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ABSTRACT 

 

DEVELOPMENT OF AN UNCERTAINTY ASSESSMENT MODEL FOR 

DEVIATIONS BETWEEN LONG- AND SHORT-RANGE PRODUCTION 

PLANS AT SURFACE METAL MINES 

 

Tekbey, Tolga Batuhan 

Master of Science, Mining Engineering 

Supervisor: Assoc. Prof. Dr. Onur Gölbaşı 

 

 

July 2023, 135 pages 

 

Surface mining is the dominating mining method employed for extracting near-

surface economic minerals. Production planning in surface mines plays the most vital 

role in different ranges of horizons that can be divided into strategic or operational 

levels. Strategic (long-term) plans or decisions, affecting the Net Present Value of 

the project directly, decide on waste or ore mining blocks to be extracted in annual 

periods generally, while tactical and/or operational (mid- or short-term) plans decide 

on their daily implementation plans in the site. Mining projects are usually 

considered highly uncertain and risky due to the nature of the epistemic and aleatoric 

variables and the cost of obtaining information about them. Although some 

computational tools are available to evaluate and optimize long-range plans of 

surface mines to facilitate operational applicability in shorter ranges, various 

neglected or underestimated uncertainties in mining areas can cause drastic 

deviations from planned production targets. If the underlying factors and causes of 

these uncertainties are not explained and considered enough in the long-term 

planning phase, it will be inevitable to experience unfavorable results as deviation 

from the spatial advance of production area, the tonnage of targeted ore as well as 

waste production, and the targeted amount of final throughput. Therefore, sources 

and ranges of uncertainties, their aleatory or epistemic behaviors, occurrence 
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frequencies, and their effects on the deviations should be considered holistically with 

factors showing how risky the plan is. At this point, the primary purpose of this thesis 

study is to develop an uncertainty assessment methodology covering fuzzy fault tree 

analysis and discrete-event simulation to explain quantitatively the uncertainty 

factors leading to deviations from long to short-range production plans of surface 

metal mines. In this regard, a Fuzzy Fault Tree Analysis (FFTA) has been conducted 

over the data collected from mine planning experts to determine the corresponding 

twenty-one uncertainty factors classified under geology, economy, operation, and 

external and their severity and frequency intervals. The analysis showed that various 

geological, operational, and external factors could explain 93% of the deviations in 

a long-term plan. In addition, grade itself can cause around 14% of deviations among 

all twenty-one factors. Following the FFTA, a Discrete Event Simulation (DES) 

algorithm was developed by considering the most effective and applicable 

uncertainty factors. The developed DES comparatively examines deterministic and 

stochastic long-term planning by monitoring production indicators. In its 

implementation for a hypothetical case, a drop of 0.4M tonne production and 140 

koz gold were observed for 3M tonnes of production with a gold pour guidance of 

435 koz where multiple influential uncertainty factors are available in the area, 

causing almost the worst-case short-range production scenario. 

 

Keywords: Uncertainty Assessment, Decision Support Technique, Fuzzy Fault Tree, 

Discrete Event Simulation, Surface Mine Planning 
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ÖZ 

 

AÇIK İŞLETME TÜRÜ METAL MADENLERİNDE UYGULANAN UZUN 

VE KISA DÖNEM ÜRETİM PLANLARI ARASINDAKİ SAPMALARA 

YÖNELİK BİR BELİRSİZLİK DEĞERLENDİRME MODELİNİN 

GELİŞTİRİLMESİ 

 

 

 

Tekbey, Tolga Batuhan 

Yüksek Lisans, Maden Mühendisliği 

Tez Yöneticisi: Doç. Dr. Onur Gölbaşı 

 

 

Temmuz 2023, 135 sayfa 

 

Açık ocak madenciliği, yüzeye yakın ekonomik minerallerin çıkarılmasında 

kullanılan hakim madencilik yöntemidir. Açık ocak madenciliğinde üretim 

planlaması, stratejik veya operasyonel seviyelerde farklı perspektiflerde en hayati 

rolü oynar. Stratejik planlar veya kararlar, projenin Net Bugünkü Değerini doğrudan 

etkiler ve cevher veya pasa bloklarının üretim zamanlarını yıllık ölçekte kontrol eder. 

Taktiksel ve/veya operasyonel planlar ise uzun dönemli planların sahada günlük 

olarak yakalanmasını sağlar. Madencilik projeleri, tesadüfi veya epistemik 

değişkenlerin doğası ve bunlar hakkında bilgi edinmenin maliyeti nedeniyle oldukça 

belirsiz ve risklidir. Uzun dönemli planların kısa dönemli planların üzerindeki 

etkilerini değerlendirmek ve optimize etmek adına bazı hesaplama araçları mevcut 

olsa da madencilik alanlarında ihmal edilen veya hafife alınan çeşitli belirsizlikler, 

planlanan üretim hedeflerinden ciddi sapmalara neden olabilir. Bu belirsizliklerin 

altında yatan etmenler ve nedenleri uzun vadeli planlama aşamasında yeterince 

açıklanmaz ve dikkate alınmaz ise, üretim alanının konumsal ilerleyişinden, 

hedeflenen cevher tonajından ve pasa miktarından sapma gibi olumsuz sonuçların 
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yaşanması kaçınılmaz olacaktır. Bu nedenle, belirsizliklerin kaynakları ve aralıkları, 

tesadüfi veya epistemik davranışları, meydana gelme sıklıkları ve sapmalar 

üzerindeki etkileri, planın ne kadar riskli olduğunu gösteren faktörlerle bütüncül 

olarak ele alınmalıdır. Bu noktada, tez çalışmasının birincil amacı, yer üstü metal 

madenlerinin uzun ve kısa dönemli üretim planlarından sapmalara yol açan 

belirsizlik faktörlerini nicel olarak açıklamak için bulanık hata ağacı analizi ve ayrık 

olay simülasyonunu kapsayan bir belirsizlik değerlendirme metodolojisi 

geliştirmektir. Bu bağlamda sapmaya neden olan faktörlerin belirlenmesi için maden 

planlama uzmanlarından toplanan veriler üzerinden Bulanık Hata Ağacı Analizi 

(FFTA) yapılmıştır. FFTA'nın bir sonucu olarak jeolojik, operasyonel ve dış 

faktörlerin sapma sebepleri olarak dikkate alınması önerilir ve bu faktörlerin, 

sapmaların %93'ünü açıklayabileceği gözlemlenmiştir. Örneğin, sapmaların %14 lük 

bir kısmının tenörden kaynaklandığı ortaya çıkmıştır. FFTA'nın ardından, en etkili 

ve uygulanabilir faktörler dikkate alınarak bir Ayrık Olay Simülasyonu (DES) 

algoritması geliştirilmiştir. Oluşturulan DES modeli ile deterministik ve stokastik 

uzun vadeli planlama çıktıları incelenir ve üretim göstergeleri ile planın başarısı 

ortaya koyulur. Uygulama kısımında oluşturulan varsayımsal maden verilerine göre, 

