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ABSTRACT

FPGA-FRIENDLY COMPACT AND EFFICIENT AES-LIKE 8X8 S-BOX

MALAL, AHMET
M.S., Department of Cyber Security

Supervisor: Assoc. Prof. Dr. Cihangir TEZCAN

June 2023, 65 pages

One of the main layers in the Advanced Encryption Standard (AES) is the substitu-
tion layer, where an 8 × 8 S-Box is used 16 times. The substitution layer provides
confusion and makes the algorithm resistant to cryptanalysis techniques. Therefore,
the security of the algorithm is also highly dependent on this layer. However, the cost
of implementing 8 × 8 S-Box on FPGA platforms is considerably higher than other
layers of the algorithm. In 2005, Canright used different extension fields to represent
AES S-Box to get FPGA-friendly compact designs.

We use the same optimization methods that Canright used to optimize AES S-Box
on hardware platforms. Our purpose is not to optimize AES S-Box; we aim to create
another an 8×8 S-Box which is strong and compact enough for FPGA platforms. We
create an 8x8 S-Box using the inverse field operation as in the case of AES S-Box.
We use another primitive polynomial to represent the finite field and get an FPGA-
friendly compact and efficient an 8 × 8 S-Box. The finite field we propose provides
the same level of security against cryptanalysis techniques with a 3.125% less gate-
area on Virtex-7 and Artix-7 FPGAs compared to Canright’s results. Moreover, our
proposed S-Box requires 11.76% less gate on Virtex-4 FPGAs. The enhancements
made to the gate area offer advantages to IoT devices with limited resources, enabling
increased duplication of the S-Box for improved algorithm parallelism. Therefore, we
claim that our proposed S-Box is more compact and efficient than AES S-Box.
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ÖZ

FPGA DOSTU KOMPAKT VE VERİMLİ AES BENZERİ 8X8 S-KUTUSU

MALAL, AHMET
Yüksek Lisans, Siber Güvenlik Bölümü

Tez Yöneticisi: Doç. Dr. Cihangir TEZCAN

Haziran 2023, 65 sayfa

Gelişmiş Şifreleme Standardındaki (AES) ana katmanlardan biri, 8× 8 S-Kutusunun
16 kez kullanıldığı BaytDeğiştir katmanıdır. BaytDeğiştir katmanı karışıklık sağlar
ve algoritmayı kriptanaliz tekniklerine dirençli hale getirir. Bu nedenle, algoritmanın
güvenliği de büyük ölçüde bu katmana bağlıdır. Ancak, 8 × 8 S-Kutusunun FPGA
platformlarında uygulamanın maliyeti, algoritmanın diğer katmanlarına göre oldukça
yüksektir. Algoritmada S-Kutuları tekrar tekrar kullanıldığından, algoritmanın mali-
yeti büyük ölçüde bu katmandan gelmektedir. 2005 yılında Canright, FPGA dostu
kompakt tasarımlar elde etmek için AES S-Kutusunu farklı matematiksel alanlarda
ifade etti.

Bu çalışmada, Canright’ın AES S-Kutusunu donanım platformlarında optimize et-
mek için kullandığı matematiksel yöntemlerinin aynısını kullandık. Amacımız AES
S-Kutusunu daha da optimize etmek değil; FPGA platformları için yeterince güçlü ve
kompakt olan başka bir 8×8 S-Kutusu oluşturmaktı. AES S-Kutusunun yapısında ol-
duğu gibi ters alan işlemini kullanarak 8× 8 S-Kutusu oluşturduk. Sonlu alanı temsil
etmek için başka bir indirgenemez polinom kullanıp FPGA dostu kompakt ve verimli
bir 8 × 8 S-Box elde ettik. Önerdiğimiz sonlu alan, Canright’ın sonuçlarına kıyasla
Virtex-7 ve Artix-7 FPGA’larda 3.125% daha az kapı alanıyla kriptanaliz tekniklerine
karşı aynı düzeyde güvenlik sağladığını tespit ettik. Ayrıca, önerdiğimiz S-Kutusu,
Virtex-4 FPGA’larda 11.76% daha az kapı ile gerçeklenebiliyor. Bu kapladığı alan
iyileştirmeleri, kaynak kısıtlaması olan IoT cihazları için oldukça önemlidir ve al-
goritma paralelliği için S-Kutusunun daha fazla kopyalanarak kullanılmasına olanak
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sağlar. Bu nedenle, önerdiğimiz S-Kutusunun AES S-Kutusundan daha kompakt ve
verimli olduğunu iddia ediyoruz.

Anahtar Kelimeler: AES, Rijndael S-Kutusu, Kompakt S-Kutusu, Sonlu Alan, Grup
İzomorfizmalar
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CHAPTER 1

INTRODUCTION

1.1 Cryptography

Cryptography, or cryptology, is the study of securing communication in the existence
of third parties. The study aims to protect the transaction of data from others. In
more detail, cryptography constructs algorithms and protocols to protect sensitive
data from adversaries. The study of cryptography or cryptology is born thousands
of years ago. Secure communication has always been crucial for people and states
throughout history. Sometimes it changed the course of wars and caused the collapse
of great states. Until the 1970s, many cryptographic systems were developed, most
of which were pen-and-paper methods. These systems existed as works of classical
cryptography. They evolved into insecure systems with the advancement of computer
science. After the 1970s, modern cryptography was born. Modern cryptographic
algorithms and protocols provide security against computers. Cryptographers have
designed many cryptographic algorithms until today. However, it was realized in the
late 1990s that modern cryptography is vulnerable to quantum computers, just like
classical cryptography is vulnerable to classical computers. Quantum computers are
machines that consist of quantum bits or simply qubits. The working mechanisms of
these computers are quite different from classical computers.

A quantum computer with enough qubits can break many modern cryptographic al-
gorithms. Such quantum computers have still not been produced. However, rapid
quantum physics and mechanics developments are expected to produce such comput-
ers soon. Therefore, the National Institute of Standard Technology (NIST) announced
a competition to develop post-quantum algorithms in 2015. Our study is one of the
topics of modern cryptography. Therefore we did not mention classical cryptography
and post-quantum cryptography in this thesis.

Many security concepts are solved by cryptography, but three of them are considered
the most important. These three concepts are also called the CIA triad.

• Confidentiality: In this scenario, the adversary is able to intercept the commu-
nication channel but lacks the ability to comprehend or decipher the content of
the communication.
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• Integrity: In this scenario, the adversary has the capability to eavesdrop on the
communication channel but lacks the ability to tamper with or manipulate the
content of the communication.

• Availability: Sensitive data remains inaccessible to unauthorized parties, en-
suring its protection and confidentiality.

It is good to know the following terms before going into detail.
Plaintext: The clear data or message.
Ciphertext: The secret message is in a form that humans cannot read.
Encryption: The process in which plaintext is turned into ciphertext.
Decryption: The process in which ciphertext is turned into plaintext.
Key: The secret asset used for encryption and decryption.

Modern cryptography is commonly categorized into two subsections based on the
key mechanisms employed. The first is symmetric cryptography, which involves the
use of a single key for both the encryption and decryption processes. The second is
asymmetric cryptography, which utilizes distinct keys for encryption and decryption
operations.

1.1.1 Symmetric Cryptography

In order to securely send a message from Alice to Bob, they must first agree on
a shared secret key using symmetric cryptography. They must hold the same key
before communication. Alice uses one of the symmetric algorithms and encrypts the
message with a secret key which is already shared with Bob. Then Alice produces the
ciphertext and sends it to Bob. Bob uses the secret key, decrypts the ciphertext, and
gets the plaintext. Figure 1 demonstrates the encryption and decryption process of a
symmetric cipher.

Alice Bob

Symmetric
Cipher

(Encryption)
plaintext

private key

ciphertext

Encryption

Symmetric
Cipher

(Decryption)

private key plaintext
ciphertext

Decryption

Figure 1: Enryption and Decryption Scheme of Symmetric Ciphers

Some of well-known symmetric ciphers:
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• DES

• TripleDES (3DES)

• RC4

• AES

• Blowfish

• IDEA

• PRESENT

• ASCON

Advantageous and disadvantages of the symmetric schemes are listed below:

Advantageous:

• They need just one key to encrypt and decrypt data.

• They provide confidentiality.

• They are fast compared to asymmetric algorithms.

• They have small key sizes.

• They are hardware oriented, easy to implement in hardware platforms.

Disadvantageous:

• It is difficult to share private keys between parties.

• They have key-storage problem.

• They do not provide authenticity and non-repudiation.

1.1.2 Asymmetric Cryptography

Asymmetric cryptographic algorithms, or public key cryptography, employ two dis-
tinct keys for encryption and decryption. In a public key cryptography system, Alice
generates a pair of keys: a private key and a public key. She shares her public key
with Bob, who uses it to encrypt a message. Bob sends the encrypted message to
Alice. Alice, being the only one with access to the corresponding private key, can
decrypt the message and read its contents securely. The encryption and decryption
scheme of an asymmetric cipher is shown in Figure 2.
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Figure 2: Encryption and Decryption Scheme of Asymmetric Ciphers

Some of well-known asymmetric ciphers:

• Diffie-Hellman

• Elliptic Curve Cryptography

• El-Gamal

• DSA

• RSA

• ECDSA

Advantageous and disadvantages of the asymmetric schemes are listed below:

Advantageous:

• They provide confidentiality, authenticity and non-repudiation altogether.

• They do not have problem with sharing keys.

Disadvantageous:

• They require two different keys, one for encryption and one for decryption.

• They are slow compared to symmetric algorithms.

• They have large key sizes.

• It is quite difficult to implement them in hardware platforms.
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1.2 Block Ciphers

In the study of symmetric cryptography, block ciphers are examined in detail. Block
ciphers are a type of symmetric cryptography where the same key is used for encryp-
tion and decryption. Messages are divided into fixed-length blocks, typically 64-bit or
128-bit in size. With a block size of 128-bit, the block cipher algorithm takes a 128-
bit input along with the private key and generates a 128-bit output. It is a permutation
function indexed by the secret key. The block size determines the number of outputs
the algorithm might generate. Therefore, the block size directly affects the security of
the algorithm. Having a large block size is better in terms of security. Block ciphers
use two common structures: Feistel network and Substitution-Permutation Network
(SPN).

1.2.1 Feistel Ciphers

Horst Feistel and Don Coppersmith proposed the Feistel structure in 1973. Lucifer
cipher was the first cryptographic algorithm based on the Feistel structure. The struc-
ture of the block cipher is designed to create robust pseudorandom permutations by
utilizing a permutation function F and the XOR operation. The F function varies de-
pending on the specific algorithm. The plaintext is divided into two equal blocks,
and in each round, the F function is applied to one block while the other block is
XORed with the output of the F function. These operations are repeated a predeter-
mined number of times, known as the round number of the algorithm. As function
F, the round number also differs in each algorithm. Inverse of the operations is the
most crucial advantage of Feistel networks compared to other networks. Even if the
function F is not invertible, the entire Feistel network is invertible. The Feistel struc-
ture of the DES cipher is a design that ensures similarity between the encryption and
decryption processes. Figure 3 illustrates the Feistel structure of the DES cipher.
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Figure 3: The Feistel structure figure, created by Jeremy Jean, can be found in
[Jean, 2015] and is publicly accessible.

After 1973, this structure has been used in many cryptographic algorithms. The most
common algorithms that have Feistel structure are listed below:

• DES

• Triple DES

• Blowfish

• Twofish

• CLEFIA

• Camellia

• Lucifer

• MARS

• MISTY1

• RC2

• RC5

• RC6

1.2.2 Substitution–Permutation Networks

This structure takes data and a key and performs operations on them. SPN structure
consists of three layers: Substitution, Permutation, and Add Round Key. The sub-
stitution layer adds confusion in the encryption process, while the permutation layer
contributes to diffusion. Through the substitution layer, each bit in the ciphertext
output relies on every bit of the plaintext input. The positions of bits are replaced
in the permutation layer to provide diffusion. In order to be the network invertible,
the substitution layer must be invertible. The entire network becomes non-invertible
if a non-invertible function is used in the substitution layer. Round key is used in
Add Round Key layer. The decryption of algorithm is done by performing layers in
reverse order with the inverse functions. Figure 4 depicts the structure of substitution-
permutation networks.
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Figure 4: SPN Structure, created by Florian Delporte, can be found in
[Delporte, 2016] and is publicly accessible.

