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ABSTRACT

ARITHMETICALLY EXCEPTIONAL LATTÈS MAPS ATTACHED TO
ELLIPTIC CURVES WITHOUT COMPLEX MULTIPLICATION

Odabaş, Oğuzhan

M.S., Department of Mathematics

Supervisor: Assoc. Prof. Dr. Ömer Küçüksakallı

June 2023, 69 pages

Let E be an elliptic curve given by y2 = x3 + Ax + B. If E has complex multipli-

cation, then under certain conditions, there is a formula to compute the value sets of

Lattès maps induced by such curves. However, when the endomorphism ring of E

consists only of the integers, then there is no known method to compute the value sets

of Lattès maps attached to such curves. In this thesis, we will introduce a Pari/GP

code that computes the value sets of Lattès maps attached to elliptic curves with-

out complex multiplication and discuss the arithmetic exceptionality of these maps

experimentally.

Keywords: Elliptic curve, Lattès map, Arithmetically exceptional maps.
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ÖZ

KOMPLEKS ÇARPIMI OLMAYAN ELİPTİK EĞRİLERDEN GELEN
ARİTMETİK OLARAK İSTİSNAİ LATTÈS EŞLEMELERİ

Odabaş, Oğuzhan

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Doç. Dr. Ömer Küçüksakallı

Haziran 2023 , 69 sayfa

E, y2 = x3 + Ax + B denklemi ile verilen eliptik eğri olsun. Belirli koşullar al-

tında, eğer E eliptik eğrisinde kompleks çarpma varsa, bu tarz eğrilerden gelen Lattès

fonksiyonlarının görüntü kümelerini hesaplamak için bir formül vardır. Fakat, eğer

E’nin endomorfizma halkası sadece tamsayılardan oluşuyorsa, bu durumda bu tarz

eğrilerden gelen Lattès fonksiyonlarının görüntü kümelerini hesaplamak için bilinen

bir metot yoktur. Bu tezde, kompleks çarpma olmayan eliptik eğrilerden gelen Lat-

tès fonksiyonlarının görüntü kümelerini hesaplayan bir Pari/GP kodu sunacak ve bu

fonksiyonların aritmetiksel istisnailiklerini deneysel olarak tartışacağız.

Anahtar Kelimeler: Eliptik eğri, Lattès eşlemesi, Aritmetik olarak istisnai eşlemeler.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Let Fq be the finite field of q elements. It is of interest to know whether an arbitrary

map from Fq to itself gives a bijection. A polynomial f whose coefficients belong

to Fq can be considered as a map from Fq to itself. We say that f is a permutation

polynomial of Fq if this map induces a bijection from Fq onto itself. Since, in this

case, the domain and the range of f is Fq, which is a finite set, then each one of

the following can also be used as an equivalent condition of being a permutation

polynomial:

• the map f is injective,

• the map f is surjective,

• The equation f(x) = a has a unique solution in Fq whenever a ∈ Fq.

Among the simplest examples of permutation polynomials are the ones provided by

power maps, which are defined by

f(x) = xm

for certain integer m ≥ 1 [5].

Another example of permutation polynomials comes from the family of Dickson

polynomials considered over Fq, which can be defined by the recurrence relation:

Dn(x, a) = xDn−1(x, a)− aDn−2(x, a)

1



with the initial conditions D0(x, a) = 2 and D1(x, a) = x, where a is an arbitrary

element of Fq [5].

If r(x) is a rational function whose coefficients belong to the finite field Fq, then one

can also discuss the bijectivity of r(x) over Fq. If r(x) permutes Fq ∪ {∞}, then

we call r(x) a permutation rational function. Here, the symbol ∞ denotes the point

at infinity. The reason why we add the point at infinity is that there is a possibility

that the denominator of r(x) vanishes for some elements of Fq. The images of such

elements are mapped to the point at infinity [6].

In this thesis, we will be concerned with rational functions that are induced by some

elliptic curve E, which can be defined by the graph of an equation of the form

E : y2 = x3 + Ax+B,

where the coefficients A and B are elements of some field [12].

Given two points

P1 = (x1, y1), P2 = (x2, y2)

on an elliptic curveE, another point P3 lying on this curve can be obtained by drawing

the line through P1 and P2 and then reflecting the intersection point (the point where

the line intersects the curve) across the x-axis. If we denote this operation by +E ,

then we can write P1 +E P2 = P3. This operation is called the elliptic curve point

addition and makes (E,+E) into an abelian group [12].

An endomorphism of E is a group homomorphism from (E,+E) to itself which is

given by rational functions. The simplest example of such maps is the multiplication

by an integer n homomorphisms for some n ≥ 1. We denote this endomorphism

by the symbol [n]. Let P = (a, b) be an arbitrary point of E. It turns out that the

x-coordinate of [n](P ) can be expressed by some rational function that depends only

on the first variable [12]. This rational function is called the n-th Lattès map attached

to the elliptic curve E [9].

An elliptic curve E is said to have complex multiplication if it has endomorphisms

other than the ones given by multiplication by an integer. If we denote the endomor-

phism ring of E by End(E), then we can say that E has complex multiplication if

End(E) is strictly larger than the integers Z [12].
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Let K be a number field and r(x) ∈ K[x] be a rational function. We can write

r = f/g with (f, g) = 1 for some f, g ∈ K[x]. We can reduce the coefficients of

the polynomials f and g modulo some prime ideal p of K and further, for all but

finitely many primes of K, the reduced function makes sense and induces a map

on the projective 1-space P1(K/p) = K/p ∪ {∞}. The function r is then called

arithmetically exceptional if this induced function, which we denote by r̄, gives a

bijection for infinitely many primes of K. If the residue field is Fq with q = pn for

some integer n, then this is equivalent to saying that the value set of r̄ contains exactly

pn + 1 elements [2].

In [3], Küçüksakallı shows that if E is an elliptic curve with complex multiplication,

then under certain conditions, the projective 1-space P1(Fqm) can be expressed in

terms of kernels of some extra endomorphisms (endomorphisms other than the ones

given by multiplication by an integer) for each integer m ≥ 1. Furthermore, there

is also a formula to compute the value sets of Lattès maps that are induced by E.

Having such a formula, one can determine if the Lattès maps induced by such elliptic

curves are permutations and discuss their arithmetic exceptionality as well.

In the general case, however, there is no known formula. Namely, if E is an elliptic

curve without complex multiplication, then there is no formula to compute the value

sets of Lattès maps over finite fields.

In this thesis, our goal is to investigate the value sets of Lattès maps attached to elliptic

curves without complex multiplication and discuss the arithmetic exceptionality of

these maps. To accomplish this goal, we will introduce a computer-algebra program

Pari/GP code, that computes the value sets of such maps. Moreover, within a specified

range, we will look at the density of permutations for various primes to discuss the

arithmetic exceptionality of such maps experimentally.

The organization of the thesis is as follows:

The first chapter is the introduction chapter, where we give some basic definitions and

state the problem of the thesis.

In the second chapter, we first discuss the arithmetic exceptionality of power maps.

There is a well-known criterion to determine under which condition power maps give

3



a permutation [5]. Then we discuss the arithmetic exceptionality of Dickson polyno-

mials. Again there is a well-known criterion to determine if a Dickson polynomial

gives a permutation [5]. We review two alternative proofs of this fact that are due

to [3] and [4]. The first proof relies on an approach that uses the fixed points of the

Dickson polynomials over the complex numbers and expresses the projective 1-space

P1(Fq) in terms of these fixed points. The second proof uses the endomorphisms of

the singular cubic curve

y2 = 4x3 + x2

and expresses P1(Fq) in terms of the kernels of these endomorphisms.

In the third chapter, we start by providing the theoretical background related to the

theory of elliptic curves. Then we see that the method used for the singular cubic

curve, which is described in the second chapter, can be generalized to certain elliptic

curves with complex multiplication. More precisely, if E is an elliptic curve with

complex multiplication, then under certain conditions, the projective 1-space P1(Fq)

can be expressed in terms of some torsion points ofE. Using this characterization, the

formula for the value sets of Lattès maps is given, and further a criterion to determine

the bijectivity of such maps is provided [3].

In the fourth chapter, we first introduce a code that computes the value sets of Dick-

son polynomials over finite fields as a motivating example in order to exemplify the

computations in Pari/GP. Then we introduce two main codes, which we named card

and permdens. Given inputs A,B, the integer k, and a prime p, the function card

returns the size of the value set of the k-th Lattès map attached to the elliptic curve

E : y2 = x3 + Ax+B

over the finite field Fp. Similarly, given A,B and the integer k, permdens returns

the density of permutations of the k-th Lattès maps considered over Fp’s where p is

ranging over the first 1229 primes, i.e., primes less than 10000.

In the fifth chapter, we make some observations related to the computations done in

the fourth chapter.
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CHAPTER 2

REAL CYCLOTOMIC CASE

In this chapter, we describe the notion of arithmetic exceptionality and consider this

notion for some particular functions. Firstly, the arithmetic exceptionality of power

maps is discussed. Then we consider the arithmetic exceptionality of Dickson poly-

nomials. There is a well-known criterion to determine if a Dickson polynomial per-

mutes Fq or not [5]. Here, we give two alternative approaches that are due to [3]

and [4]. The first method uses the fixed points of a Dickson polynomial over com-

plex numbers. On the other hand, the second method relies on a method that uses the

endomorphisms of some singular cubic curve.

2.1 Arithmetic exceptionality of power maps

In this section, we discuss the arithmetic exceptionality of monomials which are also

called power maps. These maps constitute the simplest examples of exceptional

maps.

Let K be a number field and r(x) ∈ K[x] be a rational function so that we can

write r = f/g with (f, g) = 1 for some f, g ∈ OK [x]. Here OK and K[x] denote

the ring of algebraic integers of K and the polynomial ring with coefficients in K,

respectively. The coefficients of f can be reduced modulo some prime ideal p of OK .

Moreover, for infinitely many primes of OK , the reduced function r̄ induces a map

on the projective 1-space P1(OK/p) = OK/p ∪ {∞} [2].

Now we can give the following definition.

Definition 2.1. [2] The rational function r is called arithmetically exceptional if
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the induced function, which we denote by r̄, is a bijection for infinitely many prime

ideals of OK .

Before giving the general result related to the arithmetic exceptionality of power

maps, we would like to consider some particular cases to motivate the situation. In

order to do so, the following example is given.

Example 2.2. Consider the mapping f(x) = x5 defined over the rational numbers

Q. Observe that for each prime p, the induced map f̄ makes sense. Since the mul-

tiplicative group F∗
p is cyclic of order p − 1, the condition for f̄ to be injective (and

hence bijective) is equivalent to the condition gcd(5, p− 1) = 1, where we denote by

gcd(5, p − 1) = 1 the greatest common divisor of the integer 5 and p − 1. In other

words, we have the following

f̄ permutes Fp ⇐⇒ gcd(5, p− 1) = 1.

By Dirichlet’s prime number theorem, we can find infinitely many prime p satisfying

the condition gcd(5, p− 1) = 1. This implies that f is arithmetically exceptional.

Now we give the general result.

Proposition 2.3. [5] Let Fq be a finite field of characteristic p. Then for each integer

n ≥ 1, the monomial f(x) = xn permutes Fq if and only if gcd(n, q − 1) = 1.

Proof. Since the function in question is considered over the finite field Fq, then it

suffices to show that it is surjective. Firstly, the zero element is clearly mapped to

itself. Now take an arbitrary element b ∈ F∗
q . Since the multiplicative group F∗

q of

non-invertible elements is cyclic, then there must be an element a ∈ F∗
q such that

⟨a⟩ = F∗
q , where ⟨a⟩ denotes the cyclic group generated by the element a. For a given

integer n, the order of the element an is given by q−1
gcd(n,q−1)

. Since the order of the

group F∗
q is q − 1, then the element an is a generator for that group if and only if the

integers n and q − 1 are coprime. Moreover, the element an generates F∗
q if and only

if there exists and integer k with 1 ≤ k ≤ q − 1 such that we have

(an)k = b

or equivalently,

(ak)n = b

6



so that we obtain an element ak ∈ F∗
q such that f(ak) = b. Consequently, we see that

the monomial xn maps Fq onto itself, and this is the desired result.

Note that if n is an odd integer, then the map g(x) = xn is arithmetically exceptional.

This is because Dirichlet’s prime number theorem implies that the arithmetic progres-

sion 2 + nk with k ∈ N contains infinitely many primes since 2 and n are coprime.

For each prime of the form p = 2 + nk0, we have

gcd(n, p− 1) = gcd(n, 1 + nk0) = 1.

2.2 Arithmetic exceptionality of Dickson polynomials

Another important example of arithmetically exceptional maps comes from the family

of Dickson polynomials. In this section, we consider two different approaches to

derive the exceptionality of these polynomials.

We start with the definition of an important family of functions called Chebyshev

polynomials.

Definition 2.4. [7] Let k ≥ 1 be an integer. The k-th Chebyshev polynomial (of the

first kind) Tk is defined as the unique polynomial satisfying the following trigonomet-

ric identity:

Tk(cosα) = cos kα.

For each integer k ≥ 1, Tk is a polynomial in cosα of degree k [7]. To see this, we

start with the well-known de Moivre’s formula:

(cosα + i sinα)k = cos kα+ i sin kα.

Expanding the left-hand side of this equation using the Binomial Theorem, one ob-

tains

(cosα + i sinα)k =
k∑
j=0

(
k

j

)
(i)j(sinα)j(cosα)k−j.

We wish to find the expression for cos kα, which is a real part of the left-hand side of

the latter equation by de Moivre’s formula. On the other hand, the real terms of the

sum come from the summands with even indices. Since i2 = −1 and cos2 α+sin2 α =

7



1, then for each j, we have i2j = (−1)j and sin2j α = (1 − cos2 α)j . Plugging these

two identities in the sum in question, we obtain the expression for cos kα:

cos kα =

⌊ k
2⌋∑
j=0

(
k

2j

)
(cos2 α− 1)j(cosk−2j α),

which is the same as

Tk(cosα) =

⌊ k
2⌋∑
j=0

(
k

2j

)
(cos2 α− 1)j(cosk−2j α).

Finally, making the change of variable cosα = x yields

Tk(x) =

⌊ k
2⌋∑
j=0

(
k

2j

)
(x2 − 1)j(x)k−2j.

This shows that for each integer k ≥ 1, Tk(x) is a polynomial in x of degree k.

The Chebyshev polynomials can be normalized by defining Dk(x) = 2Tk(
x
2
) to ob-

tain a new set of polynomials. Observe that for each k ≥ 1, Dk(x) satisfies a similar

identity. That is, we have

Dk(2 cosα) = 2 cos kα.

This new family of polynomials has a special name.

Definition 2.5. [5] Let k ≥ 1 be an integer. The k-th Dickson polynomial Dk (of the

first kind) is defined by the sum

Dk(x) =

⌊ k
2⌋∑
j=0

k

k − j

(
k − j

j

)
(−1)jxk−2j.

Below, we list the first few Chebyshev and Dickson polynomials:

T0(x) = 1, D0(x) = 2,

T1(x) = x, D1(x) = x,

T2(x) = 2x2 − 1, D2(x) = x2 − 2,

T3(x) = 4x3 − 3x, D3(x) = x3 − 3x,

T4(x) = 8x4 − 8x2 + 1, D4(x) = x4 − 4x2 + 2,

T5(x) = 16x5 − 20x3 + 5x, D5(x) = x5 − 5x3 + 5x.

8



The family of Dickson polynomials possesses many important and remarkable prop-

erties. The following lemma lists some of them that are of our interest.