3M ton üretim ve 435 koz altın dökümü planlanan bir durumda toplam üretimin 0.4M 

ton, döküm değerinin ise 140 koz düştüğü gözlemlenmiştir. Oluşturulan varsayımsal 

maden sonuçlarında çok sayıda etkili belirsizlik faktörünün mevcut olduğu ve 

neredeyse en kötü kısa vadeli üretim senaryosuna neden olduğu gözlemlenmiştir. 

 

Anahtar Kelimeler: Belirsizlik Değerlendirmesi, Karar Destek Tekniği, Bulanık 

Hata Ağacı, Ayrık Olay Simülasyonu, Açık Ocak Maden Planlaması 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Background  

Raw material requirements of manufacturing and other related production industries 

have an ascending trend in recent decades depending on the growth in the population, 

technology market, industrial branches, and the types of products supplied to the 

customer. The mining sector is a raw material supplier and necessitates continuous 

productivity monitoring not to interrupt raw material delivery to the industries. At 

this point, the exploitation of valuable minerals in mines has been achieved by 

different methods, and each has different operational dynamics. 

Depending on the available financial constraints, mining operations can be handled 

as either a surface or an underground mining operation. Independent of mineral type, 

any mining operation is preliminarily aimed to be performed with the surface mining 

methods since it can provide observable financial and safety benefits and more 

practical monitoring of operational activities. If its feasibility cannot be verified due 

to the high stripping cost of exploiting deep resources, then one of the underground 

mining methods can be employed depending mainly on the mechanical properties of 

the hosting rock and valuable mineral material. Due to their advantages, over two-

thirds of the mining operations are performed by surface mining methods globally. 

Surface mining generally entails optimizing waste and ore material production 

sequence to maximize net present value (NPV) by long-term production plans. Net 

annual cash flows throughout the life of mine (LOM) determine the internal rate of 

return (IRR) of the investment, which is supposed to be much higher than the 

minimum attractive rate of return (MARR) of the related company for a favorable 

decision on the feasibility of investment. On this basis, block models (BMs) 

produced from different exploration drilling datasets via geostatistical interpretations 
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are used in financial feasibility studies. The BMs hold specific deposit attributes such 

as grade, density, lithology, and geo-metallurgical variables (Morales et al., 2019). 

These attributes help to determine the economic block model (EBM) that will be 

utilized in production planning at varying stages from the life-of-mine (LOM) down 

to the shift to make decisions about the mineralogic asset.  

Mine planning is commonly performed on long-term (strategic) and short-term 

(tactical/operational) scales. While long-term plans aim to maximize the NPV of the 

project, short-term scheduling is a more detailed plan on a much smaller time scale 

and tries to realize on-site objectives such as the planned tonnage of mill feed and 

target grade range estimated set by medium to long-term schedules (Chimunhu et al., 

2022). In other words, long-term plans optimize the reserve extraction with the 

highest NPV and IRR yearly throughout LOM, whereas short-term plans intend to 

fulfill long-term goals in shorter intervals like months, days, and shifts. The strategic 

decisions for underground mining areas can be extended by determining ground 

support systems, stope layout, access network design, and production sequencing 

between the production panels (Hou et. al., 2019). On the other hand, surface mining 

requires deciding on two main aspects that are i) the ultimate pit boundaries and their 

associated phases, and ii) the LOM production schedule with equipment selection 

and sizing. Conventional stages of long-term surface mine planning are illustrated in 

Figure 1.1. As mentioned before, operational schedules intend to conduct these plans 

with day-to-day applications by up-to-date equipment positioning, reconciliation, 

compliances, and other on-site information.  

 

Figure 1.1: Traditional Steps of Long-Term Surface Mine Planning (Heidari, 2015) 



 

 

 

3 

Mining projects are considered highly uncertain and risky due to both nature of the 

variables and the cost of obtaining accurate information (Groeneveld and Topal, 

2011). Van et al. (2012) classified the uncertainties associated with a mining project 

as internal and external. Internal uncertainties are generally related to geological 

uncertainties of the resource models and the uncertainties in mining processes such 

as loading, hauling, and mineral processing. On the other hand, external uncertainties 

are related to the variability in the values of external factors such as commodity price, 

cost, demand, selling cost, and weather. Although numerous risks are merging with 

internal and external uncertainties, Rimélé et al. (2020) pointed out that the 

conventional production planning methods are generally deterministic -do not 

account for uncertainty- and are still widely used in the industry via commercial 

schedulers. Therefore, ignoring uncertainties when planning and forecasting 

production can lead to suboptimal results with a high possibility of planning failure. 

In addition, not accounting for these uncertainties in the long-range can trigger 

problems in shorter ranges since it can lead to drastic deviation from the long-range 

targets (Upadhyay and Nasab, 2019). Thus, it can be concluded that uncertainties in 

production planning should be regarded attentively not to deviate from optimized 

NPV and throughput. 

1.2 Problem Statement 

Although some computational tools are available to evaluate and optimize long-

range plans of surface mines to facilitate operational applicability in shorter ranges, 

there are still various neglected or underestimated uncertainties in mining areas that 

can cause drastic deviations from planned production targets. If the underlying 

factors with causes and consequences are not explained and considered enough in 

the long-term planning phase, it will be inevitable to experience unfavorable results 

as a deviation from the spatial advance of production area, the tonnage of ore and 

waste production, and the amount of final throughput. Therefore, sources and ranges 

of uncertainties, their aleatory or epistemic behaviors, occurrence frequencies, and 
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their effects on the deviations should be considered holistically. Otherwise, long-

range plans are expected to develop practically non-achievable plans in the mining 

area. For instance, it is observed that the including geological uncertainty alone in 

the planning phase can improve the project NPV up to 28% and mitigate the failure 

risk of production targets (Godoy and Dimitrakopoulos, 2004). 

