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The use of wavelet analysis contributes to better modeling for financial time series in the sense of both
frequency and time. In this study, S&P500 and NASDAQ data are separated into several components
utilizing multiresolution analysis (MRA). Subsequently, using an appropriate neural network structure,
each component is modeled. In addition, wavelets are used as an activation function in long short-
term memory (LSTM) networks to form a hybrid model. The hybrid model is merged with MRA as
a proposed method in this paper. Four distinct strategies are employed: LSTM, LSTM+MRA, hybrid
LSTM-Wavenet, and hybrid LSTM-Wavenet+MRA. Results show that the use of MRA and wavelets as
an activation function together reduces the error the most.
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dequate than linear models (see [1]). Considering the wide va-
iety and adaptability, neural networks are among the most used
nd widespread nonlinear models.
In the literature, several prediction and classification models

re used for time series analysis [2–10] and specifically quan-
itative finance [11,12]. Examples of some statistical and ma-
hine learning models that are employed in quantitative finance
re autoregressive moving average (ARMA) [13], autoregressive
ntegrated moving average (ARIMA) [14–16], seasonal ARIMA
SARIMA) [17,18], exponential smoothing, linear regression, lo-
istic regression [19], least absolute shrinkage and selection op-
rator (LASSO) regression [20,21], Naïve Bayes [22,23], decision
ree [24], random forest [22–25], support vector machine (SVM)
16,19,22,25], k-nearest neighbor (KNN) [23], gradient-boosted
ecision tree (such as extreme gradient boosting (XGBoost), light
radient-boosting machine (lightGBM)) [15,21,24,26], Prophet
27].

Furthermore, there are also studies concerning neural net-
orks, such as artificial neural network (ANN) [22,24,28], ex-
reme learning machine (ELM) [29], multi-layer perceptron
MLP) [23,30], recurrent neural network (RNN) [24,29], convo-
utional neural network (CNN) [31,32], long short-term memory
LSTM) [14–16,24,31–34], etc.

The performance rankings of the methods used in the related
iterature may vary according to the data type and parameter se-
ection [4,5,14,15,18,27,35,36]. For this reason, instead of finding
he best model between classical or state-of-the-art methods, the
tudy focuses on the question of whether the LSTM model, which
s one of the state-of-the-art methods, can be improved. While
oing this, benchmarking is accomplished by using several other
ethods as well.
In a very large variety of fields, wavelets are used and their

copes are growing day by day. For complex time series, the
requency domain is crucial for most situations. As the data
ets more complex, examining it in both time and frequency
omains brings improvements in data analysis, modeling, and
rediction [1,37,38]. Moreover, for both linear and nonlinear time
eries, multiresolution analysis (MRA) gives better modeling and
orecasting results [1].

In this paper, making better predictions for stock market in-
exes is investigated to guide buying and selling attitudes of
nvestors. Furthermore, several up-to-date applied studies and
ompetitions on online platforms comprise traditional and ad-
anced machine learning topics. Therefore, this study contributes
o both literature and online studies by using MRA and wavenet
ith LSTM networks.
Wavenet is a type of wavelet neural network (WNN), where

he translation and the dilation parameters are not trainable
arameters. In other words, these parameters do not change in
he activation functions. In this research, activation functions are
enerated using the polynomial powers of sigmoid (PPS) and
odel accuracy is increased by the use of MRA and LSTM.
Developing models by taking advantage of both neural net-

orks and wavelets is a method used by many researchers.
othimani et al. [39] synthesize wavelets and nonlinear models
o predict the stock market data. They show that the accuracies
f hybrid models are higher than the accuracy of classical models.
imilarly, the study of Chandar et al. [40] also illustrates that
tilizing wavelets with neural networks increases the accuracy
f the stock market data.
Jin and Kim [41] make predictions about natural gas prices

sing the ARIMA model and ANN. They conclude that using
avelet with ANN and ARIMA gives better results than using only
NN and ARIMA models respectively.
A wavelet-based neural network structure for two deep learn-
ng models in time series classification and forecasting is studied
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by Wang et al. [42]. Results again show that hybrid techniques
improve the outcomes of the models without wavelets.

Arévalo et al. [43] specify that using wavelet analysis for high-
frequency financial data increases the accuracy of each ARIMA,
deep neural network (DNN), gated recurrent unit (GRU), and
LSTM methods.

Liu et al. [44] predict non-stationary wind power time series
using discrete wavelet transform (DWT)-LSTM, DWT-RNN, DWT-
back-propagation neural network (BP), LSTM, RNN, and BP. The
proposed method, particularly DWT-LSTM, outperforms all the
other models.

Some studies practice wavelets only for data decomposition
to use sub-series as normal neural network inputs [45–50], while
some works utilize wavelets just for activation functions of WNN
[51–55]. Both MRA and WNN provide great benefits in many
fields. Therefore, the motivation of this paper is to benefit from
wavelet theory from multiple directions to increase the accuracy
of the LSTM model for time series prediction. This paper aims
to bridge the gap between these two different approaches by
combining them.

The paper is organized as follows. As preliminary knowledge
and the fundamental concepts used in this paper and the es-
sentials of the LSTM are provided in Section 2.1. Further in Sec-
tion 2.2, the significant technical points in using wavelets are ad-
dressed; maximal overlap discrete wavelet transform (MODWT)
and MRA are briefly explained. Finally, in Section 2.3, the essential
details of PPS are listed, as the wavelets used in the empirical
analysis are derived from PPS. In Section 3, the LSTM and wavelets
are used to model S&P500 and NASDAQ financial time series
using four different methods: LSTM model without MRA, LSTM
model with MRA, hybrid LSTM-Wavenet model without MRA, and
hybrid LSTM-Wavenet model with MRA. The results obtained by
these methods are fully discussed in Section 4. In addition, the
results of classical statistical and machine learning models are
compared with the proposed approach. A brief conclusion as well
as a possible extension of the methodology is given in Section 5.
Finally, Appendix contains the configurations used by the models
used in the paper.

2. Preliminaries and the fundamental concepts

In this section, a short preliminary knowledge of LSTMs as well
as wavelets is given; however, for the methodology used in the
paper to be understood well enough the fundamentals of MRA as
well as the WNN are also recalled briefly.

2.1. LSTM

LSTM, which is a specific type of RNN, is used in this study for
financial time series analysis. Because financial data has fluctua-
tions for both short and long time intervals, the network structure
needs to own various memories for different time gaps.

