
FAILURE ANALYSIS OF INFRARED SENSING DEVICES DUE TO
CRYOGENIC COOLING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EYÜP CAN BALOĞLU
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Mechanical Engineering, Erciyes University

Assist. Prof. Dr. Mehmet Okan Görtan
Mechanical Engineering, Hacettepe University

Date:02.06.2023



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Eyüp Can Baloğlu
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ABSTRACT

FAILURE ANALYSIS OF INFRARED SENSING DEVICES DUE TO
CRYOGENIC COOLING

Baloğlu, Eyüp Can

Ph.D., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Hüsnü Dal

June 2023, 142 pages

Development of Infrared Focal Plane Array (IRFPA) structures have become increas-

ingly important in recent years due to their applications in a wide range of fields,

including thermal imaging, remote sensing, security, surveillance, earh observation

and astronomy. Semiconductor compounds used in IRFPA technologies are typi-

cally exposed to a wide range of temperatures during their operation and storage.

Temperature-dependent material properties, such as thermal expansion coefficient,

elastic constants, and heat capacity, play a crucial role in the performance and re-

liability of IRFPA devices. Therefore, it is important to have accurate and reliable

temperature-dependent material properties for these materials. Having complete and

accurate information about material properties is required for designing and optimiz-

ing IRFPA devices. In this thesis, Density Functional Theory (DFT) is implemented

within quasi-harmonic approach to define temperature dependent material properties

which is the first attempt for the selected III-V and II-VI semiconductor compounds

(GaSb, InSb, CdTe, HgTe, ZnTe, CdZnTe). Both LDA and PBEsol approximations

are used to obtain thermo-elastic material properties. Nanoindentation experiments

on GaSb are conducted at room temperature to verify obtained material properties
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such as elastic modulus and Vicker’s hardness by DFT. Experimental results show

good coherence with numerical outcomes of DFT for GaSb material. To mimic op-

eration conditions of IRFPA structures at cryogenic temperatures, a custom test setup

with cryocooler is designed. Crack initiation and propagation of GaSb and CdZnTe

materials on SS304 material due to developed thermo-mechanical stress by cryocool-

ing are investigated with this test setup and scanning electron microscopy (SEM) is

used to observe cracks at room temperature. Thermo-mechanic stress determinations

on bimaterial assemblies as well as on a representative IRFPA structure are performed

with finite element simulations to show determined stress dependence on defined ma-

terial properties. A novel phase field fracture model is developed to simulate crack

initiation and propagation for materials that belongs to cubic anisotropy. Anisotropic

energy based failure criterion that splits the free energy and eventually crack driving

source into isotropic and anisotropic parts is used. Representative numerical example

with a notched geometry is also provided for different in plane material orientations

of GaSb. Obtained material properties of GaSb by DFT are used as material inputs

of phase field fracture simulations. Both numerical and experimental investigations

on semiconductor materials are performed. A novel and complete framework on fail-

ure analysis of IR sensing materials that cover from temperature dependent material

property determinations to crack initiation/propagation subjects is developed.

Keywords: Cooled infrared detectors, temperature dependent material properties,

density functional theory, nanoindentation, fracture in cubic anisotropic materials
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ÖZ

KIZILÖTESİ ALGILAMA AYGITLARININ KRİYOJENİK SOĞUMAYA
BAĞLI HASAR ANALİZİ

Baloğlu, Eyüp Can

Doktora, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Hüsnü Dal

Haziran 2023 , 142 sayfa

Kızılötesi Odak Düzlemi Dizilimi (IRFPA) yapılarının geliştirilmesi, termal görüntü-

leme, uzaktan algılama, güvenlik, gözetleme, yer gözlemi ve astronomi dahil olmak

üzere çok çeşitli alanlardaki uygulamaları nedeniyle son yıllarda giderek daha önemli

hale gelmiştir. IRFPA teknolojilerinde kullanılan yarı iletken bileşikler, operasyon ve

depolama durumları sırasında geniş bir sıcaklık aralığına maruz kalırlar. Termal gen-

leşme katsayısı, elastik sabitler ve ısı kapasitesi gibi sıcaklığa bağlı malzeme özellik-

leri, IRFPA cihazlarının performansında ve güvenilirliğinde önemli bir rol oynar. Bu

nedenle, bu malzemeler için doğru ve güvenilir, sıcaklığa bağlı malzeme özelliklerine

sahip olmak önemlidir. IRFPA cihazlarını tasarlamak ve optimize etmek için malzeme

özellikleri hakkında eksiksiz ve doğru bilgilere sahip olmak gereklidir. Bu tezde, se-

çilen III-V ve II-VI yarı iletken bileşikler (GaSb, InSb, CdTe, HgTe, ZnTe, CdZnTe)

için ilk deneme olan sıcaklığa bağlı malzeme özelliklerini tanımlamak için yarı har-

monik yaklaşımla Yoğunluk Fonksiyonel Teorisi (DFT) uygulanmıştır. Termo-elastik

malzeme özelliklerini elde etmek için hem LDA hem de PBEsol yaklaşımları kulla-

nılmıştır. DFT ile elde edilen malzeme özelliklerini, elastik modulü ve Vicker sert-
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liği gibi, doğrulamak için GaSb üzerinde nanoindentasyon deneyleri oda sıcaklığında

gerçekleştirilmiştir. Deneysel sonuçlar, GaSb malzemesi için DFT’nin sayısal sonuç-

larıyla iyi bir tutarlılık göstermektedir. IRFPA yapılarının kriyojenik sıcaklıklarda ça-

lışma koşullarını taklit etmek için kriyosoğutuculu özel bir test düzeneği tasarlanmış-

tır. Bu test düzeneği ile GaSb ve CdZnTe malzemelerinin SS304 malzeme üzerinde

gelişen termo-mekanik gerilme nedeniyle çatlak başlatması ve ilerlemesi bu test dü-

zeneği ile incelenmekte ve çatlakların oda sıcaklığında gözlemlenmesi için taramalı

elektron mikroskobu (SEM) kullanılmaktadır. Bimateryal yapılarda ve ayrıca temsili

bir IRFPA yapısındaki termo-mekanik gerilme belirlemeleri, tanımlanmış malzeme

özelliklerine bağlı gerilme doğruluğunu göstermek için sonlu eleman simülasyonları

ile gerçekleştirilmiştir. Kübik anizotropiye ait malzemeler için çatlak başlangıcını ve

ilerlemesini simüle etmek için yeni bir faz alanı kırılma modeli geliştirilmiştir. Ser-

best enerjiyi bölen ve sonunda itici kaynağı izotropik ve anizotropik parçalara ayıran

anizotropik enerji tabanlı başarısızlık kriteri kullanılmıştır. GaSb malzeme için farklı

düzlem malzeme oryantasyonları için çentikli bir geometriye sahip temsili sayısal

örnek de sağlanmıştır. DFT ile GaSb’nin elde edilen malzeme özellikleri, faz alanı

kırılma simülasyonlarının malzeme girdileri olarak kullanılmıştır. Yarı iletken malze-

meler üzerinde hem sayısal hem de deneysel araştırmalar yapılmıştır. Sıcaklığa bağlı

malzeme özelliği belirlemelerinden çatlak başlatma/yayılma konularını kapsayan IR

algılama malzemelerinin başarısızlık analizine ilişkin yeni ve eksiksiz bir çerçeve ge-

liştirilmiştir.

Anahtar Kelimeler: Soğutmalı kızılötesi dedektörler, sıcaklığa bağlı malzeme özellik-

leri, yoğunluk fonksiyonel teorisi, nanoindentasyon, kübik anizotropik malzemelerde

çatlak
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Infrared (IR) radiation covers electromagnetic spectrum from 750 nanometers to 1

milimeters. Infrared radiation can be divided into several subgroups according to their

wavelength. Basically these subgroups cover the wavelengths from 0.75µm to 30µm.

Many opto-electronic devices are built in IR spectrum and abbreviated according to

their spectral sensing regions such as NIR (near infrared), SWIR (short-wavelength

IR), MWIR (mid wavelength IR), LWIR (long wavelength IR), FIR (far IR). Electro-

magnetic spectrum that covers IR bands is given in Table 1.1.

Table 1.1: Electromagnetic spectrum [1]

Wideband Sub-division λmin (µm) λmax (µm)

Infrared

Very Longwave Infrared (VLWIR) 12 30

Longwave Infrared (LWIR) 8 12

Midwave Infrared (MWIR) 3 5

Shortwave Infrared (SWIR) 1 3

Near Infrared (NIR) 0.75 1

Visible 0.38 0.75

Ultraviolet (UV)
Ultraviolet C 0.10 0.38

Extreme Ultraviolet (EUV) 0.01 0.12

X-Ray 0.00001 0.01

IR imaging devices are commonly used in military applications such as night vision
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devices, missile guidance, thermal cameras for border security, unmanned aerial vehi-

cles. Moreover, there also exist many applications of these devices in space, industry,

medical and civil areas. Satellite earth observation, space telescopes, early detection

and determination of cancer, petroleum exploration, rail safety, moisture analyzing

are some of the applications from different industries. In addition, there are many

other applications that is used in daily life such as infrared security cameras in air-

ports, park sensors in automobiles. IR imaging systems are also commonly used

in different weather conditions that causes poor visibility such as foggy and snowy

weathers or nighttime conditions.

Each object that has a temperature greater than absolute zero (0K) has emits radiation

which can be defined as self radiation. The self radiation is dependent on temperature

and the radiating surface characteristics. IR sensors detect the self radiation of an

object due to its temperature. IR imaging devices contains IR sensing layers that are

made from semiconductor materials which will be explained in a more detailed man-

ner later. The pathway of image production is basically given as follows, IR radiation

that is coming from self radiated object is collected by IR sensing layer. The absorbed

radiation can turn into an electrical or thermal signal depending on which type of sen-

sor is built, i.e, thermal detector or photon detector. In photon detectors, the sensing

layer produces an electical signal due to moving electrons in this layer that regards to

the absorbed IR radiation. The moving electrons that change electrical properties of

the sensing layer is measured by an external circuit called as readout integrated circuit

(ROIC). Produced electrical signals need to be transmitted which is eventually turned

into observable image via amplification and video processing steps. A schematic of

infrared imaging is provided in Figure 1.1. On the other hand, the absorbed radiation

causes an increase of temperature that results in changing mechanical and electrical

properties of the sensing material in thermal detectors. Bolometers, thermopile and

pyroelectric sensors are belong to thermal detector family. Bolometers are resistive

elements with small thermal capacity. They may be positive and negative tempera-

ture coefficients according to type of temperature resistive sensing element. So, their

resistance changes with changing temperature. Response rate of IR sensors is de-

pendent on how fast the sensing layer produces output and it is measured by ROIC.
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Photon detectors have generally faster response in comparison with thermal detectors

because the formation of moving electrons in photon detectors happens in a shorter

time with respect to heating up the detection layer in thermal detectors.

Figure 1.1: Infrared imaging scheme

According to operating temperatures, IR imaging devices can be divided into two

groups as cooled and uncooled sensors. Although there exist many differences be-

tween cooled and uncooled sensors regarding to sensing materials, microfabrication

processes, operation condition performances, device size, weight etc, the main differ-

ence is operation temperature of these sensor types that affects the thermo-mechanical

behaviour on sensing layers. Uncooled sensors are able to operate around room tem-

perature whereas cooled IR sensors must at cryogenic temperatures, i.e 77K for a

generic operation temperature of the cooled IR sensors. For uncooled IR sensors, a

lower power consumption is generally adeaquate. They are smaller in physical di-

mensions and lighter with respect to cooled IR sensors with proper opto-mechanical

package structures. Both of the sensor types have civil and military applications.

However the cooled IR sensors are generally preferred if a higher performance is re-

quired. Noise equivalent temperature difference (NETD) is a performance metric for

IR sensors which defines the sensitivity of sensor. For example, InSb cooled detec-

tors have good sensitivity which means low NETD. Cooled IR detectors have some

drawbacks regarding to price, size, weight, mean time between failures (MTBF) etc.

General trend in the cooled IR imaging device industry is to increase operation tem-

perature without having performance degradation so that the critical parameters such

as power consumption, physical dimensions, weight of the opto-mechanical structure

with cryocooler can significantly decrease. To reach cryogenic temperatures with pos-

sible minimum cooling power, all of the heat losses in opto-mechanical carrier must

be minimized by dealing with two modes of heat transfer (radiation and conduction).
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Convection mode of heat transfer is already eliminated with the help of high vacuum

environment (10−6 to 10−9 Torr).

(a) (b)

Figure 1.2: a) Representative scheme of IR detector hybrid [2], b)Thermal image of

IR sensor

II-VI and III-V semiconductor compounds are widely used as sensing layer materials

for IR imaging applications due to their superior structural and opto-electronic prop-

erties. The most commonly used semiconductor materials can be listed as CdZnTe,

HgTe, HgCdTe, CdTe, ZnTe, InGaAs, InSb, GaAs/AlGaAs, InAs/GaSb (type II su-

perlattices). Epitaxial methods such as MBE, MOCVD, LPE can be used to build the

single crystal materials on specific substrates. Different processes must be performed

to have an active detection layer for IR imaging which are microfabrication processes,

hybridization between focal plane array (FPA) and readout integrated circuit (ROIC),

underfilling, integrating hybridized FPA - ROIC couple onto carrier material etc. The

arrays that are composed of infrared sensing pixels, is also named as FPA, are located

at the focus plane of a lens system in the imaging system architecture. The formed

electrical signal in sensing pixels cannot be measured or digitized by FPA itself. This

function is performed by ROIC via collecting output signals from FPA with the help

of hybridization process that can be named as flip chip bonding [3, 4] . To increase

mechanical and thermal stability of the integrated structure, the underfilling [5, 6] is

applied between the bonds that interconnects each pixel on FPA to related couple on

ROIC. This process is nothing but feeding epoxy material inbetween coupled FPA and

ROIC layers. In this way, total thermal and mechanical coupling of the sensing layer

to ROIC is achieved. Then, back-end processes such as wirebonding, die bonding,
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dicing, grinding can be applied to obtain final geometry. Grinding [7, 8], chemical

etching [9] are widely used processes to thinning of materials in semiconductor in-

dustry. The obtained IR sensor structure which can also be named as coupled FPA is

given in Figure 1.2a for representative purposes. The coupled FPA needs to be placed

in a vacuum environment that can be named as opto-mechanical carrier or dewar with

proper electrical, mechanical and optical interfaces. IR imaging sensor can be inte-

grated in a opto-electronic system via the opto-mechanical carrier. The coupled FPA

is integrated with polymer materials onto opto-mechanical carrier that may contain

different types of materials on cooled region such as ceramics, metals, epoxies etc.

The term cold region defines a region that reaches cryogenic temperatures during the

operation phase of IR sensor whereas its temperature is equal to ambient temperature

when the device is not working. So, during operation phase of a cooled IR sensor,

these materials given in Figure 1.3 must be cooled down to cryogenic temperatures.

Figure 1.3: Representative schematic of the cold region

Although the lowest exposure temperature for a sensing layer is observed during the

operation of a cooled IR sensor, the highest temperature limit is observed generally

during crystal growth process for sensing materials. Beyond the crystal growth pro-

cess, the microfabrication and integration (epoxy cure) processes may require rea-

sonably high temperatures to have residual stresses on IR sensors. The integrated

components with FPA may differ in terms of material and dimension. Exposure of

temperature change for integrated material assemblies is a routine practice for IR sen-

sor production/operation studies. Thermal expansion coefficient mismatch of con-

stituent materials with cryocooling of the assembly may cause thermo-mechanical

stress problems. Opto-electronic properties of semiconductors can also be affected by

the deformation and stresses which may cause performance degradation of semicon-
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ductor devices. Moreover, a direct mechanical failure of these single crystals can be

observed under thermo-mechanical loadings. Using temperature dependent material

properties of single crystals play an important role to perform accurate stress-strain

predictions. However, obtaining the material properties in a temperature regime from

cryogenic temperatures such as 60K to elevated temperatures of 600K is not a triv-

ial task. Experimental methods that can cover such a great temperature difference

to obtain thermo-elastic material properties can be very costly and lack of accuracy.

The semiconductor materials that are used in IR imaging applications are generally

a few microns to a few hundreds of microns in thickness and several milimeters in

planar dimensions which makes experimental investigations even harder. In this the-

sis, Density Functional Theory is used to determine temperature dependent material

properties of the selected semiconductors.

Figure 1.4: Direct mechanical failure of a semiconductor

Mechanical failure is one of the commonly observed problems in opto-electronic de-

vices. However, providing a solution framework for the crack initiation and propaga-

tion problems related with the cooled IR imaging sensors is one of the main interests

of this thesis. Fractured single crystals or microcracks in IR imaging applications

deteriorates electro-optical performance and hence the image quality. These devices

expose to harsh environments such as very low temperatures (77K) during operation

conditions. However, the storage temperature of the cooled IR sensors is ambient
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temperature. During the lifetime of the cooled IR sensors, it is expected to operate

between these temperature limits for thousands of cycles without degrading the device

performance significantly. Phase field theory for cubic crystal materials is proposed

to determine crack initiation and propagation in this thesis.

1.2 Literature Review on Material Properties of III-V and II-VI Semiconduc-

tors

DFT is a powerful tool to simulate different types of materials and obtain material

properties under different conditions. There are many DFT studies on investigation

of structural, electronic, optical material properties on a wide scale in literature. In

this thesis, II-VI and III-V semiconductors of GaSb, InSb, CdTe, HgTe, ZnTe and

CdZnTe are investigated to obtain thermo-elastic material parameters in a wide tem-

perature range. The upper and lower temperature limits may change according to in-

vestigated material due to reaching different temperature limits by applied processes.

Extensive literature review is performed to obtain the results of previously performed

experiments for the materials that are investigated via DFT. To show the diversity of

investigated materials, various papers considering both experimental and numerical

studies are referred. Experimental results of the investigated materials in this thesis

will be compared with our DFT results later.

Olsson [10] performed first principle investigation to determine temperature depen-

dent elastic constants of zirconium, magnesium and gold via ab initio DFT study and

a good coherence is observed with the available experimental results. Shao et al. [11]

combined the first principle calculations with quasi-harmonic approximation so tem-

perature dependent lattice geometries, coefficient of thermal expansion, elastic con-

stants and ultimate strength of graphene and graphyne are determined. Malica and

Dal Corso [12] used thermo_pw code to compare quasi-static and quasi-harmonic

approaches in investigating temperature depedent elastic constants which is applied

to silicon, aluminum and silver materials. It is showed that although quasi-harmonic

approach requires a higher computational cost and time, it provides reasonably better

accuracy to determine temperature dependent elastic constants. Khanzadeh and Alah-
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yarizadeh [13] investigated pressure dependence of mechanical and thermal proper-

ties of TiC and ZrC. Wang et al. [14] determined temperature dependent elastic con-

stanst of rare-earth intermetallic compounds YAg and YCu. Ravindran et al. [15]

applied DFT to orthorhombic crystals by using both LDA and GGA approximations

whereas Pham et al. [16] compared atomistic simulations (DFT and Molecular Dy-

namics (MD)) and ultrasonic measurements for face centered cubic aluminum. Arga-

man and Makov [17] studied hexagonal closed pack titanium mechanical properties

with changing temperature. Third order and second order elastic constants of zinc-

blende nitrides AlN, GaN and InN are determined in the study of Lopuzynski and

Majewski [18]. Comparison of emprical pseudopotentials and DFT simulations are

performed by Lebedeva et al. [19] on graphene material.

III-V semiconductor compounds used for infrared sensors are exposed to wide tem-

perature differences during their lifetime. These crystals are typically grown at 1000-

1200K [20, 21] whereas cooled IR detectors that use InSb from III-V group as a

sensing material typically operates at 77K [22]. Thermomechanical reliability of this

class of materials relies heavily on accurate prediction of their stress-strain response

across their operating temperatures, which prove difficult via experimental means due

to the high cost, the difficulty of measurements at extreme temperatures and the large

scatter in the data [23, 24]. A reliable and affordable alternative is the calculation

of these properties with quantum mechanical computational methods such as density

functional theory (DFT). By now, it has become routine practice to predict zero-

temperature elastic constants of crystalline materials within 10% of the experimental

results using DFT [25, 26, 27]. The computational tools developed for the extension

to finite temperatures have been established in seminal papers [16, 28, 29, 30] al-

though applications have been sparse [31, 32]. Numerical investigations are carried

out in order to obtain the theoretical limits of the thermoelastic properties of GaSb

and InSb for III-V semiconductor group materials regarding to changing tempera-

ture. The results are compared against the available experimental data and extend

their range to cover all relevant temperatures. The results will be given in Chapter 3.

Experimentally determined optical properties of antimonide based III-V compounds

8



have been reported in [33, 34]. GaSb and InSb are both direct band-gap semiconduc-

tors with zero-temperature band gaps of 0.67 and 0.18eV [35], respectively. GaSb

is widely used in solar cells [36, 37] and photodetector applications [38, 39, 40].

Thermal and elastic properties such as the bulk modulus [41] and the thermal ex-

pansion coefficient [42] of GaSb have been the subject of many studies. Al-Douri

et al. [41] provided bulk modulus of several semiconductors compounds including

GaSb. Nilsen et al. [43] performed X-ray diffraction measurements to obtain the

temperature-dependent thermal expansion of GaSb. Salehi et al. [42] reported the

elastic constants of antimonide compounds under the effect of pressure. Varshney et

al. [44] demonstrated the phase transitions of binary antimonide compounds under

the effect of pressure and the changes in elastic constants of these materials caused

by the phase transitions. InSb is often used by itself or as part of ternary compounds

for electro-optical components of the laser structures [45, 46] and infrared photode-

tectors [47, 48]. Stresses generated by thermal mismatch in InSb infrared focal plane

arrays were also investigated [49, 50]. Breivik et al. [51] determined the temperature-

dependent lattice constants in the range 32-325 °C by using X-ray diffraction mea-

surements and Cai et al. [52] reported temperature-dependent thermal properties such

as thermal conductivity, coefficient of thermal expansion, thermal diffusivity experi-

mentally in between 300-800K.

