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Abstract
Motivation: Utilizing AI-driven approaches for drug–target interaction (DTI) prediction require large volumes of training data which are not avail-
able for the majority of target proteins. In this study, we investigate the use of deep transfer learning for the prediction of interactions between
drug candidate compounds and understudied target proteins with scarce training data. The idea here is to first train a deep neural network classi-
fier with a generalized source training dataset of large size and then to reuse this pre-trained neural network as an initial configuration for re-
training/fine-tuning purposes with a small-sized specialized target training dataset. To explore this idea, we selected six protein families that have
critical importance in biomedicine: kinases, G-protein-coupled receptors (GPCRs), ion channels, nuclear receptors, proteases, and transporters.
In two independent experiments, the protein families of transporters and nuclear receptors were individually set as the target datasets, while the
remaining five families were used as the source datasets. Several size-based target family training datasets were formed in a controlled manner
to assess the benefit provided by the transfer learning approach.

Results: Here, we present a systematic evaluation of our approach by pre-training a feed-forward neural network with source training datasets
and applying different modes of transfer learning from the pre-trained source network to a target dataset. The performance of deep transfer
learning is evaluated and compared with that of training the same deep neural network from scratch. We found that when the training dataset
contains fewer than 100 compounds, transfer learning outperforms the conventional strategy of training the system from scratch, suggesting
that transfer learning is advantageous for predicting binders to under-studied targets.

Availability and implementation: The source code and datasets are available at https://github.com/cansyl/TransferLearning4DTI. Our web-
based service containing the ready-to-use pre-trained models is accessible at https://tl4dti.kansil.org.

1 Introduction

Drugs are chemical compounds that are used to treat diseases
or to increase the quality of life. A drug is intended to interact
with a target biomolecule (e.g. a single protein, several pro-
teins or a protein complex) by regulating or correcting cellular
functions in pathological conditions. Although drug discovery
is traditionally a long, laborious, and costly process, recently,
there have been innovative and promising computational sol-
utions based on machine learning and deep learning. Virtual
screening of compounds against a target cell or protein is used
widely during the initial steps of the drug discovery process.
Lately, deep learning-based models for virtual screening and
drug–target interaction (DTI) prediction have yielded highly
promising results (Chen et al. 2018; Jing et al. 2018; Lo et al.
2018; Wang and Kurgan 2018; Ezzat et al. 2019;
Vamathevan et al. 2019; Baskin 2020; Réda et al. 2020;
Rifaioglu et al. 2020; Bagherian et al. 2021; Elbadawi et al.
2021; Kim et al. 2021; Du et al. 2022; Pan et al. 2022; Zhang

et al. 2022). However, the majority of deep learning models
developed thus far require a large volume of training data.
Such a large volume of data is not available for many of the
target proteins or protein families, and therefore, no predic-
tion models are available for these classes of proteins.

The distribution of the number of bioactive compounds per
target protein in the ChEMBL_29 (Gaulton et al. 2012) data-
base (i.e., ChEMBL database version 29) reveals the problem
of limited training data. Fig. 1 shows the distribution of target
proteins (percentage) in the bins of number of bioactive com-
pounds in ChEMBL_29. It is observed from Figure 1 that
nearly the two third of all human target proteins have less
than 100 known bioactive compounds and nearly the half of
this have less than 10 known bioactive compounds. In this
case, we ask the following question: is DTI prediction possible
when a limited amount of bioactivity data is available for a
target protein? The crucial issue is to find a solution when a
protein (or a protein family) has a low amount of bioactivity
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data, particularly in the case where there is the risk of overfit-
ting for the prediction model since the input feature vector is
generally of high dimensionality and deep learning models are
prone to memorizing rather than learning without sufficient
training data. When transfer learning or few- or zero-shot
learning is incorporated, it becomes possible to learn from
such a low amount of data. Transfer learning is a machine
learning approach where a model is trained for a source task,
and this pre-trained source model is then reused as an initial
configuration to build (train) a model (target model) for a dif-
ferent but related target task. The basic principles and meth-
ods of transfer learning in deep artificial neural networks are
explained by (Yosinski et al. 2014), while (Tan et al. 2018)
have compiled studies using deep transfer learning.