Hochreiter and Schmidhuber [56] list several advantages of
LSTM, while Viswanath [57] describes differences between ANN,
RNN, and LSTM. The mathematical formulation of RNN can be
described by

ht = fH (WIHxt +WHHht−1) , (1)

yt = fO (WHOht) , (2)

where ht , xt and yt are hidden state, input, and output vectors;
WIH ,WHH and WHO are the weight matrices; fH and fO are the ac-
tivation functions for hidden and output parts, respectively. RNN
would have vanishing or exploding gradient problems; however,
LSTM could solve these obstacles by appending additional parts
like the input gate, the forget gate, and the output gate. Therefore,
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Fig. 1. Structure of a LSTM cell.
STM would be a more suitable choice for time series modeling
nd prediction.
In Fig. 1 one unit LSTM is illustrated; particularly equations for

stimating the output ht of the memory cell at time t are given
s follows:

t = σ (WFxt + UFht−1 + bF ), (3)

It = σ (WIxt + UIht−1 + bI ), (4)

C̃t = tanh(WCxt + UCht−1 + bC ), (5)

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t , (6)

Ot = σ (WOxt + UFht−1 + bO), (7)

ht = Ot ⊙ tanh(Ct ), (8)

where xt is input vector to the LSTM at time t , the W ’s and U ’s are
weight matrices of the input and recurrent connections, the b’s
are bias vectors, ht in (8) is the output vector of LSTM cell, Ct in (6)
and C̃t in (5) are state and candidate state vectors respectively, Ft
in (3) contains the forget gate values, It in (4) includes input gate
values and Ot in (7) covers output gate values. For further details
of LSTM and how it works, one could refer to [58].

2.2. Wavelets

A signal can be split into high-frequency and low-frequency
components in appropriate time intervals with the aid of the
wavelet transform. Since financial time series have a high-
frequency for short time lengths and a low-frequency for lengthy
time periods; apparently, the use of wavelets should be appropri-
ate and of great help.

2.2.1. MODWT
In theory, it is more common to apply continuous wavelet

transform (CWT) for continuous functions but not for discrete
signals as Masset remarks in [37]. With this, MRA with sampled
wavelets is described by using MODWT.

MODWT has some advantages as opposed to DWT. MODWT
does not demand dyadic length time series where DWT does.
In other words, DWT restricts the data for owning a length of
N = 2J where J is the scale level. The sizes of wavelet and
scaling coefficients are equal to the original time series’s length at
every step of the transform for MODWT. Besides, MODWT is time-
shift invariant while DWT is influenced by time-shifting as stated
in [59]. Therefore, the variance analysis (i.e., scale-based analysis
3

of variance) of MODWT is more productive than the variance
analysis of DWT as mentioned in [60].

Let w hold wavelet and scaling coefficients of the MODWT,

w = [w1, w2, . . . , wJ , vJ ]
T , (9)

where the length of wj (wavelet coefficients) is N/2j and the
length of vJ (scaling coefficient) is N/2J ; these are consistent
with scale sizes λj = 2j−1 and λJ = 2J−1, respectively for
j = 1, 2, . . . , J . The vector w is obtained by using high-pass and
low-pass filters as mentioned in [59], and

w = Wξ, (10)

where W = [W1,W2, . . . ,WJ , VJ ]
T is (J+1)N×N matrix in which

each Wj and VJ are N × N matrices and ξ is the underlying time
series (signal).

High-pass and low-pass filters are convolved with the time
series to obtain wavelet and scaling coefficients of the first level
as follows:

w1(t) =
L−1∑
l=0

h̃lξ (ṫ) and v1(t) =
L−1∑
l=0

g̃lξ (ṫ), (11)

where t = 0, 1, . . . ,N − 1 and ṫ = t − l (mod N). Wavelet and
scaling coefficients of the second level are captured by convolving
v1(t) with the high-pass filter h̃l and low-pass filter g̃l. After
J = log2 N convolution iterations, wavelet and scaling coefficients
become:

wJ (t) =
L−1∑
l=0

h̃lvJ−1(ṫ) and vJ (t) =
L−1∑
l=0

g̃lvJ−1(ṫ), (12)

where ṫ = t − 2J−1l (mod N).
As (11) and (12) are convolved with high-pass filter and low-

pass filter respectively, the scaling coefficient of the previous level
is received by summing the two convolving parts [59]:

vJ−1(t) =
L−1∑
l=0

h̃lwJ (ṫ)+
L−1∑
l=0

g̃lvJ (ṫ). (13)

This scheme is iterated up to the first level of wavelet and scaling
coefficients to get the original time series, written in the form,

ξ (t) =
L−1∑
l=0

h̃lw1(ṫ)+
L−1∑
l=0

g̃lv1(ṫ), (14)

where ṫ = t + l (mod N).
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.2.2. MRA
MRA is a sequence of closed nested subspaces

{
Vj : j ∈ Z

}
in

L2(R) with the conditions [61–63]:

1. {φ(x− k) : k ∈ Z} is an orthonormal basis for V0, where φ
is scaling function,

2. {0} ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ⊂ L2(R),
3. Closure of

(
∪j∈ZVj

)
= L2(R),

4. ∩j∈ZVj = {0},
5. f (t) ∈ Vj ⇔ f (2t) ∈ Vj+1; i.e., the spaces V ’s are self-similar,
6. Vj+1 = Vj⊕Wj where the Wj is the jth resolution level and

Vj ∩Wj = {0}.

Scaling ϕj,k and wavelet ψj,k functions generate bases for Vj
nd Wj subspaces by applying scaling and translation parameters
espectively:

j = span
{
ϕj,k(x)

}
, (15)

j = span
{
ψj,k(x)

}
. (16)

After defining MRA by utilizing subspaces in (15) and (16),
2(R) space or any function in it can be written as a direct sum
f V0 and Wj subspaces, since
2(R) = V0⊕W0⊕W1⊕W2⊕ · · ·⊕Wj for j = 0, 1, 2, . . . (17)

ow, it should be clear that any function f can be given in the
orm of wavelet series expansion:

(x) =
∑
k

aj0 (k)ϕj0,k(x)+
∞∑
j=j0

∑
k

dj(k)ψj,k(x) for j > j0, (18)

n which the first sum with the scaling function represents the
mooth part and the second sum represents the detailed parts
f the function. The following integrals are used to find the
oefficients of the expansion of f in (18):

j0 (k) =
∫

f (x)ϕj0,k dx and dj(k) =
∫

f (x)ψj,k dx. (19)

In practice, the scale level J is chosen to be finite, and hence
he function in (18) can be written as a time series as follows:

(t) =
∑
k

aJ,kϕJ,k(t)+
J∑

j=j0

∑
k

dj,kψj,k(t) for j = 1, 2, . . . , J.

