
Middle East Technical University

Institute of Applied Mathematics

Single Server Private Information Retrieval

and

SimplePIR Protocol

Fatma Sıla MENEKAY

(Cryptography)

Advisor: Assoc. Prof. Dr. Oğuz YAYLA

Term Project Report

July 2023

Abstract

In this project, single server private information retrieval (PIR) protocols are examined.

An extensive discussion is initiated on the fundamental principles and core concepts un-

derpinning single server PIR schemes. Furthermore, particular emphasis is placed on the

introduction of computationally secure single server PIR (CPIR) and computationally sym-

metric single server PIR (CSPIR) constructions. Important concepts aimed at reducing the

overall complexity inherent in PIR protocols are presented as well. Finally, to illustrate

the latest advancements in single server PIR field, the project ends with a review of the

state-of-the-art SimplePIR scheme.

1

Öz

Bu projede, tek sunuculu özel bilgi erişimi (private information retrieval-PIR) protokolleri in-

celenmektedir. Tek sunuculu PIR protokollerini oluşturan temel ilke ve kavramlar detaylıca

tartışılmaktadır. Bunlara ek olarak, hesaplama güvenlikli tek sunuculu PIR ve hesaplama

güvenlikli simetrik tek sunuculu PIR şemalarını oluşturma yöntemleri gösterilmektedir. Ayrıca

PIR protokollerinin toplam karmaşıklığını azaltmak için kullanılan önemli kavramlar sunul-

maktadır. Son olarak proje, tek sunuculu PIR alanındaki son gelişmeleri göstermek için,

güncel SimplePIR tasarımının özeti ile sonlanmaktadır.

2

Contents

1 Introduction 6

2 A Brief Literature Review on Single Server PIR 9

3 Background 13

3.1 Cryptographic Primitives . 13

3.2 Preliminaries . 20

4 Basic Single Server PIR Schemes and Their Communication Complexities 23

4.1 Single Server PIR Scheme With Different Complexities 23

4.1.1 First Approach . 24

4.1.2 Second Approach . 24

4.1.3 Third Approach . 26

4.2 Symmetric Single Server PIR Schemes and Their Construction Methods . . . 27

4.2.1 First Method-From CPIR to CSPIR 27

4.2.2 Second Method-General Transformation Using OT 2
1 28

4.2.3 Third Method-General Transformation Using OPRF 30

4.3 Reducing the Computation Complexity of Single Server PIR 32

4.3.1 Batch PIR . 33

4.3.2 Preprocessing PIR . 33

4.3.3 Offline/Online PIR . 34

5 Review of SimplePIR 36

6 Conclusion 41

3

List of Tables

4.1 A single server PIR protocol with O(n) communication complexity 24

4.2 A symmetric PIR protocol from CPIR scheme 28

4.3 Rivest OT 2
1 Protocol . 29

4.4 Chou and Orlandi OT 2
1 Protocol . 29

4.5 OPRF protocol . 31

4.6 1MDH attack game . 31

5.1 SimplePIR Computation&Transfer complexity at each step 39

4

List of Figures

5.1 Preprocessing . 37

5.2 The server sends D.A . 37

5.3 Client query creation . 38

5.4 The communication between the client and the server 38

5.5 PIR Scheme Comparison - Note. Reprinted from One Server for the Price of

Two: Simple and Fast Single-Server Private Information Retrieval, by Hen-

zinger A., Hong M.M., Corrigan-Gibbs H., Meiklejohn S. and Vaikuntanathan

V., 2022, Cryptology ePrint Archive, Paper 2022/949 40

5

Chapter 1

Introduction

Client and server interaction is part of everyone’s daily life. Almost any interaction with

internet triggers a connection to a database and these interactions reveal some information

about clients such as what they like or what stock they are interested in. The servers process

information about client and use these information for various purposes like selling people

new products or influence them in certain way. Other than these daily interactions, there

are also some sensitive cases which needs privacy. In scenarios such as a client desiring to

confidentially search for stock information on a dedicated server, or an individual needing to

covertly query a specific patent from a patent database, preserving the privacy of both the

server and the querying individuals has become a major concern. This is to prevent potential

adversaries from gaining an unfair advantage—like front-running a stock or applying for

a patent before the client. For all these reasons the demand for privacy in client-server

interactions is increasing rapidly and it is the interest of cryptography. To address these

challenges, Private Information Retrieval (PIR) was introduced as a key concept in the

influential paper by Chor et al. [1]. PIR protocols let clients to extract required data from

a database without exposing to the server which data is accessed. Specifically, suppose an

n-bit length data, x = (x1, x2, ..., xn), is stored on one or more servers, and the client is

interested in retrieving the i-th bit, xi, where i belongs to [n] from the database. In such

a case, PIR ensures the value of i remains undisclosed to the server. A naive solution for

client is to download the complete database and perform local queries. However, in most

scenarios, the process of downloading and storing the entire database is resource-intensive

and impractical. This solution becomes highly undesirable, particularly when dealing with

large databases. Therefore, the primary objective in designing a PIR protocol is to minimize

the communication complexity between the client and the server.

6

There are two primary approaches to Private Information Retrieval (PIR): information-

theoretic PIR and computational PIR. Information theoretic PIR (ITPIR) protocols were

initially introduced and developed by Chor et al. [1] in 1995. To implement ITPIR protocols

with efficient communication complexity (i.e., sublinear in database size), it is necessary

to have replicates of database across multiple servers that operate independently and non-

colluding. In such a setup, the client can issue queries to the non-colluding servers, each of

which possesses the same database. The client then combines the responses received from

each server to obtain the desired result. If we consider the current state, multi server PIR

with information-theoretic secure has no(1) communication and with computational secure

has O(logn) complexity.

Computational PIR (CPIR) was first developed by Chor and Gilboa [2] with a multi-server

solution. In 1997, Kushilevitz and Ostrovsky [3] further contributed by presenting a method

to construct a single-server CPIR protocol with sublinear communication. In this type of

protocol, the client’s query remains private from a polynomial-time bounded server. The pri-

vacy of the requested index is ensured based on the assumptions of cryptographic primitives.

If we consider the current state, computationally secure single server PIR has polylog(n)

communication complexity.

In the earlier solutions provided for the PIR problem, the main objective was to safeguard the

client’s privacy while preventing the servers from accessing any details regarding the client’s

interests. However, it should be noted that the client might possess additional information

about specific bits of the database, referred as side information. If a protocol satisfies both

the client’s and the server’s privacy, it is called as Symmetric Private Information Retrieval

(SPIR). With this type of protocol, the server remains unaware of the client’s query, and

the client only learns the specific bit it requested. In 1998, Y. Gertner et al.[4] defined

symmetric private information retrieval in an information-theoretic manner. Subsequently,

various computational approaches were introduced to design SPIR protocols with efficient

sublinear communication by Lipmaa[5], including the works of Kushilevitz and Ostrovsky

[3], Naor and Pinkas [6], and Y. C. Chang [7].

Symmetric single-server Private Information Retrieval (PIR) is closely related to Oblivious

Transfer (OT). OT was constructed by Rabin [8]. OT is a protocol where the client gets only

piece of information it interested and the server does not know which piece was retrieved.

Therefore, the concept of symmetric single-server PIR inherently includes the concept of

Oblivious Transfer.

In this project, we focus on single-server PIR schemes whose security is based on the vari-

ous cryptographic hardness assumptions. Although multi-server PIR constructions are more

7

efficient than single-server schemes due to high computational complexity of CPIR, find-

ing non-colluding servers can be unrealistic. Replicated databases can reduce the security.

Therefore developing practical single-server PIR scheme is desirable. In Chapter 2, impor-

tant developments in literature regarding to single server PIR protocols are covered. Next

in chapter 3, cryptographic primitives and properties are given which are commonly used in

order to construct secure PIR protocols. Then some preliminaries are defined to be able to

understand the requirements of single server PIR protocols. Further in Chapter 4, single-

server PIR protocol scheme is constructed by using Decisional Diffie Hellman Problem and

construction of symmetric single server PIR protocol with 3 different methods are given.

Commonly used techniques which reduce to computational complexity of PIR protocols are

described in Chapter 4 as well. Finally in Chapter 5, SimplePIR (published in 2022) [9] pro-

tocol is reviewed which is single server PIR protocol with efficient overall complexity.

8

Chapter 2

A Brief Literature Review on Single

Server PIR

The PIR protocol was first introduced by Chor et al. [1], it was designed for multi server

where the n-bit data x is copied on multiple servers without any alterations. It was assumed

that servers were not colluded in order to ensure privacy. It was also shown that for single

server, all the n-bits should be transferred to the client in order to satisfy information

theoretic security. They showed that communication complexity of information theoretic

secure single server PIR is O(n).

Information-theoretic secure single server PIRs have high communication complexity for

practical purposes. To overcome this problem, Kushilevitz and Ostrovsky [3] developed a

computationally secure approach. They thought database as a matrix M = (xij)s×t (where

s× t is dimension of matrix) instead of string database x ∈ {0, 1}n. Assume that the client

is interested in xlm, to receive that particular bit client creates arrays of y = (y1, y2, ..., yt)

chosen from t random integers such that only ym is not a quadratic residue modulo of N

where N is a public composite modulus, ym ̸= α2 mod N for any integer α. Then client

sends y to the server and the server calculates zi = Πt
j=1y

2−xij

j mod N for 1 ≤ i ≤ s and

sends results to the client. Finally, the client finds out xlm = 0 if zl is a quadratic residue

module of N and xlm = 1 if it is not. Therefore, with this algorithm they showed the

communication complexity of single server PIR drops to O(2
√
logn log logN) where N is the

multiplication of two primes. It is easy to see the communication complexity is less than

O(nϵ) for any ϵ > 0.