Deep transfer learning has not been extensively exploited so
far in the area of DTI prediction (Lee et al. 2019; Cai et al.,
2021; Playe and Stoven 2020; Kao et al. 2021; Li et al. 2021).
To this end, we investigate the use of deep transfer learning for
the prediction of interactions between drugs/compounds and
understudied target proteins that have scarce training data and
we present a systematic evaluation for this aim. We formulated
DTI prediction as a ligand-based binary classification problem.
For this, a feed-forward neural network (FNN) with two hid-
den layers is used in which the input is a 300-dimensional vec-
tor representation of a compound and the output is a binary
value that indicates whether the given input compound is pre-
dicted to interact with the target family. In terms of data, we
have selected six of the main protein families: G-protein-cou-
pled receptors (GPCRs), ion channels, kinases, nuclear recep-
tors, proteases, and transporters. Transporters and nuclear
receptors were separately used as the target dataset, while the
other five families were set as the source datasets. Deep transfer
learning was carried out by training the FNN with the experi-
mental bioactivity measurements of a source dataset generated
from one of the five protein families and applying the three
modes of transfer learning on the small-sized target family
(transporter or nuclear receptor) training datasets. The small-
sized target family training datasets are generated in a con-
trolled manner to pursue a systematic evaluation approach. We
then compared the performance of this deep transfer learning
approach with the case where the FNN was trained from
scratch. We also compared it against a shallow classifier.

In Section 2, we give background information on deep
transfer learning. This is followed by a discussion of the re-
lated research in Section 3. The data (Section 4) and method
(Section 5) are then presented in addition to the experimental

evaluation (Section 6). Section 7 finally presents a discussion
and conclusions.

2 Background information-deep transfer
learning

A machine learning problem involves a domain, D, and a
task, T. Given a source problem and a target problem, the
source domain is Ds, and the target domain is called Dt, while
the source task is Ts, and the target task is Tt. Transfer learn-
ing aims to learn Dt and improve the performance of Tt with
the help of Ds and Ts. In practice, a domain is represented by
a dataset. During the initial steps of drug discovery, the task is
typically the prediction of the interaction or bioactivity of the
drug with the target protein(s) or the prediction of the absorp-
tion, distribution, metabolism, elimination, and toxicity of the
drug. The domain is typically the set of molecules described
by features such as chemical descriptors. In our case, the task
remains the same, and the transfer is between domains, i.e. be-
tween different molecular (compound) datasets.

Deep transfer learning is applying transfer learning on deep
neural networks. The training phase of deep transfer learning
is composed of two stages.

Stage I: A source model is obtained by training the network
with a sufficient number of source training data. This is also
referred to as the pre-trained source model.

Stage II: The pre-trained source model is used as an initial
configuration and re-trained using target training data (which
is typically small) to obtain a target model.

Techniques for Stage II are grouped under three modes.
Note that the architecture of a deep neural network can be
functionally decomposed into roughly two parts: the bottom
layer(s) where feature extraction is performed and the upper
layer(s) where prediction is performed. Mode 2 and Mode 3
make use of this functional decomposition of the network.

Mode 1—Full fine-tuning: The most common deep transfer
learning technique is fine-tuning, which is in fact parameter-
based transfer learning. Based on the assumption that the
learned parameter values (weights) contain useful knowledge
obtained from the source domain, we seek to achieve better
performance by moving these parameter values (weights) to
the target model. The parameter values acquired from the
source model form the initial values of the parameters of the
target model. In this way, the weights of the target model do
not start with random values but with the converged values of
the weights of the pre-trained source model, and the target

Figure 1. The percentage of target proteins with certain numbers of bioactive compounds in the ChEMBL_29 database (data filters: targets are single

proteins and belong to the human, bioactivities are associated with a pChEMBL value, all data points are coming from binding assays, and multiple

bioactivity data points for the same compound-target pair are counted as one). For example, 6.2% of the target proteins in ChEMBL have bioactive

compounds in the range between 501 and 1000.
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model is re-trained with a small number of target training
data and converges faster as well with a reduced number of
training epochs (Fig. 3a).