(20)

Using the celebrated Mallat’s pyramid algorithm [64], MODWT
ivides (20) into smooth and detailed parts

(t) = AJ,k +

J∑
j=j0

Dj,k, (21)

here the component AJ,k keeps the average information (or
rend) of the original data at the largest scale and is associated
ith the scaling coefficients. Components Dj,k’s, from the first
cale to the last, are linked with wavelet coefficients. They are im-
lemented for accumulating higher frequency information [37].

.3. WNN

The goal of this part is to benefit both wavelets and neural
etworks for better modeling of the time series. For complex data,
uch as financial time series, the WNN is functional.
Traditional activation functions such as logistic, hyperbolic

angent, rectified linear unit (ReLU), softmax, etc., or some custom
inear/nonlinear activation functions are used in neural networks.
4

On the other hand, WNNs’ activation functions consist of wavelets
in the hidden layer neurons. The hidden layer neurons in WNN
are named wavelons [65–67]. Wavelons have two parameters,
which are termed translation and dilation. The single wavelon is
given by

ψu,v(x) = ψ
(
x− u
v

)
, (22)

here u is the translation (or the location) and v is the dilation
or the scale) parameter.

Wen et al. [68] state that since wavelets are quickly van-
shing functions, it is important not to select too small dilation
arameters. Moreover, Radhwane and Bereksi [69] point out that
andom initialization of the translation and dilation parameters
ay result in too local wavelets.

.3.1. Wavenets
Veitch [70] states that if the translation and the dilation pa-

ameters given in (22) are fixed for the learning process, then the
etwork is called wavenet. In this study, wavenets are utilized.
Parameters specified in (22) may alter for each node in the

idden layer. These parameters need to be initialized according
o the data (see Section 3). In this study, the wavelet functions
’s are acquired from PPS. Marar and Bordin [71] state that

here are many limitations in the traditional backpropagation
lgorithm, and hence, a family of polynomial wavelets generated
rom powers of sigmoid functions is used to eliminate these
imitations.

.3.2. PPS
Fernando et al. [72] declare that a group of polynomial

avelets created from the powers of sigmoid provides robust
eural networks, particularly WNNs. Consecutive powers of sig-
oid functions are used to produce polynomial types of wavelet

unctions so that the square integrability and admissibility con-
itions,∫
R
∥f (x)∥2 dx <∞ and

∫
∞

0

∥C(ω)∥2

ω
dω <∞, (23)

are satisfied, where ω is frequency and C is the Fourier transform
of ψ(x).

Particularly, consider the following sigmoid function

f (x) =
1

1+ exp(−αx)
, (24)

where α is the smoothness constant. To create functions of
wavelet family from the sigmoid function in (24), the nth power
of the sigmoid function and the set of all powers of the sigmoid
function are used.

The polynomial wavelet function is given as (see [73])

ψn(x) =
n∑
k

k∑
j=0

(−1)j(j+ 1)n
(
k
j

)
f (k+1)(x), (25)

here n is the order of the derivative of the sigmoid function
nd f (k+1)(x) is the (k + 1)th derivative of the sigmoid function.
articularly, the first, the second, and the third polynomial types
f wavelet functions in (25), which use consecutive powers of
igmoid functions, are given respectively, as

1(x) = −f (2)(x)+ f (x), (26)

2(x) = 2f (3)(x)− 3f (2)(x)+ f (x), (27)

ψ3(x) = −6f (4)(x)+ 12f (3)(x)− 7f (2)(x)+ f (x). (28)

Note that the observed family of polynomial wavelets ψi ∈ L2(R).
Consequently, the conditions (23) hold not only for this family

but also for shifted and dilated versions of this family.
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Fig. 2. The flowchart of four different methods employed in the study.
S

. Configurations and empirical results

The flowchart of LSTM, LSTM+MRA, hybrid LSTM-Wavenet,
nd hybrid LSTM-Wavenet+MRA methods are illustrated in Fig. 2.
here is a decision point that determines whether MRA will be
sed or not. It is represented to show whether the algorithm
s working with or without an MRA. The general flow for both
ases includes data preprocessing, hyperparameter optimization,
odeling and learning, prediction and visualization. Main parts
f the flowchart are described below.

ata preprocessing. In this step, it is decided which parts of
he data will be used. Then selected financial data (S&P500 and
 o

5

NASDAQ) is combined, and this fused data is normalized between
0 and 1. Normalization for the ith input is done via xi ←

xi−xmin
xmax−xmin

,
where xi is the input value, xmax and xmin are the maximum and
the minimum values of the data. The data is then converted to
the structure of a supervised learning type by using certain time-
steps.1 The modified input is eventually divided into the train set,
the validation set, and the test set.

1 Several time-steps conditions are tried for the LSTM structure practiced to
&P500 data in [74]. The value 10 for the time-steps gives the most favorable
utcome. Accordingly, 10 is used as a time-steps in the study.



D.K. Kılıç and Ö. Uğur Applied Soft Computing 144 (2023) 110469

a
s

M
m
a
L
u

P

u
t
v

u
t
n
E
t
e
I
i
t
t
i
o

c
s

L
a
i
r
a

c
p

3

1
n

b

Table 1
Descriptive statistics of S&P500 data.

All data Training data Validation data Test data

Start date 1980–08–04 1980-08-04 2007–10–10 2013–09–04
End date 2019–07–29 2007-10-09 2013–09–03 2019–07–29
# of observations 9830 6860 1485 1485
Minimum 102.42 102.42 676.53 1653.08
Maximum 3025.86 1565.15 1709.67 3025.86
Range 2923.44 1462.73 1033.14 1372.78
Mean 990.26 654.61 1247.78 2283.34
Median 993.52 459.59 1278.18 2143.16
Variance (ddof = 0) 511585.07 205914.77 46644.40 129766.45
Std (ddof = 0) 715.25 453.78 215.97 360.23
Variance (ddof = 1) 511637.11 205944.79 46675.83 129853.90
Std (ddof = 1) 715.29 453.81 216.05 360.35
Skewness 0.74 0.44 −0.24 0.37
Kurtosis −0.10 −1.34 −0.38 −1.16
u
f
T
t
N

Hyperparameter optimization. The train set and the validation set
re used in the Talos optimization process [75]. Automatically
elected hyperparameters are again optimized manually.

odeling and learning. If wavenets are not used, then the created
odel is called the LSTM model. On the other hand, if wavelet
ctivation functions are utilized, the model is called a hybrid
STM-Wavenet model. The train set and the validation set are
sed to trigger the learning process for the selected model.