The most common algorithms that have SPN structure are listed below:

• AES (The Rijndael)

• 3-Way

• PRESENT

• SAFER

• SHARK

• Square

• Kalyna

• Square

• Kuznyechik

1.3 Modes of Operation

The block ciphers encrypt or decrypt only a single data block. Modes of operations
are used for encrypting or securely decrypting large amounts of data using block
ciphers. According to requirements, different modes of operation are designed. Elec-
tronic Code Block (ECB), Cipher Block Chaining (CBC), Output Feedback (OFB),
and Cipher Feedback (CFB) were specified with FIBS PUB 81 in 1981. Counter
mode (CTR) and Galois Counter Mode (GCM) were published respectively in 2001
and 2007 by the National Institute of Standards (NIST) with SP800-38A and SP800-
38D. A more detailed explanation of the modes of operation is mentioned below.

• Electronic Code Block (ECB)

The ECB (Electronic Codebook) mode is a straightforward encryption mode where a
large message is divided into small blocks, and each block is encrypted individually.
Parallel encryption and decryption are possible since each block is separated. The
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disadvantage of this mode is that ECB maps identical plaintexts to identical cipher-
texts. Therefore, the method does not provide diffusion very well. It is not capable of
hiding patterns. This method is not recommended for cryptographic purposes and is
no longer secure. Encryption scheme of electronic code block is shown in Figure 5.

EK

m0

c0

EK

m1

c1

EK

m2

c2

· · · · · · EK

mt−1

ct−1

Figure 5: Encryption Scheme of Electronic Code Block, created by Jeremy Jean, can
be found in [Jean, 2015] and is publicly accessible.

• Cipher Block Chaining (CBC)

This mode was designed in 1976 by four researchers [William et al., 1978]. Before
encryption, the previous ciphertext is XORed with the block of data. The initial-
ization vector (IV) is used in encryption or decryption to process the initial block.
Because of the chaining structure, parallel encryption is not possible. However, par-
allel decryption is possible since XORed values are already in the ciphertext. Having
a single bit of error propagates the rest of the operations. Therefore, a single point
of failure causes invalid encryption. Encryption scheme of cipher block chaining is
shown in Figure 6.

mt−1

EK

ct−1

· · · · · ·

ct−2

m2

EK

c2

m1

EK

c1

m0

EK

c0

IV

Figure 6: Encryption Scheme of Cipher Block Chaining, created by Jeremy Jean, can
be found in [Jean, 2015] and is publicly accessible.

• Output Feedback (OFB)

In this mode, a message-sized keystream is produced. The initialization vector is en-
crypted with the secret key in the first step, and output is produced. This output is
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then used as input for the subsequent block cipher operation. Then the produced out-
put is used as the input of the following block cipher. By continuing this process, the
keystream is generated. The message is XORed with the produced keystream syn-
chronously. Unfortunately, this mode does not provide either parallel encryption or
parallel decryption. Encryption scheme of output feedback mode is shown in Figure
7.

EK(t−1)(IV )

EK

ct−1

mt−1

· · · · · ·

EK

c2

m2

EK

c1

m1

IV

EK

c0

m0

Figure 7: Encryption Scheme of Output Feedback Mode, created by Theodor Schnei-
der, can be found in [Schneider, 2016] and is publicly accessible.

• Cipher Feedback (CFB)

In this mode, the initialization vector is encrypted using the secret key. The resulting
ciphertext is then XORed with the first block of the plaintext to generate the first block
of ciphertext. For subsequent blocks, the previously generated ciphertext is used as
input to the block cipher. The output of the block cipher is XORed with the corre-
sponding block of the plaintext to produce the next block of ciphertext. This process
repeats until the final block of the data is processed. The decryption process is the
same as the encryption process. CFB does not provide parallel encryption; however,
it provides parallel decryption. The single-bit error will cause invalid encryption or
decryption to the rest of the blocks. Encryption scheme of cipher feedback mode is
shown in Figure 8.
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Figure 8: Encryption Scheme of Cipher Feedback Mode, created by Theodor Schnei-
der, can be found in [Schneider, 2016] and is publicly accessible.

• Counter Mode (CTR)

The counter mode was proposed in 1979 [Lipmaa et al., 2000]. This mode is similar
to OFB in creating keystream while encryption or decryption processes. Rather than
OFB, CTR uses incremental initialization vector while generating keystream. Every
block is XORed with the block cipher output, which uses incremental IV. Parallel
encryption and decryption are possible. The error does not propagate on different
blocks since no chaining mechanism exists. Encryption scheme of counter mode is
shown in Figure 9.

EK

IV
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EK

IV + 1

c1

m1

EK

IV + 2

c2

m2

· · · · · · EK

IV + t

ct

mt

Figure 9: Encryption Scheme of Counter Mode, created by Jeremy Jean, can be found
in [Jean, 2015] and is publicly accessible.

• Galois Counter Mode (GCM)

McGrew and Viega proposed the Galois counter mode in 2004. It is the first mode of
operation that provides integrity and confidentiality. GCM takes the parallel mecha-
nism of CTR mode and the chaining structure of CBC at the same time. A 128-bit
authentication tag is produced with ciphertext at the end of the encryption processes.
The message is encrypted with CTR mode, and an authentication tag is produced with
a chaining structure. The 128-bit Galois multiplication is used for generating the tag.
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Instead of plaintext, the ciphertext is used in decryption processes. At the end of the
decryption, plaintext and another tag are produced. If the produced tag is the same as
the taken tag, then the integrity and confidentiality of the encryption and decryption
processes are guaranteed [McGrew and Viega, 2004]. Encryption scheme of Galois
counter mode is shown in Figure 10.

Counter0

ENCk

Counter1

ENCk

Counter2

ENCk

incr incr

Ciphertext1 Ciphertext2

multH

multH

Plaintext1 Plaintext2

multHAuth Data1

multH

Auth Tag

len(A)||len(C)

Figure 10: Encryption Scheme of Galois Counter Mode, created by Diana Maimut,
can be found in [Maimut, 2017] and is publicly accessible.

1.4 Advanced Encryption Standard Competition

NIST announced a competition to choose a block cipher algorithm to be the successor
of the Data Encryption Standard (DES) on January 2, 1997. NIST decided the spec-
ification of the algorithm. The block size of the algorithm was chosen to be 128-bit.
The algorithm was supposed to have three modes that have different key sizes. The
key sizes are chosen as 128, 196, and 256 bits. The competition initially began with
fifteen candidates submitted from several countries.
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The list of the submitted candidate algorithms (The finalists are highlighted.) :

• CAST-256

• CRYPTON

• Rijndael

• DEAL

• DFC

• Serpent

• E2

• FROG

• RC6

• HPC

• LOKI97

• MAGENTA

• MARS

• SAFER+

• Twofish

Vulnerabilities were detected in some candidates, and some were eliminated due to
poor performance. NIST eliminated ten of fifteen candidates and announced five fi-
nalist algorithms. Rijndael, Serpent, Twofish, RC6, and MARS are announced as the
finalists of the competition. After three rounds of elimination stage, the Rijndael algo-
rithm was selected as the winner in April 2000, called later the Advanced Encryption
Standard.

1.5 The AES Winner: Rijndael

The Rijndael algorithm was designed by Joan Daemon and Vincent Rijmen in 1997.
The Rijndael algorithm is chosen thanks to its strong performance on different plat-
forms and security resistance against cryptographic attacks. Since many cryptogra-
phers and researchers worked and analyzed the algorithm in the competition process,
several papers and articles have been published about the Rijndael algorithm. So
many designs and implementation strategies have been proposed with different met-
rics until today.

Unlike DES, AES does not based on the Feistel network. The structure of AES is
designed with an SPN cipher. The algorithm consists of substitution, permutation,
mixColumn, and addRoundKey layers [Daemen and Rijmen, 2002]. More detailed
information about the Rijndael algorithm is given in the next chapter. The substitu-
tion layer, which uses S-box, is the only non-linear layer of the algorithm. There-
fore the chosen method for the substitution layer must satisfy many criteria to be
strong against attacks. The algorithm’s security depends highly on the choice of S-
box [Knudsen et al., 2004]. The S-box used by Rijndael proved to be strong against
cryptographic attacks. According to Knudsen, there is no solid attack against the
Rijndael algorithm [Knudsen et al., 2004].

Many researchers studied to implement efficient versions of the Rijndael S-box. Dif-
ferent approaches are proposed with different metrics. The gate area of Rijndael
S-box is optimized for hardware platforms [Canright, 2005]. Since the S-box of Ri-
jndael is strong and optimized by many researchers for different platforms, its pop-
ularity is increased. Many cryptographic algorithms used the Rijndael S-box in the
following years.
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The algorithms that use the Rijndael S-box:
- AES
- ARIA
- Grand Cru
- Panama

1.6 Our Contribution

We focused on the compact implementation of the substitution layer of the Rijndael
algorithm. As we mentioned above, there are many studies on optimizing the Rijn-
dael S-box for hardware platforms. In this thesis, we proposed another S-box that
is strong as the Rijndael S-box and can be implemented with fewer gates on Field
Programmable Gate Arrays (FPGAs). Cryptographers who use the Rijndael S-box
in their algorithms can use our S-box since we proposed a more compact new S-box
with the same level of security that the Rijndael provides.

In this chapter, basic cryptographic information was given. A detailed explanation
of the Rijndael cipher was mentioned in Chapter 2. The implementation details of
the compact S-box were explained in Chapter 3. In Chapter 4, our studies and the
proposed S-box were discussed. In the last chapter, we concluded our thesis.
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CHAPTER 2

ADVANCED ENCRYPTION STANDARD (AES)

2.1 Mathematical Preliminaries

AES uses a byte as a basic unit for processing. A byte consists of eight bits. The
AES algorithm’s input and output are 128-bits, equal to 16 bytes. AES supports
three different key sizes, which are 16 bytes, 24 bytes and 32 bytes. The bytes are
represented as the concatenation of bit values from the most significant to the least
significant bits. Let a be a byte, then a is represented as {a7, a6, a5, a4, a3, a2, a1, a0}.
With a polynomial representation, each byte is represented as finite field elements.

7∑
i=0

aix
i = a7x

7 + a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0

The hexadecimal notation is also widely used for representing bytes. A nibble con-
sists of four bits. Two nibbles can be used to represent a byte. 0x is used be-
fore hexadecimal notation of bytes. For example 10100011 identifies the element
x7 + x5 + x + 1. The first nibble is "a" and the last nibble is "3". 10100011 is
represented as 0xa3 in hexadecimal notation. Table 1 shows the hexadecimal repre-
sentations of nibbles.

Table 1: Hexadecimal Representation of Nibbles

Bit
Patterns Hex Bit

Patterns Hex Bit
Patterns Hex Bit

Patterns Hex

0b0001 0x1 0b0101 0x5 0b1001 0x9 0b1101 0xd
0b0000 0x0 0b0100 0x4 0b1000 0x8 0b1100 0xc
0b0010 0x2 0b0110 0x6 0b1010 0xa 0b1110 0xe
0b0011 0x3 0b0111 0x7 0b1011 0xb 0b1111 0xf

In AES (Advanced Encryption Standard), each round operates on a 16-byte block of
data. This block is organized as a two-dimensional array of bytes known as the state.
The state is composed of four columns and four rows, with each column containing
four bytes.State array of AES is represented in Table 2.
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Table 2: State Array of AES

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

The columns and rows of state is represented as follows ( ci’s denotes columns, ri’s
denotes rows of the states.):

c0 = s0s1s2s3 r0 = s0s4s8s12
c1 = s4s5s6s7 r1 = s1s5s9s13
c2 = s8s9s10s11 r2 = s2s6s10s14
c3 = s12s13s14s15 r3 = s3s7s11s15

• XOR operation

The operation XOR is denoted with
⊕

. This operation involves adding each bit in
the bytes correspondingly in modulo 2 arithmetic, resulting in a new byte where each
bit represents the XOR of the corresponding bits in the original bytes.

For example, 0x2a ⊕ 0x32 = 0x18. The truth table of XOR operation is shown in
Table 3.