Application areas of II-VI semiconductor compounds are infrared detector, laser, light

emitting diodes (LEDs), radiation detector applications. Widely used ternary alloys in

II-VI semiconductor group in IR imaging applications are mercury cadmium telluride

(HgCdTe or MCT) and cadmium zinc telluride (CdZnTe or CZT). Mercury cadmium

telluride (MCT) is a promising material that can be used in various infrared ranges

of imaging applications due to its superior properties by changing the cadmium con-

centration i.e, Hg(1-x)CdxTe [53, 54, 55]. In addition, CdZnTe (CZT) is a key material

as substrate in epitaxial processes of IR imaging devices as well as for solar cell and

X-ray detector applications [56, 57, 58, 59]. In this thesis, DFT studies are performed

only one ternary alloy which is CZT material from II-VI group materials due to limi-

tations on computational power and time.
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Although the growth temperature of these semiconductor compounds can vary with

respect to different criterias such as substrate material, growth method, desired de-

fect density, the compounds can expose to temperatures of 200°C-300°C [53, 60,

61, 62]. Zhan et al. [63] showed that the cooling of IR sensing layer on Si sub-

strate from growth temperature to operation temperature results in developing thermo-

mechanical stresses which affect the focal plane array (FPA) performance that is also

valid for CdZnTe substrate material. Gergaud et al. [64] investigated lattice param-

eter measurements of CdZnTe from room temperature up to 300°C by using high

resolution X-ray diffraction. Skauli et al. [65] also determined experimental lattice

constant and thermal expansion coefficients of the ternary compound in the tempera-

ture range of 25°C and 110°C for different composition ranges of cadmium. Jacobs

et al. [66] performed residual thermal stress calculations caused by cooling from

growth to room temperature of CdTe film on different substrates, i.e, Si, Ge, GaAs.

Elasto-plastic behavior of HgCdTe is determined experimentally via nanoindentation

studies by Martyniuk et al. [67] and Shkir et al. [68] investigated hardness measure-

ments with crack length, fracture determinations of CdZnTe. Irwan et al. [69] deter-

mined elastic modulus and hardness of HgCdTe as well as showed ductile to brittle

transition in terms of depth of cut during diamond cutting of single crystal wafers of

this material. There are various studies which investigate electro-optical properties

and phonon behaviors of XTe (X = Hg,Cd, Zn) binary compounds under different

conditions [70, 71, 72, 73, 74, 75]. Cottam and Saunders [76] determined exper-

imental temperature dependent second order elastic constants of HgTe between 2K

and 300K. Bagot et al. [77] provided experimental thermal expansion coefficient

data of CdTe, ZnTe, HgTe. Strauss [78] studied on the physical, including structural,

thermal, mechanical, optical and electrical properties of CdTe. Temperature depen-

dent lattice constant and total energy of CdTe is investigated with molecular dynamics

by Kanoun et al. [79] in the temperature regime of 150K-450K. Yamada et al. [80]

measured elastic and photoelastic constants of ZnTe by Brillouin scattering at room

temperature. Alper and Saunders [81] measured elastic constants of HgTe in the tem-

perature regime of 1.4K to 300K with pulse echo technique.

There are different single crystals from III-V and II-VI groups exposed to great tem-
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perature differences which results in arising thermo-mechanical stress on IRFPAs.

To ensure performance stability of such opto-electronic devices, investigations of

thermo-mechanical stresses are performed in several studies [82, 83, 84]. However,

using the temperature dependent material property is rare in these thermo-mechanical

stress investigations.

1.3 Literature Review on Phase Field Theory

There are various methods that can be used to determine crack propogation, delamina-

tion, fracture on different materials such as eXtended Finite Element Method (XFEM

[85, 86, 87] and Cohesive Zone Method (CZM) [88, 89, 90]. Phase Field Model

(PFM) provides good results on where classical fracture mechanics has some limita-

tions such as curvilinear crack paths, branching angles, multiple cracking etc. In this

thesis, PFM is used to describe and determine crack propogation on cubic anisotropic

materials.

Strength based and energy based criterias are used to determine crack propogation

path in the literature. In strength based criteria, a threshold stress or strain level must

be reached locally to form micro cracks. Tsai and Hill [91, 92], Tsai and Wu [93] are

widely used strength based failure criterias. Difference of the investigated material

response in tension and compression is not taken into account in Tsai-Hill criterion.

So, the same yield stress is valid both in tension and compression. On the other hand,

Tsai-Wu criterion can define different material response according to tension or com-

pression loading mode. Energy based criteria is defined such that formation of new

surfaces happens as crack propogates whereas a material point fails in strength based

criteria. As introduced by Griffith [94], a crack starts to grow when the energy release

rate, G reaches a critical value Gc in energy based Griffith’s theory.

Thermodynamically consistent and robust algorithmic implementation of phase field

fracture model is provided by Miehe et al. [95, 96] in 2010. Then, the phase field

fracture models are integrated with multi-physics problems with more seminal papers
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[97, 98, 99, 100, 101]. Anisotropic crack phase field is investigated for brittle solids

by Li et al. [102] and Teichtmeister et al. [103]. Nguyen et al. [104] and Clayton and

Knap [105] investigated phase field modeling for polycrystal materials. Gültekin et

al. [106] investigated rate dependent anisotropic crack phase-field model for soft bio-

logical tissues. Ambati et al. [107] provided ductile fracture of elasto-plastic solids in

the quasi-static kinematically linear regime. Dal et al. [108] also investigated phase

field approach to fracture of biological tissues and fiber-reinforced composites. Denli

et al. [109] provided fracture model of unidirectional fiber reinforced polymer matrix

composites with phase field model. Phase field representation of cohesive fracture

is determined within energetic framework by Verhoosel and Borst [110]. Fracture of

single crystals is also determined by phase field models [111, 112, 113].
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1.4 Objective of Thesis

In IR imaging applications, semiconductor materials expose to wide temperature dif-

ferences due to operation/storage conditions of the devices as well as applied pro-

cesses to build a functional device. Aerospace and defence industries require high

level and long term reliability with exposure of severe temperatures. High-reliability

semiconductor market was valued over two billion dollars in 2022 and it is expected

to grow in the upcoming years as a result of geopolitical concerns. In the automotive

industry, electronic devices are becoming more common. High-reliability compo-

nents need to be deployed especially for self-driving cars because they help ensure

that critical systems and components operate as intended without failure or malfunc-

tion, which is essential for maintaining the safety of the vehicle and its occupants.

These factors are providing the reasons of the demand growth of the high-reliability

semiconductors.

To establish excellent long term reliability of these devices, accurate thermo-mechanical

behavior prediction of semiconductor materials is vital. However, the temperature de-

pendent material properties is not available in literature that covers cryogenic as well

as elevated temperatures. Experimental methods to determine the material properties

require great costs and provide less accurate results. As a numerical alternative to

obtain temperature dependent material properties, Density Functional Theory (DFT)

is proposed for single crystal materials that are commonly used in IR imaging ap-

plications. Investigation of elastic modulus and hardness on GaSb material is also

performed via nanoindentation experiments at room temperature to check the valid-

ity of DFT simulation results. Besides GaSb, InSb, CdTe, HgTe, ZnTe and CdZnTe

semiconductors have been investigated with DFT. Direct mechanical failure can be

observed on semiconductor compounds due to harsh temperatures and thermal ex-

pansion mismatch of the materials. Phase Field (PF) model for cubic anisotropic

fracture is proposed. Fracture on cubic single crystal GaSb due to mechanical load-

ing, i.e, uniaxial tension of notched plate is investigated by using developed model

and obtained material properties by DFT. So, quantum mechanical material modelling

studies are combined with phase field fracture model in this thesis. Investigated sin-
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gle crystals are mostly binary compounds from III-V and II-VI groups that show

cubic symmetry. Experimental observation of crack propagation paths on GaSb and

CdZnTe semiconductor materials are performed with a custom test setup that is de-

signed to operate at cryogenic temperatures that simulates the operation condition of

cooled IR sensor. By using thermal expansion mismatch of different materials, i.e,

semiconductors and stainless steel, the crack initiation and propagation on selected

single crystal materials are observed experimentally. Scanning Electron Microscopy

(SEM) is used to observe fracture patterns. Main motivation of this thesis is to pro-

vide a complete framework starting from material property determinations in desired

temperature regime and cover crack initiation, propagation of semiconductor materi-

als with both numerical and experimental investigations.

In Chapter 2, fundamantels of Density Functional Theory and Phase Field Theory are

provided. Thermal, elastic as well as opto-electronic properties of selected materials

are given by DFT simulations in Chapter 3. Experimental investigations regarding

nanoindentation tests, test setup design, cryocooling experiments and crack observa-

tions on semiconductors are provided in Chapter 4. Effect of temperature dependent

material property on thermo-mechanic stress predictions of semiconductor materials

as well as IRFPA structure are given with finite element simulations in Chapter 5.

Then, Chapter 6 covers theory, method and computational details of Phase Field The-

ory to model crack propagation in cubic anisotropic materials. Summary of the inves-

tigated studies and concluding remarks with future work are determined in Chapter

7.
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CHAPTER 2

FUNDAMENTALS OF DENSITY FUNCTIONAL THEORY AND PHASE

FIELD THEORY

2.1 Basic Concepts of Density Functional Theory

Density Functional Theory (DFT) is a quantum mechanical modelling method of

solving many body systems, in particular atoms, molecules and condensed matter

systems. The condensed matter is a definition of matter whose energy is low enough

to form stable systems of molecules, atoms generally in liquid and solid phases. Soft-

ware packages are able to provide open source codes to calculate various material

properties of different types of materials by using DFT. In general, one can simu-

late mechanical, electrical or optical properties of a material as long as the atomic or

moleculer structure of the material defined properly. There are some alternatives to

DFT formulations which include Quantum Monte-Carlo (QMC) [114][115][116] and

configuration interaction (CI) [117] methods.

Ab initio, first principle, approach aims to model a material without using any exper-

imental input by defining its atomic, molecular structure including the definiton of

positively charged nucleus, a number of negatively charged electrons and the interac-

tion between atoms. The interaction between the atoms includes interactions between

electron and electron, nucleus and nucleus, electron and nucleus. When these interac-

tions can be defined accurately, the first principle approach can define more complex

phenomena called as many body Scrödinger equation.
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2.1.1 Schrödinger equation

Schrödinger Equation, which is essentially a wave equation, describes the proba-

bility of wave functions that defines motion and behaviour of small particles. One

can obtain information about physical properties of systems by solving many-body

Schrödinger equation.

Many Body Schrödinger Equation which is given below uses kinetic energy of nu-

clei and electrons as well as electrostatic interactions between nucleus-nucleus and

electron-electron. In equation 2.1, the Hamiltonian is defined with Ĥ where total en-

ergy is given as E and the many-body wavefunction for N electronic eigenstates is

represented by Ψ. The Hamiltonian given in equation 2.2 includes the kinetic energy

of nuclei and electrons, nucleus-nucleus and electron-electron repulsions as well as

the electron-nuclei interaction. In equation 2.2, R and r represent the coordinates of

nuclei and electrons, mass and charge of the I-th nucleus areMI and ZI and electronic

mass and charge are represented with me and −e, respectively. Ψ, the wavefunction

is defined to be a function describing the probability of a particle’s quantum state as a

function of position, momentum, time and spin. All possible system information can

be found in the wavefunction. Exact solution of many-body Schrödinger equation is

not possible for particles more than two or atoms heavier than hydrogen. However,

approximate solution for many-body Schrödinger equation can be performed. The

exact solution of this equation requires great amount of speeds and memory of com-

puters which is not practically possible today.

ĤΨ(r, R) = EΨ(r, R) (2.1)

Ĥ = −
NI∑

I=1

h2

2MI

∇2
RI
−

Ne∑

i=1

h2

2me

∇2
ri
+
1

2

∑

I 6=J

ZIZJe
2

| RI − RJ |+
1

2

∑

i 6=j

e2

| ri − rj |
−
∑

i,I

ZIe
2

| ri −RI |
(2.2)

The terms in equation 2.2 can be defined as
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Tn = −
NI∑

I=1

h2

2MI

∇2
RI

(2.3)

where Tn is the kinetic energy of nuclei,

T = −
Ne∑

i=1

h2

2me

∇2
ri

(2.4)

where T is the electron kinetic energy,

Vn =
1

2

∑

I 6=J

ZIZJe
2

| RI − RJ | (2.5)

where Vn is the nuclei-nuclei interaction,

V =
1

2

∑

i 6=j

e2

| ri − rj |
(2.6)

where V is the electron-electron interaction,

Vext = −
∑

i,I

ZIe
2

| ri −RI |
(2.7)

where Vext defines the interaction term between electrons and nuclei that can also be

defined as external potential for electrons. The Hamiltonian of the many-body system

can also be represented as

Ĥ = Tn + T + Vn + V + Vext (2.8)

With Born-Oppenheimer approximation, it is assumed that motion of the electrons

and nuclei can be seperated due to heavy mass of nuclei in comparison to electrons.

Motion of the nuclei is much slower than the electron that results in having a fixed po-

sition of the nuclei, so the kinetic energy of the nuclei which is given in equation 2.3

can be neglected. By using Born-Oppenheimer approximation, the system’s degrees
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of freedom are reduced such that the interactions between nuclei, Vn in equation 2.5

can be treated as constant value.

Pseudopotential approximation used in DFT to simplify the calculation of the elec-

tronic wavefunction. In a pseudopotential calculation, the core electrons (those that

are tightly bound to the nucleus) are replaced with an effective potential that includes

the average effect of the core electrons on the valence electrons. This reduces the

number of electrons that need to be explicitly included in the calculation, which

makes the calculation more computationally efficient [118, 119, 120]. For further

reading about pseudopotentials, it is referred to Singh and Nordström [121].

Relativistic pseudopotentials are effective potentials that replace the full relativistic

Hamiltonian in the DFT calculations. These potentials are constructed by separating

the core electrons from the valence electrons, and then replacing the core electrons

with a pseudopotential that incorporates the relativistic effects. The use of relativistic

pseudopotentials is important for accurately modeling heavy elements, as the rela-

tivistic effects become more significant as the atomic number increases.

2.1.2 Hohenberg-Kohn theorems

Hohenberg-Kohn theorems are two foundational theorems in DFT. The first theorem

states that the ground-state electronic density of a many-electron system uniquely de-

termines the external potential of the system. The second theorem states that there

exists a universal functional of the electronic density that gives the total energy of the

system. The minimum value of the energy functional that encompasses all possible

electron densities represents the lowest possible energy state of the system, which is

called the ground state energy. The electron density that corresponds to this minimum

energy state is known as the ground state density. Together, these theorems provide

the theoretical framework for DFT, which enables efficient and accurate calculations

of the electronic structure of materials. [122].
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In principle, all properties of the system are exact functionals of the ground state

electron density, E[ρGS]. Energy functional, E[ρ] is expressed as in equation 2.10

EGS = E[ρGS] (2.9)

E[ρ] = F [ρ] + Vext + Vn (2.10)

where F [ρ] is system internal energy composed of electron kinetic, potential and

interaction energies.

F [ρ] = T [ρ] + Eint[ρ] (2.11)

Hohenberg and Kohn [122] states that true ground state density for the external po-

tential, Vext is the density that minimizes the energy. the external potential energy is

given by

Vext =

∫

drvext(r)ρ(r) (2.12)

When the system internal energy, F [ρ] is known, the ground state electron density,

ρGS can be determined by minimizing the energy functional, E[ρ].

2.1.3 Kohn-Sham method

Kohn-Sham method [123] is a formulation of DFT which finds a good approxima-

tion to internal electronic energy, F, by defining a set of component energies that sum

to give F. It approximates the true many electron system (interacting) by using non-

interacting systems. It assumes that the true ground state density is also ground state

density of non-interacting system. The Kohn-Sham method effectively separates the

exchange-correlation energy, which accounts for electron-electron interactions, from

the kinetic and external potential energies, making it computationally feasible for

larger systems. The Kohn-Sham equations are typically solved self-consistently, iter-

atively adjusting the electron density until a stable solution is reached.

The Schrödinger-like equation for the Kohn-Sham orbitals is given as
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ĤKS[ρ]φi(r) = ǫiφi(r) (2.13)

where ĤKS is the Kohn-Sham Hamiltonian, ρ is the electron density, φi is the ith

Kohn-Sham orbital, ǫi is the corresponding eigenvalue or energy of the ith orbital,

and r represents position as given before. The expression for the electron density can

be given as

ρ(r) =

N∑

i

|φi(r)|2 (2.14)

where the number of electrons is defined with N . The Kohn-Sham Hamiltoninan,

ĤKS, can be defined as

ĤKS[ρ] = − h2

2me

∇2 + VKS(r) (2.15)

where VKS is the Kohn-Sham potential, which consists of the external potential,

Hartree potential and exchange-correlation potential given as

VKS(r) = Vext(r) + VHartree(r) + Vxc(r) (2.16)

with the definitions of Hartree potential

VHartree(r) =

∫
ρ (r′)

|r− r′|dr
′ (2.17)

and exchange-correlation potential which accounts for the effects of electron ex-

change and correlation on the electron density.

Vxc(r) =
δExc[ρ]

δρ(r)
(2.18)

Lets summarize the Kohn-Sham procedure for self-consistency;

1. Choose an initial guess for the electron density, ρ(r).
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2. Use the electron density to calculate the Kohn-Sham potential, VKS(r), in equa-

tion 2.16.

3. Use the Kohn-Sham potential to solve for the Kohn-Sham orbitals, φi(r), using

the Schrödinger-like equation 2.13

4. Calculate the electron density from the Kohn-Sham orbitals in equation 2.14

5. Check for self-consistency by comparing the new electron density with the pre-

vious guess. If the difference is below a certain tolerance, the calculation is

considered converged. If not, repeat steps 2-4 using the new electron density

until the convergence is achieved

The self-consistency procedure involves iteratively solving the Kohn-Sham equations

until the electron density converges to a stable solution. In step 2, the exchange-

correlation potential is calculated using the current electron density and the functional

derivative of the exchange-correlation energy. In step 3, the Kohn-Sham orbitals are

solved for using the Kohn-Sham Hamiltonian, which includes the Kohn-Sham poten-

tial. In step 4, the electron density is calculated from the Kohn-Sham orbitals. Finally,

in step 5, the electron density is checked for self-consistency, and the procedure is re-

peated until convergence is achieved.

2.1.4 Approximations for exchange-correlation energy, Exc

Exchange-Correlation energy the component of the total energy in density functional

theory that accounts for the effects of electron exchange and electron correlation. The

exchange energy is a component of the electron-electron interaction potential energy

that arises from the Pauli exclusion principle. It is a quantum mechanical effect that

arises because two identical fermions (such as electrons) cannot occupy the same

quantum state simultaneously. The exchange energy is therefore a penalty for two

electrons occupying the same quantum state, and it is a key factor in determining the

electronic structure of a system. On the other hand, the correlation energy is a mea-

sure of the additional energy required to account for the fact that the electron-electron

interaction potential energy is not simply the sum of pairwise interactions between

electrons, but also includes more complex many-body interactions that arise from the
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correlated motion of electrons. There are empirical [124, 125] and non-empirical

[126, 127] density functional approximations that are used to approximate exchange

correlation functional, Exc[ρ]., given in equation 2.18. To obtain empirical pseudopo-

tentials, some of the information should be derived from the experiments whereas

non-empirical pseudopotentials are derived from the results of first principle calcu-

lations without requirement of any experimental data. Local density approximation

(LDA) and generalized gradient approximation (GGA) are commonly used density

functional approximations to approximate the exchange-correlation energy in DFT

calculations.

2.1.4.1 Local density approximation, LDA

LDA [122] assumes that the exchange-correlation energy density is a function of the

electron density at each point in space. This approximation is valid for slowly vary-

ing electron densities and is based on the assumption that the electron density at each

point in space is uniform. Exchange-correlation energy expression for LDA is given

as

ELDA
xc [ρ] =

∫

ρ(r)ǫLDA
xc (ρ(r))dr (2.19)

where ǫLDA
xc (ρ) is the LDA exchange-correlation energy per particle as a function of

the electron density ρ(r). LDA often provides good results for structural, vibrational,

elastic properties for a wide range of solid state systems.

2.1.4.2 Generalized gradient approximation, GGA

GGA [128] is a more sophisticated version with respect to LDA that includes addi-

tional terms to improve the accuracy of the approximation.
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EGGA
xc [ρ] =

∫

ρ(r)ǫGGA
xc (ρ(r),∇ρ(r))dr (2.20)

where ǫGGA
xc (ρ,∇ρ) is the GGA exchange-correlation energy per particle as a func-

tion of the electron density ρ(r) and its gradient ∇ρ(r). GGA provides improved

desription of stability of bulk phases, molecular structures and representation of weak

inter-molecular bonds.

PBEsol is a type of generalized gradient approximation (GGA) in DFT that is often

used to calculate the electronic properties of solids. PBEsol is a variant of the PBE

(Perdew-Burke-Ernzerhof) GGA [128], which was originally developed to calculate

the electronic properties of molecules.

The main difference between PBE and PBEsol is the way in which they treat the

exchange-correlation energy in the GGA. PBEsol uses a modified form of the ex-

change part of the GGA that is designed to improve the description of the cohesive

properties of solids, while maintaining the accuracy of PBE for molecular systems.

Specifically, PBEsol includes a scaling factor that reduces the amount of exchange in

the GGA, which leads to a more accurate description of the bulk properties of solids.

PBEsol has been shown to be a reliable and accurate method for calculating the elec-

tronic properties of a wide range of solids, including metals, semiconductors, and

insulators. In this thesis, LDA and PBEsol approximations are used to obtain bulk

material properties of semiconductor materials.