rediction and visualization. After the learning process, the mod-
els are used for the prediction using the test set. Further, the
model training set is also predicted. All predictions are denormal-
ized via xi ← xi(xmax − xmin) + xmin. Monte Carlo estimates are
sed to get the mean error metric scores for the train set and the
est set. In addition to calculating different error metric results,
isuals of the analysis are acquired.
On the other hand, one should also notice that when MRA is

sed, the data is decomposed after data selection and integra-
ion parts in data preprocessing. All decomposed data levels are
ormalized and transformed into a supervised learning problem.
ach level is subdivided into the train set, the validation set, and
he test set. Later on, hyperparameter optimization is done for
ach subseries by Talos optimization and hand-tuning2 methods.
f wavelets are used as an activation function, then the model
s named a hybrid LSTM-Wavenet model with MRA. Otherwise,
he model is called an LSTM model with MRA. After predicting
rain and test parts for each level by using Monte Carlo estimates,
nverse MODWT is applied to the predictions to reconstruct the
riginal time series.
The whole analysis is done using Python language in Ana-

onda. To perform ANN, the Keras library, which uses the Ten-
orFlow backend, is used [76].
Batch normalization is practiced in each analysis between

STM and dense layers to produce smaller pieces of data with
mean of zero and a standard deviation of one. In [77,78] it

s claimed that batch normalization has some advantages like
educing overfitting problems, speeding up the training process,
nd improving accuracy results/decreasing loss values.
The list of the specifications of the computing environment

odes run on as well as the error metrics used are given in Ap-
endix.

.1. Data sets

S&P500 (∧GSPC) and NASDAQ (∧IXIC) stock data between
980-08-04 and 2019-07-29 are downloaded from https://fina
ce.yahoo.com/. Data has 9830 observations with ‘‘Open, High,

2 At this stage, kernel initializer, kernel regularizer, recurrent regularizer, and
ias regularizer are optimized.
6

Low, Close, Adj Close, Volume’’ columns. Only closing prices are
used in experimental parts. Data summary tables for S&P500 and
NASDAQ are given in Table 1 and Table 2, respectively.

S&P500 is a USA-based stock market index that carries 500
large corporations registered on stock exchanges. S&P500 in-
cludes finance, health care, industry, energy, information technol-
ogy, and many other sectors. NASDAQ Composite is also another
important USA-based stock market index that embraces the in-
formation technology sector. Because S&P500 keeps almost every
sector, it is less volatile than NASDAQ. NASDAQ is supposed risky,
while S&P500 is considered risk-free. Portfolio diversification by
investing in both riskless and risky markets is crucial for market
players and investors.

In Figs. 3(a) and 3(b), almost 70% of the data is in the train
set (length of 6860), about 15% is in the validation set (length
of 1485), and nearly 15% of all data is in the test set (length of
1485). It is noticed that there are large changes in values between
the training set, the validation set, and the test set. Also, there
are fluctuations: the minimum, maximum, mean, and standard
deviation of both S&P500 and NASDAQ are quite different for the
training set, the validation set, and the test set; thence classical
methods may not be appropriate choices to be expected to work
efficiently.

3.2. LSTM model without MRA

Firstly, closing prices of S&P500 and NASDAQ stocks are con-
catenated. Each sample is related to index 0 for closing prices of
S&P500 and index 1 for closing prices of NASDAQ, respectively. By
using ten days window set, the next day’s closing price is focused
on being predicted.

Two hidden layers are used, where the first one consists of
LSTM nodes, and the second one is formed of a regular densely-
connected neural network. The kernel, recurrent, and bias regu-
larizers are used in the LSTM layer. Batch normalization and ReLU
activation function are joined between dense and LSTM layers,
respectively. In the dense part, kernel and bias regularizers are
utilized.

After modeling the problem according to the selected config-
uration using Talos optimization and hand-tuning, the model is
fit to the data and predicts train/test data multiple times within
a loop. Subsequently, train/test predictions and the means of the
error metrics are estimated.

Results are affected by tuning L1 regularization and L2 reg-
larization in the kernel, recurrent and bias regularizers for a
ixed epoch value. The optimized Talos configuration is given in
able A.13. Training and test results which are obtained using
he optimized parameters are given in Table 3 for S&P500 and
ASDAQ.
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Table 2
Descriptive statistics of NASDAQ data.

All data Training data Validation data Test data

Start date 1980–08–04 1980-08-04 2007–10–10 2013–09–04
End date 2019–07–29 2007-10-09 2013–09–03 2019–07–29
# of observations 9830 6860 1485 1485
Minimum 159.14 159.14 1268.64 3649.04
Maximum 8330.21 5048.62 3692.95 8330.21
Range 8171.07 4889.48 2424.31 4681.17
Mean 2042.74 1147.35 2519.96 5701.76
Median 1697.72 743.45 2516.69 5190.10
Variance (ddof = 0) 3547004.08 909358.80 268338.30 1690667.54
Std (ddof = 0) 1883.35 953.60 518.01 1300.26
Variance (ddof = 1) 3547364.95 909491.37 268519.12 1691806.81
Std (ddof = 1) 1883.45 953.67 518.19 1300.69
Skewness 1.33 1.09 −0.14 0.44
Kurtosis 1.29 0.78 −0.34 −1.18
Fig. 3. Partitioning graphs and histograms.
Table 3
LSTM model, configuration (S&P500/NASDAQ): mean scores for the train set and the test set by running 1000
experiments.
Configuration
Experiment size 1000
Time taken by process 228 m 29 s/234 m 49 s

Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores

RMSE 11.93/36.65 29.06/85.31
Scaled RMSE 0.00/0.00 0.01/0.01
R2 1.00/1.00 0.99/1.00
MAE 8.06/21.44 23.30/66.58
EVS 1.00/1.00 1.00/1.00
ME 107.80/492.62 139.80/324.16
MdAE 4.86/11.35 19.93/53.22
7
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Table 4
LSTM model+MRA, configuration (S&P500/NASDAQ): mean scores for the synthesized train set and the synthesized test set by running
1000 experiments.
Configuration
Experiment size 1000 wavelet filter db2 (D4)
Time taken by process 1981 m 47 s/2008 m 34 s wavelet level 2

Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores

RMSE 15.29/33.12 26.91/65.41
Scaled RMSE 0.01/0.00 0.01/0.01
R2 1.00/1.00 0.99/1.00
MAE 12.29/20.74 22.66/52.67
EVS 1.00/1.00 1.00/1.00
ME 239.30/612.95 104.68/244.27
MdAE 11.11/11.67 20.36/44.05
f

