent-child 

relationship with each other, were selected and associated with the 

corresponding genes. 120 interactions between 22 genes and 10 HPO terms were 

mapped in total. 

7) The selection of drugs interacting with HCC related proteins: The drug-target 

interaction data involving approved and investigational drugs were extracted 

from DrugBank database (Law et al., 2014) and integrated into the network (i.e., 

63 interactions between 21 network proteins and 57 drugs). This integration is 

essential for the repurposing studies of potential drugs for HCC disease. 

8) The determination of interactions between compounds and HCC related 

proteins: Bioactive compound interactions of the proteins in the HCC network 

were retrieved from ExCAPE dataset (Sun et al., 2017), which includes 

experimentally measured bioactivity data in PubChem and ChEMBL. 

Compounds with pXC50 >= 5.0 were labeled as active and pXC50 < 5.0 as 

inactive. For each compound, the enrichment score was calculated based on the 

ratios of active & inactive datapoint numbers of compounds in HCC genes and 

in total ExCAPE gene set (same formula in step 4 and 6). Only compounds with 

enrichment score > 1 were considered. They were clustered based on Tanimoto 
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similarities with threshold=0.5, and top 5 compound nodes that are not in the 

same clusters were selected based on the enrichment scores (with p-value<0.05) 

for each protein. For predicted compound-protein interactions, DEEPScreen 

predictions were used, and the same procedure used for the selection of 

experimentally known interactions from the EXCAPE dataset was applied. 

Hence, 26 interactions between 11 proteins & 12 compounds and 25 interactions 

between 5 proteins & 23 compounds were mapped from ExCAPE dataset and 

DEEPScreen predictions, respectively. 

4.3.2. Automating the Query-Based KG Construction Process of CROssBAR 

CROssBAR KGs are generated on-the-fly, in real-time, as it is not feasible to pre-

calculate them due to the astronomical amount of possible queries. It is accomplished 

by a series of backend operations that gather the necessary information for the user 

query term(s) from the CROssBAR database and display it as a KG representation via 

the CROssBAR web-service. Although there are slight differences and modifications, 

the KG construction process of CROssBAR is mainly automated using the same 

procedure applied for the prototype HCC network generation, as described in Section 

4.3.1. 

During the construction of a CROssBAR KG, first, the gene/protein entries that are 

directly connected to the query term (i.e., core proteins) are fetched (e.g., member 

genes/proteins of a queried signaling pathway) from “Proteins” collection of the 

CROssBAR database. Then, neighboring/interacting proteins are retrieved from 

“IntAct” collection of the database. Before integrating them into the graph, the system 

calculates enrichment scores for each interacting protein using the equation in Section 

4.3.4., and filters out based on the selected cut-off value. The process is followed by 

the enrichment-based filtering and addition of terms from other biological component 

types (i.e., diseases, phenotypes, drugs, compounds, and additional biological 

processes/pathways related to these proteins) along with their relationships; however, 

this time, both core and neighboring proteins are taken into consideration to retrieve 

associated terms and to calculate the enrichment scores. The inclusion of pathways in 

the network is significant since many diseases don’t act at a single gene level but on a 

systemic level. Pathway information is expected to capture these high-resolution 

relations successfully. In the step of compound addition, structural property-based 

filtering is also incorporated in the enrichment analysis to select compounds that are 

as diverse from each other as possible in terms of molecular structures. To achieve 

this; (i) The pairwise molecular similarities between all bioactive compounds in 

CROssBAR-DB were calculated from circular fingerprints (ECFP4) of compounds 

using the Tanimoto coefficient. (ii) These compounds were clustered based on a 

predefined similarity cut-off value of 0.5, meaning that each cluster is composed of 

compounds that are at least 50% similar to each other. (iii) The cluster information is 

pre-calculated and recorded on CROssBAR server. Each time a knowledge graph is 

being constructed, enrichment score ranked compounds are checked one by one in 

terms of their cluster membership and if there already is a compound from the same 

cluster in the graph, the compound in turn is discarded (i.e., not incorporated to the 

graph). The same clustering-based selection approach is applied for computationally 

predicted compounds interacting with the proteins in the graph, which are obtained 

from our in-house developed tool DEEPScreen. Following the finalization of the 
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compounds, overlaps between drug and compound nodes are checked using the 

identifier mapping between ChEMBL and DrugBank databases and merged. The node 

type of the merged node is set as a drug, since drugs are considered more reliable in 

terms of evidence on their molecular properties and interactions, compared to drug 

candidate compounds. Evidence-based coloring of bioactivity edges is applied here as 

well as in the prototype HCC network, where the edge is colored green if its source is 

DrugBank, blue for ChEMBL and red for DEEPScreen. The graph construction 

process is finished with the incorporation of edges for additional relation types 

between non-protein nodes (e.g., drug-disease, disease-pathway, and disease-HPO 

associations), to further enrich the provided information. If the user performs a 

heterogenous search that contains multiple terms from different component types, both 

core and neighboring genes/proteins are independently collected for each non-protein 

query term, queried gene/protein entries are added to this list (if there are any), and the 

term collection process is continued using the union of these genes/proteins as the 

source. This approach enables the exploration of direct and indirect relationships 

between all query terms. 

The pipeline used for the construction of the CROssBAR KGs is given in Figure 4.1. 

Here, the finalized filtered set of each biological component is shown with a shape 

surrounded by a black frame. The graph is built using these entities together with their 

inter-component relations.  

 

 

Figure 4.1. The workflow of the CROssBAR knowledge graph construction process 

(Doǧan, Atas, et al., 2021) 
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4.3.3. Generation of CROssBAR COVID-19 KGs 

As a use-case, we constructed the CROssBAR COVID-19 KGs with 2 different 

versions, (i) a large-scale version for comprehensive analysis or a detailed inspection, 

and (ii) a simplified version for fast interpretation. COVID-19 related data could not 

be pulled to the CROssBAR database during the construction of COVID-19 KGs since 

the majority of the data has not been integrated into the regular releases of biological 

databases. Hence, we had to make manual interventions to obtain the data from 

CROssBAR data resources for the generation of COVID-19 KGs. 

4.3.3.1. Large-Scale COVID-19 KG 

Construction of the large-scale COVID-19 graph started with acquiring the related 

EFO disease term named: "COVID-19" (id: MONDO:0100096). The disease term for 

"Severe acute respiratory syndrome" (id: EFO:0000694) (the original SARS) was also 

incorporated into the graph since SARS is better annotated compared to COVID-19. 

The construction process is continued as follows: 

1) COVID-19 related genes/proteins and PPIs: COVID-19 related genes/proteins and 

their interactions were retrieved from the IntAct database’s COVID-19 dataset 

(downloaded in March 2021). Unlike a genetic disease, human genes/proteins 

represent only a portion of infectious diseases due to host-pathogen molecular 

interactions. Therefore, we aimed to incorporate SARS-CoV and SARS-CoV-2 

genes/proteins besides the host genes/proteins into the graph. Without any filtering, 

the dataset contained 2,951 gene/protein and metabolite nodes from various organisms 

and 7,706 edges. Due to high number of genes/proteins in the dataset, there was a risk 

of incorporating non-specific/irrelevant terms from the other biological components at 

later steps. To address this risk, several filtering operations were applied on this 

dataset. First, all non-gene/protein nodes were eliminated and the genes/proteins if the 

corresponding organism is not human or SARS-CoV/SARS-CoV-2 were discarded. 

Second, the protein entries that are not reviewed (i.e., not from UniProtKB/Swiss-Prot) 

except SARS-CoV-2 ORF10 (accession: A0A663DJA2), which currently is an 

unreviewed protein entry in UniProtKB/TrEMBL, were removed. A portion of the 

host genes/proteins were also filtered out using interaction-based information, 

according to their confidence scores reported in IntAct. The edges between host 

proteins and SARS-CoV and/or SARS-CoV-2 proteins were discarded if the 

confidence score was less than 0.35. The edges between host proteins in the KG (i.e., 

neighbouring proteins) were also discarded if their interaction confidence score is less 

than 0.6. The disconnected components made up of host proteins that were formed due 

to the edge filtering operation were removed, as well. Orthology relations between 

SARS-CoV and SARS-CoV-2 genes/proteins were annotated with "is ortholog of" 

edge type. The interactions of the subunits of large protein complexes such as the NSPs 

of replicase polyprotein 1ab of SARS-CoV/SARS-CoV-2 were mapped to their 

corresponding protein complex nodes and the subunit nodes were excluded from the 

graph. After these operations, the finalized number of genes/proteins is 778 (746 host 

genes/proteins, and 15 SARS-CoV and 17 SARS-CoV-2 genes/proteins) and the 

number of edges (i.e., PPIs including both virus-human and human-human 

associations) is 1,674. After this point, we started collecting new nodes and edges from 

various biological components based on the overrepresentation analysis and curation. 
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2) COVID-19 related drugs and compounds: The approved/investigational drug 

interactions of COVID-19 related proteins were retrieved from DrugBank database, 

v5.1.6 release. To incorporate only the most relevant drug-target interactions, an 

overrepresentation analysis was applied with respect to the associations of drugs with 

target genes/proteins in the KG using the hypergeometric distribution, as described in 

Section 4.3.4. The selected drugs were mapped to their corresponding protein targets 

in the graph via the edge label of green color, as this represents the highest level of 

confidence in terms of receptor-ligand interactions. DrugBank also has a COVID-19 

specific drug list, which includes a curated list of drugs currently under research for 

COVID-19 treatment. These drugs were included in the KG as well. Drugs without 

any known targets (or the targets are known but not presented in the KG), were 

connected directly to the COVID-19 disease node. Drug repurposing based curated 

and experimental results from critical SARS-CoV-2 related publications such as 

Gordon et al.21 were also incorporated with suitable edge labels depending on the data 

source. Finally, drug-disease relationships based on the reported drug indications on 

KEGG resource were added. The KG contains well-studied drugs for COVID-19 

treatment such as Remdesivir (DB14761), Favipiravir (DB12466), Dexamethasone 

(DB01234) etc., as well as rather under-studied or non-studied ones (in the context of 

COVID-19) such as Isosorbide (DB09401) and Rocaglamide (DB15495). 

For the retrieval of compound-target interactions based on experimentally measured 

bioactivities, ChEMBL database (v27) was utilized. We retrieved the ChEMBL 

bioactivity data points in binding assays, where the targets are human, SARS-CoV and 

SARS-CoV-2 proteins, and the pChEMBL value is greater than or equal to 5. 

Overrepresentation analysis was applied to select the most relevant ones. Here, only 

drugs/compounds with enrichment scores greater than 1 and p-value less than 0.05 

were considered. Compounds were clustered based on Tanimoto coefficient based 

molecular similarities with a threshold of 0.5, and top 5 overrepresented compound 

nodes, which are in different clusters, were selected for each target protein (if exist) 

and incorporated into the KG. We also incorporated selected compound-host target 

protein and compound-SARS-CoV-2 organism interactions from SARS-CoV-2 

curated dataset of ChEMBL, including both binding and functional assays. Finally, the 

edge labels were set accordingly (i.e., blue colored edges). 

For computationally predicted drug and compound-target protein interactions, our in-

house deep learning based tools DEEPScreen (Rifaioglu et al., 2020)  and MDeePred 

(Rifaioglu et al., 2021)  were used. DEEPScreen large-scale prediction run results were 

scanned and 326 bioactive drug/compound-target interaction predictions for 18 human 

proteins were incorporated to the KG following the application of overrepresentation 

analysis, as same with selection of experimental bioactivities from ChEMBL. For in 

silico drug repurposing, both human ACE2 receptor protein and SARS-CoV-2 3C-like 

proteinase models of MDeePred were used to scan full DrugBank drugs dataset to 

predict new binders for ACE2 and 3C-like proteinase. In order to avoid the crowding 

of the KG, only five selected inhibitors for each protein were incorporated. The 

selected bioactive drug predictions for ACE2 are Eribaxaban (DB06920), 7-

Hydroxystaurosporine (DB01933), Becatecarin (DB06362), Ticagrelor (DB08816) 

and Amcinonide (DB00288); whereas the predictions for the 3C-like protease are 

Quinfamide (DB12780), Diloxanide furoate (DB14638), Phenyl aminosalicylate 
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(DB06807), Netarsudil (DB13931) and Amlodipine (DB00381). These predicted 

interactions were labelled with red colored edges. 

We also merged nodes with respect to drug-compound entry correspondences in 

DrugBank and ChEMBL databases. This way, some of the drug nodes also contain 

experimental bioassay-based relations (i.e., blue colored edges) and computationally 

predicted relations (i.e., red colored edges). At the end of these procedures, the total 

number of drugs (nodes) in the KG is 158 and the total number of drug interactions 

(edges) is 346. The total number of drug candidate small-molecule compounds is 167 

and the total number of compound interactions (edges) is 664. Out of all 

drug/compound-target interaction edges, 120 correspond to drug development 

procedures, 382 to experimental bioassays and 508 to deep-learning-based predictions. 

3) Pathways of  COVID-19 related host genes/proteins: Signaling and metabolic 

pathway information was taken from Reactome (via CROssBAR database) and KEGG 

pathways data sources. The most relevant pathways were determined by 

overrepresentation analysis and mapped to the related genes/proteins in the KG. Some 

of the incorporated pathways are directly related to SARS-CoV-2 infection such as 

"Viral mRNA Translation" (R-HSA-192823) or "ISG15 antiviral mechanism" (R-

HSA-1169408) and the others are innate pathways of the host (human) such as 

"Endocytosis" (hsa04144), "Cell cycle" (hsa04110) or "NF-kappa B signaling 

pathway" (hsa04064). We also incorporated pathway-disease relations (in the sense of 

pathways that are modulated due to presence of certain diseases) from KEGG 

database. The finalized number of pathways in the KG is 100 (32 for KEGG and 68 

for Reactome, among which there are corresponding terms) and the total number of 

gene/protein-pathway associations (edges) is 1333 (557 for KEGG and 776 for 

Reactome). 

4) COVID-19 related phenotypic implications: The resource for the phenotype terms 

is the Human Phenotype Ontology (HPO) database. For each phenotype term that is 

associated with at least one gene in the KG according to HPO data, enrichment score 

and p-value were calculated via overrepresentation analysis. Phenotype terms that are 

not in a close parent-child relationship with each other in the HPO direct acyclic graph 

were selected from the score-ranked HPO term list. HPO also has a curated list of 

SARS related phenotype terms. These terms were also added into the KG and mapped 

to "COVID-19" and "Severe acute respiratory syndrome" disease nodes. This way, 

COVID-19 related phenotypes including symptoms such as Fever (HP:0001945), 

Myalgia (HP:0003326), Respiratory distress (HP:0002098), Immunodeficiency 

(HP:0002721) and etc. are included in the graph. The finalized number of phenotype 

terms in the KG (nodes) is 43 and the number of HPO term-gene/protein associations 

(edges) is 2427.  

5) Other associated diseases of COVID-19 related host genes/proteins: The aim 

behind this step is collecting the non-infectious (mostly genetic) diseases that utilize 

the same (or similar) biological mechanisms/processes of human, so that it may 

indicate potential risks for COVID-19 patients, or potential COVID-19 related 

repurposing options for drugs that are currently used to treat these diseases. For this, 

disease terms that are associated with genes/proteins in the COVID-19 KG were 

collected from the CROssBAR database resources: EFO disease collection (mainly 
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including OMIM and Orphanet disease entries) and KEGG diseases database. The 

linkage of proteins and EFO terms was achieved through OMIM ids. The most relevant 

disease terms were selected based on the results of the overrepresentation analysis. 

Finally, disease-HPO term relations were also integrated into the KG using the disease 

association information provided in HPO resource. At the end of this step, diseases 

such as Small cell lung cancer (H00013), Amyotrophic lateral sclerosis - ALS 

(H00058), Bruck syndrome (Orphanet:2771), Osteosarcoma (EFO:0000637) etc. have 

entered the KG. The finalized number of disease terms in the KG is 41 (19 for KEGG 

and 22 for EFO) and the number of disease-gene/protein associations (edges) is 120 

(67 for KEGG and 53 for EFO). There are also 56 HPO term-disease associations 

including HPO associations of "COVID-19" and "Severe acute respiratory syndrome" 

disease nodes -integrated in step 4- and other disease terms. 

The finalized large-scale COVID-19 KG includes 1,289 nodes (i.e., genes/proteins, 

drugs/compounds, pathways, diseases/phenotypes) and 6,743 edges (i.e., various types 

of relations). 

4.3.3.2. Simplified COVID-19 KG 

For the construction of the simplified COVID-19 KG, the starting point was the 

COVID-19 associated proteins in the UniProt COVID-19 portal (https://covid-

19.uniprot.org/), instead of the IntAct Coronavirus dataset. The remaining steps of 

building the graph were mainly similar with the large-scale COVID-19 KG except 

that, additional nodes representing the organisms: human, SARS-CoV and SARS-

CoV-2 were placed and connected to the corresponding proteins. The aim here was to 

prevent the presence of singleton protein nodes due to the reduced number of included 

gene/proteins and PPIs in the simplified graph. It is also important to note that the 

simplified version is not just a subset of the large-scale KG. Since the starting point of 

gene/protein collection were different between two KGs, the resulting graphs have 

slightly different contents as well. For example, the drugs Siltuximab (DB09036), 

Pirfenidone (DB04951) are specific to the simplified KG. The simplified COVID-19 

KG includes a total of 435 nodes and 1,061 edges.  

The Cytoscape network files and overrepresentation analysis results of the KGs are 

available at CROssBAR project GitHub repository 

(https://github.com/cansyl/CROssBAR) . The graphs can also be directly visualized 

and explored interactively via CROssBAR web-service 

(https://crossbar.kansil.org/covid_main.php). 