In brief, there should be an established bond between the long and short-range plans, 

including the prioritized uncertainties with their main drivers. It is seen from the 

literature that a systematical approach to quantify the uncertainties of production 

planning stages has not been concentrated enough. The uncertainty factors have 

generally been considered individually without assessing their mutual effects. 

Moreover, variability between short and long-range production plans in mines has 

not been investigated deeply.   

1.3 Objectives and Scopes of Study 

This study mainly intends to construct an event simulation model of metallic surface 

mine production in which stochastic behaviors of prioritized uncertainties in the 

model are determined previously by a fault tree integrated with fuzzy logic analysis 

of an expert survey. Sub-objectives of the research can be listed as follows: 

i. Implementation of a survey with the participants who have senior-level 

experience in production planning of surface metal mines to detect the 

general attitude on priority, frequency, and severity of the production 

planning uncertainties,  

ii. Construction of a Fuzzy-Fault Tree (FFT) to a) express the dependencies 

between the uncertainty items that can be classified under geology, economy, 

operation, and external aspects and b) prioritize the uncertainties, 



 

 

 

5 

iii. Development of a discrete-event simulation algorithm for iterative and 

stochastic evaluation of the variations in geological, economical, operational, 

and external factors and their effect on production rates and throughputs, 

iv. Implementing and examining the joint model with an operational and 

environmental dataset. 

The study scope is limited to surface mining operations with metallic deposits. The 

fuzzy logic part will be constructed relying on the opinions of experts experienced 

in the production planning of surface mines. The discrete-event simulation part is 

limited to the prioritized variables obtained from the fuzzy logic analyses. 

1.4 Research Methodology 

This research study entails performing the following steps:  

i. Literature Review: A comprehensive literature review on uncertainties 

experienced in mining areas and the related uncertainty assessment methods 

is conducted. 

ii. FFT Construction: A fuzzy-fault tree is constructed considering the 

dependencies between the uncertainty items that are categorized under four 

main groups: Geology, economy, operation, and external. 

iii. Data Acquisition and Fuzzy Logic Analysis: A questionnaire is delivered to 

experts highly experienced in production planning of metallic surface mines 

to obtain linguistic knowledge about the occurrence, frequencies, and 

severities of the uncertainties that trigger the deviations between long and 

short-range plans. Then, the questionnaire is evaluated using fuzzy logic by 

considering the weightings of responses for experts of different experiences, 

ages, and seniority. 

iv. FFT-Fuzzy Logic Integration: The survey results obtained by fuzzy logic 

analysis are converted to probabilistic values of basic events. These values 

are inputted into the fault tree to determine the priority rankings and levels of 
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uncertainties. Some of the uncertainties are considered in the simulation 

stochastically so that the level of stochasticity in the model runs is evaluated 

considering their percentile priority levels. 

v. Simulation Model Construction: A discrete-event simulation algorithm is 

developed to evaluate the effects of variations of the uncertainty factors on 

production rates and long-term plans. Accordingly, the model simulates an 

open-pit mine production cycle where the model variables are derived from 

the prioritized uncertainty items of the fuzzy logic analysis. The simulation 

achieves multiple outcome datasets of different scenarios where each is 

varied depending on the stochastic values of the prioritized uncertainty items. 

vi. Validation and Verification: The model results will be verified and validated 

using expert options and hypothetical field data. 

Additionally, the research methodology is summarized in Figure 1.2. 

 

Figure 1.2: Research Methodology 
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1.5 Expected Contributions of This Thesis 

Strategical (long-range) and tactical/operational (short-range) planning are studied 

independently in the literature. It is also observed from the related studies that the 

previous research area is limited to ultimate pit boundary determination, phasing, 

and scheduling without considering the transitions between long and short-range 

planning, including uncertainty items. In other words, a joint model with uncertainty 

aspects is not observed in the literature. However, a deep analysis of stochastic 

factors and their effects on operational planning should be evaluated attentively in 

the strategic planning phase not to experience unfavorable conditions during 

production. This research study intends to reveal and prioritize the uncertainty items 

that can cause variations between long and short-range production plans in surface 

mines. In this way, the study tries to close the gaps in the literature by developing a 

joint model of FFT and event simulation in quantifying the geological, operational, 

and external risks of production. The mining sector may benefit from the study 

outcomes to improve their NPV and IRR estimations more realistically. 
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CHAPTER 2  

2 LITERATURE REVIEW 

This chapter presents a literature review starting with a mining and uncertainty 

relationship investigation (Section 2.1). After giving the details with illustrative 

studies, underground mine planning and its link with uncertainty (Section 2.2) are 

presented, which is followed by surface mine planning and associated uncertainty 

(Section 2.3) determination. The uncertainties in surface mines are discussed 

regarding short- and long-term plans. Last, a general review of the decision support 

methods and event simulation technique are stated in Sections 2.4 and 2.5, 

respectively. 

2.1 Mining with Uncertainty Aspects 

Cambridge Dictionary defines uncertainty as a situation in which something is not 

known or something that is not known or certain. Accordingly, various uncertainties 

from different areas, with varying predictability levels, arise in the mining field. 

Aleatoric (naturally random) or epistemic (systematic ignorance) type uncertainties 

are prone to cause deviation from the planned NPV of the mining project. Therefore, 

various literature works have been conducted to analyze and estimate the effects of 

single or multiple uncertainties on mining operations.  

At this point, the uncertainty sources in a mining project are observed to be related 

to geology (on grade, tonnage, and metallurgical parameters), commodity price (or 

mineral value chain), foreign exchange rates, cost, supply, and demand in the market, 

equipment and infrastructure, environment, host government policies, legislations 

and regulations, political risks in the host country, and social as well as human 

resources issues (Ajak et al, 2019). Generally, combinational effects of multiple 
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uncertainties are handled in the relevant studies to derive joint solution. For instance, 

Dimitrakopoulos and Sabour (2007) focused on geological, metal price, and foreign 

exchange rate uncertainties. These three items holding varying levels of risks on 

production plans are frequently observed in the literature. 