Cachin, Micali and Stadler [10] developed a security protocol using ϕ-hiding assumption for

single server PIR. Briefly, ϕ-hiding assumption states that for a given RSA modulus N it is

9

computationally-hard to distinguish which of the two small primes (pi ≪ N1/4) is a divisor

of ϕ(N). In order to find the i-th bit of database x, client creates p = (p1, p2, ..., pn) such

that pj is prime for all j ∈ [n], pi divides ϕ(N) and a generator g with order divisible by pi.

After creating p, client sends RSA modulus N and p to the server. Then server calculates

r = gΠjp
bj
j and sends back to the client. Finally, the client finds out xi = 1 if r is a pi-residue

modulo of N or xi = 0 otherwise. By applying this algorithm, they managed to reduce the

complexity to O(log8 n) which is less than O(2
√
logn log logN).

In 2000, Kushilevitz and Ostrovsky [11] came up with a single database PIR protocol which

has n−n/2+O(K) communication complexity for Honest-but-Curious server and n−n/6K+

O(K2) communication complexity for malicious server where K is the security parameter.

They used 2-1 trapdoor functions in [12] and hard-core predicates in [13]. They changed the

basic approach of treating data by bits x = (x1, x2, ..., xn) and they assumed the database

was composed of 2l sub-strings x = (z1,L, z1,R, z2,L, z2R , ..., zl,L, zl,R) and each sub-string has a

size of K. The client picks 2 trapdoor functions fL and fR and sends these to the server while

keeping trapdoors of these functions. The server applies these functions to the data such

that fL(zi,L) and fR(zi,R) for each i and then sends results to the client. Assume that i-th

bit the client is interested in is at block zs,L. The next step for the client is to pick hard-core

predicate functions rL, rR ∈ {0, 1}K such that rL(zs,L) ̸= rL(z
′
s,L) and rR(zs,R) = rR(z

′
s,R) and

send these to the server. The server calculates bj = rL(zj,L)⊕ rR(zj,R) for each j = 1, 2, ..., l

and then sends back to the client. It is easy for client to check bs and calculate the xi and

all the other bits in the block zs,L.

Gentry and Ramzan [14] took further step to design a single server PIR protocol with com-

munication complexity O(log2 n). They dealt with blocks instead of bits and the algorithm’s

underlying security is based on ϕ-hiding assumption as well. The public parameters of the

scheme are the database of size n, an integer parameter l, small distinct prime numbers

p = (p1, p2, ..., pt) where t = ⌈n/l⌉ and a set S = {π1, π2, ..., πt} of prime powers πi = pcii
where ci = ⌈l/ log2 pi⌉. Let the database x is divided into t blocks x = C1||C2||...||Ct of size

l at most. Knowing p and S the server can calculate e = Ci mod πi with using the Chinese

Remainder Theorem by treating the Ci as an integer satisfying 0 ≤ Ci < 2l < πi. The client

sends an RSA modulo N such that πi divides ϕ(N) and a generator g with order divisible

to by πi. Then, the server sends back r = ge mod N . If we set q = |g|/πi, then |gq| = πi.

Finally, the client can compute the discrete logarithm loggq (r
q) = e mod πi = Ci, since we

used small prime pi.

O(log2 n) provides almost optimal communication complexity for the PIR protocols. How-

ever, those protocols require vast amount of computation on the database and which makes

10

them impractical for real world use-cases. Therefore researchers mainly focused on find-

ing a computationally-efficient PIR protocol. Around 2007-2008, C. Aguilar-Melchor and

P.Gaborit [15] [16] developed a lattice based homomorphic encryption approach to tackle the

computational-efficiency problem in PIR protocols. In the protocol client generates n matri-

ces B1, B2, ..., Bn from a secret matrixM . While doing so, the client adds soft (small) noise to

all matrices (softly distributed matrices) other than the i-th one where i is the index the client

is trying to learn. The client generates the Bi which is called Hardly Distributed Matrix.

Then client sends these matrices to the server which encodes each element and creates en-

coded matrices A1, A2, ..., An. Next, the server computes (A1, A2, ..., An)(B1, B2, ..., Bn)
T =

R and sends R to the client. Finally, the client can calculate Ai and also i-th bit of database

by knowing the M and all the soft noises and hard noises. Later in 2010 , Olumofin and

Goldberg [17] reported that proposed protocol is one to three orders of magnitude more

efficient than the previous approaches.

After Aguilar-Melchor and P.Gaborit [15] [16], the paradigm of the single server PIR shifted.

The problem was not anymore solving only the communication complexity of the scheme

but creating a scheme which optimizes both computational and communication complexity.

When they try to reduce one, they usually cause other one to increase. Most of the PIR

schemes emerged in the last fifteen years, used Lattice-based approaches which was inspired

by Kushilevitz-Ostrovsky’s idea of thinking database as a matrix. Most of the schemes used

ring-learning-with-errors (Ring LWE) which was presented in [18] by Regev as an encryption

scheme. Polylogarithmic computations in security parameter is required for most of these

schemes instead of polynomial. As mentioned, the cost of reducing computation complexity

means increasing the communication complexity and one bit is expanded to roughly 10 bit

with encryption which makes expansion factor F ≈ 10.

In 2014 XPIR was introduced by Aguilar-Melchor et al [19]. In Lattice-based schemes, d is

defined as the dimension of the lattice and the expansion factor F is related to F ∼ (d− 1).

Since d is closely related to the communication cost, increasing it would end up with high

communication cost. In XPIR, d was set to 2 which means they worked 2-dimensional

matrices. Therefore, for each query client sends
√
N (where N is database size) encrypted

query index (ciphertexts). For ring-LWE, each one of these can be as large as thousands of

kilobytes and results in higher communication cost (hundreds of MB for a database size of

GBs).

In 2018, Angel et al.[20] developed the SealPIR in which they tried to overcome the high com-

munication cost problem in XPIR. The idea is that client compresses the ciphertexts before

sending them to the server. Then by using homomorphic operations, server decompresses

11

the ciphertexts to do computations with them. They managed to reduce the communication

cost greatly by applying this logic, however this created another problem that server needs

to store megabytes of information for each client. Storing extra data for each client on server

side is not ideal for storage and also it might give hint to server about client’s key whether

it is switched or not.

MulPIR [21], OnionPIR [22] and Spiral [23] were published in 2021 and 2022. Instead of

using ring-LWE for encyrption they all used fully homomorphic encryption presented by

Gentry in 2009 [24]. If we think N1/d.F as communication cost, in ring-LWE’s F grows

roughly with d− 1. However, switching to fully-homomorphic encrpytion (FHE) reduced F

to 1 instead of d − 1. Therefore they managed to reduce communication cost compared to

the other schemes.

Henzinger et al. introduced SimplePIR [9] at 2022 which uses classical learning-with-error

instead of FHE or ring-LWE proposed in other papers. By doing so they managed to

eliminate the compression and decompression costs encountered by other schemes. Even

though this comes with higher communication cost, the overall performance of the scheme

has been enhanced with respect to other protocols until the day of publishment. In this

project we will review SimplePIR and regarding construction algorithm in Chapter 5.

12

Chapter 3

Background

3.1 Cryptographic Primitives

The foundation of computationally Private Information Retrieval (PIR) schemes lies in the

security of linearly homomorphic encryption. This type of encryption allows for the com-

putation of additions or multiplications on ciphertexts, resulting in the encryption of the

sum or product of the underlying plaintexts. Homomorphic encryption can be constructed

by leveraging public key assumptions such as Decisional Diffie-Hellman (DDH), Quadratic

Residue (QR), or Learning With Errors (LWE). Thus, we first explain the homomorphic en-

cryption and then necessary tools are defined for better understanding of concepts presented

in the following chapters.

For single server PIR schemes, public key cryptosystems play a vital role which are built

upon the idea of one-way functions. Even though these are sufficient basis for symmetric

encryption, for public key encryption, the function must be invertible and this is satisfied with

trapdoor information. The trapdoor permutations first defined by Yao [28] (This concept was

initially proposed by Diffie and Hellman [25] and further formalized by Goldwasser and Micali

[26]). In fact, building upon previous work of Blum and Micali [27], Yao demonstrated that

a set of trapdoor permutations can be employed to construct a secure public-key encryption

scheme.

It has been shown by previous studies of Bellare et al. [29] that a trapdoor function can

be constructed from any arbitrary one-way function. As indicated in [29], the presence of a

trapdoor function with a pre-image size bounded by polynomial (referred as a many-to-one

trapdoor function) is adequate for constructing trapdoor predicates and, consequently, for es-

tablishing a public key cryptosystem. The work of Goldwasser and Micali [26] demonstrated

13

the equivalence between trapdoor predicates and semantically secure public key cryptosys-

tems. It should be noted that the pre-image size of trapdoor function serves as a critical

parameter in the construction of a secure public key cryptosystem.