4.3.4. Node Filtering via Overrepresentation Analysis 

Because knowledge graphs are built by incorporating all biological terms that are 

directly or indirectly associated with query term(s), searches without further filtering 

would result in huge graphs with tens of thousands of nodes and edges. In this case, it 

would not be possible to visually perceive a biologically relevant result from the giant 

network. Moreover, it would not be feasible to construct and interactively display this 

graph due to the excessive computational demands. To address this problem, we 

applied a multi-staged overrepresentation-based enrichment analysis during the 

construction of graphs. In this analysis, an independent enrichment score and its 

https://covid-19.uniprot.org/
https://covid-19.uniprot.org/
https://github.com/cansyl/CROssBAR
https://crossbar.kansil.org/covid_main.php
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statistical significance is calculated for each biological entity in the database to be 

considered as its relevance to the graph that is being constructed. It is performed using 

a modified version of the hypergeometric test for overrepresentation, which is also 

known as the one-tailed Fisher's exact test, and is calculated based on the statistics of 

the associations with gene/protein nodes. For example, the enrichment score (ED,W) 

and its significance (SD,W), in terms of p-value, for a disease term D, in graph W is 

calculated as follows: 

 

(1) 

                                                                     

                                         

(2)                                                                                            

 

where ED,W is the enrichment score calculated for the disease term D in graph W; mD
2 

represents the square of the number of genes/proteins in graph W that are associated 

with disease D; nW represents the total number of gene/protein nodes in graph W; MD 

is the total number of genes/proteins (not necessarily in graph W) that is associated 

with disease D; and N represents the total number of reviewed human gene/protein 

entries (i.e., UniProtKB/Swiss-Prot entries) in the CROssBAR database that is 

annotated with any disease entry. SD,W represents the significance (p-value) for the 

disease term D of graph W calculated in the hypergeometric test. In the formula, mD 

and nW values represent foreground distribution and are calculated on-the-fly since 

they change depending on the graph. However, MD and N reflect background 

distribution and are not specific to graphs. Therefore, they were precalculated to 

decrease computational time required for the construction of CROssBAR KGs. 

Considering the enrichment analysis for diseases, while constructing the graph, an 

enrichment score is calculated for each disease entry in the CROssBAR database and 

these scores are used to rank disease entries according to their biological relevance to 

graph W (i.e., in the order of decreasing scores). A cut-off value k is employed to 

include the top k relevant disease entries to graph W. The default value for k is 10, 

which means that only top-10 relevant diseases will be included. Apart from diseases, 

the same methodology is used to filter out terms of neighboring genes/proteins, 

pathways, phenotypes, drugs, and compounds. In the traditional way of calculating an 

enrichment score, mD is without square. The reason behind taking the square of mD is 

mainly to highlight the term with higher mD value (i.e., a higher degree) in a case of 

multiple terms with very similar enrichment scores. Here, significance values are not 

directly used in the filtering operation, since the main objective is not including only 

significantly over-represented terms, but just reducing the number of nodes in the 

graph by filtering out the ones that are least relevant. 
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4.4. Results and Discussion  

4.4.1. Prototype HCC Network 

The finalized HCC network includes 185 nodes (i.e., genes/proteins, 

drugs/compounds, signaling pathways, KEGG (Kanehisa et al., 2016) and EFO 

diseases, HPO terms) and 478 edges (i.e., interactions). To make the network visually 

interpretable, each node type was represented with a different color and shape as 

shown in Figure 4.2. It also has a hierarchical and circular structure, in which 

gene/protein nodes are located on the innermost circle and drug/compound nodes are 

on the outermost. Moreover, different colors were assigned to the bioactivity edges to 

represent their confidence levels; where drug-protein interaction edges are colored 

green as the highest confidence level while experimentally known and predicted 

interactions are represented in blue and red, respectively. In addition to the data 

retrieval and filtering steps implemented for the prototype network, its visualization is 

also utilized for the generation of automated CROssBAR KGs. The cytoscape file of 

the prototype HCC network is available in its GitHub repository 

(https://github.com/cansyl/CROssBAR-Prototype_HCC_Network), which can be 

downloaded and examined. 

 

Figure 4.2. Hepatocellular Carcinoma network as a prototype for CROssBAR 

knowledge graphs 

 

https://github.com/cansyl/CROssBAR-Prototype_HCC_Network
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4.4.2. Use-Case Study on CROssBAR Web-Service (Query: TFP + Gastric Cancer) 

To provide an example about one of the many possible uses of the CROssBAR system, 

we explore the relation between a drug (trifluoperazine) and a disease (gastric cancer), 

to make a very quick and rough evaluation on the potential repurposing of this drug 

towards the disease of interest. Trifluoperazine (TFP) is an approved antipsychotic 

agent mainly used in the treatment of schizophrenia. There are also many studies 

showing the combinatorial effect of TFP in enhancing the efficacy of cancer drugs, 

which achieves this mainly by modulating drug efflux pumps such as P-glycoprotein 

(Jaszczyszyn et al., 2012). Moreover, it affects various signaling pathways involved in 

cancer progression so it can increase the apoptotic response induced by other cancer 

drugs or possess anti-angiogenic properties that can be helpful in preventing metastasis 

(Feng et al., 2018). As far as we are aware, TFP has no in vitro, in vivo or clinical 

studies concerning the treatment of gastric cancer, although there are studies on other 

types of cancer such as colorectal, pancreatic, and lung, in the literature. Also, there is 

a study indicating the inverse association between antipsychotic use and the risk of 

gastric cancer. Thus, this may be a convenient scenario for investigating the 

relationship between two potentially related biomedical entities, gastric cancer and 

trifluoperazine. To construct the corresponding knowledge graph, we queried the 

CROssBAR-WS (https://crossbar.kansil.org) with this drug and disease entries and 

selected the number of nodes to be incorporated into the graph (from each biomedical 

component) as 20. The resulting graph is shown in Figure 4.3. 

TFP exerts its antipsychotic effect with the blockage of the dopamine D2 receptor. 

This relation is shown in the graph, where TFP binds to the DRD2 gene/protein node 

and is associated with the dopaminergic synapse pathway. In the KG, TFP also has 

other approved targets such as CALM1, ADRA1A, and TNNC1 proteins (approved 

drug-target interaction edges have green color), and these proteins are associated with 

the calcium signaling pathway. Moreover, DRD2 and CALM1 are associated with the 

rap1 signaling pathway, as well. Both calcium and rap1 signaling pathways have other 

gene/protein associations such as ERBB2, KRAS, and CDH1, which are further 

associated with gastric cancer disease. In light of these relations, TFP can be explored 

via additional in silico and wet-lab studies, in terms of its potential to become a 

repurposed agent for the treatment of gastric cancer, which may show its activity on 

gastric cancer cells via calcium and rap1 signaling pathways (Figure 4.3). 

Some of the proteins that are associated with gastric cancer (e.g., KRAS, ERBB2, 

TP53, etc.) are also related to other cancer disease nodes in the graph such as 

pancreatic cancer, ovarian cancer, endometrial cancer, and cholangiocarcinoma, which 

means that TFP may also have a potential against these cancer types, worthy of further 

exploration. Other antipsychotic or anxiolytic agents such as risperidone, haloperidol, 

perphenazine, buspirone, droperidol, and prochlorperazine are enriched in the network 

as well, which bind to DRD2, CALM1 and/or ADRA1A. These drugs may also 

become alternative repurposed drugs for gastric cancer treatment or other cancers 

presented in the KG. In addition to the above-mentioned approved drug-target 

interactions, the graph also includes enriched drugs and drug-like compounds having 

experimentally measured bioactivities -from ChEMBL- (shown with blue colored 

edges) or computationally predicted interactions -by our in-house tool DEEPScreen- 

(shown with red colored edges) against the targets DRD2, ADRA1A, EBP, and 

https://crossbar.kansil.org/
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SIGMAR1; which can also be considered for the diseases in the graph. Finally, there 

are several phenotypic implication terms (from HPO) on the KG, such as the abnormal 

urine carbohydrate level and the congenital hypertrophy of retinal pigment epithelium, 

which are associated with gastric cancer disease node and/or gastric cancer-related 

genes. These phenotypic implications could also be helpful in considering clinical 

studies. 

(a) 

 

(b) 

 

 

Figure 4.3. (a) the output knowledge graph of trifluoperazine and gastric cancer query 

(b) critical signalling pathways and their relation to trifluoperazine and gastric cancer 

over critical genes/proteins  
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4.4.3. Literature-Based Validation of COVID-19 KGs 

Starting from the end of 2019, COVID-19 pandemic has ravaged the entire globe and 

caused immeasurable damage. As of March 2021, the scientific endeavor to develop 

effective drugs and vaccines is at peak, and a systemic evaluation of the current 

knowledge about SARS-CoV-2 infection is expected aid researchers in this struggle. 

To demonstrate the capabilities of CROssBAR, we have constructed two different 

versions of the COVID-19 knowledge graph, (i) a large-scale version including nearly 

the entirety of the related information on different CROssBAR-integrated data 

sources, which is ideal for further network and machine learning based analysis or a 

detailed inspection (Figure 4.4), and (ii) a simplified version distilled to include only 

the most relevant genes/proteins as provided in UniProt-COVID-19 portal 

(https://covid-19.uniprot.org), which is ideal for fast interpretation (Figure 4.5).  

CROssBAR COVID-19 KGs incorporate several drugs that can be utilized for 

developing novel treatments against SARS-CoV-2. Several of these drugs have 

already been reported in the COVID-19 literature and included based on this 

information; however, some of them were completely new. These new drugs have 

been incorporated to the graph either due to the overrepresentation analysis (based on 

the COVID-19 related host genes/proteins in the graph) or predicted to interact to with 

host or SARS-CoV-2 proteins by our deep-learning-based tools DEEPScreen and 

MDeePred. Here, we demonstrate a short literature-based validation study on the 

relevance of these new drugs for COVID-19. Table S.6. shows the promising drugs in 

our knowledge graph together with the source (i.e., whether they entered the graph due 

to enrichment or predicted by our deep-learning-based systems). It is interesting to 

observe that some of the drugs in this list are currently under clinical trials against 

COVID-19. The list includes calcineurin, IL-6 and IL-17a inhibitors such as 

cyclosporine, tocilizumab, and ixekizumab, which play roles in the immune system 

and effective against inflammatory diseases. As an immunomodulator agent, 

interferon beta-1a is also included in the list, inducing the synthesis of antiviral 

mediators by binding to type I interferon receptors. In addition to these, there are also 

other type of drugs in the list such as tenectaplase, vazegepant and simvastatin, which 

have promising clinical study results especially for the prevention of severe pulmonary 

damages and respiratory failures due to COVID-19. Ascorbic acid (i.e., vitamin c) and 

epigallocatechin gallate (i.e., phenolic antioxidant) are two examples of natural 

products that have COVID-19 related clinical studies. Apart from these, other 

enriched/predicted drugs such as amlodipine, artenimol, lifitegrast, amcinonide and 

becatecarin have been shown as potential drugs for COVID-19 via in vitro, in vivo 

and/or in silico studies including machine learning and molecular docking 

applications, although some of these studies are yet to be peer-reviewed. As a potent 

inhibitor of NF-κB activation in T-cells, rocaglamide and its derivatives may also be 

potential drug candidates for the treatment of COVID-19; however, there is no 

COVID-19 related study about these drugs in the literature yet, except from a study 

reviewing antiviral activity potential of rocaglamide as a flavagline. It is also important 

to mention that further research is required to properly assess the potential of these 

drugs for repurposing against SARS-CoV-2 infection. 
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Figure 4.4. Large-scale version of COVID-19 knowledge graph 
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Figure 4.5. Simplified version of COVID-19 knowledge graph 
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Table 4.1. Literature based information for new potential COVID-19 based 

repurposing of CROssBAR COVID-19 knowledge graph drugs. 

* Some of these drugs have multiple clinical trials concerning COVID-19. In these cases, the one with 

the latest phase is given. 

4.4.4. Analysis of Knowledge Graph Diversity and Stability 

Highly studied biomedical entities (e.g., TP53 gene, JAK-STAT signaling pathway, 

etc.) typically have a high number of recorded relationships in databases. As a result, 

they frequently appear in biological networks or gene set enrichment analyses. In 

CROssBAR, the goal is to build knowledge graphs with specialized content for the 

relevant query term(s), thus, we expect to observe diversity in our KGs. Additionally, 

we aim to produce stable outputs, which means that searches for terms that are 

Drug Name DrugBank 

ID 

Description Source Clinical Trial 

ID  

Current 

State * 

Cyclosporin

e 

DB00091 calcineurin inhibitor  DrugBank & 

Chembl 

NCT0439253

1 

Phase 4 

Tocilizumab DB06273 IL-6 inhibitor DrugBank NCT0437775

0 

Phase 4 

Amlodipine DB00381 calcium channel blocker MDeePred NCT0433030

0 

Phase 4 

Siltuximab DB09036 IL-6 inhibitor DrugBank NCT0433063

8 

Phase 3 

Prednisolon

e 

DB00860 glucocorticoid steroid Chembl NCT0438193

6 

Phase 2-3 

Vazegepant DB15688 calcitonin gene-related 

peptide (CGRP) receptor 

antagonist 

DeepScreen NCT0434661

5 

Phase 2-3 

Quercetin DB04216 polyphenolic flavonoid  DrugBank NCT0437778

9 

Not 

Applicable 

Artenimol DB11638 artemisinin derivative 

and antimalarial agent 

DrugBank - in-silico study 

Lifitegrast DB11611 integrin antagonist DrugBank - in-silico study 

Amcinonide DB00288 corticosteroid MDeePred - in-silico study 

Becatecarin DB06362 diethylaminoethyl 

analogue of 

rebeccamycin 

MDeePred - in-silico study 

Quinfamide DB12780 antiprotozoal agent MDeePred - in-silico study 

Rocaglamid

e 

DB15495 eIF4A inhibitor DrugBank - - 

Didesmethy

l 

rocaglamide 

DB15496 eIF4A inhibitor DrugBank - - 
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biologically related should produce KGs with similar content in terms of incorporated 

nodes and edges. To investigate both diversity and stability of CROssBAR KGs, we 

conducted two experiments; (i) a use case analysis and (ii) a quantitative analysis.  

In the use case analysis, we independently queried three different diseases (types of 

cancer), the first two of which are similar to each other in terms of the affected 

biological mechanisms, and the third one is relatively dissimilar from them in the same 

sense. The selected disease terms are breast cancer, ovarian cancer, and osteosarcoma, 

respectively. The reason behind selecting another type of cancer as the third disease 

(instead of, for example, a rare disease, which would be highly unrelated to the first 2 

diseases) was to create a rather realistic use case scenario that would allow us to 

observe the issues related to graph diversity, if there are any. Breast cancer and ovarian 

cancer are both associated with mutations and/or overexpression/amplification in 

certain genes (e.g., BRCA1, BRCA2, PIK3C, ERBB2, etc.) and aberrations in related 

pathways, which exhibits a risk of co-occurrence in women. On the other hand, 

osteosarcoma, the most common type of primary bone cancer, does not have a known 

direct relationship with breast or ovarian cancers. Besides, primary osteosarcomas of 

the breast and ovary are reported as very rare malignancies. Therefore, we expected to 

observe shared mechanisms/terms between KGs of breast and ovarian cancers, 

whereas the KG of osteosarcoma was expected to be relatively more diverse. 

We queried CROssBAR with these disease terms using default parameters (i.e., the 

number of nodes to be included in KGs for each biological/biomedical component is 

10, organism: human, only include reviewed protein entries from the 

UniProtKB/Swiss-Prot database) to construct the KGs. The resulting graphs are 

composed of 162 nodes and 563 edges for breast cancer, 123 nodes and 397 edges for 

ovarian cancer, and 98 nodes and 208 edges for osteosarcoma, and displayed in Figure 

4.6. After that, we calculated pairwise and triple-wise intersections between the 

contents of these three KGs. Graphs that are composed of intersecting nodes and edges 

are given together with Venn diagram-based statistics in Figure 4.6. We observed that 

the content-based identity (i.e., presence of the same nodes and edges) between KGs 

of breast and ovarian cancers is around 30%, whereas the overall identity between 

breast and osteosarcoma, and between ovarian and osteosarcoma are both around 6%. 

It is also important to note that both breast and ovarian cancer graphs contain the other 

disease as a similar disease node. It is observed from Figure 4.6 and b that both BRCA1 

and BRCA2 genes are presented in breast-ovarian intersection, in addition to well-

known cancer driver genes such as TP53, PIK3CA and ERBB2. Breast cancer and 

ovarian cancer searches also contain other common associations such as pathways, 

phenoypes, drugs and other diseases (e.g., ErbB signaling pathway, primary peritoneal 

carcinoma, paclitaxel, fallopian tube cancer, etc.). Their differences are based on 

known and predicted bioactive compounds, due to the fact that these are selected from 

large pools of compounds that have direct relationship to the genes/proteins in the 

corresponding graph. When we omit ligands and only focus on the biological 

mechanism related components, the graph identity between breast and ovarian cancers 

is around 35%. On the other hand, breast/ovarian and osteosarcoma intersection only 

included 3 nodes and 3 edges that involve the TP53 gene (Figure 4.6), which was 

expected since TP53 mutations are critical in almost all types of cancer. The results of 
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use case analysis indicate that CROssBAR constructs diverse and stable graphs 

specific to the user query term(s). 

 

(a) 
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(e)                                                                         (f)                          

 

Figure 4.6. CROssBAR knowledge graph diversity analysis use case, intersection 

graphs between: (a) breast cancer and ovarian cancer, (b) breast cancer and 

osteosarcoma, (c) ovarian cancer and osteosarcoma, (d) breast cancer, ovarian cancer, 

and osteosarcoma (triple-wise) queries. Venn diagrams displaying the statistics of 

shared: (e) nodes, and (f) edges, between KGs of different query terms. 

Since the first analysis is only a use case conducted on 3 sample disease queries, we 

further investigated the matter with a quantitative test on a larger dataset. In our second 

experiment, we aimed to evaluate whether highly studied, and thus highly connected 

biological/biomedical entities tend to be presented in our graphs with high frequencies. 