The effect of geological uncertainties has been worked on in detail individually and 

in combination with various subjects. Vallee (2000) emphasized the topic's 

importance by referring to the survey belonging to the World Bank. The survey 

results showed that 73% of mining projects have failed due to ore reserve estimation 

problems mainly related to improper analysis and identification of the geological 

aspects. The total was estimated at US$1.106 million for the Canadian mining 

industry in early 1991. Open pit ultimate limits, pit phasing and design, underground 

stope design, and surface and underground mine scheduling are the topics evaluated 

regarding geological uncertainties. Goodfellow and Dimitrakopoulos (2013) 

investigated the effect of metal content and material types on open-pit mine design. 

The study aimed to integrate grade and material uncertainties in pushback design of 

open pit mines by proving two formulations to reduce risk regarding the amounts of 

material hauled to each destination, while maintaining similar pushback sizes 

compared to the original design. Its implementation for BHP Billiton’s Escondida 

Norte mine in Chile showed a 35–61% reduction in variability in quantities of 

material sent to the various processes. Dimitrakopoulos and Grieco (2009) developed 

a new probabilistic mathematical model optimizing the size, location, and number of 

underground stopes under the presence of grade uncertainty. It was shown that the 

risk-based approach could generate different designs that meet the pre-specified 

minimum acceptable risk with the desired risk profile accommodating the selection 

of designs with preferred upside/downside profiles. Koushavand et al. (2012) 

introduced a mixed-integer linear programming (MILP) model for long-term mine 

planning under grade uncertainty. The model determines the cost of uncertainty in a 

production schedule regarding the deviations from the target production. It was 

formulated with two objective functions: maximizing the NPV and minimizing the 

cost of uncertainty. In a joint study, Montiel et al. (2016) presented a global 
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optimization model for a mining complex bearing surface and underground mining 

operations. Mining, blending, processing, and transportation decision variables are 

simultaneously optimized considering geological uncertainty. A higher NPV was 

achieved while reducing the amount of risk compared to traditional optimization 

methods. A set of model realizations is used with randomly generated model 

attributes instead of one single outcome set. Although there are numerous algorithms 

to create a set of the realization of the ore bodies in nearly all studies, a type of 

conditional sequential simulation like Sequential Gaussian Simulation (SGS) has 

been used as the method. These types of models consider grade uncertainty by 

producing different alternative designs, plans, and schedules in accordance with the 

distribution range of grade (Figure 2.1). Ajak et al. (2018) handled the geological 

uncertainty for an operating mine using data mining algorithms for quantification by 

using available grade control data. It was concluded that geological uncertainties 

could be quantified by implementing data mining and real-option analyses. 

 

Figure 2.1: Comparison of geological uncertainty consideration in terms of input 

and outputs of long-term mine planning (Dimitrakopoulos, 2011) 

Secondly, uncertainties sourced from commodity prices or mineral value chains have 

gained attention in the literature due to volatility in economical factors not following 

a constant trend (Figure 2.2). For example, Haque et al. (2014) presented a new 

valuation method for mining projects involving commodity price uncertainty. In the 

research, it is revealed that there is a strong correlation between the commodity price 
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and the value of the mining project. Commodity price volatility is used as a measure. 

It is shown that when the gold price volatility increases, the project value of the mine 

decreases. Additionally, the importance of the foreign exchange rate consideration 

on the success of the mine valuation is outlined. The study strongly recommends 

continuous tracking and dynamic interpretation of commodity prices and foreign 

exchange rate volatility. On the other hand, Haque et al. (2017) developed a new 

Real Options Valuation (ROV) technique to consider combined effects of 

commodity price and foreign exchange rate uncertainties on the mining project 

valuation. The study claims that the commodity price, exchange rate, and correlation 

parameters between them are incorporated into the model and used in the evaluation 

process to assess a mining project's economic success more accurately with its 

inherent volatility. If commodity price uncertainty is considered alone in evaluating 

the project value instead of the joint effect of commodity price and exchange rate 

uncertainties, project values are observed to be overestimated. 

 

Figure 2.2: Gold price trend between July 2013 and 2023. (Data source: Gold.org. 

https://www.gold.org/goldhub/data/gold-prices) 

Lastly, the cost is also another item considered in the literature as a part of the mining 

uncertainty. As an illustrative study, Topal and Ramazan (2012) considered the 

maintenance cost, which is crucial for determining the operating cost. While 

traditional planning techniques handle the maintenance cost as a specific value, the 

study considered the maintenance cost as a function of stochastic parameters in the 

model, developing a distribution of expected cost values used to calculate the 

confidence level, risk, and lower cost opportunities.  
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2.2 Underground Mine Planning with Uncertainty 

Underground mining methods are used whenever the economic feasibility of surface 

mining operation is not satisfied for the resource beneath the surface with varying 

depths. Although many challenging uncertainties are effective in underground 

mining projects at varying levels, uncertainty studies have attracted less than surface 

mining applications due to their unstructured and complex behaviors changing by 

the employed mining method. Chimunhu et al. (2022) classified the uncertainty 

items for underground mining as geology (ore grades and tonnage), equipment 

availability, and geotechnical restrictions to ore extraction affected by unforeseen 

ground conditions (Figure 2.3). Among these items, geological uncertainty is 

focused mainly in the literature so the related studies will be discussed in the current 

section. Sepúlveda et al. (2018) worked on geological and geometallurgical 

uncertainties for block caving operations. Two-objective optimization problems 

were formulated to maximize economic return and minimize the risk arising from 

the uncertainties. Dimitrakopoulos and Grieco (2009) presented a probabilistic 

mixed-integer programming (MIP) model to optimize stope design, including size, 

location, and the number of underground stopes under grade uncertainty using 

stochastically simulated equally probable representations of the deposit. In addition, 

Kumral and Sarı (2017) utilized MIP by considering grade uncertainty in a sub-level 

stope layout determination and scheduling. Finally, Nesbitt et al. (2021) presented a 

stochastic integer programming (SIP) framework with uncertain ore grades and 

activity durations to maximize NPV for an underground mine.   