Mode 2—Feature transformer: The source model is in fact
used to form a latent feature space i.e. common to both source
data and target data. This is indeed feature-based transfer
learning. The feature transformer can be obtained by freezing
the bottom layers (which are used for feature extraction) of
the pre-trained source model during Stage II; i.e. the weights
of the nodes at the bottom layers are not updated during re-
training with the target training data. Only the weights of the
nodes at the output layer (i.e. the predictor) are modified with
the limited number of target training data (Fig. 3b).

Mode 3—Shallow classifier: In Stage II, the output layer
(predictor) of the source model is replaced with a shallow
classifier. Hence, only the shallow classifier is trained with the
target data and the feature vectors for the target data are
extracted by the frozen bottom layers of the source model.
Mode 3 is similar to Mode 2, except that the extracted feature
vectors are given to a shallow classifier instead of the output
layer (predictor) of the neural network model (Fig. 3c).

3 Related research

A comprehensive literature review on transfer learning in
drug discovery is given by (Cai et al., 2021). In the drug dis-
covery field, most deep transfer learning studies have been
carried out for the prediction of compound properties, gener-
ation of molecules, and structure-based virtual screening.
Here, we focus on deep transfer learning studies related to
ligand-based and feature-based chemogenomic DTI predic-
tion methods. Multi-channel PINN (Lee et al. 2019), a
pairwise-input neural network model (chemogenomic DTI
predictor) was trained for the classification of compound–tar-
get protein interaction, and toxicity (activity) was chosen as
the target task in transfer learning. When compared, transfer
learning was more successful than training from scratch.
MPG (Li et al. 2021) employed graph neural networks with
the aim of compound representation learning and by using
this GNN as a feature transformer, a chemogenomic DTI pre-
dictor was assessed. The study was not necessarily carried out
on limited data or small datasets. EnsembleDLM (Kao et al.
2021) made an extensive analysis and examined how much
data a network (chemogenomic DTI regressor) needs to
achieve an acceptable DTI prediction performance via trans-
fer learning with full fine-tuning through several datasets, in-
cluding KIBA, Davis, and some others extracted from
ChEMBL. The main critical point of this study is that most of
these datasets are from the same protein family, i.e. enzymes.
Another comprehensive study on transfer learning in DTI pre-
diction (chemogenomic DTI binary classifier) is by Playe and
Stoven (2020). They reported that transfer learning by full
fine-tuning technique might improve the prediction perfor-
mance if the source task is highly similar to the target task.
Dey et al. used instance-based and feature-based transfer
learning in contrast to the popular parameter-based transfer
learning, such as pre-training (Dey et al. 2022). Yang et al.
employ transfer learning to predict protein–protein interac-
tions (Yang et al. 2021). Our study differs majorly in two
ways. First, Yang et al. did not consider the case of having
limited data for prediction. Second, Yang et al. solely
employed Mode 1 and Mode 2 methods of our transfer learn-
ing methods, while neglecting the use of Mode 3.

4 Data

Training datasets and test datasets were generated from the
ChEMBL database version 29 by applying the data filtering
protocol developed in our previous study (Rifaioglu et al.
2020). pChEMBL value¼7.0 (XC50 ¼ 100 nM) was used to
separate the active and inactive compounds of each target.
Data points in the dataset were filtered based on certain
attributes such as “target type” (i.e. single protein),
“taxonomy” (i.e. human), “assay type” (i.e. binding and func-
tional assays), and “standard type” (i.e. IC50, EC50, AC50,
Ki, Kd, and Potency). There were some duplicate measure-
ments in the dataset that originated from different bioassays.
To handle this, the median bioactivity value was identified for
each pair and assigned as the sole bioactivity measurement.
To avoid any ambiguity related to the physical binding of
compounds to their targets, the functional assays were dis-
carded and only the binding assays were kept after additional
filtering based on “assay type”. Finally, bioactivity measure-
ments without a pChEMBL value were removed from the
dataset.