This would be undesirable as it would mean certain terms usually end up in the graphs 

no matter what is searched for (i.e., the problem of limited diversity). To test this, we 

selected 20 terms from each biological/biomedical component (a total of 140 terms) 

that are among the most connected, by checking the number of their associations 

(degree) to different genes/proteins in our database. Then, we checked how many 

times these highly connected terms are presented in CROssBAR KGs. First, to 

construct these graphs, we queried randomly selected genes/proteins, Reactome and 

KEGG pathways, EFO and KEGG diseases, HPO terms, drugs and compounds one by 

one, and in combination with each other, on the CROssBAR web-service, resulting in 

a total of 1365 KGs. To evaluate whether selected highly connected terms are over-

represented in CROssBAR KGs we applied Fisher’s exact test independently for each 

term with the null hypothesis stating that the corresponding term is presented in KGs 

with an observed frequency (i.e., for a term D, observed frequency is given by; gD/G, 

where gD is the number of KGs in which term D is presented, and G is the total number 

of KGs in the analysis) same as its expected frequency based on its general 

connectivity (i.e., for a term D, expected frequency is given by; t*MD/Msum, where t 

is the number of terms/nodes in each KG from the same biological component as term 

D, MD is the total number of genes/proteins that are associated with term D, and Msum 

is the total number of associations between all genes/proteins and all terms in the same 

biological component as term D). In the case that the null hypothesis is true, we would 

conclude that the system is not successful in terms of eliminating promiscuous/hub 

terms, and they are frequently presented in KGs probably because they are connected 

to many other terms in the database. On the other hand, a statistically significant 

deviation from the null hypothesis with an observed frequency of presence in KGs 

lower than the expected frequency would indicate that these hub terms are not 
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Figure 4.7. Bar graphs indicating observed and expected frequencies (overlapping bars 

with different shades of colors) for each of the 140 selected highly connected/hub terms 

in 1365 CROssBAR KGs constructed with random term queries. “*” indicate that the 

corresponding observed frequency is statistically significantly lower compared to the 

expected frequency according to Fisher’s exact test. 

presented in KGs as it would be expected based on their high connectedness, instead, 

they are successfully eliminated by our pipeline. We left compounds out of this 

analysis since their expected frequency values are extremely low due to their high 

number (e.g., 654051 compounds have at least 1 target association). The results of this 

analysis are displayed in Figure 4.7 as bar graphs drawn for each of the 140 terms, 

where observed and expected frequencies are shown within overlapping bars with 

different colors (“*” indicate that the corresponding observed frequency is 

significantly lower compared to the expected frequency). These results are also 

displayed in Table S7 together with contingency table values used in statistical testing 

and the resulting significance (p-values). It is observed from the results of this analysis 

that 117 out of 140 highly connected terms are significantly less represented in 

CROssBAR KGs compared to their expected frequencies. Among these 117 terms, 22 

highly connected ones (e.g., 14 HPO terms, 2 Reactome pathways and 6 drugs) were 

not presented in any KGs at all. 
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Furthermore, to evaluate the diversity of graphs independent from any set of pre-

selected terms, we calculated pairwise node identity percentages between all KG pair 

combinations (930930 measurements between pairs of 1365 KGs) and drew a 

histogram of these values in log scale (Figure 4.8). This histogram indicates that the 

node identity distribution roughly follows a power law distribution in the linear-scale, 

except for 106 graph pairs with a node identity value of 100%. We investigated these 

cases and found out that they either belong to query terms from two different source 

databases that indicate the exact same biological entity (e.g., disease entries from EFO 

and KEGG databases: "Orphanet:98820: Familial focal epilepsy with variable foci" 

and “H02214: Familial focal epilepsy with variable foci”) or query terms with a close 

semantic relationship in the respective ontology (e.g., phenotype terms: “HP:0012693: 

Abnormal thalamic size” and “HP:0012695: Decreased thalamic volume”, or 

Reactome pathways: “R-SSC-937039: IRAK1 recruits IKK complex” and “R-SSC-

975144: IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation”), that have the 

same gene/protein associations. Therefore, they should not be taken into account. The 

mean node identity value of the distribution is 0.9% (dashed vertical line in Figure S5), 

which is significantly lower compared to the identity value observed between KGs of 

2 cancer types with similar biological mechanisms (i.e., breast and ovarian cancers 

with 30% pairwise node identity), even lower than the identity value observed between 

KGs of 2 dissimilar types of cancer (i.e., breast/ovarian cancers and osteosarcoma with 

8% pairwise node identity) in the use case experiment given above. It is also important 

to note that, approximately 98.8% of the graph pairs have less than 10% node identity 

values, indicating the high diversity of CROssBAR KGs. 

 

Figure 4.8. Pairwise node identity percentage histogram (in log scale) between all KG 

pair combinations in our 1365 CROssBAR knowledge graphs constructed with 

random term queries. 

Finally, we calculated observed frequencies of all terms that are presented in our 1365 

randomly generated KGs and plotted the results as biological component specific bar 

graphs, in which different terms are presented on the horizontal axis and their 

respective observed frequencies are shown on the vertical axis (terms are ranked from 

the highest observed frequency to the lowest) in Figure 4.9. On each panel, terms from 

a distinct biological component are shown, together with their mean values as dashed 
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lines. As shown in Figure 4.9, observed frequency values of even the most frequent 

terms are considerably low (between 0.012 and 0.055) for all components except 

KEGG pathways. Moreover, these most frequent terms only constitute a very small 

portion of the total number of terms in their respective components, which is also 

indicated by low component-wise mean observed frequency values (dashed lines). For 

example, the mean frequency value considering core proteins is 0.0025, meaning that, 

on average a gene/protein is presented in only 1 out of 400 different KGs. Core 

genes/proteins with the highest observed frequencies are LNMA (P02545), MAPT 

(P10636) and RAB9A (P51151) with frequency values of 0.057, 0.043 and 0.036, 

respectively. KEGG pathways are presented in KGs with a mean observed frequency 

of 0.035 (highest among all biological components), and the most frequent pathways 

are “Metabolic pathways” (hsa01100), “Neuroactive ligand-receptor interaction” 

(hsa04080), and “PI3K-Akt signaling pathway” (hsa04151) with 0.227, 0.123 and 

0.100, respectively. This was expected since the total number of KEGG signaling 

pathways are 248 and 10 of them are included in each KG. Also, the one with the 

highest frequency, “Metabolic pathways”, is an umbrella term containing several 

pathways.  
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Figure 4.9. Biological component-wise bar graphs indicating observed frequencies (in 

vertical axis) of all terms (in horizontal axis by ranking the terms according to 

decreasing frequencies) that are presented in our 1365 CROssBAR knowledge graphs 

constructed with random term queries. Dashed lines correspond to mean values of 

observed frequencies. 



91 

 

Biological component-wise bar graphs indicating observed frequencies (in vertical 

axis) of all terms (in horizontal axis by ranking the terms according to decreasing 

frequencies) that are presented in our 1365 CROssBAR knowledge graphs 

constructed with random term queries. Dashed lines correspond to mean values of 

observed frequencies. 

4.4.5. Graph Construction Runtime Tests 

Building a CROssBAR knowledge graph is a complex procedure that involves 

multiple rounds of API queries and quantitative analyses of query results to represent 

the most relevant nodes and edges as the output. With the aim of observing the 

practicality of this procedure, we conducted runtime tests by measuring the time (in 

seconds) that pass from submitting the initial user query to the finalization of the 

output KG. For this, we utilized the same 1365 random user queries explained in the 

previous section, which are composed of single term searches of 198 genes/proteins, 

92 Reactome pathways, 100 KEGG pathways, 99 EFO diseases, 100 KEGG diseases, 

199 HPO terms, 199 drugs and 186 compounds, together with 192 combinatory 

queries composed of one random term from each component (i.e., gene/protein, 

pathway, disease, phenotype, drug and compound). The resulting runtimes are shown 

in Figure 4.10 as histograms, where queries of distinct components are given in 

different panels, and median times are indicated by vertical dashed lines. As observed 

from Figure 4.10, runtimes are variable both between the queries of the same 

component and across different components. Among single term queries, drugs and 

Reactome pathways constitute the fastest queries with median runtimes of 30 and 29 

seconds, respectively, and HPO terms constitute the slowest with 62 seconds. Besides, 

combinatory term queries took approximately 70 seconds on average. These results 

indicate that, on average, it is practical to query CROssBAR web-service and generate 

KGs on-the-fly. It is also important to note that runtimes are approximately linearly 

correlated with the number of collected core genes/proteins, and thus, querying terms 

that are associated with high number of genes/proteins (i.e., complex signaling 

pathways, generic HPO terms, etc.) can take significantly longer compared to mean 

times shown here. Runtimes also depend on the availability of servers. 
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Figure 4.10. Biological component-wise query runtime histograms of 1365 

CROssBAR knowledge graphs constructed with random term queries. 
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4.5. Conclusion 

The CROssBAR offers a comprehensive system that integrates and distills large-scale 

biomedical data from diverse sources, presenting it through heterogeneous knowledge 

graphs (KGs). The main aim of CROssBAR is to facilitate the interpretation of 

biological big data by providing a user-friendly interface that presents coherent and 

easily understandable information. 

This chapter specifically focuses on the KG construction module of the CROssBAR. 

KGs are powerful representations of heterogeneous data, showcasing relationships 

between different types of entities in a semantic context. CROssBAR KGs enable the 

exploration of high-level, indirect relationships between specific entities, unveiling 

hidden connections and facilitating data-driven approaches. The incorporation of 

overrepresentation analysis enhances the relevance and significance of the included 

terms, ensuring the graphs represent meaningful relationships between biological 

components. In CROssBAR, due to the way the overrepresentation analysis is done, 

specific sub-pathways are incorporated from the Reactome database in most cases, 

whereas the generic pathway information is incorporated into KGs via KEGG. As a 

result, pathway information is displayed at different levels of specificity, and thus, not 

redundant in knowledge graphs. The analyses conducted on the diversity, stability, 

and feasibility of the constructed KGs demonstrate their reliability and practicality, 

validating their potential for use in various domains of life sciences research. 

We presented a use-case of the system by constructing two COVID-19 KGs. First, the 

large-scale version, in which nearly the whole of the COVID-19 related data recently 

accumulated in our source databases are integrated, organized, and presented. Second, 

the simplified version, where the aim was to provide users with a source that is suitable 

for quick exploration since the large-scale KG is not easily explorable due to its huge 

size. We saved the pre-constructed COVID-19 KGs, which are directly accessible and 

viewable through the links given on our web-service 

(https://crossbar.kansil.org/covid_main.php). It is also important to note that, due to 

the content of integrated data resources, CROssBAR heavily contains rare and 

complex disease data, and mostly leaves infectious diseases out. Nevertheless, the 

constructed COVID-19 graphs provide rich biomedical information. 

Overall, the CROssBAR system empowers researchers by organizing and presenting 

vast amounts of heterogeneous data, enabling them to gain novel insights, identify 

potential targets, and expedite the discovery of innovative treatment solutions. With 

its user-friendly interface and comprehensive data integration, CROssBAR has the 

potential to revolutionize biomedical research across various domains. 
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CHAPTER 5 

  

5. LARGE-SCALE PREDICTION OF DRUG-TARGET INTERACTIONS 

VIA GRAPH REPRESENTATION LEARNING 

5.1. Chapter Overview 

Recent developments in data-driven approaches have facilitated the processing and 

interpretation of vast quantities of biomedical data for drug discovery and 

development. As a new and practical data structure, heterogeneous knowledge graphs 

(KGs) have the capacity to represent complex relationships between different layers 

of biomedical data. In relation to that, graph neural networks (GNNs) have emerged 

as a novel modelling technique for the inference of graph-based data; however, the 

majority of GNN algorithms are restricted to homogenous graphs and cannot handle 

heterogeneous data with multiple types of nodes and edges. Here, we propose a new 

type of systems-level compound-protein interaction (CPI) representation and 

subsequent prediction framework called HetCPI, which uses large-scale biomedical 

KGs obtained from the CROssBAR system as input. To process these biomedical KGs 

for bioactivity prediction, we employed the heterogeneous graph transformer (HGT) 

architecture, which handles graph heterogeneity and maintains node- and edge-type 

dependent representations through its attention mechanism. HetCPI has yielded 

promising results on challenging protein family-specific benchmark CPI datasets, in 

comparison to baseline and state-of-the-art methods. HetCPI is anticipated to aid 

computational drug discovery by leveraging direct and indirect relationships in 

molecular and cellular processes for bioactivity prediction, thereby accelerating the 

development of new treatments. 

5.2. Introduction 

Drug discovery is a complex process involving the identification and optimization of 

compounds that interact selectively with intended target biomolecules to produce the 

desired therapeutic effect. Due to the extremely dynamic and complex structure of 

biological systems, there are numerous factors that influence the outcome of the 

process. Therefore, computational drug discovery cannot be handled by simple virtual 

screening alone. On the other hand, taking a systems-based approach that integrates 

and utilizes direct and indirect relationships in molecular and cellular processes, 

including protein-protein interactions, drug/compound-protein interactions, and 

signaling/metabolic pathways, together with high-level concepts such as protein-

disease relationships, drug-disease indications, pathway-disease modulations, and 

phenotypic implications, could increase the success rate of drug discovery. 
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Advancements in data analysis techniques have facilitated the processing and 

interpretation of large-scale biomedical data. One of the most promising relationship-

centric data types for this purpose is the knowledge graph (KG), which can represent 

complex associations between different layers of biomedical data. Earlier approaches 

for constructing biomedical KGs mainly rely on incorporating different biomedical 

databases in the RDF (Resource Description Framework) format under a unified 

framework and querying through SPARQL (Antezana et al., 2009; B. Chen et al., 

2010). Current construction methods primarily involve extracting information from 

unstructured text in biomedical literature, often from databases like PubMed (Bakal et 

al., 2018; Bougiatiotis et al., 2020; S. Yu et al., 2022). These methods involve mining 

relationships between various biomedical entities from the textual content of scientific 

articles and then representing them as subject-predicate-object semantic triples, 

forming the basis of the KG. Another recent approach for biomedical KG construction 

is based on the integration of diverse biomedical data types from multiple structured 

sources via cross-references between these sources for mapping. This approach 

generally maintains the data using a graph database architecture like Neo4j, where 

entities and their relationships are represented as a network of interconnected nodes 

and edges. This allows for efficient retrieval and querying of the data using graph-

based query languages such as Cypher. Successful applications of these integrative 

approaches include HetioNet (Himmelstein et al., 2017), BioGrakn (Messina, Pribadi, 

et al., 2018), CROssBAR (Doǧan et al., 2021), Bioteque (Fernández-Torras et al., 

2022) and SPOKE (Morris et al., 2023).  

Graph neural networks (GNNs) have emerged as a promising modeling technique for 

the inference of graph-based data by aggregating information from the nodes' 

neighbors to generate node (or edge) embeddings. However, the majority of GNN 

methods are restricted to homogeneous graphs or bipartite graphs. Thus, they cannot 

handle heterogeneous data with multiple types of nodes and edges (Hu et al., 2020). 

Most GNN applications for DTI prediction rely on the utilization of protein and 

compound structures as graphs rather than the use of heterogeneous biomedical data 

(Liao et al., 2022; Torng & Altman, 2019; Yang et al., 2022). Some existing 

applications incorporating graph-based heterogeneous biomedical data for DTI 

prediction have primarily focused on drug-drug and protein-protein 

similarity/interaction networks, as well as protein-drug interaction bipartite graphs, 

which follow a similar approach to similarity-based ML methods (Thafar et al., 2020, 

2022; W. Wang et al., 2022; Yue & He, 2021). However, recent efforts have emerged 

to benefit from more comprehensive and diverse heterogeneous biomedical graph data, 

including associations of proteins/genes, drugs/compounds, diseases, side effects, and 

other relevant information (X.-H. Chen et al., 2023; Jiang et al., 2022; J. Li et al., 2022; 

Z. Liu et al., 2021; J. Peng et al., 2021; Tian et al., 2022; Wan et al., 2019; Zhou et al., 

2021). In the study of Liu et al., a graph autoencoder approach called GADTI was 

proposed for DTI prediction (Z. Liu et al., 2021). GADTI utilizes a heterogeneous 

network that integrates diverse datasets related to drugs and targets, including DTI, 

drug–drug and protein-protein interaction, drug–disease, drug-side effects, and 

protein–disease association, drug chemical structure similarity, and protein sequence 

similarity. It combines a GCN and random walk with restart (RWR) in its encoder and 

employs a DistMult matrix factorization model for the decoder. The success of GADTI 

is attributed to its ability to aggregate multi-hop neighborhood information while 
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avoiding over-smoothing. Peng et al. introduce EEG-DTI, an end-to-end learning-

based framework for DTI prediction. It can simultaneously optimize the feature 

extraction process and model parameters for the final prediction task in an end-to-end 

fashion (J. Peng et al., 2021). EEG-DTI utilizes a heterogeneous network comprising 

multiple types of biological entities (i.e., drug, protein, disease, and side-effect) and 

employs multi-layer GCN architecture to handle graph heterogeneity and learn low-

dimensional feature representations of drugs and targets for DTI prediction. Compared 

to existing methods, EEG-DTI demonstrates enhanced performance in DTI prediction. 

In another study, Ye et al. present KGE_NFM, a unified framework for DTI prediction 

that combines KG and a recommendation system (Ye et al., 2021). The framework 

first learns low-dimensional representations for different entities in the KG via 

DistMult embedding model and then integrates multimodal information using a neural 

factorization machine (NFM). KGE_NFM was evaluated under realistic scenarios and 

achieved accurate and robust predictions on different benchmark datasets. In a very 

recent study by Chen et al., two frameworks, AutoInt_KG and MolGPT_KG, were 

developed based on the heterogeneity information of transporter-related KG extracted 

by the RESCAL model to improve drug-transporter prediction and efficient drug 

design (X.-H. Chen et al., 2023). AutoInt_KG utilizes KG-embeddings and sequence 

features to predict potential transporters for small molecules via the interaction layer 

based on the multi-head self-attention mechanism, achieving reliable performance on 

natural product validation. MolGPT_KG employs KG embeddings and drug SELFIES 

representations to generate drug-like small molecules targeting specific transporters. 

These studies highlight the promising use of heterogeneous biomedical data to 

improve DTI prediction models. By implementing more advanced GNN approaches 

specifically designed to handle heterogeneous graphs, the effectiveness and potential 

of these methods can be further enhanced.  

In this chapter, we present a new type of systems-level compound-protein interaction 

(CPI) representation and prediction framework called HetCPI. As its input data, 

HetCPI utilizes large-scale biomedical KGs constructed by the CROssBAR system 

(Doǧan et al., 2021), which integrates a wide range of publicly available biomedical 

data sources to build heterogeneous graphs composed of genes/proteins, pathways, 

diseases, phenotypes, drugs and compounds, together with their multifaceted 

relationships. HetCPI employs the heterogeneous graph transformer (HGT) 

architecture (Hu et al., 2020) to learn from highly heterogeneous KGs, extracting node- 

and edge-type dependent representations via its attention mechanism. This allows 

HetCPI to effectively capture the complex patterns/webs of biological relationships 

and generate integrative representations to be used for the subsequent CPI prediction 

task. To evaluate the performance of HetCPI, we carried out benchmarking 

experiments on our target protein family-specific bioactivity datasets containing 

different stratified data splits (see Chapter 3) and compared the results with leading 

CPI prediction methods from the literature. Furthermore, we conducted a use-case 

study based on the predictions for druggable and non-druggable protein samples to 

further evaluate the robustness and reliability of our models. Competitive performance 

results of HetCPI as well as consistent outcomes in the use-case study indicate the 

potential of our KG-based approach to improve the accuracy and efficiency of virtual 

screening, leading to the discovery of new and effective treatments for a wide range 

of diseases.  
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5.3. Materials and Methods 

5.3.1. Dataset Construction 

For the construction of graph-based bioactivity datasets enriched with multiple 

biological/biomedical relationships, we used the CROssBAR web service. The step-

by-step operations below were applied to build these graph structures: 

1) A CROssBAR bulk search was performed to construct KGs of all reviewed 

human proteins in UniProt (i.e., 20,173 protein entries in SwissProt) (The 

UniProt Consortium, 2021) by querying each protein entry with parameters;  

predictions=0, num_of_drugs=100, num_of_compounds=100 where other 

parameters were set as default. Here, we set predictions parameter to 0 to 

exclude predicted bioactivities due to lower confidence level compared to 

experimentally measured bioactivities and approved DTIs. 