EPBEsol
xc [ρ] =

∫

ρ(r)ǫPBEsol
xc (ρ(r),∇ρ(r))dr (2.21)

where ǫPBEsol
xc (ρ,∇ρ) is the PBEsol exchange-correlation energy per particle as a

function of the electron density ρ(r) and its gradient ∇ρ(r). The exact expression for

ǫPBEsol
xc is quite lengthy and involves multiple terms, but it can be found in Perdew et

al. [129].

Other types of non-empirical density functional approximations include meta-GGAs,

hybrid functionals, range-separated functionals [130, 131, 132]. These approxima-

tions are widely used in materials science, chemistry and physics to study a variety of
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systems, ranging from molecules to solids and surfaces.

2.1.5 Tools for ab initio calculations

To perform ab initio calculations, specialized software tools that can handle quantum

mechanical calculations are required. The most commonly used tools for ab initio

calculations are ;

• Quantum Espresso

Quantum Espresso (QE) [133, 134] is an open source package. QE contains

implementations of Density Functional Perturbation Theory (DFPT). One has

to choose the correct pseudopotential for QE as there are different pseudopo-

tentials for the same element. One can use Quantum Espresso to calculate first

principles and also linear response calculations [135]. Since it is open source,

implementation of new methods can be quicker for QE.

• Vienna Ab initio Simulation Package (VASP)

VASP is a commercial code. Generally, it is faster than QE and ABINIT tools

as shown in some benchmark studies. There are well tested pseudopotential

library for VASP package. On the other hand, it uses third party packages for

density functional perturbation theory.

• MedeA

MedeA contains different software packages to perform wide range of calcula-

tions. It contains VASP with proper graphical user interface (GUI) to perform

DFT calculations. Moreover, Large-scale Atomic/Molecular Massively Par-

allel Simulator (LAMMPS), Grand Canonical Monte Carlo method for fluids

(GIBBS) and semi-emprical quantum chemisty method for fast property pre-

diction and screening (MOPAC) are some software features with proper GUIs

on MedeA. In this thesis, DFT calculations are performed with MedeA VASP

package [136].

Some other tools for DFT calculations can be listed as CASTEP [137], CPMD
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[138], ABINIT [139].

2.2 Basic Concepts of Continuum Mechanics

Fundamental concepts of continuum mechanics i.e, the basic relations of motion of

a body, geometric mappings, kinematics stress measures and balance laws are given

in this section. For further reading, one can use the following seminal books by

Holzapfel [140], Marsden & Hughes [141], Ogden [142]

Let the solid body at time t0 ∈ T ⊂ R+ be referred to as the reference configuration in

the three-dimensional Euclidean space B ⊂ R
3. The spatial or current configuration

of the body, B ⊂ R3, is defined at current time t ∈ T ⊂ R+. The material point

X ∈ B is mapped with the deformation map, ϕt(X) onto the spatial point x ∈ S

Figure 2.1: The deformation gradient F is defined as a linear tangent map that trans-

forms the material tangent vector, T ∈ TXB onto the spatial tangent vector, t ∈ TxS

ϕt(X) :







B × T → S

(X, t) 7→ x = ϕ(X, t),
(2.22)

The deformation map, ϕt(X) characterizes the motion of the solid body. In this

framework, the velocity and acceleration of the reference configuration are introduced

as

V t(X) := ∂tϕ(X, t) =
d

dt
ϕX(t), At(X) := ∂tV (X, t) =

d

dt
V X(t) (2.23)
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On the other hand, the spatial velocity and acceleration are defined

vt(x, t) := V t(X)◦ϕ−1
t (x), at(x, t) := At(X)◦ϕ−1

t (x) = ∂tv+∇xv·v (2.24)

The reference B and spatial S configurations are continuous three-dimensional mani-

folds parametrized locally in the neighborhoodsNX ⊂ B and Nx ⊂ S by overlapping

coordinate charts
{
XA
}

A=1,2,3
and {xa}a=1,2.3, respectively. The deformation gradi-

ent that maps tangents, T ∈ TXB of material curves onto tangents, t ∈ TxS of spatial

curves is defined as

F := ∇Xϕt(X) with F a
A =

∂xa

∂XA
, (2.25)

Basic mapping relations for line, area and volume mapping can be defined as follows,

dx = F dX, da = cof FdA, dv = J dV (2.26)

with infinitesimal reference line, area, volume elements dX, dA, dV ∈ B and related

spatial elements dx, da, dv ∈ S. J, determinant of the deformations gradient, maps

infinitesimal reference volume element onto the associated spatial volume element,

i.e, J := detF > 0. The cofactor, cof[F ] := JF−T of the deformation gradient,

F maps area vectors of material surfaces onto area vectors of the associated spatial

surfaces. Similarly, the deformation gradient, F maps material line elements onto its

spatial counterpart as given in equation 2.26.

To furnish coordinate systems in both Lagrangian or reference and Eulerian or spatial

configurations at hand, the two manifolds regarding to material, B and spatial, S states

equipped with the symmetric and positive definite covariant reference G and spatial

g metric tensors. The metric tensors reduce to the Kronecker deltas, i.e, GAB = δAB

and gab = δab in the Cartesian coordinate system. The metric tensors link the tangent

and co-tangent spaces
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Figure 2.2: a) Push-forward, b) Pull-back operations

G :







TXB → T ∗
XB

T 7→ N = GT
, g :







TXS → T ∗
XS

t 7→ n = gt
(2.27)

Figure 2.2 shows the push forward, ϕ∗(•) operations on the covariant metric G and

the contravariant inverse metric G−1 producing the left Cauchy-Green tensor b along

with its inverse b−1 = c

b := ϕ∗

(
G−1

)
= FG−1F T,

c = b−1 := ϕ∗(G) = F−TGF−1,
(2.28)

Similarly, the pull-back, ϕ∗(•) operations on the covariant metric g and the con-

travariant inverse metric g−1 leading to right Cauchy-Green tensor C along with its

inverse C−1

C := ϕ∗(g) = F TgF

C−1 := ϕ∗
(
g−1
)
= F−1g−1F−T

(2.29)

2.2.1 Stress measures

Lagrangian and Eulerian tangent vectors have been given in Figure 2.4 such that the

vector t ∈ TxS is the true traction action on the deformed surface da of ∂PS . The

Cauchy stress theorem postulates
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Figure 2.3: Lagrangian T̃ (X, t;N) ∈ TXB and Eulerian t(x, t;n) ∈ TxS traction

vectors on cut out parts of reference and deformed surfaces ∂PB and ∂PS , respec-

tively.

t(x, t;n) := σ(x, t)n with ta = σabnb (2.30)

with the spatial traction vector t ∈ TxS and spatial normal vector n ∈ T ∗
xS of the

surface. The Cauchy stress tensor is dependent on the actual force and the actual

deformed area. Kirchoff stress tensor, τ , and first Piola-Kirchoff stress tensor, P are

defined as follows

τ := Jσ (2.31)

P = JσF−T = τF−T (2.32)

Similarly, the relation between material traction vector T̃ and material normal vector

N is established by the second Piola-Kirchoff stress tensor S which is a symmetric,

purely Lagrangian object

T̃ (X, t;N) = S(X, t)N (2.33)

The mappings between tangential and cotangential spaces of Lagrangian and Eule-

rian manifolds for stress tensors are summarized in Figure 2.4. First Piola-Kirchoff,
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Figure 2.4: The push-forward and pull-back operations on stress measures corre-

sponding to their covariant and contravariant representations.

second Piola-Kirchoff and Kirchoff stress tensors can be related with each other from

the pull-back, push forward relations as summarized in Figure 2.4

S := F−1P

S := F−1τF−T
(2.34)

τ := PF T

τ := FSF T
(2.35)

or first Piola-Kirchoff stress tensor can also be represented in terms of Kirchoff stress

P = τF−T or Cauchy stress tensor, P = JσF −T. The first-Piola Kirchoff stress

tensor measures the stress with regard to the undeformed cut surface, ∂PB

2.2.2 Stress power and dual variables

The Kirchoff stress tensor τ and the second Piola-Kirchoff stress tensor S are dual

objects just as dual Eulerian metrics g and C. Dual geometric objects in Eulerian and

Lagrangian configurations that characterize strain and stress are (S,C) and (τ , g).

In stress power, these dualities are used as work-conjugate objects. In the reference
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configuration, the stress power per unit volume is defined as P := S : Ė can be

reformulated with Ė = 1
2
Ċ as

P := S :
1

2
Ċ (2.36)

The rate of right Cauchy Green tensor C can be given in terms of the Green strain

rate tensor Ė. The push forward of the equation 2.36 results in Eulerian configuration

with the dual variables of the Kirchoff stress tensor τ and Eulerian metric g.

P := τ : £ ve = τ :
1

2
£ vg = τ : d (2.37)

Lie-derivative £v defines the Oldroyd-type rates of the Eulerian tensor fields in three

steps

• Pull back of the Eulerian object to the time-invariant Lagrangian setting

• Material time derivation of the Lagrangian object

• Push forward the resulting quantity to the Eulerian configuration

For example, the application of the Lie-derivative to the current metric g results in

the rate of deformation tensor, d

£ vg := F−T d

dt

(
F TgF

)
F−1 = gl + lTg = 2 sym(gl) = 2d (2.38)

with the definition of spatial velocity gradient, l := ∇xv = Ḟ F−1. Two-point,

Lagrangian and Eulerian geometric settings for the stress power can be expressed as

P := gP̃ : Ḟ = S :
1

2
Ċ = τ :

1

2
£ vg (2.39)
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2.2.3 Balance laws

Balance of mass, balance of linear and angular momentum, first and second law of

thermodynamics are the fundamental axioms of thermomechanics for the primary

field variables. A defined special volume PS is enclosed by a smooth boundary ∂PS

as given in Figure 2.3. The balance relations are determined according to the volu-

metric source and the surface flux terms by considering the temporal change of the

related quantity.

Balance of mass

A fundamental physical property of any material is mass. The mass density of refer-

ential and spatial configurations can be defined as ρ0(X) and ρ(x, t). Conservation of

the mass states that the total mass of special volume PS remains constant that requires

d

dt
M :=

d

dt

∫

PS

ρ(x, t)dv =
d

dt

∫

PB

Jρ(x, t)dV =
d

dt

∫

PB

ρ0(X, t)dV = 0

(2.40)

This yields the local Eulerian form of mass balance equation

ρ̇+ ρ div v = 0 and Jρ(x, t) = ρ0(X, t) (2.41)

Balance of linear momentum

The linear momentum, I of the part PS is given by I =
∫

PS
ρv(x, t)dv and the

resulting forces i.e, the sum of volume specific body forces and the forces on the

surface
∫

PS
ργ(x, t)dv +

∫

∂PS
t(x, t;n)da. The conservation of linear momentum

postulates that

d

dt
I :=

d

dt

∫

PS

ρv(x, t)dv =

∫

PS

ργ(x, t)dv +

∫

∂PS

t(x, t;n)da (2.42)

By using the mass balance equation, the Cauchy stress theorem and Gaussian integral
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theorem on the surface term, the Eulerian form ofthe linear momentum balance is

obtained as

ρv̇ = ργ + divσ (2.43)

and the Lagrangian form of this equation yields

ρ0V̇ = ρ0γ0 +DivP (2.44)

with the material body force given per unit mass, γ0(X, t) := γ(x, t) ◦ϕt(X).

Balance of angular momentum

Balance of angular momentum is another fundamental principle of continuum me-

chanics. The resultant moment of the forces acting on PS with respect to the origin

described by the position vector x is given as

M 0 =

∫

∂PS

x× ργdv +

∫

∂PS

x× tda. (2.45)

The conservation of angular momentum states that the change in time of the angular

momentum of the body part equals the couple M 0

d

dt

∫

PS

x× ρvdv = M 0 =

∫

PS

x× ργdv +

∫

∂PS

x× tda (2.46)

and by inserting the mass balance equaiton with Cauchy stress and Gaussian integral

theorems lead to

∫

PS

x× (ρv̇ − ργ − divσ)dv = 0 (2.47)

The above equation shows that the Cauchy stress tensor is symmetric. Thus, the

balance of angular momentum provides that
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σ = σT (2.48)

Note that the other stress measures of τ and S satisfy the symmetry relation except

the first Piola-Kirchoff stress P which is a non-symmetric tensor, i.e,

τ = τT, PF T = FP T, S = ST (2.49)

First law of thermodynamics

First law of thermodynamics is often referred as balance of energy that describes the

evolution of the internal energy in a system. Total energy in a system is defined as the

sum of the kinetic energy K and the internal energy, E as given below

K :=

∫

PS

1

2
ρv · vb dv and E :=

∫

PS

ρe dv (2.50)

with the internal energy per unit mass e(x, t) and the spatial velocity covector vb =

gv.

The mechanical, P and thermal power, Q is given by

P :=

∫

PS

ργ · vb dv +

∫

∂PS

t · vb da (2.51)

Q :=

∫

PS

ρr dv −
∫

∂PS

q · nda (2.52)

where r(x, t) is the mass specific heat source and q(x, t) the surface heat flux vector

together with the unit normal outward, n

The global form of the first law of thermodynamics states that time rate of change of

total energy must be balanced with the mechanical power and thermal heating of the

body

d

dt
(K + E) = P +Q (2.53)
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By inserting the previous relations and with the use of balance of mass and linear

momentum in conjunction with the Cauchy stress and Gaussian integral theorem, the

spatial form is achieved as

ρė = σ : (gl) + ρr − div q (2.54)

whereas the Lagrangian form of the balance of energy is given as

ė0 = P : Ḟ +R0 −Div[Q] (2.55)

with R0(X, t) = r(x, t) ◦ϕt(X)

Second law of thermodynamics

The second law of thermodynamics serves as major regulation on constitutive rela-

tions of elastic and dissipative mechanisms on a thermodynamical system in which

the exchange of energy with its exterior is existed via heat, work done by the body

and contact forces acting on that body. Entropy which is a measure of disorder. The

total entropy in a system is defined with specific entropy, η(x, t)

H :=

∫

PS

ρηdv (2.56)

External sources can cause an irreversible change of entropy. On the other hand,

the dissipative processes such as fracture evolution, plastic deformation etc result in

irreversible change of the entropy. The fundamental statement of the second law of

thermodynamics is that the disorder in a system tends to increase such that net entropy

production is always non-negative as given in 2.57 with the integration of the mass

specific entropy production, γ(x, t)

Γ :=

∫

PS

ργdv ≥ 0. (2.57)

The quantity of heat received per unit temperature is given by
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S :=

∫

PS

ρr

θ
dv −

∫

∂PS

q · n
θ

da (2.58)

So, the entropy imbalance is defined as

Γ :=
d

dt
H− S ≥ 0 (2.59)

which can be rewritten as

∫

PS

ργdv :=
d

dt

∫

PS

ρηdv −
∫

PS

ρr

θ
dv +

∫

∂PS

q · n
θ

da ≥ 0 (2.60)

Spatial local form of the entropy imbalance is achieved as

ργ = ρη̇ − ρ
r

θ
+ div

(q

θ

)

= ρη̇ − ρ
r

θ
+

1

θ
div q − 1

θ2
q · ∇xθ ≥ 0 (2.61)

This inequality can also be written in the form of Clausius-Duhem inequality

ρη̇ ≥ ρ
r

θ
− 1

θ
div q +

1

θ2
q · ∇xθ, (2.62)

for which the material local form is obtained as

ρ0η̇ ≥ ρ0
R

θ
− 1

θ
DivQ+

1

θ2
Q · ∇Xθ (2.63)

The entropy production in 2.61 with absolute temperature θ results in spatial dissipa-

tion

D := ργθ ≥ 0 (2.64)

with the local (Clausius-Planck inequality) and conductive parts, i.e,

Dloc := ρη̇θ − (ρr − div q) ≥ 0 (2.65)
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Dcon := −1

θ
q · ∇xθ = −1

θ
Q · ∇Xθ ≥ 0 (2.66)
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CHAPTER 3

DENSITY FUNCTIONAL THEORY

In this chapter, the results of a comprehensive study covering thermo-elastic mate-

rial properties of various semiconductors from III-V and II-VI groups are provided

by using ab-initio DFT simulations. Due to computationally demanding nature of

DFT simulations, different simulation parameters such as supercell size, strain de-

pendency of elastic properties are discussed on III-V and II-VI semiconductors. GaSb

and InSb are commonly used III-V compounds in opto-electronic devices. Tempera-

ture dependent elastic and thermal properties of these materials are obtained from 1K

to 1000K via DFT. Moreover, binary compounds of CdTe, HgTe, ZnTe from II-VI

groups are also investigated to obtain thermo-elastic properties from 1K to 600K. To

use computational power more efficiently, the highest temperature of II-VI semicon-

ductor compound simulations is limited to 600K. In addition, processes such as sur-

face cleaning, sputtering, depositing, even epitaxial growth with MOCVD on CdZnTe

material can be performed below this temperature limit [143, 144]. Thermo-elastic

and opto-electronic properties of CdZnTe ternary compound which is widely used

for IR sensor, solar cell and X-ray detector applications are also investigated by DFT

simulations. The obtained results for all of the studied materials are compared with

available experimental data for different temperatures and good coherence is observed

for all of the thermo-elastic material parameters.

3.1 Theory, Method and Computational Details

Computational details for DFT calculations of III-V compounds and II-VI compounds

are given in this section. The investigated materials from III-V group are GaSb
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and InSb whereas from II-VI group compounds, DFT calculations are performed on

CdTe, HgTe, ZnTe binaries and CdZnTe ternary compound. Supercell size effect on

temperature dependent elastic constants is determined on GaSb. In all III-V group

calculations, combined strain levels of 0.02, 0.01, 0.005, 0.001 are applied to obtain

temperature dependent elastic constants. In the calculations of II-VI group, a single

supercell size is used. However, strain dependency of second order elastic constants

is investigated for binaries of this group materials. Due to limited computational

power and time, strain dependence of second order elastic constants of CdZnTe is not

investigated.

3.1.1 III-V compounds

In this section, the computational details for DFT calculations of GaSb and InSb are

provided. Temperature-dependent elastic constants (TDECs) of materials are often

calculated using either the quasi-static approximation (QSA) or the quasi-harmonic

approximation (QHA) [145, 146, 12, 147, 148]. In the QSA, the effect of temperature

is assumed to be limited to the expansion of the lattice. For a given temperature θ, the

elastic constants are calculated as the second derivatives of the total DFT ground state

energy with respect to strain at a lattice constant that minimizes the Helmholtz free

energy. Herein, the vibrational entropy is ignored. In the QHA, the Helmholtz free

energy is written as the sum of the DFT ground state energy and the vibrational free

energy. The TDECs are then calculated as second derivatives of the full free energy at

the appropriate lattice constant. Since it involves the calculation of a sufficient num-

ber of phonon modes at each lattice constant and strain value, QHA is significantly

costlier than QSA. However, its superior accuracy, especially at higher temperatures,

compensates the computational cost. The elements of the fourth order elastic tensor

Cijkl are defined as

Cijkl =

(
∂σij
∂ǫkl

)

ǫ=0

(3.1)

where σij and ǫkl are the elements of the stress and strain tensors, respectively. Since

the stress and strain are conjugate pairs, the elastic tensor can also be written through

the internal energy U , using the relation

Cijkl =
1

Ω

(
∂2U

∂ǫij∂ǫkl

)

ǫ=0

, (3.2)
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where Ω represents the volume of the reference system. At a finite temperature, in the

abscence of external pressure, the internal energy can be replaced by the Helmholtz

free energy

Cijkl =
1

Ω

(
∂2ψ

∂ǫij∂ǫkl

)

ǫ=0

, (3.3)

where ψ is defined as

ψ = U + Fvib. (3.4)

Here Fvib is the vibrational contribution to the free energy dependent on the strain ǫ

and the absolute temperature θ. In terms of the phonon frequencies of the crystal, the

vibrational free energy is given as

Fvib(ǫ, θ) =
1

2N

∑

qη

~ωη(q, ǫ) +
kBθ

N

∑

qη

ln

[

1− exp

(

−~ωη(q, ǫ)

kBθ

)]

. (3.5)

Here N represents the irreducible unit cells in the crystal, q is the phonon wavevector

and η is the polarization of the phonon mode. The sum runs over the wavevectors

in the first Brillouin zone and are limited to a discrete grid in our computational

treatment. The internal energy is replaced by the total ground state DFT energy for

each strain mode. Electronic contribution to the free energy [149], which is usually

treated within Mermin’s theorem [150] is omitted. This contribution for the materials

of interest and the temperature ranges studied here has been identified to be within a

few per cent [16, 151, 12]. In addition, the QHA approximation has been identified

to be accurate enough for temperatures below 1000 K instead of the full anharmonic

treatment [152].

To understand the effect of different exchange-correlation functionals, all calcula-

tions are performed using both the local density approximation (LDA) [153] and the

PBEsol [154] exchange-correlation functional frameworks using the Vienna Ab initio

Simulation Package (VASP) [155]. Structural optimization of the materials are con-

ducted using the conjugate gradient algorithm until all forces are under a threshold

of 0.001 eV/Å. Self-consistent field calculations are conducted using the RMM-DIIS

algorithm with a total energy threshold of 10−7 eV between consecutive steps. A

threshold of 10−8 eV is also used in a set of test calculations to ensure total conver-

gence. The difference between these limits is not more than %0.21 for bulk modulus,

shear modulus and Poisson’s ratio. A planewave cutoff of 500 eV is used to truncate

the basis expansion while a Monkhorst-Pack [156] grid of 11× 11× 11 k-points are
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used to conduct Brillouin zone integrations. Gaussian smearing is used with a smear-

ing width of 0.05 eV. Following the structural relaxation, phonon calculations are per-

formed using finite differences to obtain Fvib as seen in Equation 3.5. The accuracy

of the phonon dispersion is monitored by making sure that all phonon modes are real.