The compounds were converted into ECFP4 fingerprints
and then clustered using RDkit’s compound clustering func-
tion (Butina 1999) based on a Tanimoto coefficient value of
0.8. This was done to avoid bias toward specific chemical se-
ries when training and evaluating the model. The statistics for
the datasets after the filtering steps are given in Table 1. To
construct source training datasets, target training datasets,
and test datasets, we have chosen six main protein families:
GPCRs, ion channel, kinase, nuclear receptor, protease, and
transporter. The transporter and nuclear receptor families
were selected as the target datasets (separately), while the
other five families were used as the source datasets.

To generate training datasets containing lower numbers of
DTI data points in a controlled manner, we randomly picked
compounds from the original transporter training dataset and
nuclear receptor training dataset. Eight smaller and balanced
(containing the same number of active and inactive com-
pounds) target training datasets were constructed where the
numbers of bioactivities are 2, 6, 12, 48, 96, 400, 1000, and
4000. Tests for all eight smaller target training datasets were
carried out with the transporter family test dataset (contain-
ing 1594 bioactivity data points in the test dataset) and the
nuclear receptor family test dataset (containing 1960 bioactiv-
ity data points in the test dataset).

5 Method

We formulated DTI prediction as a ligand-based binary classi-
fication problem. Therefore, we considered deep neural net-
works having compound features at the input which perform
binary classification (i.e. having binary output).

Table 1. Numbers of active and inactive compounds, training dataset size,

and test dataset size for all protein families.

Protein family Active Inactive Training dataset Test dataset

GPCR 36, 924 31,085 56, 675 11, 334
Ion channel 5,996 14, 167 16, 803 3,360
Kinase 35 ,531 30, 778 55, 259 11, 050
Nuclear receptor 5,099 6,668 9,807 1,960
Protease 15, 718 19, 518 29 ,364 5,872
Transporter 3,666 5,898 7,970 1,594
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The training phase is sketched in Fig. 2. At the same time as
the training phase, for comparison purposes, we trained, from
scratch, an FNN having exactly the same configuration (refer-
ence model) as well as a shallow classifier (base model), using
this same target training dataset. During the test phase, all
three models trained with the same target training dataset are
tested with an independent target test dataset and the perfor-
mance is evaluated and comparisons are made. All datasets
are generated using the learned representations of Chemprop
(Yang et al. 2019).

To choose a neural network architecture and determine its
configuration, we compared the performances of several differ-
ent architectures such as FNN with various numbers of hidden
layers, one-dimensional convolutional neural network (1D-
CNN), two-dimensional CNN (2D-CNN) with various input
compound representations. The best performance is obtained
by the model composed of an FNN with two hidden layers
where Chemprop learned representations (FNN-2-Chemprop)
are used as input. FNN-2-Chemprop performs binary classifi-
cation (as active or inactive) using compound features at the in-
put level. In FNN-2-Chemprop, a compound is represented by
a numerical vector of length 300 which is obtained by using
the learned representations of Chemprop. Training and test
split was employed to tune the hyperparameter values. The fi-
nal values of hyperparameters used in FNN-2-Chemprop are
as follows: number of hidden layers¼ 2; hidden layer
sizes¼ 1200 and 300; learning rate¼ 0.0001; number of train-
ing epochs¼ 100; batch size¼ 256. Visual representations of
three modes of transfer learning (described in Section 2) on
FNN-2-Chemprop are demonstrated in Fig. 3.

Representations (features) of compounds are learned by us-
ing Chemprop (Yang et al. 2019). Chemprop is a graph CNN
model consisting of two parts: a Directed Message Passing
Neural Network (DMPNN) and an FFN. Message Passing
Neural Network (MPNN) is a model that works on an undi-
rected graph with node properties and edge properties. In
Chemprop, training data for each compound includes the
SMILES string and a target value for the task. In this study,
we trained Chemprop to perform the relevant task as a binary
classifier (e.g. discriminating between active and inactive com-
pounds in the training dataset of the kinase protein family).
We then removed the final classifier FNN layer and we used
the values of 300 nodes in the last layer of the DMPNN as the

representative (feature vector) of the compounds both in the
training dataset and test dataset of the protein families. Thus,
representations were learned for a specific task.