2) For each protein family-specific bioactivity dataset in the first chapter (i.e., 

epigenetic-regulators, ion-channels, membrane-receptors, transcription-

factors, transporters, hydrolases, oxidoreductases, proteases, transferases, and 

other-enzymes), KGs of proteins belonging to the corresponding family were 

merged. Therefore, each bioactivity dataset was converted into a KG structure 

that involves other types of nodes including pathways, phenotypes, diseases 

apart from proteins and compounds, and relationships such as protein-protein 

interactions, protein-disease associations, drug-disease indications etc..  

3) Proteins not having KGs were removed from bioactivity datasets. Missing 

compounds or protein-compound interactions involved in filtered datasets but 

not involved in graphs were merged into graphs with their bioactivity edges. 

4) To prevent data leakage, edges of compounds in KGs were removed if they 

interact with dataset proteins but this interaction is not involved in bioactivity 

datasets, mainly due to version difference of ChEMBL bioactivity database 

(Mendez et al., 2019) or assay type filtration. Duplicate nodes and edges in 

graphs were also removed to prevent redundancy.  

5) After constructing KGs based on protein family-specific datasets, bioactivity 

edges involved in test datasets were removed for each split set (i.e., fully-

dissimilar-split, dissimilar-compound-split, random-split). Thus, 3 different 

train/test split versions of each family-specific KG were generated.  

6) Most of the compounds in KGs only relate to one or a few target protein nodes. 

Therefore, split versions of KGs become disconnected after the removal of test 

edges. To provide graph connectivity, disconnected compound nodes were 

reconnected via compound-compound similarity edges. Pairwise compound 

similarities were calculated using the simsearch function of the Chemfp python 

package (Dalke, 2019), and compound pairs with a similarity score higher than 

0.5 were merged into graphs as edges. 

We also introduced a larger KG version as an alternative to this version. In this new 

version (i.e., integrated CROssBAR KGs), we incorporated all CROssBAR KGs 

generated in step 1 instead of solely merging KGs of proteins involved in family-
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specific datasets. The following steps (steps 3-6) remained the same. Based on 

preliminary findings, this version became the primary choice for subsequent analyses. 

To compare our final models with state-of-the-art models, we used the filtered Davis 

kinase benchmark dataset, employing the same setup as the MDeePred study 

(Rifaioglu et al., 2021). The KG trained and tested on the Davis dataset consists of 

7,567 train and 1,518 test data points, which is 7,600 and 1,525 in the MDeePred study. 

The difference is due to the absence of KGs for three proteins (UniProt IDs: Q07785, 

P62344, and P9WI81) in CROssBAR since they belong to Plasmodium falciparum 

and Mycobacterium tuberculosis organisms. 

Table 5.1 presents node and edge statistics of protein family-specific KG datasets in 

the first version for each split set. Table 5.2 provides node-type statistics of these KGs, 

which remain consistent across all splits. Table 5.3 displays the node- and edge-type 

statistics for the integrated CROssBAR KG version, also employed for three split 

forms of each protein family, along with the data points from the Davis dataset. 

Table 5.1. Node and edge statistics of protein family-specific KG datasets for (a) fully-

dissimilar-split, (b) dissimilar-compound-split, (c) random-split strategy 

(a) 

Fully-dissimilar-split    

Protein family Node number Edge number Component size 

epigenetic-regulators 16,620 184,348 141 

hydrolases 48,755 481,505 265 

ion-channels 31,117 998,961 104 

membrane-receptors 106,555 2,505,460 295 

other-enzymes 18,277 181,085 51 

oxidoreductases 35,621 417,517 71 

proteases 55,970 1,162,614 144 

transcription-factors 18,712 292,462 72 

transferases 120,569 3,255,118 188 

transporters 18,555 306,128 128 
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(b) 

Dissimilar-compound-split    

Protein family Node number Edge number Component size 

epigenetic-regulators 16,620 184,441 60 

hydrolases 48,755 481,449 244 

ion-channels 31,117 998,965 96 

membrane-receptors 106,555 2,506,142 250 

other-enzymes 18,277 179,971 90 

oxidoreductases 35,621 416,904 89 

proteases 55,970 1,162,145 128 

transcription-factors 18,712 292,466 55 

transferases 120,569 3,254,123 172 

transporters 18,555 306,234 55 

 

(c) 

Random-split    

Protein family Node number Edge number Component size 

epigenetic-regulators 16,620 184,388 40 

hydrolases 48,755 481,542 265 

ion-channels 31,117 998,973 51 

membrane-receptors 106,555 2,506,136 41 

other-enzymes 18,277 179,557 47 

oxidoreductases 35,621 416,971 50 

proteases 55,970 1,162,239 50 

transcription-factors 18,712 292,499 53 

transferases 120,569 3,253,553 90 

transporters 18,555 306,596 18 

 

Table 5.2. Node-type statistics of protein family-specific KG datasets  

Node type Hydrolases Proteases Oxidoreductases Transferases Other enzymes 

Protein 246 183 147 583 103 

Protein_N 1,688 1,203 924 3,866 784 

Drug 1,920 1,896 1,734 3,136 1,122 

Compound 40,590 49,456 29,756 105,424 13,917 

Pathway 1,138 854 767 1,994 662 

kegg_Pathway 234 216 223 244 216 

HPO 1,794 1,279 1,160 3,305 840 

Disease 678 521 519 1,234 360 

kegg_Disease 467 362 391 783 273 
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Node type 
Epigenetic 

regulators 

Ion 

channels 

Membrane 

receptors 

Transcription 

factors 
Transporters 

Protein 96 103 257 56 93 

Protein_N 803 455 1,157 445 547 

Drug 1,070 855 1,961 822 1,003 

Compound 12,751 27,940 99,691 16,112 15,061 

Pathway 543 468 881 334 478 

kegg_Pathway 175 160 203 147 177 

HPO 754 708 1,471 435 678 

Disease 247 248 538 190 307 

kegg_Disease 181 180 396 171 211 

 

Table 5.3. (a) Node- and (b) edge-type statistics of the integrated CROssBAR KGs.  

 (a)                                                        (b) 

node_type size 

Compound 422,617 

Protein 23,419 

HPO 8,971 

Drug 5,420 

Disease 3,815 

Pathway 3,184 

kegg_Disease 1,879 

kegg_Pathway 245 

TOTAL 469,550 

 

 

5.3.2. The Representation of Graph Nodes 

Graph representation learning algorithms allow us to predict unknown relationships 

on a graph by incorporating topological structures of graphs via the learning process. 

However, it requires a knowledge transfer of nodes represented with feature vectors. 

Although it is possible to randomly initialize feature vectors or to use trivial solutions 

such as one-hot encodings, utilizing more representative features or embeddings to 

capture hidden patterns of nodes increases the success rate of graph models. Here, we 

used the representation approaches below as attributes of each node type: 

- Proteins were represented by combined vectors of transformer-avg 

embeddings (vector size: 768), apaac descriptors (vector size: 80), and k-

sep_pssm descriptors (vector size: 400) as well-performing protein 

representations overall based on the results of the benchmark chapter. We also 

evaluated the performance of a recently promising learned embedding method 

prott5 (Elnaggar et al., 2021) on filtered human bioactivity datasets of the 

edge_type size 

comp_sim 10,256,336 

Chembl 629,590 

PPI 91,443 

HPO 39,466 

Pathway 32,706 

hpodis 24,259 

kegg_path_prot 19,407 

Drug 15,342 

Disease 7,270 

kegg_dis_prot 5,911 

kegg_dis_path 1,682 

kegg_dis_drug 298 

TOTAL 11,123,710 
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transferase, protease, and ion-channel families along with other well-

performing conventional descriptors (i.e., apaac and k-sep_pssm) and learned 

embeddings (i.e., unirep1900 and transformer-avg) with the same benchmark 

setup (Table 5.8), but it couldn’t outperform the others. Biotech drugs were 

also represented by protein embeddings (i.e., transformer-avg embeddings) 

since they are composed of amino acid sequences. 

- Compounds/Small molecule drugs were represented by our in-house developed 

SELFIES embedding approach called “SELFormer” (vector size: 768) (Yüksel 

et al., 2023). It is a transformer-based NLP model that employs a large-scale 

pre-training methodology on 2 million molecules in their SELFIES notations 

to learn flexible and high-quality molecular representations. It performed 

competitive results with MolBERT (Fabian et al., 2020) and ChemBERTa 

(Chithrananda & Ramsundar, 2020) embedding approaches on molecular 

analysis tasks. Alternatively, we constructed models based on the ECFP4 

fingerprints (vector size: 1024) of compounds and small molecule drugs. 

- Pathway representations (vector size: 200) were obtained using TransE 

embedding method via BioKEEN library (Ali et al., 2019). It utilizes a gene-

pathway association network to generate representations. For Reactome 

pathways, we also used pre-calculated Bioteque KG embeddings (vector size: 

128) (Fernández-Torras et al., 2022; Rifaioglu et al., 2021) generated on gene-

pathway-disease metapath using a random walk method, which became our 

final choice. 

- HPO phenotype term embeddings (vector size: 160) were retrieved from 

CADA tool (C. Peng et al., 2021). It is a node2vec-based embedding method 

that uses a gene-phenotype association network as the input graph, which 

includes disease-level annotations and clinical cases-level annotations.  

- Disease embeddings (vector size: 100) were obtained using the doc2vec 

method based on PrimeKG (Chandak et al., 2022) disease definitions. If 

PrimeKG definition is not available, the description of the disease was taken 

from its source, and if it has no description, then its name was used as input. 

5.3.3. Model Design and Architecture 

To generate a reliable and powerful GNN-based CPI prediction model, the selection 

of input graph data is as critical as the selection of the algorithm, feature vectors, and 

hyperparameters. Here, we use integrated CROssBAR KGs merged with protein 

family-specific bioactivity datasets to construct our CPI prediction framework, 

HetCPI. CROssBAR KGs include only prioritized nodes and edges that are most 

relevant to the query entry rather than a whole set of biological interactions, which 

eliminates redundancy and provides clean data that may be more informative for the 

prediction of CPIs. To process these heterogenous KGs for bioactivity prediction, we 

used heterogeneous graph transformer (HGT) architecture (Hu et al., 2020) and 

excluded all bioactivities (i.e., compound-protein edges) from the input graph to 

prevent data leakage during the message passing procedure, using them only in the 

prediction part. The HGT model proposed by Hu et al outperforms all the state-of-the-
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art GNN baselines for various downstream tasks on the Open Academic Graph with 

179 million nodes and 2 billion edges (Hu et al., 2020). 

Figure 5.1 displays the schematic workflow of the HetCPI system. The learning 

process starts with the transfer of knowledge among nodes through their initial 

attributes, represented by input node feature vectors.  This information is fed into the 

HGT algorithm, which embeds each target node into a lower dimensional space by 

leveraging meta-relations to handle graph heterogeneity. Once the embeddings are 

obtained via HGT architecture, the HetCPI system performs an edge regression task 

by calculating the dot products of the compound and protein embeddings for each pair 

in the training set, which serve as predicted bioactivity measurements. In addition, the 

system offers an alternative model design (HetCPI-3FC) where compound and protein 

representations are concatenated instead of using dot products. These concatenated 

vectors then pass through three fully-connected layers to generate predictions. To train 

the model, the loss is computed for the true and predicted bioactivity values of the 

compound-protein pairs using the mean squared error (MSE) loss function. The weight 

parameters employed by the HGT architecture are then updated through the 

backpropagation process, using Adam optimization. This iterative process continues 

until the loss decreases to a satisfactory level. Following the training phase, the model 

generates predictions for the samples in the validation and test sets using the 

embeddings updated based on the final weights. These predictions are then used to 

evaluate the performance of the model. 

We employed HGT architecture primarily due to its ability to handle graph 

heterogeneity and maintain node- and edge-type dependent representations. It achieves 

this via heterogeneous mutual attention, heterogeneous message passing, and target-

specific aggregation steps that incorporate information from source nodes in order to 

generate a contextualized representation for each target node. These steps are 

explained below: 

1) Heterogeneous mutual attention: HGT introduces a new mechanism for attention 

calculation that considers the meta-relations between nodes. Inspired by Transformer 

architecture (Vaswani et al., 2017), it maps the target node t to a Query vector Q (4), 

and the source node s to a Key vector K (3) with linear projection. Then, instead of 

directly taking the dot product of the Query and Key vectors like the vanilla 

Transformer, it uses different weight matrices (𝑊𝐴𝑇𝑇) for each edge type (𝜙(𝑒)) to 

calculate the attention matrix for h heads, allowing it to capture different semantic 

relationships between nodes (2). Additionally, a prior tensor (𝜇) is introduced to 

represent the general significance of each meta-relation triplet (<𝜏(𝑠),𝜙(𝑒),𝜏(𝑡)>) since 

not all the relationships contribute equally to the target nodes, which is divided by 

square root of the vector dimension per head (√𝑑). It serves as an adaptive scaling 

factor for attention. To obtain the attention vector of each node pair, multiple attention 

heads are concatenated. Then, for each target node t, the attention vectors are gathered 

from its neighboring source nodes N(t), and the softmax function is applied to ensure 

attention weights that sum up to 1 across the source nodes (1). Given a graph with the 

input node features 𝐻(𝑙−1), the h-head attention score for each edge (𝑠,𝑒,𝑡) is computed 

as follows: 

             𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑠,𝑒,𝑡) = Softmax∀𝑠∈N(𝑡) (||𝑖∈[1,ℎ]𝐴𝑇𝑇 − ℎ𝑒𝑎𝑑𝑖(𝑠,𝑒,𝑡))                   (1) 
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          𝐴𝑇𝑇 − ℎ𝑒𝑎𝑑𝑖(𝑠,𝑒,𝑡) = (𝐾𝑖(𝑠)𝑊𝐴𝑇𝑇𝜙(𝑒)𝑄𝑖(𝑡)⊤)⋅(𝜇<𝜏(𝑠),𝜙(𝑒),𝜏(𝑡)> / √𝑑)                    (2) 

                               𝐾  𝑖(𝑠) = K-Linear𝑖𝜏(𝑠)(𝐻(𝑙−1)[𝑠])                                                  (3) 

                                 𝑄𝑖(𝑡) = Q-Linear𝑖𝜏(𝑡)(𝐻(𝑙−1)[𝑡])                                                   (4) 

2) Heterogeneous message passing: Parallel to the calculation of mutual attention, 

HGT performs message passing from source nodes to target nodes. Similar to the 

attention process, this process incorporates the meta relations of edges into the 

message passing to address the distribution differences of nodes and edges of different 

types. For each pair of nodes e = (s,t), the HGT calculates a multi-head message by 

projecting the source node s into message vectors M and using a matrix (𝑊𝑀𝑆𝐺) to 

incorporate edge dependency (6). Multiple message heads (h) are concatenated to 

obtain the message for each node pair (5). The message to send on each edge (𝑠,𝑒,𝑡) is 

computed as follows: 

                          𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑠,𝑒,𝑡) = ||𝑖∈[1,ℎ]𝑀𝑆𝐺−ℎ𝑒𝑎𝑑𝑖(𝑠,𝑒,𝑡)                                      (5) 

                   𝑀𝑆𝐺 − ℎ𝑒𝑎𝑑𝑖(𝑠,𝑒,𝑡) = M-Linear𝑖𝜏(𝑠)(𝐻(𝑙−1)[𝑠])𝑊𝑀𝑆𝐺𝜙(𝑒)                            (6) 

3) Target-specific aggregation: After the calculation of heterogeneous mutual attention 

and message passing, the HGT aggregates the information from the source nodes to 

the target node. The attention vectors obtained from the softmax procedure in the first 

step (𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑠,𝑒,𝑡)) serve as weights to average the corresponding messages from 

source nodes (𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑠,𝑒,𝑡)) to get the updated vector (𝐻 ̃(𝑙)[𝑡]). This aggregation 

process is performed for all target nodes, incorporating information from their 

neighboring source nodes of different feature distributions (7). The updated vector for 

each target node is then mapped back to its type-specific distribution using a linear 

projection followed by a non-linear activation and residual connection (8). The output 

vector (𝐻(𝑙)[𝑡]) of the l-th HGT layer for the target node t is computed as follows: 

                       �̃�(𝑙)[𝑡] = ∑∀𝑠∈N(𝑡) (𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑠,𝑒,𝑡)⋅𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝑠,𝑒,𝑡))                          (7) 

                       𝐻(𝑙)[𝑡] = 𝜎(A-Linear𝜏(𝑡) �̃�(𝑙)[𝑡]) + 𝐻(𝑙−1)[𝑡]                                             (8) 

By stacking multiple HGT blocks for L layers, where L is a small value, the HGT 

enables each node to reach a large proportion of nodes with different types and 

relations in the full graph. This results in highly contextualized representations for 

each node, which can be used for various downstream tasks in heterogeneous 

networks, such as node classification and link prediction. 

The HGT's architecture is designed to leverage the meta-relations to parameterize the 

weight matrices separately. By distinguishing operators for different relations, the 

HGT can effectively handle distribution differences in heterogeneous graphs while 

still achieving parameter sharing. This approach benefits relations with few 

occurrences by enabling fast adaptation and generalization while maintaining specific 

characteristics for different relationships through a smaller parameter set. 
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Figure 5.1. The schematic representation of the HetCPI framework. (The HGT part of 

the figure was adapted from Hu et al. (Hu et al., 2020)). 

5.4. Results and Discussion 

This section comprises multiple subsections that present a comprehensive evaluation 

of the HetCPI system across various settings, accompanied by multiple analyses. The 

first subsection presents the preliminary results obtained from models generated to 

determine optimal design choices and identify suitable hyperparameter ranges. The 

second subsection focuses on the performance analysis of the final HetCPI models 

developed for transferases and membrane receptors, along with a comparison against 

baseline RF regression models. The third subsection compares HetCPI models with 

state-of-the-art bioactivity prediction models using the well-known Davis kinase 

benchmark dataset. In the subsequent subsection, an applicability domain analysis of 

HetCPI models is performed to assess their usability. The final section presents a use-

case study that further supports the reliability and robustness of the HetCPI framework. 
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5.4.1. Preliminary Results 

To conduct these trials, we mainly utilized dissimilar-compound-split datasets of 

proteases KGs due to a manageable sample size of this protein family, allowing us to 

perform a substantial number of trials within a reasonable timeframe. We evaluated 

the performances using the same evaluation metrics in Chapter 3, including RMSE, 

Spearman, and MCC scores. 