Definition 3.1.1 (Homomorphic Encryption). A cryptosystem is considered homomorphic

when it possesses the capability to perform operations on encrypted data directly, without

the requirement of decryption such that:

D(E(x) ∗ E(y)) = x.y

where E : G → G′, x, y ∈ G , G and G′ are abelian groups under ., * operations

respectively. Here E denotes encryption and D denotes decryption

There are many examples to homomorphic cryptosystems. RSA or ElGamal encryptions

can be given as an example of multiplicatively homomorphic encryption. On the other hand

Goldwasser-Micali, Paillier and Damgard-Jurik encryption systems are examples to additive

homomorphic cryptosystems. If an encryption system allows both addition and multiplica-

tion on the ciphertext, then it is called “fully homomorphic encryption”.

Definition 3.1.2 (One-Way Function-OWF). A function f : {0, 1}∗ −→ {0, 1}∗ is one-way
if the followings hold:

1. ∃ poly-time algorithm A that computes f(x) correctly , ∀x

2. ∀ probabilistic poly-time algorithm A,

Pr(A(f(x)) ∈ f−1(f(x))) ≤ negl(k)

Here, x is randomly chosen in {0, 1}∗. Consequently, the function f can not be reversed

within polynomial time. The probability of successfully computing the preimage of f(x) is

considered negligibly small, denoted by negl(k) (k is the security parameter of the algorithm).

Definition 3.1.3 (One-Way Permutation-OWP). A function f : {0, 1}n −→ {0, 1}n is

defined as one-way permutation if the followings hold:

1. It has one-way function properties and

2. Every y = f(x) has a unique preimage x (i.e., bijective)

14

Definition 3.1.4 (Trapdoor Permutation-TDP). A function f : {0, 1}n −→ {0, 1}n is

considered as trapdoor permutation if the followings hold:

1. It is One-Way Permutation

2. ∃ poly-time algorithm I (referred as inverse) with information t and x ∈ {0, 1}n, I(f(x), t) =
x′, where f(x′) = f(x)

The findings presented in [29] say that the existence of trapdoor function families with

polynomially bounded pre-image size implies the existence of a family of trapdoor predi-

cates. These trapdoor predicates exhibit an exponentially small decryption error, bounded

by (1 − 1
O(k)

).1
2
, where O(k) represents the pre-image size and k denotes the security pa-

rameter. This extends the work of Yao and Goldwasser-Micali [28] [26] by showing that a

trapdoor permutation is not strictly necessary for achieving a semantically secure public-key

cryptosystem. It highlights that the requirement of injectivity can be relaxed in certain cases.

Constructing 2-1 Trapdoor Functions.

This construction based on the paper of Naor and Yung [12] . Let G be a family of one-way

trapdoor permutations over {0, 1}n and define H such that:

H = (ha,b : GF [2n]→ GF [2n] | ha,b(x) = ax+ b, a, b ∈ GF [2n], a ̸= 0)

Naor and Yung introduced a family of functions by considering G and H such that:

F = (f : {0, 1}n → {0, 1}n−1 | g ∈ G, h ∈ H, f(x) = chop(h(g(x)))),

The defined family of functions involves applying the chop operator to a string, resulting in

the removal of its final bit.

The properties below are fundamental characteristics of F :

1. For every function f ∈ F is 2-1. It means that, for every x ∈ {0, 1}n, there is another

unique bit-string x′, such that f(x) = f(x′) and x ̸= x′

2. With trapdoor information which makes easy to compute g−1, computing x and x′

from the equation f(x) = f(x′) = y ∈ {0, 1}n−1 is feasible.

3. To figure out the collisions for F is hard.

15

There are no proof for the existence of one-way functions, yet we have candidates. Therefore

the existence of one-way permutations and trapdoor permutations are not proved either. Let

us share some candidates for the sake of completeness of definitions given.

Integer Multiplication as a One-Way Function Candidate.

Let f be a function such that f(p, q) = p.q, p and q are k-bit primes.

f : Pk ∗ Pk −→ C

Pk is the set of k-bit primes, and C is the set of 2k-bit numbers. Assume that n = p.q, there

is no known polynomial time algorithm A such that A(n) outputs the factorization of n. If

we test all the numbers from 2 to
√
n by the algorithm which outputs divisor of n, program

run time will be O(
√
n), which is polynomial. However, n is magnitude of 22k and of size

2k. Therefore, algorithm runs in time O(2k) which is exponential. Consequently, there is

no algorithm known that can factorize n in polynomial time. While the computation of f is

easy, its inversion is computationally difficult.

Modular Exponentiation as a One-Way Permutation Candidate.

The multiplicative group of Zn, Z∗
n is defined as:

Z∗
n = {a|a ∈ Zn, gcd(a, n) = 1}

When p is prime, Z∗
p has at least one element “g” as generator with order p− 1. Let f be a

function such that f(x) = gx mod p, where p is a prime number, g is a generator and x ∈ Z∗
p.

Since g is generator, this function f : Z∗
p −→ Z∗

p is a permutation. Computing y = gx mod

p takes polynomial time. However finding x such that gx = y mod p , considered to be hard

when y, p, g values are given because of the known problem which is Discrete-Log Problem.

fp,g is hard to invert. Thus, modular exponentiation is a candidate for one-way permutation.

RSA as a Trapdoor Permutation Candidate.

An RSA function is defined as: f : Z∗
n −→ Z∗

n, f(x) = y = xe mod n, where n = p.q, p

and q are primes, e, d ∈ Zϕ(n), e−1 = d mod ϕ(n), ϕ(n) = (p− 1).(q − 1)

f(x) = xe mod n can be computed in polynomial time in size of n, which is k (i.e.,n is k-bit

number).

In order to reverse RSA encryption, it involves decomposing the number “n” into its prime

factors. This factorization enables the determination of ϕ(n), which in turn helps calculate

16

a value for “d” and retrieve “x” from “y,” as. It is known that this factorization process

is challenging, as no polynomial-time algorithm has been discovered thus far. Notably,

alternative methods for reversing the function “f ,” such as directly obtaining ϕ(n) or “d,”

have been proven to be equally difficult as factorization. Consequently, inverting f is defined

to be hard as it takes exponential time. But with the value “d” (which is known as trapdoor

information), RSA is easy to invert. x can be computed back by doing:

xe.d = x mod n

Therefore RSA is a candidate for trapdoor permutation.

Definition 3.1.5 (Hard-Core Predicate). A predicate h : {0, 1}n → {0, 1} is a hard-core

predicate for f , if h is efficiently computable when given x and there exists a negligible func-

tion of n such that for every non-uniform probabilistic-polynomial time adversary A:

Pr[x
R←− {0, 1}n : A(1n, f(x)) = h(x)] ≤ 1

2
+ negl(n)

This implies that when given a function f(x) with x chosen uniformly random, a computa-

tionally bounded adversary who tries to determine h(x) cannot do make accurate predictions

beyond a random guess of 0 or 1, with equal probabilities.

One-way functions (OWFs) are often not particularly useful on their own. While they

do ensure that f(x) conceals the original value of x, they may not necessarily hide specific

subsets of x’s bits. As a result, f could potentially disclose several bits of x, but it fails to

reveal the hard-core bit. In other words, obtaining knowledge of the hard-core bit of x, even

when given f(x), is just as difficult as inverting the function f(x) itself.

According to Goldreich and Levin [13], every one-way function can be transformed to a

one-way function that has a specific hard-core predicate such that:

Let f be an OWF, and define another OWF g as:

g(x, r) = (f(x), r) where the length of x and r are equal and r is chosen randomly.

Then h function is defined as:

h(x, r) = ⟨x, r⟩, (⟨x, r⟩ =
∑

xi.ri mod 2, i.e., inner product)

For a random r, the value of ⟨x, r⟩ is hard to compute when f(x) and r are given. An ad-

versary cannot figure out the hardcore bit of g with probability greater than 1/2. Therefore

17

h is hard-core predicate for OWF g.

Definition 3.1.6 (Pseudo Random Function-PRF). A keyed function F is a two-input

function F :{0, 1}∗x{0, 1}∗ → {0, 1}∗. Fk(x) = F (k, x). We call Fk is a PRF if (key k is

chosen randomly) it is indistinguishable from any other uniformly random chosen function

from set of all functions.

Definition 3.1.7 (Pseudo Random Generator-PRG). A deterministic polynomial time func-

tion G : {0, 1}m → {0, 1}n is PRG if m < n and two probability ensembles {An}n∈N, {Bn}n∈N
are computationally indistinguishable. {An} defined as the output of G on a uniformly se-

lected seed s ∈ {0, 1}m. {Bn} defined as uniformly distributed on {0, 1}n

Hastad et al. [30] proved that pseudo random generators exist iff one-way functions exist.

We can construct a pseudorandom generator with the help of hardcore predicates from any

one-way function. If h is a hardcore predicate of an OWF g and s is a random seed, then

{h(gn(s))}n is a pseudorandom sequence. As an example, following process can be thought:

Let seed s as ⟨x, r⟩, where x0 is set to x. Then one calculates xi as g(xi−1) iteratively, and

the output bits hi’s are obtained by inner product of xi with r.

Definition 3.1.8 (Decisional Diffie Hellman Problem-DDH Problem). Let G is a cyclic

group of prime order q generated by g ∈ G. G is subgroup of Z∗
p. Given X, Y, Z ∈ G, it is

hard to distinguish between random DH-triplets and random tuples. Any PPT adversary A

has negligible advantage to determine if X, Y, Z is a DH-triplet or non-DH triplet.