 

Figure 2.3: A Cyclic Underground Mining Operation (Chimunhu et al., 2022) 
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2.3 Surface Mine Planning with Uncertainty 

Sarı and Kumral (2018) divided surface mine planning scale into three categories as 

long-term (strategic), medium‐term (tactical), and short‐term (operational) mine 

planning. In the literature, however, tactical, and operational plans are used 

interchangeably, so in the following, mine planning will be given in two main parts 

further as long-term and short-term plans with their associated uncertainties. An 

extensive literature review on surface mine planning shows that ultimate pit 

boundary optimization, phasing of the ultimate pits, production scheduling, 

equipment selection, and cut-off grade estimation are the main topics studied under 

long-term production planning of surface mines, while equipment dispatching and 

positioning, the blending of mined materials, production scheduling, and equipment 

utilization are the main subjects in short-term planning (Figure 2.4). 

 

 

Figure 2.4: Open Pit Mine Planning Review 

2.3.1 Long-Term Surface Mine Planning Uncertainties  

Long-term mine planning evaluates deposits while deriving optimized indicators of 

the operation’s profitability, such as NPV and IRR (Newman et.al., 2010, Sarı and 

Kumral, 2018; Morales et al., 2019). Since optimization at an extended time frame 

affects the NPV of the project directly, the literature has been focused intensely on 

this topic. The main subjects studied for long-term surface mining are ultimate pit 
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boundary optimization (Learch and Grossmann, 1965; Liu and Kozan, 2016; 

Altuntov and Erkayaoğlu, 2021), phasing of the ultimate pit (Consuegra and 

Dimitrakopoulos, 2010; Farmer and Dimitrakopoulos, 2018), and scheduling 

(Ramazan, 2007; Sattarvand and Niemann-Delius, 2008; Farmer and 

Dimitrakopoulos, 2018) where equipment selection (Burt et al., 2015; Yavuz, 2015) 

and cut-off grade estimation (Asad and Dimitrakopoulos, 2013) are also gained 

attention. 

Uncertainty sources on long-range planning are grouped into three main aspects: 

financial, technical, and environmental (Sepúlveda et al., 2018). Commodity prices 

and foreign exchange rates are the most common examples of uncertain financial 

variables. On the other hand, geological (including geotechnical and metallurgical) 

and operational variables are well-known examples of technical uncertainty sources. 

Environmental uncertainties are expected to result in consequences related to 

technical, financial, organizational, and social licenses to operate aspects. Among 

these uncertainties, the previous studies mainly concentrated on commodity price, 

geological, and operational uncertainties. 

The first commonly studied uncertainty in long-term surface mine planning is the 

uncertainty of commodity prices. The effect of commodity prices on mine plans is 

deeply investigated primarily in terms of its effects on ultimate pit limits and its 

related phases, the NPV of the project, and its effect on the feasibility of the projects. 

However, its extensive effect on short-range planning has not been studied. Grobler 

et al. (2011) applied a strategic mine planning optimization study with price 

uncertainty to show how processing and mining capacity can be changed to control 

the risk-reward trade-off. Groeneveld and Topal (2011) modeled the uncertainties in 

metal prices, capital, and operating costs, and plant performance using Monte Carlo 

simulations with some well-known distributions. It aimed to generate alternative 

scenarios so that operations could gain flexibility in changing conditions. Evatt et al. 

(2012) have presented a methodology that can quantify the effect of price uncertainty 

within reserve estimates, providing both the expected reserve size and the associated 

distribution. Last, Saliba and Dimitrakopoulos (2019) presented an application of a 
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stochastic framework that simultaneously optimizes mining, destination, and 

processing decisions for a multi-pit, multi-processor gold mining complex under 

commodity price uncertainty. This work is one of the most detailed studies on price 

uncertainty. However, the short- or mid-range planning aspects are generally 

neglected in the model. It was stated that the ability to optimize mining capacity and 

processing rates, specifying extensions of the destination policy to consider multiple 

attributes in cut-off grade decisions, must be considered in future studies. As a result, 

the stochasticity of price uncertainty with its effect on shorter-range planning needs 

improvements. 

The second common uncertainty item concentrated at the strategic level is geological 

and geometallurgical uncertainty. These uncertainties are discussed in the literature 

by referring to the uncertainties on grade and tonnage. Block models (BMs) 

constructed using reliable exploration drill information determine the extent of the 

deposit to support strategic decisions. Since there is sampling with considerably large 

intervals due to the cost-intensive side of the exploration drilling (Morales et al., 

2019), there are uncertainties associated with that model depending on the success 

of the sampling process of the exploration phase. Due to large sample intervals, these 

models are hard to be used directly at the tactical and operational levels (Medium- 

to short-term plans) (Sepúlveda et al., 2018; Pourrahimian et al., 2015; 

Dimitrakopoulos, 2011; Sarı and Kumral, 2018). In addition, such a model also may 

lead to suboptimal solutions due to its related risk of material content uncertainties. 

Different approaches such as stochastic optimization, stochastic integer and mixed-

integer programming, genetic algorithms, and discrete event simulation are used to 

turn deterministic conditions of block models into uncertainty-based (stochastic) 

estimations to solve pit phasing and production sequencing problems of long-term 

planning. Godoy and Dimitrakopoulos (2004) developed a multi-stage optimization 

approach based on a simulated annealing algorithm for long-term mine scheduling 

under geological uncertainty, resulting in an increased NPV compared to 

conventional methods with a reduced risk of meeting production targets. Ramazan 

and Dimitrakopoulos (2007) developed a stochastic integer programming model to 
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generate the optimal production schedule using iteratively simulated orebody models 

as inputs. The proposed approach minimized the risk of not ensuring production 

targets as a function of ore, metal, and grade blending.  Morales et al. (2019) 

presented a two-stage methodology comprising pit optimization and stochastic life-

of-mine (LOM) production schedule. It was concluded that geometallurgical and 

geological data under uncertainty could change the decisions regarding pit limits and 

production schedules by impacting the financial outcomes. Therefore, geological and 

geometallurgical uncertainties should be considered attentively in the future works 

of long-term mine planning. Although the interactions of geological and 

geometallurgical uncertainties are explained more practically by including shorter-

term planning aspects, related decisions at the strategic level also affect the tactical 

and operational levels considerably. Therefore, further integrations and 

considerations in the related models are needed. 