The zero-temperature phonon dispersion is reported for both materials in Figure 3.2.

As expected, the dispersion relations are very similar except for the acoustic-optic

branch gap, which is smaller in InSb due to the similarity in the masses of In and Sb.

At each temperature, the Helmholtz free energy is calculated at seven evenly spaced

values between (and including) 0.88a0-1.12a0 for GaSb and 0.98a0-1.04a0 for InSb,

where a0 is the zero temperature equilibrium lattice constant. The Helmholtz free

energy is then fit with a Murnaghan equation of state (EOS) [157] to determine the

equilibrium lattice constant, a(θ), at the temperature in question. After determining

total energies at seven different lattice volumes, the calculated total energies are fitted

with the Murnaghan EOS,

ET (V ) = ET (V0) +
B0V

B′
0

(

(V0/V )
B′

0

B′
0 − 1

+ 1

)

− V0B0

B′
0 − 1

(3.6)

where V is the volume, B0 and B′
0 are the bulk modulus and the pressure derivative

of the bulk modulus at equilibrium volume V0. A representative Murnaghan EOS fit

[157] is provided with PBEsol approximation for GaSb in Figure 3.1. Only temper-

atures of 1K, 300K and 500K are provided to simply observe lowest energy volume

points. These datapoints are nothing but providing lattice constants of GaSb material

at the lowest energy points for corresponding temperature. Then, the temperature-

dependent linear coefficient of thermal expansion is calculated by using

α =
1

a(θ)

da(θ)

dθ
. (3.7)

as a readily available by-product. Once the equilibrium lattice constant is obtained

for a given temperature θ, the stress values are calculated regarding to applied strains

to obtain the elastic constants [158, 159]. Heat capacity determinations are equal for

constant pressure and constant volume within the harmonic approximation. In Debye

approximation, the specific heat capacity is given as follows [160]
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Figure 3.1: Murnaghan EOS fit of volume dependent total Helmholtz free energy for

GaSb with PBEsol approximation
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Figure 3.2: Phonon dispersion plots for GaSb and InSb, respectively.

CV (θ) = 9qkB

(
θ

θD

)3 ∫ xD

0

x4
exp x

(exp x− 1)2
dx and xD =

θD
θ

(3.8)

In order to ensure convergence with respect to the number of phonon modes included,

elastic constants of GaSb are calculated in supercell sizes of 2 × 2 × 2 and 3 × 3 ×
3. For InSb, a 2 × 2 × 2 supercell is considered. The numerical derivatives are

calculated using a much finer grid of 27 × 27 × 27 k-points and at four different

values of ǫ, namely 0.02, 0.01, 0.005, 0.001. This amounts to a total of 13 total

energy calculations at each temperature, 1 for the unstrained system at the equilibrium

lattice constant determined at that temperature and 3 strained systems for each of the

4 strain levels. Using this method, elastic properties of GaSb, InSb are obtained in

the temperature range of 1-1000K.
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In addition to the elastic constants and the thermal expansion coefficients, several

other related material properties such as heat capacity, Vicker’s hardness, Poisson

ratio are important.

The Vicker’s hardness using the semiempirical expression developed by Chen [161]

which is given as follows.

Hv = 2(κ2µ)0.585 − 3, (3.9)

Bulk modulus, B, is the response to a uniform compression so applying the strain

field of e = εxx = εyy = εzz allows the computation of B with the relation

U =
Be2

2
(3.10)

where U represents the energy change due to applied strain field. Similarly, the shear

modulus can be determined using the strain field of e = εzz = −2εxx = −2εyy with

the equation of

U =
3Ge2

2
(3.11)

where G is the shear modulus. For cubic symmetry, the Voigt and Reuss approxima-

tions for the shear modulus are defined as

GV oigt =
1

5
(C11 − C12 + 3C44)

GReuss =
5

4(S11 − S12) + 3S44
,

(3.12)

where S is the compliance matrix which is nothing but the inverse matrix to C.

Finally, Hill shear modulus is defined as the arithmetic mean

GHill =
1

2
(GV oigt +GReuss) (3.13)

Once Bulk modulus, B, and shear modulus, G, are defined, elastic modulus, E, and

Poisson’s ratio ν can be determined by standard formulae of elasticity.

ν =
1

2

B − 2
3
G

2B + 1
3
G

and E =
9B

1 + 3B
G

(3.14)

3.1.2 II-VI compounds

Binary compounds of CdTe, HgTe, ZnTe from II-VI group are investigated with DFT

studies to obtain temperature dependent thermal and elastic material properties from
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1K to 600K. In addition, a representative case study is performed on CdZnTe ternary

alloy that covers second order elastic constants as well as opto-electronic material

properties, i.e, refractive index, energy bandgap, extinction in the same temperature

interval. Due to requirement of greater computational power and time for ternary al-

loys, only CdZnTe material is investigated in this manner.

The given procedure in 3.1.1 is also followed for binary compounds of II-VI group

with slight differences. QHA is still used for II-VI group materials with both of

the pseudopotentials, i.e, LDA and PBEsol. Force convergence calculations are per-

formed with conjugate gradient algorithm with a threshold of 0.001 eV/Å in structural

optimizations. Self-consistent field calculations are performed with a total energy

threshold of 10−7 eV between consecutive steps. Planewave cutoff energy of 500 eV

is still valid with a Monkhorst-Pack grid of 27 × 27 × 27 k-points for conducting

Brillouin zone integrations. Gaussian smearing width is kept constant for all II-VI

group calculations with a value of 0.05 eV. The effect of supercell size is determined

on GaSb and InSb materials so only supercell size of 2 × 2 × 2 is used on II-VI

group binaries to use computational power efficiently. Strain dependency of elastic

constants is investigated for XTe binary compounds (X = Hg,Cd, Zn) by applying

discrete strain levels of %2, %0.5, %0.1 in the temperature range of 5-600K. The

procedure of analysis for lattice constant and thermal expansion coefficient determi-

nations are kept the same with the analysis procedure of GaSb and InSb materials.

Elastic constants of CdZnTe are calculated at one strain level, i.e, ǫ = 0.001. When

the elastic constants are reported for disordered cubic systems which is the case for

our ternary compound, CdZnTe only,the effective SOECs are defined via an average

of coefficients for a simplified, anisotropic cubic system as follows,

C11 =
C11 + C22 + C33

3
, S11 =

S11 + S22 + S33

3

C12 =
C23 + C13 + C12

3
, S12 =

S23 + S13 + S12

3

C44 =
C44 + C55 + C66

3
, S44 =

S44 + S55 + S66

3

(3.15)

where the effective elastic constants and compliances are represented with C ij and

Skl. In this case, shear modulus in Voigt and Reuss approximations in (3.12) is still

valid with the effective coefficients.
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In order to calculate the temperature-dependent energy band gap of the CdZnTe,

the equilibrium lattice constants are extracted from the QHA calculations, then the

electron-phonon interaction is introduced in the method proposed by Zacharias and

Giustino [162] by displacing atoms from their ground state position according to the

vibrational spectrum by 0.015 Angstrom for temperatures of 5 K, 20 K, 40 K, 80 K,

100 K, 150 K, 200 K, 250 K, and 300 K. The displacement is performed within a to-

tal of 2 steps by the PBEsol approximation and a 277 eV cut-off for plane-waves and

0.154 × 0.152 × 0.037 1/Angstrom3 k-point spacing with an electronic convergence

of 10−7eV. The band gaps are calculated from the resulting structure of the one-shot

displacement pattern by employing modified Becke and Johnson LDA (MBJLDA)

[163] functional to have a more accurate value compared to standard LDA or GGA

approximations. The temperature-dependent optical properties are only calculated

within the PBEsol approximation due to the high computational cost with 3000 grid

points and 0.1 shift parameter to have more accurate dielectric functions.

3.2 Numerical Results

3.2.1 III-V compounds

Temperature-dependent lattice constants, thermal expansion coefficients, and elastic

constants of bulk GaSb and InSb are computed for a wide range of temperatures with

the quasi-harmonic approximation (QHA) based DFT calculations.

Figure 3.3 displays the temperature-dependent lattice constant and coefficient of ther-

mal expansion of GaSb and InSb. The numerical values are compared with the avail-

able experimental data of Nilsen et al. [43] and Dutta et al. [164]. Both LDA and

PBEsol show good agreement with the experimental lattice constant data. As often

documented in the literature [165, 166], PBEsol slightly overestimates the lattice con-

stant. The calculated linear expansion coefficient also displays excellent agreement

with experimental data for GaSb and InSb in the range of experimental data. The co-

efficient of thermal expansion of InSb from 2K to 40K is determined experimentally
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by Sparks in 1967 [167] which shows good agreement with both LDA and PBEsol

calculations. Breivik et al. [51] determined lattice constant and coefficient of thermal

expansion of InSb between 32°C and 325°C and provided first and second order poly-

nomial fits, respectively which provides also excellent coherence with our results but

shows clear difference in magnitudes. The discrepancies in lattice constant calcula-

tions of InSb have been previously reported. For III-V compounds such as InAs, InSb,

Lindsay et al. [168] report an error of 1.0%-1.5% DFT calculations and experimental

values of the lattice constant. Mohammed et al. [169] performed DFT calculations

on InSb and InAs and determined the lattice constant of these compounds with an

error of 2.5% with respect to the experimental results given by Landolt et al.[170].

Finally, the InSb linear expansion coefficient was underestimated by at least a factor

of two in the work by Miranda et al. [171]. The three TDECs relevant to the cubic

lattice, namely C11, C12, and C44 are displayed for the two materials in Figure 3.4.

The dependence on the supercell size for GaSb resulted in a slight difference between

2 × 2 × 2 and 3 × 3 × 3. This difference is observed to increase as temperature in-

creases, but remains below 2% throughout the full temperature range. Both the LDA

and the PBEsol functionals slightly underestimate the experimental values. However,

the errors remain small. The maximum errors occur for all of the cases at 0K and are

displayed in Table 3.1. Overall, LDA provides a better representation of the second-

order elastic coefficients, which can be expected due to the softening of the bonds in

the PBEsol approximation.

The variation of the elastic constants and thermal expansion coefficient with temper-

ature is important to predict developed stresses on materials accurately. For GaSb,

LDA results showed that C11, C12 drop 5.37% and 10.94% in the given temperature

regime, respectively. C44 shows a relatively stable results in the given temperature

interval with 2.78% decrease. In contrast, LDA provides C11 and C12 in the same

temperature interval such that drop of 10.04% and 18.90% observed for InSb ma-

terial. For InSb, C44 again shows a small drop with 2.68%. It can be concluded

that thermo-mechanical stress predictions by using temperature dependent material

properties can provide higher accuracy difference for InSb material in comparison to

GaSb due to effect of temperature on second order elastic constans is more obvious

for InSb material. PBEsol provides very similar differences in temperature regarding
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Figure 3.3: (a, b) Calculated temperature-dependent lattice constant of GaSb (left)

and InSb (right) with PBEsol (blue), LDA (red). Dotted lines represent the experi-

mental data from Nilsen et al. [43] and Breivik et al. [51] for GaSb and InSb, respec-

tively, performed by X-ray diffraction measurements. (c, d) Coefficient of thermal

expansion (CTE) of GaSb and InSb is provided by using LDA (red) and PBEsol

(blue) pseudopotentials. Experimental result of thermal expansion coefficient (green)

for GaSb and InSb are provided by Dutta et al. [164] and Cai and Wei [52] (green),

Breivik et al. [51] (orange), Spark and Swenson [167] (purple), respectively.
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Figure 3.4: (a, b, c, d, e, f) Temperature-dependent second order elastic constants,

C11, C12, C44, of GaSb (left) and InSb (right) are provided by using LDA (red) and

PBEsol (blue). The supercell size of 3× 3× 3 for LDA and PBEsol is only provided

for GaSb.There is no significant difference between the two supercell sizes. So, the

supercell size of 2× 2× 2 is given only for InSb. Experimental data (purple) is taken

from Boyle [172] and Slutsky [173].
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Table 3.1: Maximum error between DFT results and the experiments in SOEC.

GaSb

Pseudopotential C11 C12 C44

LDA 6.62% 7.00% 5.28%

PBEsol 12.73% 14.48% 11.58%

InSb

Pseudopotential C11 C12 C44

LDA 6.27% 6.84% 6.00%

PBEsol 13.37% 15.10% 12.07%

to second order elastic constants.

The Poisson ratio, Vicker’s hardness and the heat capacity of the two materials are

shown in Figure 3.5. InSb was found to be about half as hard as GaSb at low tem-

peratures while both materials display sharply increasing hardness with increasing

temperature. At 1000K, the hardness value was found to be about 10.4% and 37.3%

larger than the 1K value for GaSb and InSb, respectively. Interestingly, the PBEsol

and LDA values display different rates of increase at higher temperatures. In fact, the

underestimating trend of PBEsol is reversed as a result of a crossover at high temper-

atures. Obtaining an increase of hardness values with increasing temperature may be

caused by decreasing trend of shear modulus, µ which is given in the denominator of

equation 3.9. The decreasing trend of shear modulus is also given in Figure 5.8

Poisson’s ratio is expected to decrease with increasing temperature. In fact, a de-

creasing trend is observed for both materials in Figure 3.5. The heat capacity values

of GaSb and InSb are only calculated using LDA are also shown in Figure 3.5 (e) and

(f), respectively. For both materials, Passler [174] defined heat capacities by means of

a refined version of low-to-high temperature interpolation formula of non-Debye type.

In this study, it is also provided analytical descriptions of anharmonicity related dif-

ferences of isobaric and isochoric parts of heat capacities. Our results show excellent

coherence from 1K to 300K. For higher temperatures, the results of Passler follows a

slightly increasing trend whereas our results are constant, as expected. Pashinkin et

48



GaSb InSb

LDALDA

LDA LDA

LDA LDA

PBEsolPBEsol

PBEsol PBEsol

[174] [174]

Po
is

so
n’

s
ra

tio

Po
is

so
n’

s
ra

tio
V

ic
ke

rs
ha

rd
ne

ss
[G

Pa
]

V
ic

ke
rs

ha
rd

ne
ss

[G
Pa

]

H
ea

tc
ap

ac
ity

[J
/m

ol
·
K

]

H
ea

tc
ap

ac
ity

[J
/m

ol
·
K

]

Temperature [K] Temperature [K]

Temperature [K]Temperature [K]

Temperature [K] Temperature [K]

3.5

3

2.7

2.4

6.4

6.2

6

5.8

5.6

60 60

45 45

30 30

15 15

0

0.245

0.24

0.235

0.23

0.225

0.29

0.28

0.27

0.26

0.250

0

0 00

0

0200

200

200 200

200

200400

400

400 400

400

400600

600

600 600

600

600800

800

800 800

800

8001000

1000

1000 1000

1000

1000

Figure 3.5: (a) Temperature-dependent Poisson’s ratio of GaSb is given with LDA

(blue) and PBEsol (orange). (b) Temperature-dependent Vicker’s hardness of GaSb

provided with LDA (blue) and PBEsol (orange). (c) Temperature-dependent Pois-

son’s ratio of InSb. (d) Temperature-dependent Vicker’s hardness of InSb. Both of

these are provided with LDA (blue) and PBEsol (orange). Heat capacity results of

DFT calculations for GaSb and InSb are given in (e) and (f), respectively.
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al. [175] provided experimental results of heat capacities of GaSb and InSb which are

measured by drop calorimetry. According to the results of this study, heat capacity of

GaSb and InSb at 300K is 48.70 J/mol.K and 49.29 J/mol.K respectively. Our DFT

results yield 48.04 J/mol.K for GaSb and 48.80J/mol.K for InSb. This amounts to an

error of only 1%.

III-V materials are widely used in high-performance optoelectronics applications be-

cause of having advantageous properties of direct bandgap, high electron mobility

and low exciton binding energy. GaSb and InSb materials are often exposed to large

temperature differences during fabrication processes or operation conditions of an op-

toelectronic device such as IR sensors. In this section, it is presented a complete set of

temperature-dependent thermo-elastic material properties for the two materials with

the QHA approximation using DFT. In addition, the obtained results are compared

with existing experimental and computational studies where possible. Specifically,

the calculated values for second-order elastic constants C11, C12, C44, elastic moduli,

Vickers hardness, Poisson’s ratio, isobaric heat capacity and the Lamé coefficients are

reported. The provided results are, overall, in very good agreement with experimental

values, in spite of the difficulties associated with the accurate measurement of these

values in a large temperature range.

The calculations are conducted making sure that the convergence is achieved with

respect to the relevant calculation parameters and two different approximations to

the exchange-correlation were used (LDA and PBEsol). The given results are in-

tended to serve as a reference for the variation of important elastic constants over

a large temperature change. These variations have been carefully quantified and re-

ported. To render the obtained results more versatile, an analytical expression for the

temperature-dependent free energy function is proposed that allows accurate predic-

tion of thermally and mechanicaly induced stresses for cubic symmetric GaSb and

InSb in Section 5.3. In addition, functional fits are provided to the Lamé coefficients,

which can now be extracted at any desired temperature.

50



3.2.2 II-VI compounds

In this part, an extensive numerical investigation is carried out in order to obtain

the theoretical limits of the thermoelastic properties of CdTe, HgTe, ZnTe, CdZnTe.

Achieved results are compared against the available experimental data and extend

their range to cover all relevant temperatures. Temperature dependent opto-electronic

material properties of CdZnTe ternary compound such as energy band-gap, refractive

index, extinction constant are also provided via ab initio DFT simulations. Temperature-

dependent lattice constants, thermal expansion coefficients and second order elastic

constants of these semiconductors are computed for a wide range of temperatures

with the quasi-harmonic approximation (QHA) based DFT calculations. Given equa-

tions for free energy, stress, Lamé parameters from equation 5.1 to 5.8 are also valid

for calculations of II-VI compounds.

Figure 3.6 displays the temperature-dependent lattice constant and coefficient of ther-

mal expansion of CdTe, HgTe and ZnTe. The numerical values are compared with

the available experimental data of Bagot et al. [77]. Both LDA and PBEsol fol-

low very similar trends with the experimental coefficient of thermal expansion data.

However, LDA provides better agreement with the experimental results for all three

binary compounds. As expected, both LDA and PBEsol lattice constants follow the

same trend as a function of temperature with LDA yielding smaller values.

Since the SOECs are determined through finite-difference based derivatives, the amount

of strain used may have an effect on the numerical values. To test this issue, strain

sensitivity of the SOECs of CdTe, ZnTe and HgTe are explored. Strain levels of 2%,

0.5% and 0.1% are applied and the results of SOECs are compared for the LDA and

the PBEsol approximation. In Figure 3.7, the LDA behaviour for C11 and C12 cal-

culations change visibly going from 0.5% to 2% with remarkably good agreement

with experiment for CdTe. However, the PBEsol approximation is almost insensitive

to strain change from 0.5% to 2%. Conversely, the PBEsol approximation remains

unaffected. Going from 0.1% to 0.5%, instead, values calculated within the PBEsol

approximation show a significant change. This interesting result indicates that differ-

ent levels of exchange-correlation approximations show different levels of sensitivity

to numerical displacements. In contrast, LDA and PBEsol approximations do not
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Figure 3.6: (a) Calculated temperature-dependent lattice constant of CdTe with

PBEsol (blue), LDA (red). (b) Coefficient of thermal expansion (CTE) of CdTe is

provided by using LDA (red) and PBEsol (blue) pseudopotentials. Experimental re-

sult of thermal expansion coefficient (green) for CdTe is taken from Bagot et al. [77].

(c) Calculated temperature-dependent lattice constant of HgTe with PBEsol (blue),

LDA (red). (d) Coefficient of thermal expansion of HgTe is provided by using LDA

(red) and PBEsol (blue). Experimental result of coefficient of thermal expansion of

HgTe is also provided by Bagot [77] (green). (e) Lattice constant of ZnTe is given

with PBEsol (blue), LDA (red). (f) Thermal expansion coefficient of ZnTe is pro-

vided with PBEsol (blue), LDA (red and compared with available experimental result

of Bagot et al. [77].
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Figure 3.7: Temperature-dependent second order elastic constants of CdTe are pro-

vided by using LDA (red) and PBEsol (blue) with 0.1% strain (left column), 0.5%

strain (middle column) and 2% strain (right column). Experimental data (purple) is

taken from Greenough and Palmer [176].

provide a behaviour change in terms of SOECs for ZnTe and HgTe as given in Fig-

ures 3.8 and 3.9, respectively. The calculated SOECs for ZnTe and HgTe remain

essentially insensitive to the various strains used in the test. For ZnTe, the experi-

mental data is available only at four different temperatures. The numerical results

shows good coherence in magnitude but the slope of second order elastic constants

with increasing temperatures is different for the applied strain limits. The amount of

distortion or strain is important while determining SOECs. If the applied strain value

is too small, changes in the derivatives of the total energy of the cell with respect to

distortions, i.e, the stress, may be too small to have good accuracy. On the other hand,

if the strain is too large, anharmonicity of the energy may be a problem in terms of

accurate determinations of SOECs.

SOECs calculated for a strain of 0.1% are reproduced all in one place for the three

materials in Figure 3.10, for ease of comparison. The expected downward trend of all
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Figure 3.8: Temperature-dependent second order elastic constants of ZnTe are pro-

vided by using LDA (red) and PBEsol (blue) with 0.1% strain (left column), 0.5%

strain (middle column) and 2% strain (right column). Experimental data (purple) is

taken from Lee [177].
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Figure 3.9: Temperature-dependent second order elastic constants of HgTe are pro-

vided by using LDA (red) and PBEsol (blue) with 0.1% strain (left column), 0.5%

strain (middle column) and 2% strain (right column). Experimental data (purple) is

taken from Cottam [76].
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elastic coefficients with increasing temperature are observed in all experimental and

DFT data presented here. Overall, all of the calculated values agree with experimental

findings, with slight but notably difference. In general, LDA and PBEsol represents

about a 10% bracket in which the available experimental results stay for the given

temperature range. The most significant difference is the slope of the elastic con-

stants, where the experimental elastic constants drop faster than the calculated ones.

