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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JUNE 2023





Approval of the thesis:

SIGNAL PROCESSING AND BEAMFORMING TECHNIQUES FOR CELL
FREE MM-WAVE MASSIVE MIMO SYSTEMS
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ABSTRACT

SIGNAL PROCESSING AND BEAMFORMING TECHNIQUES FOR CELL
FREE MM-WAVE MASSIVE MIMO SYSTEMS

Karataş, Metehan

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Gökhan Güvensen

June 2023, 90 pages

This thesis presents a hybrid beamforming uplink receiver detector for massive MIMO

(mMIMO) cell-free (CF) networks operating in millimeter-wave (mmWave) frequen-

cies. CF networks aim to provide uniform service by jointly serving user equip-

ments (UEs) through multiple access points (APs) connected to a central processing

unit (CPU). However, serving all UEs with all APs is impractical and computation-

ally complex. The user-centric (UC) variant was introduced to address this, where

each UE is served by a subset of APs based on channel conditions. Additionally,

the shift to mmWave frequencies offers increased network capacity by leveraging

wider bandwidth and larger antenna arrays. Hybrid beamformers, consisting of ana-

log and digital stages, were proposed to reduce the number of radio frequency (RF)

chains. The proposed analog beamformer (AB) in this work is the modified eigen

beamformer (MEB). MEB promotes a trend of fairness among served UEs compared

to well-known eigen beamformer (EB). The digital stage introduces two detectors,

namely the cell-free iterative detector (CFI-D) and the user-centric iterative subset de-

tector (UCIS-D), both employing single carrier frequency domain equalization (SC-

FDE) modulation. CFI-D is an unscalable CF implementation of the iterative block-
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decision feedback equalization (IB-DFE) structure, while UCIS-D offers a scalable

UC alternative. UCIS-D incorporates a parallel interference cancellation (PIC) stage

before IB-DFE, selectively processing interferers based on their relative strength. The

weakest interferers are ignored, while the strongest are processed by IB-DFE, consid-

ering residual interference from PIC. Both detectors utilize soft decisions and employ

frequency domain decision feedback (FDDF). The performance of these detectors is

evaluated using the achievable information rate (AIR) and bit-error-rate (BER). Sim-

ulation results demonstrate the proposed receiver’s ability to handle ultra-high loads

in terms of BER and AIR.

Keywords: cell-free, user-centric, hybrid-beamformer, mmWave, massive MIMO
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ÖZ

HÜCRESİZ MM-DALGA MASİF MIMO AĞLAR İÇİN SİNYAL İŞLEME
VE HÜZMELEME TEKNİKLERİ

Karataş, Metehan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Gökhan Güvensen

Haziran 2023 , 90 sayfa

Bu tez, milimetre dalga (mmWave) frekanslarında çalışan masif MIMO (mMIMO)

hücresiz (CF) ağlar için hibrit hüzmeleme yukarı bağlantı alıcı dedektörü sunmakta-

dır. CF ağları, bir merkezi işlem birimine (CPU) bağlı çoklu erişim noktaları (AP’ler)

aracılığıyla kullanıcı ekipmanlarına (UE’ler) ortaklaşa hizmet vererek homojen bir

hizmet kalitesi sağlamayı amaçlar. Ancak, tüm UE’lere tüm AP’lerle hizmet vermek

pratik değildir ve hesaplama açısından karmaşıktır. CF ağların, bu sorunlarını çözmek

için, her UE’ye kanal koşullarına bağlı olarak AP’lerin bir alt kümesi tarafından hiz-

met verildiği kullanıcı odaklı (UC) varyantları geliştirilmiştir. Ek olarak, mmWave

frekanslarına geçiş, daha geniş bant genişliği ve daha büyük anten dizilerinden ya-

rarlanarak daha fazla ağ kapasitesi sunar. Radyo frekansı (RF) zincirlerinin sayısını

azaltmak için ise analog ve sayısal aşamalardan oluşan hibrit hüzmeleme teknikleri

önerilmiştir. Bu çalışmada önerilen analog hüzmeleme (AB) metodu, modifiye öz

hüzmeleme (MEB) metodudur. MEB, iyi bilinen öz hüzmeleme (EB) metoduna kı-

yasla hizmet verilen UE’ler arasında bir eşitlik eğilimini teşvik eder. Sayısal aşama,

her ikisi de tek taşıyıcı frekans alanı eşitleme (SC-FDE) modülasyonu kullanan hüc-
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resiz yinelemeli dedektör (CFI-D) ve kullanıcı odaklı yinelemeli altküme dedektörü

(UCIS-D) olmak üzere iki dedektör sunar. CFI-D, yinelemeli blok karar geri bes-

leme eşitleme (IB-DFE) yapısının ölçeklenemez bir CF uygulamasıdır, UCIS-D ise

ölçeklenebilir bir UC alternatifi sunar. UCIS-D, IB-DFE’den önce bir paralel giri-

şim sönümleme (PIC) aşaması içerir ve girişim kaynaklarını göreceli güçlerine göre

gruplayarak işler. En zayıf girişim kaynakları göz ardı edilirken en güçlüleri, PIC’den

kalan girişim dikkate alınarak IB-DFE tarafından işlenir. Her iki detektör de yumuşak

kararlar kullanır ve frekans alanı karar geri bildirimi (FDDF) kullanır. Bu dedektör-

lerin performansı, ulaşılabilir bilgi oranı (AIR) ve bit hata oranı (BER) kullanılarak

değerlendirilir. Simülasyon sonuçları, önerilen alıcının BER ve AIR açısından ultra

yüksek yükleri kaldırabilme becerisini göstermektedir.

Anahtar Kelimeler: hücresiz ağ, kullanıcı odaklı, hibrit hüzmeleme, milimetre dalga,

masif MIMO
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

The demand for higher capacity within wireless networks is everlasting. The number

of network users constantly increases over time, and the data rates users need increase

along with it. To this end, network densification ensued [1], leading to greater inter-

cell interference. To combat this issue, the method of cell-free (CF) massive multiple

input multiple output (mMIMO) networks, where there are no cell boundaries, got

popular [2]. In conventional cellular networks, the access points (APs) are assigned

to predetermined areas. Every user equipment (UE) in an area is served only by the

AP assigned to that area. In CF mMIMO networks, all the access points (APs) are

connected to a central processing unit (CPU), providing service jointly to all UEs. It

has been shown that in terms of uniformity of service and inter-cell interference, CF

mMIMO networks offer a considerable improvement over conventional cellular net-

works [3]. Actually, similar concepts to CF networks were proposed under the names

of cloud radio access networks and coordinated multi-point networks [4]. Some re-

lated literature uses these names, such as [22] and [40]. However, the specifications

can change from source to source, leading to no definitive boundary between different

names [4].

There are two implementation methods for the CF mMIMO networks. The first one

is centralized implementation, where APs only act as relays. They forward their

received signals directly (or only the digital baseband signal) to the CPU , and analog-

to-digital (ADC) conversion and all the baseband processing is done in the CPU.

The second is the distributed implementation, where each AP performs its own ADC
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conversion and constructs a local estimate of the transmitted symbols by baseband

operations. Then APs forward only these local estimates, and the CPU combines them

for the final detection-decoding operations. There are advantages and disadvantages

of both implementations [4]. This work focuses on centralized implementation.

CF mMIMO networks did indeed offer enhanced quality of service and uniformity

of service [5]. However, the notion of all APs serving all UEs was not feasible in

practice due to the computational complexity (CCP) required. To this end, a new

user-centric (UC) approach (UC mMIMO) was introduced [6], [7]. In UC mMIMO

networks, only a portion of APs (the ones with the best channels) would serve a given

UE to reduce the CCP [8] and to decrease the fronthaul signaling load. Since in large

networks, only a handful of APs have good channels to a given UE, and this approach

offered good performance while being computationally feasible [4].

Changing the network structure was one of many methods to accommodate the higher

capacity demand. Another method was to shift into the millimeter wave (mmWave)

bands due to the abundance of available spectrum and the high congestion present

in the sub-6 GHz frequencies [9]. Since the mmWave bands have short wavelength

values compared to sub-6 GHz frequencies, a greater number of antenna elements can

be fitted in mMIMO antenna arrays of the same size as an added benefit.

Earlier research on CF mMIMO focused on sub-6 GHz bands [5]. However, CF and

UC mMIMO systems at mmWave frequencies got a lot of attention for the last several

years [10], [11], and the research is still underway. Due to the large number of anten-

nas present, practical analog/digital hybrid beamforming structures became a popular

option for mmWave CF/UC mMIMO networks [12]- [15]. In hybrid beamformers,

there is an analog radio frequency (RF) stage composed of phase shifters and attenu-

ators (optional) before the ADC conversion. This stage reduces the dimension of the

received/transmitted signal in the digital domain, allowing the system to operate with

a lower number of RF chains.

Most current work on CF/UC mMIMO systems works with a narrowband single

tap channel or an orthogonal frequency division multiplexing (OFDM) type modu-

lation. In this work, single carrier frequency domain equalization (SC-FDE) is uti-

lized. Many studies encourage the use of SC-FDE over OFDM in mmWave chan-
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nels [16]- [18]. SC-FDE structures offer better performance in terms of quantiza-

tion [19], peak-to-average power ratio [20], and robustness against carrier-frequency

offset [20]. Since UEs generally have a lower computational capacity than APs, SC-

FDE becomes a good alternative in the uplink.

This thesis introduces uplink receiver architectures for CF and UC mMIMO networks

operating in mmWave frequencies. The receiver features a hybrid beamformer and

employs SC-FDE modulation. Proposed methods are presented for the hybrid beam-

former’s analog and digital components. To apply the UC concept in practice, the

notion of ”Subset Grouping“ is introduced. Subset Grouping has two stages. The first

stage is choosing the set of APs that will serve a UE for every UE. The second stage

is choosing the set of UEs whose channels will be estimated by an AP for every AP.

Note that an AP will estimate the channel of a UE for one of two reasons. Either the

AP will serve that UE, or it will use that UEs information for interference cancellation

methods.

The analog beamformer (AB) section uses the slowly varying parameters of the sys-

tem, namely the channel covariance matrices (CCMs) of the channels between UEs

and APs. Every AP employs its own AB, and since only slowly changing parameters

are used, the same AB can be used for many transmission blocks. There are such ABs

popular in the literature, such as the eigen beamformer (EB) [12], and the Discrete

Fourier Transform (DFT) beamformer [49]. The AB proposed by this work is a mod-

ified version of the EB called Modified Eigen Beamformer (MEB). MEB exploits the

structure of the CCMs to illuminate the angles corresponding to the angle of arrival

(AoA) of the signal paths coming from the served UEs. However, every UE is treated

equally regardless of signal strength, promoting a trend of fairness. It is shown that

this AB is suited for CF applications since the main attraction of the CF structures

is to support a uniform service. The digital portion of the hybrid beamformer uti-

lizes the iterative block decision feedback equalization (IB-DFE) method. The digital

decoder, therefore, has an iterative and non-linear format working in the frequency

domain. The IB-DFE method uses the soft decisions from the previous iteration to

create a feedback path, aiming to minimize the mean-squared error (MSE) at every

frequency bin at every iteration. First, a network-wide (NW) IB-DFE detector named

“Cell-Free Iterative Detector (CFI-D)” is derived where every AP serves every UE.
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Since an NW IB-DFE operation is computationally very costly, a novel digital detec-

tor is proposed as a UC alternative referred to as the “User-Centric Iterative Subset

Detector”. It is abbreviated as “UCIS-D”. UCIS-D introduces a parallel interference

cancellation (PIC) stage before the IB-DFE operation. Then, the residual interference

from the PIC operation is considered in the following IB-DFE operation. The two

proposed methods are then compared with each other along with the methods popular

in the literature using the bit-error-rate (BER) and achievable information rate (AIR)

metrics. AIR metric represents a lower bound on the mismatch decoding capacity,

which is useful to measure the performance of the system under finite constellations.

1.2 Literature Review

The CF/UC mMIMO structure has gotten a lot of attention over the last several years.

It has been studied extensively from different aspects for the sub-6 GHz bands [2]-

[8], [22], [27] and [29]- [33]. The papers [2]- [5] show the advantages of CF mMIMO

over small cells and the uniform service of CF structure, along with providing achiev-

able rates with spectral efficiency. The scalability of a system refers to the compu-

tational cost increase per UE in the system when more UEs are introduced to the

network. The papers [6] and [7] show that scalable UC implementations over CF im-

plementations do not cause performance degradation SE-wise. UC implementations

are even superior to CF implementations in some cases. In [8] and [4], the Subset

MMSE method where the mentioned UE grouping and its MMSE implementation is

explored. In [8], it is shown that, with the Subset MMSE method, a small portion of

APs are enough to achieve the CF performance SINR-wise. In [4], the SE bounds for

different combiners/precoders (such as MRC, partial ZF, MMSE, and subset MMSE)

are derived for both centralized and distributed configurations.

In [22], a linear interference cancellation combiner is proposed to uplink UC mMIMO

systems. Following a PIC operation, the combiner performs a matched filtering (MF)

operation. The method is shown to be computationally less costly than Subset MMSE

in [8] while achieving comparable SINR performance. In [27], a symbol error rate

(SER) bound is derived, and near-optimal detectors are designed based on successive

interference cancellation (SIC) and error correction mechanism (ECM) concepts for
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the uplink of CF mMIMO systems. Also, an MF detector using ECM is proposed,

which is less computationally complex than SIC-MMSE with higher SER. Power

allocation and energy efficiency are explored in [28], [33]. Lastly, an uplink max-min

SINR fairness-driven algorithm is given in [34]. The algorithm solves the receive

filter (kind of a combiner) by solving a generalized eigenvalue problem, and user

power allocation is solved with geometric programming. The algorithm alternates

between the two solutions achieving a global optimum.

CF/UC mMIMO performance in mmWave frequencies is also a very popular topic

for the last several years [11]- [15], [23], [25], [26] and [34]- [43]. When CF/UC

mMIMO systems are explored in mmWave frequencies, a hybrid beamforming struc-

ture is almost always considered due to the impracticality of fully digital implemen-

tation.

In [11], a clustered channel model is expanded to include the correlation of closely

located UEs and a simple 0-1 analog beamformer is used along with a partial ZF

digital beamformer. Both UC and CF approaches are considered, and it is shown that

the UC approach performs better due to allocating resources to more “efficient" APs.

In [12], CF mMIMO systems at mmWave frequencies are investigated under limited

fronthaul constraints. A hybrid beamformer is used. The analog beamformer uses

eigenvectors (quantized due to fronthaul constraints) of the CCMs, while the digital

stage uses a ZF precoder.

In [13], two hybrid beamformers are compared, namely the decentralized (channel

state information (CSI) of APs not available at the CPU) and the semi-centralized

hybrid beamformers. It is shown that even with lower complexity and no CSI, the de-

centralized approach can achieve the performance of the semi-centralized one. Also,

a novel adaptive RF chain selection algorithm is proposed for energy efficiency, and it

is shown that the same performance of standard hybrid beamformers can be achieved

without activating all the RF chains in the APs. In [14], an alternating minimization

algorithm is used at each AP in a distributed operation, achieving an optimal analog

combiner. The method uses a few fixed phase shifters aiming to maximize energy

efficiency.
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In [15], the weighted sum rate is maximized with a hybrid beamformer for a CF

mMIMO downlink using a computationally efficient block coordinate descent algo-

rithm while considering AP transmit power and constant modulus analog beamformer

constraints.

In [23], a distributed CF mMIMO uplink is considered. A cyclic scheme is proposed

where local hybrid beamformers produce an estimate, and the CPU combining these

estimates is alternated to minimize MSE.

In [25], a two-stage uplink training structure is used for UE-AP association and hybrid

beamformer design. The APs locally associate with UEs and implement their analog

beamformers, while the CPU handles all the digital baseband processing. Digital

stage and fronthaul compression is optimized according to the training results, the

end goals being maximizing the weighted sum rate and max-min fairness.

The work in [26] introduces a method for power allocation in CF mMIMO mmWave

networks, [36] proposes an interference-aware beam alignment algorithm for UEs

with fully digital AP receivers. The work in [35] presents a hybrid beamformer where

the analog stage only uses the angle of departure information, minimizing the MSE

between transmit and receive signals using the Frobenius norm as a metric. The digi-

tal part is obtained with a standard linear MSE equalizer. The work in [37] presents a

clustering-based pilot assignment for UC mMIMO mmWave networks.

There are similar works expanding on hybrid beamformer literature focused on CF/UC

mMIMO networks, focusing on fronthaul constraints [39], [40], low CCP down-

link [41] and uplink [42].