Lemma 2.6. [5, 6] Dickson polynomials satisfy the following properties:

1. Let k ≥ 1 be an integer. Then

Dk(x+
1

x
) = xk +

1

xk
.

2. For arbitrary integers m,n ≥ 1, Dickson polynomials have the composition

property:

Dmn = Dm ◦Dn = Dn ◦Dm.

3. Let q = pn where p is a prime and n ≥ 1 an integer. Then

Dq(x) ≡ xq (mod p).

Proof. 1. According to Edward Waring’s method for expressing an arbitrary sym-

metric polynomial in terms of elementary symmetric polynomials [5], the sym-

metric polynomial xk1 + xk2 has the following expression:

xk1 + xk2 =

⌊ k
2⌋∑
j=0

k

k − j

(
k − j

j

)
(−x1x2)jx1 + x2

k−2j.

Putting x1 = x, x2 = 1
x
, we see that the right-hand side of the above equation

is exactly the defining sum for Dk(x). This finishes the proof of the first part.

2. We recall that Dk satisfies Dk(2 cosα) = 2 cos kα. It follows that we have

Dmn(2 cosα) = 2 cosmnα = Dm(2 cosnα) = Dn(2 cosmα)

and this proves second part of the lemma.

3. Expanding (y + 1
y
)q by using the Binomial Theorem, one obtains

(y +
1

y
)q =

q∑
j=0

(
q

j

)
yq−j

1

yj
.

We claim that for each j such that 1 ≤ j ≤ q − 1, the binomial coefficients
(
q
j

)
are divisible by p. To see this, we first note that(

q

j

)
=
q(q − 1) ... (q − j + 1)

j!
.

9



Now if the integer j! is not divisible by p, then q and j! must be coprime so that

j! divides the factor (q− 1) ... (q− j +1). This implies that the coefficient
(
q
j

)
is divisible by p.

If, on the other hand, p divides j!, then the integer j! must be of the form

j! = pma with 1 ≤ m ≤ n−1 for some integer a. It follows that the coefficient(
q
j

)
is a multiple of p. Therefore, we obtain the following:

(y + 1
y
)q ≡ yq + 1

yq
(mod p).

Combining this with the identity Dq(y +
1
y
) = yq + 1

yq
, which is proved in the

first part, one gets

Dq(y +
1
y
) ≡ (y + 1

y
)q (mod p).

Finally, making the change of variable (y + 1
y
) = x yields the desired result.

The first method we will introduce in order to determine the value sets of Dickson

polynomials over finite fields uses the fixed points of these polynomials over complex

numbers. The method is due to [4].

We need a few definitions. We start with the following:

Definition 2.7. Let f be an arbitrary polynomial. The orbit of an element x under f

is defined by

O(x) = {fn(x) : n ≥ 0}.

Definition 2.8. The Julia set of a polynomial f over complex numbers is defined by

J(f) = {x ∈ C : O(x) is bounded}.

Observe by definition that any periodic point must be contained in the Julia set since

the orbits of such points contain a finite number of elements.

To begin with, we consider the following real-valued function of a real variable

α(σ) = e2πiσ + e−2πiσ , σ ∈ R.

10



Now if the complex number x ∈ C is a fixed point of the k-th Dickson polynomial,

then by definition of a fixed point, we have Dk(x) = x. Moreover, x must be con-

tained in the Julia set of Dk since any fixed point is also a periodic point trivially.

On the other hand, the Julia set of Dk over complex numbers is the closed interval

[−2, 2]. Also, note that the value set of the function α over real numbers is also the

closed interval [−2, 2]. It follows from these observations that one can write

J(Dk) = {α(σ) : σ ∈ R}.

Therefore, we must have x = α(σ) for some σ ∈ R. Furthermore, using Euler’s

identity to expand the function α(σ), one obtains

α(σ) = 2 cos 2πσ.

As we have mentioned before, Dk satisfies the trigonometric identity: Dk(2 cos θ) =

2 cos 2θ. This implies that we have

Dk(α(σ)) = α(kσ).

But since x = α(σ) is a fixed point by assumption, we must have

α(σ) = α(kσ).

The above equality is satisfied if and only if σ and kσ differ by an integer. In other

words, we have the following:

α(σ) = α(kσ) ⇐⇒ σ − kσ ∈ Z or σ + kσ ∈ Z.

Now if σ−kσ ∈ Z, then there exists some integerm1 such that σ(k−1) = m1 which

is the same as σ = m1/(k − 1). In a similar manner, if σ + kσ ∈ Z, then we must

have σ = m2/(k + 1) for some integer m2. It turns out that the fixed points of Dk

over complex numbers can take two possible forms. More precisely, we have proved

the following:

Theorem 2.9. [4]

Fix(Dk,C) =

{
α

(
m

k − 1

)
: m ∈ Z

}
∪
{
α

(
m

k + 1

)
: m ∈ Z

}
.

Now in order to determine the cardinality of the set Fix(Dk,C), we use the following

procedure:

11



If k is even, then α
(

a
k−1

)
has k

2
elements and α

(
a
k+1

)
has k+2

2
elements. Moreover,

their intersection contains only one point, which is α(0) = 2. According to the

Inclusion-exclusion principle, we have

|Fix(Dk,C)| = k

2
+
k + 2

2
− 1.

If k is odd, then α
(

a
k−1

)
has k+1

2
elements and α

(
a
k+1

)
has k+3

2
elements. Also, in

this case, the intersection of the two sets contains two points, which are α(0) = 2 and

α
(
1
2

)
= −2. Again using the Inclusion-exclusion principle, we get

|Fix(Dk,C)| = k + 1

2
+
k + 3

2
− 2.

As a result, in both cases, we see that the set of fixed points of Dk over complex

numbers contains exactly k elements. Since Dk(x) is a polynomial of order k, this is

equivalent to saying that the equation Dk(x)− x = 0 has k solutions in C.

The following theorem shows that whenever q = pn for some prime p and an integer

n ≥ 1, the elements of the set Fix(Dq,C) and the finite field Fq are in one-to-one

correspondence.

Theorem 2.10. [4] Let Q(Fix(Dq,C)) be the field extension that is obtained by

adjoining the elements of the set Fix(Dk,C) to the field of rational numbers Q, and

let p be a prime ideal of Q(Fix(Dq,C)) lying over p. Then we have

Fix(Dq,C) = Fq

where Fix(Dq,C) is the set obtained by reducing the elements of Fix(Dq,C) modulo

p.

Proof. First of all, third part of the Lemma 2.6 implies that we have

Dq(x) ≡ xq (mod p).

So if we reduce an arbitrary element of Fix(Dq,C) modulo p, we obtain a solution to

the polynomial xq − x = 0 so that the fixed points of Dq modulo p must be elements

of the finite field Fq. Moreover, we can obtain all elements of Fq by reducing the

12



elements of Fix(Dq,C) modulo p. It follows that the elements of the two sets are in

one-to-one correspondence. We indicate this situation by writing

Fix(Dq,C) ↔ Fq.

Now combining our last result with the characterization of the fixed points given in

theorem 2.9, the formula for the cardinality of the value sets of Dickson polynomi-

als over finite fields can be found. Firstly, let η(k, q) be the two variable piecewise

function, which is defined by

η(k, q) =

0 If gcd(k, q − 1) ≡ gcd(k, q + 1) (mod 2)

1
2

Otherwise
.

Applying the Inclusion-exclusion principle, one obtains

|VDk(Fq)| =
q − 1

2gcd(k, q − 1)
+

q + 1

2gcd(k, q + 1)
+ η(k, q)

where VDk(Fq) denotes the value set of Dk over the finite field Fq.

An immediate consequence of the formula for the value set of Dk is the following

well-known result:

Corollary 2.11. [4] Let k ≥ 1 be an integer, and let q be a power of some prime.

Then Dk permutes Fq if and only if (k, q2 − 1) = 1 where (k, q2 − 1) denotes the

greatest common divisor of the integers k and q2 − 1.

Proof. Since Dk is considered over Fq, which is a finite set, then the bijectivity of Dk

is equivalent to its surjectivity. However, in order for this function to be surjective,

the value set must contain exactly q elements. According to the formula for the value

set, this is possible if and only if (n, q− 1) = 1 and (n, q+1) = 1, which is the same

as (n, q2 − 1) = 1.

Remark 2.12. Note that if k is a prime number such that k ≥ 5, then the map

Dk(x) is arithmetically exceptional. To see this, note that there exists an integer

0 < k < m such that m2 ̸≡ 1 (mod k). There are infinitely many primes in the

arithmetic progression k +m, 2k +m, 3k +m, .... For each one of these primes, the

condition of the above corollary is satisfied.
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2.3 Endomorphisms of a singular cubic curve

This section is intended to determine the value sets of Dickson polynomials by using

an alternative approach to the method described in the previous section. The method

introduced in this section is also due to [3].

To begin with, let us denote by ωZ the additive subgroup of the complex numbers C

that is generated by the element ω = 2πi. Here, we denote by Z the ring of integers.

Now, consider the function defined by the infinite sum

ϕ(z) =
∑
λ∈ωZ

1

(z − λ)2
.

The following lemma lists some of the properties of ϕ(z) that are of our interest.

Lemma 2.13. [3] The function ϕ(z) possess the following properties:

1. The defining sum for the function ϕ(z) converges uniformly on each compact

subset of C\ωZ. Moreover, the only singularities of this function come from

the points λ ∈ ωZ, which are all double poles.

2. For all z ∈ C\ωZ, we have

ϕ(z) =
ez

(ez − 1)2
.

3. The function ϕ(z) defines an even function. That is, for all z ∈ C\ωZ, we have

f(z) = f(−z).

4. The function ϕ(z) defines a periodic function with period 2πi. Namely, we have

ϕ(z + 2πi) = ϕ(z)

for all z ∈ C\ωZ.

5. The function ϕ(z) and its derivative ϕ′(z) satisfy the following algebraic iden-

tity:

ϕ
′
(z)

2
= 4ϕ(z)3 + ϕ(z)2.
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Proof. 1. From the triangle inequality, we have the following:

∣∣∣∣ 1

(z − λ)2

∣∣∣∣ = ∣∣∣∣ 1

(z − λ)2
− 1

(λ)2
+

1

(λ)2

∣∣∣∣ ≤ ∣∣∣∣ 1

(z − λ)2
− 1

(λ)2

∣∣∣∣+ ∣∣∣∣ 1

(λ)2

∣∣∣∣ .
The sum defining the Weierstrass ℘- function (relative to the lattice ωZ) is given

by

℘(z;ωZ) =
1

z2
+

∑
λ∈ωZ\{0}

(
1

(z − λ)2
− 1

λ2

)
so that the sum

∑
λ∈ωZ\{0}(

1
(z−λ)2 −

1
λ2
) converges uniformly on compact sub-

sets not containing the elements of the lattice ωZ [10]. Moreover, we have:

∣∣∣∣∣∑
k∈Z

1

(2πi− k)2

∣∣∣∣∣ =∑
k∈Z

∣∣∣∣ 1

4π2

1

(ik)2

∣∣∣∣ = 1

4π2

∑
k∈Z

∣∣∣∣ 1k2
∣∣∣∣ = 2ζ(2)

(2π)2
,

where ζ(s) denotes the Riemann-zeta function defined by

ζ(s) =
∞∑
n=1

1

ns
, s ∈ C.

It is a well known fact that ζ(2) = π2

6
. Therefore, we have 2ζ(2)

4π2 <∞. It follows

that the sum defining the function ϕ(z) converges uniformly on compact subsets

not containing the elements of ωZ. On the other hand, since a uniform limit of

analytic functions is also analytic, then ϕ(z) is analytic for all z ∈ C such that

z /∈ ωZ. If z ∈ ωZ, then the sum of the terms for λ ̸= z is analytic at z so that

the term 1
(z−λ)2 causes ϕ to have a double pole at z. Thus ϕ(z) is a meromorphic

function of the complex plane with a double pole at each λ ∈ wZ. Furthermore,

these are the only poles of ϕ(z). This finishes the proof of the first part of the

lemma.

2. First, we know that the Bernoulli numbers are defined by the exponential gen-

erating function. More precisely, we have

z

ez − 1
=

∞∑
j=0

Bj

j!
zj.

On the other hand, if n is an odd integer greater than 1, then Bn = 0. This is

because the function f(z) = z
ez−1

+ z
2

is even. This also implies that B1 = −1
2
.
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Multiplying the both sides of the above equality by 1
z

and then adding 1
2

to both

sides and using the fact that Bn = 0 for all n < 1, we obtain that

g(z) =
∞∑
j=0

B2j

(2j)!
z2j−1,

where we set g(z) = 1
ez−1

+ 1
2
. Taking the derivative of the above sum term by

term, we get

g′(z) =
∞∑
j=0

(2j − 1)
B2j

(2j)!
z2j−2.

On the other hand, recall from the first part of this Lemma that the function ϕ(z)

has a double pole at the point z = 0 so that it has a Laurent series expansion

there. Furthermore, as shown in [3], its Laurent expansion about z = 0 is given

by

ϕ(z) = −
∞∑
j=0

(2j − 1)
B2j

(2j)!
z2j−2,

which implies that g′(z) = −ϕ(z). Since g(z) = 1
ez−1

+ 1
2
, then g′(z) = −ez

(ez−1)2

and this yields ϕ(z) = ez

(ez−1)2
. This proves the second part of the Lemma.

3. By definition of ϕ(z), we have

ϕ(−z) =
∑
k∈Z

1

(−z − k2πi)2
=
∑
k∈Z

1

(z + k2πi)2
.

Since the sum is taken over all k ∈ Z, the following equality trivially holds.∑
k∈Z

1

(z + k2πi)2
=
∑
k∈Z

1

(z − k2πi)2
.

Thus ϕ(z) is an even function. This proves the third part of the Lemma.

4. Using the expression for ϕ(z) that is obtained in the second part, one gets

ϕ(z + 2πi) =
ez+2πi

(ez+2πi − 1)2
=

eze2πi

(eze2πi − 1)2
.

But since by Euler’s identity we have e2πi = cos 2π + i sin 2π = 1, it follows

that ϕ(z) = ϕ(z + 2πi). So the function ϕ(z) is periodic with period w = 2πi,

and the proof of the fourth part is done.

5. Firstly, taking the derivative of the function ϕ(z) = ez

(ez−1)2
, one gets

ϕ′(z) =
ez(ez − 1)2 − 2e2z(ez − 1)

(ez − 1)4
.
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Note that both the numerator and the denominator have the common factor

(ez − 1). Simplifying this factor yields

ϕ′(z) =
ez(ez − 1)− 2(e2z)

(ez − 1)3
.

After rearranging, we obtain

ϕ′(z) =
−(e2z)− ez

(ez − 1)3
.

Furthermore, note that we have the relations ϕ′ = −2ϕg and g2 = ϕ + 1
4
.

Squaring both sides of the first one of these identities, we get

(ϕ′)2 = 4(ϕ)2g2.

Now substituting g2 = ϕ + 1
4

yields the following algebraic identity between

the function ϕ(z) and its derivative:

ϕ′(z) = 4(ϕ(z))3 + (ϕ(z))2.

and this proves the last part of the lemma.

Consider the singular cubic curve C, which is defined by the equation

C : y2 = 4x3 + x2.

Then, this curve has a singularity at the origin since both partial derivatives vanish

at that point. Now let Cns denote the set of nonsingular points of this curve. Then

Cns forms an abelian group with group operation coming from the elliptic curve point

addition [12]. Moreover, Cns is isomorphic to the multiplicative subgroup of non-

zero complex numbers C∗ = C\{0} with the isomorphism obtained by the map

(x, y) 7→ y−x
y+x

[10].