The reason for this could be attributed to one or more of the effects omitted from our

quasiharmonic approach. The contribution of the electronic free energy (due to elec-

tronic entropy) is expected to be small, and therefore unlikely to cause this amount

of difference. Similarly, the anharmonic effects are omitted in all similar calculations

due to their minor contributions at these temperatures [178]. The conditions under

which the experimental measurements were taken could be different from our simu-

lated conditions. At higher temperatures, if the sound velocity exceeds the speed of

heat transfer, the elastic constants that are measured could be isentropic as opposed to

our isothermal values, which assume instant heat transfer [179]. Since the correction

to isothermal elastic constants to make them isentropic is linear in temperature with a

positive slope, this could potentially account for the difference.

Poisson ratio of the binary compounds of CdTe, HgTe, ZnTe are given in Figure 3.11.

Both LDA and PBEsol results show an identical decreasing trend with increasing

temperature with slightly different values. For HgTe, however, the difference between

the two approximations is very small, both essentially following the exact same graph.

Calculated heat capacity values of the binary compounds are also given in Figure

3.11. Although CdTe, ZnTe and HgTe show very similar characteristics with increas-

ing temperature in terms of heat capacity values, an increase up to 100K in Figure

3.11 (d, e, f) is observed with slightly different slopes. In Figure 3.11 (f), DFT results

of ZnTe agree with the experimental results of Gavrichev et al. [180, 181]. For HgTe

and CdTe, our calculated heat capacities agree with the available experimental results

within an error of 5%.[182, 183, 184, 185].

Due to the increased computational cost in CdZnTe ternary compound calculations,

the strain dependence of SOECs is not performed. Only PBEsol approximation is ap-
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Figure 3.10: (a, d, g) Temperature-dependent second order elastic constants of CdTe

are provided by using LDA (red) and PBEsol (blue) with the supercell size of 2×2×2.

Experimental data (purple) is taken from Greenough and Palmer [176]. (b, e, h)

For HgTe, the second order elastic constants are provided by using LDA (red) and

PBEsol (blue). Experimental data is taken from Cottam and Saunders [76] (green).

(c, f, i) Second order elastic constants of ZnTe are provided with LDA and PBEsol.

Experimental results of Lee [177] is also provided. LDA estimates approximately

10% larger values of elastic constants. A strain value of 0.001 is used to generate

these results.
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Figure 3.11: (a, b, c) Poisson ratio of CdTe, HgTe and ZnTe in the temperature range

from 1K to 600K. (d, e, f) Temperature dependent heat capacity, Cv values of CdTe,

HgTe and ZnTe are given in the same temperature interval.

plied on CdZnTe material. C11, C12 and C44 results for CdZnTe material are given in

Figure 3.12 (a, b, c). There is a slight uptrend from 5K to 80K, then a clear downtrend

from 80K to 600K in C11, C12 results. Similarly to the binary compounds, C44 shows

very little variation as a function of temperature for CdZnTe. Temperature-dependent

second order elastic constants of Cd1−xZnxTe with x = 0.04 was investigated by

Queheillalt and Wadley [186] by a laser-based ultrasonic technique. Second-order

poynomial fits of the provided experimental results are given in Figure 3.12 (a, b,

c). The experimental results of C11, C12 and C44 show a downtrend with increasing

temperature from 273K to 600K. The behavior of CdZnTe exhibits comparable trends

with changing temperature, experimental error margins and potential sources of er-

rors to other investigated materials. The discourse presented for binary compounds is

also applicable to CdZnTe.

In Figure 3.12 (d, e, f), Poisson ratio, Vicker’s hardness and heat capacity results of

DFT are shown and compared with the available experimental data [187, 188, 189].

In spite of the scarcity of available data and differences in the composition, good

agreement with experimental work is observed.

Opto-electronic properties of the materials (absorption, quantum efficiency, etc.) greatly

impact the performance of the devices which are made of these semiconductor mate-

rials. In the literature, the temperature-dependent band gap of the binary compounds
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Figure 3.12: Second order elastic constants, a) C11, b) C12, c) C44, d) Poisson ratio,

e) Vicker’s hardness, f) Heat capacity values of CdZnTe

of XTe (X=Cd, Hg, Zn) were calculated by Tsay et al. [190]. Furthermore, the com-

positional effects on the CdZnTe energy band-gap are widely investigated in the lit-

erature such as the study given by Strzalkowski et. al. [191] where the growth of

the CdZnTe is performed by vertical Bridgman-Stockbarger method for different zinc

compositions. The composition of the crystal is determined with a method employing

SEM/EDS spectrum and the compositional dependence of energy band-gap is cal-

culated based on transmission spectroscopy spectra as 1.515 eV for Cd0.96Zn0.04Te.

Moger et al. [192] used the thermal co-evaporation method to grow CdZnTe thin films

and then analyzed the structural, morphological, and optical properties of these films

by several experimental techniques. The compositional dependence of the energy

band gap is extracted from seven data points ranging from x = 0 to 1 for CdxZn1−xTe

and is fitted with Vegard’s law [193, 194] which the energy band gap of Cd0.96Zn0.04Te

was calculated to be 1.539 eV at room temperature.

In order to evaluate the temperature-dependent behavior of these materials, the energy

band gap, refractive index, and extinction coefficient of the Cd0.96Zn0.04Te ternary

alloy are calculated with MBJLDA approximation for temperatures of 5 K, 20 K, 40
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Figure 3.13: Temperature dependent energy band-gap of CdZnTe

K, 80 K, 100 K, 150 K, 200 K, 250 K, and 300 K. The results (see Figure 3.13)

show that CdZnTe material has an energy band gap of 1.541 eV for 4% Zn content

at room temperature which is in good agreement with the experimental results of the

reference [192]. On the other hand, there is an energy difference of 26 meV compared

to the result of the reference [191]. This can be attributed to the inadequacy of the

conventional single-particle Kohn-Sham approach to represent excited states.

In Figure 3.13, the effect of the temperature on the energy band gap of CdZnTe is

given. The rate of change of the band gap as a function of temperature, −dEg/dT ,

is calculated as 1.2 × 10−4 eV/K. This value is lower than those of CdTe and ZnTe

[190] while the behavior is similar.

The calculated optical properties i.e, the refractive index and the extinction function

of the CdZnTe are given in Figure 3.14 and 3.15, respectively. The change in the

critical points of E0 and E1 are shown in both figures’ insets. The values of the E0

and E1 present a red shift with increasing temperature in the insets of Figure 3.14

and 3.15. The change of the E1 critical point energies with respect to temperature in

the 20 K to 300 K range is 20 meV which is similar but lower than that given in ref-

erence [190] (≈ 140 meV) for ZnTe. The room-temperature critical point energy of

E1 is determined from Figure 3.14 as 3.322 eV which is in good agreement with the

spectroscopic ellipsometry data (≈ 3.31 eV) taken from the molecular beam epitaxy

grown CdZnTe layer [195].
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Figure 3.14: Temperature dependent refractive index of CdZnTe

Figure 3.15: Temperature dependent extinction constant of CdZnTe
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II-VI materials, which are very important for such technologies as detector produc-

tion, are routinely produced nowadays with epitaxial methods. Ternary compounds

can be used to have desired material properties with proper combinations of materi-

als and growth techniques. Thermo-mechanical stresses and impurities in the crystal

structure may deteriorate crystal quality which is detrimental to the opto-electronic

properties. During the growth, microfabrication processes of semiconductors, and op-

eration conditions of opto-electronic devices may expose the material to significant

temperature gradients. A complete set of temperature-dependent thermo-elastic ma-

terial properties for XTe binary compounds (X=Cd, Hg, Zn) and the CdZnTe ternary

compound is given in this section. The lattice constant and thermal expansion coef-

ficient of the binary compounds are compared with the available experimental data

and a good overall agreement is observed with our numerical results. The energy

band gap, extinction, and refractive index of the zinc-blend ternary compound are

also reported for a temperature regime of 5-300K.

62



CHAPTER 4

EXPERIMENTAL STUDIES

In this chapter, conducted experimental studies are given. At first, nanoindentation

tests are conducted on GaSb material to check elastic modulus and hardness proper-

ties. Basically, two different types of GaSb material are used in these experiments

according to surface treatment of GaSb i.e, polished or non-polished. Then, a test

setup is designed to perform cryocooling experiments on GaSb and CdZnTe mate-

rials to observe crack initiation and propagation paths. Integrated assemblies of the

semiconductors with stainless steel cooled down to 77K and heated up to room tem-

perature. Developed crack patterns are observed at room temperature via Scanning

Electron Microscopy.

4.1 Nanoindentation

The use of nanoindentation is a valuable technique for obtaining mechanical proper-

ties of various materials, such as hardness, elasticity, and plasticity behaviors [196,

197, 198, 199]. The advancement of technology in building micro/nano-scale de-

vices has led to a need for more precise and accurate approaches to studying material

behavior. Continuum theories and traditional approaches may not be sufficient, as

scaling effects can dominate the material behavior, resulting in significant errors in

determining material properties at the macroscopic level. This section focuses on the

application of nanoindentation tests on GaSb material to provide a baseline for the

temperature-dependent thermo-elastic material properties that are obtained by Den-

sity Functional Theory (DFT) in this thesis. Nanoindentation is a standard engineer-

ing tool that is useful for characterizing the mechanical properties of materials at
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the nanoscale, including bulk materials, polymers, composites, and thin films. Other

techniques, such as Atomic Force Microscopy (AFM), micro-Raman Spectroscopy,

Scanning Electron Microscopy (SEM), and Focused Ion Beam (FIB) techniques, can

also be used to determine the deformation mechanism of various semiconductor ma-

terials like Ge, Si, GaSb, InP, and others.

A nanoindentation measurement is generally performed with a three sided Berkovich

indenter which sinks onto the sample surface. By recording the load, displacement

and time during the indentation, local mechanical properties of the material can be ac-

complished. Oliver-Pharr method [200] provided the procedure of determining elas-

tic modulus and hardness properties via nanoindentation with Berkovich indenter. It

became a commonly used method on different investigations, materials, applications.

[201, 202, 203].

In our experimental investigations, CSM Instrument Nanoindenter is used in Bilkent-

UNAM campus. It is equipped with diamond Berkovich indenter. Typical indentation

curve is given in Figure 4.1. Applied force during the indentation is not constant as

it seen in typical indentation curve. Loading and unloading sections of the process is

labeled as "a" and "b" in Figure 4.1, respectively. The tangent curve at the beginning

of the unloading section is defined as "c" at Fmax. The permanent indentation depth

after removal of the test force is defined as hp. The point of the tangent "c" to curve

"b" at maximum load with the indentation depth axis is defined as hr whereas the

depth of contact of the indenter with the sample at Fmax is given as hc. The maximum

indentation depth at corresponding load Fmax, is given as hmax.The contact stiffness

at Fmax and the geometric constant are represented with S and ε, respectively.

The extreme limits of the ideal mechanical behavior of materials can be defined as

ideal elastic and rigid plastic. In ideal elastic case, the loading and unloading curves

are coincident so that there does not exist permanent deformation at the end of un-

loading stage. In rigid plastic case, the induced deformation cannot be recovered so

that unloading stage will result in a vertical downward line starting at Fmax. However,

elasto-plastic behavior is widely observed on engineering materials whose character-

istic behavior is actually given in Figure 4.1.
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Figure 4.1: Typical indentation curve

Table 4.1: Geometrical parameters according to indenter shape

Indenter Shape m ε

Flat Punch 1.0 1.0000

Cone 2.0 0.7268

Sphere 1.5 0.7500

The maximum load and indentation depth of nanoindentation test are obtained from

the same acquisition point that is directly on curves. The formulations of geometrical

parameters in Figure 4.2 are given as,

hr = hmax −
Fmax

S
(4.1)

hc = hmax − ε.(hmax − hr) (4.2)

The permanent indentation depth after removal of the test force, hp, is determined

by linear fit inbetween %15 and %0 of the maximum load according to CSM In-

strument’s nanoindentation user guide document. The contact stiffness, S, can be

obtained by either tangent method or Oliver-Pharr method. In tangent method, S is
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Figure 4.2: Schematic of the indenter-sample contact

determined according to 4.3 by providing a tangent fit which starts at %95 of Fmax

and ends at %70 of Fmax.

S =
dF

dh
(4.3)

In Oliver-Pharr method, power law fit of unloading curve is used to determine stiff-

ness with equations 4.4, 4.5

F = Fmax.(
h− hp

hmax − hp
)m (4.4)

S = m.Fmax.(hmax − hp)
−1 (4.5)

The geometrical parameters m and ε are given with corresponding indenter shapes

in Table 5.2. For the elastic modulus, indenter tip properties should be provided in

calculations with the depth of contact of the indenter with the sample at maximum

load, hc. The indentation elastic modulus, EIT is given as

EIT =
1− v2s

1
Er

− 1−v2i
Ei

(4.6)

where νi is Poisson ratio of the indenter (0.07), Ei is the elastic modulus of indenter
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(1141 GPa) and νs is the Poisson ratio of the sample. Er is reduced modulus of the

indentation contact

Er =

√
π · S

2 · β ·
√
Ap (hc)

(4.7)

where β is shape dependent geometric factor and Ap(hc) is the theoretical projected

contact area. Standart measurement of hardness, HV is dependent on maximum load

and developed contact area, Ac(hc) as given in 4.8.

HV =
Fmax

9, 81.Ac(hc)
(4.8)

4.1.1 Test results on GaSb

Elastic modulus and hardness of GaSb has been determined in the temperature range

of 1K to 1000K by DFT previously. Nanoindentation experiments are conducted at

room temperature on polished and non-polished surface conditioned GaSb samples.

Bulk GaSb material surface does not contain any film coating. The dimensions of

the prepared sample are 15.0 × 4.8 × 0.5mm3. The delta slope contact is applied as

%80 which is recommended for the hard materials. Low delta slope contacts such as

%10 to %20 is desired for soft materials such as epoxies, polymers. A representative

load-displacement curve is given in Figure 4.3 for 20mN loading case. The maximum

loads of 10 mN and 20 mN are applied during the indentation. Maximum indentation

depth is around 500nm for 20mN maximum loading as given in Figure 4.3 whereas

it is approximately 320nm for 10mN maximum load case. For each loading, total

number of 10 indentation has been performed and box plot results of the indentations

for different maximum loads are given in Figure 4.4.

Boxplots basically define a set of five data which are minimum, first quartile, median,

third quartile and maximum values. The box limits in Figure 4.4 defines the limits

of first and third quartile of elastic modulus values and the horizontal line in the box

defines the median of dataset. Besides the experimental studies, the results of DFT

calculations performed with LDA and PBEsol approximations are provided as single
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Figure 4.3: Representative load - displacement curve of nanoindentation test on GaSb

with maximum applied load of 20mN

lines in the box plot so that comparison of the numerical and experimental results is

more comfortable. The results of DFT simulations are covered in detail in Chapter 3.

A typical nanoindentation curve is already given in Figure 4.1. However, the experi-

mental results may not be identical with this behaviour for each and every indentation.

For example, a discontinuity during loading phase of indentation that is called as pop

in may be observed during nanoindentation. Pop in is defined as a sudden change

in load or displacement during the loading of indenter on the sample. Nanoinden-

tation experiments can be performed with two options i.e, one should either control

indentation load or displacement. If the indentation is performed with load control, a

horizontal plateu or plateu with a positive slope can be observed. On the other hand,

if the nanoindentation experiment is performed with displacement control, a vertical

drop on force-displacement behavior can be observed. Pop in effect is commonly

explained by different topics according to tested materials such as dislocation nucle-

ation for crystalline materials, a result of strain transition near grain boundaries of

metals or fracturing of the thin film if a hard brittle film is tested on a ductile substrate

material. So, there exist variety of reasons to observe pop in effect. This phenomena

is not discussed in detail here and pop in event is not observed on the given data in

Figure 4.4.

As seen in Figure 4.4, surface condition of GaSb can affect the elastic modulus
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Figure 4.4: Measurements of elastic modulus of polished, non-polished GaSb sam-

ples by nanoindentation

results. Results of polished GaSb material shows excellent coherence with the limits

of DFT predictions on elastic modulus for both of the maximum indentation loads.

On the other hand, non-polished GaSb provides higher elastic modulus with larger

scattering of the data. When the maximum indentation load is increased to 20 mN the

difference between highest and lowest measured values is more than 90 GPa. Surface

conditions of both samples that are captured by SEM are given in Figure 4.5.

(a) Polished surface (b) Nonpolished surface

Figure 4.5: GaSb test sample surfaces

69



Hardness results are also provided in Figure 4.6. Contrary to the elastic modulus

results, both polished and non-polished samples provide good coherence with the

room temperature DFT results. For a maximum load of 10 mN and 20 mN, both

of the configurations show more scattering data with respect to elastic modulus re-

sults. Although DFT results does not stay out of the first and third quartile limits of

corresponding boxplots, it is hard to verify that the hardness values determined in a

reasonable range due to inconsistent nanoindentation results.
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Figure 4.6: Measurements of hardness of polished, non-polished GaSb samples by

nanoindentation

Hardness is defined as the resistance of a material to permanent deformation during

application of load. This property can show size dependence in materials i.e, the re-

sults can vary near the surface with respect to bulk hardness measurements. As it is

observed from Figure 4.4 and 4.6, although the elastic modulus measurements by

using nanoindentation show great coherence with DFT results, there exists a scattered

data for the hardness measurements. The common issue with the hardness determi-

nation is the contact area determination which is given in equation (4.8) as Ac(hc).

It is a measured value after indentation. However, the projected contact area, Ap(hc)

in equation (4.7), is a theoretical or calibrated value calculated according to indenta-

tion depth, Ap = f(h). The actual contact area can represent a significant difference

if the surface is not ideally flat or it shows some topological differences from one
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indentation point to another. This may be the cause of scattered data in hardness mea-

surements. Moreover, some materials can exhibit deformation behaviour that can lead

to inaccurate contact area determinations. For example, sink-in and pile-up behavior

of material during nanoindentation may cause inaccurate contact area determinations

[204, 205]. So, an accurate information about the contact area is important while

determining a representative hardness value. The experiment involved using two dif-

ferent types of GaSb material based on surface treatment (polished or non-polished)

and revealed significant differences in elastic modulus determinations based on sur-

face treatment.

Surface roughness of the samples are also measured with Zygo New View 7100 Op-

tical Profiler which uses scanning white light interferometry to measure and visualize

the microstructure and topology of the surfaces. According to given results in Figure

4.7, polished sample has a roughness (rms) value of 0.62nm and peak to valley (PV)

value of 19.54nm whereas nonpolished sample has a much greater PV and roughness

values of 7820nm and 1031.57nm, respectively.

(a) Polished sample (b) Nonpolished sample

Figure 4.7: Zygo New View 7100 optical profiler measurements on the samples
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4.2 Custom Designed Test Setup for Cryocooling

4.2.1 Test setup design

A test setup is designed and produced to perform cryocooling experiments. Aim of

obtaining cryogenic temperatures is to mimic IRFPA under its generic operation con-

dition, i.e, at 77K. High vacuum conditions must be satisfied to eliminate convection

mode of heat transfer so that obtaining cryogenic temperatures with minimum cool-

ing power can be satisfied. Ease of sample integration, de-integration and reusability

of the test setup are also important in terms of effectiveness of the test setup. A

schematic structure of the designed test setup is given in Figure 4.8. Test setup is

composed of a dry pump, turbo-molecular pump, pressure gage and valve, test enve-

lope which is integrated on a cryocooler, a DC power supply, display unit and required

assistive equipments.

Figure 4.8: Test setup schematic

In the test setup, a rotary type Stirling engine cryocooler [206] has been used to

achieve cryogenic temperatures. Pressurized helium is used as cryogenic coolant in

the cryocooler. Rotary Stirling cryocooler is integrated with a custom designed test

envelope that has two o-ring interfaces to seal interior volume from the exterior as

shown in Figure 4.9. Test Envelope is simply a leak tight structure with proper op-

tical and electrical interfaces as shown in Figure 4.8 and 4.9 which indicated as

optical window and electical pins. Mechanical interface of the cryocooler can be
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used for mechanical integration and heatsinking.

Figure 4.9: Test setup design

Interior volume of the Test Envelope is under vacuum environment by the help of

pump tube, dry pump and turbo-molecular pump. A copper pumping tube has been

utilized as the vacuum port. The dry pump works as a backup pump and it satisfies

the vacuum level inside the housing so that the turbo-molecular pump can start to

operate. Viton o-ring material and hermetic material integration processes such as

brazing, laser welding has been used in between parts to obtain vacuum integrity of

Test Envelope. Standart QF flange features have been used for metal parts which are

o-ring sealed. Standart metal clamps have been used to hold metal parts together. The

samples that will be tested are placed on a ceramic material that is integrated on top

of cold head as shown in Figure 4.9. A temperature sensor which is placed on the ce-

ramic surface is connected to electrical pads via wirebonds as shown in Figure 4.10.

Electrical pads are placed on a multilayer ceramic that are used to connect electrical

pads to the outer world pins. This way, signal transmittance from the temperature

sensor to the outer world and Stirling cryocooler is realized.

Advantages of this setup can be defined as follows;

• Active temperature control of the sample by adjusting the cryocooler operating

temperature.
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Figure 4.10: Ceramic with an integrated sample on cold head

• Ease of sample mounting or dismounting obtained by using reworkable epoxies

and standart QF flanges and clamps.

• Changing optical window without de-integrating any other part, if needed.