Table 3: The XOR Funciton

a b a ⊕ b
0 0 0
0 1 1
1 0 1
1 1 0

The addition of two bytes is performed with addition of each bit correspondingly. For
example, 0x2a ⊕ 0x32 = 0x18.

• Multiplication

Multiplication of two elements is performed in Galois Field (28), and it is denoted as
•. After a standard polynomial multiplication, the modulo operation in the irreducible
polynomial is applied to the result. The irreducible polynomial is defined as there are
no any factors of the polynomial except 1 and itself. The designer of the AES chose
the irreducible polynomial to be x8+x4+x3+x+1, which is the smallest irreducible
polynomial degree of 8.
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For example, 0x82 • 0x21:

(x7 + x) • (x5 + 1) = x12 + x7 + x6 + x mod(x8 + x4 + x3 + x+ 1)

= x4x8 + x7 + x6 + x

= x4(x4 + x3 + x+ 1) + x7 + x6 + x

= x8 + x7 + x5 + x4 + x7 + x6 + x

= x4 + x3 + x+ 1 + x5 + x4 + x6 + x

= x6 + x5 + x3 + 1

x8 is replaced by x4+x3+x+1 in each time. x6+x5+x3+1 is equal to 01101001
in binary system, which is 0x69.

2.2 Algorithm Specification

The AES algorithm takes 128-bits as input, performs a series of operations, and gen-
erates 128-bit ciphertext. The round function of AES consists of four different layers;
each has a different property. The number of rounds in AES varies based on the key
size. Each round is generally similar to one another, except for the last round which
excludes the MixColumns operation. The specification of AES algorithm is given in
Table 4.

Table 4: AES Specifications

keySize blockSize numberOfRounds
AES-128 128 128 10
AES-196 196 128 12
AES-256 256 128 14

2.2.1 Data Encryption / Data Decryption

2.2.1.1 Sub-Bytes / Inverse Sub-Bytes

Each state byte is substituted with another byte by using the substitution table, which
is called S-Box. Transformation of bytes provides non-linearity, making the algorithm
strong against differential and linear attacks. Each byte of the state goes through to
the S-Box operation. Figure 11 shows this operation. The S-Box of the algorithm is
generated with an affine transform. The affine transformation formula of AES S-Box
is given below.

S(x) = M ∗ x−1 ⊕ c, (1)

is the S-Box affine transformation formula, where M is the 8 × 8 circulant binary
matrix and c is a constant byte.
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Step 1: Compute the multiplicative inverse of a in GF(28)

b = a−1, (2)

(if a = 0, then b = 0).

Step 2: Calculate the following affine transformation.

s7
s6
s5
s4
s3
s2
s1
s0


=



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


×



b7
b6
b5
b4
b3
b2
b1
b0


⊕



0
1
1
0
0
0
1
1


si’s and bi’s are the bits of s and b correspondingly and 0 ≤ i < 7.

SBox
s’0 s’4 s’8 s’12

s’5s’1

s’2

s’3

s’6

s’7

s’9 s’13

s’10 s’14

s’11 s’15

s0 s4 s8 s12

s5s1

s2

s3

s6

s7

s9 s13

s10 s14

s11 s15

Figure 11: S-Box Operation for a byte

The Inverse Sub-Bytes operation in AES is the inverse of the Sub-Bytes operation. It
applies an inverse multiplication operation on the result of the affine transformation
for each byte of the state. The forward and inverse S-boxes of the AES are given in
Table 5 and Table 6.
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Table 5: The S-box Table of AES

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 6: The Inverse S-box Table of AES

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

2.2.1.2 Shift-Rows / Inverse Shift-Rows

The state rows are cyclically shifted to the left with offset bytes. The first row re-
mains unchanged, while the bytes in the second row are cyclically shifted to the left.
Similarly, the bytes in the third row are shifted to the left by two bytes. This shifting
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operation ensures diffusion and adds complexity to the encryption process. Bytes in
the last row are cyclically moved three bytes to the left. Input and output state repre-
sentations are shown in Figure 12. The inverse of the Shift-Rows is the same as the
Shift-Rows, except for shifting direction. The cyclic right shift is applied on the rows.

s0 s4 s8 s12

s5s1

s2

s3

s6

s7

s9 s13

s10 s14

s11 s15

s0 s4 s8 s12

s9s5

s10

s15

s14

s3

s13 s1

s2 s6

s7 s11

1

2

3

Figure 12: Shift-Rows Operation of AES State

2.2.1.3 MixColumns / Inverse MixColumns

Constant matrix multiplication is applied on the state. Each column is separately
multiplied by the rows of the constant matrix. The inverse of the Mix-Columns is
also a constant matrix multiplication. For Inverse Mix-Columns, the inverse of the
matrix is used.

• Mix-Columns

s
′
0 s′4 s′8 s′12
s′1 s′5 s′9 s′13
s′2 s′6 s′10 s′14
s′3 s′7 s′11 s′15

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 •
s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15


• Inverse Mix-Columns

s
′
0 s′4 s′8 s′12
s′1 s′5 s′9 s′13
s′2 s′6 s′10 s′14
s′3 s′7 s′11 s′15

 =

e b d 9
9 e b d
d 9 e b
b d 9 e

 •
s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15



2.2.1.4 AddRoundKey / Inverse AddRoundKey

In this layer, the state is XORed with the 128-bit round key, and both the AddRound-
Key and Inverse AddRoundKey operations are identical because the inverse of the
XOR operation is the XOR operation itself. Algorithm 1 and Algorithm 2 show the
pseudo-codes for AES encryption and decryption.
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Algorithm 1: Encryption Algorithm of AES
Inputs byte in[16], word key[4 · (Nr + 1)]
Output byte out[16]]
/* A word is 4-bytes. */
/* Nr is the number of rounds. */
state = in
AddRoundKey(state, w[0, 3])
round = 1
while round < Nr do

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, w[4 · round, 4 · (round+ 1)− 1])
round = round+ 1

end
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, w[4 ·Nr, 4 · (Nr + 1)− 1])
return state

Algorithm 2: Decryption Algorithm of AES
Inputs byte in[16], word key[4 ∗ (Nr + 1)]
Output byte out[16]]
/* A word is 4-bytes. */
/* Nr is the number of rounds. */
state = in
AddRoundKey(state, w[4 ·Nr, 4 · (Nr + 1)− 1])
round = Nr − 1
while round > 0 do

InverseShiftRows(state)
InverseSubBytes(state)
InverseAddRoundKey(state, w[4 · round, 4 · (round+ 1)− 1])
InverseMixColumns(state)
round = round− 1

end
InverseSubBytes(state)
InverseShiftRows(state)
InverseAddRoundKey(state, w[0, 3])
return state

2.2.2 Key Generation

The AES algorithm has three versions, each supporting a different key size: 128 bits,
196 bits, and 256 bits. The Key Expansion function takes an initial key and expands
it to generate round keys for the desired number of rounds. For a key size of 128 bits,
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the algorithm executes ten rounds. The round keys for these ten rounds are generated
using the Key Expansion algorithm, as shown in Algorithm 3.

roundCons is the array of round constant bytes, which is defined as:

roundCons = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36}

2.2.2.1 Sub-Word

The Sub-Word function is the sub-version of Sub-Bytes. The function takes four
bytes, calculates the S-box function of each bytes, and returns them.

2.2.2.2 Rot-Word

The Rot-Word function is similar with Shift-Rows. It takes four bytes and performs
cyclic shift to left.

Algorithm 3: Generating Round Keys of AES
Inputs byte key[4 ·Nk], Nk
Output word w[4 · (Nr + 1)]]
/* A word is 4-bytes. */
/* Nk is the wordSize of the AES Key. */
/* Nr is the number of rounds. */
word = 0x00, 0x00, 0x00, 0x00
temp = 0x00, 0x00, 0x00, 0x00
i = 0
while i < Nk do

w[i] = word(key[4 · i], key[4 · i+ 1], key[4 · i+ 2], key[4 · i+ 3])
i = i+ 1

end
i = Nk
while i < 4 ∗ (Nr + 1) do

temp = w[i− 1]
if i mod Nk = 0 then

temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
end
if (Nk > 6) and (i mod Nk) = 4 then

temp = SubWord(temp)
end
w[i] = w[i−Nk] xor temp
i = i+ 1

end
return w[4 · (Nr + 1)]

2.3 Performance Evaluation of AES on Different Platforms

After the Rijndael Algorithm was chosen as a standard, it is used in various systems
that require security. As the AES algorithm has become increasingly popular, the
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number of researchers trying to optimize it has increased. Numerous implementation
techniques have been published by considering various metrics. Throughput, power
consumption, and gate-area are only three of the metrics. We summarized recent
software and hardware performance analysis results on the AES algorithm in this
subsection. Table 7 shows the recent AES implementation result on CUDA devices.
The table was sorted according to Gbps per Watt. Many researchers also proposed op-
timized implementation of AES for Intel CPUs. The best result is 2.072 Gbps/Watt,
which is obtained by [Tezcan, 2021]. The designs which focused on the through-
put per slice on FPGA are listed in Table 8. These implementations are suitable for
resource constrained devices. Table 9 shows the fastest AES implementations on
FPGA. The table is arranged in ascending order based on the measure of gigabits per
second (Gbps).

Table 7: AES-128 encryption performance on different CUDA device

Device Architecture Launch Year Gbps/W Gbps Design
Nvidia RTX 2070 Super Turing 2019 0.236 50.8 [An and Seo, 2020]

Nvidia GTX 1070 Pascal 2016 1.427 214.0 [An and SEO, 2020]
Nvidia GTX 1080 Pascal 2016 1.555 279.9 [Abdelrahman et al., 2017]
Nvidia RTX 2070 Turing 2018 1.771 310.0 [An and SEO, 2020]
Nvidia GTX 970 Maxwell 2014 2.174 315.2 [Tezcan, 2021]

Nvidia Tesla P100 Pascal 2016 2.423 605.9 [Nishikawa et al., 2017]
Nvidia RTX 2070 Super Turing 2019 4.087 878.6 [Tezcan, 2021]

Table 8: Throughput comparison of AES per slice (LUT) on different FPGA devices

Device BRAM Slice(LUT) Throughput(GBit/s) TPS(Mbps/Slice) Design
Virtex-5 2 459 4.262 9.29 [Kundi et al., 2016]
Virtex-5 0 798 4.34 5.43 [Rais and Qasim, 2010]
Virtex-5 0 950 4.1 4.315 [Bulens et al., 2008]
Virtex-5 0 1223 3.7 2.76 [Bouhraoua, 2010]
Virtex-7 0 2444 5.306 2.17 [Hussain and Jamal, 2012]
Virtex-6 16 4926 1.815 0.368 [Criado et al., 2014]

Table 9: Throughput comparison of AES per seconds on FPGA devices

Device BRAM Slice(LUT) Throughput(GBit/s) TPS(Mbps/Slice) Design
Virtex-5 0 8896 25.89 2.91 [Reddy et al., 2011]
Virtex-5 20 4491 42.62 9.49 [Kundi et al., 2016]
Virtex-6 0 18854 44.074 3.71 [Wang and Ha, 2013]

Virtex-2 Pro 80 11398 57.28 s 5.026 [Iyer et al., 2011]
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CHAPTER 3

COMPACT AES S-BOX IMPLEMENTATION FOR HARDWARE
PLATFORMS

3.1 Mathematical Background

Definition 3.1.1 (Binary Number). A binary number is a number represented in the
modulo 2. Only two symbols are used, typically: 0 and 1.

The binary system is the system that represents every number with binary numbers
(0 or 1). Almost all modern computers and computer-based devices prefer to use
the binary system. This is due to its straightforward implementation in computer
architecture. The behaviors of logic gates can be represented in binary systems.

Definition 3.1.2 (Binary Operation). Let S be set and let S × S denote the set of all
ordered pairs (x, y) where x, y ∈ S. Then mapping from S × S into S will be called
a binary operation. This requires that the image of (x, y) ∈ S × S be in S. This is
called closure property.

Definition 3.1.3 (Group). A group is a set G together with a binary operation ·, and
satisfies the following properties:

1) Associative: For any x, y, z ∈ G, (x · y) · z = x · (y · z).
2) Identity(or Unity: There is an element e ∈ G, such that for all x ∈ G,

x · e = e · x = x.
3) Inverse Element: For all x ∈ G, there is an element x−1 ∈ G such that

x · x−1 = e, where e is the identity element.