X, Y, Z is called DH-triplet if:

X = gx mod p, Y = gy mod p, Z = gx.y mod p

Otherwise, X, Y, Z is called non-DH triplet.

In this definition, x or y is a “trapdoor information” that enables to efficiently solve the

DDH problem.

Definition 3.1.9 (Learning With Errors Assumption-LWE). Learning with errors problem

is introduced by Regev [18]. The assumption is that it is hard to recover s ∈ Zn
q given

approximate linear equations in the form:

18

a1,is1 + ...+ an,isn ≈ bi

where i = [1, ...,m] with m > n. To create these approximate equations, n ≥ 1 as size

parameter, q ≥ 2 as modulus and χ defined on Zn
q as error probability distribution should

be set. A random vector a ∈ Zn
q is chosen along with an e ∈ Zq according to the probability

distribution χ and (a, ⟨a, s⟩ + e) is computed. Iterating this step m times one can create

probability distribution As,χ ∈ Zm
q . Solving this system is thought to be hard for multiple

reasons. LWE is an extension of learning parity with noise problem and that problem is

thought to be hard. Until now, the algorithms developed for learning parity with noise

problem run in exponential time. The hardness of LWE is also based on the hardness of the

worst-case hardness of standard lattice problems.

Definition 3.1.10 (Secret-key Regev Encryption). It is used in SimplePIR, for that reason

we will briefly show this scheme. In 2009 Regev introduced this scheme in [18], and it is

secure under LWE assumption. The parameters n, q and χ should be set before starting and

we have p as the plaintext modulus.

Secret Key: The secret key s is randomly chosen vector from Zn
q .

s
R←− Zn

q

Public Key: Public key represents the m approximate equalities in the form of (ai, bi) where

i = (1, ...,m). bi is calculated as

bi = ⟨ai, s⟩+ e

where e
R←− χ

Encryption: The public key and ciphertext pair of a message m ∈ Zp is shown as below

(a, c) = (a, ⟨a, s⟩+ e+ ⌊q/p⌋.m)

Decryption: In order to decrypt one needs the secret key s so that she can calculate c− aT s

mod q. Finally she needs to find the nearest multiple of ⌊q/p⌋.

For this scheme to work as it should, the error e should be sampled s.t. e < 1/2⌊q/p⌋ and it

can be enforced while sampling χ.

19

It is important to note that Regev encryption is additively homomorphic s.t. (a1, c1) +

(a2, c2) = (a1 + a2, c1 + c2) where errors are small enough.

3.2 Preliminaries

In this section, some definitions and theorems are presented which are useful for construction

of single server PIR schemes.

Definition 3.2.1 (Polynomial Time Algorithm). If a problem can be solved in polynomial

time, it means that there exists an algorithm A capable of solving it. This algorithm’s com-

plexity is bounded by a polynomial function of the input length ‘n’. The number of steps

required by the algorithm to solve the problem remains within a reasonable limit, directly

related to the size of the input.

An algorithm A, input of size n, it is defined as polynomial time algorithm if it runs in O(nc)

time, where c is a constant.

Definition 3.2.2 (Probabilistic Polynomial Time Algorithm). If an algorithm A is random-

ized and operates in polynomial time, it is considered probabilistic. By utilizing randomness

in its computation, the algorithm produces non-deterministic outputs. As a result, the pre-

diction of specific outputs is only possible with certain probabilities. This means that the

algorithm is allowed to incorporate coin flips during its execution.

Definition 3.2.3 (Negligible n (negl(n))). An arbitrary function f(n)-type of probability

function is negl(n) if for all c ∈ R+, there exists n′ ∈ N such that:

(∀n ≥ n′)

[
f(n) <

1

nc

]
, where n is input size

Definition 3.2.4 (Indistinguishable Distributions). Let S = {Sn}n≥1 be a probability

distribution ensemble on some finite domain. Given two distribution ensembles S = {Sn}
and T = {T n} are indistinguishable if every PPT algorithm A cannot distinguish whether

the element of ensemble is generated corresponding to S or T :

|Pr[A(s, 1n) = 1]− Pr[A(t, 1n) = 1]| ≤ 1

nc
= negl(n), s ∈ {Sn}, t ∈ {T n}, ∀c ≥ 1,

20

Before moving to other concepts, let us show the requirements of PIR. There are two require-

ments to have a successful PIR scheme which are “correctness” and “security”. We have 3

efficient algorithms in PIR, Q as a query algorithm which takes desired index of client as an

input. A as an answer algorithm of the server which takes database and query of the client

as inputs. Finally we have reconstruction algorithm R for the client which takes answers of

server as an input:

Q(1n, i, r) = q, is a query algorithm,where r is random string and n is database size

A(q, x) = a, is an answer algorithm,where x is database

R(1n, i, r, a) = xi, is the reconstruction algorithm

Client’s Computational Privacy (Security).

To give brief explanation, malicious server that does not follow the protocol can learn nothing

about the adaptive indices that the client’s reading. For every two adaptive sequences of

indices {in}n≥1 and {jn}n≥1, where 1 ≤ in, jn ≤ n the distribution ensembles, server’s view is

computationally indistinguishable whether the client is making query sequences {Q(1n, in, r)}
or {Q(1n, jn, r)}:

{server’s view on query sequence:{Q(1n, in, r)}} ≈c {server’s view on: {Q(1n, jn, r)}}

Correctness of PIR.

If we have an honest client and a honest server that execute the protocol faithfully, then

for any database held by the server and for any adaptive indices queried by the client, the

client can correctly recover all the database bits that it wants to read with overwhelming

probability. If client always outputs the correct value of xi, then there is a correctness of the

protocol. For every database of length n, database x ∈ {0, 1}n, every index i ∈ {1, 2, ..., n},
every random string r :

Pr[R(1n, i, r, ai) = xi] = 1, where qi = Q(1n, i, r), ai = A(i, qi, x), for i = 1, ..., n

Communication Complexity of a PIR Protocol.

When examining a PIR protocol, the communication complexity can be defined as the up-

per limit on the number of bits exchanged between the client and the server. This value is

determined from the size of query sent by client and the size of answer sent by server.

Honest-but-Curious Model.

There are typically two protocol settings when it comes to interactions between a client and

server. The first setting is known as the “Honest-but-Curious Model,” while the second one is

21

referred to as the “Malicious Model.” In 1987, Goldreich [31] proposed transformations that

can convert protocols designed for security against the Honest-but-Curious Model into pro-

tocols that provide security against the Malicious Model. But, it is worth noting that these

transformations often come at the expense of increased communication complexity.

In the Honest-but-Curious Model, participants in the communication strictly adhere to the

defined protocol but actively attempt to extract all possible information from the legitimately

received messages.

In order to give formally description, let data string x ∈ {0, 1}n, for every i, j ∈ [n], (i ̸= j).

The objective is to ensure that the distribution of the client’s index “j” cannot be distin-

guished from the distribution of query when the index is “i” for the server’s view. In this

model, it is crucial to note that the server is strictly prohibited from altering the data string

throughout the execution of the protocol.

Malicious Model.

In a communication scenario involving a malicious server, it is important to note that the

server is not obligated to adhere to the protocol. The server has the freedom to either refuse

participation in the protocol or manipulate the contents of the database. Regardless of the

actions taken by the server, it is necessary that the identity of the interest index “i” remains

secret in the PIR protocol. More formally, for any given indices “i” and “j” within the range

[n] (i ̸= j) the distributions of any two indices are indistiguishable to the server.

22

Chapter 4

Basic Single Server PIR Schemes and

Their Communication Complexities

In this chapter, communication complexities of single server PIR schemes and how to improve

them by using balancing and recursion techniques instructed by Lipmaa [5] are shown. Then

an example of CPIR protocol scheme which is based on Diffie-Hellman assumption is given.

Further the construction of Symmetric PIR protocol via three different ways are presented.

The first is using CPIR scheme, the second way is using logn iteration of 1-out-of-2 Oblivious

Transfer protocol and the last way is using Oblivious Pseudo-Random Function(OPRF). In

order to understand the techniques used, two different 1-out-of-2 OT protocol schemes are

given, one is based on DDH assumption constructed by Chou and Orlandi[32] and the other

one proposed by Rivest [33]. At the end of the chapter, OPRF scheme is given using by

DDH assumption and its semantically security is shown.

4.1 Single Server PIR Scheme With Different Com-

plexities

The communication complexity refers to the number of bits exchanged between the client and

the server. In the naive solution, the total complexity is equivalent to the size of the entire

database, ‘n’. Although this approach ensures perfect privacy, it becomes prohibitively costly

in terms of complexity, especially when dealing with large databases. A single server PIR

scheme is presented with 3 different communication complexities. First, the naive approach

is presented with O(n) communication complexity. Second, balancing techniques based on

matrices are used to reduce the communication complexity to O(
√
n). Finally, recursion

23

method is applied to further reduce communication complexity to polylogaritmic.

4.1.1 First Approach

DDH assumption is used to construct CPIR protocol with O(n) communication complexity.