5.4.1.1. Hyperparameter search 

To search for optimal hyperparameters of models, we split train samples into 80/20 

train/validation sets and used the random search method for the hyperparameter ranges 

given below with epoch number 20: 

- hidden channels: 8, 16, 32, 64, 128  

- learning rate: 1e^-5, 0.0001, 0.001, 0.005, 0.01 

- head number: 1, 2, 4, 8, 16 

- layer number: 1, 2, 3, 4 

- train batch size: 128, 256, 512, 1024 

- weight decay: 0, 1e^-5, 5e^-5, 0.0001, 0.001 

Then, we rerun promising models with higher epoch numbers and calculated model 

performances. Table 5.4 and Table 5.5 display hyperparameters and performance 

scores of the ten top-performing models ranked by test Spearman scores, respectively. 

The best model reaches 0.41 for Spearman’s correlation and 0.30 for MCC (i.e., 

median corrected) on the test set while 0.60 (Spearman) and 0.42 (MCC) on the 

validation set. The score differences between the validation and test set are expected 

since the compound samples in the test set are not similar to the ones in the 

train/validation set on the dissimilar-compound-splitting strategy.  

Table 5.4. Hyperparameters of top ten models on dissimilar-compound-split of 

proteases dataset. 

Model 

Name 

Epoch 

Number 

Hidden 

Channels 

Learning 

Rate 

Head 

Number 

Layer 

Number 

Batch  

Size 

Weight 

Decay 

model 1 100 32 0.0001 16 1 256 0.00001 

model 2 200 32 0.01 8 1 256 0.00005 

model 3 200 16 0.0001 1 3 128 0.001 

model 4 100 32 0.0001 4 1 128 0.001 

model 5 200 128 0.0001 1 1 1024 0.001 

model 6 500 32 0.0001 8 2 256 0.00005 

model 7 500 128 0.0001 1 1 1024 0.001 

model 8 200 16 0.001 4 2 256 0.00005 

model 9 200 64 0.0001 8 1 512 0 

model 10 200 128 0.0001 2 1 1024 0.00001 
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Table 5.5. Performance scores of top ten models on dissimilar-compound-split of 

proteases dataset. 

Model 

Name 

Test 

Loss 

Test 

MCC 

Test 

RMSE 

Test 

Sp. 

Train 

Loss 

Valid. 

Loss 

Valid. 

MCC 

Valid. 

Sp. 

model 1 1.612 0.295 1.360 0.407 1.209 1.234 0.421 0.597 

model 2 1.742 0.304 1.331 0.382 1.297 1.340 0.411 0.566 

model 3 1.610 0.277 1.358 0.369 1.194 1.193 0.444 0.617 

model 4 1.700 0.215 1.392 0.354 1.215 1.230 0.441 0.602 

model 5 1.670 0.242 1.385 0.346 1.277 1.284 0.414 0.581 

model 6 1.735 0.254 1.368 0.345 0.887 0.950 0.550 0.714 

model 7 1.805 0.201 1.442 0.344 1.124 1.154 0.454 0.629 

model 8 1.800 0.256 1.420 0.335 1.050 1.144 0.482 0.660 

model 9 1.824 0.187 1.425 0.333 1.052 1.139 0.481 0.647 

model 10 1.851 0.194 1.442 0.326 1.210 1.332 0.421 0.591 

* Median correction was applied for the calculation of MCC and RMSE scores. 

* Sp.: Spearman’s correlation, Valid.: Validation 

5.4.1.2. Different settings for model design 

We made several changes to the architecture of the top model in Table 5.5 using the 

same hyperparameter values to further investigate the impact of various variables on 

model performance. This time, we didn’t split the train set into train/validation folds. 

The following are the configurations that we assessed: 

- loss function: mse_loss (default), l1_loss 

- feature scaling: unscaled (default), standard scale 

- dropout: applied, not applied (default) 

- neighbor_size in train batches: -1 (include all neighbors for train edges in the batch, 

default), 4*2 (include 4 neighbors for 2 levels), 3*3, 4*3 

- activation function: relu (default), leaky_relu 

- pooling function: sum (default), mean 

- 2 fully-connected layers: added (fc_2*), not added (default)  

- train/test edges: excluded from graphs (default), added only train edges (only-tr-

edg), added both edges (tr-ts-edg) 

 

Table 5.6 presents the results of the modified models based on the aforementioned 

arrangements with epoch number 100. We made some inferences from these findings 

that might be useful in the development of the model architecture. First of all, using 

standard scaling for features, dropout function for regularization, or leaky relu function 

for the activation yielded lower performance results than the model with default 

settings. Involving only train bioactivity edges in the graph instead of removing or 

adding both train and test edges decreased performance, as well. Other setups such as 

adding fully-connected layers, selecting different loss and pooling functions, or the 

neighbor size in train batches gave competitive results with the default model. Hence, 
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they might be reconsidered in the optimization and finalization phases of the models 

to enhance performances.  

Table 5.6. Performance scores of the models in different design setups 

Model Name 
Train 

Loss 

Test 

Loss 

Test 

MCC 

Test 

RMSE 

Test 

Spearman 

tr-ts-edg 1.106 1.704 0.375 1.296 0.485 

default 1.184 1.678 0.318 1.291 0.452 

fc_2*hd-128_l1_loss 0.835 1.057 0.327 1.305 0.450 

fc_2*hd-128 1.164 1.694 0.309 1.300 0.444 

l1_loss 0.871 1.048 0.349 1.305 0.443 

neigh_4*2_l1_loss 0.899 1.049 0.301 1.319 0.433 

neigh_4*3_l1_loss_mean 0.897 1.026 0.299 1.297 0.429 

l1_loss_mean 0.884 1.044 0.291 1.305 0.427 

neigh_3*3 1.246 1.707 0.260 1.308 0.427 

tr-ts-edg_l1_loss 0.835 1.076 0.337 1.345 0.427 

neigh_3*3_l1_loss_mean 0.899 1.034 0.318 1.306 0.425 

neigh_4*2_l1_loss_mean 0.903 1.028 0.309 1.300 0.423 

fc_2*hd-512 1.094 1.778 0.294 1.315 0.417 

neigh_3*3_l1_loss 0.888 1.053 0.304 1.325 0.417 

neigh_4*3_l1_loss 0.887 1.050 0.290 1.325 0.414 

leaky-relu_ 1.132 1.774 0.278 1.337 0.414 

neigh_4*2 1.287 1.753 0.265 1.325 0.408 

tr-ts-edg_fc_2*hd-128_l1-loss 0.796 1.102 0.304 1.361 0.383 

l1_loss_dropout 0.920 1.267 0.231 1.346 0.374 

standard-scale 0.720 2.021 0.303 1.413 0.372 

dropout 1.355 2.550 0.219 1.331 0.368 

only-tr-edg_l1_loss 0.834 3.069 0.264 2.412 0.361 

only-tr-edg 1.107 6.852 0.237 1.431 0.355 

standard-scale_l1-loss 0.659 1.162 0.280 1.498 0.328 

5.4.1.3. Ablation study based on the removal of different graph components and 

relations 

We performed an ablation study to investigate the effect of different graph node/edge 

types on learning. After the removal of each component and relation type, we rerun 

models five times with epoch number 80 and averaged performances. Based on the 

Spearman test performance results displayed in Table 5.7, the removal of compound-

compound similarities (i.e., no_ccs, 0.34), hpo term- and biotech drug-related 

associations (i.e., no_hpo & no_bd, 0.35 & 0.368), and protein-protein interactions 

(i.e., no_ppi, 0.393) significantly reduced performance compared to the default model, 

which includes all interactions (0.455). The single contribution of compound-

compound similarities is very high (i.e., cpi_ccs, 0.411) when compared to the baseline 



109 

 

model, which only includes compound-protein interactions (0.34). The absence of 

disease-related associations (i.e., no_dis, 0.437) caused a slight decrease in 

performance while the removal of pathway-related associations (i.e., no_path, 0.46) 

slightly increased the performance. The removal of small-molecule drug-related 

associations (i.e., no_smd, 0.451) didn’t affect performance. Moreover, the single 

contributions of pathways (i.e., cpi_path, 0.327) and small-molecule drugs (cpi_spi, 

0.325) were worse than the baseline model (0.34). However, the involvement of small-

molecule drug-related associations along with biotech drugs and pathways slightly 

increased performance (i.e., no_path, 0.46) compared to the model “cpi_ccs_ppi_hpo” 

(0.457). One of the reasons for the slight negative effect of pathway associations on 

performance might be the inclusion of noise through attributes of these nodes if their 

representation capability is poor. To further explore and handle this situation, we can 

train models with alternative options of pathway node attributes.  

Table 5.7. Test performance scores of the models in the ablation study. 

Model Name Involved edges MCC RMSE Spearman 

no_path cpi_ccs_ppi_bpi_spi_hpo_dis 0.317 1.279 0.460 

cpi_ccs_ppi_hpo cpi_ccs_ppi_hpo 0.316 1.286 0.457 

all_included (default) cpi_ccs_ppi_bpi_spi_hpo_dis_path 0.332 1.282 0.455 

no_smd_path cpi_ccs_ppi_bpi_hpo_dis 0.333 1.290 0.452 

no_smd cpi_ccs_ppi_bpi_hpo_dis_path 0.348 1.293 0.451 

cpi_ccs_hpo cpi_ccs_hpo 0.325 1.285 0.443 

no_dis cpi_ccs_ppi_bpi_spi_hpo_path 0.322 1.297 0.437 

cpi_ccs_ppi_bpi_hpo cpi_ccs_ppi_bpi_hpo 0.317 1.301 0.428 

cpi_ccs cpi_ccs 0.275 1.306 0.411 

no_ppi cpi_ccs_bpi_spi_hpo_dis_path 0.240 1.331 0.393 

no_bd cpi_ccs_ppi_spi_hpo_dis_path 0.263 1.341 0.368 

no_hpo cpi_ccs_ppi_bpi_spi_dis_path 0.276 1.371 0.350 

no_ccs cpi_ppi_bpi_spi_hpo_dis_path 0.271 1.356 0.342 

only_cpi_included 

(baseline) 
cpi 0.260 1.338 0.340 

cpi_path cpi_path 0.266 1.362 0.327 

cpi_spi cpi_spi 0.271 1.352 0.325 

* cpi: compound-protein interactions, ccs: compound-compound similarities 

   bpi: biotech drug-protein interactions, spi: small-molecule drug-protein interactions 

   ppi: protein-protein interactions,  

   smd, bd: nodes/edges belonging to small molecule drugs (smd) and biotech drugs (bd) 

   path, dis, hpo: all associations belonging to pathway (path), disease (dis), and phenotype (hpo) terms 

We also compared these results with the protein representation comparison study 

mentioned in Section 5.3.2. (The representation of graph nodes). The top-performing 

graph models above compete with these RF models (Table 5.8), but they need to be 

tuned to surpass the best-performing RF models. 
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Table 5.8. Test performance scores of RF regression models on dissimilar-compound-

split of human proteases bioactivity dataset. 

Model Name RMSE Spearman MCC 

apaac 1.276 0.446 0.301 

k-sep_pssm 1.259 0.485 0.325 

prott5 1.279 0.446 0.299 

transformer-avg 1.269 0.466 0.325 

unirep1900 1.285 0.439 0.304 

5.4.2. Utilization of Alternative Node Attributes and Integrated CROssBAR KGs for 

Model Construction 

In this part, we extended our analyses by developing models based on the integrated 

CROssBAR KGs, which were trained on dissimilar-compound-split datasets of 

proteases and transferases. These models were then compared with their corresponding 

family-specific KG versions. We also utilized alternative node attributes for Reactome 

pathway nodes (i.e., Bioteque embeddings) and proteins (i.e., apaac and k-sep_pssm 

descriptors). Moreover, we removed all edges between compound-protein pairs. In our 

case, these edges signify the presence of experimental bioactivity measurements, 

rather than indicating the actual interaction between the pairs because the prediction 

task here is an edge regression based on the prediction of real bioactivity 

measurements. However, the edges between compound-protein pairs involved in 

CROssBAR KGs represent the presence of bioactivity for corresponding pairs with a 

pChEMBL threshold higher than 5. Therefore, including these edges for the message-

passing process can introduce bias into our predictions. 

The hyperparameter values used for the models in this subsection are as follows:  

- hidden channels: 32 (for transferases), 64 (for proteases),  

- train batch size: 256 (for family-specific KGs of proteases), 512 (for all the others), 

- weight decay: 1e^-5 (for proteases), 5e^-5 (for transferases), 

- epoch number: 25 (for proteases), 60 (for integrated CROssBAR KGs of proteases), 

100 (for family-specific KGs of proteases), 

- learning rate: 0.0001, head number: 8, layer number: 3. 

Based on the findings in Table 5.9, models utilizing integrated CROssBAR KGs 

consistently outperformed models utilizing family-specific KGs for both protein 

families. While some models exhibited similar performance across both versions (e.g., 

tr_btq for transferases), there is a notable difference in general (e.g., Spearman (Sp.) 

score of tr-ap-ks_btq model is 0.53 and 0.44 for integrated-CROssBAR KGs and for 

family-specific KGs on transferases, respectively). As an alternative strategy to these 

modelling approaches, we developed a single model trained on integrated CROssBAR 

KGs using training data from all families, rather than conducting family-specific 

training. We evaluated the performance of this model on aggregated test data from all 

families, as well as by considering predictions for each family independently. 

Although the overall results on the combined test samples were moderate (Sp.: 0.47), 

the family-specific calculations yielded poorer scores (transferases: 0.476 (Sp.), 

proteases: 0.378 (Sp.)) compared to the models based on the family-specific training. 
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Therefore, we decided not to employ the model trained on all data points from all 

families. 

In terms of node attributes, Bioteque Reactome pathway embeddings seem a better 

alternative than BioKEEN embeddings (default embedding utilized in the models 

above), providing a slight but consistent increase in performance (e.g., tr-ap-ks_btq: 

0.529 (Sp.), tr-ap-ks: 0.522 (Sp.) on transferases; tr_btq: 0.481 (Sp.), tr: 0.451 (Sp.) on 

proteases for integrated-CROssBAR KGs). For protein representations, there is no 

consistent outcome valid for all families. Their effect varies among different protein 

families, parallel to the results of the ProtBENCH study in Chapter 3. For transferases, 

combinations of transformer embeddings with apaac and k-sep_pssm descriptors 

yielded the best performance while utilizing transformer embedding alone achieved 

higher performance than the others.  

Overall, based on these outcomes, we determined several key points for the design 

choices of our finalized HetCPI system. For input KG, we constructed our models 

using integrated CROssBAR KGs rather than family-specific KGs and trained 

independently for each bioactivity dataset instead of merging their data points. For 

node attributes, we replaced Reactome pathway BioKEEN embeddings with Bioteque 

embeddings. For protein embeddings, we combined transformer, apaac, and k-

sep_pssm representations for transferases. 

Table 5.9. Test performance scores of models constructed using different node 

attribute types and alternative KG versions on dissimilar-compound-split bioactivity 

datasets of human proteases and transferases. 

Model 

Name 

Protein 

Family 
KG Spearman 

Med. Cor. 

MCC 

Med. Cor. 

RMSE 

tr-ap-ks_btq transferases integrated-CROssBAR 0.529 0.395 1.066 

tr-ap-ks transferases integrated-CROssBAR 0.522 0.359 1.076 

tr-ap_btq transferases integrated-CROssBAR 0.511 0.371 1.091 

tr_btq transferases family-specific 0.509 0.375 1.077 

tr_btq transferases integrated-CROssBAR 0.505 0.344 1.073 

ap_btq transferases integrated-CROssBAR 0.497 0.353 1.095 

tr transferases integrated-CROssBAR 0.491 0.344 1.080 

ap transferases integrated-CROssBAR 0.458 0.361 1.115 

tr-ap-ks_btq transferases family-specific 0.443 0.373 1.128 

tr_btq proteases integrated-CROssBAR 0.481 0.355 1.266 

tr_btq proteases family-specific 0.452 0.308 1.280 

tr proteases integrated-CROssBAR 0.451 0.388 1.284 

tr-ap-ks_btq proteases integrated-CROssBAR 0.414 0.271 1.327 

ap proteases integrated-CROssBAR 0.409 0.280 1.313 

tr-ap_btq proteases integrated-CROssBAR 0.385 0.282 1.323 

* tr: transformer, ap: apaac, ks: k-sep_pssm (protein representations),  

  btq: Bioteque Reactome pathway embeddings 
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5.4.3. Model Performance Evaluation for Different HetCPI Architectures 

Transferases are one of the most prominent protein families with a high number of 

protein members that have a significant role in drug discovery. Therefore, the finalized 

models of the HetCPI system are specifically designed for transferases. To determine 

the optimal model architecture for the HetCPI system, we constructed alternative 

model structures that incorporate three fully-connected (FC) layers. These layers take 

the compound and protein embeddings generated from the HGT layer as the input. 

Instead of computing the dot product between these embeddings, they are merged 

together by concatenation and sequentially passed through the FC layers. We also 

investigated the contribution of ECFP4 compound fingerprints and compared them 

with SELFormer embeddings in terms of their effect on model performance. To 

compare the HetCPI models with baselines, we constructed random forest (RF) 

regression models since RF is a widely used algorithm in CPI prediction. These RF 

models utilized the initial protein and compound node attributes of the HetCPI models 

as input features. Furthermore, we developed additional baseline models to investigate 

whether the models could effectively learn protein and compound embeddings through 

heterogeneous graphs using the HGT algorithm. These baseline models were 

constructed by excluding the HGT module from the HetCPI architecture and 

processing initial protein and compound embeddings either computing their dot 

products (DP_SELFormer and DP_ECFP4) or passing through 3-FC layers 

(3FC_SELFormer and 3FC-ECFP4).  

For the optimization of these models, we performed a hyperparameter search on our 

three different stratified datasets for the transferases (146,677 data points in total, with 

the train/test ratio of 17:1 -average for three splits-): "fully-dissimilar-split" (predicting 

new inhibitors for new targets), "dissimilar-compound-split" (predicting novel 

inhibitors for known targets), and "random-split" (predicting known inhibitors for 

known targets). We split the training samples into 95/5 train/validation sets with a 

close range to train/test ratio and used the random search method for the 

hyperparameter ranges given below with epoch number 5, weight decay 0, and dropout 

0.5: 

- hidden channels: 16, 32, 64, 128  

- learning rate: 0.0001, 0.0005, 0.001, 0.005 

- head number: 4, 8, 16, 32 

- layer number: 1, 2, 3 

- train batch size: 128, 256, 512, 1024 

After determining the hyperparameters, we further fine-tuned the epoch number. The 

total run time of models ranges from 20 minutes to 5.5 hours, depending on the model 

architecture and selected hyperparameters. These computations were performed using 

an NVIDIA RTX A5000 graphic card equipped with 24 GB of GPU memory. The 

selected hyperparameter sets for each split are as follows (Table 5.10): 
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Table 5.10. Hyperparameters of the finalized HetCPI models on fully-dissimilar-split 

(FDS), dissimilar-compound-split (DCS), and random-split (RS) datasets of 

transferases. 