Definition 3.1.4 (Abelian Group). Abelian group G is a group with commutative
property.

Commutative: For all x, y ∈ G, x · y = y · x.

Example: (Z,+) is a group.
For all x, y, z ∈ Z, (x+ y) + z = x+ (y + z) holds, so it is associative .
There is 0 ∈ Z, for all x ∈ Z, x+ 0 = x holds, so it has identity element.
For all x ∈ Z, there is an element −x ∈ Z, so every element has its inverse.

Therefore, (Z,+) is a group. (Z,+) is also abelian group because for every x, y ∈ Z,
x+ y = y + x holds.
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However; (Z,−) is a not group, because it is not associative. For example (2− 4)−
6 ̸= 2− (4− 6).

Definition 3.1.5 (Field). A field is a set F together with two binary operations (+, ·),
and satisfies the following properties:

1) Associative: Both multiplication and addition operations satisfy the following
equations:For any x, y, z ∈ F ,

(x · y) · z = x · (y · z) and (x+ y) + z = x+ (y + z).

2) Commutative: Both multiplication and addition operations satisfy the fol-
lowing equations:For any x, y ∈ F ,
(x · y) = x · y and (x + y) = x+ y.

3) Identity Element: Both multiplication and addition operations have identity
element. There is 0, 1 ∈ F such that for all x ∈ F, 1 · x = x and 0 + x = x.

4) Additive Inverse: For all x ∈ F , there is an element −x ∈ F such that
x+ (−x) = 0, where 0 is the identity element of addition.

5) Multiplicative Inverse: For all x ∈ F , there is an element x−1 ∈ F such that
x · x−1 = 1, where 1 is the identity element of multiplication.

6) Distributive: There holds distributive property of multiplication over addi-
tion. For all x, y, z ∈ F , x · (y + z) = x · y + x · z.

Example:
(
R, (+, ·)

)
is a field.

Example:
(
C, (+, ·)

)
is a field, where C is the complex numbers: C = {x+y·i|x, y ∈

R, i2 = −1} and 0 = 0 + 0 · i, 1 = 1 + 0 · i.

Example:
(
Z7, (+, ·)

)
is a field.

In Z7 = {0, 1, 2, 3, 4, 5, 6}, the addition and multiplication operations are closed un-
der modulo arithmetic. The associative, commutative, and distributive properties hold
trivially. The identity element for addition is 0, and the identity element for multipli-
cation is 1. To verify the inverse properties, we find that each element has an additive
inverse and a multiplicative inverse. Now, we need to check inverse properties.

For additive inverse;
0 + 0 ≡ 0 mod 7
1 + 6 ≡ 0 mod 7. (1 and 6) are the inverse of each other.
2 + 5 ≡ 0 mod 7. (2 and 5) are the inverse of each other.
3 + 4 ≡ 0 mod 7. (3 and 4) are the inverse of each other.
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For multiplicative inverse;
1 · 1 ≡ 1 mod 7
2 · 4 ≡ 1 mod 7. (2 and 4) are the inverse of each other.
3 · 5 ≡ 1 mod 7. (3 and 5) are the inverse of each other.
6 · 6 ≡ 1 mod 7.

Lemma 3.1.1. if p is prime, then
(
Zp, (+, ·)

)
is a field.

Definition 3.1.6 (Extension Field). Assume F is a field and K is the subset of F . If
K itself is a field (under operations of F ), it is called a subfield of F . Then F is called
an extension(field) of K.

• Polynomials over Fields

We have introduced the basic algebraic structures to build polynomials over fields.
Assume that F is field with (+, ·) operations. A polynomial f over F (also denoted
as f ∈ F [x] ) is defined in the form:

f(x) = anx
n + an−1x

n−1 + ...+ a2x
2 + a1x+ a0,

where the coefficients a0, a1, a2, .., an ∈ f . The set of all polynomials over a field is
represented as F [x]. The degree of f is denoted deg(f) = n, where an ̸= 0. f is also
denoted as:

f(x) = (an, an−1, ..., a2, a1, a0).

If the leading coefficient (nonzero coefficient of highest degree) an = 1, then f is
called monic polynomial.

Example: Consider the field
(
Z5, (+, ·)

)
. An example of a polynomial over Z5 is

f(x) = 3x2 + 2x+ 4.
All the coefficients of f are in Z5, and deg(f) = 2. It is not a monic polynomial since
the leading coefficient is 3.

Multiplications of Polynomials:

Let f = (cn, cn−1, ..., c2, c1, c0) and g = (dm, dm−1, ..., d2, d1, d0), then the f · g =
(en+m, en+m−1, ..., e2, e1, e0) is defined as:

n∑
i=0

cixi ·
m∑
j=0

djxj =
n+m∑
k=0

k∑
l=0

cldk−lx
k

Division of Polynomials:

Let f and g be polynomials over F [x], If there is a polynomial h over F [x] such that:

g = f · h

27



Then we say that f divides g and, it denoted as "f |g". "f ∤ g" denotes that f does not
divide g.

Example: Let f(x) = 2x2 + x+ 1 and g(x) = x3 + x+ 1. Assume h = f · g, then

h(x) = (2x2 + x+ 1) · (x3 + x+ 1)

= 2x5 + 2x3 + 2x2 + x4 + x2 + x+ x3 + x+ 1

= 2x5 + x4 + 3x3 + 3x2 + 2x+ 1

It is also represented as:

(2, 1, 1) · (1, 0, 1, 1) = (2, 1, 3, 3, 2, 1).

Definition 3.1.7 (Irreducible Polynomials). A polynomial f over F [x] is irreducible
if the only factorization of it are the trivial ones ( one and the polynomial itself).

Example: Let f(x) = x2 + x+ 1 be a polynomial over
(
Z2, (+, ·)

)
.

For x = 0, f(0) = 1, which is not 0.
For x = 1, f(1) = 1 + 1 + 1 = 3 ≡ 1 mod 2, which is not 0.
f is also not divisible by any polynomials of degree 1. Therefore, f is irreducible

polynomial over
(
Z2, (+, ·)

)
.

3.2 Field Isomorphism

The optimization studies of [Canright, 2005] is mainly constructed on isomorphism
of finite fields. Thanks to irreducible polynomial of AES S-box, Canright proposed
different way to construct AES S-box by using field isomorphism.

Definition 3.2.1 (Isomorphism). Assume there are two fields
(
F1, (+,×)

)
and

(
F2, (⊕, ·)

)
with the same number of elements. A one-to-one map f : F1 7→ F2 is called an iso-
morphism from

(
F1, (+,×)

)
onto

(
F2, (⊕, ·)

)
, if for any a, b ∈ F1

f(a+ b) = f(a)⊕ f(b),

f(a× b) = f(b) · f(b)

Then
(
F1, (+,×)

)
and

(
F2, (⊕, ·)

)
are called isomorphic fields to each other.

Example: Consider the field
(
Q(
√
2), (+, ·)

)
whose elements are in the form a +

b
√
2, and the field

(
Q(
√
5), (+, ·)

)
whose elements are in the form c + d

√
5, where

a, b, c, d ∈ Q.

The function f : Q(
√
2)→ Q(

√
5) defined by:

f(a+ b
√
2) = a+ b

√
10

is claimed to be a field isomorphism. In order to be a field isomorphism, the following
three properties must be satisfied by the function f :
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f is a one-to-one: Since f maps every element in Q(
√
2) to a distinct element

in Q(
√
5), and vice versa, f is a one-to-one.

f satisfies addition: For any x, y ∈ Q(
√
2) assume x = a + b

√
2 and y =

c+ d
√
2, the following equation is verified:

f(x+ y) = f((a+ b
√
2) + (c+ d

√
2))

= f((a+ c) + (b+ d)
√
2)

= (a+ c) + (b+ d)
√
10

= (a+ b
√
10) + (c+ d

√
10)

= f(x) + f(y)

Thus, f satisfies addition.
f satisfies multiplication: For any x, y ∈ Q(

√
2) assume x = a + b

√
2 and

y = c+ d
√
2, the following equation is verified:

f(xy) = f((a+ b
√
2)(c+ d

√
2))

= f((ac+ 2bd) + (ad+ bc)
√
2)

= (ac+ 2bd) + (ad+ bc)
√
10

= (a+ b
√
10)(c+ d

√
10)

= f(x)f(y)

Thus, f satisfies multiplication. Since f is a one-to-one that preserves addition and
multiplication, it is a field isomorphism.

Example: Consider the fields
(
Q, (+, ·)

)
and

(
Q(
√
7), (+, ·)

)
, where Q is the field

of rational numbers and Q(
√
7) is the field obtained by adjoining the square root of 7

to Q.

The function f : Q→ Q(
√
7) defined by:

f(a+ b
√
7) = a− b

√
7

is a field isomorphism. To see why this is the case, we need to verify that f satisfies
the following properties:
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f is a one-to-one: It’s easy to see that f is one-to-one and onto.
f satisfies addition: Let x, y ∈ Q(

√
7). Then, we have:

f(x+ y) = f((a+ b
√
7) + (c+ d

√
7))

= f((a+ c) + (b+ d)
√
7)

= (a+ c)− (b+ d)
√
7

= (a− b
√
7) + (c− d

√
7)

= f(x) + f(y)

f satisfies multiplication: Let x, y ∈ Q(
√
7). Then, we have:

f(x · y) = f((a+ b
√
7) · (c+ d

√
7))

= f((ac+ 2bd) + (ad+ bc)
√
7)

= (ac+ 2bd)− (ad+ bc)
√
7

= (a− b
√
7) · (c− d

√
7)

= f(x) · f(y)

Since f satisfies all the required properties, it is a field isomorphism between Q and
Q(
√
7).

3.3 Galois Field

Definition 3.3.1 (Galois Field). A Galois field, denoted as GF or Fq, is a finite field
with a finite number of elements. The cardinality of a Galois field, which represents
the number of elements in the field, is always a prime number or a power of a prime.

The elements of Galois field GFq is defined as

GF(q) = (0, 1, 2, ..., q − 2, q − 1)

The elements of GF(qn) can be represented as the field of equivalence classes of poly-
nomials whose coefficients belong to GF(q). Any irreducible polynomial of degree
n creates the same field elements. For example, x3+x+1 and x3+x2+1 yields the
same field elements, because both are 3rd degree irreducible polynomials.

Example: List the elements of GF(32) in polynomial notation.

GF(32) = {0, 1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2}

There are 32 = 9 elements, where each of the element is polynomial of degree at most
1 and coefficients are in Z3.
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Example: List the elements of GF(24) in polynomial notation.

GF(24) ={0, 1} ∪
{x, x+ 1} ∪
{x2, x2 + 1, x2 + x, x2 + x+ 1} ∪
{x3, x3 + 1, x3 + x, x3 + x+ 1, x3 + x2,

x3 + x2 + 1, x3 + x2 + x, x3 + x2 + x+ 1}

There are 24 = 16 elements, where each of the element is polynomial of degree at
most 3 and coefficients are in Z2.

Example: List the elements of GF(42) in polynomial notation.

GF(42) ={0, 1, 2, 3} ∪
{x, x+ 1, x+ 2, x+ 3, 2x, 2x+ 1, 2x+ 2, 2x+ 3

3x, 3x+ 1, 3x+ 2, 3x+ 3}

There are 42 = 16 elements, where each of the element is polynomial of degree at
most 1 and coefficients are in Z4.

Definition 3.3.2 (Primitive Element). A group G is called cyclic if there is an element
e ∈ G such that for any x ∈ G there is some integer i with x = ei. The element e is
called primitive element (or generator), and it is written as G =< e >.

Definition 3.3.3 (Primitive Polynomials). A polynomial that produces all the ele-
ments of an extension field is referred to as a primitive polynomial.

Example: Show that x4 + x+ 1 is a primitive polynomial over GF(2).