3.3. LSTM model with MRA

In this section, the data is decomposed into two detail parts
nd one approximation part by applying MRA. Daubechies
avelets, particularly the ‘‘db2=D4’’ filter and MODWT, are used
o decompose the time series with a level of two. Then the first
etail, second detail, and approximation parts are obtained as
ubseries. Each subseries (length of 9830) is split into the train,
alidation, and test sets. Almost 70% of each level is used in the
rain set (length of 6860), about 15% of each level is used in the
alidation set (length of 1485), and nearly 15% is used in the test
et (length of 1485).
The same network form is used in the approximation level as

uilt in Section 3.2. On the other hand, a single LSTM hidden layer
s used for the first and the second detail levels independently.
ach level is modeled by using Talos optimization and hand-
uning methods. The model is then fit for the data to predict
rain and test datasets for 1000 experiments. After denormalizing
redictions, inverse MODWT is applied to these predictions of
he train and the test separately. Lastly, the means of the error
etrics are calculated and train/test predictions are synthesized.
In Table A.14 configurations of the first detail, second detail,

nd approximation are presented for S&P500 and NASDAQ. In
able 4 means of 1000 reconstructed scores are given for S&P500
nd NASDAQ. It is seen that using MRA improves the test results
ased on RMSE, MAE, and MdAE metrics except for the MdAE
cores of S&P500.

.4. Hybrid LSTM-wavenet model without MRA

PPS is used to generate an internal activation function for
he time series in this part. Details of polynomial wavelets are
iven in Section 2.3.2. Data preparation, time-steps, and network
tructure are the same as used in Section 3.2.
When the polynomial wavelet function generated by the nth

erivative of the sigmoid function is used for the nth node of
he LSTM layer, results are much worse than those when a single
olynomial wavelet function in each cell is used. The polynomial
avelet function generated by the 6th derivative of the sigmoid

unction is used to create a wavelet activation function in each
ell. Each activation function with index j is generated as

j
6(x) = ψ

(
x− uj

vj

)
, (29)

here u is the translation (or location) and v is the dilation (or
scale) parameters for j = 1, 2, . . . , 16. The subscript 6 denotes
he order of the derivative. Translation and dilation parameters
re initialized as

1 ≈
1
2

(
β − α

n

)
and v1 ≈

1
2

(
β + α

n

)
, (30)

here α and β are, respectively, the minimum and the maximum
alues in the training set; n is the number of LSTM nodes.
8

As a result, initial translation and dilation parameters in (30)
or S&P500 data are u1 = 40 and v1 = 50. On the other hand, the
same values are used for the initial parameters of NASDAQ data
for the sake of the same configurations. Thus,

ψ
j
6(x) = ψ

(
x− 40j
50j

)
, (31)

where j is the index of the activation functions.
Two different approaches are used for the hybrid LSTM-

wavenet model without MRA. In the first method, the same
wavelet activation function is used for all 16 LSTM nodes, where
j is fixed to 6 in (31). In the second strategy, different activation
functions are created using (31) for j = 1, 2, . . . , 16. The second
approach is named configuration by API since the functional API
of Keras is used to create models.

In both approaches, learning and prediction processes are
carried out with the model created after selecting the model pa-
rameters using the Talos optimization and hand-tuning methods.
Finally, the mean values of predictions and errors are calculated.

In Table A.15 configuration parameters of the first approach
are given for S&P500 and NASDAQ. Results obtained are pre-
sented in Table 5 for S&P500 and NASDAQ. It is clear that the
results are better than the non-hybrid methods.

Configuration parameters of the second approach (configura-
tion by API) are given in Table A.16 for S&P500 and NASDAQ.
Outcomes are shown in Table 6 and for S&P500 and NASDAQ.
Once again, outcomes are superior to the methods LSTM and
LSTM+MRA according to RMSE, MAE, and MdAE metrics.

3.5. Hybrid LSTM-wavenet model with MRA

MRA and the hybrid LSTM-Wavenet model are combined in
this section in order to obtain the ultimate possible benefit from
MRA. The model structure of the proposed hybrid LSTM-Wavenet
with MRA model is demonstrated in Fig. 4. In substance, MRA is
used to decompose time series, and wavenet form is applied to
the approximation part. Finally, all outputs derived from different
decomposition levels are merged by inverse wavelet transform.

MRA, data preparation, and selection of the time-steps pro-
cesses are carried out exactly in the same way as in Section 3.3.
However, in this case, two different approaches, mentioned in
Section 3.4, are used to create activation functions by utilizing
PPS.

Daubechies wavelets, particularly the ‘‘db2=D4’’ filter and
MODWT, are employed to decompose the time series with a level
of two as selected in Section 3.3.

Each level is modeled by taking advantage of both Talos op-
timization and hand-tuning again. Following that, a thousand
experiments are conducted for the model fitting and predictions
of train/test sets. The means of the error metrics and train/test
predictions are then averaged for each wavelet level. Then, the
mean error values of the reconstructed data are calculated.
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Table 5
Hybrid LSTM-Wavenet model, configuration 1 (S&P500 /NASDAQ): mean scores for the train set and the test set by
running 1000 experiments.
Configuration 1
Experiment size 1000
Time taken by process 459 m 45 s/391 m 24 s

Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores

RMSE 9.71/30.15 22.82/64.57
Scaled RMSE 0.00/0.00 0.01/0.01
R2 1.00/1.00 1.00/1.00
MAE 6.37/16.18 17.33/46.77
EVS 1.00/1.00 1.00/1.00
ME 86.70/355.23 126.88/373.57
MdAE 3.76/7.54 13.74/34.45
Table 6
Hybrid LSTM-Wavenet model by API structure, configuration 2 (S&P500/NASDAQ): mean scores for the train set and
the test set by running 1000 experiments.
Configuration 2
Experiment size 1000
Time taken by process 2464 m 15 s/2379 m 44 s

Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores

RMSE 9.58/30.70 24.04/67.30
Scaled RMSE 0.00/0.00 0.01/0.01
R2 1.00/1.00 0.99/1.00
MAE 6.29/16.94 18.40/49.41
EVS 1.00/1.00 1.00/1.00
ME 84.81/355.76 128.34/ 378.39
MdAE 3.77/8.53 14.48/36.80
Fig. 4. The structure of the proposed hybrid LSTM-Wavenet with MRA model.
In Table A.17 picked Talos configuration parameters of the first
etail, the second detail, and the approximation parts are given
or S&P500 and NASDAQ. In this configuration, j is set to 6 in (31)
or the approximation part. Wavenet structure is not used in the
irst and the second detail parts since the mentioned levels may
e considered to be noise. The noise structure can be captured
9

without the need for wavenets. In Table 7 average error scores
of reconstructed train and test data are given for S&P500 and
NASDAQ concerning this configuration 1.