Now since the multiplication of two complex numbers that have unit modulus re-

sults in a complex number with again modulus equal to 1, the elements of the unit

circle in the complex plane form a multiplicative subgroup of C∗. Let us denote

the isomorphic image of this subgroup by C1. Also, the last part of the Lemma

2.13 implies that the points on C can be parametrized by the function ϕ(z) and its

17



derivative ϕ′
(z). More precisely, any point P on C is given by P = (ϕ(z), ϕ

′
(z))

for some z ∈ C. Also, the endomorphism [n] : C1 −→ C1 is given by the map

(ϕ(z), ϕ
′
(z)) 7→ (ϕ(nz), ϕ

′
(nz)) for each n ∈ Z.

The subgroup of n-torsion points is defined by

C1[n] = {P ∈ C1 : [n]P = ∞}.

Now let n ≥ 1 be an integer. These are the points of order dividing n. Observe that the

n-torsion subgroupC1[n] is exactly the kernel of the homomorphism [n] : C1 −→ C1.

Now let n ≥ 1 be an integer. Consider the function fn defined by

fn(ϕ(z)) = ϕ(nz) = x([n]P )

where P = (ϕ(z), ϕ
′
(z)) and x([n]P ) denotes the x-coordinate of the point [n]P .

The following lemma establishes the relation between the function fn and the n-th

Dickson polynomial Dn.

Lemma 2.14. [3] Let n ≥ 1 be an integer. Then

fn(t) =
1

Dn

(
1
t
+ 2
)
− 2

.

Proof. As we have seen in the first section, the n-th Dickson polynomial satisfies

Dn(y + y−1) = yn + y−n.

Using this and the relation 1
ϕ(z)

+ 2 = ez + e−z, one obtains the following:

Dn

(
1

ϕ(z)
+ 2

)
= Dn(e

z + e−z) = enz + e−nz =
1

ϕ(nz)
+ 2

so that

Dn

(
1

ϕ(z)
+ 2

)
= (fn(ϕ(z)))

−1 + 2.

Now making the change of variable t = ϕ(z) yields

fn(t) =
1

Dn

(
1
t
+ 2
)
− 2

,

which is the desired result.
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Remark 2.15. Recall from the first section that Dn(t) is a polynomial of degree n. It

follows that Dn(
1
t
+ 2) is a rational function of t, which implies that fn(t) is also a

rational function of t by the preceding lemma.

Now we set the notation C1[n]x to denote the set of x-coordinates of n-torsion points

of C1. More clearly, we have C1[n]x = {x(P ) : P ∈ C1[n]} where C1[n] denotes the

n-torsion subgroup of C1 as defined before. The following theorem shows that the

number of elements in this set can be expressed by a simple formula.

Theorem 2.16. [3] Let n ≥ 1 be an integer. Then the number of elements in the set

C1[n]x is given by

|C1[n]x| =
n+ (n, 2)

2
.

Proof. Let P1, P2 be two points lying on C1. Then the x-coordinates of these two

points are equal if and only if P1 = P2 or P1 = −P2. Also, an arbitrary point P

is contained in the 2-torsion subgroup of C1 if and only if P = −P . On the other

hand, since C1 and the unit circle in the complex plane are isomorphic, it follows

that the n-torsion subgroup C1[n] of C1 and the multiplicative group of n-th roots of

unity are also isomorphic. Therefore, the n-torsion subgroup C1[n] contains exactly

n elements. Consequently, we can count the number of elements of C1[n]x by

|C1[n]x| =
|C1[n]− C1[(n, 2)]|

2
+ |C1[(n, 2)]| =

n− (n, 2)

2
+ (n, 2).

The following theorem shows that the projective space P1(Fq) can be expressed in

terms of torsion points of C1.

Theorem 2.17. [3] Let Fq be the finite field with q elements where q = pk for some

k ≥ 1. Let p be a prime ideal of the cyclotomic field Q(ζq2−1) lying over p. Then we

have the following:

P1(Fq) = C1[q − 1]x ∪ C1[q + 1]x ∪ {0}.

Proof. Recall from the previous section that whenever q = pk, we have

Dq(t) ≡ tq (mod p).
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Applying the Fermat’s Little Theorem, we obtain

fq(t) ≡ tq (mod p).

We see that each element of the finite field Fq satisfy the equation fq(t) = t. This is

because the elements of Fq come from the solutions of the polynomial xq − x = 0.

This implies that the equation fq(t) = t has q + 1 different solutions in the projective

space P1(Fq), which also implies it has q + 1 different solutions in P1(C) as well.

Now if P ∈ C1[q ∓ 1], then [q]P = [∓1]P . It follows from the defining equation

of the function fq that we have fq(x(P )) = x(P ). From this, we see that the x-

coordinate of each such point P must satisfy the equation fq(t) = t. Now the claim

is that among the fixed points of the function fq, those belonging to P1(C) except 0

can be expressed by the union

C1[q + 1]x ∪ C1[q − 1]x.

To prove the claim, it suffices to show that the above union contains q elements.

Now if q is even, then the intersection of the two sets C1[q + 1]x and C1[q − 1]x

contains only one point, which is a point at infinity ∞. Applying the Inclusion-

exclusion principle, one can see that the above union contains

q − 1 + 1

2
+
q + 1 + 1

2
− 1

elements.

If q is odd, then the intersection is equal to the set of x-coordinates of the 2-torsion

subgroup of C1. In other words, we have C1[q + 1]x ∩ C1[q − 1]x = C1[2]x. Then by

Inclusion-exclusion principle, there are

q − 1 + 2

2
+
q + 1 + 2

2
− 2

elements in this case.

An important consequence of the preceding theorem is the following corollary, which

allows for a determination of the value set of fn over P1(Fq).

Corollary 2.18. [3] Let n ≥ 1 be an integer. Then the value set of the rational

function fn over P1(Fq) can be expressed by

Vfn = C1[n+]x ∪ C1[n−]x ∪ {0}.
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Moreover, the cardinality of this set is given by the formula

|Vfn| =
(n+ + n−)

2
+ η(n, q) + 1,

where

n− =
q − 1

(n, q − 1)
, n+ =

q + 1

(n, q + 1)
.

Proof. We start with considering the homomorphism

[n] : C1[q − 1] −→ C1[q − 1]

which has kernel C1[(n, q − 1)]. Then by First Isomorphism Theorem, the quotient

group C1[q − 1]/C1[(n, q − 1)] is isomorphic to the image set of [n]. Therefore, the

image of the homomorphism [n] is a subgroup of order n− = q−1
(n,q−1)

. This means that

the map fn : C1[q − 1]x −→ C1[n
−]x is surjective.

In a similar manner, the group homomorphism

[n] : C1[q + 1] −→ C1[q + 1]

has kernel C1[(n, q + 1)]. It follows by First Isomorphism Theorem that the quotient

group C1[q + 1]/C1[(n, q + 1)] is isomorphic to the image set of [n].

According to the previous theorem, we have

Vfn = C̄1[n
−]x ∪ C̄1[n

+]x ∪ {0}.

Furthermore, the cardinality of this set is given by

|Vfn| = |C1[n
−]x|+ |C1[n

+]x| − |C1[(n
−, n+)]x|+ 1.

Finally, by using the Theorem 2.16 we obtain the desired formula so that the proof is

done.

Recall that for each positive integer n, the rational function fn(t) and the n-th Dickson

polynomial satisfy the relation

fn(t) =
1

Dn

(
1
t
+ 2
)
− 2

,
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which implies that fn(t) can be obtained from Dn(t) via change of variables which

are linear in 1
t
. It follows that the cardinality of the value sets of the two functions

must be equal. Namely, we must have

|Vfn|= |Dn|.

As a result, we conclude that fn permutes P1(Fq) if and only ifDn permutes P1(Fq).

Moreover, the same is also true if P1(Fq) is changed by Fq since both fn and Dn

fix the point at infinity. The following lemma is an immediate consequence of these

observations.

Corollary 2.19. [3]Let n ≥ 1 be an integer. Then the cardinality of the value set of

Dn over a finite field Fq is given by the formula

(n− + n+)

2
+ η(k, q).

Proof. Applying the inclusion and exclusion principle to the representation of the set

P1(Fq) given in 2.17, it is easy to see that the cardinality of the value set of Dn over

a finite field Fq is

q − 1

2gcd(k, q − 1)
+

q + 1

2gcd(k, q + 1)
+ η(k, q)

where η(k, q) as defined in Corollary 2.18.

Corollary 2.20. [3] For each integer n ≥ 1, the n-th Dickson polynomial Dn per-

mutes Fq if and only if (n, q2 − 1) = 1.

Proof. Using the formula for the value set of Dn given in the above corollary, it is

easy to see that Dn permutes Fq if and only if (n, q − 1) = 1 and (n, q + 1) = 1. It

is easy to see that this is true if and only if (n, (q − 1).(q + 1)) = (n, q2 − 1) = 1 so

that the proof is done.

Remark 2.21. Recall that in the second section of this chapter, the above result is

obtained by using the one-to-one correspondence between the fixed points of Dickson

polynomials and the elements of the finite fields. On the other hand, the method here

relies on the result, which states that the projective space P1(Fq) can be expressed

by torsion points of the singular cubic curve y2 = 4x3 + x2. As a result, we have

22



seen two different approaches in order to discuss the arithmetic exceptionality of the

Dickson polynomials.
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CHAPTER 3

ELLIPTIC CASE

In this chapter, we first provide the theoretical background that we need related to the

theory of elliptic curves. In the previous chapter, we have seen that the non-singular

points of the singular cubic curve C : y2 = 4x3 + x2 can be parametrized in terms

of the function ϕ(z) and its derivative ϕ′(z). In a similar manner, points of an elliptic

curve defined over complex numbers are parametrized by the Weierstrass ℘-function

and its derivative. In this chapter, we will see that this analogy between ϕ(z) and the

Weierstrass ℘-function can be used to generalize the methods given in the previous

section to certain elliptic curves with complex multiplication. As we will see, the

projective space P1(Fq) can be expressed in terms of torsion points of elliptic curves

that have complex multiplication. As a result of this, value sets of Lattès maps are

found, and further, a formula to compute the cardinality of these value sets is given.

Furthermore, there is also a criterion to determine under which condition a Lattès

map gives a bijection of P1(Fq).

3.1 Some Basic Definitions and Results

The basic definitions and results related to the theory of elliptic curves are presented

in this section. Some of the results are given without proof. For details, we refer the

reader to [8] or [12].

Definition 3.1. Given a fieldK, an elliptic curveE is defined as the set of points with

coordinates in K satisfying the following equation

y2 = x3 + Ax+B, A,B ∈ K.
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In the definition given above, we put the restriction 4A3 + 27B2 ̸= 0 so that we

assume that the cubic on the right-hand side has distinct roots. Also, we denote by

E(K) the set of points lying on E. More precisely, we have

E(K) = {∞} ∪ {(x, y) ∈ K ×K : y2 = x3 + Ax+B},

where ∞ denotes the point at infinity.

Given arbitrary two points P,Q ∈ E(K), their sum P +Q is defined by the following

procedure: We draw the line through P andQ, which will intersect the curve in a third

point. Then reflecting the intersection point across the x-axis, we obtain P +Q. With

this operation, the set E(K) forms an abelian group, where the point at infinity ∞
acts as an identity element.

Definition 3.2. Given an elliptic curve E : y2 = x3 + Ax + B, the j-invariant j(E)

of E is defined by

j(E) = 1728
4A3

4A3 + 27B2
.

Definition 3.3. LetE be an elliptic curve given by the equationE : y2 = x3+Ax+B.

An endomorphism of E is defined as a group homomorphism α : E(K̄) −→ E(K̄),

which is given by rational functions whose coefficients belong to the algebraic closure

K̄.

The simplest examples of endomorphisms are the multiplication by n homomor-

phisms for each integer n ≥ 1.

Definition 3.4. Given an elliptic curve E : y2 = x3 + Ax + B, the divison polyno-

mials ψm ∈ Z[x, y, A,B] corresponding to E are defined by the following recurrence

relation:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx− A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3),

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for each integer m ≥ 2,

ψ2m = (2y)−1ψm(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1) for each integer m ≥ 3.
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Definition 3.5. For each integer m ≥ 0, we define the family of polynomials ϕm and

ωm by

ϕm = xψ2
m − ψm+1ψm−1,

ωm = (4y)−1(ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1).

As the following theorem shows, the multiplication by n homomorphism can be ex-

pressed in terms of the polynomials ψn, ωn and ϕn.

Theorem 3.6. Let E be an elliptic curve given by y2 = x3 + Ax + B, and let P =

(x, y) be an arbitrary point of E. For each integer n ≥ 1, the multiplication by n

endomorphism, which we denote by [n], is given by

[n](P ) = (
ϕn(x)

ψ2
n(x)

,
ωn(x, y)

ψ3
n(x, y)

).

Definition 3.7. LetE be an elliptic curve given by y2 = x3+Ax+B, whereA,B ∈ K

for some field K. For each integer n ≥ 1, the n-torsion subgroup of E, which we

denote by E[n], is defined as the group of points of order dividing n. More clearly,

we have

E[n] = {P ∈ E(K̄) : [n](P ) = ∞}.

Observe from the previous definition that the n-torsion subgroup E[n] consists of

points with coordinates in the algebraic closure K̄.

Definition 3.8. Let w1, w2 be two complex numbers, and let β = {w1, w2} be a set

that is linearly independent over the real numbers R. Then the lattice generated by

the set β is defined by

L = Zw1 + Zw2 = {n1w1 + n2w2 : n1, n2 ∈ Z}.

Suppose we have a function defined on C/L for some lattice L. Note that we can also

regard this function as a function with domain on C with the property that f(z+w) =

f(z) for all z ∈ C and all w ∈ L. After this observation, we can give the following

definition.

Definition 3.9. Given a lattice L, let f : C −→ C∪{∞} be a meromorphic function

so that only singularities come from poles. We say that f is a doubly periodic function

if

f(z + w) = f(z)
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for all z ∈ C and all w ∈ L.

Observe that ifL is generated by β = {w1, w2}, then the above condition is equivalent

to saying that f(z + wi) = f(z) for i = 1, 2.

Definition 3.10. Let L be a lattice. The Weierstrass ℘-function corresponding to the

lattice L is defined by the following sum

℘(z;L) =
1

z2
+

∑
w∈L\{0}

(
1

(z − w)2
− 1

w2

)
.

Immediately after the above definition, we give the following theorem, which is an

elliptic analog of Lemma 2.13 given in Chapter 2.

Theorem 3.11. Let L be a lattice. The Weierstrass ℘-function (relative to the lattice

L) satisfies the following properties:

1. The defining series of ℘(z) converges both absolutely and uniformly on compact

subsets of C\L.

2. The only singularities of the function ℘(z) are poles, which are all double poles

occurring at each w ∈ L.

3. ℘(z) is an even function, that is, ℘(−z) = ℘(z) for all z ∈ C.

4. ℘(z) is periodic, with period at each w ∈ L. In other words, we have ℘(z +

w) = ℘(z) for all z ∈ C and w ∈ L.

Remark 3.12. Recall that the function ϕ(z) defined in Lemma 2.13 can be used to

express the points lying on the singular cubic curve C : y2 = 4x3 + x2. In a similar

manner, the complex points of an elliptic curve can be expressed in terms of the

Weierstrass ℘-function ℘(z).