The construction can be seen in table 4.1. Here, client’s input: an index i ∈ {1, ..., n} and
server’s input: a database x ∈ {0, 1}n

Table 4.1: A single server PIR protocol with O(n) communication complexity

Client Server

Process Secret Public Public Secret Process

chooses generator and p,q,g ⇒
prime numbers

prepares n-triplets x
R←− Zq

only i-th triplet y1, ...yn
R←− Zq

is non-DH tuple zi ̸= x.yi

X = gx mod p

calculates public values Yj = gyj mod p j = 1, ..., n ⇒
sends Yj, Zj, p, q, g Zj = gx.yj mod p j = 1, ..i− 1, i+ 1, ..n

for j = 1, ...n Zi = gzi mod p

Y =
∏

(j:xj=1) Yj mod p sends Y, Z

⇐ Z =
∏

(j:xj=1) Zj mod p to the client

In this scheme, the client prepares n triplets such that only the desired index ith triplet is

non-DH triplet, the others are DH-triplets. The server calculates the multiplication of the

triplets corresponding to database values if xj = 1 for j = 1, ..., n. If desired value xi is

equal to 0 then it is not multiplicated with DH-triplets, since multiplication of DH-triplets

is again DH-triplet, client can figure out xi value. On the other hand if xi is equal to 1,

then non-DH triplet which is constructed by client participates in the multiplication. Since

multiplication of DH-triplet with non-DH triplet is non-DH triplet, client easily observes

that xi = 1. According to DDH assumption, the server can not distinguish between tuples

sended by client. Thus, client’s security based on the DDH assumption.

The client sends 2n bits to server and server sends only 2 bits so total communication costs

2n+ 2 bits. In this protocol, complexity is O(n).

4.1.2 Second Approach

In the protocol mentioned above, the communication between the client and the server is

unbalanced. The client transmits significantly larger number of bits compared to the server.

To address this imbalance, matrices can be used as in [1]. By treating the data bit string as

a two-dimensional array, we can achieve a more balanced communication scheme. Let define

24

(xi1 , xi2) as a database element of
√
n×
√
n matrix, 1 ≤ i1, i2 ≤

√
n.

Let assume that the desired index is i = (i1, i2).

i1 = ⌈(i/
√
n)⌉

i2 = ((i− 1) mod
√
n) + 1

Client prepares queries such that i2-th triplet is non-DH triplet. On the server side each row

of matrix is considered as database and server makes calculations according to elements of

each row with given query. Therefore answer of the server in the above scheme is the total

number of the rows of matrix multiplied with 2(because there are Y and Z to be calculated),

i.e.,2.
√
n. And the total communication between client and server is 4

√
n. Thus communi-

cation complexity becomes O(
√
n) with balancing method.

In order to understand the the idea, a simple example is given:

Example For Balancing Method.

Assume that n = 25, then the two-dimensional array of database is:
x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5


Let the interested index of client be i = 8, then i = (2, 3):

i1 = ⌈(i/
√
n)⌉ = 2

i2 = ((i− 1) mod
√
n) + 1 = 3

The client prepares a query vector which is blinded under DDH assumption such that only

3-rd row value is non-DH triplet. In this example non-DH triplet denoted as 1 and DH-triplet

as 0 to understand the concept: 
0

0

1

0

0


25

The server calculates Ŷj and Ẑj where j = 1, ...,
√
n for each row and sends resulting vector

to the client. Note that Ŷj and Ẑj are calculated similarly to Y and Z in previous approach.
x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5

 ∗

0

0

1

0

0

 =


Ŷ1, Ẑ1

Ŷ2, Ẑ2

Ŷ3, Ẑ3

Ŷ4, Ẑ4

Ŷ5, Ẑ5


The client wants to learn x2,3, so it takes the (Ŷ2, Ẑ2) from answer of server. If (Ŷ2, Ẑ2) is

DH- triplet then x2,3 = 0, else 1.

Note that in the CPIR protocol, client’s query is based on public key cryptosystems. There-

fore server cannot distinguish the queries between random and desired one. So it does not

have any idea of client’s requested data index. However, the client has side informations,

i.e., (x1,3, x3,3, x4,3, x5,3) in this example. There is no requirement to have server’s privacy

in the above CPIR scheme. Later we describe PIR protocol to have privacy for server as

well.

4.1.3 Third Approach

In the above approach, server gives long response to client although the client only needs

one element in the database. In order to reduce the response size, recursion method is de-

scribed. In this method, client and server operates a new PIR protocol with interested index

i1 and the database becomes server’s previous answer. By doing this iteratively, communi-

cation complexity reduces to sublinear in database size. It was also shown that by choosing

right parameters and encryption scheme polylogarithmic communication complexity can be

achieved

In order to understand the method, following example is given:

Example of Recursive Method.

Assume that the client chooses large enough prime number p with generator g and let DDH

assumption holds for a cyclic group G with order of q.

Consider the database as a × b matrix with length n. Assume that entries of matrix are

logp-bit string block. Let a be n1/5.logp, then b is equal to n4/5

logp
.

As we know from the above construction, the answer of the server consists of the number

of the rows which is b = n4/5

logp
. The new database in the second process of the protocol is

26

the previous answer of server. Note that the answer has not been sent the client. In this

recursion, client and server uses same a = n1/5.logp. But b is changed to (n
4/5

logp
)/a = n3/5

log2p
.

After the 4 iteration, the response is consist of n1/5

log4p
blocks with log4p- bit string. Therefore,

communication complexity is O(n1/5.log4p).

By selecting the parameters appropriately, the communication complexity of the PIR proto-

col can be significantly improved, leading to an efficient solution:

Let m be equal to
√

logn
loglogp

and b equal to n1/m for each iteration.

Query length in each iteration is: O(b) = O(n1/m) = O(n
1/

√
logn

loglogp) = O(2
√
lognloglogp)

Since we have m iteration, total communication is:

O(m.2
√
lognloglogp) which is less than O(logn.2

√
lognloglogp) and:

limn→∞ logn.2
√

lognloglogp

limn→∞ nϵ = 0 < 1, thus logn.2
√
lognloglogp < nϵ, (logp < n)

Therefore, the resulting complexity is smaller than nϵ, ϵ > 0

4.2 Symmetric Single Server PIR Schemes and Their

Construction Methods

In SPIR protocol, server learns no information about the client’s desired bit, and the client

only learns the bit it wants and nothing else. Such protocols can be thought of as Oblivious

Transfer protocols.

3 methods are described to construct SPIR. First one is a variant of the presented as protocol

above. Then a general transformation from PIR to SPIR is showed by recursively using 1-

out-of-2 OT. Finally, OPRF protocol is used to have server’s privacy from any standard

PIR.

4.2.1 First Method-From CPIR to CSPIR

Assume that the same protocol used above is utilized. In order to provide privacy for server,

client should not know which Yj’s are participated in Y . For example if database consists of

zero-bit string then Y = 1. To overcome this problem, server chooses random r ∈ Z∗
p and

blind Y with it. Thus, there is additional step in this protocol on the server side.

After receiving the answer of server, clients computes if X, Y, Z is DH-triplet or not by using

its trapdoor information x. A summary of protocol can be seen in table 4.2. If the tuple

27

is DH-triplet then requested xi = 0 otherwise xi = 1. Server’s privacy is coming from the

randomness of r, since r is chosen uniformly random, so the value of Y is also distributed

randomly in Z∗
p.

Table 4.2: A symmetric PIR protocol from CPIR scheme

Client Server

Process Secret Public Public Secret Process

chooses generator and p,q,g ⇒
prime numbers

prepares n-triplets x
R←− Zq

only i-th triplet y1, ...yn
R←− Zq

is non-DH tuple zi ̸= x.yi

X = gx mod p

calculates public values Yj = gyj mod p j = 1, ..., n ⇒
sends Yj, Zj, p, q, g Zj = gx.yj mod p j = 1, ..i− 1, i+ 1, ..n

for j = 1, ...n Zi = gzi mod p

Y = gr.
∏

(j:xj=1) Yj mod p r
R←− Z∗

p sends Y, Z

⇐ Z = Xr.
∏

(j:xj=1) Zj mod p to the client

4.2.2 Second Method-General Transformation Using OT 2
1

In order to describe the technique, OT 2
1 definition is given and 2 examples are shown. First

one is instructed by Rivest [33], and the other one is constructed by Chou and Orlandi [32]

which is based on DDH assumption.

Definition 4.2.2.1 (OT 2
1 Protocol) . Assume that sender has 2 messages m0 and m1 and

it wants to make sure that only one message is retrieved by the receiver while the other

one remains unknown. As a result of the protocol, receiver gets the message of its choice

and does not know the other value. Sender does not have any idea of which message is taken.

OT 2
1 Protocol Proposed by Rivest [33].

‘Trusted Initializer(TI)’ is needed for initialization stage. It generates randomly r0, r1 ∈
{0, 1}n and chooses randomly b ∈ {0, 1}. In table 4.3, process is shown.

28

Table 4.3: Rivest OT 2
1 Protocol

Receiver Sender

Process Secret Public Public Secret Process

wants to have mc c r0, r1 ∈ {0, 1}n TI gives r0, r1 to sender

c ∈ {0, 1} m0,m1 ∈ {0, 1}n

TI randomly chooses b ∈ {0, 1} b

sends b and rb to receiver rb

computes a c⊕ b = a ⇒ computes t0 and t1

and send it to sender ⇐ t0 = m0 ⊕ ra and sends to receiver

⇐ t1 = m1 ⊕ r1−a

At the end of the protocol, receiver computes mc = tc⊕ rb. Receiver can not learn the m1−c

because of the ⊕ of random values of r0, r1. Also, sender does not have any idea of which

message is retrieved.

OT 2
1 Protocol by Chou and Orlandi [32].