Despite operational uncertainties playing essential roles at the tactical or operational 

level, some should also be considered at the strategic planning level. Operational 

uncertainties, the third common uncertainty studied in long-term planning, are 

mainly evaluated in the literature to solve equipment selection and sizing problems.   

Upadhyay et al. (2021) have developed an algorithm to estimate fleet productivity 

and predict the required fleet size to meet the production schedules in the presence 

of operational uncertainties. It was shown that incorporated operational uncertainties 

help to better estimate the fleet parameters, which also affects the NPV of the mining 

project directly. Accordingly, Moradi Afrapoli et al. (2019) introduced an integrated 

simulation optimization framework to determine the haul fleet size by considering 

operational uncertainties in the mining and processing operations. All in all, 

operational uncertainties not only affect mining projects in shorter runs but also 

affect the NPV of the operation dramatically in the long run. Therefore, it is 

recommended to consider operational uncertainties further in the upcoming research 

for long-term mine planning cases.  

A highlighting example of comparing traditional and risk-based approaches 

regarding geological uncertainties is presented in Figure 2.5. Besides, it can be 
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inferred that numerous other risks mainly arising due to uncertainties on foreign 

exchange rates, production cost items, equipment, and weather are effective in long-

term planning but not discussed intensively in the literature.  

 

Figure 2.5: Traditional vs. Uncertainty-based Approaches to Long-term Mine 

Planning (Heidari, 2015) 

2.3.2 Short-Term Surface Mine Planning Uncertainties 

Literature on short-term (tactical and/or operational) mine planning is observed to 

be concentrated less compared to long-term mine planning (Blom et al., 2019). 

Topics and considerations are limited to certain types. Additionally, the effects of 

deviations from short to long-term targets are not discussed in detail. Short-term 

surface mine planning literature focuses mainly on equipment dispatching and 

positioning (Dessureault et al., 2007; Erçelebi and Başçetin, 2009; Bosh and 

Dimitrakopoulos, 2020), blending problems (Chanda and Dağdelen, 1995; 

Matamoros and Dimitrakopoulos, 2016), scheduling (Sundar and Acharya, 1995; 

L’Heureux et al., 2013), and maximization of equipment utilization (Erçelebi and 

Başçetin, 2009; Kozan and Lui, 2018). Linear programming, integer programming, 

mixed-integer programming, and simulation applications are the methods used 
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widely in recent works to solve such problems. The methods used in the studies vary 

according to the uncertainty involved. 

Regarding uncertainty, scheduling, equipment positioning, and utilization topics are 

discussed under geological and operational uncertainties. They are generally 

evaluated by stochastic integer programming and simulations. Matamoros and 

Dimitrakopoulos (2016) presented a stochastic integer programming approach to 

optimize fleet and production schedules by considering operational considerations, 

such as mining width and direction of mining advance. The potential uncertainties 

of the metal grade and ore quality, fleet parameters, and availability were considered 

in the study. Upadhyay and Nasab (2018) developed a discrete event simulation 

model for uncertainty-based short-term scheduling. The model is capable of efficient 

short-term planning by analyzing the impact of different haul road designs, road 

conditions, traffic congestion, dispatching strategies, and plant requirements in mine 

operations. However, as observed from the previous papers, integration of the long-

and short-term mine planning is not covered. To close the gap, Jewbali and 

Dimitrakopoulos (2013) presented a study called joint stochastic optimization of 

short-and long-term mine production planning: method and application in a large 

operating gold mine. The effects of short-term decisions on long-term plans under 

geological uncertainties were evaluated in the study. Even though this research 

considered both short-and long-term scheduling, geological uncertainties were 

considered alone. 

To sum up, as discussed in Section 2.3, the literature has focused on the uncertainties 

of both long-and short-term scheduling for surface mining separately, even though 

they affect each other considerably under various uncertainties in mining sites. 

Integration of uncertainty consideration of tactical and strategic plans in a joint 

model is the primary intention of the current study, which has the potential to provide 

a source for future studies in the surface mine planning area. 
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2.4 Evaluation of Decision Support Techniques 

Production-related decisions at the strategic level affect the overall profitability of 

the projects in the mining industry that should sustain operations with scarce 

resources; therefore, achieving the best applicable decisions is crucial for the future 

of company operations in the sector (Chinbat and Takakuwa, 2009). This study aims 

to support the decision-making process with quantified measures by considering the 

factors influential in production planning in surface metal mines. Therefore, this 

section will review the common decision support techniques so that the most proper 

technique to be used in the current study will be decided. 

Decision-support systems (DSS) are employed to support particular decision-making 

processes under specific conditions for different fields with changeable purposes and 

applications. DSS is applied extensively in governmental, industrial, scientific, and 

commercial sectors. Some of the potential impacts and outcomes of an effective DSS 

for some application fields are listed (Burke et al., 2014): 

i. More efficient production planning would lead to significant financial 

benefits. 

ii. Better personnel rosters would lead to a more contented workforce. 

iii. Efficient healthcare scheduling would lead to faster treatment (potentially 

saving lives). 

iv. More effective cutting/packing systems could reduce waste. 

v. Better delivery schedules could reduce fuel emissions.        

A decision support technique's output and/or designed purpose changes with its 

application area. For example, an engineering project manager may ask to investigate 

the risk related to operational uncertainties. However, verbal result determination of 

a service sector review can be the driving aspect for the decision maker such as the 

commercial sector. Consequently, the output of a DSS diversifies with the different 

sectoral needs, and for an engineering project, the best way can be to present numbers 

for the quantified measures. Furthermore, for a mining project requiring forecasts 
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throughout the predefined mine life, quantifying the uncertainties with the listed 

contributing factors can be the best way to use in the strategy development period. 

This requirement necessitates a detailed query on risk determination since the risk 

for a mining project is defined as an uncertain event or condition that positively or 

negatively influences the project objective (Chinbat and Takakuwa, 2009).  