Definition 3.13. Let L be a lattice and k > 2 be an integer. The Eisenstein series

corresponding to the lattice L is defined by the following sum

Gk(L) =
∑

0̸=w∈L

w−k.
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Proposition 3.14. Let L be a lattice. If 0 < |z| < min({|w| : w ∈ L}), then the

Weierstrass ℘-function corresponding to the lattice L has the following characteriza-

tion

℘(z) =
1

z2
+

∞∑
j=1

(2j + 1)G2j+2z
2j

where min({|w| : w ∈ L}) denotes the minimum of the modulus of elements of the

lattice L.

Proof. Firstly, we have(
1

(z − w)2
− 1

w2

)
= w−2

(
1

(z − (z/w))2
− 1

)
.

If |z| < |w|, then expressing the term
1

(z − (z/w))2
as a geometric sum, we see that

the right side of the above equation is equal to

w−2

(
∞∑
n=1

(n+ 1)
zn

wn

)
.

Then by definition of the Weierstrass ℘-function, we obtain

℘(z) =
1

z2
+
∑
n̸=0

∞∑
n=1

(n+ 1)
zn

wn+2
.

Finally summing over w first and then over n gives the desired result.

Theorem 3.15. Let L be a lattice and ℘(z) be the Weierstrass ℘-function correspond-

ing to L. Then ℘(z) and its derivative satisfy the following algebraic identity:

℘
′
(z)

2
= 4℘(z)3 − 60G4℘(z)− 140G6.

Proof. Firstly, we have the following equalities:

℘(z) =
1

z2
+ 3G4z

2 + 5G6z
4 + ... ,

℘
′
(z) = − 2

z3
+ 6G4z + 20G6z

3 + ....

Now taking the cube of the first equality and squaring the second one, one obtains

℘(z)3 =
1

z6
+ 9G4

1

z2
+ 15G6 + ...

℘
′
(z)

2
=

4

z6
− 24G4

1

z2
− 80G6 + ...
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Combining the last two equalities that we obtain, we get

℘
′
(z)

2 − 4℘(z)3 + 60G4℘(z) + 140G6 = c1z + c2z
2 + ...

so that we have a power series with only positive powers of z and with the constant

term equal to zero. The only possible poles of this power series are at lattice points,

namely, the points of L. But since the sum is doubly periodic and has no pole at

0, it follows that the defining function of the sum has no pole. Therefore, it defines

an entire function of C. By Liouville’s Theorem, it must be constant. But since the

constant term of the series is equal to zero, then it must be identically 0.

If we set

g2 = 60G4

g3 = 140G6

then the identity given in the above theorem takes the form

℘
′
(z)

2
= 4℘(z)3 − g2℘(z)− g3.

As a result, ℘(z) and its derivative can be used to parametrize the points lying on the

curve

y2 = 4x3 − g2x− g3.

Observe that the right-hand side of the above equation is a cubic polynomial, and the

discriminant of it is given by

16(g2
3 − 27g3

2).

Proposition 3.16. Let ∆ be the discriminant of the cubic polynomial 4x3 − g2x− g3

where g2 = 60G4 and g3 = 140G6. Then ∆ = 16(g2
3 − 27g3

2) ̸= 0.

Proof. Since ℘′(z) is a doubly periodic function, then we have

℘′
(wi
2

)
= ℘′

(wi
2

− wi

)
which is the same as

℘′
(wi
2

)
= ℘′

(
−wi

2

)
.
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On the other hand, ℘′(z) is an odd function so that it satisfies ℘′(−z) = −℘′(z). It

follows that we must have

℘′
(wi
2

)
= 0

for i = 1, 2, 3. This implies that ℘(wi/2) must be a root of the polynomial 4x3 −
g2x− g3 for i = 1, 2, 3. Now define

hi(z) = ℘(z)− ℘
(wi
2

)
for i = 1, 2, 3. Then the first two derivatives of the function hi(z) vanish at the point

wi/2 so that it has a zero of order at least 2 at that point. But since the function hi(z)

has only one pole, which is a double pole at z = 0, then the point wi/2 must be the

only zero of that function. It follows that if i ̸= j, then we have

hi

(wj
2

)
̸= 0.

Therefore the values ℘(w1/2), ℘(w2/2) and ℘(w3/2) are pairwise distinct. This

means that the cubic polynomial 4x3−g2x−g3 has three distinct roots, which implies

that its discriminant differs from zero.

According to the proposition, the curve

E : y2 = 4x3 − g2x− g3

defines an elliptic curve so that we have a map

C −→ E(C)

z −→ (℘(z), ℘′(z))

from the complex numbers C to the complex points of the elliptic curve E. As men-

tioned before, we can regard this function as a function with domain C/L so that we

have a map from the quotient space C/L to E(C). As the following theorem shows,

this map gives an isomorphism between the two groups.

Theorem 3.17. Given a lattice L, let E be the elliptic curve defined by y2 = 4x3 −
g2x− g3, where g2 = 60G4(L) and g3 = 140G6(L). Then the map

Φ : C/L −→ E(C)

z −→ (℘(z), ℘′(z))

is a group isomorphism.
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Remark 3.18. Given a lattice L, the quotient space C/L is a group where the group

operation is addition modulo L. On the other hand, the complex points E(C) on the

elliptic curve E : y2 = 4x3 − g2x− g3 also forms a group where the group operation

is elliptic curve point addition as defined before. According to the theorem, the two

group structures coincide, and we can say that to every torus C/L, there corresponds

an elliptic curve.

Theorem 3.19. Let E be an elliptic curve over C defined by y2 = 4x3 − Ax − B.

Then there exists a lattice L with

g2 = 60G4(L) = A and g3 = 140G6(L) = B

and a group isomorphism

Φ : C/L −→ E(C).

Remark 3.20. The theorem says that when we have an elliptic curve E : y2 =

4x3 − Ax − B, there exists a lattice L such that the elliptic curve corresponding to

the torus C/L is E. Therefore, every elliptic curve defined over C yields a torus.

3.2 Elliptic Case

In this section, the generalization of the method used in Section 2.3 is explained in

detail. The result is due to [3].

Recall from Section 2.2 that the function ϕ(z) = ez

(ez−1)2
can be used to express the

non-singular points of the singular cubic curve C : y2 = 4x3 + x2. In a similar man-

ner, we know from Theorem 3.19 that if E is an elliptic curve defined over C, then

there exists a lattice L such that the Weierstrass ℘-function (relative to the lattice L)

can be used to parametrize E(C). It turns out that this analogy can be used to gen-

eralize the approach described in Section 2.2 to certain elliptic curves with complex

multiplication.

Before describing the generalization of the method, we need some preliminaries.

Definition 3.21. [11] Let K be an imaginary quadratic field and let α ∈ K be an

arbitrary element. Then the norm of α, which we denote by N(α), is defined by

N(α) = αα
′ where α′ denotes the complex conjugate of the element α.
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Theorem 3.22. [11] Let K be an imaginary quadratic field and OK denote its ring

of algebraic integers. Suppose a is a non-zero ideal of OK . Then the quotient ring

OK/a contains finitely many elements.

Definition 3.23. [11] Let K be an imaginary quadratic field, and let a be an arbitrary

non-zero ideal of the ring of integers OK . Then the norm of the ideal a is defined to

be the cardinality of the quotient ring OK/a.

Definition 3.24. [9] Let E be an elliptic curve defined over the complex numbers

C, and let O denote its endomorphism ring. Given α ∈ O, consider the function Fα

defined by the following functional equation:

Fα(℘(z)) = ℘(αz) = x([α]P )

where P = (℘(z), ℘
′
(z)). The function Fα is called the Lattès map corresponding to

the element α.

For the rest of this section, we set the followings:

Let E be an elliptic curve defined by

y2 = x3 + Ax+B, A,B ∈ H

that has complex multiplication by OK where we denote byK andH some imaginary

quadratic field and its Hilbert class field, respectively.

The following lemma is proved by considering the three cases where p splits, ramifies

or remains inert in K separately. For more details, we refer the reader to [3].

Lemma 3.25. [3] Let E : y2 = x3 + ax+ b, a, b ∈ H . Let p be a prime ideal of OK

lying above p and let P be a prime ideal of OH lying over p. By the finiteness of the

class group, pn is principal for some n ≥ 1. Then there is some π ∈ OK such that

the principal ideal pn is generated by π and the reduction of the map [π] : E −→ E

modulo P gives the Frobenius map FrobN(π) defined by (x, y) −→ (xN(π), yN(π)).

Moreover, the element π ∈ OK is uniquely determined.

Recall that in Section 2.2, we have seen a formula for the number of elements in the

set C1[n]x. The next lemma is an elliptic analog of it.
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Lemma 3.26. [3] Let a be a non-zero ideal of OK . Then the number of elements in

the set E[a]x is expressed by the formula

|E[a]x| =
|E[a]\E[a+ (2)]|

2
+ |E[a+ (2)]| = N(a)−N(a+ (2))

2
+N(a+ (2)).

Proof. Suppose that P1, P2 are two points lying on E such that x(P1) = x(P2). Since

E is in Weierstrass form, then either P1 and P2 are equal, or their y-coordinates differ

by a sign. More precisely, we have P1 = P2 or P1 = −P2. The converse is also

true. On the other hand, recall from the first section that the 2-torsion points of E

are the points with y-coordinates equal to zero. It follows that if P ∈ E[2], then we

must have P = −P . From these observations, we conclude that for any element x′

of the set E[a]x, there are two corresponding points of E : (x′, y) and (x′,−y) where

y2 = x′3 + ax′ + b except the x-coordinates of the 2-torsion subgroup. Furthermore,

note that for each element x′′ of the set E[2]x, there is only one point of E, which is

(x′′, 0). Note also that E[2]∪E[a] = E[a+(2)] where (2) denotes the principal ideal

of OK generated by the element 2. Therefore, the cardinality of the set E[a]x is given

by

|E[a]x| =
|E[a]\E[a+ (2)]|

2
+ |E[a+ (2)]| = N(a)−N(a+ (2))

2
+N(a+ (2)).

The following theorem shows that for each integer m ≥ 1, the projective space

P1(Fqm) can be expressed via the torsion points of E.

Theorem 3.27. [3] Let m be an integer with m ≥ 1. Then

P1(Fqm) = E[πm − 1]x ∪ E[πm + 1]x.

Proof. [3] Lemma 3.25 implies we have pn = (π) and ¯[π] = FrobN(π) for some

uniquely determined π ∈ OK . Then we have Fπm(t) = tN(πm) = tN(πm) (mod P).

On the other hand, it is a well-known fact that the elements of the projective space

P1(Fq) are the solutions of the monic polynomial xq − x = 0. Setting q = N(π)

and β = πm, we see that the equation F̄β(t) = t has qm + 1 distinct solutions in

the projective space P1(Fq) where F̄β(t) = t denotes the map obtained by reducing
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the coefficients of Fβ modulo P. It follows that the equation Fβ(t) = t has qm + 1

distinct solutions in the extended complex plane P1(C) = C ∪ {∞}.

Now let P ∈ E[β + 1]. Then we have [β]P = −P where [β] denotes the map

defined by (℘(z), ℘′(z)) −→ (℘(βz), ℘′(βz)). Similarly if P ∈ E[β − 1], then we

have [β]P = P . In both cases, we have Fβ(x(P )) = x(P ). Therefore the elements

of the union E[β + 1]x ∪ E[β − 1]x satisfy the equation Fβ(t) = t. On the other

hand, observe that any point contained in the union E[β +1]∪E[β− 1] must also be

contained in the 2-torsion subgroup E[2]. This is because if some point is an element

of both β − 1-torsion subgroup and β + 1-torsion subgroup, then the x-coordinate

of this point must be equal to zero so that it must be an element of the 2-torsion

subgroup. Thus, using the inclusion and exclusion principle, the cardinality of the

union E[β + 1]x ∪ E[β − 1]x is given by

N(β − 1) +N(P)

2
+
N(β + 1) +N(P)

2
−N(P) =

N(β − 1) +N(β + 1)

2
.

This shows that the union E[β + 1]x ∪E[β − 1]x contains exactly qm elements. This

proves the theorem.

Immediate consequences of Theorem 3.27 are the following two corollaries:

Corollary 3.28. [3] Let α ∈ OK . Then the value set of the Lattès map Fα has the

following characterization:

VFα = Ē[a−]x ∪ E[a+]x.

Moreover, the cardinality of the value set is given by

|VFα| = (N(a−) +N(a+))/2 + ξ,

where a− = (πm−1)
(α,πm−1)

, a+ = (πm+1)
(α,πm+1)

and ξ = N(a−+(2))+N(a++(2))
2

−N(a− + a+).

Corollary 3.29. [3] Let α ∈ OK . Then the reduced map F̄α permutes P1(Fm
q ) if and

only if (α, π2m − 1) = (1).

Remark 3.30. The criterion given in Corollary 3.29 can be used to show the existence

of infinitely many Lattès maps. For instance, let α ∈ OK be an element whose norm,
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say l = N(α), is bigger than or equal to 5 and prime in Z. Then there exists an integer

0 < l < m such that m2 ̸≡ 1 (mod k). By Dirichlet’s prime number theorem, there

are infinitely many primes in the arithmetic progression l+m, 2l+m, 3l+m, .... For

infinitely many certain primes in this list, the condition of Corollary 3.29 is satisfied.
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CHAPTER 4

COMPUTATIONS AND REMARKS

In the previous chapter, we have seen that there is a formula to compute the cardi-

nalities of the value sets of Lattès maps induced by elliptic curves that have complex

multiplication. But when the endomorphism ring consists only of the integers, there

is no known formula to compute the size of the value sets of such maps so that the

situation is ambiguous in that case. To handle this problem, we put on a computa-

tional approach and use a computer-algebra program Pari/GP code to determine the

cardinalities of such maps.

4.1 Motivating Example

In Chapter 2, we have seen that there is a well-known formula to determine the value

sets of Dickson polynomials. Using this formula for the value set, we introduce a

piece of code that compute value sets of Dickson polynomials. In this section, we

give several examples to illustrate how the computations in Pari/GP related to the

value sets can be done.

To start with, let k ≥ 1 be an integer and p be a prime. In order to evaluate the size of

the image set of the k-th Dickson polynomialDk over the finite field Fp, we introduce

the following piece of computer code:

D i c k s o n c o u n t ( k , p )={
l o c a l ( c h e b y p o l =cheby ( k ) ) ;

l o c a l ( v a l u e v e c ) ;

l o c a l ( v a l u e s e t ) ;

v a l u e v e c = v e c t o r ( p , i , s u b s t ( chebypol , x , Mod( i , p ) ) ) ;
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v a l u e s e t = S e t ( v a l u e v e c ) ;

r e t u r n ( l e n g t h ( v a l u e s e t ) ) ; }

Before giving some examples, we would like to explain the content of the code in

detail. First of all, the name Dicksoncount stands for counting the elements in

the image set, and it has inputs k and p, which corresponds to the k-th Dickson

polynomial Dk and a prime number p. In the first line, we define chebypol to

be cheby(k) as can be understood by the defining relation chebypol=cheby(k)

where the function cheby(k) is defined by the following piece of code:

cheby ( k )={
i f ( k ==0 ,

r e t u r n ( 2 ) ) ;

i f ( k ==1 ,

r e t u r n ( x ) ) ;

r e t u r n ( x∗cheby ( k−1)−cheby ( k− 2 ) ) ; }

In the second and third lines, we put the notions valueset and valuevec which will

then be defined in the fourth and fifth lines. Notice that all three of the notions are

given under local to create a local scope for these functions. In other words, the

notions defined under local are valid only for the function Dicksoncount(k,p).

In the fourth line, we define valuevec to be the 3-tuple of elements

(p,i, subst(chebypol,x, Mod(i,p))).