In Table A.18 the second Talos configuration parameters of
the first detail, the second detail, and the approximation parts
are given for S&P500 and NASDAQ time series. At this point, the
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Table 7
Hybrid LSTM-Wavenet model+MRA, configuration 1 (S&P500/NASDAQ): mean scores for the synthesized train set
and the synthesized test set by running 1000 experiments.
Configuration 1
Experiment size 1000 wavelet filter db2 (D4)
Time taken by process 2103 m 30 s/2257 m 23 s wavelet level 2

Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores

RMSE 8.04/18.41 17.93/40.62
Scaled RMSE 0.00/0.00 0.01/0.00
R2 1.00/1.00 1.00/1.00
MAE 6.56/12.02 15.17/32.21
EVS 1.00/1.00 1.00/1.00
ME 50.05/214.12 77.81/184.95
MdAE 5.46/7.86 13.47/26.91
Table 8
Hybrid LSTM-Wavenet model+MRA by API structure, configuration 2 (S&P500/NASDAQ): mean scores for the
synthesized train set and the synthesized test set by running 1000 experiments.
Configuration 2
Experiment size 1000 wavelet filter db2 (D4)
Time taken by process 4318 m 36 s/4368 m 23 s wavelet level 2

Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores

RMSE 7.45/18.59 17.96/41.97
Scaled RMSE 0.00/0.00 0.01/0.01
R2 1.00/1.00 0.99/1.00
MAE 5.81/11.84 15.18/33.24
EVS 1.00/1.00 1.00/1.00
ME 49.43/214.91 77.41/188.37
MdAE 4.56/7.23 13.50/27.59
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second approach (configuration by API) mentioned in Section 3.4
is used to create activation functions. In Table 8 results are given
for S&P500 and NASDAQ with respect to configuration 2.

Both configurations, which describe the hybrid LSTM-Wavenet
odel with MRA, outperform LSTM, LSTM+MRA, and hybrid
STM-Wavenet methods. It is seen that configuration 1 is slightly
etter than configuration 2 when their respective RMSE, MAE,
nd MdAE metrics for both S&P500 and NASDAQ are compared.

. Discussion of the results and comparison with classical
ethods

Table 9 summarizes the results obtained for S&P500 and NAS-
AQ. It should not be a surprise that using MRA improves the
apability of both LSTM and hybrid LSTM-Wavenet models. Using
ifferent dilation and translation parameters for each activation
unction does not change the results significantly when compared
o the case of using constant dilation and translation parameters
or all nodes in LSTM.

The proposed method (hybrid LSTM-Wavenet+MRA) outper-
orms all the methods, LSTM, LSTM+MRA, and hybrid LSTM-
avenet, for financial time series in terms of the error met-

ics. Hence, it is obvious that using wavelets in both MRA and
ctivation functions improves the train and test performances.
In Section 3.1, it is declared that all training, validation, and

est sets display diverse characteristics. The differences between
he training sets and the test sets are relatively notable. Since
uch a difference occurs in the financial time series dynamics,
t is understandable to view an absolute distinction between the
MSE values of the training set and the test set for both S&P500
nd NASDAQ: RMSE error rates are relatively low compared to
ime series values. For instance, the mean of the training data is
54.61, and the mean of the test data is 2283.34 for S&P500. On
he other hand, in the results obtained from the four methods, the
aximum RMSE value for the training set is 15.29, and the min-

mum RMSE value is 7.45 for S&P500. Furthermore, in all results,
he maximum RMSE is 29.06, and the minimum RMSE is 17.93 for
he test set for S&P500. The mean of training data is 1147.35, and
 t

10
the mean of the test data is 5701.76 for NASDAQ data. The results
belonging to the four methods show that the maximum RMSE
value for the training set is 36.65, and the minimum RMSE value
is 18.41 for NASDAQ. Additionally, the maximum RMSE is 85.31,
and the minimum RMSE is 40.62, in the test set for NASDAQ.

If the SRMSE values are examined, it is seen that the error
difference between training and test sets is small for both S&P500
and NASDAQ. The reason is that the time series observations are
relatively high compared to the calculated RMSE values.

The error metrics R2 and EVS show how well the model fits.
MSE, SRMSE, and MAE metrics generate average errors by using
esiduals. RMSE and SRMSE penalize large error values rather
han other error metrics due to taking the square of residuals.
MSE and SRMSE are mostly used for model comparison. MdAE is
uite robust against outliers. Nevertheless, it is not an advantage
n our case, as it brings a drawback since large errors occur at big
umps in financial time series and the results of these large errors,
.e., outliers, might be significant.

In conclusion, nearly all error metrics generate robustness:
ach model trial with thousand repetitions gives very similar
utcomes.
To sum up, LSTM+MRA, hybrid LSTM-Wavenet (configuration

), and hybrid LSTM-Wavenet+MRA (configuration 1) methods
rovide, respectively, 7%, 22%, and 38% improvement in predic-
ions based on RMSE values of LSTM for S&P500 as given in
able 9. If the MAE scores of S&P500 are considered, the respec-
ive improvements are 3%, 26%, and 35% based on LSTM. When
he same comparisons for NASDAQ are made, the corresponding
mprovement values for RMSE are 20%, 24%, and 52% while the
mprovements for MAE are 21%, 30%, and 52%.

RMSE and MAE test error values of LSTM and hybrid LSTM-
avenet methods decrease when MRA is used (for both S&P500

nd NASDAQ). On the other hand, if wavelets are used as an
ctivation function, then RMSE and MAE test error values for
oth LSTM and LSTM+MRAmethods decrease for both time series.
onsequently, the best test scores are reached by the hybrid
STM-Wavenet+MRA method with fixed dilation and transla-
ion parameters for both S&P500 and NASDAQ data. The use of
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Table 9
Summary table for results (S&P500/NASDAQ): mean scores for the train set and the test set by running 1000 experiments where
‘conf.’ stands for configuration.