Even though it is not the interest of this paper, machine learning methods are also

started to be used specifically for CF mMIMO networks. Using deep reinforcement

learning (DRL), [43] dynamically partitions the network into subsystems and opti-

mizes analog beam-steering operation. Lastly, [47] uses DRL to create an AP selec-

tion algorithm for CF mMIMO networks.
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Table 1.1: Proposed Work (PW) vs. Related Literature

CF/UC mMIMO uplink PW [8] [13] [23] [24] [12] [26] [28]

, [22] , [27] , [25]

Multi-Antenna APs ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Hybrid/Fully Digital ✓/✗ ✗/✓ ✓/✗ ✓/✗ ✗/✓ ✓/✗ ✓/✗ ✗/✓

Wideband (Multi-tap) ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓

Channel

SC-FDE/OFDM ✓/✗ ✗/✗ ✗/✗ ✗/✓ ✗/✗ ✗/✗ ✗/✗ ✗/✓

UC-Scalable ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Centralized/Distributed ✓/✗ ✓/✗ ✓/✓ ✗/✓ ✓/✗ ✓/✗ ✗/✓ ✗/✓

Perfect/Imperfect CSI ✗/✓ ✗/✓ ✗/✓ ✓/✗ ✗/✓ ✗/✓ ✗/✓ ✗/✓

Linear/Nonlinear Detector ✗/✓ ✓/✗ ✓/✗ ✓/✗ ✗/✓ ✓/✗ ✓/✗ ✓/✗

High MIMO ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Load (≥%100)

1.3 Contributions and Novelties

In spite of the expansion of the literature on CF/UC mMIMO networks operating at

mmWave frequencies, there remains to be a gap in coverage of some perspectives.

Previous works on hybrid beamformers have focused mainly on novel analog beam-

forming techniques [12]- [14] specifically tailored for distributed antenna configura-

tions. However, digital beamforming methods still typically rely on standard methods

for combiners, such as minimum-mean-squared-error (MMSE), zero-forcing (ZF),

and maximum ratio combiner (MRC). Another barren subject in this field is non-

linear interference cancellation methods which rely on iterative structures using some

form of feedback. This is expected since using non-linear methods in CF networks

makes it difficult, if not impossible, to write closed-form expressions for metrics like

spectral efficiency (SE) and signal-to-interference plus noise ratio (SINR).
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Due to the nature of linear combining methods, they cannot reliably support a high

number of UEs compared to the total number of RF chains in the network [4], [8].

This thesis demonstrates that non-linear interference cancellation techniques can en-

able the servicing of a number of UEs that exceed the total number of RF chains in

the network in UC mMIMO networks.

Another issue with current literature is that it primarily follows narrowband chan-

nel models [4], while broadband systems are becoming increasingly common [44].

Thus, it is crucial to prioritize frequency-selective channel models as well. Addition-

ally, most research on frequency-selective channels assumes an OFDM modulation

scheme, such as in [45]. To the best of the authors’ knowledge, no prior work has

considered a wide-band single carrier configuration for CF/UC mMIMO networks.

A comparison of the proposed work against the related literature can be seen in Table

1.1. The main contributions of this thesis are given below.

• A novel AB for UC mMIMO systems that depends on the slowly changing

parameters. Every AP employs its own AB using a modified version of the

known EB [12] called the MEB. MEB does not use large-scale gains for the

AB matrix calculations, and it only includes the angle of arrival (AoA) infor-

mation and the structure of the CCMs of the served UEs. This design choice

promotes a notion of "fairness" by ensuring that the beamforming matrix does

not disproportionately favor UEs with stronger channels. In scenarios where

the large-scale gains are considered in an AP’s AB, UEs with stronger chan-

nels tend to dominate the beamforming matrix, potentially neglecting UEs with

weaker channels and compromising service uniformity. Given that uniform ser-

vice is a crucial characteristic and a key advantage of the CF architecture, MEB

intuitively emerges as a well-suited AB method for CF/UC mMIMO networks.

• A novel uplink receiver architecture called CFI-D in the digital domain for

CF mMIMO networks with SC-FDE structure is derived. CFI-D is non-linear

(iterative), and it is able to operate under extremely high loads. In CFI-D, all

the APs serve all the UEs, and the IB-DFE operation encompasses all UEs.

• A novel uplink receiver architecture called UCIS-D in the digital domain for

8



UC mMIMO networks. Even though CFI-D has great performance, it is not

scalable. UCIS-D offers a scalable UC alternative to CFI-D. In UCIS-D, every

UE has its own detector with two stages. UCIS-D also operates in the frequency

domain utilizing soft decision feedback. For a given UE, all the other (interfer-

ing) UEs are divided into three groups according to their relative “interference

power”. The strongest interferers are canceled in the second stage of the re-

ceiver. The weaker interferers are canceled in the first stage of the receiver.

Lastly, the weakest interferers are ignored since they are most likely below the

noise level, and it is not feasible to spend precious computation resources sup-

pressing them (omitting the weakest interferers is actually common practice

in the literature for UC networks [4]). The sizes of these groups are system

parameters, and how they are chosen affects the CCP. The first stage of the re-

ceiver performs a PIC operation. Following the PIC operation, the second stage

employs an IB-DFE operation. The IB-DFE operation is modified to consider

and suppress the channel estimation errors and the residual interference from

the PIC operation. The algorithm for UE-AP groupings and the UE selection

procedure for PIC and IB-DFE operations are also given.

• Due to the non-linear natures of UCIS-D and CFI-D, it is not possible to write

close-form SE or SINR expressions for a given UE. However, an SINR expres-

sion that depends on the soft decisions from the previous iteration is derived

in this work. The AIR metric is introduced and derived for the given network

also. AIR corresponds to a lower bound on the mismatch decoding capacity

for a given UE when dealing with finite constellations. The AIR metric also

reveals the performance of possible coding schemes.

Since closed-form SE and SINR expressions can not be written, Monte Carlo simu-

lations are used to test the performance of the proposed methods. All the simulations

are done in the MATLAB environment. BER and AIR metrics are used to evaluate

the digital combiners, while SINR CDF curves are used to compare the AB methods.

Simulation results firstly show that MEB is superior to the EB and DFT ABs regarding

BER and SINR performance. Secondly, the results show that UCIS-D outperforms

Subset MMSE and MMSE combiners by a large margin regarding BER and AIR
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performance. This result shows that computationally costly interference cancellation

methods can be effectively used in a scalable manner, even in large UC mMIMO

networks. This is due to the macro-diversity provided by the distributed network

topology. In scenarios where a small number of APs serve a UE, only a select few

UEs with the strongest channels to those APs will cause significant interference. To

exploit this, UCIS-D employs computationally expensive interference cancellation

methods (IB-DFE) to process the most harmful interferers while utilizing less com-

putationally intensive methods (PIC) for mild interferers. Any remaining UEs with

weak signals are ignored as they are likely below the noise level and not worth the

computational resources, as mentioned before. Simulation results show that this ap-

proach outperforms both MMSE and Subset MMSE [8] detectors while remaining

scalable.

1.4 The Outline of the Thesis

Chapter 2 introduces the system and network model along with the channel model.

Chapter 3 explains the analog stage of the hybrid beamformer. The calculations of

the AB matrices, the proposed AB method, and the beam patterns of several AB

techniques are illustrated. Chapter 4 delves into the digital stage of the hybrid beam-

former. The CF implementation of the IB-DFE structure is introduced for the pro-

posed CFI-D. Then, the main contribution of the thesis, the UC-implemented UCIS-

D, is explained. UE-AP association algorithm, a grouping of the interfering UEs,

and the PIC-aided IB-DFE UC structure are presented. Chapter 5 presents the perfor-

mance metrics that are used for the detectors, such as AIR and BER. The calculation

of soft decisions, which the iterative detectors rely on to perform interference cancel-

lation via frequency domain decision feedback, is also given in this chapter. Chapter

6 explains the simulation setups and demonstrates the simulation results to show the

performance of proposed detectors. Finally, Chapter 7 draws the conclusions, and the

future work planned around this thesis is listed.
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CHAPTER 2

CELL-FREE NETWORK AND SYSTEM MODEL

2.1 Introduction

In this chapter, the network that is being considered is introduced. How the APs

and UEs are distributed in the network is given. Mathematical representations of the

signals considered and the used channel model are explained. The structure of the

SC-FDE transmission scheme is introduced.

2.1.1 Notation and Nomenclature

The following notations are used throughout all the parts of the thesis. Unless other-

wise stated, they always hold true.

Scalars are denoted by lowercase (e.g., x), column vectors by lowercase bold (e.g.,

x), and matrices by uppercase bold (e.g., X) letters. |x| and x∗ are the magnitude

and complex conjugate of scalar x respectively. XT , XH , X−1 and Tr(X) represents

the transpose, Hermitian, inverse and trace of matrix X, respectively. ⌈.⌉ rounds to

the closest and greater integer. Q(.) is the Q-function. [X]ij is the entry of matrix

X at ith row and jth column. X(i, :) and X(:, j) are used to extract ith row and jth

column of matrix X, respectively. E{.} is the expectation operator. ∥x∥ denotes

the Euclidean norm of vector x. The operators diag{.} and blkdiag{.} are used to

construct diagonal and block diagonal matrices. ID is the identity matrix with size

D × D and 0D×D is a zero matrix with size D × D. vec(X) is the vectorization of

matrix X. The expression ∼ NC (x,R) is a complex Gaussian random vector with

mean x and covariance R. The Kronecker product and Kronecker delta function are
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denoted by
⊗

and δij . Covariance matrix (CM) of x is denoted by Rx = E{xxH}.

The cross-variance matrix between vectors x and y are denoted by Rxy = E{xyH}.

U [a, b] is a uniform random variable distributed between a and b. Operator ∡ extracts

the phase of a complex variable in radians. Also a modulo b is written as (a)b

There are a lot of mathematical entities defined in the following chapters. To make

it easier to follow the flow of the thesis, a nomenclature table containing some of the

mathematical entities defined is given in Table 2.1 and Table 2.2.

2.1.2 System Model

2.1.2.1 Network Topology

Uplink transmission of a CF network is considered. The network is assumed to exist

in a square area with an area of 500m×500m. The network is assumed to have wrap-

around topology [5] to mimic an environment with no edges and interference coming

from all directions. This means that the upper border of the network area is connected

to the lower border, and the left border is connected to the right border [4]. This

allows the creation of a simulation where every UE is at the center of the network.

The shortest possible path is considered while calculating the distance and the angle

between an AP and a UE. There are K single antenna UEs uniformly and randomly

located in the network. There are N APs, and they are located in a uniform grid

layout. The layout is illustrated in Figure 2.1.

The APs are assumed to be connected to a CPU with an ideal fronthaul link with no

quantization errors, infinite capacity, and zero transmission delay. Every AP employs

a uniform linear array (ULA) withM antennas. The AB employed by the APs reduces

the incoming signal dimension from M to D using phase shifters and attenuators.

This means that there are D RF chains for every AP. The ABs and their properties

will be explained in detail in Chapter 3. The antenna spacing for every ULA is half-

wavelength. The array manifold vector u(ϕ), of a ULA with half-wavelength spacing

and M antennas is given in (2.1) for a given AoA ϕ [53].

u(ϕ) = [1 ejπ sin (ϕ) . . . ejπ sin (ϕ)(M−1)]T ∈ CM . (2.1)
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Table 2.1: Nomenclature table for the mathematical entities used.

Variable Explanation

αl
kn and hl,time

kn Large-scale channel gain and unity power fast fading channel

Rl
kn and Rl

kn Rayleigh and total CCMs of the channel

An Analog beamformer matrix of AP n

ytime
nt and ỹnt Received signal by AP n in time domain and ETD

ỹt and yf Received signal by all APs in ETD and frequency domain

Hl,time
n Concatenated channel matrix of AP n at the lth MPC in time

hl,time
kn and h̃l

kn Channel between UE k and AP n in time domain and ETD

H̃l
n and H̃l Concatenated channel matrix in ETD for AP n and all APs

Hf Concatenated channel matrix in the frequency domain for all APs

Ĥf and Ef MMSE estimate and estimation error of Hf

x̃t and xf Transmitted symbols in time domain and frequency domain

hf
kn Normalized channel between UE k and AP n at frequency f

ĥf
kn and efkn MMSE estimate of hf

kn and its estimation error

W
(i)
f and C

(i)
f CFI-D feedforward and feedback filters

x̂
(i)
f and ˆ̃x

(i)
t Estimation of transmitted symbols xf and x̃t by detectors

P
(i)
1 and P

(i)
2 Reliability matrices for containing all UEs

x̄
(i−1)
f Soft decisions from the previous iteration from all UEs

ρ
(i)
k and β(i)

k Entries of P(i)
1 and P

(i)
2 belonging to UE k

Nk Set of APs that serve UE k

Kn Set of UEs that get their channels estimated by AP n

Ks
n Set of UEs that AP n serves

Mk UEs that are in the Kn set of at least one of the APs in Nk

ykf and y
(i)
kf Row decimated received signal for UE k before and after PIC

Hf
k Row decimated version of Hf

Ĥf
k and Ef

k Column sparsified MMSE estimate and estimation error of Hf
k

Sk and S ′
k Set of UEs that are strong and weak interferers for UE k

Ĥf,s
k and Ĥf,s′

k Partition of Ĥf
k containing columns corresponding to Sk and S ′

k

x̄
k,(i−1)
f,s , x̄k,(i−1)

f,s′ Soft decisions belonging to UEs in Sk, S ′
k
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Table 2.2: Table 2.1 (continued).

Variable Explanation

x̂
(i)
kf and ˆ̃x

(i)
kt Estimation of xkf and x̃kt in time and frequency by filters

Rk
e CCM of the channel estimation error terms for UCIS-D

R
k,(i)
s′ CCM of the terms from residual interference from PIC

w
(i)
kf and c

(i)
kf UCIS-D feedforward and feedback filters

P
k,(i)
1,s and P

k,(i)
2,s Reliability matrices with entries from UEs in Sk

P
k,(i)
1,s′ and P

k,(i)
2,s′ Reliability matrices with entries from UEs in S ′

k

µ
(i)
k and η(i)k Complex amplitude and residual interference of ˆ̃x(i)kt

Note that the ULAs only consider the azimuth AoA. For simplicity, the elevation

AoAs are ignored in this thesis. Since ULAs have only one dimension, it would not

have been possible to beamform in two dimensions anyway.

2.1.2.2 Channel Model

As mentioned in Chapter 1, the network operates in mmWave frequencies. The chan-

nels between UEs and APs are assumed to be wide-band and modeled as tap-delay-

line channels with scarce and multiple taps [48]. Representing the power, the channel

between UE k and AP n has the large-scale gain αkn, incorporating the transmit power

and the path-loss terms. Shadowing effects are ignored for simplicity in this work.

Note that αkn is a large-scale parameter that varies slowly, meaning it is constant

through many transmission blocks. Every channel consists of multiple multipath-

components (MPCs). The number of MPCs is at most L for every channel. Note that,

due to the scarce nature of mmWave channels, only a few of the LMPCs are assumed

to be active [48]. The l’th MPC of the channel from UE k to AP n has two elements

which are αl
kn and hl,time

kn . The αl
kn value represents the lth MPC’s power within the

channel satisfying αkn =
∑L−1

l=0 α
l
kn.

The terms αkn and αl
kn are calculated using a modified version of the mmWave model

given in [52]. The αkn value in dB is written as

αkn[dB] = Px − 61.4− 10ω log10(dkn) (2.2)
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Figure 2.1: An example of the grid layout with L = 36 and K = 144.

where Px is the UE uplink transmit power in dBm and dkn is the distance between UE

k and AP n in meters. The parameter ω is the path loss exponent. Note that there are

works that tackle the power control problem within cell-free networks, such as [26],

[28], [29], and [33]. However, the transmit power of all UEs is assumed to be equal

in this thesis. While not optimal, this “heuristic” method is shown to be acceptable,

performance-wise, in CF network literature [4]. Then for each active MPC l, we

define the term γ̄lkn and it can be written [52] as γ̄lkn = U1.8
knl10

−0.1Zk provided that

Uknl ∼ U [0, 1] and Zk ∼ N (0, 42). To get the αl
kn values, we normalize the γ̄lkn

terms linearly to sum up to one to get γlkn term leading to γlkn = γ̄lkn/(
∑L−1

l′=0 γ̄
l′

kn).

Note that γlkn represents the portion of the power of the given MPC within the total

channel power after the normalization operation satisfying αl
kn = αknγ

l
kn.