6 Experimental evaluation

For comparison purposes, we selected the FNN-2-Chemprop
that was trained from scratch with the whole target training
dataset (without any transfer learning involved) as the refer-
ence model and a Support Vector Machine (SVM) that was
trained from scratch again with the whole target training
dataset (without any transfer learning involved) as the base
model. An SVM was used as the shallow classifier in Mode 3.
XGBoost and Random Forest were also used in Mode 3.
However, since SVM gave the best results among the shallow
classifiers we tested, we have only indicated the results of the
shallow SVM classifier.

Matthew’s correlation coefficient (MCC) was chosen as the
evaluation metric to measure performance. In addition to
MCC, we have already used different evaluation metrics such
as AUROC, Precision, Recall, F1-score, and Accuracy which
are the metrics that help to measure the robustness and stabil-
ity of the models. The tables containing all the evaluation met-
rics are given on the GitHub page (https://github.com/cansyl/
TransferLearning4DTI#results). We were able to indicate
only the MCC values because of the space limitation.
Furthermore, we saw that these other evaluation metrics have
the same tendency as MCC over the models. The recall values
are always better than the precision values for various dataset
sizes and models. The difference between the recall and preci-
sion increases when the dataset size gets smaller. The high re-
call value means a low false negative rate, which is beneficial
for DTI prediction.

Average test MCC values of the reference model (FNN-2-
Chemprop trained from scratch), the base (shallow) model
(an SVM trained from scratch), and the three transfer learning
modes are shown in Fig. 4, for four test dataset sizes. MCC
values are the averages of several repeated experiments. Small
datasets were created randomly for every experiment. In each
case, the transporter is the target family and one of the other
five families is used as the source family. A similar evaluation
is given in Fig. 5 where the nuclear receptor is the target

Figure 2. Sketch of the training phase. During the training phase, we first trained a source neural network model with a training dataset of a source family

(Stage I). This pre-trained source model is then used for transfer learning to retrain it with a small-sized target training dataset (Stage II). We also trained,

from scratch, an FNN having exactly the same configuration (reference model) as well as a shallow classifier (base model), using this same target training

dataset.
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family and one of the other five families is used as the source
family.

One of the subplots of Fig. 4, where the source protein fam-
ily is kinase and the target protein family is the transporter, is
given in detail in Fig. 6. The effect of learning by transfer is
better understood in this plot. A similar subplot is given in
Fig. 7, where the source protein family is the nuclear receptor.

Similar trends occur when plots are drawn for other source
protein families.

In general, when the training dataset size is <100, transfer
learning has better performance than training from scratch
(i.e. compared to the reference model and the base model).
When the size of the target training dataset is >100, transfer
learning performance is very close to that of training the

Figure 3. Visual representations of three modes of transfer learning (described in Section 2) on FNN-2-Chemprop; a) Mode 1: full fine-tuning, b) Mode 2:

feature transformer, and c) Mode 3: shallow classifier.

Figure 4. Prediction performance results of the models where transporter is the target family and one of the other five families is the source family in

each panel: The average test MCC values of the reference model (FNN-2-Chemprop trained from scratch), the base model (an SVM trained from scratch)

and the three modes of transfer learning. The results are given for four different cases (i.e., target training dataset sizes).
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network model from scratch. Transfer learning should still be
preferred since it requires a smaller number of training
epochs. In all of the cases for which the training dataset size is
<100, transfer learning methods performed better than the
reference model and base model. Furthermore, when transfer
learning is used, target models start from lower loss values
when compared to the reference model (see Fig. 8). Therefore,
a lower number of epochs are generally sufficient for training,
significantly reducing training time. We have also evaluated
the performance when the source models are directly used for
the tests of target data in the zero-shot learning setting; i.e. no
transfer learning (no re-training is applied on the pre-trained
source model). Fig. 9 shows the average test MCC values of

Figure 5. Prediction performance results of the models where nuclear receptor is the target family and one of the other five families is used as the source

family in each panel: The average test MCC values of the reference model (FNN-2-Chemprop trained from scratch), the base model (an SVM trained from

scratch) and the three modes of transfer learning. The results are given for four different cases (i.e., target training dataset sizes).