Dataset 

Split 

Epoch 

Number 

Hidden 

Channels 

Learning 

Rate 

Head 

Number 

Layer 

Number 

Batch  

Size 

FDS1 20, 40 32 0.0001 8 2 512 

FDS2 20 32 0.0005 32 2 256 

DCS 25, 100, 300 32 0.0001 8 3 512 

RS 50, 100, 250, 300, 500  128 0.001 16 1 1024 

FDS1 – 20 epoch: HetCPI_ECFP4, HetCPI_SELFormer 

FDS1 – 40 epoch: DP_ECFP4, HetCPI-3FC_SELFormer, 3FC_SELFormer 

FDS2: DP_SELFormer, HetCPI-3FC_ECFP4, 3FC_ECFP4     

DCS: 3FC_SELFormer (100 epoch), 3FC_ECFP4 (300 epoch), all remaining models (25 epoch) 

RS – 50 epoch: HetCPI_ECFP4, HetCPI-3FC_ECFP4 

RS – 100 epoch: DP_ECFP4 

RS – 250 epoch: HetCPI_SELFormer, HetCPI-3FC_SELFormer 

RS – 300 epoch: 3FC_SELFormer, 3FC_ECFP4 

RS – 500 epoch: DP_SELFormer 

In Figure 5.2, bar plots display model performances based on Spearman and median 

corrected MCC scores. To obtain error bars and assess the significance of the 

performance differences between models, we conducted five runs for each model and 

computed the averages. Although paired t-test is commonly used for model 

performance comparison, it is not suitable in most cases due to the violation of the 

independence assumption. To address this, we employed the deep-significance tool, 

which enables statistical testing for DL models using techniques like Almost 

Stochastic Order (ASO). ASO compares two score distributions instead of comparing 

their means and calculates the epsilon minimum (eps_min) value. A model performs 

better than the other if its eps_min value is less than 0.5, where lower values indicate 

a more confident result (Ulmer et al., 2022).  

As shown in Figure 5.2, HetCPI_SELFormer (i.e., the default HetCPI architecture) 

consistently outperformed the baseline models across all splits for transferases except 

for the random split, where RF_ECFP4 model is stochastically dominant over other 

models (eps_min: 0.0, confidence level: 0.95). In the random-split set, 3FC_ECFP4 

baseline model also performed better than HetCPI models, which means that graph-

based learning did not provide an advantage over simpler baseline models for easy 

scenarios. Although the performance of different HetCPI architectures varies across 

dataset splits, HetCPI_SELFormer outperforms other HetCPI architectures in 

challenging scenarios (i.e., fully-dissimilar-split and dissimilar-compound-split sets), 

excluding HetCPI_ECFP4 for the fully-dissimilar-split set. Based on the eps_min 

score of HetCPI_SELFormer, which is 1 for comparison with HetCPI_ECFP4 

Spearman and 0.38 for HetCPI_ECFP4 MCC (median corrected), and 0 for all other 

comparisons, we can state that HetCPI_SELFormer model is stochastically dominant 

over other models in fully-dissimilar-split and dissimilar-compound split sets with a 

confidence level 0.95. Its superior performance compared to DP and 3FC baseline 

models also provides strong validation for the meaningful learning of representations 
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through the heterogeneous graph learning approach in challenging scenarios. This 

indicates that leveraging the rich information encoded in the heterogeneous graph 

structure leads to improved predictive capabilities. 

The usage of ECFP4 compound fingerprints is advantageous for the 3 FC-layered 

models and the random split set compared to SELFormer embeddings. In fact, 

SELFormer performed much better in challenging scenarios for the models without 3 

FC layers. In the random split, HetCPI models with ECFP4 fingerprints outperformed 

other HetCPI models but were unable to surpass the baseline RF_ECFP4 and 3FC-

ECFP4 model. These results indicate that ECFP4 is more effective at capturing 

patterns between similar data, while SELFormer is more suitable for identifying 

deeper patterns that can be helpful in inferring data from structurally different 

compounds. However, this observation is valid only for HetCPI models and does not 

provide an advantage in RF models, indicating that advanced algorithms are necessary 

to fully exploit the potential of SELFormer. The inclusion of 3 FC layers did not lead 

to an improvement in model performance, which is a usual trend observed in most DL 

models, as well.  

Another significant outcome is the robustness of HetCPI models against mean shifting 

problem in regression tasks, as they yielded higher scores even without applying 

median correction (Appendix A Table 5.1). As expected, the challenging dataset splits 

resulted in relatively lower performance for both the baseline RF and the HetCPI 

models, compared to the random split scenario. In summary, the impressive 

performance of HetCPI models in challenging scenarios is encouraging and suggests 

that these models possess great adaptability to real-world CPI prediction scenarios. 

This adaptability is a crucial factor for their practical usefulness and applicability.  
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Figure 5.2. Bar plots of Spearman and median corrected MCC scores of HetCPI and 

baseline models with different architecture alternatives on the dissimilar-compound-

split of the transferases test dataset. 

5.4.4. Performance Comparison with State-of-the-Art (SOTA) Models 

To fairly compare the HetCPI system with the state-of-the-art CPI prediction models 

in the literature, we used the filtered Davis kinase benchmark dataset (9,125 data points 

in total, with the train/test ratio of 5:1) with the same settings used in the MDeePred 

study (Rifaioglu et al., 2021). For the MCC score, instead of taking the median of 

training bioactivity values as the threshold, three threshold values 1 uM, 100 nM, and 

30 nM were used, respectively. In addition to the evaluation metrics above, we 
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calculated the average area under precision-recall curve (AUPRC) and the 

concordance index (CI) scores for the comparison of SOTA models. AUPRC measures 

the trade-off between precision and recall across different decision thresholds by 

calculating the area under the precision-recall curve using interpolation methods. It 

ranges from 0 to 1, where 1 indicates perfect precision and recall (Boyd et al., 2013). 

For computing the average AUPRC score, ten interaction threshold values from the 

pKd interval [6 M, 8 M] were considered to binarize pKds into true class labels. CI for 

a set of paired data (i.e., compound-protein pairs) represents the probability that the 

predictions for two randomly selected pairs are correctly ordered based on their 

respective labels (i.e., pKd values). It ranges from 0 to 1, where 1 indicates perfect 

agreement between the predicted and observed rankings, and is used to evaluate the 

discriminatory power of a predictive model (Gönen & Heller, 2005). The formula used 

for the calculation of CI is given below: 

                                    CI = 1/Z ∑γi>γjh(fi−fj),                                                           (1) 

where fi and γi represent the predicted and real binding affinity values for the ith 

pair, respectively. Z is a normalization constant equal to the number of pairs and h(u) 

is a step function, which returns 1.0, 0.5 and 0.0 for u > 0, u = 0 and u < 0, 

respectively.  

The selected hyperparameters after model optimization are as follows:  

- hidden channels: 128,  

- train batch size: 256  

- weight decay: 0.001, 

- epoch number: 800, 

- learning rate: 0.0001,  

- head number: 64,  

- layer number: 2, 

- dropout: 0.1 

Based on the findings presented in Table 5.11, the HetCPI-3FC_ECFP4 model 

demonstrates strong competitiveness with SOTA models for bioactivity prediction. It 

performs exceptionally well in CI and MCC (100 nM) scores and achieves scores 

comparable to the best-performing methods in other metrics. The performance scores 

of different HetCPI model architectures align with the random-split case of 

transferases. However, it is important to note that the Davis kinase benchmark dataset 

is a medium-scale dataset with significantly fewer datapoints compared our family-

specific large-scale datasets. Therefore, it may not be representative enough, despite 

its common usage in DTI prediction studies. Additionally, the dataset is split 

randomly, which make the prediction task easier and can lead to overoptimistic results 

due to a lack of generalizability. Consequently, while the HetCPI models yield 

competitive or even superior performance results compared to other SOTA models, 

we believe that the Davis dataset and other widely used benchmark datasets for DTI 

prediction may not provide results that accurately reflect real-world scenarios. Thus, 

they may not be suitable for addressing this complex biological problem 

comprehensively. 
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Overall, the results highlight the potential of HetCPI as a KG-based learning approach. 

By utilizing the rich structural and contextual information encoded in KGs, HetCPI 

demonstrates its capability to offer meaningful insights and accurate predictions for 

compound-protein bioactivities.  

Table 5.11. Performance comparison with SOTA models on the filtered Davis dataset. 

Standard deviations are given in parentheses. 

Method CI RMSE Spearman 
Average 

AUPRC 

MCC*  

(1 uM) 

MCC  

(100 nM) 

MCC  

(30 nM) 

HetCPI-3FC 

_ECFP4 

0.744 

(0.012) 

0.702 

(0.017) 

0.649 

(0.024) 

0.776 

(0.006) 

0.41 

(0.055) 

0.59 

(0.013) 

0.58 

(0.01) 

HetCPI-3FC 

_SELFormer 

0.728 

(0.008) 

0.746 

(0.022) 

0.615 

(0.019) 

0.749 

(0.007) 

0.35 

(0.037) 

0.561 

(0.018) 

0.562 

(0.024) 

HetCPI_ECFP4 
0.707 

(0.007) 

0.895 

(0.026) 

0.56 

(0.024) 

0.69 

(0.019) 

0.347 

(0.015) 

0.5 

(0.022) 

0.526 

(0.015) 

HetCPI 

_SELFormer 

0.706 

(0.005) 

0.863 

(0.019) 

0.554 

(0.014) 

0.699 

(0.009) 

0.343 

(0.038) 

0.501 

(0.023) 

0.517 

(0.033) 

MGraphDTA 
0.74 

(0.002) 

0.695 

(0.009) 

0.654 

(0.005) 
- - - - 

MDeePred 
0.733 

(0.004) 

0.742 

(0.009) 

0.618 

(0.009) 

0.803 

(0.006) 

0.424 

(0.014) 

0.572 

(0.011) 

0.585 

(0.01) 

CGKronRLS 
0.74 

(0.003) 

0.769 

(0.01) 

0.643 

(0.008) 

0.773 

(0.01) 

0.422 

(0.009) 

0.564 

(0.016) 

0.617 

(0.029) 

DeepDTA 
0.653 

(0.005) 

0.931 

(0.015) 

0.430 

(0.013) 

0.529 

(0.018) 

0.229 

(0.051) 

0.298 

(0.04) 

0.208 

(0.035) 

* The MCC classification metric was calculated by binarizing the predictions as active and inactive at 

the thresholds of 1 uM, 100 nM, and 30 nM. 

5.4.5. Exploring the Predictive Power of HetCPI for Extreme Values 

Predicting extreme values accurately can be quite challenging when using regression 

models, as these models typically focus on capturing overall trends and patterns in 

data. In this subsection, we examined how well the HetCPI model handles these values 

and evaluated its potential applicability in scenarios where extreme values are 

particularly important. We compared the predicted bioactivity distributions (i.e., 

median corrected) of HetCPI and baseline RF model with the real distribution of test 

data points in the dissimilar-compound-split set of transferases. Figure 5.3 

demonstrates that the HetCPI distribution bears a closer resemblance to the actual 

distribution in comparison to the RF model. In the RF model, most predictions are 

concentrated around the mean value of the training dataset (i.e., 6.94), resulting in a 

narrower range between 5 and 9. Although HetCPI also exhibits a similar range of 

distribution, it is more balanced with a higher number of predictions in ranges of 5-6 

and 8-9. However, both models struggle to predict values below 5 and above 9, 

indicating their limited capability to predict extreme values in challenging scenarios.  
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(a) 

 

(b) 

 

Figure 5.3. Bioactivity distributions of real values, HetCPI predictions, and RF 

predictions, (a) both collectively and (b) separately, for test data points in the 

dissimilar-compound-split set of transferases.  

To quantitatively analyze the results shown in Figure 5.3, we calculated the percentage 

of data falling within specific thresholds and computed Spearman scores for the 

samples in those ranges. We also determined the percentages of true positives (TPs) 

for thresholds above 6.97 (i.e., the median value of the training dataset as the 

active/inactive cut-off), and true negatives (TNs) for thresholds below 6.97. As 

displayed in Table 5.12, the extreme bioactivity values within the 5-6 and 8-9 ranges 

correspond to approximately 15-19% of the experimental data, whereas the predicted 

values for these ranges are about 1-11%. The percentages drop to 3-5% for 

bioactivities below 5 and above 9 in the experimental data, while predictions have 

almost zero occurrences in these extreme ranges. Spearman performance scores of 

HetCPI and RF prediction models are also considerably low for these extreme ranges, 

where even slight deviations from real values greatly impact performance due to the 

limited data. These findings reveal the limitations of the models in accurately 
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predicting extreme values for regression tasks. Nevertheless, the notable percentages 

of TPs and TNs, especially for HetCPI, indicate their ability to correctly classify 

extreme values in binary classification. Although precise predictions in challenging 

cases are not the primary objective, employing data preprocessing techniques such as 

oversampling strategies can enhance the success rate of predicting extreme values by 

transforming imbalanced regression distributions into distributions that approximate a 

more uniform-like distribution. 

Table 5.12. Evaluation of HetCPI and RF model predictions for extreme bioactivity 

values in the dissimilar-compound-split of the transferases test set. 

Bioactivity 

threshold 

Real 

values 

(%) 

HetCPI 

predictions 

(%) 

RF 

predictions 

(%) 

Spearman 
HetCPI  

(%) * 

RF  

(%) 

HetCPI RF TP TN TP TN 

<5 5.81 0.14 0.0 0.059 0.134 - 85.0 - 80.7 

5-6 15.85 10.78 3.89 0.12 0.096 - 78.7 - 70.0 

8-9 18.75 5.26 1.75 0.141 0.094 86.0 - 77.3 - 

9< 3.15 0.0 0.02 0.066 0.252 85.2 - 78.0     - 

*Active/inactive cutoff: 6.97 (median value of the training dataset) 

5.4.6. Use-Case Study: Evaluation of Bioactivity Predictions for Druggable and 
Undruggable Proteins 

To further evaluate the robustness and reliability of HetCPI, we conducted a use-case 

study focusing on the predictions for druggable and undruggable proteins. As an 

example of a druggable protein, we selected PIM1 (Figure 5.4a). PIM1 is a proto-

oncogene with serine/threonine kinase activity that plays a vital role in cell growth, 

survival, and apoptosis. It exerts its oncogenic effects through the regulation of MYC 

transcriptional activity, control of cell cycle progression, and inhibition of 

proapoptotic proteins via phosphorylation. Notably, abnormal elevation of PIM1 is 

associated with various types of cancer. It is a promising cancer drug target, 

particularly in prostate cancer (Tursynbay et al., 2016). Figure 5.4a displays its co-

crystalized structure with a benzofuranone inhibitor (PDB ID: 5VUB). In our 

transferases training dataset (i.e., 138,297 data points in the dissimilar-compound-split 

set), PIM1 has 3,019 data points with a mean bioactivity value of 7.7. The PDB 

structure in Figure 5.4b belongs to the HER3 protein (PDB ID: 6OP9). HER3, also 

known as ERBB3, is a pseudo-kinase member of the EGFR family having a significant 

role in tumor progression and drug resistance. Unlike other kinases, its pseudo-kinase 

domain activates its partner HER family members, including HER2 and EGFR, 

through allosteric regulation. Despite its significance as a therapeutic target in various 

tumors, no HER3-directed therapies have received clinical approval so far (Haikala & 

Jänne, 2021). It has only 23 data points with a mean bioactivity value of 5.86 in our 

training dataset, which is very low compared to PIM1.  
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     (a)          (b) 

              

 

 

 

 

 

 

Figure 5.4. Co-crystalized 3-D structures of (a) PIM1 in complex with a 

benzofuranone inhibitor and (b) HER3 in complex with bosutinib. 

5.4.6.1. Comparing distributions of predicted bioactivities and prediction differences 

of druggable protein PIM1 and undruggable protein HER3 

We assessed the bioactivity predictions of PIM1 and HER3 against 422,617 

compounds in our KG and visualized their distributions, with the horizontal axis 

representing the normalized scores based on the mean bioactivity value of the training 

dataset (i.e., 6.94 -in log-scale-), and the vertical axis representing the counts (Figure 

5.5a). We also plotted the distribution of prediction differences of PIM1 and HER3 for 

each compound (Figure 5.5b). Figure 5.4a demonstrates a significant difference in the 

distributions of the two proteins (t-test score: -1518, p-value: 0.0). HER3 exhibits a 

considerably lower mean score compared to PIM1. Conversely, PIM1 demonstrates 

the opposite pattern, with a higher mean score. This discrepancy accurately reflects 

the druggability states of these well-known protein examples and underscores the 

discriminative capability of the HetCPI system. However, the predictions for HER3 

also include a small number of active compounds with bioactivity values higher than 

the mean bioactivity value of the training dataset (i.e., 1,508 data points, 0.36% of all 

compounds). While it is possible that some of these predictions may have high errors 

due to the imperfect nature of prediction models, it is also worth considering the 

possibility that some of these compounds could represent previously unknown 

bioactivities of HER3. There have been instances such as KRAS protein, which was 

initially considered undruggable but later successfully targeted with specific 

compound types (L. Huang et al., 2021). Therefore, active predictions for HER3 may 

also hold potential significance and merit further exploration through experimental 

investigations. 

Figure 5.5a also reveals a remarkably similar distribution shape for PIM1 and HER3 

proteins, with variations primarily observed in the ranges of the distributions. 

Although the differences between per-compound predicted bioactivities for two 

proteins do not follow a constant or uniform pattern (Figure 5.5b), ruling out the 

possibility of a technical issue or trivial predictions without meaningful learning, its 
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resemblance to the distributions in Figure 5.5a suggests a correlation between 

compound features and predictions that consistently yields similar rankings regardless 

of protein features, which appear to influence the values of bioactivity predictions. 

This situation may arise due to inherent limitations of the model, such as excessive 

convergence of protein and compound features due to the graph-based learning 

process, making it challenging to learn discriminative patterns effectively. Another 

limitation may be due to the natural bias present in experimental bioactivity data. 