We need to prove that there is an element e such that e can generate all the elements
of GF(24). We have shown the elements of GF(24) above.
Let generator be x.

x1 = x x9 = x3 + x

x2 = x2 x10 = x2 + x+ 1

x3 = x3 x11 = x3 + x2 + x

x4 = x+ 1 x12 = x3 + x2 + x+ 1

x5 = x2 + x x13 = x3 + x2 + 1

x6 = x3 + x2 x14 = x3 + 1

x7 = x3 + x+ 1 x15 = 1

x8 = x2 + 1
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We replaced x4 with x+ 1 since they are equal in the given field. As we can see that
all the elements are generated. To sum up, x is the primitive element and x4 + x + 1
is a primitive polynomial over GF(2).

Definition 3.3.4 (Irreducible Primitive Polynomials). If a polynomial f is both irre-
ducible and primitive, then it is called irreducible primitive polynomial.

For AES S-box, the field GF(28) is used. Now we know that the field has exactly 256
elements and each element of the field can be represented by a polynomial degree at
most 7. The coefficient of polynomials are in Z2, which means binary system is used
for representation.

3.4 Construction of S-Box

Definition 3.4.1 (Circulant Matrix). An n × n matrix called circulant if it is in the
form:

M =



cn−1 c0 c1 . . . cn−3 cn−2

cn−2 cn−1 c0 . . . . cn−3

. . . . . . . .

. . . . . . . .

. . . . . . . .
c2 . . . . . c0 .
c1 c2 . . . . cn−1 c0
c0 c1 c2 . . . cn−2 cn−1


The transpose of this form also constructs circulant matrix. The cyclic permutation
of the first row creates other rows of the matrix. The circulant matrix that contains
only 0s and 1s is called circulant binary matrix.

The polynomial representation of the matrix is as follow:

f(x) = cn−1x
n−1 + cn−2x

n−2 + ...+ c1x+ c0

The Rijndael S-Box use the following circulant binary matrix.

M =



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


The polynomial representation of the Rijndael S-Box is

f(x) = x7 + x3 + x2 + x+ 1
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The polynomial is also denoted in hexadecimal form 0x8f . In this thesis, the hex-
adecimal notation of circulant matrices is used for simplicity.

3.4.1 Affine Transform

The S-Box function of AES is generated with an affine transform. The affine trans-
formation formula is given below.

S(x) = M × x−1 ⊕ c,

where M is the 8× 8 circulant binary matrix and c is a constant byte.

Step 1: Find the multiplicative inverse of a in GF(28)

b = a−1, (3)

(if a = 0, then b = 0).

Step 2: Calculate the following affine transformation.

s7
s6
s5
s4
s3
s2
s1
s0


=



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 0 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


×



b7
b6
b5
b4
b3
b2
b1
b0


⊕



0
1
1
0
0
0
1
1


si’s and bi’s are the bits of s and b correspondingly and 0 ≤ i < 7.

3.5 Implementation Methods of S-boxes for FPGA Platforms

3.5.1 RAM-Based Implementation

There are 256 different input values for an S-Box function. The output of the S-box
function is a byte. Therefore, a 256-byte table is enough to keep an S-Box. Block
Rams on FPGA platforms can be used to store the S-Boxes. RAMs are the memory
spaces in FPGA, which can be written with data or retrieved as data. The type of
memory which is not writable is called ROM (read-only memory). We do not need
to write anything to memory for S-Box tables; we just read the data. For conven-
tion, we use RAM instead of ROM for explanations. Several designers prefer to use
RAM-based implementation [Kundi et al., 2016],[Aziz and Ikram, 2007]. Although
keeping S-boxes in a block ram increases the throughput performance of the algo-
rithm [Saggese et al., 2003], using RAMs for S-Boxes also has many drawbacks.

Depending on FPGA, a RAM can store a block of 18 Kbits or 36 Kbits data. For
every 8-bit of data, one parity bit is used. Therefore, 18 Kbits RAMs can store 16
Kbits, and 36 Kbits RAMs can store 32 Kbits [AMD Xilinx Company, 2022]. Since
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only a single data can be retrieved from RAM in one cycle, one RAM can be used
for only one byte. AES state has 16 bytes. Therefore 16 Block RAMs are needed to
implement the S-Box layer in one cycle. Only 256 bytes of the RAM is used to keep
an S-Box; the rest of the ram will be useless.

• Singe Port Block-RAM

The Singe Port Block-RAM has only one interface. These types of RAMs can read
or write only a single data in each cycle. This is the simplest RAM configuration
for FPGA platforms to retrieve data. According to write enable(we) signal, a data
is retrieved or written. If the write enable signal is high(”1”), data input (dina) is
written into address(addra) index of RAM. If the write enable signal is low(”0”),
the data in the data input (dina) index is retrieved from RAM with data out (dout)
signal. Enable(en) signal enables and disables the RAM. The input and output ports
of Single Port Block-RAM is shown in Figure 13.

Single
Port

RAM

dina
addra
en
we
clk

dout

Figure 13: The input and output ports of Single Port Block-RAM

• Dual Port Block-RAM

The Dual Port Block-RAM has two interfaces. These types of RAMs can read or
write two data in each cycle. According to write enable signals, a data is retrieved or
written from relevant ports. The input and output ports of Dual Port Block-RAM is
shown in Figure 14.
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Port

RAM

dina
addra
ena
wea
clka

douta

dinb
addrb
enb
web
clkb

doutb

port
A

port
B

Figure 14: The input and output ports of Dual Port Block-RAM

3.5.2 Logic-Based Implementation

Instead of storing S-box in RAMs, the Look-up Tables(LUT) can be also used for this
purpose. There are different types of LUTs; in this thesis, we focused on 4-LUT and
6-LUT. Since the FPGAs that we worked on use 4-LUT and 6-LUT types of LUTs.
According to each input combination, one-bit output is kept in the truth table. If we
write the S-Box as a byte array in the code, the synthesizer converts this S-Box into
LUTs. According to our studies, the FPGAs that use 4-LUTs as a primitive need 64
Look-up tables to represent 256-byte S-Box table. For the FPGAs whose primitives
are 6-LUTs need 40 Look-up tables to implement the S-Box. The Naive Look-up
table implementation refers to this implementation style. The detailed results for
specific FPGAs are given in the sub-chapter 4.4.3.

• 4-LUT

In 4-LUT, there are four different bits as an input. According to each combination of
inputs, the output bit is stored in the Look-up table. In this case, the size of the table
is 24 = 16. The structure of 4-LUT is given in Figure 15. For interested readers,
check [AMD Xilinx Company, 2022].
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4-
LUT

in0
in1
in2
in3

out

Figure 15: 4-Input Look-up Table with General Output

• 6-LUT

In 6-LUT, there are six different bits as an input. According to each combination of
inputs, the output bit is stored in the Look-up table. In this case, the size of the table
is 26 = 64. The structure of 6-LUT is given in Figure 16. It consists of two 5-LUTs
and one multiplexer. For interested readers, check [AMD Xilinx Company, 2022].

3.5.3 Arithmetic-Based Implementation

The last approach that we mentioned in this thesis is arithmetic-based implemen-
tation. The S-box function is performed directly by implementing the multiplica-
tive inverse and affine transform. The affine transform is straightforward and costs
less gate-area on hardware platforms. However, taking the multiplicative inverse in
GF(28) is expensive. Several designs use arithmetic-based implementation. Opti-
mizing the operations on the Galois field reduces the cost of implementing S-Box.
[Satoh et al., 2001] used field isomorphism properties and proposed a new method
to calculate the multiplicative inverse in GF(((22)2)2) instead of GF(28). Later,
[Canright, 2005] optimized [Satoh et al., 2001] results and proposed new isomorphism
matrices to represent S-Box.

In this thesis, we used a composite field approach to find a new S-Box that costs less
gate-area than Canright results. Our purpose was not to optimize AES S-Box in this
thesis. We aimed to find another S-Box that could be implemented with fewer gates
on the hardware platform. The security that S-Box provides against cryptanalysis
techniques is also concerned. At the end of our studies, we proposed a new S-box
that can be implemented with fewer gates and provides at least the same security
level of AES’s S-Box. The details of our study is explained in the next chapter.
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CHAPTER 4

THE PROPOSED COMPACT S-BOX FOR HARDWARE PLATFORMS

AES can be implemented in a variety of ways on hardware platforms. The implemen-
tation details are highly dependent on a target platform and specific FPGA. Pipelining,
unrolling, datapath width, and frequency requirements are the methods/aspects that
can affect the architecture of the implementation.

The approach of implementing S-Box is the most critical part of these design meth-
ods [[Bulens et al., 2008]]. This is because the S-Box layer is the most expensive to
implement among the other levels of AES on hardware. There are three approaches
to implement an S-Box on hardware platforms: logic-based, arithmetic-based, and
RAM-based implementations. The details of these approaches are explained in the
previous section 3.5.

The S-Box of AES is already implemented in a very compact way on hardware by
using composite field approach of Galois field GF(28) [Canright, 2005], which is one
of the approaches of arithmetic-based implementation. In this thesis, we aim to look
for different primitive polynomial of finite field GF(28), which provides at least the
same security level of AES’s S-Box against linear and differential cryptanalysis and
costs less gate area on hardware platforms.

4.1 Implementation Details

Irreducible polynomials are the polynomials which can not be expressed by the mul-
tiple of two non-constant polynomials. Primitive polynomials have at least one gen-
erator, as we defined in the previous section in detail. A polynomial which is both
irreducible and primitive is called irreducible primitive polynomial.

By Gauss’s formula, there are 30 different irreducible primitive polynomials of degree
8 over GF(28) [Sunil and Jan, 2011]. The list of the irreducible primitive polynomials
is given in the Table 10. The polynomial of AES S-Box is the first polynomial of the
table, which is the smallest 8th degree primitive.

S(x) = M ∗ x−1 ⊕ c,

is the S-Box affine transformation formula, where M is the 8 × 8 circulant binary
matrix and c is a constant byte.
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Table 10: List of all 8th degree irreducible primitive polynomials in GF(28)

Hexadecimal Form Polynomial
1 0x11b x8 + x4 + x3 + x1 + 1
2 0x11d x8 + x4 + x3 + x2 + 1
3 0x12b x8 + x5 + x3 + x1 + 1
4 0x12d x8 + x5 + x3 + x2 + 1
5 0x139 x8 + x5 + x4 + x3 + 1
6 0x13f x8 + x5 + x4 + x3 + x2 + x1 + 1
7 0x14d x8 + x6 + x3 + x2 + 1
8 0x15f x8 + x6 + x4 + x3 + x2 + x1 + 1
9 0x163 x8 + x6 + x5 + x1 + 1
10 0x165 x8 + x6 + x5 + x2 + 1
11 0x169 x8 + x6 + x5 + x3 + 1
12 0x171 x8 + x6 + x5 + x4 + 1
13 0x177 x8 + x6 + x5 + x4 + x2 + x1 + 1
14 0x17b x8 + x6 + x5 + x4 + x3 + x1 + 1
15 0x187 x8 + x7 + x2 + x1 + 1
16 0x18b x8 + x7 + x3 + x1 + 1
17 0x18d x8 + x7 + x3 + x2 + 1
18 0x19f x8 + x7 + x4 + x3 + x2 + x1 + 1
19 0x1a3 x8 + x7 + x5 + x1 + 1
20 0x1a9 x8 + x7 + x5 + x3 + 1
21 0x1b1 x8 + x7 + x5 + x4 + 1
22 0x1bd x8 + x7 + x5 + x4 + x3 + x2 + 1
23 0x1c3 x8 + x7 + x6 + x1 + 1
24 0x1cf x8 + x7 + x6 + x3 + x2 + x1 + 1
25 0x1d7 x8 + x7 + x6 + x4 + x2 + x1 + 1
26 0x1dd x8 + x7 + x6 + x4 + x3 + x2 + 1
27 0x1e7 x8 + x7 + x6 + x5 + x2 + x1 + 1
28 0x1f3 x8 + x7 + x6 + x5 + x4 + x1 + 1
29 0x1f5 x8 + x7 + x6 + x5 + x4 + x2 + 1
30 0x1f9 x8 + x7 + x6 + x5 + x4 + x3 + 1
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Using composite field approach, Canright optimized the taking inverse of x over
GF(28), M and c are not considered in the optimization part. There are 256 dif-
ferent 8 × 8 circulant binary matrices and 256 different constant values. As we ex-
plained above, there are 30 different irreducible primitive polynomials. Therefore,
30× 256× 256 different look-up tables can be created in the considered affine trans-
formation form. The look-up tables, which do not have one-to-one property, are
ignored in this thesis.