Experimental test setup is designed to conduct experiments at cryogenic tempera-

tures. Ceramic material is integrated on cold head with an epoxy material. The sample

structure can be integrated on ceramic (white) as shown in Figure 4.10 with thermal

interface material. The thermal interface material is not cured so that it does not pro-

vide rigid contact between bonded layers. Two temperature diodes are integrated on

carrier ceramic, one of them can be observed on Figure 4.10 with a representative

wirebond that connects temperature sensor to the electrical pads so that the tempera-

ture can be monitored during the experiments. The second temperature diode is used

to provide temperature feedback for the cryocooler that is shown in Figure 4.8.

4.2.2 Cryocooling experiments

Cryocooling is required to decrease noise level caused by dark current mechanism

of detection layers in IRFPA structure. Generic IRFPA cooled region can be com-

posed of different ceramic, metal, semiconductors that are integrated on each other

by using epoxy materials. Due to coefficient of thermal expansion mismatch be-

tween constituent materials and great temperature differences, problem of arising

thermo-mechanical stresses on IRFPA structures has been previously explained. To

mimic thermo-mechanical stress on IRFPA structures, GaSb and CdZnTe semicon-

ductor materials are integrated with stainless steel (SS304) with an epoxy material

and integrated on cold head of the custom designed test setup with a thermal interface
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material.

4.2.2.1 GaSb - SS304 sample

GaSb and SS304 samples are integrated with an epoxy material. The integrated struc-

ture is cooled down to 77K by using a custom designed test setup. The details of the

test setup is given in Section 4.2. Temperature of the cold head is controlled with the

temperature sensor on the carrier material. After obtaining 77K temperature on cold

head, standby time of a minute is waited to ensure semiconductor materials reached

steady state. Then, the cryocooler is switched off and waited for reaching temperature

of the assembly to room temperature. This assembly is cooled down from room tem-

perature to 77K approximately in 6 minutes. The cooldown of the sample is given in

Figure 4.11. Then, a cleaning process of the assembly is performed before inspection

with SEM. Rectangular prism geometry is defined for the constituents in dimensions

of 15× 4.8× 0.5mm3 and 15× 4.8× 2mm3 for GaSb and SS304, respectively.
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Figure 4.11: Cooldown of the integrated sample

Top surface normal of GaSb sample is on <100> direction but in plane material orien-

tation was not known. After cryocooling experiment, it is placed in Scanning Electron

Microscopy (SEM) and top surface of the sample is investigated. Observed crack pat-
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(a) Crack pattern 1 (b) Crack pattern 2

Figure 4.12: Observed cracks on GaSb sample

tern on GaSb is given in Figure 4.12a with a crack width in the range of 100nm to

140nm as observed in Figure 4.12a. In Figure 4.12b, it is observed that the second

crack path is changing its direction with an angle of 18.4°. Observation of crack pat-

terns and crack width are obtained with SEM. To determine the cleavage planes of

single crystal materials, electron back scattering diffraction (EBSD) method can be

used to determine fatigue assesments and crystal misorientation of materials as well

as single crystals [207, 208].

In plane material orientation of the investigated GaSb sample was not controlled dur-

ing crystal growth phase. So, the crack propagation direction cannot be specified

according to in-plane crystal directions of GaSb. Crack propagation on GaSb as a

straight line makes an angle between horizontal axis. As it is observed from the re-

sults of phase field theory, for example in Figure 6.6, the crack propagation path on

GaSb material can be different with respect to changing in plane material orientation

which is also valid for other cubic crystals. The constructed structure is analyzed with

finite element method on Section 5.1.
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4.2.2.2 CdZnTe - SS304 sample

Cd(1−x)ZnxTe with x = 0.04 ternary compound with top surface normal of <211>

direction is commonly used in HgCdTe IRFPA detectors as a substrate material [209,

210]. By applying the exactly same geometric structure and procedure given in Sec-

tion 4.2.2.1 for CdZnTe instead of GaSb, crack pattern on the ternary compound is

able to be observed. CdZnTe is integrated on SS304 sample with an epoxy material.

The temperature profile given in Figure 4.11 is also valid for the test of CdZnTe. The

top surface of CdZnTe is inspected with SEM at room temperature. The observed

crack pattern on CdZnTe material is provided in Figure 4.13.

(a) Crack pattern 1 (b) Crack pattern 2
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(c) Crack pattern 3

Figure 4.13: Observed crack on CdZnTe sample
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The crack pattern on CdZnTe given in Figure 4.13a shows an angle of 122.5°between

two observed directions. A broad capture of observed cracks in Figure 4.13a is given

in Figure 4.13c. Two set of paralel cracks are observed in wide view, i.e, crack number

1, 2 and 3 represent paralel crack set 1 whereas crack number 4 and 5 represent paralel

set 2. The angle between observed zig-zag crack in Figure 4.13b measured as 114.8°.

Zig-zag crack pattern of crack propagation can be observed for cubic anisotropic

materials. According to in-plane material orientation or loading type and direction,

cubic anisotropic materials may exhibit zig-zag or unidirectional pattern for crack

propagation [102]. A decreasing crack width and sharpness is observed by SEM

when the crack is propagating and loosing its energy and it almost vanishes at the top

end as seen in Figure 4.13b. In contrast to observed crack on GaSb sample in Figure

4.12b, the crack width smaller on CdZnTe material.

The given results in Section 4.2.2.1 and 4.2.2.2 are the first attempts to observe crack

propagation paths on GaSb and CdZnTe materials in the literature. Material orien-

tation of both of the materials were not controlled during crystal growth processes

because this is not a requirement in IRFPA applications. SEM images from the top

surface are provided to observe crack propagation paths on the materials. Although

the crack propagation path directly depends on in-plane material orientation, there are

other factors such as void defects, precipitations, processing parameters during crys-

tal growth, surface roughness, thermal history of the material that can affect crack

initiation and propagation on a single crystal material. In general, minizing the defect

density and controlling the microstructure of the material during production can help

to improve resistance to crack propagation.
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CHAPTER 5

THERMO-ELASTIC STRESS ANALYSIS OF IRFPA WITH FEM

5.1 Thermo-Mechanic Stress Determination on Bimaterial Assembly

The effect of temperature-dependent material properties is introduced with finite ele-

ment analysis (FEA) on a GaSb-SS304 assembly. Motivation of this study is to show

maximum von Mises stress results regarding the usage of different material proper-

ties, i.e, temperature-dependent material properties and material properties at 300K.

Coefficient of thermal expansion and elastic modulus of GaSb material are deter-

mined by DFT studies and given in Section 3.2.1. Room temperature properties of

GaSb given in Table 5.1 are used. The room temperature properties of GaSb are also

extracted from DFT results. The used material properties of SS304 are also provided

in Table 5.1.

Table 5.1: Material Properties of GaSb and SS304 at 300K

Material CTE (1/K) Elastic Modulus (GPa) Poisson ratio

GaSb 6.87E-06 82.20 0.2422

SS304 17.3E-06 193 0.2900

Rectangular prism geometry is defined for the constituents in dimensions of 15×4.8×
0.5mm3 and 15× 4.8× 2mm3 for GaSb and SS304, respectively. Due to symmetry,

a quarter of the structure is modeled. Anisotropy in GaSb material is omitted in FEA

study. Mesh is given in Figure 5.1a and defined path for von Mises stress is provided

in Figure 5.1b. The given path is starting on the neutral axis and elongates till the
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diagonal edge.

(a) Mesh structure (b) Defined path for stress output

Figure 5.1: a) Mesh structure, b) Defined path on GaSb midplane

Previously determined temperature dependent material properties of GaSb are given.

Although heat capacity and coefficient of thermal expansion values are provided with

continuous lines in Figure 3.5 and 3.6 respectively, discrete values of material prop-

erties for the corresponding temperatures are given in ANSYS R2021.

On symmetry surfaces, displacements in surface normal directions are constrained.

All three displacements on bottom vertex of neutral axis of the assembly are also

constrained with fixed support. Then, thermal condition of cooling is given on both

of the materials from 300K to 77K. Temperature gradient on the structure is not main

driving force of this problem so it is omitted. Maximum von Mises stress on the path

given in Figure 5.1b is taken as the only output for comparison.

Path stress results on GaSb by using material properties at 300K and by using tem-

perature dependent material properties between 1K and 300K show great differences.

Obtained maximum von Mises stress level by using temperature dependent data is

117.61 MPa whereas it is 91.59 MPa when the room temperature material data is

used. If the maximum von Mises stress is normalized with respect to the analysis per-

formed by room temperature material data, the maximum von Mises stress difference

along the defined path shows 28.41% difference and it is linear except the edge which

can be seen in Figure 5.2b.

A simple representation of material property effect on themo-mechanical stress de-

termination is given in GaSb-SS304 bimaterial assembly. Geometry, constituent ma-

terial properties are important to determine accurate stress predictions. However, in
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(a) GaSb path stress

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000
0,98

1,00

1,02

1,04

1,06

1,08

1,10

1,12

1,14

1,16

1,18

N
or

m
al

iz
ed

 S
tre

ss

Path Length (mm)

 T independent
 T dependent

(b) Normalized path stress

Figure 5.2: The effect of material property definition on von Mises stress determi-

nations via FEM of the two configuration, i.e, materials properties provided only at

300K and temperature dependent material property for 1K-300K temperature range

cooled region of IRFPA structures, there exist different geometries and materials.

To observe the effect of temperature dependent material properties much better, per-

formed finite element analysis in this section is repeated on a representative IRFPA

assembly structure.

5.2 Thermo-Mechanic Stress Determination on IRFPA Assembly

As an extension of bimaterial assembly, thermo-mechanic stress determination of a

representative IRFPA structure is performed. Finite element model consists of five

different materials as given in Figure 5.3a. At the bottom, cold finger cap, a metal

part is defined as part 1. Carrier which is placed on the metal part is given as 2.

Silicon readout integrated circuit, underfill/interconnect material and GaSb semicon-

ductor material that represents the IRFPA are provided with numbers 3,4 and 5 re-

spectively. Interconnects and underfill materials are assumed as a homogeneous layer

in the model. Frictionless support is defined on symmetry surfaces such that displace-

ments across the symmetry surfaces are constrained. Bottom vertex of part 1 is fixed

in three directions. At the bottom of the cold finger cap material, (part 1), footprint of

cold finger tube which is a quarter hollow cylinder as given in Figure 5.3b is fixed in
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z-direction (surface normal), but it is not constrained in x-y directions.

1

2

3

4

5

(a) Representative IRFPA model (b) Boundary conditions

Figure 5.3: IRFPA model and regarding boundary conditions on the structure

Two finite element analysis are performed with exactly the same model geometry,

boundary conditions and mesh. Material properties of parts 1,2,3 and 4 are not

changed within these simulations. The only difference between the analyses was

providing either temperature dependent or single point (at 300K) material properties

of IRFPA material. Initial temperature of the whole assembly is 298K. Thermal load-

ing of cooling the assembly to 77K is applied on the structure. Bonded contact is

defined between the constituent materials such that delamination or separation is not

allowed. The temperature gradient on the assembly is neglected due to utilization

of thermally conductive materials and thin layers on the assembly. Driving force in

these analysis is the coefficient of thermal expansion mismatch and great temperature

difference that IRFPA material must withstand for thousands of thermal cycles.

Table 5.2: Geometric dimensions of parts

Part # Dimensions in milimeter

1
φ = 6.86, t = 0.8

φ = 8.0, t = 0.4

2 φ = 18.5, t = 0.75

3 5× 5× 0.75

4 5.05× 5.05× 0.005

5 4.87× 3.91× 0.05

Geometries of the constituent parts are given in Table 5.2. As it is observed, the
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material thicknesses is not larger than 1 mm and it is 5µm and 50µm for underfill and

GaSb layers, respectively. Total number of 893402 nodes and 524147 elements are

used in the analyses. Very fine mesh is used on the analyses but the computational

time is still low in steady state mechanical analysis.

Figure 5.4: Defined path on midplane of GaSb
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Figure 5.5: Thermal expansion coefficient and elastic modulus parameters of the con-

stituent materials on IRFPA assembly.

To determine the stress and displacement outputs on IRFPA semiconductor layer, a

path is defined on midplane of GaSb layer which is given in Figure 5.4. Defined path

starts from center axis of the structure and elongates to diagonal edge of GaSb. Sin-

gle point and temperature material properties of GaSb are already provided in Section

5.1. For the remaining parts, thermal expansion coefficient, elastic modulus and Pois-

son ratio are given in Figures 5.5a, 5.5b and Table 5.3, respectively.
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Figure 5.6: Effect of temperature dependent data on von Mises stress and out of plane

deformation for defined path.

Table 5.3: Poisson ratio of the parts

Part 1 Part 2 Part 3 Part 4

0.400 0.228 0.280 0.317

Developed thermo-mechanical stress is determined along the defined path given in

Figure 5.4. According to results of the two analyses that are obtained with either

single point temperature data or temperature dependent material data of GaSb, von

Mises stress results are given in Figure 5.6a. Out of plane deformation of GaSb top

surface is given in Figure 5.6b.

Using temperature dependent material data for GaSb material provides 44.7% im-

provement in von Mises stress determinations. In contrast, out of plane surface defor-

mation on top surface of GaSb behaves very similar in these two cases. It is a clear

evident that when the IRFPA structure is exposed to cyclic thermal loading during

the device lifetime, using right material properties can significantly affect the thermo-

mechanic stress response so the lifetime estimation of the structure. In the Section

5.1 and 5.2, it is showed that thermo-mechanic stress evaluation accuracies are im-

proved with the use of temperature dependent material properties with 44.7% and

28.41% accordingly. The improvement margins could be even higher depending on
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(a) Von Mises stress with temperature in-

dependent data

(b) Von Mises stress with temperature de-

pendent data

(c) Z-axis deformation with temperature

independent data

(d) Z-axis deformation with temperature

dependent data

Figure 5.7: Effect of single point material data and temperature dependent data. a), b)

represents the effect on von Mises stress, c), d) represents the out of plane deformation

results.

the constituent materials of the assembly.

5.3 Free Energy Function and Stress Expression

In this section, free energy function and stress expression for cubic anisotropic ma-

terials are derived. Free energy function is divided into two parts, i.e, isotropic and

anisotropic parts. Mechanical part of the free energy is derived for cubic symmetric

materials and the definitions of stress expression, elasticity tensor are also provided.

Then, free energy of a anisotropic thermo-elastic solid for cubic symmetry is given.
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For GaSb and InSb materials, a polynomial fit is provided for Lamé parameters and

cubic anisotropy parameter which can be used in cubic symmetric free energy deter-

minations of these materials. R-square parameter which shows the quality of the fits,

is greater than 0.99 for all of the performed curve fittings.

5.3.1 Cubic anisotropy

The mechanical part of the free energy function for a crystal with cubic symmetry is

described as

Ψ(ε,M i, θ) = Ψiso(ε, θ) + Ψsym(ε,M i, θ) (5.1)

where M i = ai ⊗ ai with i = {1, 2, 3} are the structural tensors associated with the

cube faces possessing unit normals ai. Herein, we have decomposed the free energy

function into isotropic and additional stiffness terms in cube orientations due to cubic

symmetry. The isotropic part of the free energy function reads

Ψiso(ε, θ) =
λ(θ)

2
(tr ε)2 + µ(θ)ε : ε (5.2)

where λ(θ) and µ(θ) are the temperature-dependent Lamé parameters. Herein (:) is

the double contraction operator such that for two second order tensors A and B, the

double contraction reads

A : B = AijBij (5.3)

The additional term of the free energy function due to cubic symmetry reads

Ψsym(ε,M i, θ) =
3∑

i=1

γ(θ)

2
(ε : M i)

2 (5.4)

with γ(θ) as the additional modulus term due to cubic crystal structure. The stress

expression then has the following form

σ = λ(θ) tr ε1+ 2µ(θ)ε+

3∑

i=1

γ(θ)(ε : M i)M i . (5.5)

The fourth order elasticity tensor can be derived from the stress tensor as follows

C = λ(θ)1⊗ 1+ 2µ(θ)I+
3∑

i=1

γ(θ)Ei , (5.6)
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where I is the fourth-order identity tensor Iijkl = δikδjl + δilδjk and Ei = M i ⊗M i

is the structural tensor associated with the cube faces. The elasticity tensor of a cubic

symmetric crystal in matrix notation with the Voigt convention reads

Ĉ =
















C11 C12 C12

C12 C11 C11 0

C12 C12 C11

C44

0 C44

C44
















. (5.7)

By comparing (5.6) and (5.7), we conclude that

γ = C11 − 2C44 − C12 µ = C44 λ = C12 . (5.8)

Herein, µ and λ are the shear modulus and the first Lamé constant, respectively.

Due to crystal symmetry, the number of nonzero independent elements are reduced

significantly. The rank-four tensor notation can then be conveniently reduced to rank-

two notation. For cubic crystals, the relation between the three indepedent nonzero

rank-two and rank-four elastic constants is

C11 = Ciiii and C12 = Ciijj i 6= j

where i, j = 1, 2, 3. In this short-hand notation, also known as the Voigt notation,

the so-called engineering strain must be used (ǫii = ǫi (i = 1, 2, 3), ǫ4 = 2ǫ23, ǫ5 =

2ǫ31, ǫ6 = 2ǫ12). The parameter γ vanishes for isotropic elastic materials leading to

2C44 = C11 − C12. For further information regarding admissible set of symmetries

for the elasticity tensor and the resulting number of independent elastic constants, it

is referred to Chadwick et al. [211].

5.3.2 Thermo-elastic cubic anisotropy

To define free energy for a cubic anisotropic thermo-elastic solid, the free energy, Ψ

is rewritten by including isotropic (5.2 and cubic symmetry (5.4) parts as follows
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Ψ(ε, θ) =
λ(θ)

2
(tr ε)2+µ(θ)ε : ε+

3∑

i=1

γ(θ)

2
(ε : M i)

2+β(θ−θ0) tr ε−
c

2θ0
(θ−θ0)2

(5.9)

with β, stress-temperature modulus for isotropy, and specific heat, c is positive (c >

0). λ, µ, and γ are the Lamé coefficients and the anisotropic coefficients that de-

scribe the mechanical properties of the material. The term λ(θ)
2
(trε)2 represents the

volumetric (dilatational) part of the mechanical energy, while µ(θ)ε : ε represents

the deviatoric part of the mechanical energy. The term γ(θ)
2
(ε : M i)

2 represents the

contribution of the material’s anisotropy, where M i are the three orthogonal axes of

the crystal lattice. β(θ − θ0)trε represents the contribution of thermal expansion to

the free energy. − c
2θ0

(θ − θ0)
2 represents the contribution of thermal energy to the

free energy. Overall, this expression in (5.9) represents a free energy function that ac-

counts for both mechanical anisotropy and thermal effects in a solid material. Then,

the stress expression then has the following form

σ = λ(θ) tr ε1 + 2µ(θ)ε+
3∑

i=1

γ(θ)(ε : M i)M i + β(θ − θ0)1 . (5.10)

The entropy, η and heat flux, q can be given as

η = −∂Ψ
∂θ

= −β tr ε+
c

θ0
(θ − θ0), (5.11)

q = −k∇θ, (5.12)

where thermal conductivity, k must be positive, k > 0. It is assumed that thermal

conductivity of the solid is isotropic. Moreover, the heat source or heatsink vector

in thermoelasticity that describes any internal heat generation or absorption due to

material deformation is omitted in this framework.

88



Table 5.4: Rational curve fitting parameters as stated in (5.8),(5.13) for elastic con-

stants of GaSb with goodness of fit parameter of R-sq.

Elastic constants of GaSb

µ(θ) λ(θ) γ(θ)

n1 +2.846E − 5 +2.633E − 7 +1.792E − 6

n2 −1.002E − 1 −5.927E − 3 +1.740E − 3

n3 +5.759E + 1 +3.909E + 1 −3.815E + 1

n4 +1.956E + 6 +7.035E + 3 −2.076E + 4

d1 +4.647E + 4 +1.834E + 2 +5.493E + 2

R-sq +9.959E − 1 +9.999E − 1 +9.934E − 1

5.3.3 The Lamé and γ parameters of GaSb and InSb

According to obtained results of second order elastic constants by DFT, the Lamé

parameters (µ, λ) including the additional modulus term due to cubic symmetry (γ)

as given in (5.8) for GaSb and InSb materials are obtained from 1K to 1000K. The

results can be seen in Figure 5.8. A rational curve fitting for temperature dependence

of elastic constants with a numerator degree of three and denominator degree of one

f(θ) =
n1θ

3 + n2θ
2 + n3θ + n4

θ + d1
(5.13)

is fitted to the simulation results obtained. The parameters for the elastic constants of

GaSb are depicted in Table 5.4.

Lamé parameters of GaSb can be defined with R-square value of larger than 0.99 for

all the cases. Sum of squared errors (SSE) which is another goodness of fit parameter

is 0.011, 0.033, 0.051 for the estimation of µ, λ, γ parameters. For InSb, the Lamé

fit parameters are provided in Table 5.5. R-sq values of these fits are also greater

than 0.99. SSE values of 0.00056, 0.0034, 0.0025 occurs while determining µ, λ, γ

parameters of InSb.
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Figure 5.8: Shear modulus µ, first Lamé parameter λ and the cubic symmetry param-

eter γ for (left) GaSb and (right) InSb are determined according to (5.8) by using the

second order elastic constants C11, C12, C44, and depicted (red) dots. The rational

curves according to the parameters provided in Tables 5.4 and 5.5 for GaSb and InSb,

respectively, are depicted with (blue) lines,
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Table 5.5: Rational curve fitting parameters of InSb according to (5.8),(5.13) with

goodness of fit, R-sq.