Representing the random small-scale fading and the phased array structure at the AP

n, hl,time
kn ∈ CM is the fast fading portion of the channel, and it is taken as a Rician

distribution written as

hl,time
kn ∼ NC

(
κlknu(ϕ

l
kn), R

l
kn

)
(2.3)
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where ϕl
kn is the azimuth AoA of the considered MPC, κlknu(ϕ

l
kn) is the mean com-

ponent, and Rl
kn ∈ CM×M is the spatial correlation matrix for the Rayleigh part of the

channel. The term κlkn is the complex amplitude of the given channel’s mean(constant)

part. While
∣∣κlkn∣∣ depends on the K-Factor of the Rician channel, phase of κlkn is as-

sumed to be ∡κlkn ∼ U [0, 2π]. Channels are assumed to be mutually uncorrelated

among MPCs, APs, and UEs, which is expressed as

E{hl,time
kn (hl′,time

k′n′ )H} =
(∣∣κlkn∣∣2 u(ϕl

kn)(u(ϕ
l
kn))

H +Rl
kn

)
δkk′δnn′δll′ . (2.4)

This assumption is intuitive since channels between different APs and a UE are un-

related, and different scatterers cause the different MPCs of a channel between a UE

and an AP. It is feasible to model them as uncorrelated entities. Although there is

an approach where closely located UEs have correlated channels to a given AP in

mmWave networks [26], this thesis also assumes uncorrelated channels for this case

since it is not the focus of the proposed work. Also, the CM of the term hl,time
kn is

written as

Rl
kn = E{hl,time

kn (hl,time
kn )H}. (2.5)

Spatial correlation matrix Rl
kn is calculated using the local scattering model from [5,

Sec. 2.5]. Since only the azimuth AoAs are considered, the calculations are simpler

for this work. The elements of Rl
kn can be computed as

[Rl
kn]ab = ζ lkn

∫ ∫
ejπ(a−b)sin(ϕ̄)f(ϕ̄)dϕ̄ (2.6)

where ζ lkn is related to the K-Factor of the Rician distribution and f(φ̄) is a Gaussian

distribution. For the AoA ϕl
kn, which acts as the mean of this distribution for the con-

sidered MPC. Then the Gaussian distribution for the lth MPC of the channel between

UE k and AP n can be written as

f(ϕ̄) =
1√
2πσϕ

e
− (ϕ̄−ϕlkn)2

2σ2
ϕ (2.7)

where σϕ is the angular standard deviation (ASD). Note that the normalization is done

in a way that makes every entry of hl,time
kn is expected to have unity power. This means

that Tr(Rl
kn) = M . Also note that, Tr(Rl

kn) = Mζ lkn. Then
∣∣κlkn∣∣2 + ζ lkn = 1.

The Rician K-Factor for the MPC l can then be written as
∣∣κlkn∣∣2 /ζ lkn. The instan-

taneous channel vectors (hl,time
kn ) are assumed to be constant over one transmission

block, while the CCMs (Rl
kn and Rl

kn) are assumed to be constant over several trans-

mission blocks.
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2.1.3 SC-FDE Transmission

The uplink transmission employs an SC-FDE structure. The received signal ytime
nt ∈

CM at AP n in time index t can be written as

ytime
nt =

L−1∑
l=0

Hl,time
n x̃(t−l)T + ntime

nt (2.8)

for t = 0, 1, . . . , T − 1. Also, Hl,time
n ∈ CM×K is the concatenated channel ma-

trix of AP n at the lth MPC. It is written as Hl,time
n ≜ [

√
αl
1nh

l,time
1n

√
αl
2nh

l,time
2n

. . .
√
αl
Knh

l,time
Kn ]. T is the transmission block length.

UE k transmits the Z-QAM symbol x̃kt ∈ C at time t and the overall UE transmit

symbol vector at time t is defined as x̃t ≜ [x̃1t, x̃2t . . . , x̃Kt]
T ∈ CK . A cyclic prefix

with a length larger than L is used to obtain circulant channel matrices while pre-

venting inter-block interference. The UE symbols are assumed to be of average unit

power and uncorrelated between UEs and different times, i.e., satisfying the relation

E{x̃kt(x̃k′t′)∗} = δkk′δtt′ , which leads to E{x̃t(x̃t′)
H} = IKδtt′ . The ntime

nt ∈ CM

vector is the zero-mean circulant symmetric complex Gaussian (ZMCSCG) noise at

the AP n at time t with E{ntime
nt (ntime

nt )H} = IMN0.

Although there are methods in the literature about estimating CCM properties in

mMIMO [54] and for hybrid beamforming networks [55], the CMs given in (2.4)

are assumed to be perfectly known by the detectors in this thesis for simplicity. How-

ever, the instantaneous channels are not known, and they still need to be estimated.

Channel estimation is performed in the frequency domain, which is delved into in

Chapter 4, and its details will be given there.

17



18



CHAPTER 3

ANALOG STAGE

3.1 Introduction

In Chapter 2, the network and system structures were introduced. The channel model

was also given in detail. The time domain representations of the channel vectors,

received, and transmitted signals were defined. In this section, the next step is taken,

which is the AB stage.

As mentioned in Chapter 1, CF/UC mMIMO hybrid-beamforming structures have

been studied in recent years [11]- [15], [23], [25], [26] and [34]- [43]. There are a lot

of novel AB structures proposed both for centralized and distributed CF networks.

Since APs have very large antenna arrays due to working in the mmWave frequencies,

some kind of reduction in the dimension of the received signals before the ADC

operation is essential. This way, the number of RF chains (the components that affect

the cost of implementation greatly) can be reduced. The main contribution of this

thesis focuses on the digital part of the hybrid structure. However, the cited works

above show that the AB stage can greatly impact performance. Therefore, an AB

suited to its digital counterpart is also proposed. Some common AB methods are also

introduced in this section, namely the DFT beamformer, EB, and Generalized EB

(GEB). The AB proposed in this work (MEB) is also defined, and the beam-patterns

of the different methods are compared.
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3.2 Analog Beamforming

ABs reduce the dimension of the received signal from M to D at a single AP while

exploiting the slowly varying properties of the channels. As mentioned, ABs are

calculated once and used for many transmission blocks; therefore, slowly varying

entities should be used to calculate them. Every AP employs its own independent

AB.

ABs act on the time domain signals directly, and the ADC operation is done after.

Therefore, the entities after the AB stage are referred to as the “effective time domain

(ETD)” entities. ETD received signal at AP n is written as ỹnt ∈ CD at time index t

and it can be written as

ỹnt = (An)
Hytime

nt . (3.1)

where An ∈ CM×D is the analog beamformer matrix for the AP n. Notice that no

time index is given (same AB is used for several transmission blocks) or type of AB

is specified for matrix An. Lastly, orthonormal AB matrices are desired which means

(An)
HAn = ID. This property ensures that the AB operation does not amplify the

received noise components.

3.3 Analog Beamforming Techniques

3.3.1 Eigen Beamformer

The first AB that will be explored is the EB, where an example of it can be seen

in [12]. First, the auxiliary Rn
s matrix for AP n is defined as

Rn
s =

∑
k∈Ks

n

L−1∑
l=0

αl
knR

l
kn ∈ CM×M (3.2)

which can be inferred from (2.5) and Ks
n is the set of UEs that AP n serves. The

meaning of an AP serving a UE will be explained in Chapter 4. Then we can write

another auxiliary matrix as

Ān = [an
1 , a

n
2 , . . . , a

n
D] (3.3)
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where an
i is the eigenvector corresponding to ith most dominant eigenvalue of Rn

s .

Then, to get orthonormalized analog beamformers, we use the QR decomposition of

the Ān matrix, which can be written as Ān = AnR̄ resulting in the EB matrix for AP

n. The EB method specifications and how this selection of columns maximizes the

mutual information between the received signals and the transmitted symbols can be

seen in [49] if the interfering groups in [49] are taken as zero.

Note that EB illuminates all the MPCs of all the UEs served, considering their re-

spective powers. The stronger MPCs and the UEs owning said MPCs get better illu-

mination. Lastly, in [12], EB is not applied directly in the manner that is given above.

Only the phases of the eigenvectors are used to obey a constant modulus constraint,

which allows implementing the AB with only phase shifters. Such a constraint is not

imposed in this work.

3.3.2 Generalized Eigen Beamformer

GEB is an improved version of the EB. While EB only illuminates the UEs being

served, GEB also suppresses the UEs considered to be interferers [49]. Another aux-

iliary matrix called Rn
s′ is defined as

Rn
s′ =

∑
k∈Ks′

n

L−1∑
l=0

αl
knR

l
kn ∈ CM×M (3.4)

where Ks′
n is the complement of Ks

n, expressed as Ks′
n = {1, 2, . . . , K} − Ks

n. Then

we write the generalized eigenvalue problem expressed as

Rn
sa

n
i = λiR

n
s′a

n
i , i = 1, 2, . . . ,M (3.5)

where an
i is the same as before and λi is the corresponding eigenvalue. The rest of

the calculation is the same as the EB counterpart. The equation (3.3) holds the same,

and the QR decomposition method again is used to derive An.

GEB introduces nulls corresponding to the AoAs of the MPCs of the interfering UEs

in the beampattern. Typically, GEB outperforms EB in mMIMO systems, as men-

tioned in [49]. However, thorough testing revealed that this superiority does not hold

true for CF/UC mMIMO systems. In traditional mMIMO systems, it is feasible to
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assign angular sections and group UEs based on the AoAs of their MPCs. Conse-

quently, the AB operation can easily illuminate a specific group while suppressing

others. Nevertheless, this approach is not viable in CF/UC mMIMO systems due to

the absence of a single dominant AP serving all UEs. Instead, several weaker APs

are distributed. There is no practical grouping approach that can exploit the synergy

between illumination and nulling. The testing has shown that, within the context of

this thesis, attempting to nullify the interferers actually harms the UEs with weaker

channels since the AoAs of interfering and served UEs can be intertwined.

3.3.3 Modified Eigen Beamformer

MEB is the proposed AB in this thesis. Notice that in (3.2), the matrix Rn
s is dom-

inated by the UEs with the highest αkn values. This means that the signal spaces of

the UEs with strong channels to a given AP will be illuminated much more than the

weaker UEs. This creates an issue for CF/UC networks since the main premise of

such networks is providing uniform service. This issue can be alleviated by making

the following adjustment and rewriting the matrix as

Rn
s =

∑
k∈Ks

n

L−1∑
l=0

γlknR
l
kn ∈ CM×M . (3.6)

If this matrix is used to construct the EB, a trend of fairness is promoted, and a more

uniform service can be achieved. Even though every UE is treated equally, the relative

powers of the MPCs are still taken into account, and the stronger MPCs of a UE are

still illuminated more compared to the other MPCs of the same UE.

3.3.4 DFT Beamformer

The DFT beamformer is a widely used AB in the literature [50], [51]. It is very simple

to implement, and it offers respectable performance. The DFT beamformer uses the

normalized DFT matrix defined as G ∈ CM×M . The entry of G corresponding to ath

row and bth column is written as

[G]ab =
1√
M
e−j 2π

M
(a−1)(b−1), for a, b = 1, 2, . . . ,M. (3.7)
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Notice that every column of the normalized DFT matrix corresponds to a discrete

angle when the array manifold vector in (2.1) is considered. When an AoA of an

MPC is decided to be illuminated, the column with the closest angle to the chosen

AoA is added to the AB. D columns must be chosen to construct a complete AB. In

this work, the DFT beamformer for AP n is constructed as follows:

• Choose the AoAs of the strongest MPCs (highest αl
kn for every UE k) of the D

UEs with the highest αkn values.

• If there are less than D such UEs, start choosing the second strongest MPC of

every UE one by one, then the third MPCs, and so on.

• If still less than D columns are chosen when all the MPCs of all served UEs are

selected, choose the closest columns to the columns chosen in the first step.

3.4 Beam-Pattern Comparison

A good way to compare different ABs is to look into their beam-patterns. The beam-

pattern can show the power that can be achieved at any angle ϕ with a given AB, and

it can be written for AB An as [49] given below

B(ϕ) =
1

M
(u(ϕ))HAn

(
(An)

HAn

)−1

(An)
Hu(ϕ). (3.8)

The first scalar term in (3.8) is there to normalize the array manifold vector power.

Figure 3.1 shows all four AB methods’ beam-patterns in a mock-up network. Using

a small example network allows us to demonstrate the crucial properties of all AB

methods and why MEB suits the current application. There are only N = 4 APs and

K = 16 UEs. Each AP has M = 64 antennas and D = 4 RF chains. This means

that the An matrix has 64 rows and 4 columns. Though they are not important to

what this plot aims to show, the rest of the network parameters are the same as in

the simulation results given in Chapter 6. One of the APs which serve five UEs in

this mock-up network is chosen. The AoAs of the served UEs and the interfering

UEs are indicated with vertical lines of different colors. Each UE has multiple MPCs

with different power values. There are several important observations to be made in

this plot. Initially, it is evident that the DFT beamformer exhibits satisfactory power
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delivery to the strongest MPCs of all UEs, except for UE 2. This limitation arises

from the fact that the DFT beamformer can only allocate a fixed number of beams,

denoted by the number of RF chains D. Consequently, if the AP serves more than D

UEs, the weaker UEs are deprived of a dedicated beam. Analyzing the MEB pattern,

we observe prominent peaks at approximately −37◦, −16◦, 3◦, and 27◦. These peaks

can be inferred as the AoAs corresponding to the strongest MPCs of all the served

UEs. Notably, the peak at −37◦ exhibits greater width compared to the others due

to the close proximity of the mentioned MPCs from UE 1 and UE 2. Therefore, this

beam effectively serves both UEs. When scrutinizing the EB pattern at −16◦ and

3◦, no discernible peaks are observed. This lack of peaks can be attributed to the

higher power levels of the MPCs from UE 1 and UE 3 in comparison to those of UE

4 and UE 5. This observation aligns with the peaks at −6◦ and 6◦, indicating that the

secondary MPCs of UE 1 and UE 3 dominate over the primary MPCs of UE 4 and

UE 5. This imbalance results in the unfair performance of the EB, suppressing the

signals of already weak UEs while favoring the signals of stronger UEs. The plots

for the EB and GEB exhibit significant similarity, except in the vicinity of −37◦. In

order to accommodate UE 1 and UE 2, the EB and MEB patterns display a peak in

that region. However, since GEB aims to nullify interfering signals, the entire region

is suppressed, consequently eliminating the signals from UE 1 and UE 2. This is-

sue illustrates the problem with GEB within this framework: when interfering signals

possess similar AoAs to the intended signals, nullification prevents the illumination

of these intended signals, particularly if they originate from UEs with weaker chan-

nels. Digital beamforming techniques possess greater efficacy compared to analog

beamforming techniques. Even if the interfering signal is illuminated during the ana-

log stage, digital processing methods can still recover the signals from weak intended

UEs. However, if the digital stage nullifies these weak UEs, it may not be possible to

recover them in the digital domain. The network depicted in Figure 3.1 is relatively

small in scale. With a significantly larger network (N,K > 100), a substantial over-

lap between intended and interfering UEs would occur, further reducing the feasibility

of GEB. This plot effectively demonstrates why MEB suits the provided framework

and highlights the fundamental issues with alternative methods. These problems are

exacerbated as the network scales up.
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3.5 Effective Time Domain Entities

As mentioned, the signals after the AB stage are referred to as the ETD entities.

Before switching to the frequency domain, these will be defined and arranged.

The ETD received signal at AP n after the AB is written in (3.1). ETD channel vectors

and noise vectors are defined as

h̃l
kn ≜ (An)

Hhl,time
kn ∈ CD, (3.9)

ñnt ≜ (An)
Hntime

nt ∈ CD (3.10)

for n = 1, 2, . . . , N , for k = 1, 2, . . . , K, for t = 0, 1, . . . , T − 1 and also for

l = 0, 1, . . . , L − 1. Until now, all operations have been done on a single AP scale.

However, in the digital stage, the information from all (or a group of) APs will be

jointly used. We define some concatenated matrices and vectors for ease of algebra

and readability.

H̃l
n ≜ (An)

HHl,time
n =

[√
αl
1nh̃

l
1n

√
αl
2nh̃

l
2n . . .

√
αl
Knh̃

l
Kn

]
∈ CD×K , (3.11)

H̃l ≜ [(H̃l
1)

T (H̃l
2)

T . . . (H̃l
N)

T ]T ∈ CDN×K , (3.12)

ỹt ≜ [ỹT
1t ỹT

2t . . . ỹT
Nt]

T ∈ CDN×1, (3.13)

ñt ≜ [ñT
1t ñT

2t . . . ñT
Nt]

T ∈ CDN×1 (3.14)

for n = 1, 2, . . . , N , for t = 0, 1, . . . , T − 1 and for l = 0, 1, . . . , L− 1. Matrices H̃l
n

and H̃l correspond to ETD representations of the concatenated channel matrices and

overall concatenated channel matrix. Vector ỹt is the overall ETD received signal,

and vector ñt is the overall ETD noise vector.