• Composite Field Approach

The notation of [Canright, 2005] is used for compatibility. Let g be an element of
GF(28) and represented as g = g7g6g5g4g3g2g1g0, where ∀ gi ∈ GF(2). g is also
represented as

g(x) = g7x
7 + g6x

6 + g5x
5 + g4x

4 + g3x
3 + g2x

2 + g1x
1 + g0.

We need to convert an element of g ∈ GF(28), into new basis form. g can be ex-
pressed by γ1y

16 + γ0y ∈ GF(28)/GF(24), where γ1 and γ0 ∈ GF(24)/GF(22).
Each γ can be expressed by Γ1z

4 + Γ0z, where each Γ ∈ GF(22)/GF(2). Γ1 and
Γ0 are considered as a pair of bits β1 and β0, Γ = β1w

2 + β0w, where β0 and
β1 ∈ {0, 1}. These conversions are possible thanks to field isomorphism between
GF(28)→ GF((24)2)→ GF(((22)2)2).

The purpose is to find equivalence of g ∈ GF(28) in GF(((22)2)2).

g = γ1y
16 + γ0y

= (Γ3z
4 + Γ2z)y

16 + (Γ1z
4 + Γ0z)y

= ((β7w
2 + β6w)z

4 + (β5w
2 + β4w)z)y

16

+ ((β3w
2 + β2w)z

4 + (β1w
2 + β0w)z)y

After putting the g(x) into the equation,

g(x) = g7x
7 + g6x

6 + g5x
5 + g4x

4 + g3x
3 + g2x

2 + g1x+ g0

= (g7x
7 + g6x

6 + g5x
5 + g4x

4)y16 + (g3x
3 + g2x

2 + g1x+ g0)y

= ((g7x
7 + g6x

6)z4 + (g5x
5 + g4x

4)z)y16

+ ((g3x
3 + g2x

2)z4 + (g1x+ g0)z)y

= ((g7x
7w2 + g6x

6w)z4 + (g5x
5w2 + g4x

4w)z)y16

+ ((g3x
3w2 + g2x

2w)z4 + (g1xw
2 + g0w)z)y

We will map g(x)→ b(x), where g ∈ GF(28) and b ∈ GF(((22)2)2).
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b(x) = ((b7w
2 + b6w)z

4 + (b5w
2 + b4w)z)y

16

+ ((b3w
2 + b2w)z

4 + (b1w
2 + b0w)z)y

= (b7w
2z4 + b6wz

4 + b5w
2z + b4wz)y

16

+ ((b3w
2z4 + b2wz

4 + b1w
2z + b0wz)y

= b7w
2z4y16 + b6wz4y16 + b5w

2zy16 + b4wzy16

+ b3w
2z4y + b2wz4y + b1w

2zy + b0wzy

The constant wizjyk values will be the columns of the mapping matrix, where i,j,k ∈
N.

X=



χ0,0 χ1,0 χ2,0 χ3,0 χ4,0 χ5,0 χ6,0 χ7,0

χ0,1 χ1,1 χ2,1 χ3,1 χ4,1 χ5,1 χ6,1 χ7,1

χ0,2 χ1,2 χ2,2 χ3,2 χ4,2 χ5,2 χ6,2 χ7,2

χ0,3 χ1,3 χ2,3 χ3,3 χ4,3 χ5,3 χ6,3 χ7,3

χ0,4 χ1,4 χ2,4 χ3,4 χ4,4 χ5,4 χ6,4 χ7,4

χ0,5 χ1,5 χ2,5 χ3,5 χ4,5 χ5,5 χ6,5 χ7,5

χ0,6 χ1,6 χ2,6 χ3,6 χ4,6 χ5,6 χ6,6 χ7,6

χ0,7 χ1,7 χ2,7 χ3,7 χ4,7 χ5,7 χ6,7 χ7,7


=


χ0 χ1 . . . χ7


where each χi’s are defined as follow:

χ0 = w2z4y16, χ4 = w2z4y1

χ1 = w1z4y16, χ5 = w1z4y1

χ2 = w2z1y16, χ6 = w2z1y1

χ3 = w1z1y16, χ7 = w1z1y1

The matrix X converts an element g ∈ GF(28) into new basis form, which is in
the field GF(((22)2)2). As we can see, the mapping is decided for a choice of the
basis denoted as bytes of (y, z, w) values. X denotes the isomorphism bit matrix
throughout the chapter.

4.1.1 Generating Affine-based S-Box Table

S-Box table is the byte array whose length is 256. Each index of the byte array has its
own corresponding S-Box value. In order to perform S-Box value of a given index x,
we need to calculate Mx−1 ⊕ c, where c is the constant byte and M is the circulant bit
matrix. The algorithm of generating affine-based S-Box table is given in Algorithm
4. Flowchart of calculating S-box function with naive-way is shown in Figure 17.
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Algorithm 4: Algorithm of Generating S-Box from poly, M and c
Inputs: poly,M, c
; /* poly is the 8th degree irr-primitive poly */
; /* M is the circulant bit matrix. */
; /* c is the constant byte. */
Output: sboxTable[256]
; /* Output is the byte array of sized 256. */

sboxTable[256] = [0, 0, . . . , 0]
for x = 0, 1, 2, . . . , 255 do

; /* x−1 is the multiplicative inverse of x in GF.
*/
sboxTable[x] = M × x−1

⊕
c

end

yGF
(
28
)Multiplicative Inverse

Matrix Multiplicationx−1x in M x−1

cM

⊕

Figure 17: Flowchart of Calculating S-Box Function with Naive-way

4.1.2 Generating Isomorphism Bit Matrices of Given S-Box

Composite field is used to compute the multiplicative inverse efficiently. An element
in the field GF(28) is mapped into an element in the GF(((22)2)2). The multiplicative
inverse is taken in that field. Then the result is converted back to the initial field, which
is GF(28). Flowchart of calculating S-box function with composite field approach is
shown in Figure 18

output
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Figure 18: Flowchart of Calculating S-Box Function with Composite Field Approach

The conversion map X converts an element of the field g ∈ GF(28) to the element
of the field b ∈ GF(((22)2)2). The inverse of the input is calculated in the domain
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of the field GF(((22)2)2). The S-Box formula is S(x) = M ∗ x−1 ⊕ c, where M is
the circulant matrix and c is the constant byte. We first change the form of the given
input then calculate its inverse. This operation is exactly the same with multiplying
calculated X−1, where X−1 is the inverse of X over GF(2). Then, we multiply by
M × X to change the basis back again. Having X−1 and M × X , it is enough to
construct an S-Box function.

Instead of finding isomorphism functions between the fields one by one, we searched
for basis values (y, z and, w), which will build X bit matrix at the end. Even though we
used a brute-force approach for finding isomorphism bit matrices, we quickly gener-
ated all the possible isomorphism bit matrices. The algorithm of finding isomorphism
bit matrices is given in Algorithm 5.

Algorithm 5: Algorithm of Generating Isomorphism Bit Matrices from S-
Box Table

Inputs: sboxTable, poly,M, c
; /* sboxTable is the byte array of sized 256. */
; /* poly is the 8th degree irr-primitive poly. */
; /* M is the circulant bit matrix. */
; /* c is the constant byte. */
Output: isoList

; /* The list of isomorphism bit matices. */

isoList = [ ]
sboxTable′[256] = [0, 0, . . . , 0]
for y = 0, 1, 2, . . . , 255 do

for z = 0, 1, 2, . . . , 255 do
for w = 0, 1, 2, . . . , 255 do

X = generateX(y, z, w)
sboxTable′ = generateTable(M,X, c)
; /* Compare both S-Boxes. */
if sboxTable′ = sboxTable then

isoList.add(X)
end

end
end

end
return isoList

The search space is vast enough, so optimizing all the 8× 8 S-Boxes was impossible.
We have chosen one of the irreducible primitive polynomials from the Table 10. After
choosing the polynomial, we chose one 8 × 8 binary circulant matrix and a constant
byte value. We generated the S-Box with chosen parameters. Then we found iso-
morphism bit matrices of generated S-Box. There are more than one isomorphism bit
matrix for each generated S-Box. Canright proposed 432 different isomorphism bit
matrices for AES S-Box. We used Python programming language to generate all the
S-Boxes and their corresponding isomorphism bit matrices.
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The time-consuming part was to synthesize matrices on hardware. On the hardware
side, we have used VHDL language on Xilinx Vivado. Our purpose was to try all
the possible isomorphism bit matrices and choose the smallest S-Box in terms of gate
area with good algebraic properties. We have used Xilinx Vivado 21.1 and Xilinx
ISE Suite 14.3 tools to synthesize S-Boxes. Synthesizing each isomorphism bit ma-
trix takes approximately one minute in our computer, the specifications of our setup
are as follow:

Processor: Intel(R) Xeon(R) Gold 62226R CPU 2.90 GHz
Installed Memory(RAM): 128 GB
System Type: 64-bit Operating System, Windows 10

There are 256 × 256 different S-Boxes for only one irreducible polynomial. More-
over, each S-Box has many different isomorphism bit matrices. There are 30 different
8th degree irreducible primitive polynomials by Gauss’s formula. Therefore the time
required to find the smallest affine-based S-Box for the hardware platform is approx-
imately

30× 256× 256× 432× 1 minutes ≈ 1615, 95 years.

It requires a considerable amount of computational power to search all the space. Due
to a license issue, we were unable to search our space across many cores. One license
provides only one synthesis at a time. Therefore, we could only search some of the
space but found what we sought. We came up with an S-Box that requires 3.125% less
gate-are and has the same algebraic properties as AES S-Box. Although the compos-
ite field approach finds more efficient way to implement an S-Box, some conversion
matrices use more hardware gates than naive look-up table implementation. There-
fore, we have to be careful while choosing the hardware-oriented bit matrices. The
pseudo-algorithm of the finding the most compact 8× 8 S-Box is given in Algorithm
6.

4.2 Construction of the Proposed S-Box

According to our search method, we have generated many S-Boxes. Some of them
were weak in terms of algebraic properties. Some of them were costly. We focused on
the S-Boxes, which have good algebraic properties and are efficiently implementable,
among the generated S-Boxes. We desired to select the smallest and the most secure
S-Box. We found many equivalent S-Boxes according to the gate area and security
concerns. One of them was chosen to explain in detail.

The parameters of the proposed S-Box as follows:
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Algorithm 6: Algorithm of Searching Compact S-Box
Inputs: polyList ; /* 8th degree irr-primitive poly list
*/
Output: X,M, c ; /* X is the isomorphism bit matrix.
*/
; /* M is the circulant bit matrix. */
; /* c is the constant byte. */
for poly ∈ polyList do

for M = 0, 1, 2, . . . , 255 do
for c = 0, 1, 2, . . . , 255 do

sbox← generateSbox(poly,M, c)
isoList← generateIsomorphismMatrices(sbox, poly,M, c)

for X ∈ isoList do
; /* Check algebraic properties. */

; /* Synthesize and find gate-area. */
; /* Keep the most compact S-Box. */

end
end

end
end

The irreducible primitive polynomial is

g(x) = x8 + x7 + x6 + x5 + x4 + x2 + 1 ∈ GF(28) (4)

or 0x1f5 in hexadecimal notation.

The circulant matrix is M =



0 1 0 0 0 1 0 1
1 0 0 0 1 0 1 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1
1 0 1 0 0 0 1 0


,

which is 0x45 in hexadecimal notation. The constant value is c = 0x09.

The proposed S-Box is constructed in two steps. Let a be the input and s be the output
of the S-Box function.

Step 1: Find the multiplicative inverse of a in GF(28)

b = a−1, (5)

(if a = 0, then b = 0).
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Step 2: Calculate the following affine transformation.

s7
s6
s5
s4
s3
s2
s1
s0


=



0 1 0 0 0 1 0 1
1 0 0 0 1 0 1 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1
1 0 1 0 0 0 1 0


×



b7
b6
b5
b4
b3
b2
b1
b0


⊕



c7
c6
c5
c4
c3
c2
c1
c0


Multiplication of M and b can be also expressed as:

b′i = b(i+1)mod8 ⊕ b(i+3)mod8 ⊕ b(i+7)mod8 ⊕ ci (6)

s = s7s6s5s4s3s2s1s0
c = c7c6c5c4c3c2c1c0
b = b7b6b5b4b3b2b1b0

si’s, ci’s and bi’s are the bits of s, c, b correspondingly and 0 ≤ i < 7.