Elastic constants of InSb

µ(θ) λ(θ) γ(θ)

n1 −5.246E − 8 +6.648E − 7 −4.944E − 8

n2 −8.960E − 4 −9.065E − 3 +2.161E − 3

n3 +2.953E + 1 +3.609E + 1 −2.954E + 1

n4 +2.818E + 3 +4.966E + 0 −3.063E + 3

d1 +9.572E + 1 +1.410E + 0 +1.045E + 2

R-sq +9.996E − 1 +9.999E − 1 +9.996E − 1
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CHAPTER 6

PHASE FIELD THEORY

6.1 Introduction

The results of DFT analysis provide thermal expansion coefficient, lattice constant,

second order elastic constants as well as Vicker’s hardness, Poisson ratio etc. Semi-

conductor compounds may expose to thermo mechanical stresses due to different

conditions such as microfabrication processes, operation and storage conditions. In

this study, the investigated single crystals by DFT generally have brittle behavior at

room temperature as well as at cryogenic temperatures. The mechanical behavior of

III-V and II-VI single crystals can also be affected by factors such as temperature,

loading rate, doping etc. Since single crystal silicon is widely used in solar cell and

MEMS industries, thermo-mechanical and fracture properties of this material is of

great importance to build MEMS based microphones, accelerometers, pressure sen-

sors etc [212]. However, there does not exist a study that covers fracture of III-V

and II-V semiconductor compounds with experiments and numerical investigations.

In this section, a phase field model is developed such that it covers cubic anisotropic

behaviour of single crystal compounds and obtaining the fracture patterns of GaSb

material with case studies. So, a complete framework including material property de-

terminations by DFT and numerical investigations of crack initiation and propagation

will be given for specific single crystal semiconductors.

Cohesive Zone Method (CZM) [88, 89, 90] and eXtended Finite Element Method

(XFEM) [85, 86, 87] are widely used on crack propogation, delamination problems

of broad range of materials. Phase Field Model (PFM) represents the fracture pro-
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cess as a continuous field, which enables the simulation of gradual crack growth and

crack coalescence. In contrast, CZM and XFEM represent the fracture process as a

discontinuous field, which can make it difficult to model gradual crack growth and

coalescence. PFM can simulate complex crack patterns, including branching and

merging, without requiring a priori knowledge of the crack path. There are also some

limitations and challenges associated with phase field fracture modeling, such as the

need for complex parameter calibration and the computational expense of the method.

In this thesis, PFM is used to simulate crack initiation and propagation studies.

6.2 Basics of the Phase Field Model of Fracture

The mechanical response and phase field response of a fracture problem are respec-

tively governed by the crack phase field, represented by d, and the deformation map,

represented by ϕ. A framework will be presented to include anisotropy for cubic sym-

metric crystals, which includes the semiconductor compounds belonging to the III-V

and II-VI group materials that exhibit cubic symmetry. To account for this anisotropy

class, a proposed phase field model is required.

Let B ⊂ R3 be the reference (undeformed) configuration of a material body with 3D

space dimension and ∂B its boundary with material point X ∈ B. The continuum

body is at reference configuration at time t0 ∈ T ⊂ R and it is in deformed configu-

ration at time t ∈ T ⊂ R. The spatial configuration is represented by S ⊂ R3. The

deformation field maps each material point, X ∈ B in Lagrangian configuration onto

its Eulerian, deformed, counterpart x ∈ S

ϕt(X) :







B × T → S
(X, t) 7→ x = ϕ(X, t)

(6.1)

Crack phase field defines the material state as intact (d = 0), fractured (d = 1) or

damaged (0 < d < 1)
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d :







B × T → [0, 1]

(X, t) 7→ d(X, t)
(6.2)

Deformation gradient, F , desribes the mapping of unit Lagrangian line element dX

onto its Eulerian counterpart dx = F dX . Gradient operators, ∇(•) and ∇x(•) define

the gradient with respect to reference X and spatial x coordinates, respectively. The

mapping between infinitesimal reference volume element onto related spatial volume

element is performed with the Jacobian (J = detF > 0). Left and right Cauchy-

Green tensors are given as follows

C = F TgF , b = FG−1F T , (6.3)

with the covariant reference and spatial metric tensors G = δIJE
I ⊗ EJ and g =

δije
i ⊗ ej , respectively, where δIJ and δij are Kronecker delta functions in the Carte-

sian coordinate system. The free energy function of isotropic solids can be determined

by three invariants I1, I2, I3

I1 = tr b, I2 =
1

2

[
I21 − tr

(
b2
)]
, I3 = det b (6.4)

Anisotropy is defined with directional dependence of the property in solid mechanics.

As opposed to isotropy that means homogeneous behaviour of a property in all direc-

tions, anisotropy provides information about the nature of the material. For example,

if the strength of a material has a bias toward one particular direction then the mate-

rial is said to have uniaxial anisotropy which is the case for unidirectional reinforced

polymer matrix composites. The matrix material is generally isotropic. By adding

fibers, uniaxial anisotropy can be produced according to desired material behaviour.

For unidirectional anisotropy, a single unit reference vector, f0 and its spatial coun-

terpart, f need to be defined as such

f = Ff0 (6.5)
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together with single Lagrangian and Eulerian structure tensor

A = f0 ⊗ f0 and Af = f ⊗ f (6.6)

For cubic anisotropy, orthogonal basis system needs to be identified with three direc-

tional anisotropy. So, unit reference vectors and their spatial counterparts as well as

Lagrangian and Eulerian structure tensors need to be multiplied with a factor of three

for cubic anisotropy.

f1e = Ff1, f2e = Ff2, f3e = Ff3 (6.7)

Related second order structure tensors are also given as

A1 = f1 ⊗ f1, A2 = f2 ⊗ f2, A3 = f3 ⊗ f3 (6.8)

where fi and fie for i = 1, 2, 3 are Lagrangian and Eulerian vectors, respectively.

Ai for i = 1, 2, 3 represent structural tensors of cubic anisotropy.

A discontinuity occurs between intact and broken states of the material for a sharp

crack as described in Figure 6.1a. Definition of crack for second order phase field

modeling is given in Figure 6.1b. C0 continuous profile of crack representation is

used where the damage field, d provides information about material state, i.e, d = 0

(intact), 0 < d < 1, (damaged) and d = 1 (broken). Length scale parameter is

represented by l and regularization profile of the exponential function is used with

d = exp[−|x|/l].

Coupled solution of mechanical field and crack phase field is performed in phase field

analysis. Dirichlet and Neumann type boundary conditions of mechanical field which

are represented in Figure 6.2a are given as ϕ = ϕ̄ and P ·N = T̄ respectively. On the

other hand, Neumann type of boundary condition for crack phase field that is provided

in Figure 6.2b is given as L∇d · N = 0. Sharp crack surface at time t is defined by
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(a) Sharp crack (b) Diffusive crack

Figure 6.1: Definitions of crack with damage field, d where d = 0 represents intact

state and d = 1 is broken state (a) Sharp crack, (b) Diffusive crack

Γ(d) ⊂ R2 in the solid B with a surface integral Γ(d) =
∫

Γ
dA. Phase field model

represents the sharp crack surface with a volume integral instead of surface integral

by creating a regularized crack surface Γl(d) such that

(a) Deformation field (b) Crack phase field

Figure 6.2: Deformation field and crack phase field

Γl(d) =

∫

B

γ(d,∇d)dV (6.9)

where γ(d,∇d) represents the isotropic crack surface density function

γ(d,∇d) = 1

2l

(
d2 + l2∇d · ∇d

)
(6.10)

that satisfies the condition of γ(d,Q∇d) = γ(d,∇d), ∀Q ∈ O(3). The tensor, Q,

represents the rotations in the orthogonal group, O(3). Length scale parameter that
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controls width of the crack is represented by l. Regularized crack surface functional

can be extended to cover anisotropy classes as such

Γl(d) =

∫

B

γ(d,∇d;L)dV (6.11)

where anisotropic crack surface density is

γ(d,∇d;L) = 1

2l

(
d2 +∇d · L∇d

)
(6.12)

with the condition γ(d,Q∇d) = γ(d,∇d), ∀Q ∈ G ⊂ O(3). G stands for a sym-

metry group as a subset of O(3). According to given formulation of the crack sur-

face density function, the second order anisotropic structural tensor, L can be de-

fined according to desired material symmetry condition. For example, unidirectional

anisotropy with the isotropic part can be stated as follows

L = l2I
︸︷︷︸

Isotropic part

+ l2ωf0f 0 ⊗ f 0
︸ ︷︷ ︸

Anisotropic part

(6.13)

where ωf0 represents the anisotropy parameter that controls the strength of the anisotropy.

6.2.1 Euler-Lagrange equations of the phase field model

Bounday of the problem domain can be divided into Dirichlet and Neumann-type

boundaries such that ∂B = ∂Bd ∪ ∂Bq and ∂Bd ∩ ∂Bq = ∅. The minimization

principle can be stated as

d(X) = Arg

{

inf
d∈W

Γl(d)

}

(6.14)

with the Dirichlet type boundary condition

W =
{

d | d(X) ∈ B ∧ d = d̃ on ∂Bd
}

(6.15)

98



Intact state of the material is described as d̃ = 0 and broken state is represented with

d̃ = 1. The Euler-Lagrange equations are obtained after investigating the minimiza-

tion principle as

1
l
[d− Div(∇d)] = 0 in B,

∇d ·N = 0 on ∂B,
(6.16)

In equation 6.16, N represents the unit normal outward on the boundary surface in

the reference configuration. Divergence term interpolates the damage field between

fresh and cracked states.

To determine anisotropic fracture with the surface density function includes a second

order structural tensor M , the first order phase field approach can be defind as

1
l
[d− Div(M∇d)] = 0 in B,

M∇d ·N = 0 on ∂B,
(6.17)

At first, the crack surface density function is defined isotropic as given in equation

6.10 whereas material anisotropy for cubic symmetry is defined with elastic material

parameter, γ(θ) in the anisotropic part of the free energy which will be held later on.

6.3 Governing Equations of Anisotropic Fracture

6.3.1 Finite strain setting

Viscous rate-type potential, Πη is given as

Πη = E +Dη − P (6.18)

where E represents the rate of energy storage functional, Dη is viscous regularized

dissipation functional and P is the external power functional.

The rate of energy storage functional that includes work conjugate variables to φ and

d are the first Piola-Kirchoff stress tensor, P and the scalar energetic force f given as
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follows

E(ϕ̇; ḋ) =
∫

B

(P : Ḟ − fḋ)dV, (6.19)

where

P = ∂FΨ (g,F ,Af ; d) , f = −∂dΨ (g,F ,Af ; d) (6.20)

As given in equation 6.20, first Piola-Kirchoff stress tensor and scalar energetic force

can be defined with respect to free energy function ψ. The free energy function pro-

vides the degrading free energy of the continuum with a quadratic degradation func-

tion g(d) = (1− d)2, i.e

Ψ (g,F ,Af ; d) := g(d)Ψ0 (g,F ,Af ) (6.21)

In equation 6.21, the degradation of free energy of the intact material is defined with

evolving the damage field according to growth conditions

g′(d) ≤ 0 with g(0) = 1, g(1) = 0, g′(1) = 0 (6.22)

Viscous regularized dissipation functional, Dη, is given as

Dη(ḋ, β; d) =

∫

B

[

βḋ− 1

2η
〈χ(β; d,∇d)〉2

]

dV, (6.23)

with the artificial viscosity η ≥ 0 regulates the scalar viscous over-stress χ that reads

χ(β; d,∇d) = β − gc [δdγ(d,∇d)] (6.24)

The Macaulay brackets filter out the positive values, χ > 0 and gc represents the

critical fracture energy. The external power acting on the body is given as follows
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P(ϕ̇) =

∫

B

ρ0γ · ϕ̇dV +

∫

∂Bt

T · ϕ̇dA, (6.25)

where, ρ0, γ and T represent the material density, the prescribed body force and

surface traction, respectively. Mixed variational principle of the evolution problem

can be proposed with the rate-type potential Πη as follows

{ϕ̇, ḋ, β} = Arg

{

inf
ϕ̇∈Wϕ̇

inf
ḋ∈W

⌈̇

sup
β≥0

Πη

}

(6.26)

with the admissible domains for the primary variables

Wϕ̇ = {ϕ̇ | ϕ̇ = 0 on ∂Bϕ}
Wḋ =

{

ḋ | ḋ = 0 on ∂Bd

} (6.27)

Strong form of the field equations reduces to

1: DivP + ρ0γ = 0

2: ηḋ = 2(1− d)H− d+Div(∇d)
(6.28)

Balance of linear momentum and evolution equation of crack phase field are repre-

sented by the first and second equation of 6.28, respectively. H indicates the crack

driving source such that

H =
Ψ0

gc/l
(6.29)

6.3.2 Small strain setting

The displacement field u = x−X is described at a material point X ∈ B ⊂ R3 and

at time t ∈ T , i.e,

u(X , t) :







B × T → R3

(X, t) 7→ u(X, t)
(6.30)
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In small strain setting, the rate of energy functional is given with the stress tensor σ

which is the work conjugate variable of the small strain measure ε = sym∇u.

E(u̇; ḋ) =
∫

B

(σ : ε̇− fḋ)dV, (6.31)

The energetic force, f stands in equation 6.30 as the work conjugate of the damage

variable d. These two variables are expressed as

σ = ∂εΨ(ε,A; d), f = −∂dΨ(ε,A; d) (6.32)

Free energy function of Ψ defines a degrading continuum with the effective free en-

ergy function of the intact solid, Ψ0 as follows

Ψ(ε,A; d) := g(d)Ψ0(ε,A) (6.33)

The viscous regularized dissipation functional 6.23 and scalar viscous over stress

function 6.24 remain unchanged for small strain setting as well. The external power

term can be written as

P(u̇) =

∫

B

ρ0γ̄ · u̇dV +

∫

∂Bt

T · u̇dA (6.34)

where, ρ0, γ and T represent the material density, the prescribed body force and

surface traction, respectively. A mixed variational principle of the evolution problem

can be defined as follows

{u̇, ḋ, β} = Arg

{

inf
u̇∈W

u̇

inf
ḋ∈W

⌈̇

sup
β≥0

Πη

}

(6.35)

with the admissible domanins for primary variables

Wu̇ = {u̇ | u̇ = 0 on ∂Bu}
Wḋ =

{

ḋ | ḋ = 0 on ∂Bd

} (6.36)
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Then, the variation potential Πη with respect to field {u̇, ḋ, β} and algebraic manipu-

lations [95] leads to strong form of the field equations

1 : Div σ + ρ0γ̄ = 0

2 : ηḋ = 2(1− d)H− d+Div(∇d)
(6.37)

6.3.3 Constitutive model for cubic anisotropy

Free energy function of a cubic anisotropic solid can be decomposed into two parts,

i.e, isotropic and anisotropic parts. Isotropic solids can be defined with three invariant,

I1, I2, I3 that are given in equation 6.4 in terms of left Cauch-Green deformation

tensor. For unidirectional anisotropy, the stored energy can be obtained in terms of

first three invariants with the addition of fourth invariant I4. For cubic anisotropy,

the unidirectional anisotropy can be extended to three orthogonal directions. The

extended fourth invariant, I4i can be stated as

I4i = f i · gf i for i = 1, 2, 3 (6.38)

where f i represents the three orthogonal anisotropy directions of cubic symmetry.

The mechanical part of the free energy function for a single crystal with cubic sym-

metry is described as

Ψ0 (g,F ,M i) := Ψiso
0 (J, I1) + Ψani

0 (I4i) (6.39)

where M i = f i ⊗ f i with i = {1, 2, 3} are the structural tensors associated with

the three orthogonal unit normal vectors f i corresponding to the cubic anisotropy.

Herein, we have decomposed the free energy function into isotropic and additional

stiffness terms in cube orientations due to cubic symmetry. The isotropic part of the

free energy function reads

Ψiso
0 (J, I1) :=

λ(θ)

2
(ln J)2 +

µ(θ)

2
(I1 − 2 lnJ − 3) (6.40)
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where λ(θ) and µ(θ) are the temperature-dependent Lamé parameters. For the anisotropic

part one can use

Ψani
0 (I4i) :=

3∑

i=1

γ(θ)

4
(I4i − 1)2 (6.41)

with γ(θ) as the additional modulus term due to cubic crystal structure. The fourth

invariant, I4i has three components, i.e, i = 1, 2, 3 corresponding to three orthogonal

vectors of cubic symmetry. The Kirchoff stress tensor τ , can also be introduced as

such

τ := PF T = 2∂gΨ = g(d)τ 0, τ 0 = 2∂gΨ0 (6.42)

with a monotonic degradation function, g(d). The given definitions in 6.39, 6.40 and

6.41 are used to obtain Kirchoff stress given in 6.42 so that

τ 0 = λ ln Jg−1 + µ
(
b− g−1

)
+

3∑

i=1

γ(θ) (I4i − 1) fi ⊗ fi (6.43)

Please note that

∂gJ =
1

2
Jg−1 , ∂gI1 = b , ∂gI4i = fi ⊗ fi (6.44)

Elasticity tensor and effective elasticity tensors are defined as

C := 4∂2ggΨ = g(d)C0, C0 = 4∂2ggΨ0, (6.45)

with explicit definition expression for C0

C0 = λg−1 ⊗ g−1 + 2(µ− λ ln J)Ig−1 +

3∑

i=1

2γ(θ)Mi (6.46)

where the symmetric fourth order identity tensor Ig−1 can be represented in indicial

notation (Ig−1)ijkl =
(
δikδjl + δilδjk

)
/2 and the fourth order structure tensors
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Mi := Mi ⊗Mi (6.47)

6.3.4 Linearization of the constitutive model

The linearized form of the free energy function is represented as follows

Ψ(ε,M i, θ) = Ψiso(ε, θ) + Ψani(ε,M i, θ) (6.48)

Isotropic and anisotropic parts of the free energy take the forms

Ψiso(ε, θ) =
λ(θ)

2
(tr ε)2 + µ(θ)ε : ε (6.49)

The additional term of the free energy function due to cubic symmetry reads

Ψani(ε,M i, θ) =
3∑

i=1

γ(θ)

4
(ε : M i)

2 (6.50)

with γ(θ) as the additional modulus term due to cubic crystal structure. The stress

expression then has the following form

σ = λ(θ) tr ε1+ 2µ(θ)ε+
3∑

i=1

γ(θ)

2
(ε : M i)M i . (6.51)

The fourth order elasticity tensor can be derived from the stress tensor as follows

C = λ(θ)1⊗ 1+ 2µ(θ)I+

3∑

i=1

γ(θ)

2
Mi , (6.52)

where I is the fourth-order identity tensor Iijkl = δikδjl + δilδjk and Mi = M i ⊗M i

is the structural tensor associated with the cube faces. The elasticity tensor of a cubic

symmetric crystal in matrix notation with the Voigt convention reads

Ĉ =
















C11 C12 C12

C12 C11 C11 0

C12 C12 C11

C44

0 C44

C44
















. (6.53)
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By comparing (6.52) and (6.53), we conclude that

γ = C11 − 2C44 − C12 µ = C44 λ = C12 . (6.54)

Herein, µ and λ are the shear modulus and the firs Lamé constant, respectively

The parameter γ vanishes for isotropic elastic materials leading to 2C44 = C11 −
C12. Chadwick et al. [211] provide additional insight into the acceptable range of

symmetries for the elasticity tensor and the consequent count of autonomous elastic

constants.

6.3.5 Energy based anisotropic failure criterion

As given in equation 6.39, free energy functions are decomposed into two parts. So,

critical fracture energies can also be decomposed into isotropic and anisotropic parts

which are represented by gisoc and ganic , respectively. These critical fracture energies

can be defined with a proportionality constant, α such that

gisoc = αganic

As a result, crack driving source term in equation 6.29 can be defined as

Hiso
=

Ψiso
0

giso
c /l

, Hani
=

Ψani
0

gani
c /l

(6.55)

that leads to rate-independent evolution of the phase field

(1− d)H = d− 1

2
Div(∇d) (6.56)

along with the specific form of the dimensionless crack driving source term

H(t) = max
s∈[0,t]

[〈H(s)− 1〉]

H = Hiso
+Hani

(6.57)
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In equation 6.57, an irreversible and positive crack driving source is defined where

the Macaulay brackets filter out the positive values for H(s) − 1 that indicates the

material will be intact until the failure surface is reached.

ηḋ
︸︷︷︸

Crack evolution

= (1− d)H
︸ ︷︷ ︸
Driving force

−
[

d− 1

2
Div(∇d)

]

︸ ︷︷ ︸
Geometric resistance

, (6.58)

The rate dependent case can be defined with the crack driving force and geomet-

ric resistance terms. For the rate independent case, there must be balance between

the crack driving force and the geometric resistance. In the upcoming case studies,

isotropic geometric resistance for crack propogation is used. However, the material

free energy is defined for cubic anisotropy.

6.4 Representative numerical examples

6.4.1 Effect of length scale parameter

Length scale parameter which determines bread of the crack represented by l. The

effect of this parameter is investigated on a square plate with planar dimensions of

10× 10mm2 with a thickness of 1mm that contains a notch starting on left edge and

propagating to the center of the body is defined as given in Figure 6.3. The top edge

of the plate at y = 10 is exposed to linear displacement, u, whereas it is fixed in three

directions at y = 0. The material is defined as cubic anisotropic with the structural

directors f1, f2 and f3. The structural director of f1 is inclined (θ) with respect to

x-axis of a fixed cartesian coordinate system.

As a cubic symmetric material, a III-V group semiconductor compound, GaSb mate-

rial is defined for the analysis. Previously determined temperature dependent thermo-

elastic material properties of GaSb by using DFT are used in this study. Second order

elastic constants as well as Lamé parameters of GaSb are defined with the following

polynomial in equation 5.13.

To determine the effect of length scale parameter, element size of 0.25mm, he, is used
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Figure 6.3: Square plate with a single notch has 1mm thickness with the applied

boundary conditions

in analysis. When the length scale parameter effect is investigated, a horizontal ma-

terial orientation (θ = 0) is used with the material parameters of GaSb at θ = 298K.