Here p is a prime number, i is an integer with 0 ≤ i ≤ p − 1. Also, Mod(i,p) is the

function that returns the value of the integer i modulo p and subst(chebypol,x,

Mod(i,p)) is the function that plugges Mod(i,p) for x in chebypol and returns the

resulting value.

In the fifth line, we define valueset to be equal to Set(valuevec) where Set(valuevec)

is the function that returns the set of 3-tuple of elements (p,i, subst(chebypol,x,

Mod(i,p))). The function length(valueset) evaluates the cardinality of the value set

and returns the resulting value.
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In the last line, we use the function return(length(valueset)) so that the function

Dicksoncount(k,p) returns the size of the image set of Dk over Fp where k and p

are arbitrarily chosen integer and a prime, respectively.

4.2 The twist of an elliptic curve

In this section, we describe the notion of the twist of an elliptic curve. As we will see

in the next section, it is an essential tool for our piece of code to compute the value

sets of Lattès maps.

Definition 4.1. [12] Let E be an elliptic curve defined over K, which is given by the

equation y2 = x3 + Ax+ B. Let d ∈ K×. Then the twist of E by d is defined as the

curve that has the equation

y2 = x3 + Ad2x+Bd3

and is denoted by E(d).

Theorem 4.2. [12] LetE be an elliptic curve given by the equation y2 = x3+Ax+B

where the coefficients A,B are elements of some field K and let d ∈ K×. Then

1. j(E(d)) = j(E).

2. E(d) is isomorphic over K(
√
d) to E.

3. E(d) is isomorphic over K to E(d
′
) where E(d

′
) is given by

dy2 = x3 + Ax+B.

Remark 4.3. The first part of the above theorem implies that the two curves E and

E(d) are isomorphic over the algebraic closure of the field K. This means that both of

the two curves can be transformed to each other by using the rational functions with

coefficients coming from the algebraic closure of K. The second part says that these

coefficients can be chosen from the field K(
√
d) so that we have

E(K(
√
d)) ∼= E(d)(K(

√
d)).
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The third part of the theorem says that the two curves E(d) and E(d
′
) can be trans-

formed to each other by rational change of variables with coefficients coming from

the field K so that the two curves are isomorphic over K. In other words, we have

E(d)(K) ∼= E(d
′
)(K).

Theorem 4.4. [12] Let E be an elliptic curve given by the equation y2 = x3+A+B

where the coefficients A,B are elements of the finite field Fq and let d ∈ F×
q . Then

the number of points in the twist of E by d can be expressed by the following formula:

#E(d)(Fq) = q + 1−
(
d

Fq

)
a,

where
(
x3+Ax+B

Fq

)
denotes the Legendre symbol defined by

(
x

Fq

)
=


1 If x is a square in Fq

−1 If x is not a square in Fq

0 If x = 0

.

Proof. Suppose q is odd and let d ∈ F×
q = Fq\{0}. It can easily be shown that the

curve E(d) can be transformed to the curve of the form dy1
2 = x1

3 + Ax1 + B by

rational transformations. So if d is a square of some element in Fq, then the curve

E(d) takes the form y′2 = x1
3 + Ax1 + B. Using the above formula, we see that the

number of points in E(d)(Fq) is equal to q + 1− a where

a = −
∑
x∈Fq

(
x3 + Ax+B

Fq

)
.

If d is not a square in Fq, then the number of points in E(d)(Fq) is equal to q+ 1+ a.

This is because the product of two non-square elements in a finite field is a square

element.

As a result, the number of points in E(d)(Fq) is given by the following formula:

#E(d)(Fq) = q + 1−
(
d

Fq

)
a.

Let E be an elliptic curve given by

E : y2 = x3 + Ax+B,

40



where the coefficients A,B ∈ Fq. Given a non-square element d ∈ F×
q , the twist of

E by d is given by

E(d) : y2 = x3 + Ad2x+Bd3,

which is isomorphic over Fq to the curve

E(d
′
) : dy2 = x3 + Ax+B.

Now let a ∈ Fq be an arbitrary element. If the element a3 + Aa + B is square in

Fq, then we have a ∈ [E(Fq)]x where [E(Fq)]x denotes the set of x-coordinates of

the points of the curve E. On the other hand if the element a3 + Aa + B is non-

square in Fq, then we have a ∈ [E(d
′
)(Fq)]x so that the projective space P1(Fq) can

be expressed by the x-coordinates of the two curves E and E(d
′
). In other words, we

have the following characterization:

P1(Fq) = [E(Fq)]x ∪ [E(d
′
)(Fq)]x

4.3 Arithmetically exceptional Lattès maps

As we have mentioned in Chapter 3, the endomorphism ring of an elliptic curve al-

ways includes multiplication by integers.

Within some specified range for the parameters A and B, some of the outputs can be

explained beforehand. More precisely, we can compute the value sets of Lattès maps

attached to certain elliptic curves with complex multiplication by using the known

theory explained before. For instance, elliptic curves of the form

y2 = x3 + Ax

with A ̸= 0 have complex multiplication by Gaussian integers Z[i] [12]. Therefore,

we can determine the value sets of Lattès maps that are induced by certain elliptic

curves without using the code. Similarly, elliptic curves of the form

y2 = x3 +B

with B ̸= 0 has complex multiplication by the order Z[ζ3] [12]. Again we can deter-

mine the value sets of Lattès maps that are induced by certain elliptic curves without

using the code.
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Recall that if E is an elliptic curve given by

E : y2 = x3 + Ax+B,

then the j-invariant of E is

j(E) = 1728
4A3

4A3 + 27B2
.

Therefore, our choice for the parameters A and B forces the j-invariant to be an ele-

ment of the rational numbers Q. However, this is possible only if the endomorphism

ring is an order which has class number one. For details, see [8]. It follows that in

our range, the elliptic curves with non-integer j-invariants have no complex multipli-

cation. The following table lists all of the orders which have class number one [1].

Table 4.1: Orders with class number 1

O j(O)

Z[i] 123

Z[1+
√
−7

2
] −153

Z[1+
√
−11
2

] −323

Z[1+
√
−19
2

] −963

Z[1+
√
−43
2

] −9603

Z[1+
√
−67
2

] −52803

Z[1+
√
−163
2

] −6403233

Z[1+
√
−3

2
] 0

Z[1+3
√
−3

2
] −12288000

Z[
√
−3] 54000

Z[
√
−7] 2553

Z[
√
−2] 203

Z[2i] 663

Let E be an elliptic curve given by the equation

E : y2 = x3 + Ax+B, A,B ∈ K

where K is some imaginary quadratic field with ring of integers denoted by OK .

Suppose that the elliptic curve E has complex multiplication by OK . As noted in the
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previous chapter, if π ∈ OK , then there is a formula to compute the size of the value

set of Fπ defined over a finite field where Fπ denotes the Lattès map corresponding

to π ∈ OK . But this formula works for some special cases. To put a finer point on it,

the formula given in [3] applies to the Lattès maps of elliptic curves with endomor-

phism ring isomorphic to the ring of integers of some imaginary quadratic field. In the

case that an elliptic curve has no complex multiplication, the situation is ambiguous.

More precisely, there’s no known formula to determine the sizes of the Lattès maps

induced from elliptic curves without complex multiplication. As mentioned before,

the aim of this thesis is to determine the value sets of Lattès maps that are induced

by elliptic curves without complex multiplication. Recall that in this case, the endo-

morphism ring is isomorphic to the integers Z. To determine the cardinalities of such

Lattès maps, we’ll use a computational approach via Pari/GP source code which we

introduce as:

c a r d (A, B , k , p )={
l o c a l ( E= e l l i n i t ( [ A, B ] ) ) ;

l o c a l ( f = e l l x n ( E , k ) ) ;

l o c a l ( r1num= f [ 1 ] ) ;

l o c a l ( r1den = f [ 2 ] ) ;

l o c a l ( r1 =r1num / r1den ) ;

l o c a l ( i n f i n i t y = [ ] ) ;

l o c a l ( v a l u e v e c = v e c t o r ( p + 1 ) ) ;

l o c a l ( v a l u e s e t ) ;

v a l u e v e c [ p +1]= i n f i n i t y ;

f o r ( i =1 , p ,

i f ( s u b s t ( r1den , x , Mod( i , p ) ) ! = 0 ,

v a l u e v e c [ i ]= s u b s t ( r1 , x , Mod( i , p ) ) ,

v a l u e v e c [ i ]= i n f i n i t y ) ; ) ;

v a l u e s e t = S e t ( v a l u e v e c ) ;

r e t u r n ( l e n g t h ( v a l u e s e t ) ) ; }

The inputsA andB stand for the elliptic curveE defined byE : y2 = x3+Ax+B, the

integer k stand for the k-th Lattès map fk corresponding toE and finally p denotes the

finite field Fp of p elements. Therefore, card(A,B, k, p) computes the cardinality
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of the image set of the k-th Lattès map fk over Fp. Before giving some examples, let

us examine the content of the code defined above in a little more detail.

Given A,B ∈ Z, the function E =ellinit([A,B]) initializes an elliptic curve E

which has the equation E : y2 = x3 + Ax+B.

For each k ∈ Z, the function ellxn(E,k) returns a vector including the numerator

and the denominator of the k-th Lattès map:

fk =
ϕk(x)

(ψk(x))2
.

Namely, if f=ellxn(E,k), then f [1] = ϕk(x) and f [2] = (ψk(x))
2. Therefore, the

functions f [1] and f [2] return the numerator and the denominator of the k-th Lattès

map fk=ellxn(E,k), respectively.

The symbol [] stands for the point at infinity ∞ of E. In the above Pari code, it is

named infinity, as can be seen from the defining equality infinity=[].

The for loop in the code computes the image of Mod(i, p) under the division polyno-

mial (ψk(x))2 for each i ∈ {1, 2, ..., p}. If the resulting value is not equal to 0, then it

evaluates the image of Mod(i, p) under the k-th Lattès map. Otherwise, namely, if the

image of Mod(i, p) under (ψk(x))2 is equal to 0, then the image of Mod(i, p) under

the Lattès map fk is counted as infinity.

Now, we introduce another code that has the same inputs. For given A,B, k and a

prime p such that the elliptic curve y2 = x3 +Ax+B has good reduction over Fp, if

the Lattès map fk permutes Fp, it returns 1. Otherwise, the code returns 0. It uses the

trace of the Frobenius endomorphism, which we denote by a in the code. The code is

as follows:

p e r m t e s t (A, B , k , p )={
l o c a l ( E= e l l i n i t ( [ A, B ] ) ) ;

l o c a l ( a ) ;

l o c a l ( r e s u l t ) ;

i f ( E . d i s c%p !=0 ,

a= e l l a p ( E , p ) ,

r e t u r n ( 0 ) ; ) ;
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i f ( gcd ( ( p+1−a )∗ ( p+1+a ) , k )==1 ,

r e s u l t =1 ,

r e s u l t = 0 ) ;

r e t u r n ( r e s u l t ) ; }

Again before moving on to the examples, we would like to explain the code.

The function ellinit([A,B]) initializes an elliptic curve given by the equation

y2 = x3 + Ax + B. In the first line, we define E to be ellinit([A,B]) so that E

is the elliptic curve with equation y2 = x3 + Ax+B.

In the next two lines, we put the notions a, cardp, cardm, and result, which then

will be defined in the following lines.

The function E.disc evaluates the discriminant of the elliptic curve E. If E is defined

over the finite field Fp, the function ellap(E,p) returns the trace of the Frobenius

a = q + 1− E(Fq). The if loop given in the fourth line evaluates the discriminant

of E and considers it modulo p. If the resulting value is not zero, then it defines a

to be equal to the trace of the Frobenius as can be inferred from the defining rela-

tion a=ellap(E,p). Otherwise, that is, if the discriminant is equal to zero, then the

function permtest(A,B,k,p) returns 0.

To determine the density of permutations within some specified range, we introduce

the following piece of code:

permdens (A, B , k =3 , bnd =1229)={
l o c a l (D=4A3+27B2 ) ;

l o c a l ( c t r p e r m =0 , c t r b a d r e d = 0 ) ;

i f (D==0 , r e t u r n ( [ ] ) ; ) ;

f o r ( i =1 , bnd ,

p= pr ime ( i ) ;

i f (D%p ! =0 ,

i f ( p e r m t e s t (A, B , k , p )==1 , c t r p e r m ++) ,

c t r b a d r e d + + ) ; ) ;

r e t u r n ( ( c t r p e r m ) / ( bnd− c t r b a d r e d ) 1 . ) ; }
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In the first line, we define D to be the discriminant of the elliptic curve given by

y2 = x3 + Ax+B as can be seen by the defining relation D = 4A3 + 27B2.

In the second line, we define both the ctrperm and ctrbadred to be 0. Notice

that all of the definitions that are made in the first two lines are given under local.

Therefore, it creates a local scope in the sense that they are valid only for the function

permdens.

The if loop given in the third line evaluates the discriminant of the elliptic curve with

equation y2 = x3 + Ax + B. If the discriminant is equal to zero, then the function

permdens returns ∞ where we have used the symbol [] as a shorthand for the point

at infinity of the elliptic curve in question.

For the first 1229 primes, i.e., the prime integers less than 10000, the for loop given

in the fourth line first evaluates the discriminant of the elliptic curve and considers it

modulo each such prime p. If the resulting value differs from zero, then it evaluates

the cardinality of the k-th Lattès map. If the Lattès map in question is a bijection

of Fp, then it increases the permutation counter ctrperm by one. Otherwise, it

increases the bad reduction counter ctrbadred by one.

In the last line, we put the formula

(ctrperm)/(bnd-ctrbadred)*1.

which is a quotient with the numerator being equal to the number of permutations and

the denominator being equal to the number obtained by extracting the number of bad

reductions from the bound, which is denoted by bnd=1229.

Therefore, the function permdens returns the value of what percentage of the given

curves are bijections.

Example 4.5. For A,B ∈ [−3, 3] we can determine the density of permutations of

the third Lattès maps by using the following code:

f o r (A= 3 , 3 , f o r (B= 3 , 3 , p r i n t ( [ A, B , permdens (A, B , 3 ) ] ) ) )

Then the output of the above code is:
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[−3 , −3 , 0 .3700081499592502037489812551]

[ 3 , 2 , [ ] ]

[ 3 , 1 , 0 .3672638436482084690553745928]

[ 3 , 0 , 0 .6299918500407497962510187449]

[ 3 , 1 , 0 .3672638436482084690553745928]

[ 3 , 2 , [ ] ]

[ 3 , 3 , 0 .3700081499592502037489812551]

[ 2 , 3 , 0 .3835504885993485342019543974]

[ 2 , 2 , 0 .3879380603096984515077424613]

[ 2 , 1 , 0 .3705211726384364820846905538]

[ 2 , 0 , 0 .6343648208469055374592833876]

[ 2 , 1 , 0 .3705211726384364820846905538]

[ 2 , 2 , 0 .3879380603096984515077424613]

[ 2 , 3 , 0 .3835504885993485342019543974]

[ 1 , 3 , 0 .3908794788273615635179153095]

[ 1 , 2 , 0 .3911980440097799511002444988]

[ 1 , 1 , 0 .3786644951140065146579804560]

[ 1 , 0 , 0 .6302931596091205211726384365]

[ 1 , 1 , 0 .3786644951140065146579804560]

[ 1 , 2 , 0 .3911980440097799511002444988]

[ 1 , 3 , 0 .3908794788273615635179153095]

[ 0 , 3 , 0 ]

[ 0 , 2 , 0 ]

[ 0 , 1 , 0 ]

[ 0 , 0 , [ ] ]

[ 0 , 1 , 0 ]

[ 0 , 2 , 0 ]

[ 0 , 3 , 0 ]

[ 1 , 3 , 0 .3773431132844335778321108395]

[ 1 , 2 , 0 .3748981255093724531377343113]

[ 1 , 1 , 0 .3819218241042345276872964169]

[ 1 , 0 , 0 .6302931596091205211726384365]
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[ 1 , 1 , 0 .3819218241042345276872964169]

[ 1 , 2 , 0 .3748981255093724531377343113]

[ 1 , 3 , 0 .3773431132844335778321108395]

[ 2 , 3 , 0 .3814180929095354523227383863]

[ 2 , 2 , 0 .3817292006525285481239804242]

[ 2 , 1 , 0 .3697068403908794788273615635]

[ 2 , 0 , 0 .6343648208469055374592833876]

[ 2 , 1 , 0 .3697068403908794788273615635]

[ 2 , 2 , 0 .3817292006525285481239804242]

[ 2 , 3 , 0 .3814180929095354523227383863]

[ 3 , 3 , 0 .3691931540342298288508557457]

[ 3 , 2 , 0 .3781581092094539527302363488]

[ 3 , 1 , 0 ]

[ 3 , 0 , 0 .6299918500407497962510187449]

[ 3 , 1 , 0 ]

[ 3 , 2 , 0 .3781581092094539527302363488]

[ 3 , 3 , 0 .3691931540342298288508557457]

Remark 4.6. Observe that there are three types of returns that we see in the output

of the function permdens. The first one is [A, B, δ] with δ ̸= 0. The second one

is [A, B, []], and the third type of output that we see is of the form [A, B, 0] where

A,B ∈ Z.