Therefore, risk assessment techniques are comparatively discussed to determine the 

proper DSS to be used in the current research study. Badri et al. (2012) summarized 

the Risk Management Tools (RMT) under three categories: quantitative, qualitative, 

and semi-quantitative. On the other hand, Luo et al. (2018) grouped the RMT as 

quantitative and qualitative methods. Quantitative tools are further subdivided into 

probabilistic and deterministic, while qualitative tools are classified into expert 

judgment-based and prescriptive methods (Badri et al, 2012). Considering the nature 

of the study, probabilistic quantitative tools are observed to be properly employed 

(Figure 2.6).  

Implementing a DSS system in the decision-making process is expected to come up 

with numerous benefits like saving money, natural resources, and more 

environmentally friendly production. Accordingly, a particular quantification is 

needed for the decision-maker to compare alternatives. Therefore, decision support 

techniques that allow the integration of mathematical models and/or simulation in a 

probabilistic manner with the opportunity of fuzzy logic integration are investigated 

to create the desired joint model. 

 

Figure 2.6: Risk Management Tools (Badri et al., 2012) 
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Some frequently-observed decision support techniques, fishbone analysis (FB), 

analytic hierarchy process (AHP), and fault-tree analysis (FTA) will be evaluated 

comparatively to reveal their pros and cons so that their conveniences for this 

research study will be understood. 

2.4.1 Fishbone Analysis (FB) 

Fishbone analysis is generally used for cause-effect analysis (Bose, 2012). The 

fishbone diagram determines the root causes of problems by indicating their 

interdependencies (Luo e al., 2018). It is a qualitative method that deepens the 

analysis with step-by-step logic. The method is generally used in the occupational 

health and safety area. As an illustration, Luo et al. (2018) used the method to analyze 

the safety of natural gas spherical tanks. The fishbone diagram of the sample 

engineering project is presented in Figure 2.7 and its detailed form is illustrated in 

Figure 2.8. Arrows in the diagram indicate small, middle, primary reasons, and their 

relations. Due to its qualitative structure, it will not be considered in this study 

 

Figure 2.7: Structure of a Fishbone Diagram (Luo et al, 2018) 
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Figure 2.8: A completed Fishbone Diagram (Luo et al, 2018) 

2.4.2 Analytic Hierarchy Process (AHP) 

The Analytic Hierarchy Process (AHP) is widely used in decision-making processes 

to compare alternative solutions (Badri et al., 2012; de FSM Russo and Camanho, 

2015). It is a structured multi-attribute tool used in complex decision-making cases 

based on three fundamental principles: decomposition of the structure, comparison 

of judgments, and hierarchical composition (or synthesis) of priorities (Badri et al., 

2012). It is raised that the method can be applied to cases including both qualitative 

and quantitative data; therefore, the method can be placed in the group of semi-

quantitative risk management tools (Zhao et al., 2012). The method allows pairwise 

comparison and is appropriate for selecting the most advantageous solution from a 

set of alternatives based on their relative performances considering one or more 

criteria of interest (Yavuz, 2015; Spanidis et al., 2021). 
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For instance, Yavuz (2015) used the AHP method to compare alternative sets of 

mining loaders to support the decision-making process for equipment selection. A 

hierarchy structure was built to compare alternatives as given in Figure 2.9. After 

structuring the hierarchy, the pairwise comparison matrix for each level is developed 

by assigning scores for each alternative. The alternative with the highest priority 

determines the most appropriate loader for the operation under given circumstances.  

Although a comparative evaluation will also be computed under the scope of this 

thesis, the requirement of an initial assigning failure coefficient for each case and 

sequential comparisons among the alternatives cannot be applied in practice when 

assessing the uncertainty and production correlations. 

 

Figure 2.9: Hierarchy Structure for the Loader Selection (Yavuz, 2015) 

2.4.3 Fault Tree Analysis (FTA) 

Fault Tree Analysis (FTA) is a widely used systematic, analytic, top-down, and 

deductive system failure analysis method. In FTA, a top event is defined and deeply 

resolved into intermediate and basic events interrelated by particular logic gates, as 

illustrated in Figure 2.10 (Cheliyan and Bhattacharyya, 2018). Since FTA can be 

practical for any system, it is widely used in various industries, mainly in the 
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production industry. Complex systems such as nuclear reactors, aerospace systems, 

electronics, electric power plants, chemical production plants, mechanical 

environments, civil engineering works, the petrochemical industry, and pipeline 

systems can be analyzed in detail to evaluate system safety and reliability (Mahmood 

et al., 2013). For example, Cheliyan and Bhattacharyya (2018) integrated FTA into 

a subsea production system to analyze the possibility of oil and gas leakage by 

considering different failure-triggering mechanisms. 

 

Figure 2.10: Basic AND and OR Gates Used in FTA  

The use of FTA is extended by NASA (National Aeronautics and Space 

Administration) by integrating FTA into a Probabilistic Risk Assessment (PRA) 

methodology (Stamatelatos et al., 2002). The method was used firstly to calculate 

the probability of the mission's success in transferring and returning astronauts 

between the moon and the Earth. Later, the usage of the method was improved by 

NASA after the Challenger accident in 1986 to highlight the design and operational 

weaknesses of the systems. According to NASA’s handbook on FTA (Stamatelatos 

et al., 2002), eight steps must be taken for a successful FTA realization. The first five 

steps are related to problem formulation, while the remaining items aim to construct, 

evaluate and interpret FTA and its results (Stamatelatos et al., 2002). These steps are 

as follows: 
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i. Identify the objective, 

ii. Define the top, 

iii. Define the scope, 

iv. Define the resolution, 

v. Define ground rules, 

vi. Construct the FT, 

vii. Evaluate the FT, 

viii. Interpret and present the results. 

The symbols and gates used in defining different events in the fault trees and their 

inter-relationships are defined by NASA Handbook on FTA (Figure 2.11) as given 

in Stamatelatos et al. (2002). A typical example of FTA on evaluation of overrunning 

of the motor is presented in Figure 2.12. An FTA is expected to go top to down 

events, i.e. basic events, where dependencies between different basic events and 

branches in the tree are constructed using various gates of varying functionality. 

In the mining industry, the method also finds a wide application area. Zhang et al. 