25



-6
0

-5
5

-5
0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0

-5
0

5
1

0
1

5
2

0
2

5
3

0
3

5
4

0
4

5
5

0
5

5
6

0

 (
d
e
g
re

e
s)

-6
0

-5
0

-4
0

-3
0

-2
0

-1
00

Beam-Pattern (dB)

D
F

T
 B

e
a
m

fo
rm

e
r 

B
e
a
m

-P
a
tt

e
rn

U
E

 1

U
E

 2

U
E

 3

U
E

 4

U
E

 5

In
te

rf
e

ri
n

g
 U

E
s

-6
0

-5
5

-5
0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0

-5
0

5
1

0
1

5
2

0
2

5
3

0
3

5
4

0
4

5
5

0
5

5
6

0

 (
d
e
g
re

e
s)

-6
0

-5
0

-4
0

-3
0

-2
0

-1
00

Beam-Pattern (dB)

G
E

B
 B

e
a
m

-P
a
tt

e
rn

-6
0

-5
5

-5
0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0

-5
0

5
1

0
1

5
2

0
2

5
3

0
3

5
4

0
4

5
5

0
5

5
6

0

 (
d
e
g
re

e
s)

-6
0

-5
0

-4
0

-3
0

-2
0

-1
00

Beam-Pattern (dB)

E
B

 B
e
a
m

-P
a
tt

e
rn

-6
0

-5
5

-5
0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0

-5
0

5
1

0
1

5
2

0
2

5
3

0
3

5
4

0
4

5
5

0
5

5
6

0

 (
d
e
g
re

e
s)

-6
0

-5
0

-4
0

-3
0

-2
0

-1
00

Beam-Pattern (dB)

M
E

B
 B

e
a
m

-P
a
tt

e
rn

Fi
gu

re
3.

1:
B

ea
m

-p
at

te
rn

s
of

D
FT

B
ea

m
fo

rm
er

,G
E

B
,E

B
,a

nd
M

E
B

w
ith

N
=

4
A

Ps
,K

=
16

U
E

s
in

a
ne

tw
or

k
w

ith
an

ar
ea

of
50
0
×
50
0.

26



CHAPTER 4

DIGITAL STAGE

4.1 Introduction

This chapter contains the main contribution of this thesis. First, the switch from the

time domain to the frequency domain is presented. Then the IB-DFE structure is

driven for the NW operating CFI-D is derived. Then the UC operating UCIS-D is

introduced. The processes of UE-AP groupings are explained. Newly introduced PIC

operation and how it is integrated are given. IB-DFE operation is modified to suit the

UC structure containing the residual properties from the PIC operation prior. Finally,

the complete UCIS-D is derived as a scalable alternative to UCIS-D.

4.2 Frequency Domain Representation

AB DFT

IDFT

Time Domain ETD Frequency Domain

Figure 4.1: Relationship between different domains of representation.

There are three domains of representation mentioned up to now for some entities:

the time domain, ETD, and the frequency domain. Figure 4.1 shows the convention
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between these representations to avoid any confusion. The scalars, vectors, and ma-

trices (only vector and the matrix cases are shown in Figure 4.1) denoted with the

same letter can have up to three different representations. If there is an upper notation

“time”, this means the time domain representation. If there is a ∼ above the symbol,

this corresponds to ETD after the AB operation. If no such indicators exist, then the

symbol corresponds to the frequency domain representation. Note that this is not true

for all symbols; it only holds true for the symbols sharing the same letter. For ex-

ample, An matrix is not a frequency domain entity. Since no other matrix is denoted

with the letter A, it is compatible with the convention.

Using the ETD entities from Chapter 3, the following relation can be written to define

the overall received signal in ETD.

ỹt =
L−1∑
l=0

H̃lx̃(t−l)T + ñt, for t = 0, 1, . . . , T − 1. (4.1)

All the DFT and normalized DFT (and IDFT and normalized IDFT) operations are T

point in this work. The relation in (4.1) can be switched to the frequency domain as

yf = Hfxf + nf for f = 0, 1, . . . , T − 1. (4.2)

DFT of the overall concatenated channel matrix is Hf =
∑L−1

l=0 H̃le−j 2π
T

fl. Note

that, in (4.2); yf , xf and nf are normalized DFTs of vector sequences ỹt, x̃t and ñt.

Also xf = [x1f , x2f , . . . , xKf ]
T . Normalized DFT of any vector sequence {z̃t}T−1

t=0 is

denoted as zf and it can be written as

zf =
1√
T

T−1∑
t=0

z̃te
−j 2π

T
tf . (4.3)

The channel estimation is done in the frequency domain, as mentioned before. Re-

versing back from the concatenated representations to individuals ones in the fre-

quency domain, the channel vector between UE k and AP n at f th frequency bin

can be written as
√
αknh

f
kn where hf

kn ∈ CD×1 is the normalized(unity power) chan-

nel meaning Tr(Rhf
kn
) = D. Since the detector knows the large-scale gain terms, this

normalized channel is the entity that is being estimated during the channel estimation.

Also, note that

Hf (:, k) = [
√
αk1(h

f
k1)

T √
αk2(h

f
k2)

T . . .
√
αkN(h

f
kN)

T ]T . (4.4)
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Then, the following relations are written

hf
kn = ĥf

kn + efkn (4.5)

Rĥf
kne

f
kn

= 0D×D (4.6)

where ĥf
kn is the MMSE estimation of hf

kn and efkn is the estimation error. Equation

(4.6) results from estimation and error vectors being orthogonal to each other due to

the nature of the MMSE estimation. Channel estimation is done with a pilot scheme.

The details of channel estimation and pilot signaling processes are given in Appendix

A. The CMs of the entities in (4.5) can be written as

Rhf
kn

= Rhkn
=

L−1∑
l=0

γlkn(An)
HRl

knAn ∀f (4.7)

Refkn
= Rekn = [R−1

hkn
+ αkn

ET

N0

ID]
−1 ∀f (4.8)

Rĥf
kn

= Rĥkn
= Rhkn

−Rekn ∀f (4.9)

where one should note that these matrices are not dependent on the frequency bin,

f [49] andET is the pilot sequence power (Appendix A). Derivations of the equations

in (4.7)-(4.9) are given in Appendix A.

4.3 Iterative SC-FDE Detectors

4.3.1 Cell-Free Iterative Detector

CFI-D is the first detector that will be introduced. CFI-D is a benchmark detector that

operates at an NW level. This means that every AP serves every UE. While decoding

UE k, the feedback from all the other UEs and the received signals from all the APs

are utilized. While offering great performance, this approach is not feasible due to the

computational cost it would require. However, it is valuable as a benchmark detector

and building a mathematical foundation for the UCIS-D that will follow. CFI-D is

the CF implementation of the SC-FDE IB-DFE framework. The block diagram of the

overall operation can be seen in Figure 4.2. Actually, in Figure 4.2, the operation of

UCIS-D is given. But it can also help understand the outline of the operation done by

the CFI-D as well.
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The IB-DFE structure in this paper is similar to [16], in which there is a co-located

mMIMO structure. CFI-D also decodes the transmitted symbols using frequency

domain decision feedback (FDDF) [16]. The feedforward and feedback filters at f th

frequency bin and ith iteration are denoted by W
(i)
f ∈ CDN×K and C

(i)
f ∈ CK×K

respectively. The digital filtering and the DFE output at ith iteration can be written as

x̂
(i)
f =[W

(i)
f ]Hyf − [C

(i)
f ]H x̄

(i−1)
f , (4.10)

ˆ̃x
(i)
t =

1√
T

T−1∑
f=0

x̂
(i)
f e

j 2π
T

ft (4.11)

by using (4.2) and the soft decisions, in the frequency domain, of the previous itera-

tion denoted by x̄
(i−1)
f ≜ [x̄

(i−1)
1f , x̄

(i−1)
2f , . . . , x̄

(i−1)
Kf ]T for t, f = 0, 1, . . . , T − 1. Cal-

culations of the soft decisions are given in Chapter 5.3. The time domain estimates

in (4.11) which are denoted by ˆ̃x
(i)
t = [ˆ̃x

(i)
1t , ˆ̃x

(i)
2t . . . , ˆ̃x

(i)
Kt]

T , are used to demodulate

the transmitted symbols, where ˆ̃x
(i)
kt is the estimate of the symbol transmitted by UE

k at time t denoted by x̃kt at ith iteration. Also, estimation of the transmitted symbols

in the frequency domain at ith iteration is denoted by x̂
(i)
f ≜ [x

(i)
1f , x

(i)
2f , . . . , x

(i)
Kf ]

T .

The feedback filters should obey the following constraint for every UE k to prevent

self-cancellation issues.
T−1∑
f=0

C
(i)
f (k, k) = 0 (4.12)

The filters are found via the MMSE criterion. The total MSE for the estimation in

(4.10) at ith iteration is given as

MSEi ≜ E

{
T−1∑
f=0

∥x̂(i)
f − xf∥2

}
. (4.13)

The MMSE criterion results in T parallel equations, one for every frequency bin.

Before deriving the feedforward and feedback filters, we define two matrices denoted

by P
(i)
1 and P

(i)
2 called reliability matrices [16]. Reliability matrices are independent

of the time-frequency index, block diagonal, and they are updated at every iteration.

Matrix P
(i)
1 represents the correlation between the soft decisions and the transmitted

symbols, and P
(i)
2 represents the correlation between soft decisions. The properties
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of reliability matrices are as follows:

P
(i)
1 = E{x̃t(˜̄x

(i−1)
t )H}, P

(i)
2 = E{˜̄x(i−1)

t (˜̄x
(i−1)
t )H} (4.14)

E{x̃t(˜̄x
(i−1)
t′ )H} = 0K×K , E{˜̄x(i−1)

t′ (˜̄x
(i−1)
t )H} = 0K×K ,∀ t ̸= t′ (4.15)

E{x̃kt(˜̄x(i)k′t)
∗} = ρ

(i)
k δkk′ , E{˜̄x(i)kt (˜̄x

(i)
k′t)

∗} = β
(i)
k δkk′ (4.16)

P
(i)
1 = diag[ρ(i)1 , . . . , ρ

(i)
K ], P

(i)
2 = diag[β(i)

1 , . . . , β
(i)
K ]. (4.17)

Notice that the expectations are independent of the time index and ˜̄x
(i−1)
t is the nor-

malized IDFT of x̄(i−1)
f . Also note that, ˜̄x(i)

t = [˜̄x
(i)
1t , ˜̄x

(i)
2t , . . . , ˜̄x

(i)
Kt]

T which represents

the soft decisions in time domain (or ETD). Also note that, due to the properties of

normalized DFT and the uncorrelated symbols between UEs, the reliability matrix

relations also hold in the frequency domain. This results in P
(i)
1 = E{xf (x̄

(i−1)
f )H}

and P
(i)
2 = E{x̄(i−1)

f (x̄
(i−1)
f )H}. As mentioned before, reliability matrices will be

calculated in Chapter 5.3.

Calculation of the feedforward and feedback filters also requires the CM of the re-

ceived signal yf . Since the detector does not know the exact channels, the channel

estimates are used along with the channel estimation CMs given in (4.7)-(4.9). Then

the received signal CM can be written as

Ryf
= Ĥf (Ĥf )H +REf +N0IDN ∈ CDN×DN (4.18)

Hf = Ĥf + Ef , REf = E{Ef (Ef )H}, E{Ef} = 0DN×K (4.19)

where Ĥf and Ef are estimation and estimation error of Hf . Relation (4.18) can be

inferred from (4.2), (4.19) and the uncorrelation between different channels, channel

estimates, and their estimation errors and the independence of the noise entities and

finally the relation E{xf (xf )
H} = IK which can be inferred from applying Parseval’s

relation between xf and x̃t. Also, REf is the CM of the channel estimation error; it

has a block diagonal structure since the channel estimation errors are uncorrelated

between channels to different APs. Then we can write REf as

REf = blkdiag

{∑
k

αk1Rek1 ,
∑
k

αk2Rek2 , . . . ,
∑
k

αkNRekN

}
. (4.20)

Every block in the relation (4.20) represents the CMs of all channel estimation errors

to the particular AP. They are summed, and there are no cross-terms since channels

belonging to different UEs have uncorrelated channel estimation errors.
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Now filters W
(i)
f and C

(i)
f can be derived according to the criterion in (4.13). La-

grangian multipliers method is used with the constraint given in (4.12). The La-

grangian cost function and the Lagrangian coefficients at the ith iteration can be writ-

ten as

J (i) = MSEi +
T−1∑
f=0

( K∑
k=1

[C
(i)
f (k, k)]∗Γ

(i)
k

)
(4.21)

Γ(i) = diag(Γ
(i)
1 ,Γ

(i)
2 , . . . ,Γ

(i)
K ). (4.22)

The details of the solution of the Lagrangian multipliers method are given in Ap-

pendix B, and the optimal filters are then found to be

W
(i)
f = (Ryf

)−1Ĥf [IK +P
(i)
1 C

(i)
f ], (4.23)

C
(i)
f = A

(i)
f [D

(i)
f − Γ(i)] (4.24)

for f = 0, 1, . . . , T − 1 both. Auxiliary matrices A
(i)
f and D

(i)
f are defined and

derived at the end of Appendix B along with the Lagrangian coefficients. Finally, the

Lagrangian coefficients can be written as

Γ
(i)
k =

∑T−1
f=0 A

(i)
f (k, :)D

(i)
f (:, k)

A
(i)
f (k, k)

, for k = 1, . . . , K. (4.25)

Note that the first iteration performed with filters W
(1)
f = (Ryf

)−1Ĥf and C
(1)
f =

0K×K is the linear MMSE (LMMSE) filtering, which will be referred as network-

wide MMSE (NW-MMSE). The NW-MMSE is important since it is a staple of liter-

ature in CF network-related research [4], [7], [8].

4.3.2 User-Centric Iterative Subset Detector

In this section, the main contribution of the thesis, which is the UCIS-D, will be

explained. In the CFI-D, every AP serves every UE. While this is a good method

performance-wise, the CCP with this method rises in an unbounded manner when

the network gets larger. CCP of a method can be thought of as the number of com-

plex multiply-and-accumulate (MA) operations needed to perform it. To evaluate a

method CCP-wise, a metric called “scalability” is introduced similar to [4] and [7].

For a detector to be scalable, the CCP per UE must remain finite as the number of
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UEs and/or the number of APs in the network goes to infinity within a transmission

block [4]. This does not mean that the network should be able to serve an infinite

number of UEs with finite CCP; rather, it means that the CCP of decoding a UE in

a large network should be bounded to a finite value. By definition, the CFI-D given

in the previous section is inherently unscalable due to matrix inversions in (4.23) and

(B.12). This section aims to introduce the motive behind the proposed alternative de-

tectors, not to provide a deep CCP analysis. A complete CCP analysis will be given

in Chapter 5.5 instead. As a final remark before moving to the details of UCIS-D, the

implementations of CFI-D and UCIS-D differ in a major way. In CFI-D, the filters

operate on all UEs simultaneously with the same matrices. In UCIS-D, every UE is

decoded separately in a UC fashion, i.e., each UE has its own detector. Though, these

detectors use information from each other while conducting interference cancellation

operations. The overall operation done by the UCIS-D can be seen as a block diagram

in Figure 4.2.

4.3.2.1 Subset Grouping

To enable a UC approach in UCIS-D, every UE has an assigned group of APs that

serve them similarly to [8]. The set of APs that serve the UE k is denoted with Nk

with cardinality N̄ . Semi-reciprocally, the set of UEs whose channels are estimated

in the digital domain by the AP n is the set Kn with cardinality K̄. The UEs in the

set Kn are the UEs either AP n serves or the UEs who are strong interferers to the

AP n whose channels are estimated in the digital domain by AP n for interference

cancellation purposes. The cardinality N̄ is a system parameter. The cardinality K̄
depends on the N̄ value which is given as K̄ = ⌈ϱN̄K/L⌉. The value ϱ is also a

system parameter with the condition ϱ ≥ 1. Note that if ϱ = 1 is chosen, all APs

only estimate the channels of the UEs they serve. Subset grouping should be done

based on large-scale coefficients and not the fast-fading channels. This way, the same

grouping can be used for many transmission blocks, and the detector does not have

to calculate the sets at every block similar to [8]. Every UE is served by the same

number of APs, and every AP estimates the channels of the same number of UEs in

the digital domain.
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The calculation and construction of the sets Nk and Kn are given in Algorithm (1).

For the first stage, one-by-one APs are assigned to the UEs they will serve. This is

done by comparing αkn values. For UE k, the APs with the largest αkn values are

added to the set Nk. For every AP n that is assigned to Nk, UE k is also assigned to

Kn since APs have to estimate the channels of UEs they serve. After all the Nk sets are

calculated, all the Kn sets may not be filled (this is true when ϱ > 1). For the second

stage, the remaining slots in the Kn sets are then assigned with the same method as

in the first step. Note that the assignments done in the second stage are used for

interference cancellation purposes since APs do not serve the UEs that are assigned

in this second stage. The set Ks
n used in (3.2) for the EB can now be explicitly defined

as Ks
n = {k|n ∈ Nk}.