Screening assays tend to be target-centric, resulting in protein-compound pairs being 

predominantly diversified by the compounds. Consequently, prediction models lean 

towards learning primarily from the compound side. To gain deeper insights into this 

phenomenon, further analyses can be conducted, such as exploring the learned features 

of the model and incorporating an interpretability module to understand the model 

behavior. Additionally, strategies like weighting protein features to enhance their 

influence during the learning process or investigating binding-specific protein 

characteristics that potentially contribute to the predictions could be explored. These 

approaches can help uncover the underlying factors driving the observed similarity in 

bioactivity prediction distribution shapes for these distinct proteins, leading to more 

robust and accurate prediction models. 

(a)                                                                   (b) 

 

Figure 5.5. Histograms of (a) normalized predicted bioactivity scores in log scale, and 

(b) prediction differences, for the undruggable protein HER3 and the druggable 

protein PIM1. 

5.4.6.2. Compound-centric analysis of PIM1 predictions 

We performed additional analyses on PIM1 predictions for 3,019 compounds having 

measured bioactivity values for PIM1 in the training dataset of transferases on 

dissimilar-compound-split. The model performance on these data samples yielded the 

following scores: 1.11 (RMSE), 0.75 (Spearman), and 0.36 (MCC) for HetCPI; 0.31 

(RMSE), 0.99 (Spearman) and 0.88 (MCC) for baseline RF model. While the number 

of test data points for PIM1 is limited, we also computed the performance scores for 

these 36 test data points to assess models’ behaviors on both seen and unseen samples. 

The results for the test data were as follows: 1.53 (RMSE), 0.74 (Spearman), and 0.20 

(MCC) for HetCPI; 1.62 (RMSE), 0.47 (Spearman), and 0.31 (MCC) for RF. HetCPI 
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predictions exhibit closer proximity to the real bioactivity values compared to RF 

predictions for the test data (i.e., better RMSE and Spearman scores). However, when 

evaluating the predictions in binary class format, there is only a one-sample difference 

between the models for 36 data points. This slight difference leads to a higher MCC 

score for the RF model, highlighting the sensitivity of MCC measurement to even 

minor variations when dealing with a limited number of samples. Considering both the 

training and test performance scores of the models for PIM1, we can infer that HetCPI 

demonstrates more consistent results between the training and test data compared to 

the baseline RF model. The notably high performance scores of the RF model on the 

training dataset, followed by a significant drop in performance on the test samples may 

indicate a potential issue of memorizing the training data. 

To explore whether specific groups of compounds exhibit higher or lower 

performance, we also performed clustering on the 3,019 compounds based on 

Tanimoto similarities using the Butina clustering function of RDKit, setting a cut-off 

of 0.5. Figure 5.6 displays the prediction error box plots of clusters with at least five 

members of 3,019 compounds. To calculate prediction errors, we computed the 

differences between the predicted and real bioactivity values of each sample, 

expressed as pChEMBL units. In this plot, blue bars represent clusters of compounds 

with overestimations, while red bars correspond to clusters with underestimations. 

Upon analyzing the median prediction errors of compound clusters, it was observed 

that the majority of clusters exhibited prediction errors within the range of -1 and 1. 

Additionally, there was a higher number of overestimations compared to 

underestimations across the clusters. 

 

Figure 5.6. Prediction error box plots of compound clusters having bioactivity 

measurements for PIM1 protein in the dissimilar-compound-split of the transferases 

training dataset. 

To examine these clusters more closely, we selected one representative compound 

structure from each cluster, including Cluster 87 and 133 (over-estimation), Cluster 17 

and 155 (close-estimation), and Cluster 89 and 92 (under-estimation). Table 5.13 
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displays these compounds along with their cluster groups, and experimental and 

predicted bioactivities, to exemplify the specific characteristics of their respective 

clusters and provide a clearer understanding of the over-estimation, close-estimation, 

and under-estimation patterns observed. One possible explanation for the over-

estimated compounds in Cluster 87 and 133 could be the presence of halogens (e.g., 

Br, Cl, F) in their structures. Halogens are commonly used substituents to enhance the 

potency of compounds against their protein targets due to their electronegativities 

(Wilcken et al., 2013). Since these halogen-containing groups are prevalent in many 

bioactive compounds, the model may have learned to associate these groups with 

increased bioactivity, resulting in higher predicted values for these compounds. On the 

other hand, the under-estimated compound groups can be attributed to the limitations 

of the model in predicting extreme values, as discussed in Section 5.4.5. Although the 

predicted values of these samples are considerably high, their experimental values are 

even higher. The structures of these compounds are less familiar, and their high 

bioactivity values are relatively rare in the training dataset, falling in the extreme 

range. This scarcity makes it challenging for the model to learn the discriminative 

properties specific to these compounds and accurately predict their bioactivities. 

Table 5.13. Representative compound structures of over-, close- and under-estimated 

clusters along with experimental and predicted bioactivities. 

Over-estimation 

Cluster 87 

(7 members) 

Experimental 

bioactivity: 

6.14 

Predicted 

bioactivity: 

8.05 

 
CHEMBL3911729 

Over-estimation 

Cluster 133 

(7 members) 

Experimental 

bioactivity: 

4.24 

Predicted 

bioactivity: 

6.96 

 
CHEMBL522916 
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Close-estimation 

Cluster 17 

(18 members) 

Experimental 

bioactivity: 9.0 

Predicted 

bioactivity: 

8.79 

 
CHEMBL3651904 

Close-estimation 

Cluster 155 

(6 members) 

Experimental 

bioactivity: 7.2 

Predicted 

bioactivity: 

7.26 

 
CHEMBL3684971 

Under-estimation 

Cluster 89 

(6 members) 

Experimental 

bioactivity: 

10.15 

Predicted 

bioactivity: 

7.97  
CHEMBL3944421 

Under-estimation 

Cluster 92 

(15 members) 

Experimental 

bioactivity: 

10.22 

Predicted 

bioactivity: 

7.64 
 

CHEMBL3810121 

5.5. Conclusion and Future Directions 

In this chapter, we introduced HetCPI, a novel framework for compound-protein 

interaction (CPI) representation and prediction. By leveraging large-scale biomedical 

knowledge graphs constructed by the CROssBAR system, HetCPI effectively captures 

the complex relationships between genes/proteins, pathways, diseases, phenotypes, 

drugs, and compounds. The heterogeneous graph transformer (HGT) architecture is 

employed to learn from these diverse biomedical relationships and generate integrative 

representations for CPI prediction that carries rich structural and contextual 

information encoded in KGs. Our benchmarking experiments on target protein family-
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specific bioactivity datasets demonstrate the superiority of HetCPI over baseline 

models, showcasing its adaptability and potential for realistic CPI prediction scenarios. 

Furthermore, the competitive performance of HetCPI against state-of-the-art models 

in bioactivity prediction validates its effectiveness as a KG-based learning approach. 

The outcomes of the use-case study on the predictions of druggable (PIM1) and 

undruggable proteins (HER3) with a significant difference in predicted bioactivity 

score distributions further support its reliability and robustness. Overall, HetCPI 

represents a significant advancement in the use of KGs and graph neural networks for 

virtual screening with the potential to contribute to the discovery of new and effective 

treatments for various diseases. We plan to generate predictions also for other human 

proteins and openly share HetCPI as a programmatic tool with the research 

community, which would foster collaboration and enable further exploration and 

refinement of the method. 

There are several promising avenues for further exploration and development. Firstly, 

expanding the application of HetCPI to additional protein families and disease areas 

holds great potential. By encompassing a broader range of targets and therapeutic 

areas, HetCPI can contribute to the discovery of novel drug candidates and facilitate 

personalized medicine approaches. Secondly, the integration of additional data sources 

into the KGs could further enhance the predictive power of HetCPI. Integrating new 

types of nodes and edges, such as cell-line information including drug sensitivity 

measurements, gene expression profiles, mutation annotations, biological ontologies 

including GO term annotations for molecular function, biological process, and cellular 

component, side effects and toxicity profiles of drug candidate compounds, and 

metabolomics data would provide a richer representation of diverse biological and 

chemical information. This way, inferences about preclinical and clinical study results 

can be provided, as well. Furthermore, the incorporation of an iterative active learning 

process during model training could facilitate more efficient and targeted data 

acquisition, leading to better model performance. 
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CHAPTER 6 

 

6. CONCLUSION  

This thesis study addresses the challenges and limitations in computational drug 

discovery and proposes innovative solutions to enhance the predictive capabilities of 

AI models in DTI/CPI prediction. The main objective is to contribute to the effective 

utilization of AI in drug discovery by developing robust and industry-applicable state-

of-the-art CPI prediction models.  

The study tackles several key problems concerning in silico prediction of DTIs. 

Primarily, it focuses on the limitations of existing AI models, including biases and 

incompleteness in training data. To overcome these limitations, the study introduces 

gold-standard protein family-specific benchmark datasets on a large scale that provide 

high-quality and diverse samples, along with realistic train/test split scenarios. This 

enables more reliable and reproducible evaluations of different DTI prediction models 

and promotes the development of accurate and applicable systems. The study offers a 

comprehensive perspective on the protein aspect of DTI prediction, which is often 

overshadowed by the focus on ligands, by exploring the representation capability of 

different protein featurization techniques. It demonstrates the potential of learned 

protein representations for widespread utilization in bioactivity modeling with 

competitive performance results compared to classical featurization approaches. 

Additionally, the study emphasizes the significance of dataset splitting for conducting 

realistic evaluations for drug and/or target discovery. It uncovers the limited ability of 

traditional ML algorithms to extrapolate data, as indicated by their lower performance 

on challenging dataset splits. 

Another issue addressed in this thesis is the neglect of multi-layered heterogeneous 

data in current AI models for DTI prediction. The interactions between ligands and 

proteins are highly complicated and dependent on molecular and cellular activities. To 

gain a deeper understanding of this complexity, it is important to consider the meta-

relations of proteins and compounds with other biomedical entities, going beyond 

similarity measurements and molecular properties. To effectively utilize this diverse 

data, we carried out the knowledge graph (KG) construction procedure of CROssBAR 

system, which comprises integrating large-scale biological/biomedical data from 

open-access data repositories and representing them in the form of heterogeneous and 

computable KGs. CROssBAR KGs provide sub-networks of interconnected entities 

including genes/proteins, diseases/phenotypes, biological processes/pathways, and 
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drugs/compounds. These entities are linked through a variety of relationships such as 

protein-protein interactions, protein-pathway associations, drug-disease indications, 

and disease-phenotype associations. CROssBAR KGs facilitate in-depth analysis of 

complex systems data, empowering researchers to address a wide range of biological 

challenges including the identification of compound-target interactions. 

This study also presents a novel systems-level approach called HetCPI, designed for 

compound-protein interaction (CPI) prediction. By utilizing cutting-edge 

heterogeneous graph learning algorithms and processing information embedded in the 

CROssBAR KGs, HetCPI demonstrates remarkable improvements in bioactivity 

prediction, particularly in challenging scenarios. It highlights the generalizability of 

HetCPI with improved predictions for previously unseen data, addressing one of the 

major bottlenecks in drug discovery. This framework successfully extracts hidden 

knowledge from multi-layered biomedical data and offers potential advancements in 

drug discovery. 

In summary, this thesis study contributes to computational drug discovery and 

biomedical research by providing gold-standard benchmark datasets, constructing 

biomedical data representations in the form of KGs, and developing innovative 

predictive models for compound-protein bioactivities. These contributions aim to 

enhance the ongoing work in computational drug discovery, ultimately facilitating the 

discovery of new drugs and advancing medical science.  

Despite achieving an improvement in DTI/CPI prediction and making significant 

contributions to the literature, this study has certain limitations, as well. Firstly, there 

is still room for enhancing model performance, particularly in challenging cases. This 

suggests that further refinements and optimizations are possible to achieve more 

accurate predictions. Secondly, due to technical constraints, it was not feasible to 

include all available biomedical data sources (e.g., transcriptomic and metabolomic 

data, clinical information, gene mutations and annotations, protein domain profiles, 

etc.) leading to potential limitations in dataset coverage and, consequently, influencing 

overall performance. Data collection is challenging due to factors such as data 

availability, accessibility, and the necessity for specialized expertise, making it 

difficult to achieve a fully comprehensive dataset. Lastly, computational requirements 

pose a constraint on the study. As the complexity of the data increases, it becomes 

necessary to allocate additional computational resources to effectively search and 

optimize an extensive range of model parameters. Balancing computational efficiency 

with data complexity remains a critical consideration for future improvements in the 

field. 

Moving forward, future directions for this study could involve further exploration and 

expansion of the application of heterogeneous graph-based AI models. One crucial 

aspect to focus on is improving the interpretability of the proposed methods to unravel 

the underlying mechanisms and features contributing to the decision-making process 

of the models. To address the inherent black-box nature of DL, integrating 

explainability modules into graph learning architectures holds promise and is currently 

a topic of considerable research attention. This step will enable researchers to 
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understand the rationale behind model predictions, building trust in the decisions. 

Another noteworthy area of development in AI is the rapid advancement of large 

language models (LLMs) and their integration into various fields. As an 

implementation of LLMs in biomedical research, ChatGSE (Lobentanzer & Saez-

Rodriguez, 2023) demonstrates the potential of combining human ingenuity with 

machine memory through an open and modular conversational platform to enhance 

biomedical analyses. Developing a similar platform tailored specifically for drug 

discovery can facilitate the entire drug development process. By integrating safety and 

toxicity pipelines into this platform, it can offer further filtration of bioactive 

compounds. This integration would decrease the failure rates of hit compounds in 

subsequent stages of drug development, contributing to the identification of more 

efficient and safer drug candidates. Overall, the application of AI in drug discovery 

holds great potential, and further advancements in the field will undoubtedly 

contribute to the development of effective and safe therapeutics. 
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APPENDICES 

 

APPENDIX A 

 

CHAPTER 3: PERFORMANCE RESULTS OF BENCHMARK ANALYSIS 

 

 

Table 3.1. Model performance scores (in terms of MCC) in the small-scale analysis 

(on the compound-centric datasets) for; (a) random forest, and (b) SVM models. The 

3 best performances for each dataset are shown in bold font. 

(a) 

Model 

ChEMBL id (only the numeric part) of the center compound of each 

compound cluster 
Mean 

Standard 

error 

44 50 83 91 104 633 808 116438 295698   

aac 0.283 0.112 0.359 0.238 0.413 0.199 0.227 0.099 0.195 0.236 0.035 

aac_pssm 0.226 0.278 0.395 0.432 0.170 0.212 0.399 0.153 0.270 0.282 0.035 

aadp_pssm 0.166 0.211 0.396 0.453 0.177 0.347 0.330 0.240 0.380 0.300 0.035 

aatp_pssm 0.231 0.312 0.432 0.477 0.332 0.280 0.398 0.254 0.387 0.345 0.028 

ab_pssm 0.237 0.231 0.397 0.408 0.157 0.323 0.487 0.206 0.364 0.312 0.037 

apaac 0.263 0.262 0.463 0.346 0.303 0.514 0.422 0.293 0.384 0.361 0.030 

cksaagp 0.243 0.034 0.390 0.333 0.222 0.323 0.261 0.120 0.260 0.243 0.037 

cksaap 0.324 0.268 0.510 0.410 0.297 0.489 0.405 0.143 0.431 0.364 0.039 

ctdc 0.117 -0.035 0.361 0.213 0.332 0.280 0.223 0.185 0.109 0.199 0.041 

ctdd 0.176 0.209 0.446 0.204 0.142 0.512 0.471 0.185 0.390 0.304 0.049 

ctdt 0.212 0.033 0.309 0.201 0.363 0.169 0.379 0.130 0.301 0.233 0.038 

ctriad 0.231 0.179 0.355 0.230 0.243 0.449 0.285 0.280 0.396 0.294 0.029 

d_fpssm 0.364 0.288 0.429 0.371 0.398 0.518 0.492 0.250 0.345 0.384 0.029 

dde 0.302 0.293 0.528 0.492 0.356 0.512 0.536 0.174 0.446 0.404 0.043 

dp_pssm 0.279 0.376 0.369 0.387 0.297 0.316 0.325 0.278 0.396 0.336 0.016 

dpc 0.318 0.170 0.467 0.482 0.197 0.453 0.395 0.121 0.412 0.335 0.046 

dpc_pssm 0.227 0.210 0.396 0.491 0.198 0.369 0.360 0.233 0.433 0.324 0.036 

edp_pssm 0.144 0.172 0.375 0.388 0.164 0.141 0.358 0.152 0.273 0.241 0.036 

eedp_pssm 0.186 0.225 0.419 0.433 0.164 0.310 0.336 0.022 0.262 0.262 0.043 

gaac 0.089 -0.081 0.266 0.020 0.088 0.200 0.135 -0.057 0.129 0.088 0.038 

gdpc 0.314 0.045 0.311 0.292 0.253 0.310 0.262 0.076 0.232 0.233 0.034 

geary 0.337 0.182 0.390 0.394 0.294 0.339 0.360 0.345 0.322 0.329 0.021 
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gtpc 0.304 0.134 0.344 0.198 0.122 0.442 0.339 0.184 0.404 0.275 0.039 

k-sep_pssm 0.330 0.312 0.561 0.326 0.452 0.506 0.313 0.209 0.355 0.374 0.037 

ksctriad 0.295 0.190 0.394 0.268 0.316 0.448 0.315 0.172 0.387 0.310 0.031 

medp_pssm 0.167 0.164 0.417 0.431 0.216 0.309 0.375 0.023 0.285 0.265 0.045 

moran 0.325 0.236 0.367 0.391 0.264 0.412 0.415 0.247 0.377 0.337 0.024 

nmbroto 0.254 0.190 0.365 0.444 0.277 0.327 0.344 0.195 0.391 0.310 0.029 

paac 0.230 0.181 0.502 0.417 0.255 0.505 0.500 0.262 0.347 0.356 0.043 

pfam 0.325 0.286 0.486 0.432 0.430 0.203 0.273 0.132 0.399 0.329 0.039 

pse_pssm 0.209 0.267 0.438 0.327 0.386 0.228 0.340 0.314 0.396 0.323 0.026 

pssm_ac 0.371 0.379 0.393 0.426 0.324 0.578 0.451 0.210 0.478 0.401 0.034 

pssm_cc 0.293 0.276 0.401 0.413 0.302 0.483 0.400 0.274 0.398 0.360 0.025 

pssm_composition 0.220 0.221 0.455 0.451 0.333 0.373 0.507 0.142 0.437 0.349 0.043 

qso 0.229 0.247 0.410 0.224 0.378 0.433 0.291 0.141 0.348 0.300 0.033 

random200 0.071 0.080 -0.035 -0.033 -0.046 -0.100 -0.055 -0.111 0.054 -0.019 0.024 

rpm_pssm 0.289 0.132 0.401 0.471 0.440 0.410 0.358 0.189 0.422 0.346 0.039 

rpssm 0.055 0.197 0.355 0.456 0.187 0.340 0.418 0.087 0.338 0.270 0.048 

spmap 0.338 0.259 0.431 0.405 0.194 0.556 0.489 0.153 0.457 0.365 0.046 

taap 0.174 0.179 0.455 0.283 0.431 0.442 0.402 0.102 0.309 0.309 0.044 

tpc 0.245 0.268 0.476 0.499 0.270 0.529 0.528 0.124 0.448 0.376 0.050 

tpc_pssm 0.220 0.263 0.330 0.492 0.352 0.241 0.356 0.241 0.412 0.323 0.030 

tri-gram_pssm 0.350 0.349 0.541 0.362 0.426 0.545 0.386 0.274 0.352 0.398 0.030 

 