Time RMSE SRMSE MAE MdAE

LSTM 228 m 29 s/
286 m 52 s

Train scores 11.93/36.65 0.00/0.00 8.06/21.44 4.86/11.35
Test scores 29.06/85.31 0.01/0.01 23.30/66.58 19.93/53.22

LSTM+MRA 1981 m 47 s/
2008 m 34 s

Train scores 15.29/33.12 0.01/0.00 12.29/20.74 11.11/11.67
Test scores 26.91/68.41 0.01/0.01 22.66/52.67 20.36/44.05

Hybrid (conf.
2, by API)

2464 m 15 s/
2379 m 44 s

Train scores 9.58/30.70 0.00/0.00 6.29/16.94 3.77/8.53
Test scores 24.04/67.30 0.01/0.01 18.40/49.41 14.48/36.80

Hybrid (conf. 1) 459 m 45 s/
391 m 24 s

Train scores 9.71/30.15 0.00/0.00 6.37/16.18 3.76/7.54
Test scores 22.82/64.57 0.01/0.01 17.33/46.77 13.74/34.45

Hybrid+MRA
(conf. 2, by API)

4318 m 36 s/
4368 m 23 s

Train scores 7.45/18.59 0.00/0.00 5.81/11.84 4.56/7.23
Test scores 17.96/41.97 0.01/0.01 15.18/33.24 13.50/27.59

Hybrid+MRA
(conf. 1)

2103 m 30 s/
2257 m 23 s

Train scores 8.04/18.41 0.00/0.00 6.56/12.02 5.46/7.86
Test scores 17.93/40.62 0.01/0.00 15.17/32.21 13.47/26.91
wavelets in MRA and activation function effectively increases the
performance for time series prediction. Even further, the use of
wavelets for both MRA and activation functions improves the
performance the most.

The proposed method contributes to the modeling of (finan-
ial) time series which are non-stationary, non-normal, noisy,
nd chaotic. Therefore, the recommended method is likely to be
pplied to other time series efficiently.

.1. Comparison with other classical benchmark methods

Although the main aim of this study is to combine MRA and
avelet activation functions for LSTM, the usability of the pro-
osed method is examined by comparing it with various classical
tate-of-the-art methods used in quantitative finance.
For comparison, the test data stated in Section 3.1 is used

or selected methods. In addition, a one-step ahead prediction is
onsidered, and no model is updated after a prediction. Because
hese conditions are the same for all LSTM experiments.

The methods used for comparison are Prophet (additive re-
ression model released by Facebook3) for univariate (uni.) and
ultivariate (multi.) data, KNN, lightGBM, random forest, support
ector regression (SVR) inference with radial basis function (RBF),
ayesian ridge regression, LASSO, XGBoost, and SARIMA. The
ARIMA model takes into account NASDAQ data as an exogenous
ariable for S&P500 and vice versa. Depending on the size of
he number of parameter combinations, model parameters were
hosen using either a randomized search on hyperparameters
r an exhaustive search across the estimator’s given parameter
alues based on the metrics used, such as, R2, negated mean
quare error, Akaike information criterion (AIC).
The proposed method has lower error than those the state-

f-the-art methods provide for both S&P500 and NASDAQ data
or the predictions made for test data on evaluation with metrics
ncluding RMSE and MAE. In addition, all methods in Table 9 have

3 https://facebook.github.io/prophet/
11
Table 10
Performance results of the classical state-of-the-art models on the test sets for
S&P500/NASDAQ.
Models RMSE MAE Models RMSE MAE

Prophet (uni.) 944.86/
2488.17

888.83/
2257.06

Prophet
(multi.)

184.13/
203.09

171.24/
151.90

KNN 824.34/
1450.49

707.92/
980.72

Bayesian
ridge

35.06/
110.03

24.01/
75.83

LightGBM 699.76/
1598.99

600.37/
1111.27

LASSO 35.06/
110.03

24.01/
75.83

Random forest 682.87/
1446.07

580.80/
960.10

XGBoost 35.04/
109.87

23.91/
75.26

SVR-RBF 411.50/
675.93

402.87/
501.43

SARIMA 29.27/
91.32

20.70/
64.64

lower RMSE values than those of the state-of-the-art models in
Table 10. Only the MAE values of the SARIMA model are lower
than the corresponding values of the LSTM and LSTM+MRA mod-
els. These results demonstrate the strength and the superiority
of the LSTM and its hybrid versions. For instance, considering
SARIMA, which yields the best result in Table 10, the proposed
method has 39% and 27% better results for S&P500 in terms of
RMSE and MAE, respectively. Besides, more strikingly for NAS-
DAQ, improvements in RMSE and MAE values are, respectively,
56% and 50%.

5. Conclusion

Since there is a shortage of merging MRA and WNNs in the
literature; the hybrid LSTM-Wavenet+MRA approach is a recom-
mended method in this paper to overcome this shortage. The
proposed hybridization is compared with the performances of
LSTM, LSTM+MRA, and hybrid LSTM-Wavenet methods to make
a one-step ahead prediction of S&P500 and NASDAQ. It is seen
that the two different wavelet methodologies used increase the
performances and the best performance is obtained when the

https://facebook.github.io/prophet/
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wo wavelet techniques are used together. Moreover, compar-
son with other classical state-of-the-art methods also shows
hat our proposed method provides a significant improvement
n predictions. According to the results obtained, it is noticed
hat practicing wavelets in modeling financial time series is es-
ential and promising; furthermore, such modeling may be very
ppreciated by practitioners and investors in financial markets.
The proposed method (hybrid LSTM-Wavenet+MRA) provides

n original contribution to the knowledge in time series analysis
y combining wavenets and MRA. As a result, this study bridges
he gaps between hybrid models using MRA and hybrid models
ith WNNs in the related literature.
Some future applications and extensions to the proposed hy-

ridization methodology may be on multi-step ahead predictions,
ynamically updating the models after each prediction, and adaptive
arameter selection in datasets with different characteristics.
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ppendix. Configurations of the models

Components of the computing environment are listed in Ta-
le A.11 together with python and the packages used.
The error metrics used in this paper are given in Table A.12,

here yi is the ith observed value, ŷi is the ith predicted value,
max is the maximum observation, ymin is the minimum observa-
ion and y is the mean of all observations.

Table A.11
The list of the computing environment.
OS Platform Windows 10
Processor Intel(R) Core(TM) i5-4210H CPU 2.90 GHz
Memory (RAM) 8,00 GB
Conda version 4.7.11
Conda-build version 3.17.6
Python version 3.6.9
TensorFlow version 1.13.1
Keras version 2.2.4
Talos version 0.5.0
12
Table A.12
The list of the error metrics.