Algorithm 1 AP and UE Grouping for UCIS-D

1: Initialization: For a given setup choose the parameters N̄ and ϱ. Set K̄ =

⌈ϱN̄K/N⌉.

2: i = 1, k = 1, Nk = ∅ for all k, Kn = ∅ for all n

3: while i ≤ N̄ do

4: while k ≤ K do

5: n = {n|αkn > αkn′ ∀ n′ ̸= n with n, n′ /∈ Nk and |Kn| , |Kn′| ≠ K̄}

6: Nk = Nk

⋃
{n}

7: Kn = Kn

⋃
{k}

8: k = k + 1

9: end while

10: i = i+ 1

11: end while

12: n = 1

13: while n ≤ N do

14: while |Kn| < K̄ do

15: k = {k|αkn > αk′n ∀ k′ ̸= k with k, k′ /∈ Kn }

16: Kn = Kn

⋃
{k}

17: end while

18: n = n+ 1

19: end while
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It is expected that, while UCIS-D decodes UE k if the network gets large, there is a

high probability that some of the UEs’ channels will not be estimated by any of the

APs that serve UE k. For this purpose we define the set Mk for every UE k as

Mk ≜
⋃

n∈Nk

Kn. (4.26)

The set Mk defines the set of UEs that are at least in one of the Kn sets of one of the

APs that serve UE k. Note that UE k itself is in the set Mk as well. Also set M′
k is

defined as relative complement of Mk, defined as M′
k = {1, 2, . . . , K} \Mk.

rows

Estimated
Not Estimated

rows
I
G
N
O
R
E
D

Total MIMO Uplink Channel Row Decimated User Centric
MIMO Channel

Column Sparsified User
Centric MIMO Channel

User Centric PIC Channel

User Centric IB-DFE Channel

Figure 4.3: Visualization of row decimation and column sparsification processes done

on the channel matrices. Followed by partitioning of the channel matrix according to

Sk and S ′
k sets.

4.3.2.2 Row Decimation

Since every UE has its own decoder, we need to define UC mathematical entities

to outline the UCIS-D operations. The received signal yf has ND rows; only N̄D

rows are from the APs that serve the UE k. Curbing to only these rows, which will be

referred to as “row decimation” similar to [8], the received signal vector for the kth UE

is defined as yk
f ∈ CN̄D and the received noise vector for UE k becomes nk

f ∈ CN̄D.

The channel matrix Hf with the same convention is written as Hf
k ∈ CN̄D×K . The kth1

column of Hf
k has a total of N̄D rows. Sequentially, everyD rows of Hf

k corresponds

to the channel between UE k1 and a different AP from the set Nk. Then, the row

decimated version of (4.2) can be written as,

ykf = Hf
kxf + nk

f . (4.27)
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for every UE k. From this point forward, all the operations are assumed to be done

on a fixed UE k. Know that they are done for all UEs separately. The row decimation

process on the channel matrix can be seen in the second stage of Figure 4.3.

4.3.2.3 Column Sparsification

At this point, the “column sparsification” process is introduced. In UCIS-D, not all

the channels inside Hf
k are estimated according to Algorithm 1. The partial (column

sparsified) estimation of Hf
k is written as Ĥf

k , and the estimation error is given as Ef
k .

Column sparsification is the process of setting the entries in Ĥf
k and Ef

k corresponding

to the un-estimated channels to zero. Note that columns of Ĥf
k belonging to UEs in

the set M′
k are completely zero. Also, some UEs will be inside the set Mk, but they

will not be in the Kn set of every AP n that is in the set Nk. This is why in the matrix

Ĥf
k , some columns will have both non-zero and zero rows, depending on the AP those

rows correspond to and whether that AP estimates the channel of the corresponding

UE. The visualization of the column sparsification processes can be seen in the third

step of Figure 4.3.

4.3.2.4 Grouping the Interfering UEs

The row decimation, depending on N̄ and ϱ, greatly reduces the CCP of calculation

of the feedforward filter in (4.23) compared to CFI-D. This is mainly due to the reduc-

tion of the size of the matrix in (4.18) that will be inverted. The CCP of calculation of

the feedback filter in (4.24) is also reduced. Instead of inverting a K×K matrix, now

a |Mk| × |Mk| matrix can be inverted for every UE k. While this option, in theory,

is scalable as long as |Mk| < K, there are also a few problems with this approach

as well. Note that |Mk| is generally different for every UE. This means that the CCP

of decoding every UE can change drastically depending on the network arrangement.

This is not something that is desired; it is generally better to have a similar and con-

sistent CCP for decoding every UE. This also helps with the analysis when there are

new UEs being introduced to the network or old UEs leaving the network. Also, if

|Mk| gets large for only one UE k, it can create a bottleneck in the decoding oper-
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ation. To combat this issue, an alternative step to CFI-D is introduced. A PIC stage

is introduced before performing the computationally costly IB DFE stage. Some of

the interfering UEs will be processed with PIC, while the remaining UEs will be

processed with the stronger IB-DFE.

The PIC operation is just a simple subtraction, and no matrix inversions are needed

for it. After the PIC operation, the IB-DFE operation afterward must also consider

the residual interference coming from the PIC operation as well. This will be given

in more detail further into this Chapter.

Before going forward with these ideas, a selection of UEs must be made to choose

which UEs will be processed with PIC and which UEs will be processed with IB-

DFE.

First, we define two sets of UEs for every UE k, which will be called Sk and S ′
k. Note

that Sk∪S ′
k = Mk ∀k and Sk∩S ′

k = ∅ ∀k. While decoding the UE k, the UEs in the

set Sk are processed with IB-DFE, and the UEs in the set S ′
k are processed with PIC.

The cardinality of the set Sk written as S̄, directly affects the CCP since the feedback

filter will contain a matrix inverse of size S̄ × S̄. The cardinality S̄ is the same for

all UEs. However, the cardinality of the set S ′
k is not the same for all UEs, and it

affects the PIC operation. Since S̄, N̄ , and D are known, the matrix inversion sizes

are completely controlled. Also, the S ′
k set is only used for a one-step subtraction;

it has much less impact on the CCP compared to matrix inversions. Therefore, not

knowing the cardinality of S ′
k is not as crucial.

The set Sk is determined by the relative interference power of other UEs to UE k. The

metric of relative interference power of UE k2 onto UE k1 is defined as P k1
k2

, it can be

written as

P k1
k2

≜
T−1∑
f=0

|(Ĥf
k1
(:, k1))

HĤf
k1
(:, k2)|2

∥Ĥf
k1
(:, k1)∥2

(4.28)

for a given realization. Using this metric allows us to choose the interferers that are

mostly “aligned” with the signal space of the intended UE. Then the set Sk1 for UE

k1 is composed of UE k1 itself and UEs with the highest relative interference power
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to UE k1 according to (4.28). Remaining UEs within Mk1 constitute the set S ′
k1

. This

way, the stronger interferers are processed with the more effective IB-DFE method,

while the weaker interferers are processed with the weaker PIC method. Since the

matrix inversion will have the size S̄ × S̄ , the dominant term of the CCP of the

calculation of the feedback filter (in (4.24)) will be the same for all UEs.

To factor in Sk and S ′
k sets into the operations, the matrix Ĥf

k is partitioned into two

matrices which are Ĥf,s
k ∈ CND×S̄ and Ĥf,s′

k ∈ CND×|S′
k|. The partition is made such

that matrix Ĥf,s
k gets the columns of Ĥf

k matrix corresponding to UEs in the set Sk,

Ĥf,s′

k gets the columns corresponding to the UEs in the set S ′
k. A similar division is

made for partitioning Ef
k into Ef,s

k and Ef,s′

k as well. The columns belonging to UEs

in the set M′
k are ignored as they are the weakest interferers to UE k. The partitioning

of these matrices can be seen more clearly in the visualization presented in the fourth

and final step of Figure 4.3.

4.3.2.5 PIC aided IB-DFE

As mentioned before, the UCIS-D starts with a PIC operation. The PIC for UE k is

done on the received signal ykf directly on every frequency bin. It is done again using

the soft decisions from the previous iteration, and for the ith iteration, it is written as

y
(i)
kf = ykf − Ĥf,s′

k x̄
k,(i−1)
f,s′ for f = 0, 1, . . . , T − 1 (4.29)

where y
(i)
kf is the received signal after the PIC for UE k at the f th frequency bin and

x̄
k,(i−1)
f,s′ is the soft decisions belonging to the UEs in the set S ′

k. Note that a similar

IB-DFE operation to the one in (4.10) and (4.11) can now be carried in a UC fashion

as

x̂
(i)
kf = (w

(i)
kf )

Hy
(i)
kf − (c

(i)
kf )

H x̄
k,(i−1)
f,s (4.30)

ˆ̃x
(i)
kt =

1√
T

T−1∑
f=0

x̂
(i)
kfe

j 2π
T

ft (4.31)

for f = 0, 1, . . . , T − 1. The vector x̄k,(i−1)
f,s is the soft decisions from the previous

iteration belonging to the UEs in the set Sk. The w(i)
kf ∈ CND is the feedforward filter

for UE k at frequency bin f and iteration i. Similarly, c(i)kf ∈ CS̄ is the feedback filter.
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Note that the sizes of feedforward and feedback filters are decreased to accommodate

the lower number of UEs that are processed compared to CFI-D.

There will be residual interference from the PIC operation, and the following IB-DFE

operation must account for it to work properly. Namely, the CM analogous to the one

in (4.18) changes after the PIC operation. To reduce the overall CCP, the residual

interference is incorporated not with the instantaneous channels but with the CMs.

This allows for a common residual interference term to be written, which leads to

avoiding |S ′
k| size matrix multiplications at every iteration for every frequency bin.

Since |S ′
k| is not known precisely and can get large, this reduction is impactful.

Using (4.29), covariance of y(i)
kf can be given as

R
y
(i)
kf

= Ĥf,s
k (Ĥf,s

k )H +N0IDN +Rk
e +R

k,(i)
s′ . (4.32)

The matrix Rk
e is a block diagonal matrix that is added due to channel estimation

errors. The matrix R
k,(i)
s′ is also a block diagonal matrix which is added due to the

residual interference from the PIC operation in (4.29). The calculation of the matrices

Rk
e and R

k,(i)
s′ and the derivation of (4.32) are given in Appendix C.

Now the filters can be calculated in a very similar to CFI-D. The MSE criterion for

UE k in UCIS-D becomes

MSEi ≜ E

{
T−1∑
f=0

∥x̂(i)kf − xkf∥2
}
. (4.33)

Also, for UCIS-D, the constraint in (4.12) becomes
T−1∑
f=0

c
(i)
kf (k) = 0. (4.34)

Due to now being only one constraint, there is only one Lagrangian coefficient as

well. Then the Lagrangian cost function for UCIS-D filters can be written as

J (i) = MSEi +
T−1∑
f=0

(
(c

(i)
kf (k))

∗Γ̄
(i)
k

)
(4.35)

where Γ̄
(i)
k is the Lagrangian coefficient. The solution of the Lagrangian multipliers

method for UCIS-D is given in Appendix D. The optimal filters then are found to be

w
(i)
kf = R−1

y
(i)
kf

[Ĥf,s
k P

k,(i)
1,s c

(i)
kf + Ĥf,s

k (:, kS)], (4.36)

c
(i)
kf = A

k,(i)
f [d

k,(i)
f − Γ̄

(i)
k ]. (4.37)
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for f = 0, 1, . . . , T−1 both. The auxiliary matrix A
k,(i)
f and auxiliary vector dk,(i)

f are

defined and derived at the end of Appendix D along with the Lagrangian coefficient.

Finally the Lagrangian coefficient can be written as

Γ̄
(i)
k =

∑T−1
f=0 A

k,(i)
f (kS , :)d

k,(i)
f∑T−1

f=0 A
k,(i)
f (kS , kS)

. (4.38)

Note that kS is the index of UE k in the set Sk and the matrices Pk,(i)
1,s and P

k,(i)
2,s are

reliability matrices derived in a similar fashion as (4.17), containing the entries for

the UEs that are in the set Sk. Finally, Γ̄(i)
k in (4.37) is a S̄ × 1 column vector with

only one non-zero entry. The kthS entry is the non-zero entry with the value Γ̄
(i)
k .
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CHAPTER 5

PERFORMANCE METRICS AND RELIABILITY MATRIX

CALCULATIONS

5.1 Introduction

This Chapter is about comparing different detectors. As mentioned in Chapter 1,

it is not possible to write closed-form expressions for SE and SINR values. How-

ever, using the Bussgang Decomposition [17], an SINR can be defined for a given

iteration with the condition of fixed and given filters, soft decisions, and transmitted

symbols. Therefore, defining an SINR metric working with a Monte Carlo simulation

is possible. Since the detectors do not know the true channels, the SINR expression

is derived for two different cases. The first is the SINR value that the detector can

calculate with the limited information it has. This SINR value is used for reliability

matrix calculations by the detectors. The second is the true SINR experienced by the

UEs.

Another performance metric that can be defined is the AIR (Chapter 1). AIR allows

one to find a lower bound to the mismatch decoding capacity under finite constel-

lations. Since QAM-type modulation is assumed on the transmitted symbols, the

AIR metric provides a good insight into the network capacity. Finally, the AIR met-

ric indicates the necessary level of coding scheme strength for achieving satisfactory

performance.

The calculation of the soft decisions and reliability matrices are also given in this

chapter. A standard analytical BER expression for QAM transmission, which is cal-

culated using the SINR value found by Bussgang Decomposition, is also provided.

43



Finally, at the end of the chapter, a detailed CCP analysis is given for CFI-D, UCIS-D,

and NW-MMSE detectors.

5.2 Bussgang Decomposition, SINR

The Bussgang Decomposition is done separately for CFI-D and UCIS-D.

5.2.1 CFI-D

First, the SINR value that the detector can calculate is derived. Bussgang Decompo-

sition [17] of DFE output at ith iteration for the symbol transmitted by UE k at time t

given in (4.11) can be written as

ˆ̃x
(i)
kt = µ

(i)
k x̃kt + η

(i)
k for t = 0, 1, . . . , T − 1 (5.1)

where µ(i)
k and η(i)k are the complex amplitude and residual interference, respectively,

of the transmitted symbol of UE k at time t. Note that, the transmitted symbol x̃kt

and the residual interference term η
(i)
k are uncorrelated. The µ(i)

k term in (5.1) can be

calculated by using (4.2), (4.10) and (4.11) as follows

µ
(i)
k =

E
{
ˆ̃x
(i)
kt (x̃kt)

∗
}

E
{
|x̃(i)kt |2

} =
1

T

T−1∑
f=0

[
W

(i)
f (:, k)

]H
Ĥf (:, k) (5.2)

The residual interference power in (5.1) can be calculated as E{|η(i)k |2}= E{|ˆ̃x(i)kt |2}−
|µ(i)

k |2 where

E{|ˆ̃x(i)kt |
2} =

1

T

T−1∑
f=0

[
W

(i)
f (:, k)

]H
Ryf

W
(i)
f (:, k)

+
1

T

T−1∑
f=0

[
C

(i)
f (:, k)

]H
P

(i)
2 C

(i)
f (:, k)

− 2

T

T−1∑
f=0

Re

{[
W

(i)
f (:, k)

]H
ĤfP

(i)
1 C

(i)
f (:, k)

}
(5.3)

which can be obtained by using Parseval’s relation between (4.10) and (4.11). Note

that the terms µ(i)
k and E{|η(i)k |2} are independent of the time index, so they are calcu-

lated once for a given channel realization. Then the output SINR of UE k at iteration
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i can be written as

SINRk
i = |µ(i)

k |2
/
E
{
|η(i)k |2

}
. (5.4)

Note that this SINR value is used by the detector and is not the true SINR experienced

by the UEs. The true SINR written as SINRk
i and it can be written as

SINRk
i = |µ(i)

k |2
/
E
{
|η̄(i)k |2

}
. (5.5)

Note that the numerator term does not change for the true SINR. Even if the true

signal power term differs from the expression in (5.2) due to the disparity between

the true and estimated channels, it does not matter. Since the detector does not know

the true channels, it can not exploit this potential “extra” signal term. Therefore the

additional interference due to mentioned disparity is added to the denominator, but

the additional signal term is not added to the numerator. A new residual interference

term η̄
(i)
k is introduced. This term contains the true interference experienced by UE

k. To write down this term, the true CM of the received signal yf , written as R̄yf
, is

defined as

R̄yf
= Hf (Hf )H +N0IDN . (5.6)

Then the true residual interference power can be written as

E
{
|η̄(i)k |2

}
=

1

T

T−1∑
f=0

[
W

(i)
f (:, k)

]H
R̄yf

W
(i)
f (:, k)

+
1

T

T−1∑
f=0

[
C

(i)
f (:, k)

]H
P

(i)
2 C

(i)
f (:, k)

− 2

T

T−1∑
f=0

Re

{[
W

(i)
f (:, k)

]H
HfP

(i)
1 C

(i)
f (:, k)

}
− |µ(i)

k |2 (5.7)

The SINR in (5.4) is used by the detector to calculate the soft decisions and the reli-

ability matrix entries; however, in the simulation results, the true SINR given in (5.5)

and the entities calculated with the true SINR values are presented for objectivity.