Length scale parameters of l = 0.3, 0.6, 1.2, 2.4mm’s are applied on the geometry

defined in Figure 6.3. As observed in crack evolution equation 6.58, geometric crack

resistance is isotropic. However, the crack driving force is anisotropic due to defined

free energy function is composed of isotropic and anisotropic parts. The changing

length scale parameter is not defined with different crack orientations in this study.

According to obtained results, an obvious smearing difference is observed when the

length scale parameter is increased. When the length scale parameter is increased,

effected material zone by an initiated crack increases as observed from Figure 6.4.

Using too large length scale parameter may result in crack merging, branching more

easily in case of having multiple cracks in the specified geometry.

6.4.2 Uniaxial tension of a notched plate

For a representative case study, the geometry given in Figure 6.3 is used with different

material orientation angles, θ. Material parameters of GaSb are defined according to
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(a) l = 0.3 (b) l = 0.6

(c) l = 1.2 (d) l = 2.4

Figure 6.4: Effect of length scale parameter on crack (a) l = 0.3, (b) l = 0.6,(c)

l = 1.2, (d) l = 2.4

given polynomial in 5.13 and Table 5.4. The critical isotropic free enegy, gisoc is

defined as 1E − 03 [MPa mm] with critical fracture energy proportionality constant

of α = 5E − 05. Note that if α = 1, then isotropic free energy and anisotropic free

energy of fracture will be equal. A finite element discretization is done with 1534

elements on the whole domain. A constant element size of 0.25mm is used and the

length scale parameter l = 0.6, is chosen such that it is greater than 2 times of the

element size.

Load−displacement behavior of the notched plate given in Figure 6.3 is investigated

for different material orientations θ. Provided results in Figure 6.5 shows that when

θ increases from 0◦ to 45◦, the damage in the material observed earlier with the given

input configuration. However, the maximum load that can be applied before the ma-

terial degradation increases when θ increases. Specifically, θ = 15◦, 30◦ and 45◦ ori-

entations can withstand 30.71%, 78.92% and 104.26% higher maximum loads with
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respect to 0◦ orientation, respectively. If the critical free energy threshold, gc is in-

creased, the absolute values of maximum loads before the material degradation is

expected to be higher.

Crack propagation paths are analyzed for different material orientations and the re-

sults are given in Figure 6.6. The dashed lines given in Figure 6.6 represents f1 vector

which makes the angle θ with the horizontal axis whereas the solid lines represents

the vector, f2. For 0° , 45° and 90°, a horizontal crack propagation is observed on

the notched geometry. When the material orientation has an angle with the horizontal

x-axis, the crack is propagating on horizontal direction for a while, then its direction

is changed depending on the given in-plane material orientation. If the material ori-

entation angle is smaller than θ < 45◦, developed crack follows the dashed line or

f1 direction. When θ > 45◦, the crack eventually follows the second direction −f2
or the solid line. For θ = 60◦ and θ = 75◦, the crack is following −f2 direction

which is symmetric with respect to the dashed line in Figure 6.6 c) and b), respec-

tively. In this model, the critical free energy, gc is defined as a scalar field because it is

given isotropic. However, another alternative could be defining orientation dependent

critical free energy to model anisotropic fracture, gc(θ).
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Figure 6.5: Force displacement results of different in plane material orientations

A phase field model is provided for cubic anisotropy and the effect of the length

scale parameter is covered for 0° material orientation. Then, the effect of material

orientation on crack propogation path is investigated. Force-displacement results of

the case study for different material orientations are also analyzed.
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a) θ = 0◦a) θ = 0◦ b) θ = 15◦

c) θ = 30◦ d) θ = 60◦

e) θ = 75◦ f) θ = 90◦

Figure 6.6: Effect of material orientation on crack propagation
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CHAPTER 7

CONCLUDING REMARKS

This thesis represents the first attempt to obtain temperature dependent thermo-elastic

material properties of III-V and II-VI semiconductor materials with quasi-harmonic

approaximation in Density Functional Theory. The investigated materials are widely

used in broad range of applications for which these materials can be exposed to dif-

ferent temperatures due to operation/storage conditions, microfabrication and growth

processes. Experimental studies for different semiconductor materials show good co-

herence with obtained results by DFT. Thermal expansion coefficient results obtained

by LDA show excellent coherence for all binary compounds. PBEsol provides sim-

ilar trends in comparison to LDA but with slight differences. Second-order elastic

constant results provide very similary behavior for both LDA and PBEsol approxi-

mations for all of the investigated semiconductors. Experimental results of second

order elastic constants can be represented within 10% by investigated DFT studies.

Lattice constant, Poisson ratio, heat capacity and Vicker’s hardness of different semi-

conductor materials from III-V and II-VI groups are established within quasi har-

monic approximation on a wide temperature limits. Effect of supercell size and strain

level on second order elastic constants is investigated on different materials. It is

shown that supercell size of 2 × 2 × 2 provides better efficiency in terms of compu-

tational power and time requirement without reducing accuracy. Strain dependency

analysis on binary compounds of II-VI semiconductors provided that strain level of

0.1% shows excellent results in second order elastic constant determinations of CdTe

whereas the results are insensitive for HgTe and ZnTe materials with both LDA and

PBEsol approximations. Opto-electronic material properties of Cd0.96Zn0.04Te, i.e,

refractive index, energy band-gap and extinction constant, are determined in a tem-

perature interval of 1-300K. Moreover, second order elastic constants, Poisson ratio,
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Vicker’s hardness and heat capacity of CdZnTe are also obtained with PBEsol.

A benchmark study that shows the effect of using temperature dependent material

properties on thermo-mechanical stress estimations resulted an improvement of de-

termined von Mises stress level on GaSb with 28.4% for GaSb-SS304 rectangular

prism shaped bimaterial assembly. In IRFPA structure, there is more complex ge-

ometry and the number of constituent materials is higher. A representative IRFPA

assembly structure is defined that consists of five different parts and cryocooling of

the assembly from room temperature to 77K is analyzed. Coefficient of thermal ex-

pansion mismatch driven problem developed thermo-mechanical stresses on sensing

IRFPA layer that was GaSb in this case. An improvement of 44.7% on maximum von

Mises stress of IRFPA (GaSb) layer is observed that is clearly higher than the ana-

lyzed bimaterial assembly. The free energy expression is proposed such that cubic

anisotropy is covered. Temperature-dependent Lamé parameters, λ(θ) and µ(θ) to-

gether with cubic symmetry parameter, γ(θ) are determined in terms of second order

elastic constants. For the given temperature limits, curve fitting is applied for GaSb

and InSb materials to fit Lamé parameters and cubic symmetry parameter, γ(θ) with

a polynomial function. Thermal field is added in the free energy definition such that

coupled-field problems can use this free energy expressions in the future.

Experimental study to determine elastic modulus and Vicker’s hardness of GaSb is

conducted by using nanoindentation method. It is observed that surface condition of

the material shows great importance while determining elastic modulus of GaSb. Ex-

perimental results of elastic modulus and Vickers’s hardness are compared with room

temperature DFT result and good coherence is observed. Vicker’s hardness results

show more deviations with respect to elastic modulus experimental result. Main rea-

son of this difference between elastic modulus and Vicker’s hardness can be caused

by the contact area determinations. The theoretical or calibrated contact area is used

to determine elastic modulus whereas the developed contact area is used to calculate

Vicker’s hardness. Theoretically calculated developed contact area may cause great

oscillations in the obtained nanoindentation results especially for non-polished GaSb

surface. A test setup that consists of vacuum envelope, rotary Stirling cryocooler, tur-

bomolecular and dry pump with proper interfaces is designed. This custom designed
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test setup is used to cooldown of GaSb and CdZnTe semiconductor compounds to

77K. Before the cryocooling experiments, these semiconductors are integrated with

stainless steel by using epoxy material. Due to developed thermo-mechanical stress,

crack initiation and propagation is observed on both of the samples. Induced cracks

on both of the materials are observed with scanning electron microscopy at room tem-

perature. With these experiments, both unidirectional and zig-zag patterned cracks are

reported with different crack propagation angles.

A preliminary study of crack initiation and propagation on cubic crystals is performed

with Phase Field Theory. The developed free energy function for cubic symmetry is

used in this theory. Obtained material parameters of GaSb by DFT are used as ma-

terial inputs of phase field fracture simulations. A notched geometry is investigated

under uniaxial tension with a fixed end as given in Figure 6.3. It is observed that the

crack propagation paths differ with respect to changing in plane material orientation.

The proposed framework from DFT simulations to experimental verification of ma-

terial parameters and crack initiation/propagation investigations with the defined test

setup and phase field simulations can be applied to different semiconductors. Elastic

modulus and Vicker’s hardness verifications on GaSb can be performed at different

temperatures with a more sophisticated instrument by nanoindentation. Stress-strain

behavior of semiconductors for elasto-plastic region can be determined with molecu-

lar dynamics simulations or with DFT by using relatively large amount of computa-

tional power and time. To observe plastic behavior of a single crystal material, it will

be required to define more than ten times of the unit cell structure which may not be

feasible by DFT. So, molecular dynamics simulations can be a better alternative to

work on plastic and fracture characteristic of single crystals.

As a future implementation of the provided test setup, the test setup design can be

improved for application or testing of a material for specific purpose under thermo-

mechanical loading by cryocooling and coefficient of thermal expansion mismatch.

Moreover, thermal cycling can be applied between room temperature and cryogenic

temperatures on a desired assembly. So thermo-mechanical fatigue lifetime experi-

115



ments can be performed. With proper modifications, this test setup can be used not

only for mechanical characterization of materials but also for opto-electronic tests of

IRFPA structures.

For another future work alternative, phase field fracture model can be improved by

providing the termal field together with mechanical and crack phase field so that cou-

pled thermo-mechanical fracture can be simulated. Crack initiation and propagation

due to cryocooling and coefficient of thermal expansion mismatch of constituent ma-

terials can be simulated. Higher order phase field methods can be developed for

specifically proposed materials such that one of the experimental outcomes of this

thesis can be compared with another numerical result as well.
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[169] R. Mohammad, Ş. Katırcıoğlu, and M. El-Hasan, “The electronic band struc-

ture of InN, InAs and InSb compounds,” Journal of materials science, vol. 43,

no. 8, pp. 2935–2946, 2008.

[170] H. Landolt, R. Börnstein, O. Madelung, W. Pies, A. Weiss, G. Will, K. Hell-

wege, and A. Hellwege, Numerical Data and Functional Relationships in Sci-

ence and Technology: New Series. Crystal and Solid State Physics. Crystal

Structure Data of Inorganic Compounds. Key Elements: Si, Ge, Sn, Pb; B, Al,

Ga, In, Tl; Be. Key Elements Si, Ge, Sn, Pb. Key Element Si (Substance Num-

bers D1... D1168)/Wolfgang Pies, Alarich Weiss in Cooperation with Georg

Will; Editors: K.-H. Hellwege and AM Hellwege. Springer., 1985.

[171] A. L. Miranda, B. Xu, O. Hellman, A. H. Romero, and M. J. Verstraete, “Ab

initio calculation of the thermal conductivity of indium antimonide,” Semicon-

ductor Science and Technology, vol. 29, no. 12, 2014.

[172] W. Boyle and R. Sladek, “Elastic constants and lattice anharmonicity of GaSb

and GaP from ultrasonic-velocity measurements between 4.2 and 300 K,”

Physical Review B, vol. 11, no. 8, p. 2933, 1975.

[173] L. Slutsky and C. Garland, “Elastic constants of indium antimonide from 4.2K

to 300K,” Physical Review, vol. 113, no. 1, p. 167, 1959.

[174] R. Pässler, “Non-debye heat capacity formula refined and applied to GaP,

GaAs, GaSb, InP, InAs, and InSb,” AIP Advances, vol. 3, no. 8, p. 082108,

2013.

[175] A. Pashinkin, V. Fedorov, A. Malkova, and M. Mikhailova, “Heat capacity of

GaB V and InB V (BV= P, As, Sb) above 298 K,” Inorganic Materials, vol. 46,

no. 9, pp. 1007–1012, 2010.

135



[176] R. Greenough and S. Palmer, “The elastic constants and thermal expansion

of single-crystal cdte,” Journal of Physics D: Applied Physics, vol. 6, no. 5,

p. 587, 1973.

[177] B. Lee, “Elastic constants of znte and znse between 77–300 k,” Journal of

Applied Physics, vol. 41, no. 7, pp. 2984–2987, 1970.

[178] X. Wu, L. Liu, W. Li, R. Wang, and Q. Liu, “Effect of temperature on elastic

constants, generalized stacking fault energy and dislocation cores in MgO and

CaO,” Computational Condensed Matter, vol. 1, pp. 38–44, 2014.

[179] D. Orlikowski, P. Söderlind, and J. A. Moriarty, “First-principles thermoelas-

ticity of transition metals at high pressure: Tantalum prototype in the quasihar-

monic limit,” Physical Review B, vol. 74, p. 054109, 2006.

[180] K. Gavrichev, G. Sharpataya, V. Guskov, J. Greenberg, T. Feltgen, M. Fiederle,

and K. Benz, “High-temperature heat capacity and thermodynamic functions

of zinc telluride,” Thermochimica Acta, vol. 381, no. 2, pp. 133–138, 2002.

[181] K. Gavrichev, V. Guskov, J. Greenberg, T. Feltgen, M. Fiederle, and K. Benz,

“Low-temperature heat capacity of ZnTe,” The Journal of Chemical Thermo-

dynamics, vol. 34, no. 12, pp. 2041–2047, 2002.

[182] M. Gambino, V. Vassiliev, and J. Bros, “Molar heat capacities of CdTe, HgTe

and CdTe HgTe alloys in the solid state,” Journal of Alloys and Compounds,

vol. 176, no. 1, pp. 13–24, 1991.

[183] W. Markert, H. Nieke, and D. Spiegler, “Halbleiteiereigenschaften von Telluri-

den, X. Wärmeleitfähigkeit und elektrische Eigenschaften des Systems HgTe

CdTe,” Annalen der Physik, vol. 476, no. 7-8, pp. 387–401, 1968.

[184] F. Kelemen, E. Cruceanu, and D. Niculescu, “Untersuchung einiger thermis-

cher Eigenschaften der Verbindungen HgSe, HgTe und ZnTe,” Physica Status

Solidi (B), vol. 11, no. 2, pp. 865–872, 1965.

[185] A. Demidenko, “Heat Capacity of CdS, CdSe, and CdTe,” Izv. Akad. Nauk

SSSR, Neorg. Mater., vol. 5, no. 2, pp. 252–255, 1969.

136



[186] D. T. Queheillalt and H. N. Wadley, “Temperature dependence of the elastic

constants of solid and liquid cd 0.96 zn 0.04 te obtained by laser ultrasound,”

Journal of applied physics, vol. 83, no. 8, pp. 4124–4133, 1998.

[187] N. Kolesnikov, E. Borisenko, D. Borisenko, and B. Gnesin, “Ceramic materi-

als made of CdTe and Cd-Zn-Te nanocrystalline powders,” Open Chemistry,

vol. 9, no. 4, pp. 619–623, 2011.

[188] R. Irwan, “Deformation characteristics and removal mechanisms of soft-brittle

solids: single crystals of mercury cadmium telluride (HgCdTe) and cadmium

zinc telluride (CdZnTe),” The University of Queensland, Master of Philosophy,

2015.

[189] S. Saib, S. Benyettou, and N. Bouarissa, “Ab initio calculation of fundamental

properties of cdxzn1- xte ternary alloys in the zinc-blende structure,” Physica

E: Low-dimensional Systems and Nanostructures, vol. 68, pp. 184–189, 2015.

[190] Y. Tsay, S. Mitra, and J. Vetelino, “Temperature dependence of energy gaps in

some ii–vi compounds,” Journal of Physics and Chemistry of Solids, vol. 34,

no. 12, pp. 2167–2175, 1973.

[191] K. Strzałkowski, “The composition effect on the thermal and optical properties

across cdznte crystals,” Journal of Physics D: Applied Physics, vol. 49, no. 43,

p. 435106, 2016.

[192] S. N. Moger, D. U. Shanubhogue, R. Keshav, and M. Mahesha, “Spectroscopic

and electrical analysis of vacuum co-evaporated CdxZn1−xTe thin films,” Su-

perlattices and Microstructures, vol. 142, p. 106521, 2020.

[193] R. Nahory, M. Pollack, W. Johnston Jr, and R. Barns, “Band gap versus com-

position and demonstration of vegard’s law for in1- x ga x as y p1- y lattice

matched to inp,” Applied Physics Letters, vol. 33, no. 7, pp. 659–661, 1978.

[194] Y.-K. Kuo, B.-T. Liou, S.-H. Yen, and H.-Y. Chu, “Vegard’s law deviation in

lattice constant and band gap bowing parameter of zincblende inxga1- xn,”

Optics Communications, vol. 237, no. 4-6, pp. 363–369, 2004.

137



[195] M. Daraselia, G. Brill, J. Garland, V. Nathan, and S. Sivananthan, “In-situ con-

trol of temperature and alloy composition of Cd1−xZnx Te grown by molecular

beam epitaxy,” Journal of Electronic Materials, vol. 29, pp. 742–747, 2000.

[196] R. Armstrong and W. Elban, “Macro-to nano-indentation hardness stress–

strain aspects of crystal elastic/plastic/cracking behaviors,” Experimental me-

chanics, vol. 50, no. 4, pp. 545–552, 2010.

[197] R. F. Gibson, “A review of recent research on nanoindentation of polymer com-

posites and their constituents,” Composites Science and Technology, vol. 105,

pp. 51–65, 2014.

[198] A. Zeilinger, J. Todt, C. Krywka, M. Müller, W. Ecker, B. Sartory, M. Meindl-

humer, M. Stefenelli, R. Daniel, C. Mitterer, et al., “In-situ observation of

cross-sectional microstructural changes and stress distributions in fracturing

tin thin film during nanoindentation,” Scientific reports, vol. 6, no. 1, pp. 1–14,

2016.

[199] Y. Wang, L. Shang, P. Zhang, X. Yan, K. Zhang, S. Dou, J. Zhao, and Y. Li,

“Measurement of viscoelastic properties for polymers by nanoindentation,”

Polymer Testing, vol. 83, p. 106353, 2020.

[200] W. C. Oliver and G. M. Pharr, “An improved technique for determining hard-

ness and elastic modulus using load and displacement sensing indentation ex-

periments,” Journal of materials research, vol. 7, no. 6, pp. 1564–1583, 1992.

[201] W.-G. Jiang, J.-J. Su, and X.-Q. Feng, “Effect of surface roughness on nanoin-

dentation test of thin films,” Engineering Fracture Mechanics, vol. 75, no. 17,

pp. 4965–4972, 2008.

[202] J. E. Jakes and D. S. Stone, “The edge effect in nanoindentation,” Philosophical

Magazine, vol. 91, no. 7-9, pp. 1387–1399, 2011.

[203] M. Königsberger, L. Zelaya-Lainez, O. Lahayne, B. L. Pichler, and

C. Hellmich, “Nanoindentation-probed oliver-pharr half-spaces in alkali-

activated slag-fly ash pastes: Multimethod identification of microelasticity and

hardness,” Mechanics of Advanced Materials and Structures, pp. 1–12, 2021.

138



[204] Y. Wang, D. Raabe, C. Klüber, and F. Roters, “Orientation dependence of

nanoindentation pile-up patterns and of nanoindentation microtextures in cop-

per single crystals,” Acta materialia, vol. 52, no. 8, pp. 2229–2238, 2004.

[205] G. Muthupandi, K. R. Lim, Y.-S. Na, J. Park, D. Lee, H. Kim, S. Park, and

Y. S. Choi, “Pile-up and sink-in nanoindentation behaviors in alcocrfeni multi-

phase high entropy alloy,” Materials Science and Engineering: A, vol. 696,

pp. 146–154, 2017.

[206] R. Radebaugh, “Cryocoolers: the state of the art and recent developments,”

Journal of Physics: Condensed Matter, vol. 21, no. 16, p. 164219, 2009.

[207] S. Kalácska, J. Ast, P. D. Ispánovity, J. Michler, and X. Maeder, “3d hr-ebsd

characterization of the plastic zone around crack tips in tungsten single crystals

at the micron scale,” Acta Materialia, vol. 200, pp. 211–222, 2020.

[208] T. Nagoshi, S. Kozu, Y. Inoue, B. E. O’Rourke, and Y. Harada, “Fatigue

damage assessment of sus316l using ebsd and pals measurements,” Materials

Characterization, vol. 154, pp. 61–66, 2019.

[209] S. Johnson, J. Vigil, J. James, C. Cockrum, W. Konkel, M. Kalisher, R. Risser,

T. Tung, W. Hamilton, W. Ahlgren, et al., “Mocvd grown cdzn te/gaas/si sub-

strates for large-area hgcdte irfpas,” Journal of electronic materials, vol. 22,

pp. 835–842, 1993.

[210] G. Qin, J. Kong, J. Yang, Y. Ren, Y. Li, C. Yang, H. Li, J. Wang, J. Yu, Q. Qin,

et al., “Hgcdte films grown by mbe on czt (211) b substrates,” Journal of Elec-

tronic Materials, pp. 1–8, 2023.

[211] P. Chadwick, M. Vianello, and S. C. Cowin, “A new proof that the number

of linear elastic symmetries is eight,” Journal of the Mechanics and Physics of

Solids, vol. 49, no. 11, pp. 2471–2492, 2001. The Jean-Paul Boehler Memorial

Volume.

[212] A. Masolin, P.-O. Bouchard, R. Martini, and M. Bernacki, “Thermo-

mechanical and fracture properties in single-crystal silicon,” Journal of Ma-

terials Science, vol. 48, no. 3, pp. 979–988, 2013.

139



140



CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Baloğlu, Eyüp Can
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