Initially, we consider the first case. As an example, we can consider the case A =

3, B = 3, which corresponds to the output

[−3,−3, 0.3700081499592502037489812551].

In this case, we have an elliptic curve that is given by the equation

y2 = x3 − 3x− 3

, and the Lattès map

f3 =
ϕ3(x)

(ψ3(x))2

where ϕ3(x) and ψ3(x) are the third division polynomials corresponding to the elliptic
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curve in question. The value

0.3700081499592502037489812551

that we see in the third entry implies that when we consider the rational function

f3(x) over the finite field Fp where p is ranging over the first 1229 primes, thirty-

seven percent of them gives a permutation, approximately.

Moreover, among the first type of outputs, there are some elliptic curves with com-

plex multiplication. The table given below lists all such curves. In each case, the

j-invariant is 1728, and End(E)= Z[i].

Table 4.2: Densities of the third Lattès maps attached to elliptic curves with CM

Output Elliptic Curve Lattès map

[-3, 0, 0.6299918500407497962] y2 = x3 − 3x ϕ3(x,−3,0)

ψ3
2(x,−3,0)

[-2, 0, 0.6343648208469055374] y2 = x3 − 2x ϕ3(x,−2,0)

ψ3
2(x,−2,0)

[-1, 0, 0.6302931596091205211] y2 = x3 − x ϕ3(x,−1,0)

ψ3
2(x,−1,0)

[1, 0, 0.63029315960912052117] y2 = x3 + x ϕ3(x,1,0)

ψ3
2(x,1,0)

[2, 0, 0.634364820846905537459] y2 = x3 + 2x ϕ3(x,2,0)

ψ3
2(x,2,0)

[3, 0, 0.629991850040749796251] y2 = x3 + 3x ϕ3(x,3,0)

ψ3
2(x,3,0)

Note that the arithmetic exceptionality of the Lattès maps that are listed in the above-

given table can be examined using Corollary 3.18 and Corollary 3.19 since they are

induced by elliptic curves with complex multiplication.

The remaining cases from the first type of output cannot be explained using Corollary

3.18 and Corollary 3.19. This is because they are induced by elliptic curves without

complex multiplication. We list all such Lattès maps and their permutation densities

in the following table. Note that since, in this case, the elliptic curves in question

have no complex multiplication, their endomorphism rings consist only of the inte-

gers. Moreover, by our choice, their j-invariants must be rational numbers. We can

conclude that if these j-invariants are not integers, then such elliptic curves have no

complex multiplication. This is because if E is an elliptic curve defined over C with

complex multiplication, then its j-invariant must be an algebraic integer [12].
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Table 4.3: Densities of the third Lattès maps from elliptic curves without CM

Output Elliptic Curve Lattès map j-invariant

[-3, -3, 0.370008149959250] y2 = x3−3x−3 ϕ3(x,−3,−3)

ψ3
2(x,−3,−3)

-6912/5

[-3, -1, 0.36726384364820] y2 = x3−3x−1 ϕ3(x,−3,−1)

ψ3
2(x,−3,−1)

2304

[-3, 1, 0.367263843648208] y2 = x3−3x+1 ϕ3(x,−3,1)

ψ3
2(x,−3,1)

2304

[-3, 3, 0.37000814995925] y2 = x3−3x+3 ϕ3(x,−3,3)

ψ3
2(x,−3,3)

-6912/5

[-2, -3, 0.3835504885993] y2 = x3−2x−3 ϕ3(x,−2,−3)

ψ3
2(x,−2,−3)

-55296/211

[-2, -2, 0.387938060309] y2 = x3−2x−2 ϕ3(x,−2,−2)

ψ3
2(x,−2,−2)

-13824/19

[-2, -1, 0.370521172638] y2 = x3−2x−1 ϕ3(x,−2,−1)

ψ3
2(x,−2,−1)

55296/5

[-2, 1, 0.3705211726384] y2 = x3−2x+1 ϕ3(x,−2,1)

ψ3
2(x,−2,1)

55296/5

[-2, 2, 0.3879380603096] y2 = x3−2x+2 ϕ3(x,−2,2)

ψ3
2(x,−2,2)

-13824/19

[-2, 3, 0.38355048859934] y2 = x3−2x+3 ϕ3(x,−2,3)

ψ3
2(x,−2,3)

-55296/211

[-1, -3, 0.3908794788273] y2 = x3−x− 3 ϕ3(x,−1,−3)

ψ3
2(x,−1,−3)

-6912/239

[-1, -2, 0.3911980440097] y2 = x3−x− 2 ϕ3(x,−1,−2)

ψ3
2(x,−1,−2)

-864/13

[-1, -1, 0.37866449511400] y2 = x3−x− 1 ϕ3(x,−1,−1)

ψ3
2(x,−1,−1)

-6912/23

[-1, 1, 0.37866449511400] y2 = x3−x+1 ϕ3(x,−1,1)

ψ3
2(x,−1,1)

-6912/23

[-1, 2, 0.39119804400977] y2 = x3−x+2 ϕ3(x,−1,2)

ψ3
2(x,−1,2)

-864/13

[-1, 3, 0.3908794788273] y2 = x3−x+3 ϕ3(x,−1,3)

ψ3
2(x,−1,3)

-6912/239

[1, -3, 0.3773431132844] y2 = x3−x− 3 ϕ3(x,1,−3)

ψ3
2(x,1,−3)

6912/247

[1, -2, 0.3748981255093] y2 = x3+x− 2 ϕ3(x,1,−2)

ψ3
2(x,1,−2)

432/7

[1, -1, 0.38192182410423] y2 = x3+x− 1 ϕ3(x,1,−1)

ψ3
2(x,1,−1)

6912/31

[1, 1, 0.38192182410423] y2 = x3+x+1 ϕ3(x,1,1)

ψ3
2(x,1,1)

6912/31

[1, 2, 0.3748981255093] y2 = x3+x+2 ϕ3(x,1,2)

ψ3
2(x,1,2)

432/7

[1, 3, 0.3773431132844] y2 = x3+x+3 ϕ3(x,1,3)

ψ3
2(x,1,3)

6912/247

[2, -3, 0.381418092909] y2 = x3−2x−3 ϕ3(x,2,−3)

ψ3
2(x,2,−3)

55296/275

[2, -2, 0.381729200652] y2 = x3+2x−2 ϕ3(x,2,−2)

ψ3
2(x,2,−2)

13824/35

[2, -1, 0.369706840390] y2 = x3+2x−1 ϕ3(x,2,−1)

ψ3
2(x,2,−1)

55296/59

[2, 1, 0.36970684039087] y2 = x3+2x+1 ϕ3(x,2,1)

ψ3
2(x,2,1)

55296/59

[2, 2, 0.38172920065252] y2 = x3+2x+2 ϕ3(x,2,2)

ψ3
2(x,2,2)

13824/35

[2, 3, 0.38141809290953] y2 = x3+2x+3 ϕ3(x,2,3)

ψ3
2(x,2,3)

55296/275
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As an example of the second type of output, we can consider the case A = 3, B = 2,

which corresponds to the output

[−3,−2, []].

This time, the curve in question is given by the equation

y2 = x3 − 3x− 2.

The symbol [] implies that the discriminant of the curve in question is equal to zero

so that there is nothing to consider in this case since this curve does not even define

an elliptic curve. We list all such cases in the following table:

Table 4.4: The curves with vanishing discriminant

Output Curve Discriminant

[-3, -2, [] ] y2 = x3−3x−2 0

[-3, 2, [] ] y2 = x3−3x+2 0

[0, 0, [] ] y2 = x3 0

As an example of the third type of output, we can consider the case A = 3, B = 3,

which corresponds to the output

[0, 3, 0]

so that the elliptic curve in question is given by the equation

y2 = x3 − 3.

In the third entry of this output, the value we see is 0, which implies that for each

of the first 1229 primes, the Lattès map f3(x) does not give a permutation of the

finite field Fp. The reason why not even one of them gives a permutation is that there

is some 3-torsion point with rational x-coordinate that lies on the elliptic curve in

question. For if (x, y) ∈ E(Q) is a 3-torsion point, then the integer x must be a root

of the division polynomial ψ3(x) whose square appears in the denominator of f3(x).

Since x is a root of this polynomial, then the denominator of the resulting value of the

Lattès map f3(x) vanishes at that point so that we must have

f3(x) = ∞.
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In the table given below, we list all of the elliptic curves that have some 3-torsion

point with rational x-coordinate and corresponding outputs.

Table 4.5: The elliptic curves that have 3-torsion point with rational x-coordinate

Output Elliptic Curve Lattès map 3-torsion point

[0, -3, 0] y2 = x3 − 3 ϕ3(x,0,−3)

ψ3
2(x,0,−3)

(0,∓
√
−3)

[0, -2, 0] y2 = x3 − 2 ϕ3(x,0,−2)

ψ3
2(x,0,−2)

(0,∓
√
−2)

[0, -1, 0] y2 = x3 − 1 ϕ3(x,0,−1)

ψ3
2(x,0,−1)

(0,∓
√
−1)

[0, 2, 0] y2 = x3 + 2 ϕ3(x,0,2)

ψ3
2(x,0,2)

(0,∓
√
2)

[0, 3, 0] y2 = x3 + 3 ϕ3(x,0,3)

ψ3
2(x,0,3)

(0,∓
√
3)

[3, -1, 0] y2 = x3+3x−1 ϕ3(x,3,−1)

ψ3
2(x,3,−1)

(1,∓
√
3)

[3, 1, 0] y2 = x3+3x+1 ϕ3(x,3,1)

ψ3
2(x,3,1)

(−1,∓
√
−3)

Example 4.7. Now we consider the second Lattès map

f2 =
ϕ2(x)

(ψ2(x))2

and put

f o r (A= 3 , 3 , f o r (B= 3 , 3 , p r i n t ( [ A, B , permdens (A, B , 2 ) ] ) ) )

to get the permutation densities of the second Lattès maps attached to elliptic curves

in our range. The resulting output is given by

[ 3 , 3 , 0 .3357783211083944580277098615]

[ 3 , 2 , [ ] ]

[ 3 , 1 , 0 .6701954397394136807817589577]

[ 3 , 0 , 0 ]

[ 3 , 1 , 0 .6701954397394136807817589577]

[ 3 , 2 , [ ] ]

[ 3 , 3 , 0 .3357783211083944580277098615]

[ 2 , 3 , 0 .3257328990228013029315960912]

[ 2 , 2 , 0 .3357783211083944580277098615]

[ 2 , 1 , 0 ]

[ 2 , 0 , 0 ]
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[ 2 , 1 , 0 ]

[ 2 , 2 , 0 .3357783211083944580277098615]

[ 2 , 3 , 0 .3257328990228013029315960912]

[ 1 , 3 , 0 .3314332247557003257328990228]

[ 1 , 2 , 0 .3333333333333333333333333333]

[ 1 , 1 , 0 .3314332247557003257328990228]

[ 1 , 0 , 0 ]

[ 1 , 1 , 0 .3314332247557003257328990228]

[ 1 , 2 , 0 .3333333333333333333333333333]

[ 1 , 3 , 0 .3314332247557003257328990228]

[ 0 , 3 , 0 .3420195439739413680781758958]

[ 0 , 2 , 0 .3349633251833740831295843521]

[ 0 , 1 , 0 ]

[ 0 , 0 , [ ] ]

[ 0 , 1 , 0 ]

[ 0 , 2 , 0 .3349633251833740831295843521]

[ 0 , 3 , 0 .3420195439739413680781758958]

[ 1 , 3 , 0 .3268133659331703341483292584]

[ 1 , 2 , 0 ]

[ 1 , 1 , 0 .3371335504885993485342019544]

[ 1 , 0 , 0 ]

[ 1 , 1 , 0 .3371335504885993485342019544]

[ 1 , 2 , 0 ]

[ 1 , 3 , 0 .3268133659331703341483292584]

[ 2 , 3 , 0 ]

[ 2 , 2 , 0 .3393148450244698205546492659]

[ 2 , 1 , 0 .3338762214983713355048859935]

[ 2 , 0 , 0 ]

[ 2 , 1 , 0 .3338762214983713355048859935]

[ 2 , 2 , 0 .3393148450244698205546492659]

[ 2 , 3 , 0 ]

[ 3 , 3 , 0 .3317033414832925835370823146]
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[ 3 , 2 , 0 .3365933170334148329258353708]

[ 3 , 1 , 0 .3357783211083944580277098615]

[ 3 , 0 , 0 ]

[ 3 , 1 , 0 .3357783211083944580277098615]

[ 3 , 2 , 0 .3365933170334148329258353708]

[ 3 , 3 , 0 .3317033414832925835370823146]

Following the same procedure as in the previous example, we first list the outputs that

correspond to the elliptic curves with complex multiplication:

Table 4.6: Densities of the second Lattès maps attached to elliptic curves with CM

Output Elliptic Curve Lattès map j(E) End(E)

[0, -3, 0.342019543973941] y2 = x3 − 3 ϕ2(x,0,−3)

ψ2
2(x,0,−3)

0 Z[ζ3]

[0, -2, 0.334963325183374] y2 = x3 − 2 ϕ2(x,0,−2)

ψ2
2(x,0,−2)

0 Z[ζ3]

[0, 2, 0.33496332518337408] y2 = x3 + 2 ϕ2(x,0,2)

ψ2
2(x,0,2)

0 Z[ζ3]

[0, 3, 0.34201954397394136807] y2 = x3 + 3 ϕ2(x,0,3)

ψ2
2(x,0,3)

0 Z[ζ3]

The outputs corresponding to the elliptic curves without complex multiplication are

listed in the following table given below. Observe that each such elliptic curve has

endomorphism ring, which is isomorphic to Z. As before, this can easily be seen

from the corresponding j-invariants. Recall that from our choice for the coefficients

of the elliptic curves in our range, the j-invariants of these curves must be contained

in the rational numbers Q. We conclude that if E is an elliptic curve with non-integer

j-invariant, then the endomorphism ring of the elliptic curve E must be isomorphic

to the ring of integers Z. In other words, we have

End(E) ∼= Z.