5.2.2 UCIS-D

The Bussgang decomposition and the capacity calculations are similar for UCIS-D.

However, there are still distinctions. The same symbols as in CFI-D are used here as
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well. These entities are about the transmitted symbols by the UEs, and they are not

tied to any detector type for simplicity. Bussgang Decomposition [17] of DFE output

at ith iteration for the symbol transmitted by UE k at time t given in (4.31) is written

in the exact same way as
ˆ̃x
(i)
kt = µ

(i)
k x̃kt + η

(i)
k (5.8)

The µ(i)
k term in (5.8) can be calculated by using (4.29), (4.30) and (4.31) as follows

µ
(i)
k =

E
{
ˆ̃x
(i)
kt (x̃kt)

∗
}

E
{
|x̃(i)kt |2

} =
1

T

T−1∑
f=0

(w
(i)
kf )

HĤf,s
k (:, kS). (5.9)

The residual interference power in (5.8) can be calculated as E{|η(i)k |2}= E{|ˆ̃x(i)kt |2}−
|µ(i)

k |2 where

E{|ˆ̃x(i)kt |
2} =

1

T

T−1∑
f=0

(w
(i)
kf )

HR
y
(i)
kf
w

(i)
kf +

1

T

T−1∑
f=0

(c
(i)
kf )

HP
k,(i)
2,s c

(i)
kf

− 2

T

T−1∑
f=0

Re
{
(w

(i)
kf )

HĤf,s
k P

k,(i)
1,s c

(i)
kf

}
(5.10)

which can be obtained by using Parseval’s relation between (4.30) and (4.31). Again

note that the terms µ(i)
k and E{|η(i)k |2} are still independent of the time index, so they

are calculated once for a given channel realization. Then the output SINR of UE k

can be written the same way in (5.4). Again note that this SINR value is used by

the detector and is not the true SINR of the system. For UCIS-D, the true SINR of

the system is again written the exact same way as in (5.5). The term E
{
|η̄(i)k |2

}
for

UCIS-D can be written as

E
{
|η̄(i)k |2

}
=

1

T

T−1∑
f=0

(w
(i)
kf )

HR̄ykf
w

(i)
kf

+
1

T

T−1∑
f=0

(c
(i)
kf )

HP
k,(i)
2,s c

(i)
kf +

1

T

T−1∑
f=0

(c̄
(i)
kf )

HP
k,(i)
2,s′ c̄

(i)
kf

− 2

T

T−1∑
f=0

Re
{
(w

(i)
kf )

HHf,s
k P

k,(i)
1,s c

(i)
kf

}
− 2

T

T−1∑
f=0

Re
{
(w

(i)
kf )

HHf,s′

k P
k,(i)
1,s′ c̄

(i)
kf

}
− |µ(i)

k |2 (5.11)

where R̄ykf
= Hf

k(H
f
k)

H +N0IDN . Also, c̄(i)kf = (w
(i)
kf )

HĤf,s′

k and the matrices Pk,(i)
1,s′

and P
k,(i)
2,s′ are reliability matrices derived in a similar fashion as (4.17), containing
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the entries for the UEs that are in the set S ′
k. Lastly, the matrices Hf,s

k and Hf,s′

k are

the partitions of the matrix Hf
k . Matrix Hf,s

k contains the columns belonging to UEs

in the set Sk and the matrix Hf,s′

k contains the columns belonging to UEs in the set

S ′
k. The relation in (5.11) can be derived in a similar way to (5.10) with using (4.27),

(4.29), (4.30) and (4.31). The difference is that the true channels are assumed to be

known, and expectations are taken with that in consideration.

5.3 Reliability Matrix Calculations

The reliability matrices depend only on soft decisions. The soft decisions used in

CFI-D are calculated from (5.1),(5.2) and (5.3). The soft decisions used in UCIS-

D are calculated from (5.8),(5.9) and (5.10). The residual interference term η
(i)
k is

assumed to be a Gaussian random variable with variance E{|η(i)k |2}. Since the IB-

DFE operation is non-linear, this assumption is not exactly true. However, under

light loads, the assumption is very accurate [46]. Simulation results in Chapter 6 will

also show that the assumption holds under practical scenarios.

The distortion term η
(i)
k is assumed to be uncorrelated with the transmitted symbol

x̃kt. Soft decisions are then taken as the expected value i.e. ˜̄x
(i)
kt ≜ E{x̃kt|ˆ̃x(i)kt } with

the Gaussianity assumption. Note that soft decisions are calculated first in the time

domain (˜̄x(i)kt ) and then their normalized DFTs (x̄(i)ft ) are used in the filters at every

iteration.

5.4 AIR and Analytical BER

Two types of BER are defined. The first type of BER is the simulation BER which

is calculated with Monte Carlo simulations. The second type is the theoretical BER

which is calculated with the true SINR value. Then for a Z-QAM modulation the

theoretical BER of the network at ith iteration is written as

BER =
K∑
k=1

4(1− 1/
√
Z)

K log2 Z
E

{
Q

(√
3

Z − 1
SINRk

i

)}
. (5.12)
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The second performance metric is AIR. In [18], a lower bound on the AIR is defined

using the generalized mutual information concept. We can write the lower bound on

AIR for UE k at ith iteration as

AIR
(i)
k = log2 Z − Eˆ̃x

(i)
kt ,u

{
log2

(∑
u′∈U p̃(

ˆ̃x
(i)
kt |u′)

p̃(ˆ̃x
(i)
kt |u)

)}
(5.13)

where p̃(ˆ̃x(i)kt |u) is the mismatched PDF. The actual transmitted symbol is u, and U is

the QAM symbol alphabet. The mismatched PDF, with the Gaussian assumption, can

be written as

p̃(ˆ̃x
(i)
kt |u) =

1

π E{|η(i)k |2}
exp

(
−|ˆ̃x(i)kt − µ

(i)
k u|2

E{|η(i)k |2}

)
. (5.14)

Using (5.14), the AIR lower bound in (5.13) can be calculated.

5.5 Computational Complexity and Scalability

CCP and scalability were mentioned in the previous chapters to explain the motiva-

tion behind UCIS-D without going into detail. This section presents a detailed CCP

analysis. Table 5.1 provides the CCP of various parts of given methods in terms of the

number of MA operations. Note that operations that are done once for many transmis-

sion blocks are not added to the table, such as subset grouping and analog beamformer

calculation, since they depend on slowly changing parameters. Also, inherently scal-

able operations like calculating soft decisions, FFT, IFFT, and demodulation are not

included since they always have finite CCP per UE. Multiplying matrices of sizes

m×n and n×p needs mnp MA. Inverting an m×m matrix needs m3 MA. Table 5.1

includes UCIS-D, CFI-D, and NW-MMSE detectors. Also, remember that Table 5.1

shows the CCP needed per UE. It can be seen that CFI-D is unscalable since, per UE,

CCP depends on K2 and N2. NW-MMSE is also unscalable since the CCP per UE

depends on N2. UCIS-D has a lot of extra terms, but it can be seen that it is overall

scalable.

Also note that, while calculating the inverse of (4.32), a matrix with size N̄D× N̄D

is inverted at every iteration for every UE. However, if S̄ is chosen to be less than
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N̄D, only a matrix of size S̄ × S̄ needs to be inverted if Woodbury matrix identity is

used.

The actual meaning of scalability can be thought of as the network not having to

consider all the other UEs or all APs while decoding a single UE. As the number of

UEs or APs increases, this creates an exponential increase in CCP.

Due to simulation limitations, in Chapter 6, the employed network has N = 36, K =

144, N̄ = 9 and S̄ = 4 as typical values. These numbers do not result in a significant

CCP difference between CFI-D and UCIS-D. However, with large networks such as

the one in [8], where N = 5000 and N̄ is around 50, the reduction in CCP becomes

astronomical. The simulation results in Chapter 6 show that even in a small network,

UCIS-D is a valid method in terms of BER and AIR.

Finally, note that for S̄ = N̄D, the matrix inversion sizes for feedforward and feed-

back filters are equal.
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CHAPTER 6

SIMULATION RESULTS

6.1 Introduction

In this chapter, the performance of the proposed methods will be presented via sim-

ulation results. All of the simulations are done in the MATLAB 2022a environment.

The Monte Carlo method is used for every network. More than 107 bits are transmit-

ted by UEs for every plot across several network realizations and channel realizations

(transmission blocks). The performance of the proposed MEB and the proposed CFI-

D and UCIS-D methods are presented and compared with the current trends in the

literature.

6.2 Simulation Setup

Some parameters used in the simulations are given in Table 6.1. Unless stated other-

wise for a specific parameter, values in Table 6.1 are used. A dual-slope model for ω

parameter like in [8] and the break-point distance is dbp = 100 meters. In Table 6.1,

path loss exponent values are given as ω = 2 and ω = 4 for distances smaller and

greater than the break-point distance, respectively. This means that the large scale

gain αkn depends on the path loss exponent ω in the following way

αkn[dB] =

Px − 61.4− 20 log10(dkn) if dkn ≤ dbp.

Px − 61.4 + 20 log10(dbp)− 40 log10(dkn) if dkn > dbp.
(6.1)

The APs are put in a grid layout like in Fig. 2.1 with wrap-around [4] topology, and

UEs are dropped uniformly and randomly in the area. After the number of MPCs

is decided for every channel according to Table 6.1, the MPCs are scaled according
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Table 6.1: Parameters Chosen for the Simulations

Description Value

Network Area 500m×500m

Number of APs N = 36

AP Height 2m

AP Receiver Noise Figure 7 dB

Path-loss Exponent ω = 2 (0-100m), ω = 4 (100+m)

Angular Spread Density σϕ = 1◦, σθ = 0◦

Antenna and RF chain per AP M =64 and D =4

Number of MPCs per Channel Chosen randomly from {2, 3, 4}
Rician K-Factor 10dB(LoS MPC), 0dB(NLoS MPC)

Bandwidth and Noise Power 100MHz, -174dBm/Hz, N0 =-94dBm

Block Length(FFT size) T =64

Loading Percentage 100K/(ND)

QAM order Z =4 uncoded

to Chapter 2.1.2.2. For each MPC, the parameter Uknl is drawn from the uniform

distribution U [0, 1] except one. That one MPC has the parameter Uknl = 1 fixed,

representing the zero-delay line of sight (LOS) MPC with l = 0. The rest of the

MPCs are assigned random delays between l = 1 and l = 32 ordered according to

their Uknl parameters, the lower delay getting the higher parameter. The AoA of the

zero-delay MPC is inferred from the location of the UEs and APs; the other MPCs

are assumed to be arriving from random directions.

A new parameter called ‘Ref SNR’ is introduced, representing the transmit power

adjustment. Ref SNR refers to the SNR value 50 meters away from a UE, including

the noise figure of the receiver. The transmit power Px is adjusted according to the

Ref SNR value and αkn given in Chapter 2.1.2.2. For example, Ref SNR being 15

dB corresponds to a transmit power of Px ≈ 23.4 dBm, which is in line with GSM

mobile phone uplink transmit powers. All UEs are assumed to have the same transmit

power. Finally, unless otherwise stated about ET , perfect CSI (ET = ∞) is assumed.
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Figure 6.1: BER vs. Ref SNR performance of MEB and DFT analog beamformers

with system parameters N̄ = 9 and S̄ = 4 under 100% loading (K = 144). The two

methods are compared for NW- MMSE, CFI-D, and UCIS-D detectors with different

ϱ values.

6.3 Results

In Figure 6.1, a comparison between MEB and DFT beamformer can be seen in the

form of BER vs. Ref SNR performance for different detectors under 100% loading

(K = 144). The parameters N̄ = 9 and S̄ = 4 is chosen along with several ϱ

values for the UCIS-D. Note that parameter ϱ directly determines the magnitude of

sparsification. Therefore, the CCP of UCIS-D depends greatly on ϱ. The case ϱ =

N/N̄ , which is 4 in this case, is also of importance since it means no sparsification

and all the channels are being estimated. Figure 6.1 shows that MEB has superior

performance compared to DFT beamformer in almost all cases. This is due to MEB

illuminating all the served UEs while DFT can only illuminate at most D UEs. Since

the point of CF/UC networks is boosting the performance of weaker UEs allowing

uniform service, the MEB beamformer is conceptually suited for this application.
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Figure 6.2: BER vs. Ref SNR performance of UCIS-D and CFI-D under different

loads. UCIS-D parameters are N̄ = 9, S̄ = 4 and ϱ = 2.

Also, notice that as ϱ decreases, the error floor on the BER for UCIS-D increases.

As sparsification increases, APs start to ignore more and more UEs. After a certain

point, effective interferers may be ignored, raising the error floor. However, do note

that the error floor is lower for MEB compared to the DFT beamformer. This is due

to the ability of the detectors to serve UEs that were not illuminated by the DFT

beamformer. Finally, even with ϱ = 1.5, MEB can achieve acceptable (BER< 10−3)

performance under %100 loading.

For the rest of the simulation results, MEB is used for all detectors. For NW methods

such as CFI-D and NW-MMSE, MEB is calculated assuming every AP serves every

UE (Nk contains every AP for all UEs and Kn contains all UEs for every AP). Figure

6.2 compares the performance of UCIS-D (N̄ = 9, S̄ = 4 and ϱ = 2) and NW-

MMSE under different loads. It can be seen that UCIS-D is much more robust in

the face of increased load, especially at lower transmit power values (SNR). This

is expected since, above 100% load, the NW-MMSE starts to have dimensionality
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problems and cannot differentiate different UEs in the digital signal domain. One can

see that UCIS-D can even handle 125% loading, even with low S̄ and ϱ values. Also,

the limits of UCIS-D under given parameters can also be seen as the performance

drops sharply at 150% loading. Figure 6.1 and Figure 6.2 together show that UCIS-

D can offer great performance only if the parameters are chosen appropriately. The

sparsification parameters (N̄ and ϱ) must be chosen with the loading percentage in

mind to have acceptable performance with feasible CCP.

Also note that, due to simulation limitations, the given network is relatively small.

However, even in a small and highly loaded network, UCIS-D offers a scalable oper-

ation with better performance compared to NW-MMSE. Figure 6.3 aims to show the

effect of S̄ parameter on the UCIS-D BER vs. Ref SNR performance. For both Fig-

ure 6.3(a) and Figure 6.3(b), N̄ = 9. In Figure 6.3(a), the other parameters are ϱ = 2

and 125% loading (K = 180). In Figure 6.3(b), the parameters are ϱ = 3 and 150%

loading(K = 216). Both figures show that the performance converges at very low S̄
values compared to K. In Figure 6.3(a), one can see that only S̄ = 4 out of K = 180

UEs are needed. Increasing the S̄ further does not affect the performance. Similarly

at Figure 6.3(b), only S̄ = 8 out of K = 216 UEs are needed. This property points

to a very important conclusion. Only a few serious interferers need to be processed

with the computationally expensive IB-DFE method; the rest can be processed with

PIC without causing a performance loss. This highlights the power of UC operation.

Also, Figure 6.3(b) shows that, with lower sparsification (increasing ϱ), UCIS-D can

even handle 150% loading with only S̄ = 8. Since the feedback filter on the IB-DFE

operation needs matrix inversions of size S̄ × S̄, Figure 6.3 shows UCIS-D being

able to operate under heavy loads with a configuration which allows severely reduced

CCP. Figure 6.4 focuses on the effects of the pilot sequence power ET . Note that the

channel estimation quality depends both on pilot sequence power and the Ref SNR

value, as can be seen in (4.8) and (4.9). In Figure 6.4(a), the parameters are ϱ = 2,

S̄ = 4, 100% loading (K = 144) and Ref SNR is 15 dB. The BER vs. ET (dB) is

given for different N̄ values for UCIS-D along with the NW-MMSE. One can see that

lowering the N̄ value leads to quicker convergence of the BER with respect to ET .

This is expected, since with lower N̄ , the K̄ is also lower. This, in turn, means that

APs estimate the channels of less number of UEs. Since channel estimation quality
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(a) N̄ = 9, ϱ = 2 under 125% loading (K = 180).
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(b) N̄ = 9, ϱ = 3 under 150% loading (K = 216).

Figure 6.3: The BER vs Ref SNR performance of UCIS-D with different S̄ values

along with NW-MMSE.
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(a) BER vs ET performance for UCIS-D for different N̄ values. Ref SNR is 15 dB.
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(b) The BER vs Ref SNR performance of UCIS-D for different ET values with N̄ = 9.