All the calculations are computed in GF(28). Multiplication and addition of binary
matrices do not increase the implementation cost. The difficulty of constructing an S-
Box on hardware platforms come from taking the inverse of an element in the Galois
field. Therefore, we focused on finding the multiplicative inverse of an element in
the Galois field. The complete 8 × 8 proposed S-Box and inverse S-box are given in
Table 11 and Table 12.

Table 11: The S-Box Table, generated by the following parameters: Irreducible prim-
itive polynomial is 0x1f5, the constant is 0x09 and the circulant matrix is 0x45.

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 09 ab fc a5 e2 3e 50 6c 6e 4f 67 d3 bb 45 73 43
1 c7 15 35 51 d5 7e bc ee dc 8b 91 1d fd 0a 2d 34
2 94 b0 31 e4 c1 af b9 0b 00 f9 e7 f5 62 11 76 b6
3 12 1c 0c 71 88 f6 21 20 e0 b3 bf 26 f1 7f c3 ac
4 82 cf 7a 9f c9 3a d2 3d 28 cb f4 b5 68 53 bd 37
5 1b 47 e8 80 64 a6 f0 ce df a8 39 61 f7 55 c6 a3
6 8f 2c 23 b7 03 40 49 99 ba 9a 46 4d e9 b8 eb cd
7 da 4c cc ff d4 13 57 19 f8 22 e5 a9 9c a1 42 c0
8 1e 78 84 33 ef 93 24 56 38 c2 6f 3b be 36 d1 06
9 fb 3f 8c 1f f2 52 70 d8 7b 79 0d b4 60 18 75 8a
a 9d 66 25 a0 ca dd aa 87 63 16 e6 85 fa 5e 86 17
b a4 e1 4a 5a d9 90 69 d7 44 fe b1 14 96 8e ec 10
c 04 01 f3 72 5d ed c4 59 ad 41 9b 0e 89 6b 98 2b
d de b2 2e 95 27 5c 81 65 c8 4b 6a 1a 7c 4e 30 0f
e ae c5 83 6d 32 db 54 9e 02 08 8d a7 05 d6 29 77
f ea a2 5f 7d d0 97 48 5b 92 e3 58 07 2f 74 2a 3c
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Table 12: The Inverse S-Box Table, generated by the following parameters: Irre-
ducible primitive polynomial is 0x1f5, the constant is 0x09 and the circulant matrix
is 0x45.

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 28 c1 e8 64 c0 ec 8f fb e9 00 1d 27 32 9a cb df
1 bf 2d 30 75 bb 11 a9 af 9d 77 db 50 31 1b 80 93
2 37 36 79 62 86 a2 3b d4 48 ee fe cf 61 1e d2 fc
3 de 22 e4 83 1f 12 8d 4f 88 5a 45 8b ff 47 05 91
4 65 c9 7e 0f b8 0d 6a 51 f6 66 b2 d9 71 6b dd 09
5 06 13 95 4d e6 5d 87 76 fa c7 b3 f7 d5 c4 ad f2
6 9c 5b 2c a8 54 d7 a1 0a 4c b6 da cd 07 e3 08 8a
7 96 33 c3 0e fd 9e 2e ef 81 99 42 98 dc f3 15 3d
8 53 d6 40 e2 82 ab ae a7 34 cc 9f 19 92 ea bd 60
9 b5 1a f8 85 20 d3 bc f5 ce 67 69 ca 7c a0 e7 43
a a3 7d f1 5f b0 03 55 eb 59 7b a6 01 3f c8 e0 25
b 21 ba d1 39 9b 4b 2f 63 6d 26 68 0c 16 4e 8c 3a
c 7f 24 89 3e c6 e1 5e 10 d8 44 a4 49 72 6f 57 41
d f4 8e 46 0b 74 14 ed b7 97 b4 70 e5 18 a5 d0 58
e 38 b1 04 f9 23 7a aa 2a 52 6c f0 6e be c5 17 84
f 56 3c 94 c2 4a 2b 35 5c 78 29 ac 90 02 1c b9 73

The input value’s initial four bits are represented in the table’s first column, and its
final four bits are shown in the table’s first row. The output of the S-Box function
is determined by where the row and column intersect. For example, if input value is
0x7a, then the intersection of the row with index ′7′ and the column with index ′a′ in
Table 11 is 0xe5.

4.3 Group Isomorphism of the Proposed S-Box

According to chosen irreducible primitive polynomial 0x1f5, one of the conversion
parameters is (y, z, w) = (0x13, 0x7a, 0x5d). Therefore, the isomorphism bit matrix
of the proposed S-Box is constructed as follow:

χ0 = 0xf4, χ4 = 0xd2

χ1 = 0xec, χ5 = 0xc7

χ2 = 0x54, χ6 = 0x2e

χ3 = 0xa2, χ7 = 0xd4
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And the final conversion map is X =



1 1 0 1 1 1 0 1
1 1 1 0 1 1 0 1
1 1 0 1 0 0 1 0
1 0 1 0 1 0 0 1
0 1 0 0 0 0 1 0
1 1 1 0 0 1 1 1
0 0 0 1 1 1 1 0
0 0 0 0 0 1 0 0


.

This map X converts an element in the field GF(((22)2)2) into an element of GF(28).
The inverse of X in GF(2) computes its reverse mapping.

The inverse conversion map is X−1 =



0 1 1 0 1 1 1 1
0 1 0 1 0 0 0 1
1 0 0 0 0 1 0 1
0 1 0 0 0 1 1 1
0 0 0 1 1 1 0 1
0 0 0 0 0 0 0 1
0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 1


.

While looking for S-Box function of a given input, first we need to multiply by X−1

to convert into the basis for GF(((22)2)2) and calculate its inverse in GF(2). After
that, we need to change the basis back again and perform the affine transformation.
Therefore, we multiply by M ×X for simplicity.

M ×X =



0 1 0 0 0 1 0 1
1 0 0 0 1 0 1 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1
1 0 1 0 0 0 1 0


×



1 1 0 1 1 1 0 1
1 1 1 0 1 1 0 1
1 1 0 1 0 0 1 0
1 0 1 0 1 0 0 1
0 1 0 0 0 0 1 0
1 1 1 0 0 1 1 1
0 0 0 1 1 1 1 0
0 0 0 0 0 1 0 0



=



0 0 0 0 1 1 1 0
1 0 0 0 0 0 0 1
0 1 0 0 1 0 1 0
1 0 0 0 1 1 1 0
1 0 1 0 0 0 1 1
0 1 0 0 1 1 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1


49



4.4 Results

We compared the results of our study to those of other researchers who had already
worked on this similar topic, using the same setup and platforms. We downloaded the
Xilinx ISE Design Suite 14.4 for Virex-4, Virex-5, and Virex-6 FPGAs and the Vi-
vado 2021.1 for Artix-7 and Virtex-7 FPGAs. During synthesis, we used the identical
FPGA components in the same configuration. Since implementing only S-Box occu-
pies very small amount of space on an FPGA, the synthesis frequencies of the designs
do not make sense. Therefore, we did not discuss synthesis frequency or synthesis
period in our research.

The naive look-up table design is the complete 8x8 S-Box table, a byte array of size
256. Canright’s matrices design implements AES S-Box in composite field arith-
metic. The isomorphism bit matrices are taken from [Canright, 2005].

4.4.1 Naive Look-up Table Implementation

This approach makes use of a full-byte array of size 256. This byte array can be
distributed to LUTs or mapped into a BRAM. Some FPGAs only map to BRAM,
which is both inefficient and undesirable. Since one BRAM, which is 18-Kbits or
32-Kbits, will be used for only the 256-bytes S-Box.

As a result, it is preferable to design S-Boxes in a distributed manner. Therefore, the
distribution cost of the S-Box is taken into account in our comparison tables.

4.4.2 Canright’s Matrices for AES S-Box

[Canright, 2005] found 432 different isomorphism bit matrices for AES S-Box and
proposed the smallest matrix in terms of gate-area in early 2005. The AES S-Box’s
irreducible primitive polynomial is 0x11b, and the proposed conversion parameters
is (y, z, w) = (0xff, 0x5c, 0xbd). The most compact isomorphism bit matrix of the
AES S-Box is proposed by [Canright, 2005]as follow:

χ0 = 0x64, χ4 = 0x68

χ1 = 0x78, χ5 = 0x29

χ2 = 0x6e, χ6 = 0xde

χ3 = 0x8c, χ7 = 0x60

The conversion map is X =



0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 1
1 1 1 0 1 1 0 1
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
1 0 1 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0


.
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This map X converts an element from the field GF(((22)2)2) into an element of
GF(28). The inverse of X in GF(2) computes its reverse mapping. M is the circulant
matrix of AES S-Box.

The inverse conversion map of X is X−1 =



1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 1 1 0 0 0 0 1
1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 1 0 0 1 1 1 1


.

M ×X =



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


×



0 0 0 1 0 0 1 0
1 1 1 0 1 0 1 1
1 1 1 0 1 1 0 1
0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0
1 0 1 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0



=



0 0 1 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0
1 1 1 1 1 0 0 0
0 1 1 0 1 1 0 1
0 0 1 1 0 0 1 0
0 1 0 1 0 0 1 0


The synthesis results of the given X−1 and M ×X matrices are used for comparison
tables.

4.4.3 Comparisons

The synthesis result of the proposed S-Box and previous AES S-Box implementation
results are compared in the Table 13 for the platform Virtex-4. The composite field
approach of implementing the proposed S-Box is executed on Xilinx ISE Design
Suite 14.4. Virtex-4 FPGA LUTs, as explained in the previous section, consist of
4-independent inputs and returns 1-bit output.The complete circuit is optimized by
the Xilinx synthesis tool at the end. We observed that the isomorphism bit matrices
of the proposed S-Box are optimized more than AES S-Box in terms of the number
of used LUTs.

The AES S-Box implementation on Virtex-4 FPGAs was optimized by the researchers
using a variety of techniques. Table 13 shows that for Virtex-4 xc4vlx25-10ff668, our
synthesis results are 21% more compact than [Murugan et al., 2020]. For Virtex-4
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Table 13: Synthesis result comparison of the proposed S-Box and the best optimized
AES S-Box designs on Virtex-4 FPGAs for Only One Byte of Input

Year Used Resource Design Platform
2020 35 Slices 69 LUTs [Murugan et al., 2020] Virtex4 - xc4vlx25-10ff668

(Xilinx ISE Design Suite 14.4
System Edition)

64 Slices 128 LUTs Naive Look-up Table 4.4.1
34 Slices 60 LUTs Canright’s Matrices 4.4.2

2023 30 Slices 57 LUTs Our work, Table 11
2017 37 Slices 71 LUTs [Priya et al., 2017] Virtex4 - xc4vlx200-11ff1513

(Xilinx ISE Design Suite 14.4
System Edition)

64 Slices 128 LUTs Naive Look-up Table 4.4.1
34 Slices 60 LUTs Canright’s Matrices 4.4.2

2023 32 Slices 57 LUTs Our work, Table 11

Table 14: Synthesis result comparison of the proposed S-Box and the best optimized
AES S-Box designs on Virtex-5 and Virtex-6 FPGAs for Only One Byte of Input

Year Used Resource Design Platform
2008 32 LUTs [Bulens et al., 2008]

Virtex5 - xc5vlx50t-3ff36
(Xilinx ISE Design Suite 14.4

System Edition)

2015 32 LUTs [Nadjia and Mohamed, 2015]
2019 172 LUTs [Priya and Karthigaikumar, 2019]

32 LUTs Naive Look-up Table 4.4.1
32 LUTs Canright’s Matrices 4.4.2

2023 32 LUTs Our work, Table 11
2015 32 LUTs [Savalam and Korapati, 2015] Virtex6 - xc6vlx240t-3ff784

(Xilinx ISE Design Suite 14.4
System Edition)

32 LUTs Naive Look-up Table 4.4.1
32 LUTs Canright’s Matrices 4.4.2

2023 32 LUTs Our work, Table 11

xc4vlx200-11ff1513, our circuit costs 24% less than Priya’s results. [Priya et al., 2017]
used mux-based S-Box implementation in their design. The multiplication in GF((22)2)
is computed with multiplexers instead of XOR gates. The study reduced the number
of multipliers and decreased the critical path [Priya et al., 2017]. [Murugan et al., 2020]
proposed a design which computes the multiplicative inverse in composite fields to
some point. The multiplications in GF((22)2) is stored in pre-calculated LUTs to de-
crease the number of LUTs in total design. According to [Canright, 2005]’s matrices,
our S-Box is 11.76% and 5.9% smaller respectively on Virtex-4 xc4vlx25-10ff668
and Virtex xc4vlx200-11ff1513 FPGAs.