Therefore, we can determine all elliptic curves without complex multiplication in our

range by using this methodology. In the table given below, we list all such elliptic

curves with their corresponding j-invariants and the third Lattès maps attached to

them. It also contains their corresponding permutation densities.

54



Table 4.7: Densities of the second Lattès maps from elliptic curves without CM

Output Elliptic Curve Lattès map j-invariant

[-3, -3, 0.335778321108394] y2 = x3−3x−3 ϕ2(x,−3,−3)

ψ2
2(x,−3,−3)

-6912/5

[-3, -1, 0.670195439739413680] y2 = x3−3x−1 ϕ2(x,−3,−1)

ψ2
2(x,−3,−1)

2304

[-3, 1, 0.6701954397394136807] y2 = x3−3x+1 ϕ2(x,−3,1)

ψ2
2(x,−3,1)

2304

[-3, 3, 0.3357783211083944580] y2 = x3−3x+3 ϕ2(x,−3,3)

ψ2
2(x,−3,3)

-6912/5

[-2, -3, 0.325732899022801302] y2 = x3−2x−3 ϕ2(x,−2,−3)

ψ2
2(x,−2,−3)

-55296/211

[-2, -2, 0.335778321108394458] y2 = x3−2x−2 ϕ2(x,−2,−2)

ψ2
2(x,−2,−2)

-13824/19

[-2, 2, 0.335778321108394458] y2 = x3−2x+2 ϕ2(x,−2,2)

ψ2
2(x,−2,2)

-13824/19

[-2, 3, 0.325732899022801302] y2 = x3−2x+3 ϕ2(x,−2,3)

ψ2
2(x,−2,3)

-55296/211

[-1, -3, 0.33143322475570032] y2 = x3−x− 3 ϕ2(x,−1,−3)

ψ2
2(x,−1,−3)

-6912/239

[-1, -2, 0.333333333333333] y2 = x3−x− 2 ϕ2(x,−1,−2)

ψ2
2(x,−1,−2)

-864/13

[-1, -1, 0.3314332247557003] y2 = x3−x− 1 ϕ2(x,−1,−1)

ψ2
2(x,−1,−1)

-6912/23

[-1, 1, 0.331433224755700325] y2 = x3−x+1 ϕ2(x,−1,1)

ψ2
2(x,−1,1)

-6912/23

[-1, 2, 0.333333333333333333] y2 = x3−x+2 ϕ2(x,−1,2)

ψ2
2(x,−1,2)

-864/13

[-1, 3, 0.3314332247557003257] y2 = x3−x+3 ϕ2(x,−1,3)

ψ2
2(x,−1,3)

-6912/239

[1, -3, 0.3268133659331703341] y2 = x3−x− 3 ϕ2(x,1,−3)

ψ2
2(x,1,−3)

6912/247

[1, -1, 0.337133550488599348] y2 = x3+x− 1 ϕ2(x,1,−1)

ψ2
2(x,1,−1)

6912/31

[1, 1, 0.3371335504885993485] y2 = x3+x+1 ϕ2(x,1,1)

ψ2
2(x,1,1)

6912/31

[1, 3, 0.3268133659331703341] y2 = x3+x+3 ϕ2(x,1,3)

ψ2
2(x,1,3)

6912/247

[2, -2, 0.33931484502446982] y2 = x3+2x−2 ϕ2(x,2,−2)

ψ2
2(x,2,−2)

13824/35

[2, -1, 0.333876221498371335] y2 = x3+2x−1 ϕ2(x,2,−1)

ψ2
2(x,2,−1)

55296/59

[2, 1, 0.333876221498371335] y2 = x3+2x+1 ϕ2(x,2,1)

ψ2
2(x,2,1)

55296/59

[2, 2, 0.339314845024469820] y2 = x3+2x+2 ϕ2(x,2,2)

ψ2
2(x,2,2)

13824/35

[3, -3, 0.331703341483292583] y2 = x3+3x−3 ϕ2(x,3,−3)

ψ2
2(x,3,−3)

6912/13

[3, -2, 0.336593317033414832] y2 = x3+3x−2 ϕ2(x,3,−2)

ψ2
2(x,3,−2)

864

55



Lastly, the following table shows the third type of the outputs and their corresponding

2-torsion points with rational x- coordinate:

Table 4.8: The elliptic curves that have 2-torsion point with rational x-coordinate

Output Elliptic Curve Lattès map 2-torsion point

[-3, 0, 0] y2 = x3 − 3x ϕ2(x,−3,0)

ψ2
2(x,−3,0)

(0, 0)

[-2, -1, 0] y2 = x3−2x−1 ϕ2(x,−2,−1)

ψ2
2(x,−2,−1)

(−1, 0)

[0, -1, 0] y2 = x3 − 1 ϕ2(x,0,−1)

ψ2
2(x,0,−1)

(1, 0)

[-2, 0, 0] y2 = x3 − 2x ϕ2(x,−2,0)

ψ2
2(x,−2,0)

(0, 0)

[-2, 1, 0] y2 = x3−2x+1 ϕ2(x,−2,1)

ψ2
2(x,−2,1)

(1, 0)

[-1, 0, 0] y2 = x3 − x ϕ2(x,−1,0)

ψ2
2(x,−1,0)

(0, 0)

[0, -1, 0] y2 = x3 − 1 ϕ2(x,0,−1)

ψ2
2(x,0,−1)

(1, 0)

[0, 1, 0] y2 = x3 + 1 ϕ2(x,0,1)

ψ2
2(x,0,1)

(−1, 0)

[1, -2, 0] y2 = x3+x− 2 ϕ2(x,1,−2)

ψ2
2(x,1,−2)

(1, 0)

[1, 0, 0] y2 = x3 + x ϕ2(x,1,0)

ψ2
2(x,1,0)

(0, 0)

[1, 2, 0] y2 = x3+x+2 ϕ2(x,1,2)

ψ2
2(x,1,2)

(−1, 0)

[2, -3, 0] y2 = x3+2x−3 ϕ2(x,2,−3)

ψ2
2(x,2,−3)

(1, 0)

[2, 0, 0] y2 = x3 + 2x ϕ2(x,2,0)

ψ2
2(x,2,0)

(0, 0)

[2, 3, 0] y2 = x3+2x+3 ϕ2(x,2,3)

ψ2
2(x,2,3)

(−1, 0)

[3, 0, 0] y2 = x3 + 3x ϕ2(x,3,0)

ψ2
2(x,3,0)

(0, 0)

Example 4.8. Now we consider the fifth Lattès map

f5 =
ϕ5(x)

(ψ5(x))2

and put

f o r (A= 3 , 3 , f o r (B= 3 , 3 , p r i n t ( [ A, B , permdens (A, B , 5 ) ] ) ) )

to get the permutation densities of the fifth Lattès maps attached to elliptic curves in

our range. The resulting output is as follows:

[ 3 , 3 , 0 .5770171149144254278728606357]

[ 3 , 2 , [ ] ]

[ 3 , 1 , 0 .5952768729641693811074918567]
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[ 3 , 0 , 0 .5069274653626731866340668297]

[ 3 , 1 , 0 .5952768729641693811074918567]

[ 3 , 2 , [ ] ]

[ 3 , 3 , 0 .5770171149144254278728606357]

[ 2 , 3 , 0 .5895765472312703583061889251]

[ 2 , 2 , 0 .5925020374898125509372453138]

[ 2 , 1 , 0 .5977198697068403908794788274]

[ 2 , 0 , 0 .5065146579804560260586319218]

[ 2 , 1 , 0 .5977198697068403908794788274]

[ 2 , 2 , 0 .5925020374898125509372453138]

[ 2 , 3 , 0 .5895765472312703583061889251]

[ 1 , 3 , 0 .5773615635179153094462540717]

[ 1 , 2 , 0 .5802770986145069274653626732]

[ 1 , 1 , 0 .5903908794788273615635179153]

[ 1 , 0 , 0 .5024429967426710097719869707]

[ 1 , 1 , 0 .5903908794788273615635179153]

[ 1 , 2 , 0 .5802770986145069274653626732]

[ 1 , 3 , 0 .5773615635179153094462540717]

[ 0 , 3 , 0 .8265472312703583061889250814]

[ 0 , 2 , 0 .8337408312958435207823960880]

[ 0 , 1 , 0 .8355048859934853420195439739]

[ 0 , 0 , [ ] ]

[ 0 , 1 , 0 .8355048859934853420195439739]

[ 0 , 2 , 0 .8337408312958435207823960880]

[ 0 , 3 , 0 .8265472312703583061889250814]

[ 1 , 3 , 0 .5941320293398533007334963325]

[ 1 , 2 , 0 .5884270578647106764466177669]

[ 1 , 1 , 0 .5944625407166123778501628665]

[ 1 , 0 , 0 .5024429967426710097719869707]

[ 1 , 1 , 0 .5944625407166123778501628665]

[ 1 , 2 , 0 .5884270578647106764466177669]

[ 1 , 3 , 0 .5941320293398533007334963325]
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[ 2 , 3 , 0 .5729421352893235533822330888]

[ 2 , 2 , 0 .5986949429037520391517128874]

[ 2 , 1 , 0 .5960912052117263843648208469]

[ 2 , 0 , 0 .5065146579804560260586319218]

[ 2 , 1 , 0 .5960912052117263843648208469]

[ 2 , 2 , 0 .5986949429037520391517128874]

[ 2 , 3 , 0 .5729421352893235533822330888]

[ 3 , 3 , 0 .5802770986145069274653626732]

[ 3 , 2 , 0 .6014669926650366748166259169]

[ 3 , 1 , 0 .5819070904645476772616136919]

[ 3 , 0 , 0 .5069274653626731866340668297]

[ 3 , 1 , 0 .5819070904645476772616136919]

[ 3 , 2 , 0 .6014669926650366748166259169]

[ 3 , 3 , 0 .5802770986145069274653626732]

Following the same procedure, we list the CM cases and non-CM cases in the follow-

ing two tables respectively:

Table 4.9: Densities of the fifth Lattès maps attached to elliptic curves with CM

Output Elliptic Curve Lattès map j(E) End(E)

[0, -3, 0.8265472312703583061] y2 = x3 − 3 ϕ5(x,0,−3)

ψ5
2(x,0,−3)

0 Z[ζ3]

[0, -2, 0.8337408312958435207] y2 = x3 − 2 ϕ5(x,0,−2)

ψ5
2(x,0,−2)

0 Z[ζ3]

[0, -1, 0.835504885993485342] y2 = x3 − 1 ϕ5(x,0,−1)

ψ5
2(x,0,−1)

0 Z[ζ3]

[0, 1, 0.835504885993485342] y2 = x3 + 1 ϕ5(x,0,1)

ψ5
2(x,0,1)

0 Z[ζ3]

[0, 2, 0.833740831295843520] y2 = x3 + 2 ϕ5(x,0,2)

ψ5
2(x,0,2)

0 Z[ζ3]

[0, 3, 0.826547231270358306] y2 = x3 + 3 ϕ5(x,0,3)

ψ5
2(x,0,3)

0 Z[ζ3]

[-3, 0, 0.506927465362673186] y2 = x3 − 3x ϕ5(x,−3,0)

ψ5
2(x,−3,0)

1728 Z[i]

[-2, 0, 0.506514657980456026] y2 = x3 − 2x ϕ5(x,−2,0)

ψ5
2(x,−2,0)

1728 Z[i]

[-1, 0, 0.502442996742671009] y2 = x3 − x ϕ5(x,−1,0)

ψ5
2(x,−1,0)

1728 Z[i]

[1, 0, 0.502442996742671009] y2 = x3 + x ϕ5(x,1,0)

ψ5
2(x,1,0)

1728 Z[i]

[2, 0, 0.506514657980456026] y2 = x3 + 2x ϕ5(x,2,0)

ψ5
2(x,2,0)

1728 Z[i]

[3, 0, 0.5069274653626731866] y2 = x3 + 3x ϕ5(x,3,0)

ψ5
2(x,3,0)

1728 Z[i]
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Table 4.10: Densities of the fifth Lattès maps from elliptic curves without CM

Output Elliptic Curve Lattès map j-invariant

[-3, -3, 0.57701711491442542] y2 = x3−3x−3 ϕ5(x,−3,−3)

ψ5
2(x,−3,−3)

-6912/5

[-3, -1, 0.59527687296416938] y2 = x3−3x−1 ϕ5(x,−3,−1)

ψ5
2(x,−3,−1)

2304

[-3, 1, 0.59527687296416938] y2 = x3−3x+1 ϕ5(x,−3,1)

ψ5
2(x,−3,1)

2304

[-3, 3, 0.57701711491442542] y2 = x3−3x+3 ϕ5(x,−3,3)

ψ5
2(x,−3,3)

-6912/5

[-2, -3, 0.58957654723127035] y2 = x3−2x−3 ϕ5(x,−2,−3)

ψ5
2(x,−2,−3)

-55296/211

[-2, -2, 0.592502037489812] y2 = x3−2x−2 ϕ5(x,−2,−2)

ψ5
2(x,−2,−2)

-13824/19

[-2, -1, 0.59771986970684039] y2 = x3−2x−1 ϕ5(x,−2,−1)

ψ5
2(x,−2,−1)

55296/5

[-2, 1, 0.59771986970684039] y2 = x3−2x+1 ϕ5(x,−2,1)

ψ5
2(x,−2,1)

55296/5

[-2, 2, 0.59250203748981255] y2 = x3−2x+2 ϕ5(x,−2,2)

ψ5
2(x,−2,2)

-13824/19

[-2, 3, 0.5895765472312703] y2 = x3−2x+3 ϕ5(x,−2,3)

ψ5
2(x,−2,3)

-55296/211

[-1, -3, 0.5773615635179153] y2 = x3−x− 3 ϕ5(x,−1,−3)

ψ5
2(x,−1,−3)

-6912/239

[-1, -2, 0.580277098614506] y2 = x3−x− 2 ϕ5(x,−1,−2)

ψ5
2(x,−1,−2)

-864/13

[-1, -1, 0.590390879478827] y2 = x3−x− 1 ϕ5(x,−1,−1)

ψ5
2(x,−1,−1)

-6912/23

[-1, 1, 0.5903908794788273] y2 = x3−x+1 ϕ5(x,−1,1)

ψ5
2(x,−1,1)

-6912/23

[-1, 2, 0.5802770986145069] y2 = x3−x+2 ϕ5(x,−1,2)

ψ5
2(x,−1,2)

-864/13

[-1, 3, 0.5773615635179153] y2 = x3−x+3 ϕ5(x,−1,3)

ψ5
2(x,−1,3)

-6912/239

[1, -3, 0.59413202933985330] y2 = x3+x− 3 ϕ5(x,1,−3)

ψ5
2(x,1,−3)

6912/247

[1, -2, 0.58842705786471067] y2 = x3+x− 2 ϕ5(x,1,−2)

ψ5
2(x,1,−2)

432/7

[1, -1, 0.59446254071661237] y2 = x3+x− 1 ϕ5(x,1,−1)

ψ5
2(x,1,−1)

6912/31

[1, 1, 0.5944625407166123] y2 = x3+x+1 ϕ5(x,1,1)

ψ5
2(x,1,1)

6912/31

[1, 2, 0.58842705786471067] y2 = x3+x+2 ϕ5(x,1,2)

ψ5
2(x,1,2)

432/7

[1, 3, 0.59413202933985330] y2 = x3+x+3 ϕ5(x,1,3)

ψ5
2(x,1,3)

6912/247

[2, -3, 0.5729421352893235] y2 = x3+2x−3 ϕ5(x,2,−3)

ψ5
2(x,2,−3)

55296/275

[2, -2, 0.598694942903752] y2 = x3+2x−2 ϕ5(x,2,−2)