Root Mean Square Error (RMSE)
√∑n

i=1
(yi−ŷi)2

n
Scaled Root Mean Square Error (SRMSE) RMSE/(ymax − ymin)

R2 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−y)
2

Mean Absolute Error (MAE) 1
n

∑n
i=1

⏐⏐yi − ŷi
⏐⏐

Explained Variance Score (EVS) 1− Var(y−ŷ)
Var(y)

Maximum Error (ME) max
(⏐⏐yi − ŷi

⏐⏐)
Median Absolute Error (MdAE) median

(⏐⏐y1 − ŷ1
⏐⏐ , . . . , ⏐⏐yn − ŷn

⏐⏐)

Table A.13
LSTM model, Talos configuration.
Configuration
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100

Layer parameters LSTM layer Between layers Dense layer

# of nodes 16 – 128
kernel initializer normal – –
batch normalization – yes –
kernel regularizer l1, l2 = 1e−6 – l1, l2 = 1e−6
recurrent regularizer l1, l2 = 1e−4 – –
bias regularizer l1, l2 = 1e−5 – l1, l2 = 1e−5
activation – ReLU ReLU

Table A.14
LSTM model+MRA, Talos configuration.
Configuration
wavelet filter = db2 (D4)
wavelet level = 2

Detail 1 Detail 2

loss mse loss mse
optimizer Adam optimizer Adam
time-steps 10 time-steps 10
batch size 1024 batch size 1024
epochs 50 epochs 50

Layer parameters LSTM layer Layer parameters LSTM layer

# of nodes 128 # of nodes 128
kernel initializer – kernel initializer –
batch normalization – batch normalization –
kernel regularizer – kernel regularizer –
recurrent regularizer – recurrent regularizer –
bias regularizer – bias regularizer –
activation – activation –

Approximation

loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100

Layer parameters LSTM layer Between Layers Dense Layer

# of nodes 16 – 128
kernel initializer normal – –
batch normalization – yes –
kernel regularizer l1, l2 = 1e−6 – l1, l2 = 1e−6
recurrent regularizer l1, l2 = 1e−4 – –
bias regularizer l1, l2 = 1e−5 – l1, l2 = 1e−5
activation – ReLU ReLU
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Table A.15
Hybrid LSTM-Wavenet model, configuration 1: Talos configuration.
Configuration 1
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100

Layer parameters LSTM layer Between Layers Dense Layer

# of nodes 16 – 128
kernel initializer normal – –
batch normalization – yes –
kernel regularizer l1, l2 = 1e−6 – l1, l2 = 1e−6
recurrent regularizer l1, l2 = 1e−4 – –
bias regularizer l1, l2 = 1e−5 – l1, l2 = 1e−5
activation ψ6

6 (x)
a ReLU ReLU

aψ6
6 (x) = ψ

( x−240
300

)
.

Table A.16
Hybrid LSTM-Wavenet model by API structure, configuration 2: Talos
configuration.
Configuration 2
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100

Layer parameters LSTM layer Between Layers Dense Layer

# of nodes 16 × 1 – 128
kernel initializer normal – –
batch normalization – yes –
kernel regularizer l1, l2 = 1e−6 – l1, l2 = 1e−6
recurrent regularizer l1, l2 = 1e−4 – –
bias regularizer l1, l2 = 1e−5 – l1, l2 = 1e−5
activation ψ

j
6(x)

a ReLU ReLU

aψ
j
6(x) = ψ

(
x−40j
50j

)
for j = 1, . . . , 16.

The configuration parameters of the LSTM model are shown in
Table A.13 for S&P500 and NASDAQ data. The network uses mean
square error as a loss function, Adam as an optimizer for a batch
size of 1024 and epochs of 100 where the length of the time-steps
is 10. There are two hidden layers where the first one is the LSTM
layer and the second one is the regular dense layer.

The configuration parameters of the LSTM+MRA model are
given in Table A.14 for S&P500 and NASDAQ data. Data is decom-
posed into two detail and one approximation parts by applying
the Daubechies wavelet filter db2. All network structures prac-
tices mean square error as a loss function and Adam as an
optimizer. Loss functions, optimizers, lengths of time-steps, and
batch sizes are mean square error, Adam, 10, and 1024, respec-
tively. Differently, the number of epochs is halved and only one
LSTM hidden layer is used in each detail part.

The configuration parameters of the hybrid LSTM-Wavenet
model are shown in Table A.15 where the fixed wavelet activa-
tion function is used in all LSTM nodes. On the other hand, in
Table A.16 different wavelet activation functions are applied for
each LSTM node.

The hybrid LSTM-Wavenet+MRA approach uses the configura-
tion parameters given in Table A.17 but has activation functions
in the LSTM layer of the approximation part. Similar to the LSTM-
Wavenet model, fixed wavelet activation function is used for
each node in Table A.17. However, changing wavelet activation
functions are used in Table A.18.
13
Table A.17
Hybrid LSTM-Wavenet model+MRA, configuration 1: Talos configuration.
Configuration 1
wavelet filter = db2 (D4)
wavelet level = 2

Detail 1 Detail 2

loss mse loss mse
optimizer Adam optimizer Adam
time-steps 10 time-steps 10
batch size 1024 batch size 1024
epochs 50 epochs 50

Layer parameters LSTM layer Layer parameters LSTM layer

# of nodes 128 # of nodes 128
kernel initializer – kernel initializer –
batch normalization – batch normalization –
kernel regularizer – kernel regularizer –
recurrent regularizer – recurrent regularizer –
bias regularizer – bias regularizer –
activation – activation –

Approximation

loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100

Layer parameters LSTM layer Between layers Dense layer

# of nodes 16 – 128
kernel initializer normal – –
batch normalization – yes –
kernel regularizer l1, l2 = 1e−6 – l1, l2 = 1e−6
recurrent regularizer l1, l2 = 1e−4 – –
bias regularizer l1, l2 = 1e−5 – l1, l2 = 1e−5
activation ψ6

6 (x)
a ReLU ReLU

aψ6
6 (x) = ψ

( x−240
300

)
.

Table A.18
Hybrid LSTM-Wavenet model+MRA by API structure, configuration 2: Talos
configuration.
Configuration 2
wavelet filter = db2 (D4)
wavelet level = 2

Detail 1 Detail 2

loss mse loss mse
optimizer Adam optimizer Adam
time-steps 10 time-steps 10
batch size 1024 batch size 1024
epochs 50 epochs 50

Layer parameters LSTM layer Layer parameters LSTM layer

# of nodes 128 # of nodes 128
kernel initializer – kernel initializer –
batch normalization – batch normalization –
kernel regularizer – kernel regularizer –
recurrent regularizer – recurrent regularizer –
bias regularizer – bias regularizer –
activation – activation –

Approximation

loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100

Layer parameters LSTM layer Between Layers Dense Layer

# of nodes 16 – 128
kernel initializer normal – –
batch normalization – yes –
kernel regularizer l1, l2 = 1e−6 – l1, l2 = 1e−6
recurrent regularizer l1, l2 = 1e−4 – –
bias regularizer l1, l2 = 1e−5 – l1, l2 = 1e−5
activation ψ

j
6(x)

a ReLU ReLU

aψ
j
6(x) = ψ

(
x−40j
50j

)
for j = 1, . . . , 16.
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