Let DDH assumption holds for a cyclic group G with generator g, order of q and G is

subgroup of Z∗
p.

Table 4.4: Chou and Orlandi OT 2
1 Protocol

Receiver Sender

Process Secret Public Public Secret Process

wants to obtain mc c ⇐ X = gx mod p x
R←− Zq

c ∈ {0, 1} y
R←− Zq m0,m1 ∈ {0, 1}n

Prepares Kc = H(Xy) Y = gy mod p, if c = 0

Send Y to sender Y = X.gy mod p, if c = 1 ⇒
⇐ C0 = E(K0,m0) K0 = H(Y x) Computes K0 and K1

C1 = E(K1,m1) K1 = H((Y/X)x) encrypts messages with these

At the end of the protocol, receiver can compute mc = D(Kc, Cc). The process is given in

table 4.4. If receiver chooses c as 0, it can not compute K1 as x is not known to client. On

the other hand if it chooses c as 1 then K0 can not be computed since x is unknown. On

the sender side, since DDH assumption holds, sender can not distinguishes between gy and

gx+y without knowing y ∈ Zq.

Now, construction of SPIR can be shown by iteratively using OT 2
1 Protocol. This construc-

tion has 2 steps. First, client and server operates a standart PIR protocol which has efficient

communication complexity. In regarding PIR protocol, each bit of database is encrypted by

different keys which are chosen by server. At the end of the PIR protocol, the client has its

29

desired bit with the encrypted version and lots of encrypted side information of database. To

be able to decrypt the wanted value, the corresponding key need to be owned by the client,

however other keys should be kept secret. In the second step, OT 2
1 protocol is used recur-

sively between the client and the server logn times. The index of interest j is represented

as logn-bit string j = (j1, ..., jlogn) and key kj = (k1,j1 , ..., klogn,jlogn) created from randomly

chosen 2.logn keys k1,0, k1,1, ..., klogn,0, klogn,1. In the protocol the client need to obtain which

key is used without letting the server know the retrieved key. Obviously, n = 2logn is the

number of subset of the keys to encrypt the each value of the database.

Database x ∈ {0, 1}n, index i ∈ {1, ..., n}, i = (i1, ..., logn)

• Server prepares random keys k1,0, k1,1, ..., klogn,0, klogn,1, for j ∈ {1, ...n} and j = (j1, ..., jlogn)

With these keys server encrypt each data value such that:

yj = Ek1,j1
(...Eklogn,jlogn

(xj))

• Server and client operates the standard PIR protocol and at end of the protocol, client

has desired yi value with the encrypted side informations.

• To retrieve the corresponding key (i.e., which encrypts the xi value) from pair of keys

(ki,0, ki,1), server and client executes OT 2
1 logn times.

• After OT 2
1 process, client has the corresponding key that encrypted the data xi. Owing

to OT 2
1 , client does not know the other pair of keys and server does not know which

key pair is retrieved, either.

4.2.3 Third Method-General Transformation Using OPRF

In order to describe this method, we give definition of OPRF protocol and scheme of it by

using the DDH assumption.

Definition 4.2.3.1 (OPRF Protocol.) An Oblivious PRF protocol is a protocol that the

client only has the output value y = F (k, x) without learning input value k of PRF F and

the server does not know which x value is interested in by client.

OPRF Protocol Scheme with DDH assumption.

The protocol is shown in table 4.5. Let DDH assumption holds for a cyclic group G.

Fk = H(x)k is PRF and k ∈ Zq.

30

Table 4.5: OPRF protocol

Client Server

Process Secret Public Public Secret Process

choses random r y = H(x)r ∈ G ⇒ k chooses random encryption key k ∈ Zq

and takes x as input for hash r
R←−∈ Zq

⇐ z = yk ∈ G
Computes z1/r = H(x)k

z1/r = yk
1/r

= ((H(x)r)k)1/r = H(x)k

At the end of the protocol, client has output of the OPRF without letting server know x

and without learning the value of key k. Thus, client can not decrypt other data values.

Security Of Above Protocol.

If both of the client and server are honest, then client correctly computes the output of the

function. Suppose that client is honest but server is malicious. It means that server sends z′

which is not equal to yk. After taking 1/r power of z′, client has wrong output of PRF and

cannot decrypt the output of PIR process. However server cannot learn anything about the

input value.

Assume that the client is malicious. We want to find out how much side information can

be retrieved from server. The point is to show output of Fk cannot be retrieved by a client

at t inputs unless if there are at least t interactions between client and server. Security of

Fk is based on the assumption called 1MDH (one more DDH). Attack game of the 1MDH

assumption is given in table 4.6:

Table 4.6: 1MDH attack game

Adversary Challenger

Process Secret Public Public Secret Process

⇐ A = gα ∈ G α
R←− Zq

adversary is given A and arbitrary B

⇐ B
R←− G chooses random B

makes t queries to the challenge oracle ⇐ Bi prepares Bi ∈R G
makes t− 1 queries to the Bi ⇒

Diffie Hellman oracle ⇐ Ci computes Ci = gα.βi

At the end of the attack game, adversary needs to find all t solutions which are Ci = gα.βi .

If the adversary can output more Ci elements than has been sent as responses of DH oracle

31

queries with non-negligible advantage, then the adversary wins the game. However, adver-

sary can not produce α power of any different element of G even if it sees the lots of values

that powered with α. Since Fk = H(x)k, 1MDH assumption can be thought such as:

Adversary is given (g, gk, g1, g2, ..., gn) and it makes t − 1 calls to a k-exponentiation oracle

(i.e., which computes (.)k). Under 1MDH assumption, the adversary cannot output gi
k for

more than t− 1 elements in (g1, g2, ..., gn). Thus, 1MDH assumption implies the security of

above protocol (it is known that 1MDH assumption implies the CDH assumption). It means

that malicious client can not learn the output of Fk at t inputs unless if there are at least t

interactions between itself and server.

From OPRF to SPIR.

The server encrypts the database record by record with different key. Each value of database

(xj, j = 1, ..., n) is encrypted by a secret key sj which is output of OPRF:

yj = E(sj, xj), for j = 1, ..., n

sj = Fk(k, j), where k is chosen randomly by server at the beginning.

In the first step, client and server operates a standard PIR protocol that does not guarantee

the privacy of server. At the end of the protocol client has some side informations that are

encrypted besides the interested data value. In order to decrypt the yi, client has to have si

key value. In the second step, server and client runs the OPRF protocol with client’s input

i and server’s secret value k. Finally, client can get output of Fk which is si. And owing to

privacy property of OPRF client can not have other sj values and server can not learn the i

value.

Security of such SPIR scheme comes from the security of OPRF and PIR protocol itself.

4.3 Reducing the Computation Complexity of Single

Server PIR

In the computational PIR, protocols take much more server time than information-theoretic

PIR protocols. For example if we think the scheme which is based on DDH assumption, there

is approximately O(log3p) cost to do one exponentiation in O(n) operations. According to

Beimel et al. [34], server must do linear amount of work to respond a single query (i.e.,

Ω(n)). The intuition behind this, lower bound is that if while responding to a query the

server does not touch a particular bit in the database, than the server may learn that client

can not be reading that record of interest. This also holds for non-colluding multi-server

32

option and it is irrespective of cryptographic assumptions. Thus server needs to scan the

whole database linearly in the size of it.

Prior works has shown that there is a chance to get sublinear server time in many queires

setting(i.e., sublinear amortized time). In the many queries setting, we can build PIR

schemes where the amortized server time per query is sublinear in the database size n.

There are mainly two classical approaches to reduce the computational cost of PIR scheme

which are Batch PIR and Preprocessing PIR. Also there is a recent approach which is called

Offline/Online PIR. Brief information about these three methods is given in next subsec-

tions.

4.3.1 Batch PIR

Batch PIR first introduced by Ishai [35]. In this scheme, the server and the client pre-agree

on a random partition of database into Q buckets with equal size via hash function. This

scheme allows the client to read multiple records from database more efficiently than run

the PIR scheme one by one on each index. There is negligible probability that one of these

buckets contain more than the number of input indices of the client. That is, no bucket

contains more than λ.logn indices (for i1, ..., iQ ∈ [n]), where λ is security parameter. (This

follows from the standard balls into bins result-there are O(logn) bins in the heaviest loaded

bucket). Thus, client can query each bucket λ.logn times. It is sufficient to read all the

indices of interest. Note that server sees λ.logn (number of queries per bucket) queries for

each bucket regardless of client inputs.

Server time : Q.λ.logn.T (n/Q) = n.λ.logn,

where T (n/Q) is time of answering one query of the database with n/Q size and λ.logn is

the number of queries per bucket.

Thus, running PIR on much smaller databases (databases of size n/Q) make the cost of

computation be much lower. However, this approach only holds when the client makes all

queries at once, in other words non-adaptive batch of queries.

4.3.2 Preprocessing PIR

This method is constructed by Beimel et al.[34]. With this scheme, server saves time by

pre-computing the responses to all possible queries of the PIR scheme. Server takes the

database and encodes it with relative to some PIR scheme by storing the explicit response

for PIR queries on that database. Server does this on offline preprocess step. On the online

33

phase when client needs its query, server can look up the answer from the table of responses

and sends the response back to the client. It reads one element from the table, it does not

need to read the entire database. Although there is an advantage to have sublinear server

time, it is disadvantage to have superlinear server storage since server saves all the possible

responses on its database.