ψ5
2(x,2,−2)

13824/35

[2, -1, 0.5960912052117263] y2 = x3+2x−1 ϕ5(x,2,−1)

ψ5
2(x,2,−1)

55296/59
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Example 4.9. Now we consider the seventh Lattès map

f7 =
ϕ7(x)

(ψ7(x))2

and put

f o r (A= 3 , 3 , f o r (B= 3 , 3 , p r i n t ( [ A, B , permdens (A, B , 7 ) ] ) ) )

to get the permutation densities of the seventh Lattès maps attached to elliptic curves

in our range. The resulting output is as follows:

[ 3 , 3 , 0 .5770171149144254278728606357]

[ 3 , 2 , [ ] ]

[ 3 , 1 , 0 .5952768729641693811074918567]

[ 3 , 0 , 0 .5069274653626731866340668297]

[ 3 , 1 , 0 .5952768729641693811074918567]

[ 3 , 2 , [ ] ]

[ 3 , 3 , 0 .5770171149144254278728606357]

[ 2 , 3 , 0 .5895765472312703583061889251]

[ 2 , 2 , 0 .5925020374898125509372453138]

[ 2 , 1 , 0 .5977198697068403908794788274]

[ 2 , 0 , 0 .5065146579804560260586319218]

[ 2 , 1 , 0 .5977198697068403908794788274]

[ 2 , 2 , 0 .5925020374898125509372453138]

[ 2 , 3 , 0 .5895765472312703583061889251]

[ 1 , 3 , 0 .5773615635179153094462540717]

[ 1 , 2 , 0 .5802770986145069274653626732]

[ 1 , 1 , 0 .5903908794788273615635179153]

[ 1 , 0 , 0 .5024429967426710097719869707]

[ 1 , 1 , 0 .5903908794788273615635179153]

[ 1 , 2 , 0 .5802770986145069274653626732]

[ 1 , 3 , 0 .5773615635179153094462540717]

[ 0 , 3 , 0 .8265472312703583061889250814]

[ 0 , 2 , 0 .8337408312958435207823960880]

[ 0 , 1 , 0 .8355048859934853420195439739]

[ 0 , 0 , [ ] ]
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[ 0 , 1 , 0 .8355048859934853420195439739]

[ 0 , 2 , 0 .8337408312958435207823960880]

[ 0 , 3 , 0 .8265472312703583061889250814]

[ 1 , 3 , 0 .5941320293398533007334963325]

[ 1 , 2 , 0 .5884270578647106764466177669]

[ 1 , 1 , 0 .5944625407166123778501628665]

[ 1 , 0 , 0 .5024429967426710097719869707]

[ 1 , 1 , 0 .5944625407166123778501628665]

[ 1 , 2 , 0 .5884270578647106764466177669]

[ 1 , 3 , 0 .5941320293398533007334963325]

[ 2 , 3 , 0 .5729421352893235533822330888]

[ 2 , 2 , 0 .5986949429037520391517128874]

[ 2 , 1 , 0 .5960912052117263843648208469]

[ 2 , 0 , 0 .5065146579804560260586319218]

[ 2 , 1 , 0 .5960912052117263843648208469]

[ 2 , 2 , 0 .5986949429037520391517128874]

[ 2 , 3 , 0 .5729421352893235533822330888]

[ 3 , 3 , 0 .5802770986145069274653626732]

[ 3 , 2 , 0 .6014669926650366748166259169]

[ 3 , 1 , 0 .5819070904645476772616136919]

[ 3 , 0 , 0 .5069274653626731866340668297]

[ 3 , 1 , 0 .5819070904645476772616136919]

[ 3 , 2 , 0 .6014669926650366748166259169]

[ 3 , 3 , 0 .5802770986145069274653626732]

Remark 4.10. As in the previous example, there is no third type of output, which

means there is no elliptic curve that has a 7-torsion point with a rational x-coordinate.

Observe that this implies that the division polynomial ψ7 has no rational root for

elliptic curves in our range. In the following two tables, we list all CM and non-CM

cases, respectively. As we have mentioned before, we first find all elliptic curves

with complex multiplication by checking their corresponding j-invariants. We also

determine their endomorphism rings by using Table 4.1. As can be seen from the

table, there are two types of endomorphism rings, which are Z[ζ3] and Z[i].
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Table 4.11: Densities of the seventh Lattès maps from elliptic curves with CM

Output Elliptic Curve Lattès map j(E) End(E)

[0, -3, 0.62785016286644951] y2 = x3 − 3 ϕ7(x,0,−3)

ψ7
2(x,0,−3)

0 Z[ζ3]

[0, -2, 0.63814180929095354] y2 = x3 − 2 ϕ7(x,0,−2)

ψ7
2(x,0,−2)

0 Z[ζ3]

[0, -1, 0.64332247557003257] y2 = x3 − 1 ϕ7(x,0,−1)

ψ7
2(x,0,−1)

0 Z[ζ3]

[0, 1, 0.643322475570032573] y2 = x3 + 1 ϕ7(x,0,1)

ψ7
2(x,0,1)

0 Z[ζ3]

[0, 2, 0.638141809290953545] y2 = x3 + 2 ϕ7(x,0,2)

ψ7
2(x,0,2)

0 Z[ζ3]

[0, 3, 0.62785016286644951] y2 = x3 + 3 ϕ7(x,0,3)

ψ7
2(x,0,3)

0 Z[ζ3]

[-3, 0, 0.89649551752241238] y2 = x3 − 3x ϕ7(x,−3,0)

ψ7
2(x,−3,0)

1728 Z[i]

[-2, 0, 0.899837133550488] y2 = x3 − 2x ϕ7(x,−2,0)

ψ7
2(x,−2,0)

1728 Z[i]

[-1, 0, 0.89820846905537] y2 = x3 − x ϕ7(x,−1,0)

ψ7
2(x,−1,0)

1728 Z[i]

[1, 0, 0.8982084690553745] y2 = x3 + x ϕ7(x,1,0)

ψ7
2(x,1,0)

1728 Z[i]

[2, 0, 0.899837133550488] y2 = x3 + 2x ϕ7(x,2,0)

ψ7
2(x,2,0)

1728 Z[i]

[3, 0, 0.896495517522412] y2 = x3 + 3x ϕ7(x,3,0)

ψ7
2(x,3,0)

1728 Z[i]

Finally, it remains to list all outputs corresponding to elliptic curves without complex

multiplication. As we have indicated before, if E is one such elliptic curve, then

End(E) ∼= Z.

Note also that except the following two elliptic curves

y2 = x3 − 3x− 1

y2 = x3 − 3x+ 1,

all elliptic curves in our range have non-integer j-invariants. Therefore, it immedi-

ately follows that all such elliptic curves have no complex multiplication. This is

because j-invariant is an algebraic integer. In the case of the two curves given above,

Table 4.1 implies that both have no complex multiplication. The following table il-

lustrates this situation.
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Table 4.12: Densities of the seventh Lattès maps from non-CM cases

Output Elliptic Curve Lattès map j-invariant

[-3, -3, 0.69845150774246128] y2 = x3−3x−3 ϕ7(x,−3,−3)

ψ7
2(x,−3,−3)

-6912/5

[-3, -1, 0.6807817589576547] y2 = x3−3x−1 ϕ7(x,−3,−1)

ψ7
2(x,−3,−1)

2304

[-3, 1, 0.680781758957654] y2 = x3−3x+1 ϕ7(x,−3,1)

ψ7
2(x,−3,1)

2304

[-3, 3, 0.69845150774246128] y2 = x3−3x+3 ϕ7(x,−3,3)

ψ7
2(x,−3,3)

-6912/5

[-2, -3, 0.7035830618892508] y2 = x3−2x−3 ϕ7(x,−2,−3)

ψ7
2(x,−2,−3)

-55296/211

[-2, -2, 0.7017114914425427] y2 = x3−2x−2 ϕ7(x,−2,−2)

ψ7
2(x,−2,−2)

-13824/19

[-2, -1, 0.7239413680781758] y2 = x3−2x−1 ϕ7(x,−2,−1)

ψ7
2(x,−2,−1)

55296/5

[-2, 1, 0.7239413680781758] y2 = x3−2x+1 ϕ7(x,−2,1)

ψ7
2(x,−2,1)

55296/5

[-2, 2, 0.70171149144254278] y2 = x3−2x+2 ϕ7(x,−2,2)

ψ7
2(x,−2,2)

-13824/19

[-2, 3, 0.70358306188925081] y2 = x3−2x+3 ϕ7(x,−2,3)

ψ7
2(x,−2,3)

-55296/211

[-1, -3, 0.6889250814332247] y2 = x3−x− 3 ϕ7(x,−1,−3)

ψ7
2(x,−1,−3)

-6912/239

[-1, -2, 0.6919315403422982] y2 = x3−x− 2 ϕ7(x,−1,−2)

ψ7
2(x,−1,−2)

-864/13

[-1, -1, 0.7076547231270358] y2 = x3−x− 1 ϕ7(x,−1,−1)

ψ7
2(x,−1,−1)

-6912/23

[-1, 1, 0.7076547231270358] y2 = x3−x+1 ϕ7(x,−1,1)

ψ7
2(x,−1,1)

-6912/23

[-1, 2, 0.6919315403422982] y2 = x3−x+2 ϕ7(x,−1,2)

ψ7
2(x,−1,2)

-864/13

[-1, 3, 0.6889250814332247] y2 = x3−x+3 ϕ7(x,−1,3)

ψ7
2(x,−1,3)

-6912/239

[1, -3, 0.6951915240423797] y2 = x3+x− 3 ϕ7(x,1,−3)

ψ7
2(x,1,−3)

6912/247

[1, -2, 0.70660146699266503] y2 = x3+x− 2 ϕ7(x,1,−2)

ψ7
2(x,1,−2)

432/7

[1, -1, 0.70928338762214983] y2 = x3+x− 1 ϕ7(x,1,−1)

ψ7
2(x,1,−1)

6912/31

[1, 1, 0.70928338762214983] y2 = x3+x+1 ϕ7(x,1,1)

ψ7
2(x,1,1)

6912/31

[1, 2, 0.706601466992665036] y2 = x3+x+2 ϕ7(x,1,2)

ψ7
2(x,1,2)

432/7

[1, 3, 0.695191524042379788] y2 = x3+x+3 ϕ7(x,1,3)

ψ7
2(x,1,3)

6912/247

[2, -3, 0.71882640586797066] y2 = x3+2x−3 ϕ7(x,2,−3)

ψ7
2(x,2,−3)

55296/275

[2, -2, 0.69249592169657422] y2 = x3+2x−2 ϕ7(x,2,−2)

ψ7
2(x,2,−2)

13824/35

[2, -1, 0.6726384364820846] y2 = x3+2x−1 ϕ7(x,2,−1)

ψ7
2(x,2,−1)

55296/59

[1, 3, 0.695191524042379788] y2 = x3+x+3 ϕ7(x,1,3)

ψ7
2(x,1,3)

6912/247

[2, -3, 0.71882640586797066] y2 = x3+2x−3 ϕ7(x,2,−3)

ψ7
2(x,2,−3)

55296/275

[2, -2, 0.69249592169657422] y2 = x3+2x−2 ϕ7(x,2,−2)

ψ7
2(x,2,−2)

13824/35
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

As we have indicated in the first chapter, the goal of this thesis was to study the value

sets of Lattès maps that are induced by elliptic curves without complex multiplication

and discuss the arithmetical exceptionality of such maps. To accomplish this goal,

we have put on an experimental approach and used the computer algebra program

Pari/GP codes.

There were two main pieces of code used in the fourth chapter, which we named

card and permdens.

In order to determine the size of the value sets, we have used the function named

card that has four inputs A,B, k and p, which corresponds to the elliptic curve

E : y2 = x3 + Ax+B,

the Lattès map

fk(x) =
ϕk(A,B, x)

ψk(A,B, x)
2

and a prime p. Here we denote by ψk(A,B, x) the k-th division polynomial corre-

sponding to the elliptic curve E. When the elliptic curve E has a good reduction over

the finite field Fp, the function card(A,B, k, p) returns the size of the image set of

the k-th Lattès map fk over the projective space P1(Fp).

In order to discuss the arithmetic exceptionality of such maps, we have used the func-

tion permdens that has three inputs A,B and k, which again corresponds to the

elliptic curve y2 = x3 + Ax+B and the k-th Lattès map fk.

In the fourth chapter, where we have made various computations using the Pari/GP

codes, we have seen that there are three types of outputs of which the function
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permdens returns.

The first of these was the outputs of the form

[A,B, []].

As we have noted before, such cases occur when the discriminant of the curve y2 =

x3 + Ax + B is equal to zero, that is, when we have 4A3 + 27B2 = 0. But we don’t

consider the Lattès maps that are induced by such curves because, in this case, the

curve in question does not even define an elliptic curve. Therefore, we exclude such

cases since they are beyond the scope of this thesis.

The second one is of the form

[A,B, 0],

which corresponds to zero density. This means that for a chosen integer k ≥ 1, the

k-th Lattès map does not give a permutation of Fp’s where p is ranging over the first

1229 primes. This is because the elliptic curve

y2 = x3 + Ax+B

has k-torsion point with rational x-coordinate. The reason k-th Lattès map never

permutes the projective space P1(Fp) can be clarified as follows: If the point P =

(a, b) is a k-torsion point with a belongs to the rational numbers, then a must be a

root of the division polynomial

ψk(A,B, x)
2.

Therefore, when we reduce the coefficients A and B modulo p, then ā must be root

of the reduced polynomial

ψk(Ā, B̄, x)
2
.

But this implies that when we consider the k-th Lattès map over the projective space

P1(Fp), it is not an injection since it maps both ā and ∞ to the point ∞. From this

point of view, we conclude that if an elliptic curve E has k-torsion point with rational

x-coordinate, then the k-th Lattès map attached toE is not arithmetically exceptional.

In other words, the Lattès maps corresponding to the second type of the outputs of

the function permdens are not arithmetically exceptional.
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The third type of output has the form

[A,B, δ]

with δ ̸= 0. This means that for a chosen integer k ≥ 1, the k-th Lattès map permutes

Fp’s for some primes, and δ gives the density of these permutations. This is because

there is no k-torsion point with rational x-coordinate lying on the elliptic curve

y2 = x3 + Ax+B.

In such cases, we experimentally believe that the k-th Lattès map attached to E is

arithmetically exceptional. Immediately afterward the remarks noted above, one may

expect the following: For each integer k ≥ 1, the k−th Lattès map fk is arithmeti-

cally exceptional if and only if the elliptic curve E has no k-torsion point whose

x-coordinate is rational.

Note that one side of this statement is trivially true. Namely, if E has k-torsion point

with rational x-coordinate, then fk is not arithmetically exceptional.

Note also that the above-given statement can be alternatively stated as fk is arithmeti-

cally exceptional if and only if the division polynomial ψk has no rational root. This

is because, for each integer k ≥ 1, the x-coordinates of the k-torsion points come

from the roots of the k-th division polynomial ψk.

As a final remark, we emphasize two situations that we observed when using the

function permdens:

The first observation is that when we increase the variable k, the average permutation

density also increases proportionally. For instance, while the average permutation

density for the second Lattès map f2 is 0.35, the average value that we see for the

seventh Lattès map f7 is 0.65.

The second interesting point to note is that except for the Lattès maps f2 and f3, there

is no third type of the outputs in the function permdens. This implies that when

k ̸= 2, 3, then in our range, the x-coordinates of the k-torsion points of the elliptic

curves are not rational. Again this is equivalent to saying that if k ̸= 2, 3, then the

k-th division polynomial ψk has no rational root.
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