Virtex-5 and Virtex-6 FPGAs use the more recent iteration of LUTs. The Virtex-5
and Virtex-6 LUTs can use 6-independent inputs. With this improvement, FPGAs
can produce more compact results; as seen in Table 14, the number of LUTs signif-
icantly dropped according to Virtex-4 FPGAs. The proposed S-Box implementation
results are identical to those of other researchers. The only design that costs more than
32 LUT is [Priya and Karthigaikumar, 2019] design. Multiplication block is imple-
mented with five-stage pipelining in the design of [Priya and Karthigaikumar, 2019].
Others researchers in Table 14 used the composite field approach and found the same
results.
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Table 15: Synthesis result comparison of the proposed S-Box and the best optimized
AES S-Box designs on Virtex-7 and Artix-7 FPGAs for Only One Byte of Input

Year Used Resource Design Platform
2019 39 LUTs [Pradeep et al., 2019] Artix7 - xc7a200tfbg676-2

(Xilinx Vivado 2021.1
ML Edition)

40 LUTs Naive Look-up Table 4.4.1
32 LUTs Canright’s Matrices 4.4.2

2023 31 LUTs Our work, Table 11
2019 61 LUTs [Huy et al., 2019] Virtex7 - xc7vlx980t-2ffg1926

(Xilinx Vivado 2021.1
ML Edition)

40 LUTs Naive Look-up Table 4.4.1
32 LUTs Canright’s Matrices 4.4.2

2023 31 LUTs Our work, Table 11

The proposed S-Box results differ from those of the other researchers for the new
FPGA models Artix-7 and Virtex-7. This difference comes from the synthesis tool’s
ability to optimize the circuit. Compared to Pradeep’s and Huy’s designs for Artix-7
and Virtex-7, our result is 21% and 96% better, respectively. [Pradeep et al., 2019]
preferred to use half-way composite field. The inverse operation is taken in the field
GF((42)2) instead of GF(((22)2)2). Canright’s matrices cost at least same or more
than the suggested S-Box on all platforms. The number of used LUTs for Virtex-7
and Artix-7 are given in Table 15 in detail.

These tables only show the required number of LUTs for a single byte. For the latest
FPGA models, each byte requires around 32 LUTs. AES uses blocks of a 16-byte
size. In order to implement the AES substitution layer, hardware platforms need
16 pipelined S-Box tables for round function and 4 pipelined S-Box tables for key
schedule, which means that values in the table will be multiplied by 20. The AES core
is also used more than once for high-throughput devices. Some systems use even 256
copies of AES core. In this case, the values in the table will be multiplied by 5120.
Therefore, even minor LUT enhancement will significantly impact high-throughput
systems.

The implementation of [Hussain and Jamal, 2012] uses total 2444 LUTs for AES
core. He used naive-way implementation of S-Box in his design. If he use our S-
Box instead of Rijndael S-Box, he would save 180 LUTs more. Since implementing
one S-Box in a naive-way costs 40 LUTs on Virtex-7 FPGAs. Our S-Box costs only
31 LUTs. Each round use 20 S-Box tables, therefore he would saved 20 × 9 = 180
LUTs.

4.5 Security of the Proposed S-Box

The S-Box layer has a significant impact on security of the algorithm. Since this layer
is the only non-linear layer of the algorithm. The S-Box provides security against
linear and differential cryptanalysis. In addition to the hardware cost, the security of
the proposed S-Box is also taken into account. The quality of an S-box requires a
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comprehensive evaluation based on various criteria and security properties. Here are
some factors to consider when assessing the quality of an S-box:

Definition 4.5.1 (Difference Distribution Table, [Biham and Shamir, 1990]). Differ-
ence Distribution table of 8× 8 S-Box S is defined as follow:

DDT is an 28 × 28 matrix with row i ∈ F8
2 and column j ∈ F8

2 equal to

#{x ∈ {0, 1}8 | S(x)⊕ S(x⊕ i) = j}, (7)

for any pair (i, j). The highest value in the difference distribution table, without
considering the first entry, is called differential uniformity of the S-Box. Having
small differential uniformity makes the S-Box table strong against differential crypt-
analysis. The differential cryptanalysis is proposed by Biham and Shamir in 1990.
For more information about difference distribution table and differential attack, see
[Biham and Shamir, 1990].

Definition 4.5.2 (Linear Approximation Table, [Matsui, 1993]). Linear approxima-
tion table of 8× 8 S-Box S is defined as follow:

LAT is a 28 × 28 matrix with row i ∈ F8
2 and column j ∈ F8

2 equal toï 255∑
x=0

(i · x)⊕
(
j · S(x)

)ò
− 128. (8)

The maximum absolute value of linear approximation table, except the first entry, is
called linear uniformity of the S-Box. The S-Boxes whose linear uniformity is small
have strong resistance against linear cryptanalysis. The linear cryptanalysis is discov-
ered by Mitsuru Matsui in 1993. For more information about linear approximation
table and linear cryptanalysis, see [Matsui, 1993].

Definition 4.5.3 (Boomerang Connectivity Table, [Cid et al., 2018]). Boomerang con-
nectivity table of 8× 8 S-Box S is defined as follow:

BCT is a 28 × 28 matrix with row i ∈ F8
2 and column j ∈ F8

2 equal to

∣∣∣∣{x ∈ F8
2 | S−1

(
S(x)⊕ j

)
⊕ S ′(S(x⊕ i)⊕ j

)
= i

}∣∣∣∣. (9)

The highest value in the boomerang connectivity table, ignoring the elements of
the first row and column, is called boomerang uniformity of the S-Box. Lower
boomerang uniformity provides higher security against the boomerang attacks. For
detailed explanation of boomerang attacks and connectivity table, see [Wagner, 1999]
and [Boura and Canteaut, 2018].
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Definition 4.5.4 (Differential Branch Number, [Sarkar and Syed, 2018]). The differ-
ential branch number of an S-Box S is defined as follow:

min
x ̸=x′

x,x′∈F8
2

ß
wt(x⊕ x′) + wt

(
S(x)⊕ S(x′)

)™
, (10)

where wt(x) is the Hamming weight of the vector x.

Definition 4.5.5 (Linear Branch Number, [Sarkar and Syed, 2018]). The linear branch
number of an S-Box S is defined as follow:

min
α,β∈F8

2
LAT (α,β)̸=0

ß
wt(α) + wt(β)

™
, (11)

where wt(x) is the Hamming weight of the vector x and LAT(α, β) denotes the entry
at row α and column β of linear approximation table of the S-Box S.

Definition 4.5.6 (Almost Bent Function). An m × m S-Box S, for m odd, is called
almost bent function if its non-linearity is equal to

2m−1 − 2(m−1)/2. (12)
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Definition 4.5.7 (Involution Function). An S-Box S is called involution function
when

S(x) = S−1(x), (13)

for all x ∈ F8
2 where S−1(x) is the inverse of the S-Box S.

Definition 4.5.8 (Bent Function). An m × m S-Box S is called bent function if its
non-linearity is equal to

2m−1 − 2m/2−1. (14)

Definition 4.5.9 (Linear Structure). An n-variable Boolean function S has a linear
structure if there exists a nonzero α ∈ Fn

2 such that

f(x⊕ α)⊕ f(x) (15)

is a constant function.

Definition 4.5.10 (Almost Perfect Nonlinear Function). An n × n S-Box S is called
almost perfect nonlinear function if the differential uniformity of the S-Box S is equal
to 2.

Definition 4.5.11 (Fixed Points). If x = S(x) then x is called fixed point of the S-Box
S.

Definition 4.5.12 (Monomial Function). An S-Box S is called monomial function
when S is a power function.

Definition 4.5.13 (Permutation Function). An S-Box S is called permutation function
if all the entries are reordered.

Definition 4.5.14 (Non-Linearity). The minimum non-linearity of all component func-
tions of S-Box S is called the non-linearity of S-Box S.

Definition 4.5.15 (Monomial Function). An S-Box S is called monomial function
when S is a power function.

Definition 4.5.16 (Balance). An S-Box S is called balanced if all its component func-
tions are balanced.

Definition 4.5.17 (Maximal Degree). Maximal degree is the maximal algebraic de-
gree of all its component functions.

Definition 4.5.18 (Minimal Degree). Minimal degree is the minimal algebraic degree
of all its component functions.
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Table 16: As it is seen, the security properties of the proposed S-Box and AES S-Box
are the same.

Algebraic Property AES S-Box Our S-Box AES Inverse S-Box Our Inverse S-Box
Boomerang Uniformity 6 6 6 6
Differential Branch Number 2 2 2 2
Differential Uniformity 4 4 4 4
Has Fixed Points False False False False
Has Linear Structure False False False False
Is Almost Bent False False False False
Is Almost Perfect Nonlinear False False False False
Is Balanced True True True True
Is Bent False False False False
Is Involution False False False False
Is Monomial Function False False False False
Is Permutation True True True True
Linear Branch Number 2 2 2 2
Linearity 32 32 32 32
Minimal Degree 7 7 7 7
Max. Degree 7 7 7 7
Max. Diff. Prob. 0.015625 0.015625 0.015625 0.015625
Max. Diff. Prob. Absolute 4 4 4 4
Max. Linear Bias Absolute 16 16 16 16
Max. Linear Bias Relative 0.625 0.625 0.625 0.625
Non-Linearity 112 112 112 112

The security of a block cipher lies in its ability to exhibit strong diffusion properties,
ensuring that changes in a single input bit propagate through multiple output bits in a
complex and unpredictable manner. This non-linearity and confusion introduced by
the substitution layer enhance the resistance of the algorithm against differential and
linear attacks, where attackers analyze patterns and correlations within the cipher.

In our comparison of the proposed S-box with the AES S-box, we evaluated them
based on commonly used criteria for assessing S-box quality. The algebraic properties
of both the proposed S-box and the AES S-box were analyzed and summarized in
Table 16. It was found that the proposed S-box exhibits the same algebraic properties
as the AES S-box.
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CHAPTER 5

CONCLUSION

In this work, we have used the same optimization methods that Canright used to
optimize the S-Box layer of AES. We aimed to find a more compact 8× 8 S-Box that
provides at least the same security level as the AES S-Box. We proposed another S-
Box which provides the same level of security against cryptanalysis techniques with
an 11.76% less gate-area on Virtex-4 FPGAs. Our S-Box costs 3.125% fewer gates
on Artix-7 and Virtex-7 FPGAs and uses the equal resource on Virtex-5 and Virtex-6
FPGAs when it is compared to AES S-Box. The algebraic properties of the proposed
S-Box confirm that it provides the same level of security as the AES S-Box. Thus,
the proposed S-Box is a better alternative to the AES S-Box as it offers improved
efficiency on Virtex-4, Virtex-7, and Artix-7 FPGAs.

Our proposed S-Box offers significant gate-area improvements, making it well-suited
for resource-constrained IoT devices and enabling algorithm parallelism through in-
creased S-Box replication. As a result, we assert that our S-Box is more compact
and efficient compared to the AES S-Box. Cryptographers seeking an 8x8 S-Box can
confidently incorporate our proposed S-Box into their designs, achieving the same
level of security with improved efficiency over the AES S-Box.

Due to the vast search space, conducting a comprehensive analysis of the isomor-
phism bit matrices for all possible 8 × 8 S-Boxes on FPGA proved computationally
infeasible. Although we were able to generate all the 8 × 8 S-Boxes, synthesizing
each of them on FPGA was hindered by the limitation of multiple licenses. As a po-
tential route for future research, optimizing the synthesis process and identifying the
smallest S-Box would be valuable, as this could contribute significant insights into
the field.
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