If there is a base PIR scheme with communication of U(n) upload cost and D(n) download

cost, this preprocessing scheme needs to have space with S and needs to have time T (which

is faster than standard PIR scheme) such that :

S = D(n).2U(n), T = U(n) +D(n)

For example assume that there is a PIR scheme which has 2-server with the following upload

and download size:

U(n) = O(logn) and D(n) = n1/2+ϵ

with preprocessing−−−−−−−−−−−→ S = poly(n) and T = n1/2+ϵ

Note that there is polynomial size with the storage which is disadvantage of this scheme.

Preprocessing method described is for multi-server settings. Recently, there are developments

for analogs in the single server setting like PANDA constructed by Hamlin et al. [36], but

also it faces same barrier which is huge storage of the server.

There is also another preprocessing approach for single server PIR schemes. It is quite

similar to offline/online method. In offline/online method client does the calculation for hint

by sending some queries the database and receiving answers to them. However, in single

server preprocessing, server does the calculation for the hint and sends it to client.

4.3.3 Offline/Online PIR

This method consists of two phases- offline and online steps. On online step, each of the Q

queries (Q is the bound on the number of adaptive queries) run in a sublinear server time

and on the offline step, it takes linear server time which is done only once.

According to work of Corrigan-Gibbs et al.[37], the client first runs offline phase, then it

obtains piece of information called-‘hint’(it has size sublinear in n) about the database.

Although this offline phase still contains lots of computation, it only runs once per client.

Client stores the hint given and it can run many queries more efficiently with the help of it.

Assume that client wants to read index i ∈ [n]. After sending a query on online phase, client

gets a response from server and uses this reply in hint to recover the xi bit. Then it can

send many queries to the server adaptively. These queries are independent of the server’s

34

prior answers. Even by deviating from the protocol, the server can not learn anything about

what it is that the client is reading.

Communication and server time is sublinear in the database size on the online phase. Com-

paring to Batch PIR, client can repeat this online phase to read multiple items adaptively.

So, there is no need to commit to a non-adaptive batch process. Comparing to Preprocessing

PIR, this scheme stores the exact size of database since client stores hint.

According to [37], after making n1/4 adaptive queries, for the single server PIR setting online

phase takes time on server side: n3/4 (if the factors poly(λ) and logn are ignored). And

amortized communication cost is : n1/2. This scheme can be built by using any linearly

homomorphic encryption (DDH, Quadratic Residue, LWE, etc.) on offline phase with linear

time. If fully homomorphic encryption systems are used, server time takes n1/2. It is impor-

tant to note that there is no public key operations on the online phase, yet offline phase has

public key operations because of being a single server setting.

35

Chapter 5

Review of SimplePIR

Henzinger et al.[9] introduced SimplePIR on 2022 which has the best throughput rate to

date. They used plain learning with errors instead of ring learning with errors and used

Regev encryption [18] which was explained previously in this project.

Since LWE and Regev encryption was already covered, the construction of SimplePIR can

be presented now. The database x = (x1, x2, ..., xN) is considered to be a
√
N ×

√
N matrix

as in the Kushilevitz and Ostrovsky [3] and the client is interested in the entry xij. The

LWE parameters are set at the beginning of the protocol. These parameters are secret key

dimension n , error probability distribution χ, LWE modulus q such that p << q where p is

the plaintext modulus and matrix A ∈ Z
√
N×n

q .

SimplePIR has a one-time offline preprocessing on the server side. Let us defineD ∈ Z
√
N×

√
N

p

as the matrix form of the database. LWE matrix A is public and fixed for all clients. The

matrix D.A (figure 5.1) is calculated by server once at start. This new matrix is also referred

as one-time hint and it greatly reduces the processing time on the server side. There is one

assumption worth noting at this point, in SimplePIR we assume that the database does not

change so that one time hint is valid and same for all clients at all times.

36

Figure 5.1: Preprocessing

Whenever a client initiate a communication, the server sends client preprocessed D.A as a

first step (figure 5.2).

Figure 5.2: The server sends D.A

In the next step client prepares its query and sends it to the server. In order to create query,

client needs to sample s
R←− Zn

q and e
R←− χ. Upon sampling the s and e, the client prepares

the query b = A.s+ e+ (q/p)ui where ui is the unit vector with 1 only at the interested i-th

entry and 0 elsewhere (figure 5.3).

37

Figure 5.3: Client query creation

The client sends its query b to server. Server creates the response by computing the inner

product of the database D with the query b after it receives the query b. (figure 5.4)

Figure 5.4: The communication between the client and the server

At the end of the communication the client has both D.A and D.b and due to the homomor-

phism of Regev encryption they are enough to find the interested information d. The client

needs to do computations only on i-th row of the D.b and D.A. After subtracting D.A from

D.b, client needs to round result to the nearest multiple of q/p. Finally, dividing the result

to q/p reveals the desired information with high probability.

d′ = D.bi −D.Ai,

d =
round q

p
(d′)

q
p

(5.1)

Let us briefly compute the complexity of the SimplePIR scheme described. At first, server

needs to calculate D.A at preprocessing step, it is important to note that this will be done

38

only once. Since D ∈ Z
√
N×

√
N

p and A ∈ Z
√
N×n

q where n << N , 2n.N computations

(additions and multiplications) are done in this step. So the computational complexity of one-

time hint is linear O(N). In the next step, the resulting matrix D.A ∈ Z
√
N×n

q is transferred

to client. Therefore, communication complexity of this step is n
√
N . Then, client calculates

the b vector which requires matrix multiplication of A and s with addition of e+(q/p).u. The

operations required for this step is (2n + 3)
√
N . Upon calculating the b, the client uploads

this vector to server and its communication complexity is simply
√
N . Server receives the

query and then calculates its answer D.b and this requires matrix multiplications with 2N

operations. Downloading the server’s answer has the same communication complexity with

upload process. Finally client needs to decrypt the answer which has only three operation.

The complexities of each step is summarized in table 5.1.

Table 5.1: SimplePIR Computation&Transfer complexity at each step

Step Computation/transfer

D.A (One-time Hint) calculation 2nN computations ∈ Zq

D.A (One-time Hint) transfer n
√
N elements ∈ Zq

Client query preparation (2n+ 3)
√
N computations ∈ Zq

Client to Server (Upload)
√
N elements ∈ Zq

Server query calculation 2N computations ∈ Zq

Server to Client (Download)
√
N elements ∈ Zq

Client Decryption 3 computations

SimplePIR shares a lot of common steps with other PIR protocols [19],[20],[21],[22],[23].

Server’s on demand work is not sublinear in SimplePIR unlike other works with preprocessing

[37], [38], [39], [40], [41], [42], [43], [44] . However, SimplePIR performs better than all in the

benchmarks and this is mainly due to one-time preprocessing unlike others and the simple

calculations used in the Regev’s LWE encryption scheme. It allowed server to work more

efficiently than the other scheme and results in better performance.

39

Figure 5.5: PIR Scheme Comparison - Note. Reprinted from One Server for the Price of

Two: Simple and Fast Single-Server Private Information Retrieval, by Henzinger A., Hong

M.M., Corrigan-Gibbs H., Meiklejohn S. and Vaikuntanathan V., 2022, Cryptology ePrint

Archive, Paper 2022/949

As it can be seen from figure 5.5 it is not the best scheme in the online and offline com-

munication especially from server to the client side, yet it managed to achieve the highest

throughput values by few times better than the next best. However, preprocessing is done

only once with the assumption that the database is static and does not change, this scheme

might lose it’s competitive advantage to the other schemes in dynamic databases. Further

development for PIR might be done that consider dynamic databases which we see almost

everywhere in the real world.

40

Chapter 6

Conclusion

In this project, we thoroughly explored single server Private Information Retrieval protocols,

reviewing particularly the recently developed SimplePIR scheme. Our primary aim was to

understand the strategies devised to minimize communication complexity, while concurrently

reducing the overall complexity of single server PIR protocols.

We initiated our discussion with a brief literature on the Private Information Retrieval prob-

lem. We found that in single server PIR schemes, the single server information-theoretically

secure method was to download the entire database—a highly impractical solution for ev-

ident reasons. This finding motivated the search for computationally secure single server

PIR schemes. We further showed several key strategies aimed at lowering the communica-

tion complexity of PIR schemes. These strategies used various hardness assumptions such

as Quadratic Residuosity Problem, ϕ-hiding, trapdoor permutations and diverse approaches

to database structures such as considering database as string or as matrix. Consequently,

we discovered that communication complexity was reduced to polylogarithmic in database

size, which represents the lower bound.

We continued our exploration by presenting key tools used on the evolution of single server

PIR schemes in the context of communication complexity and introduced the fundamental

elements utilized in our literature research. These included the construction of 2 − 1 trap-

door functions, the hardcore predicates problem utilized in early single server PIR schemes,

the Pseudo Random Generator, and the Decisional Diffie Hellman Problem. These ele-

ments were instrumental in constructing computationally secure PIR (CPIR) and symmet-

ric PIR (SCPIR) schemes. We also gave brief information about the Learning With Errors

(LWE) problem and Regev’s LWE encryption, which have been employed in more recent

PIR schemes.

41

We then detailed the construction of a computationally secure PIR in three approaches,

beginning with the O(n) communication complexity—a scenario similar to the naive solution.