Figure 6. Prediction performance results of the models where transporter is the target family and kinase is the source family: The average test MCC

values of the reference model (FNN-2-Chemprop trained from scratch), the base model (an SVM trained from scratch) and the three modes of transfer

learning. The results are given for eight different cases (i.e., target training dataset sizes).

Figure 7. Prediction performance results of the models where nuclear receptor is the target family and kinase is the source family: The average test MCC

values of the reference model (FNN-2-Chemprop trained from scratch), the base model (an SVM trained from scratch) and the three modes of transfer

learning. The results are given for eight different cases (i.e., target training dataset sizes).

Figure 8. When transfer learning is used, the target (fine-tuned) models

starts the training from lower loss values compared to the reference

model (scratch), and converge after significantly lower number of epochs.
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the reference model (FNN-2-Chemprop trained from scratch)
when (i) transporter and (ii) nuclear receptor are the target
families, respectively. Although these results may still be ac-
ceptable, it is easily possible to increase the prediction perfor-
mance via a transfer learning-based target-specific training
(fine tuning) , even with a very small training dataset . For ex-
ample, when the ion channel is the source family and the
transporter is the target family, an MCC value of 0.333 is
obtained if the pre-trained source model is trained (fine tuned)
with only two samples (using Mode 1), while an MCC value
of 0.245 is obtained without target-specific training.

7 Discussion and conclusion

Here, we present a systematic evaluation of transfer learning
in DTI prediction by pre-training a neural network with
source training datasets and applying different modes of
transfer learning from the pre-trained source network to a tar-
get dataset by decreasing its size in a controlled manner.
Working with small datasets can often pose significant chal-
lenges and require specific approachesstrategies to address
issues such as overfitting or limited generalization. Yet, we
found that when the training dataset is smaller than 100 com-
pounds, transfer learning yields significantly better perfor-
mance compared to training the system from scratch,
suggesting an advantage to using transfer learning to predict
binders to under-studied targets.

With this approach, learning is still possible even when
there is a small amount of available data, as low as only two
compounds (i.e. one positive interaction data point and one
negative data point corresponding to an inactive compound).
Although fine-tuning is the most popular transfer learning
technique, we show that the other transfer learning techniques
described in this study (i.e., feature transformer and sshallow
classifier) deserve attention as well. Furthermore, deep trans-
fer learning is effective even when there are sufficient data to
train a model from scratch since convergence is faster. The
results table on the GitHub page (https://github.com/cansyl/
TransferLearning4DTI#results) shows that Mode 3 is slightly
better than the baseline model in most of the experiments,
even when the number of target training examples is higher
than 400. It is also possible to directly use a source model
(without any fine tuning) to infer bioactive compounds for a
target family dataset in the zero-shot learning setting. The
performance is acceptable in this setting; however, a short tar-
get-specific fine-tuning via transfer learning (e.g., using only
two target samples) boosts the performance.

The main problem that we would like to tackle next is to
predict binders for a specific protein that has limited or no
bioactivity data. The reason for using protein families in this
study was to explore the limits (in terms of the number of bio-
activity data) where transfer learning is still effective, by pro-
viding a large dataset as the source training dataset. We
intend to use these family-specific models as a basis for devel-
oping target-specific models. That being said, fine tuning a
target-specific model is currently possible using our pre-
trained source models available in our data repository
(https://github.com/cansyl/TransferLearning4DTI) and web-
service (https://tl4dti.kansil.org/). Last but not least, transfer
learning is not limited to DTI; the methodology presented
here can be utilized for other things types of machine learning
applications in biology and medicine, such as the prediction
of protein functions or the effects of genomic varations.
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