(b) 

Model 

ChEMBL id (only the numeric part) of the center compound of each 

compound cluster 
Mean 

Standard 

error 

44 50 83 91 104 633 808 116438 295698   

aac 0.122 0.049 0.183 0.102 0.243 0.279 0.091 0.161 0.136 0.152 0.025 

aac_pssm 0.178 0.146 0.396 0.488 0.285 0.306 0.378 0.144 0.242 0.285 0.040 

aadp_pssm 0.195 0.142 0.360 0.287 0.218 0.254 0.394 0.132 0.359 0.260 0.032 

aatp_pssm 0.096 0.180 0.390 0.392 0.311 0.305 0.471 0.132 0.262 0.282 0.042 

ab_pssm 0.296 0.311 0.385 0.372 0.201 0.470 0.370 0.195 0.295 0.322 0.030 

apaac 0.159 0.292 0.508 0.430 0.358 0.559 0.438 0.200 0.300 0.360 0.045 

cksaagp 0.215 0.045 0.238 0.248 0.240 0.216 0.146 0.229 0.283 0.207 0.024 

cksaap 0.329 0.260 0.336 0.380 0.433 0.316 0.491 0.164 0.506 0.357 0.036 

ctdc 0.197 -0.055 0.280 0.225 0.353 0.158 0.134 0.079 0.121 0.166 0.039 

ctdd 0.151 0.226 0.375 0.357 0.225 0.310 0.414 0.237 0.024 0.258 0.041 

ctdt 0.229 -0.013 0.233 0.099 0.498 0.300 0.284 0.096 0.053 0.198 0.052 

ctriad 0.171 0.174 0.293 0.215 0.408 0.329 0.233 0.164 0.271 0.251 0.027 

d_fpssm 0.205 0.123 0.242 0.388 0.025 0.140 0.394 0.033 0.362 0.212 0.048 

dde 0.307 0.301 0.360 0.283 0.389 0.386 0.358 0.238 0.409 0.337 0.019 

dp_pssm 0.228 0.434 0.370 0.363 0.229 0.329 0.335 0.186 0.313 0.310 0.027 

dpc 0.202 0.106 0.308 0.291 0.236 0.333 0.263 0.193 0.337 0.252 0.025 

dpc_pssm 0.195 0.142 0.418 0.287 0.218 0.254 0.394 0.132 0.358 0.266 0.035 

edp_pssm 0.131 0.253 0.391 0.331 0.215 0.256 0.262 0.004 0.334 0.242 0.039 

eedp_pssm 0.220 0.248 0.373 0.415 0.080 0.266 0.491 0.059 0.283 0.271 0.048 

gaac 0.151 0.067 0.172 0.120 -0.089 0.230 0.111 0.065 0.206 0.115 0.032 

gdpc 0.088 0.136 0.273 0.319 0.055 0.134 0.018 0.139 0.234 0.155 0.034 

geary 0.277 0.201 0.357 0.327 0.308 0.288 0.280 0.195 0.358 0.288 0.020 

gtpc 0.140 0.056 0.135 0.060 0.105 0.212 0.243 0.259 0.362 0.175 0.034 

k-sep_pssm 0.277 0.347 0.513 0.288 0.418 0.474 0.456 0.241 0.312 0.370 0.033 

ksctriad 0.124 0.231 0.406 0.277 0.031 0.402 0.338 0.148 0.262 0.247 0.043 

medp_pssm 0.198 0.270 0.365 0.415 0.080 0.280 0.491 0.091 0.271 0.274 0.046 
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moran 0.264 0.215 0.345 0.347 0.181 0.315 0.384 0.184 0.303 0.282 0.025 

nmbroto 0.231 0.228 0.354 0.289 0.439 0.282 0.386 0.236 0.258 0.300 0.025 

paac 0.257 0.268 0.480 0.314 0.246 0.528 0.443 0.167 0.338 0.338 0.040 

pfam 0.288 0.328 0.478 0.452 0.327 0.353 0.432 0.367 0.398 0.380 0.021 

pse_pssm 0.248 0.280 0.367 0.334 0.144 0.348 0.342 0.176 0.343 0.287 0.027 

pssm_ac 0.331 0.353 0.290 0.392 0.351 0.423 0.357 0.164 0.428 0.343 0.027 

pssm_cc 0.294 0.368 0.484 0.311 0.517 0.446 0.373 0.192 0.349 0.370 0.034 

pssm_composition 0.154 0.204 0.386 0.411 0.257 0.419 0.376 0.114 0.348 0.297 0.039 

qso 0.220 0.078 0.249 0.211 0.346 0.268 0.073 0.213 0.113 0.197 0.031 

random200 -0.044 -0.054 -0.110 -0.206 -0.046 -0.083 0.248 -0.140 0.205 -0.026 0.051 

rpm_pssm 0.331 0.177 0.376 0.426 0.300 0.430 0.435 0.062 0.377 0.324 0.042 

rpssm 0.133 0.312 0.260 0.431 0.249 0.305 0.361 0.076 0.361 0.276 0.038 

spmap 0.342 0.260 0.486 0.254 0.249 0.492 0.394 0.026 0.370 0.319 0.048 

taap 0.211 0.284 0.456 0.325 0.210 0.408 0.337 0.167 0.289 0.299 0.032 

tpc 0.356 0.218 0.417 0.354 0.300 0.419 0.269 0.239 0.418 0.332 0.026 

tpc_pssm 0.111 0.260 0.285 0.232 0.237 0.276 0.264 0.209 0.425 0.256 0.027 

tri-gram_pssm 0.340 0.309 0.487 0.368 0.444 0.485 0.490 0.284 0.331 0.393 0.028 

 

Table 3.2. Model performance scores in the medium-scale analysis (on the mDavis 

dataset). The best performance for each metric is shown in bold font. 

Model RMSE Spearman F1-score MCC 

seqvec 0.794 0.571 0.530 0.445 

k-sep_pssm 0.817 0.545 0.531 0.434 

unirep1900 0.823 0.541 0.510 0.418 

apaac 0.831 0.532 0.519 0.418 

unirep5700 0.831 0.531 0.506 0.412 

transformer-avg 0.839 0.519 0.508 0.410 

transformer-pool 0.840 0.515 0.506 0.412 

qso 0.843 0.519 0.486 0.384 

dde 0.845 0.508 0.480 0.384 

geary 0.847 0.519 0.473 0.377 

protvec 0.850 0.503 0.506 0.403 

ctdd 0.851 0.503 0.484 0.376 

ctriad 0.852 0.508 0.476 0.387 

pfam 0.854 0.497 0.538 0.410 

taap 0.863 0.492 0.467 0.349 

spmap 0.871 0.491 0.477 0.362 

random200 0.957 0.403 0.368 0.251 

random200_random-ecfp4 0.968 0.388 0.346 0.235 
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Table 3.3. Model performance scores (in terms of the median corrected MCC) in the 

large-scale analysis on the protein family specific datasets of; (a) the random-split, (b) 

dissimilar-compound-split, and (c) the fully-dissimilar-split. The 3 best performances 

for each protein family are shown in bold font (ran200_ran-ecfp4: random200_ 

random-ecfp4, only-ran-ecfp4: only-random-ecfp4). 

(a) 

Random-

split 
epigenetic- 

regulators 

hydro 

lases 

ion-

channels 

membrane-

receptors 

other-

enzymes 

oxido 

reductases 

prote

ases 

transcrip

tion-

factors 

trans 

ferases 

trans 

porters 

apaac 0.745 0.755 0.697 0.689 0.754 0.692 0.735 0.714 0.696 0.728 

ctdd 0.741 0.747 0.700 0.686 0.757 0.694 0.730 0.711 0.694 0.732 

ctriad 0.734 0.749 0.701 0.686 0.752 0.694 0.731 0.706 0.694 0.726 

dde 0.741 0.756 0.703 0.689 0.754 0.692 0.735 0.709 0.691 0.722 

geary 0.733 0.754 0.701 0.694 0.752 0.681 0.735 0.721 0.696 0.728 

k-sep_pssm 0.757 0.749 0.709 0.688 0.754 0.690 0.735 0.706 0.704 0.720 

pfam 0.678 0.694 0.679 0.458 0.609 0.561 0.635 0.645 0.628 0.622 

qso 0.734 0.757 0.700 0.685 0.754 0.690 0.733 0.704 0.691 0.728 

random200 0.728 0.751 0.687 0.680 0.746 0.685 0.734 0.709 0.687 0.726 

spmap 0.737 0.748 0.697 0.682 0.757 0.680 0.728 0.709 0.683 0.720 

taap 0.760 0.747 0.712 0.687 0.750 0.693 0.736 0.721 0.700 0.730 

protvec 0.741 0.742 0.703 0.693 0.758 0.696 0.733 0.714 0.696 0.726 

seqvec 0.745 0.749 0.699 0.690 0.757 0.678 0.728 0.709 0.700 0.724 

transformer

-avg 
0.736 0.748 0.707 0.691 0.760 0.681 0.734 0.701 0.702 0.718 

transformer

-pool 
0.734 0.746 0.695 0.689 0.741 0.684 0.733 0.714 0.694 0.730 

unirep1900 0.744 0.745 0.703 0.686 0.753 0.696 0.731 0.716 0.703 0.728 

unirep5700 0.729 0.749 0.690 0.688 0.755 0.690 0.734 0.706 0.705 0.726 

only-ecfp4 0.591 0.665 0.643 0.426 0.600 0.514 0.519 0.534 0.576 0.503 

ran200_ran
-ecfp4 

0.382 0.481 0.400 0.256 0.449 0.401 0.320 0.265 0.319 0.235 

only-ran-

ecfp4 
0.296 0.175 0.082 0.165 0.358 0.137 0.189 0.171 0.224 0.173 

 

(b) 

Dissimilar

-

compound

-split  

epigenetic-

regulators 

hydro 

lases 

ion-

channels 

membrane

-receptors 

other-

enzymes 

oxido 

reductases 

protea

ses 

transcri

ption 

-factors 

trans 

ferases 

trans 

porters 

apaac 0.137 0.355 0.342 0.249 0.419 0.391 0.381 0.058 0.358 0.362 

ctdd 0.021 0.407 0.311 0.241 0.386 0.423 0.391 0.048 0.342 0.405 

ctriad 0.045 0.351 0.276 0.243 0.354 0.405 0.353 0.006 0.346 0.425 

dde 0.089 0.371 0.327 0.223 0.359 0.398 0.341 0.071 0.340 0.403 

geary 0.044 0.375 0.291 0.242 0.397 0.400 0.394 0.036 0.347 0.417 

k-sep_pssm 0.239 0.382 0.419 0.298 0.381 0.449 0.354 0.071 0.318 0.368 

pfam 0.455 0.329 0.448 0.146 0.452 0.339 0.319 0.257 0.308 0.366 

qso 0.247 0.373 0.338 0.278 0.345 0.356 0.369 0.071 0.324 0.419 

random200 0.152 0.386 0.273 0.266 0.348 0.409 0.341 0.103 0.341 0.388 

spmap 0.158 0.351 0.289 0.274 0.361 0.395 0.383 0.036 0.335 0.369 

taap 0.289 0.371 0.434 0.243 0.443 0.360 0.398 0.187 0.322 0.438 

protvec -0.024 0.348 0.437 0.222 0.363 0.381 0.366 0.118 0.344 0.390 

seqvec 0.192 0.349 0.310 0.228 0.374 0.435 0.373 0.033 0.359 0.378 

transformer

-avg 

0.075 0.349 0.288 0.250 0.447 0.428 0.391 0.043 0.328 0.390 
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transformer

-pool 

0.104 0.348 0.364 0.258 0.411 0.402 0.357 0.061 0.316 0.376 

unirep1900 0.161 0.334 0.277 0.256 0.402 0.400 0.376 0.076 0.329 0.370 

unirep5700 0.061 0.350 0.289 0.255 0.387 0.374 0.346 0.090 0.320 0.376 

only-ecfp4 0.428 0.244 0.243 0.168 0.419 0.281 0.307 0.058 0.306 0.309 

ran200_ran-

ecfp4 

-0.076 0.254 0.293 0.133 0.210 0.270 0.138 0.083 0.178 0.284 

only-ran-
ecfp4 

0.004 -0.020 0.018 0.001 -0.028 -0.015 -0.008 0.016 -0.020 -0.035 

 

     (c) 

Fully-

dissimilar-

split 

epigenetic-

regulators 

hydro 

lases 

ion-

channels 

membrane

-receptors 

other-

enzymes 

oxido 

reductases 

protea

ses 

transcri

ption-

factors 

trans 

ferases 

trans 

porters 

apaac 0.403 0.156 0.146 0.243 0.129 -0.044 0.192 0.063 0.300 0.240 

ctdd 0.396 0.132 -0.074 0.253 0.162 0.074 0.207 0.101 0.247 -0.017 

ctriad 0.420 0.203 0.086 0.220 0.125 0.030 0.212 0.238 0.273 0.276 

dde 0.375 0.170 0.124 0.206 0.232 -0.050 0.195 0.150 0.295 0.029 

geary 0.319 0.160 0.155 0.195 0.172 0.044 0.268 0.066 0.275 -0.027 

k-sep_pssm 0.252 0.181 0.157 0.137 0.043 0.052 -0.134 0.086 0.300 0.297 

pfam 0.446 0.208 0.174 0.270 0.221 0.088 0.142 0.156 0.301 0.198 

qso 0.397 0.111 0.044 0.166 0.187 0.141 0.215 0.129 0.300 0.202 

random200 0.289 0.040 0.146 0.226 0.282 0.070 0.149 0.051 0.284 -0.194 

spmap 0.361 0.103 0.182 0.213 0.114 0.015 0.209 0.091 0.287 0.118 

taap 0.289 0.155 0.181 0.286 0.208 -0.028 0.205 0.129 0.310 0.194 

protvec 0.275 0.146 0.174 0.235 0.131 0.077 0.184 0.160 0.301 0.204 

seqvec 0.372 0.154 0.032 0.155 0.199 0.018 0.046 0.150 0.276 -0.023 

transformer

-avg 

0.367 0.129 0.058 0.265 0.176 0.092 0.227 0.144 0.311 0.187 

transformer

-pool 

0.403 0.148 -0.052 0.244 0.079 0.133 0.170 0.117 0.313 -0.040 

unirep1900 0.325 0.186 0.143 0.217 0.205 0.132 0.159 -0.008 0.332 0.004 

 

Table 5.4. Comparison of test performance scores for different architecture 

alternatives of HetCPI models on the transferases bioactivity dataset. The best 

performance for each split is shown in bold font. 

Method 
Data 

split 
RMSE 

Med. Cor. 

RMSE 
Spearman MCC 

Med. Cor. 

MCC 

RF_SELFormer FDS* 1.147 1.125 0.418 0.056 0.285 

RF_ECFP4 FDS 1.225 1.118 0.438 0.010 0.315 

DP_SELFormer FDS 1.205 1.163 0.378 0.206 0.284 

DP_ECFP4 FDS 1.158 1.167 0.446 0.325 0.341 

3FC_SELFormer FDS 1.143 1.106 0.443 0.243 0.317 

3FC_ECFP4 FDS 1.207 1.184 0.363 0.261 0.258 

HetCPI_SELFormer FDS 1.149 1.110 0.517 0.340 0.383 

HetCPI_ECFP4 FDS 1.208 1.191 0.520 0.333 0.361 

HetCPI-3FC_SELFormer FDS 1.191 1.228 0.387 0.253 0.268 

HetCPI-3FC_ECFP4 FDS 1.166 1.182 0.409 0.263 0.274 
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RF_SELFormer DCS* 1.161 1.123 0.419 0.235 0.308 

RF_ECFP4 DCS 1.238 1.105 0.454 0.154 0.328 

DP_SELFormer DCS 1.193 1.151 0.378 0.163 0.262 

DP_ECFP4 DCS 1.202 1.180 0.382 0.210 0.221 

3FC_SELFormer DCS 1.187 1.134 0.419 0.232 0.281 

3FC_ECFP4 DCS 1.312 1.145 0.429 0.199 0.299 

HetCPI_SELFormer DCS 1.092 1.071 0.525 0.365 0.391 

HetCPI_ECFP4 DCS 1.222 1.205 0.475 0.307 0.315 

HetCPI-3FC_SELFormer DCS 1.184 1.103 0.479 0.284 0.327 

HetCPI-3FC_ECFP4 DCS 1.311 1.195 0.442 0.292 0.337 

RF_SELFormer RS* 0.828 0.831 0.765 0.576 0.576 

RF_ECFP4 RS 0.643 0.648 0.861 0.695 0.693 

DP_SELFormer RS 0.909 0.904 0.696 0.509 0.511 

DP_ECFP4 RS 0.748 0.749 0.817 0.646 0.642 

3FC_SELFormer RS 0.915 0.854 0.732 0.524 0.548 

3FC_ECFP4 RS 0.682 0.683 0.840 0.665 0.668 

HetCPI_SELFormer RS 0.785 0.787 0.783 0.605 0.604 

HetCPI_ECFP4 RS 0.730 0.728 0.823 0.652 0.653 

HetCPI-3FC_SELFormer RS 0.796 0.777 0.785 0.592 0.603 

HetCPI-3FC_ECFP4 RS 0.722 0.712 0.829 0.648 0.654 

* FDS: fully-dissimilar-split, DCS: dissimilar-compound-split, and RS: random-split datasets. 
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APPENDIX B 

 

CHAPTER 3: CLUSTERED HEATMAPS OF PROTEIN FAMILY-SPECIFIC 

PCM MODELS 

      

         (a) 

   Random-split 
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      (b) 

 Dissimilar-compound-split 
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      (c) 

   Fully-dissimilar-split 

 

Figure 3.1. Clustered heatmaps of hydrolases for protein families on (a) the random-

split, (b) dissimilar-compound-split, and (c) fully-dissimilar-split datasets. 
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