By structuring the database in matrix form, we managed to reduce the complexity to O(
√
n),

where n is the database size, and further reduced it to polylogarithmic complexity using

a recursion method. This construction guaranteed client-side security. Additionally, we

introduced symmetric PIR scheme which ensures the server side security along with client

security. We discussed three methods of creating a symmetric PIR scheme, thereby satisfying

the security of both the client and the database. In the first method the server encrypts the

answer of the query with public key cryptography in order to secure its answer. The second

method utilized Oblivious Transfer OT 2, and the third employed an OPRF scheme.

In the subsequent stages, we deliberated on methods to decrease the system’s overall com-

plexity, going beyond mere communication complexity. We briefly mentioned Batch PIR,

which, despite its success, proved impractical as it allows only non-adaptive queries from

client. Consequently, we mentioned preprocessing and online/offline communications in PIR

schemes, which have demonstrated increased system performance and are now commonly

incorporated into new PIR schemes.

Finally, we discussed the SimplePIR and its state-of-the-art construction to date. We ob-

served how plain-LWE and one-time hint(preprocessing) enabled simple calculations, facil-

itating the highest throughput values, despite its communication complexity still being far

from the lower bound proposed in earlier works. We also noted that the SimplePIR assumes

a static database, making it inapplicable for dynamic databases. This observation highlights

a potential area for further research in practical PIR development—namely, PIR schemes

applicable to dynamic databases, which are common in the real world.

42

Bibliography

[1] B.Chor, O.Goldreich, E.Kushilevitz,and M.Sudan, Private information retrieval. In

Proc. of the 36th Annu. IEEE Symp. on Foundations of Computer Science, pages 41–51,

1995. Journal version: J. of the ACM,45:965–981,1998.

[2] B.Chor and N. Gilboa. Computationally private information retrieval. In Proc. of the

29th ACM Symp. on the Theory of Computing pages 304–313,1997.

[3] E.Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,

computationally-private information retrieval. In Proc. of the 38th IEEE Symp. on

Foundations of Computer Science, pages 364–373,1997.

[4] Y.Gertner, Y.Ishai, E.Kushilevitz, and T. Malkin. Protecting data privacy in private

information retrieval schemes. J. of Computer and System Sciences, 60(3):592–629,2000.

Conference version in Proc. of the 30th ACM Symp. on the Theory of Computing, pages

151–160, 1998.

[5] H.Lipmaa. An oblivious transfer protocol with log-squared communication. In J. Zhou

and J. Lopez, editors, the 8-th Information Security Conference (ISC’05), volume 3650

of Lecture Notes in Computer Science, pages 314–328. Springer-Verlag, 2005.

[6] M.Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In Proc. of the

31st ACM Symp. on the Theory of Computing, pages 245–254, 1999.

[7] Y.C. Chang. Single database private information retrieval with logarithmic communica-

tion. In Information Security and Privacy: 9th Australasian Conference, ACISP 2004,

volume 3108 of Lecture Notes in Computer Science, pages 50–61. Springer-Verlag, 2004.

[8] M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-

81, Harvard Aiken Computation Laboratory, 1981. Available online in the Cryptology

ePrint Archive, Report 2005/187.

43

[9] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meiklejohn,

Vinod Vaikuntanathan. One Server for the Price of Two: Simple and Fast Single-Server

Private Information Retrieval. In textit USENIX Security Symposium, 2023

[10] C. Cachin, S.Micali, and M. Stadler. Computationally private information re-

trieval with polylogarithmic communication. In J.Stern, editor, Advances in Cryp-

tology–EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages

402–414. Springer-Verlag,1999.

[11] E. Kushilevitz and R. Ostrovsky. One-Way Trapdoor Permutations Are Sufficient for

Non-Trivial Single-Server Private Information Retrieval. Proc. 19th Int’l Conf. Theory

and Application of Cryptographic Techniques (EUROCRYPT ’00), pp. 104-121, 2000.

[12] M.Naor and M. Yung. Universal one-way functions and their cryptographic applications.

In Proc. of the 21st Annu. ACM Symp. on the Theory of Computing, pages 33–43, 1989.

[13] O.Goldreich and L.Levin. A hard-core predicate for all one-way functions. In Proceedings

of the Twenty First Annual ACM Symposium on Theory of Computing, pages25–32,

Seattle, Washington, 15–17 May 1989.

[14] C.Gentry and Z. Ramzan. Single-database private information retrieval with constant

communication rate. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and

M. Yung, editors, Proc. of the 32nd International Colloquium on Automata, Languages

and Programming, volume 3580 of Lecture Notes in Computer Science, pages 803–815.

Springer-Verlag,2005.

[15] C.Aguilar-Melchor and P. Gaborit. A Fast Private Information Retrieval Protocol, in

The 2008 IEEE International Symposium on Information Theory (ISIT’08),Toronto,

Ontario, Canada, pp. 1848–1852, IEEE Computer Society Press, 2008.

[16] C. Aguilar-Melchor and P. Gaborit. A Lattice-Based Computationally-Efficient Private

Information Retrieval Protocol. Proc. Western European Workshop Research in Cryp-

tology (WEWORC ’07), 2007.

[17] F. Olumofin and I. Goldberg. Revisiting the Computational Practicality of Private In-

formation Retrieval. Technical Report CACR 2010-17, Univ. of Waterloo, 2010.

[18] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography

Journal of the ACM, 2009.

[19] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.

XPIR: Private information retrieval for everyone. PoPETs,2016.

44

[20] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. PIR with compressed queries

and amortized query processing. In SandP, 2018.

[21] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,

Karn Seth, and Kevin Yeo. Communication–Computation trade-offs in PIR. In USENIX

Security, 2021.

[22] Muhammad Haris Mughees, Hao Chen, and Ling Ren. OnionPIR: Response efficient

single-server PIR. In CCS, 2021.

[23] Samir Jordan Menon and David J. Wu. Spiral: Fast, high-rate single-server PIR via

FHE composition. In S and P, 2022.

[24] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In STOC, 2009.

[25] W.Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions on

Information Theory, IT-22 (Nov.1976), pages644–654.

[26] S.Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System

Science, Vol. 28, No.2, pages 270–299, 1984. Preliminary version in 14th STOC, 1982.

[27] M.Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo

Random Bits. SIAM Journal on Computing, Vol. 13, pages 850–864, 1984. Preliminary

version in 23rd FOCS, 1982.

[28] A.C . Yao. Theory and Application of Trapdoor Functions. In 23 rd IEEE Symposium

on Foundations of Computer Science, pages 80–91, 1982.

[29] M.Bellare, S.Halevi, A.Sahai, S.Vadhan. Many-to-one Trapdoor Functions and their

Relation to Public-key Cryptosystems. .Advances in Cryptology–Crypto 98 Proceedings,

Lecture Notes in Computer Science Vol.1462, H.Krawczyked., Springer-Verlag,1998.

[30] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. Construction of pseudorandom

generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396,

1999.

[31] O.Goldreich, S.Micali, and A. Wigderson. How to play any mental game. In Proc. of

the 19th ACM Symp.on the Theory of Computing, pages218–229,1987.

[32] Tung Chou and Claudio Orlandi. The Simplest Protocol for Oblivious Transfer. In Pro-

ceedings of the 4th International Conference on Progress in Cryptology LATINCRYPT

2015 - Volume 9230 August

45

[33] Ronald L. Rivest. Unconditionally Secure Commitment and Oblivious Transfer Schemes

Using Private Channels and a Trusted Initializer. Technicalreport ,M.I.T., 1999. theory.

lcs. mit. edu/rivest/Rivest-commitment. pdf

[34] A.Beimel, Y.Ishai, and T. Malkin. Reducing the servers’ computation in private infor-

mation retrieval: PIR with preprocessing. J. Cryptol., 17(2):125–151, 2004.

[35] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch codes and their applications.

STOC 2004.

[36] A.Hamlin, R.Ostrovsky, M. Weiss, and D.Wichs. Private anonymous data access. Cryp-

tology ePrint Archive, Report 2018/363, 2018.

[37] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. Single-Server Private

Information Retrieval with Sublinear Amortized Time. Advances in Cryptology – EU-

ROCRYPT 2022: 41st Annual International Conference on the Theory and Applications

of Cryptographic Techniques, Norway, 2022.

[38] Amos Beimel, Yuval Ishai,and Tal Malkin. Reducing the servers’ computation in private

information retrieval: PIR with preprocessing. J.Cryptol., 2004.

[39] Elette Boyle, Yuval Ishai, Rafael Pass,and Mary Wootters. Can we access a database

both locally and privately.In TCC, 2017.

[40] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private

information retrieval. In TCC, 2017.

[41] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with sublinear

online time. In EUROCRYPT, 2020.

[42] Dmitry Kogan and Henry Corrigan-Gibbs. Private blocklist lookups with Checklist. In

USENIX Security, 2021

[43] Elaine Shi, Waqar Aqeel, Balakrishnan Chandrasekaran, and Bruce Maggs. Puncturable

pseudorandom sets and private information retrieval with near-optimal online band-

width and time. In CRYPTO, 2021.

[44] Mingxun Zhou, Wei-Kai Lin, Yiannis Tselekounis, and Elaine Shi. Optimal single-server

private information retrieval. Cryptology ePrintArchive, Paper 2022/609, 2022.

[45] A. Beimel, Y. Ishai, E. Kushilevitz, and T.Malkin. One-way functions are essential for

single-server private information retrieval. In Proc.of the 31th Annu. ACM Symp. on

the Theory of Computing, 1999.

46