Figure 6.4: The effects of the pilot sequence power on the performance of UCIS-D

and NW-MMSE. For both plots ϱ = 2, S̄ = 4 and 100% loading (K = 144).
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relies on both large-scale gain (αkn) and pilot sequence power (ET ), the UEs with

good channels get a good channel estimation even with low ET values. NW-MMSE,

on the other hand, relies greatly on ET to function properly. Figure 6.4(a) shows

that, with low N̄ , the UC configuration will automatically lower the need for long

pilot sequences. In Figure 6.4(b), the parameters are ϱ = 2, S̄ = 4, 100% loading

(K = 144) and N̄ = 9. Figure 6.4(b) shows the BER vs. Ref SNR performance

of UCIS-D and the NW-MMSE under different pilot sequence powers. Just like in

Figure 6.4(a), UCIS-D performance relies less on the pilot sequence power. Even at

high Ref SNR, NW-MMSE has very poor BER performance with low pilot sequence

power, while UCIS-D almost converges at ET = 10 dB for almost all Ref SNR val-

ues. Seeing the robustness of UCIS-D for different pilot sequence lengths for all Ref

SNR values is an important aspect of Figure 6.4(b).

In some of the following plots, the BER of the same method is shown for two cases.

One is the actual simulation BER performance given as “Sim.”. The other one is

the theoretical BER performance given as “Theo.” which is calculated using (5.12)

with the true SINR value given in (5.5). Details between these two BER metrics are

explained in Chapter 5 in detail. This approach of showing both BER values allows

us to see the reliability of the Gaussianity assumption on the interference term η
(i)
k ,

which was in (5.1) and (5.8). Two values being close to each other means that this

assumption is valid, and the SINR value the detector uses in (5.10) to calculate the

soft decisions and reliability matrices is acceptable. The following results will show

that the two values are indeed close for almost all cases, proving the validity of the

Gaussianity assumption.

Figure 6.6 and Figure 6.5 show the overall BER performance of the UCIS-D com-

pared to the NW-MMSE and CFI-D. The performance is given for different N̄ val-

ues. For all subplots, ϱ = 2 is chosen to present a heavily sparsified and low-CCP

implementation. For all subplots of Figure 6.6 and Figure 6.5, we have S̄ = 4 except

for Figure 6.6(b) where we have S̄ = 36 instead. The loading percentages are 75%

(K = 108), 100% (K = 144), 125% (K = 180), and 150% (K = 216) for Fig-

ure 6.5(a), Figure 6.5(b), Figure 6.6(a) and Figure 6.6(b) respectively. Assuming a

BER value of 10−3 for un-coded transmission provides adequate performance, Figure

6.6 and Figure 6.5 show that UCIS-D can handle ultra-high loads with comparatively
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(a) S̄ = 4 and 75% (K = 108).
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(b) S̄ = 4 and 100% (K = 144).

Figure 6.5: The BER vs. Ref SNR performance of NW-MMSE, CFI-D, and the

UCIS-D different N̄ . For both plots ϱ = 2.
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(a) S̄ = 4 and 125% (K = 180).
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(b) S̄ = 36 and 150% (K = 216).

Figure 6.6: The BER vs. Ref SNR performance of NW-MMSE, CFI-D, and the

UCIS-D different N̄ . For both plots ϱ = 2.
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Figure 6.7: BER of UCIS-D for number of iterations for different S̄ values. N̄ = 9

and ϱ = 2.

low N̄ values. It can be seen that CFI-D is a benchmark, and it can handle these

ultra-high loads with relative ease even at low transmit powers. One can see that to

reach the performance of CFI-D, almost half of the APs must be deployed for a single

UE. At very low Ref SNRs, sometimes UCIS-D outperforms CFI-D. This is expected

since CFI-D minimizes the MSE and does not employ a maximum likelihood method.

Since at very low transmit powers, a higher number of UEs that are far from an AP

will be below the noise power. They, in turn, will decrease performance instead of

increasing it. The NW-MMSE method, on the other hand, can not handle these high

loads. It needs a very high Ref SNR to operate properly as the load increases, and

anything above 100% loading breaks the method completely due to mentioned di-

mensionality problems. Figure 6.6 and Figure 6.5 show that ultra-high loads can be

handled in a UC mMIMO network in a scalable manner. Figure 6.7 focuses on the

number of iterations needed for convergence in the UCIS-D. A number of iterations

directly affects the CCP of any iterative method since most of the actions are repeated

at every iteration. BER vs. the number of iterations is given with the parameters
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ϱ = 2, N̄ = 9. The performance is given for both S̄ = 4 and S̄ = 9 under different

loading percentages. It is obvious that more iterations are needed for convergence as

the number of UEs in the network increase. Also, more iterations are also needed for

convergence when UCIS-D operates under a lower S̄ value. However, the number

of iterations needed for convergence does not exceed 10 in any case; this means that

the UCIS-D does not need many iterations under any scenario, which guarantees a

low CCP implementation. Also note that, for ultra-high loads (150% for example), S̄
needed for acceptable performance (BER lower than 10−3) also increases; however,

the increased S̄ is still much smaller than the number of UEs K.

All the figures up to now show the BER performance of the mentioned detectors.

However, these BER values are given for un-coded transmissions. To see the actual

capacity of the system is also important to not get misleading results and discard some

practical configurations as a consequence. To this end, Figure 6.8 and Figure 6.9 focus

on the AIR vs. Ref SNR performance for different scenarios where the AIR metric

has a unit of bits per symbol per Hertz (bps/Hz). The results are given under both

perfect CSI and for pilot sequence power of ET = 10 dB. The UCIS-D performance

is also given for both S̄ = 4 and S̄ = 36. In Figure 6.8(a), the parameters are ϱ = 2,

N̄ = 9 the QAM order is Z = 4 and loading is 150% (K = 216). In Figure 6.8(b),

the parameters are ϱ = 2, N̄ = 9 the QAM order is Z = 16 and loading is 100%

(K = 144). In Figure 6.9(a), the parameters are ϱ = 3, N̄ = 9 the QAM order is

Z = 64 and loading is 75% (K = 108). In Figure 6.9(b), the parameters are ϱ = 3,

N̄ = 9 the QAM order is Z = 256 and loading is 50% (K = 72). In addition to CFI-

D and NW-MMSE Detector, the performance of the Subset MMSE method present

in [8] is also given; note that it is adapted to the frequency domain implementation.

The Subset MMSE method can be thought of as the first iteration of UCIS-D, and

it is also scalable. It can be seen that UCIS-D can reach the maximum possible rate

(due to finite constellations) in all scenarios. UCIS-D also outperforms NW-MMSE

under smaller constellations and heavier loads. The Subset MMSE method [8], on the

other hand, performs poorly in all scenarios due to suffering from both dimensionality

and no iterative interference cancellation. CFI-D also reaches the maximum rate in

every scenario. However, it needs higher ref SNR as the constellation grows in size as

expected. Finally, one can see that NW-MMSE with coding can perform adequately
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(a) 4-QAM, ϱ = 2 and loading 150% (K = 216).
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(b) 16-QAM, ϱ = 2 and loading 100% (K = 144).

Figure 6.8: AIR vs. Ref SNR for NW-MMSE, CFI-D, Subset MMSE Detector [8]

and the UCIS-D for perfect and imperfect CSI. UCIS-D is plotted with S̄ = 4 and

S̄ = 36. N̄ = 9 for all plots.
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(a) 64-QAM, ϱ = 3 and loading 75% (K = 108).
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(b) 256-QAM, ϱ = 3 and loading 50% (K = 72).

Figure 6.9: AIR vs. Ref SNR for NW-MMSE Detector, NW Detector, Subset MMSE

Detector [8] and the UCIS-D for perfect and imperfect CSI. UCIS-D is plotted with

S̄ = 4 and S̄ = 36. N̄ = 9 for all plots.
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with higher constellations. Though, note that it is still an unscalable method and less

robust against channel estimation errors. An important result that can be inferred

from Figure 6.8 and Figure 6.9 is that the performance of UCIS-D is affected by

the constellation size greatly. Sparsification parameters ϱ and N̄ , and also the UE

interference group parameter S̄ has strict constrictions on them to provide adequate

performance under large constellation sizes.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

This thesis proposes a novel uplink hybrid beamforming receiver structure for a UC

mMIMO network operating under mmWave frequencies. First, in Chapter 2, a sys-

tem model and a Rician channel model is introduced. The model incorporates the

frequency selective, sparse (both in temporal and spatial domains) nature of mmWave

channels. An SC-FDE structure is used instead of an OFDM-type modulation for the

modulation scheme due to SC-FDE structures having more desirable properties in

the uplink, such as peak-to-average-power-ratio, quantization and robustness against

carrier-frequency offset.

The first stage of a hybrid beamformer is the AB stage, which is given in Chapter

3 within this thesis. The AB stage can be implemented using phase shifters and

attenuators (only phase shifters in some systems). AB is performed before the ADC

operation, so it does not need any digital signal processing. Since mmWave systems

can fit a very high number of antennas in an antenna array, the AB stage is important

to reduce the dimension of the received signal. This, in turn, allows the system to

operate with a lower number of RF chains, decreasing the infrastructure cost greatly.

Four AB methods were introduced and explained. Three of them, namely the DFT

beamformer, EB, and GEB are already present in the literature and are widely known.

The fourth one is the MEB, and it is the proposed AB method in this thesis. Every

method has its advantages and disadvantages. However, it is explained that MEB is

a very suitable AB method for CF/UC mMIMO networks due to its nature. MEB

provides a trend of fairness among the served UEs, which in turn aligns with the
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uniform service goal of CF/UC networks. Promoting uniform service and being able

to accommodate many UEs, MEB has shown to be a very fitting method for a given

network topology.

Following the analog stage, in Chapter 4, the details of the digital stage are given.

First, the novel CFI-D detector is given. CFI-D is the implementation of the IB-DFE

structure for CF mMIMO systems. IB-DFE structure relies on an iterative interfer-

ence cancellation structure, utilizing frequency domain decision feedback via soft

decisions made by the detector. Although CFI-D offers great performance, it has very

high CCP, and it is unscalable due to every AP in the network serving every UE. This

property is the main motivation behind the UCIS-D.

UCIS-D is the main contribution of this thesis. It is an alternative detector to CFI-D,

offering lower but acceptable performance with a lower CCP, and it is scalable. First,

the algorithm for deciding which AP serves which UEs is given (under the name of

Subset Grouping) as a start, and new UC entities are defined for every UE. The row

decimation and column sparsification procedures are introduced to define these UC

entities to enable the desired operation. Next, the structure of UCIS-D is introduced.

UCIS-D relies on a PIC-aided IB-DFE structure. In a large network, a UE has good

channels to only a group of APs. In addition, most of the other UEs (interferers) have

bad channels to the mentioned group of APs. Therefore, performing interference

cancellation to all interferers with the costly IB-DFE operation is not feasible. UCIS-

D groups the interfering UEs into three groups. Only the strongest interferers are

canceled with the IB-DFE, while the weaker interferers are canceled with PIC. The

weakest interferers are ignored since they are likely to be below the noise level. This

partitioning lowers the CCP greatly while still offering acceptable performance.

In Chapter 5, the performance metrics are introduced. Using Bussgang Decomposi-

tion, an SINR value that depends on digital filters and soft decisions is introduced.

How the system uses this SINR value and how the soft decisions are calculated are

also provided. Finally, the AIR metric is defined as an SE alternative providing a

lower bound on the mismatch decoding capacity under finite QAM constellations.

The simulation results are given in Chapter 6. Through simulations done in MATLAB

environment, the BER and AIR performance of UCIS-D, CFI-D, and NW-MMSE

68



methods are illustrated. The results show that UCIS-D can actually offer practical

performance under very heavy loads in a scalable manner. It has been shown that the

idea of only processing the strongest interferers with CCP-heavy methods is indeed

practical and feasible. It has also been shown that UCIS-D does not require long

piloting sequences due to its UC nature. Finally, for both UCIS-D and CFI-D, one can

see that not many iterations are needed to achieve convergence in the performance.

Most of the literature on CF/UC mMIMO generally assumes N >> K, and some

assume N > K. This leads to usually investigating lightly loaded systems. However,

simulation results show that UCIS-D proposed in this work can handle ultra-high

loads with adequate performance. UCIS-D also outperforms the unscalable NW-

MMSE as a scalable alternative which is the prime method for CF networks in the

current literature.

7.2 Future Works

Although this work introduces a large framework with a lot of components, there are

still many gaps that need to be considered and explored in a practical implementation.

The author aims to expand the work done on this thesis in several aspects in the future.

These issues can be listed as follows:

• The CCMs of the channels are assumed to be known by the detector. An esti-

mation process for these matrices is planned to be integrated.

• The fronthaul link between the APs and the CPU is assumed to be ideal. The

network is planned to be investigated under a finite capacity and a delayed

fronthaul link.

• The uplink signals from the UEs are assumed to be synchronized. A synchro-

nization structure and the related error mechanism are planned to be introduced.

• Shadowing and mobility effects on the channels are ignored. They are planned

to be integrated into the channel model.

• Hardware impairments are ignored. Only the noise figure of the receivers of

APs is considered. Other hardware impairments are planned to be integrated.
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• Quantization procedures for the digital filtering operations are planned to be

integrated.
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APPENDIX A

CHANNEL ESTIMATION AND THE PILOTING SCHEME

Remember that channel estimation is done in the frequency domain. A pilot-based

channel estimation procedure is considered. All the UEs transmit a pilot sequence

of Tp symbols at frequency f for f = 0, 1, . . . , T − 1. UE k transmits the pilot

sequence ψkf = [ψ
(1)
kf ψ

(2)
kf . . . ψ

(Tp)
kf ]T ∈ CTp in frequency bin f . Notice that there

are different, more detailed methods for conducting pilot-based estimations [37] for

CF networks. This thesis only considers a simple piloting convention to observe the

effects of channel estimation since channel estimation is not the focus of this work.

It is assumed that no pilot contamination occurs, i.e., every UE has a sequence that

is orthogonal to each other. Due to this orthogonality, the relation (ψkf )
Hψk′f =

ET δkk′ for ∀f, ∀k holds. Note that as mentioned in Chapter 4.2, ET is the pilot

sequence power. The received piloting signal at the nth AP, at jth piloting instance at

frequency f is

r
(j)
fn =

K∑
k=1

√
αknh

f
knψ

(j)
kf + nf

n ∈ CD×1 (A.1)

for j = 0, 1, . . . , Tp and f = 0, 1, . . . , T −1. Also, nf
n is the ZMCSCG noise with the

same properties as the noise vector in (4.2), just with a lower number of rows since

this entity is defined for a single AP. The matrix Xf ∈ CK×Tp is defined as

Xf = [
√
α1nψ1f

√
α2nψ2f . . .

√
αKnψKf ]

T . (A.2)

Note that due to the orthogonality of pilot sequences, the relation

XfX
H
f = diag{α1nET , α2nET , . . . , αKnET} (A.3)

holds, and it is the same for every frequency bin. Also matrix Yfn ∈ CD×Tp is defined

as Yfn = [r
(1)
fn r

(2)
fn . . . r

(Tp)
fn ]. Then using the properties of the Kronecker product, we
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can write

vec(Yfn) = (XT
f ⊗ ID)vec(Hnf ) + vec(Nf ) (A.4)

where Hnf = [hf
1n hf

2n . . .h
f
Kn] ∈ CD×K and Nf is the concatenated noise matrix

derived in a similar fashion to Yfn. The entities in (A.4) are redefined for simplicity.

They are redefined as; rτfn = vec(Yfn) ∈ CDK×1, ufn = vec(Hnf ) ∈ CDK×1 and

Ff = (XT
f ⊗ ID) ∈ CDTp×DK . Note that,

(Ff )
HFf = blkdiag{α1nET ID, α2nET ID, . . . , αKnET ID}. (A.5)

Also Rufn
= blkdiag{Rh1n ,Rh2n , . . . ,RhKn

} due to independence of channels

across different UEs. Note that ufn contains the normalized channels of all UEs

to AP n at frequency f , and it is the entity that is being estimated for all APs. The

MMSE estimate of ufn from the observation rτfn is ûfn with estimation error ũfn,

which is written as (performing a standard MMSE estimation)

ufn = ûfn + ũfn (A.6)

ûfn = Rufnr
τ
fn
R−1

rτfn
rτfn. (A.7)

Also, note that,

Rufnr
τ
fn

= Rufn
(Ff )

H (A.8)

Rrτfn
= FfRufn

(Ff )
H +N0IDTp . (A.9)

Due to nature of MMSE operation, ûfn and ũfn are uncorrelated (or orthogonal),

which means Rufn
= Rûfn

+ Rũfn
. From (A.6)-(A.9), the following equation can

be written

Rũfn
= Rufn

−Rufn
(Ff )

H [FfRufn
(Ff )

H +N0IDTp ]
−1FfRufn

∀ f (A.10)

which is simplified by using Woodbury matrix identity into

Rũfn
= [R−1

ufn
+ (Ff )

HFf
1

N0

]−1. (A.11)

Note that, due to practical uncorrelated assumption of UE channels and lack of pilot

contamination makes the matrices in (A.8),(A.9) and (A.11) block diagonal. There-

fore the channel estimation for AP n to all UEs can be done separately for every UE in
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this work. However, any future work featuring pilot contamination and/or correlated

channels should continue from this form and derive the following results accordingly.

Using the block diagonal structure in (A.11), equations (4.8), (4.9) can be derived for

every UE k and AP n by considering the corresponding block of the block diagonal

matrices. The derivation of (4.7) follows a similar approach done in [49].

Rhf
kn

= E{hf
kn(h

f
kn)

H}

= E
{L−1∑

l=0

√
γlkn

1√
T
h̃l
kne

−j 2π
T

fl

L−1∑
l′=0

√
γl

′
kn

1√
T
(h̃l′

kn)
Hej

2π
T

fl′
}

=
1

T

L−1∑
l=0

L−1∑
l′=0

√
γlkn

√
γl

′
knE{h̃

l
knh̃

l′

kn}e−j 2π
T

f(l′−l)

=
1

T

L−1∑
l=0

L−1∑
l′=0

√
γlkn

√
γl

′
kn(An)

HRl
knAnδll′e

−j 2π
T

f(l′−l)

=
L−1∑
l=0

γlkn(An)
HRl

knAn. (A.12)

Finally, note that the relation in (A.12) is independent of frequency bin f . This inde-

pendence can be derived in the same way for Rĥkn
and Rekn .
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APPENDIX B

DERIVATION OF CFI-D FILTER MATRICES

The cost function given in (4.21) must be minimized using the Lagrangian coefficients

in (4.22). According to the Lagrangian multipliers rule, the following equations must

be satisfied to find the optimal filters.

∂J (i)

∂[W
(i)
f ]H

= 0ND×K for f = 0, 1, . . . , T − 1. (B.1)

∂J (i)

∂[C
(i)
f ]H

= 0K×K for f = 0, 1, . . . , T − 1. (B.2)

∂J (i)

∂Γ
(i)
k

= 0 for k = 1, 2, . . . , K. (B.3)

Note that (B.3) is just a different representation of the constraint given in (4.12). First,

the MSE term needs to be expanded to solve these equations. Insert (4.10) into (4.13)

using (4.2) to get

MSEi =
T−1∑
f=0

E

{[
yH
f W

(i)
f [W

(i)
f ]Hyf − yH

f W
(i)
f [C

(i)
f ]H x̄

(i−1)
f −

(x̄
(i−1)
f )HC

(i)
f [W

(i)
f ]Hyf + (x̄

(i−1)
f )HC

(i)
f [C

(i)
f ]H x̄

(i−1)
f − yH

f W
(i)
f xf+

(x̄
(i−1)
f )HC

(i)
f xf − xH

f [W
(i)
f ]Hyf + xH

f [C
(i)
f ]H x̄

(i−1)
f + xH

f xf

]}
. (B.4)

Before moving forward, it is helpful to define and derive some important CM entities

to use in further calculations. Remember that the detector only knows the estima-

tions of the channels (Ĥf ), and the channel estimation errors (Ef ) are unknown with

zero mean. Also, remember that these equations are written for every frequency bin

separately, creating T parallel equations and solutions for each path. From (4.2) and

(4.19), following relation can be written

Ryfxf
= E{(Ĥfxf + Efxf + nf )x

H
f } = Ĥf . (B.5)
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Similarly, from (4.2) and (4.14), we can write

R
yf x̄

(i−1)
f

= E{(Ĥfxf + Efxf + nf )(x̄
(i−1)
f )H} = ĤfP

(i)
1 . (B.6)

Finally, from the definition of reliability matrices given in (4.14), remember that

R
x̄
(i−1)
f xf

= P
(i)
1 , R

x̄
(i−1)
f

= P
(i)
2 . (B.7)

Now, equations (B.1)-(B.3) can be solved for the filters. At (B.1), taking the partial

derivative

∂J (i)

∂[W
(i)
f ]H

= E{yfy
H
f W

(i)
f − yf (x̄

(i−1)
f )HC

(i)
f − yfx

H
f } =

Ryf
W

(i)
f −R

yf x̄
(i−1)
f

C
(i)
f −Ryfxf

= Ryf
W

(i)
f − ĤfP

(i)
1 C

(i)
f − Ĥf = 0ND×K .

(B.8)

Now, the partial derivative at (B.2) can be taken as

∂J (i)

∂[C
(i)
f ]H

= E{−x̄
(i−1)
f yH

f W
(i)
f + x̄

(i−1)
f (x̄

(i−1)
f )HC

(i)
f + x̄

(i−1)
f xH

f + Γ(i)}

= −R
x̄
(i−1)
f yf

W
(i)
f +R

x̄
(i−1)
f

C
(i)
f +R

x̄
(i−1)
f xf

+ Γ(i)}

= −P
(i)
1 [Ĥf ]HW

(i)
f +P

(i)
2 C

(i)
f +P

(i)
1 + Γ(i) = 0K×K . (B.9)

Rearrange (B.8) and (B.9) to get

Ryf
W

(i)
f = Ĥf (IK +P

(i)
1 C

(i)
f ), (B.10)

P
(i)
2 C

(i)
f = P

(i)
1 [(Ĥf )HW

(i)
f − IK ]− Γ(i) (B.11)

for f = 0, 1, . . . , T − 1 both. Now define the auxiliary matrices A(i)
f and D

(i)
f as

A
(i)
f = [P

(i)
2 − (P

(i)
1 )H(Ĥf )HR−1

yf
ĤfP

(i)
1 ]−1, (B.12)

D
(i)
f = (P

(i)
1 )H(Ĥf )HR−1

yf
Ĥf − (P

(i)
1 )H . (B.13)

Inserting W
(i)
f from (B.10) into (B.11), using the constraint in (4.12) and using

(B.12), (B.13) the equality for Lagrangian coefficients in (4.25) can be derived. Using

(4.25), (B.10), (B.11), (B.12) and (B.13) the equations for the filters W
(i)
f and C

(i)
f

given in (4.23) and (4.24) holds true.
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APPENDIX C

CALCULATION OF SPECIAL BLOCK DIAGONAL MATRICES

All four parts of the matrix R
y
(i)
kf

given in (4.32) corresponds to a different part of the

CM matrix of the received signal y(i)
kf . The Ĥf,s

k (Ĥf,s
k )H term comes from instanta-

neous channel estimates of UEs in the set Sk. Note that these channels are sparsified

and used directly in the IB-DFE operation for UE k. The matrix N0IDN corresponds

to the noise terms. The matrix R
k,(i)
s′ corresponds to the residual interference that is

left over from the PIC operation. It can be written as

R
k,(i)
s′ = blkdiag{Rkn1,(i)

s′ ,R
kn2,(i)
s′ , . . . ,R

knN̄ ,(i)
s′ }, (C.1)

R
knq ,(i)
s′ =

∑
k′∈S′

k∩Knq

αk′nq(1 + β
(i)
k′ − 2Re{ρ(i)k′ })Rĥk′nq

(C.2)

for q = 1, 2, . . . , N̄ and nq ∈ Nk ∀q using (4.9) and (4.16). Note that this matrix

is independent of the frequency bin f . This independence is due to not using the

instantaneous channels for the residual interference calculation. This way, this matrix

can be calculated once for all APs and used by just adding the necessary scaling

coefficients for several transmission blocks. Since the matrices Rĥk′nq
are already

known and R
k,(i)
s′ has a block diagonal structure the CCP of the operation is reduced

significantly.

While calculating E{y(i)
kf (y

(i)
kf )

H}, the self multiplication terms present in (4.29) re-

sults in the 1+β(i)
k′ part in (C.2), and cross multiplication parts result in the −2Re{ρ(i)k′ }

part in (C.2). Since the channels are uncorrelated among different UEs and at differ-

ent APs, this relation can be achieved in every block of the block diagonal matrix

R
k,(i)
s′ in (C.1).

Note that the channel estimation error is not present in R
k,(i)
s′ . The channel estimation

error is accounted for in the matrix Rk
e for all UEs in the set Mk. This matrix is not
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calculated separately for the sets Sk and S ′
k. This is possible because the channel esti-

mates are used in the PIC operation, meaning the non-estimated parts of the channels

are untouched before the IB-DFE operation, and they can be accounted for together

and once for all iterations. The matrix Rk
e can be derived as

Rk
e = blkdiag{Rkn1

e ,Rkn2
e , . . . ,R

knN̄
e }, (C.3)

Rknq
e =

∑
k′∈Knq

αk′nqRek′nq
(C.4)

for q = 1, 2, . . . , N̄ and nq ∈ Nk ∀q using (4.8) and (4.16). The matrix Rk
e is also

block diagonal due to uncorrelated channels for different UEs and different APs. Note

that only UEs in the sets Knq for different nq indexes are included since the channels

of the UEs outside those sets are not estimated, hence no estimation error.

To better understand the residual interference term from PIC, the relation in (C.2) can

actually be derived from (4.29). Writing down the CM definition for y(i)
kf as

E{y(i)
kf (y

(i)
kf )

H} = E
{(

ykf − Ĥf,s′

k x̄
k,(i−1)
f,s′

)(
(ykf )

H − (x̄
k,(i−1)
f,s′ )H(Ĥf,s′

k )H
)}

=

E
{
ykf (ykf )

H − Ĥf,s′

k x̄
k,(i−1)
f,s′ (ykf )

H − ykf (x̄
k,(i−1)
f,s′ )H(Ĥf,s′

k )H+

Ĥf,s′

k x̄
k,(i−1)
f,s′ (x̄

k,(i−1)
f,s′ )H(Ĥf,s′

k )H
}
. (C.5)

The first term in (C.5) is Rykf
. The last three terms are related to the residual inter-

ference. Notice the following

ykf = Hf
kxf + nk

f = Ĥf,s
k xk,s

f + Ĥf,s′

k xk,s′

f + Ef
kxf + nk

f (C.6)

where xk,s
f and xk,s′

f are partitions of xf containing entries belonging to UEs in the

sets Sk and S ′
k respectively. Use the relation above to deduct the relation

E{ykf (x̄
k,(i−1)
f,s′ )H(Ĥf,s′

k )H} = Ĥf,s′

k P
k,(i)
1,s′ (Ĥ

f,s′

k )H (C.7)

where P
k,(i)
1,s′ is a diagonal matrix whose diagonal entries contain the diagonal entries

of P(i)
1 which corresponds to the UEs in the set S ′

k. Due to P
k,(i)
1,s′ being block diagonal

(C.7) becomes

Ĥf,s′

k P
k,(i)
1,s′ (Ĥ

f,s′

k )H =
∑
k′∈S′

k

Ĥf,s′

k (:, k′)[Ĥf,s′

k (:, k′)]Hρ
(i)
k′ . (C.8)
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Finally, note that the multiplication of vectors in (C.8) results in a block diagonal

matrix when it is inside an expectation operation. This is due to different channels

being uncorrelated. The parts in the multiplier (1 + β
(i)
k′ − 2Re{ρ(i)k′ }) in (C.2) can be

explained by the four term expression at the end of (C.5). The first term creates the 1

in the multiplier. The second and third terms are Hermitians of each other, and when

added, they create the −2Re{ρ(i)k′ } part of the multiplier. The fourth term creates the

β
(i)
k′ part of the multiplier. The block diagonal nature present in (C.1) is due to (C.8)

resulting in a diagonal matrix.
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APPENDIX D

DERIVATION OF UCIS-D FILTER MATRICES

The derivation of the filters for UCIS-D is extremely similar to Appendix B. The cost

function given in (4.35) must be minimized using the Lagrangian coefficient Γ̄(i)
k .

Following equations must be satisfied.

∂J (i)

∂(w
(i)
kf )

H
= 0ND for f = 0, 1, . . . , T − 1. (D.1)

∂J (i)

∂(c
(i)
kf )

H
= 0S̄ for f = 0, 1, . . . , T − 1. (D.2)

∂J (i)

∂Γ̄
(i)
k

= 0. (D.3)

Note that (D.3) is just a different representation of the constraint given in (4.34). First,

the MSE term needs to be expanded to solve these equations. Insert (4.31) into (4.33)

using (4.27) and (4.29) to get

MSEi =
T−1∑
f=0

E

{[
(y

(i)
kf )

Hw
(i)
kf [w

(i)
kf ]

Hy
(i)
kf − (y

(i)
kf )

Hw
(i)
kf [c

(i)
kf ]

H x̄
k,(i−1)
f,s −

(x̄
k,(i−1)
f,s )Hc

(i)
kf ]

H [w
(i)
kf ]

Hy
(i)
kf + (x̄

k,(i−1)
f,s )Hc

(i)
kf [c

(i)
kf ]

H x̄
k,(i−1)
f,s − (y

(i)
kf )

Hw
(i)
kfxkf

+ (x̄
k,(i−1)
f,s )Hc

(i)
kfxkf − x∗kf [w

(i)
kf ]

Hy
(i)
kf + x∗kf [c

(i)
kf ]

H x̄
k,(i−1)
f,s + x∗kfxkf

]}
. (D.4)

Using (C.6), one can see that R
y
(i)
kfxkf

= Ĥf,s
k (:, kS) where kS is the index of UE k in

the set Sk. Similarly, from (4.14) and (C.6), we can infer the relation R
y
(i)
kf x̄

k,(i−1)
f,s

=

Ĥf,s
k P

k,(i)
1,s . Finally, using the definition of reliability matrices given in (4.14), one can

infer the relations R
x̄
k,(i−1)
f,s xkf

= P
k,(i)
1,s (:, kS) and R

x̄
k,(i−1)
f,s

= P
k,(i)
2,s . Now, equations
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(D.1)-(D.3) can be solved for the filters. At (D.1), taking the partial derivative

∂J (i)

∂[w
(i)
kf ]

H
= E{y(i)

kf (y
(i)
kf )

Hw
(i)
kf − y

(i)
kf (x̄

k,(i−1)
f,s )Hc

(i)
kf − y

(i)
kfx

∗
kf}

= R
y
(i)
kf
w

(i)
kf −R

y
(i)
kf x̄

k,(i−1)
f,s

c
(i)
kf −R

y
(i)
kfxkf

= R
y
(i)
kf
w

(i)
kf − Ĥf,s

k P
k,(i)
1,s c

(i)
kf − Ĥf,s

k (:, kS) = 0ND. (D.5)

Now, the partial derivative at (D.2) can be taken as

∂J (i)

∂[c
(i)
kf ]

H
= E{−x̄

k,(i−1)
f,s (y

(i)
kf )

Hw
(i)
kf + x̄

k,(i−1)
f,s (x̄

k,(i−1)
f,s )Hc

(i)
kf + x̄

k,(i−1)
f,s x∗kf + Γ̄

(i)
k }

= −R
x̄
k,(i−1)
f,s y

(i)
kf
w

(i)
kf +R

x̄
k,(i−1)
f,s

c
(i)
kf +R

x̄
k,(i−1)
f,s xkf

+ Γ̄
(i)
k }

= −P
k,(i)
1,s [Ĥf,s

k ]Hw
(i)
kf +P

k,(i)
2,s c

(i)
kf +P

k,(i)
1,s (:, kS) + Γ̄

(i)
k = 0S̄ . (D.6)

Rearrange (D.5) and (D.6) to get

R
y
(i)
kf
w

(i)
kf = [Ĥf,s

k P
k,(i)
1,s c

(i)
kf + Ĥf,s

k (:, kS)], (D.7)

P
k,(i)
2,s c

(i)
kf = P

k,(i)
1,s (Ĥf,s

k )Hw
(i)
kf −P

k,(i)
1,s (:, kS)− Γ̄

(i)
k (D.8)

for f = 0, 1, . . . , T − 1 both. Now define the auxiliary matrix A
k,(i)
f and auxiliary

vector dk,(i)
f as

A
k,(i)
f = [P

k,(i)
2,s − (P

k,(i)
1,s )H(Ĥf,s

k )HR−1

y
(i)
kf

Ĥf,s
k P

k,(i)
1,s ]−1, (D.9)

d
k,(i)
f = (P

k,(i)
1,s )H(Ĥf,s

k )HR−1

y
(i)
kf

Ĥf,s
k (:, kS)−P

k,(i)
1,s (:, kS). (D.10)

Inserting w
(i)
kf from (D.7) into (D.8), using the constraint in (4.34) and using (D.9),

(D.10); the equality for Lagrangian coefficient in (4.38) can be derived. Using (4.38),

(D.7), (D.8), (D.9) and (D.10) the equations for the filters w(i)
kf and c

(i)
kf given in (4.36)

and (4.37) hold true.
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