(2014) used FTA to analyze the root causes of accidents involving mining haul 

trucks. It was decided in the study to concentrate on accidents in West Virginia, 

U.S.A, by developing individual fault trees for each accident. It was concluded that 

the two most common root causes of the accidents are inadequate or improper pre-

operational checks and poor maintenance of trucks. Gharahasanlou et al. (2014) 

investigated the failure occurrence probability of the crushing and mixing bed hall 

department at the Azarabadegan Khoy cement plant using the FTA method. Shi et 

al. (2018) used FTA to model the risk factors of coal dust and gas explosion in the 

Xingli Coal Mine.  As the core part of the study, expert opinions were collected and 

aggregated as trapezoidal fuzzy numbers to calculate the degrees of importance of 

all basic events. In brief, the basic events with higher probabilities were set as 

hazards in daily safety management; and  effective measures for preventing gas and 

coal dust explosions were derived. This study will be detailed more in Section 2.4.4. 
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To sum up, FTA is a symbolic logic analytic technique considering the failure 

probability of the system components when determining the top event's failure 

probability (Ferdous et al., 2009, Zhang et al., 2014). The other decisive property of 

the technique is that subjective expert opinions can be implemented in the system as 

a fuzzy set with triangular or trapezoidal distributions. Therefore, the uncertainties 

causing failure to implement long-term plans in metallic surface mines, integrated 

with an expert opinion, can be analyzed practically in Fuzzy Fault Tree Analysis 

(FFTA), a particular use of FTA. Therefore, FFTA will be discussed in Section 2.4.4 

separately. 

 

Figure 2.11: FTA Symbols According to NASA FTA Handbook (Stamatelatos et 

al., 2002) 
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Figure 2.12: An Example of a Typical Fault Tree (Stamatelatos et al., 2002) 
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2.4.4 Fuzzy Fault Tree Analysis (FFTA) 

Most processes and events in the real world can happen within a particular 

uncertainty with varying levels. Therefore, the need to express any concepts -a part 

of the real world- with crisp outcomes has put forward the concept of Fuzzy Set 

Theory, expressed by Lotfi Zadeh for the first time in 1965. The Fuzzy concept is 

integrated into many fields. It allows the integration of expert opinions and 

experience-based data, mainly in the data shortage. It obtains crisp values from vague 

concepts, consideration of uncertainty, and inclusion of human interpretable rules to 

the computer environment. Consequently, the Fuzzy concept is also integrated into 

the Fault Tree Analysis to improve and develop the method of supporting decisions. 

Therefore, fuzzy logic and set theory are required to be expressed first before 

detailing the fuzzy fault tree method. 

Sivanandam et al. (2007) defined Fuzzy Logic as a mathematical tool to handle 

uncertainty by providing the concept of computing with words. In this context, the 

Fuzzy Logic method follows a sequential methodology, starting with crisp inputs' 

fuzzification. Fuzzification is followed by an inference process in which the fuzzy 

input set is mapped to the output fuzzy set based on the fuzzy logic principles. In the 

last sequence, the fuzzified output set of the inference process is defuzzified to obtain 

the crisp output so that a quantified value is obtained. In addition to these operational 

steps, some critical concepts, which are Fuzzy Set, Membership Function and 

Logical Operations should also be comprehended for better understanding of Fuzzy 

Logic. The Set term should first be defined to draw the boundaries for enabling 

combined usage with fuzzified input and output. As MathWorks (2022) indicated, 

there are two sets: classical and fuzzy sets. Membership criteria of classical sets are 

well-defined and known. For example, there is not any doubt about the membership 

of dogs and cats to animal class. However, there is an ambiguity about whether 

bacteria and starfish belong to the class of animals (Zadeh, 1965). Another example 

was given in MathWorks (2022) by considering weekdays and weekends. It is 

undoubtedly known that weekdays contain Monday, Thursday, and Saturday but do 
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not contain the terms butter, liberty, dorsal fins, and so on (Figure 2.13). Therefore, 

borders are strict in a classical set and an item is either asserted or denied for the set. 

On the other hand, in a fuzzy set when the weekend days are inquired, the answer 

includes Saturday and Sunday but there is an uncertainty for Friday. Some answers 

would consider Friday as part of the weekend due to some participants' perceptions 

even though it must be excluded from the weekend in normal circumstances. 

Therefore, the decision on Friday becomes fuzzy (Figure 2.14), and this condition 

requires developing a fuzzy set, not a classical set. In brief, an item is either out or a 

member of a set with certainty in classical sets, while fuzzy sets include hazy 

boundaries. 

 

Figure 2.13: Days of the Week Classical Set (The MathWorks, 2022) 

 

Figure 2.14: Days of the Weekend Fuzzy Set (The MathWorks, 2022) 

Another critical concept in Fuzzy Logic is the definition of Membership Function. It 

is a function that introduces how each point in the input space is mapped to a 

membership value (or degree of membership) between 0 and 1 (MathWorks, 2022). 

The type of function is crucial since it is the backbone of the inference by affecting 

the format of the input and output fuzzy sets with their value determinations in the 

process. The function is determined based on its usage purpose and the field of 
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interest. The most preferred types are triangular and trapezoidal, especially if expert 

opinion is characterized (Mahmood et al., 2013). An illustrative example of a 

triangular membership function is given in Figure 2.15, and the value of any x for 

the function of f(x) is determined with Equation 2.1. 

 

Figure 2.15: Triangular Membership Function (Mahmood et al., 2013) 

    

(𝑥; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 
𝑥 − 𝑎

𝑏 − 𝑎
 , 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 ≤ 𝑥 ≤ 𝑐

0         , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.1) 

 

The last important aspect is Logical Operations that connect fuzzy inference.  The 

most common fuzzy logical reasoning operators are AND, OR and NOT, which are 

analogous to the standard Boolean logic but superior to the standard. Therefore, 

standard logical operations hold if the fuzzy values are kept at the maximum and 

minimum extremes (1 and 0). The logic matrix in Figure 2.16 is used to define the 

fuzzy logical reasoning operators (MathWorks, 2022). As indicated in the figure, the 

minimum valued one is returned if the AND operator is used for two fuzzy variables. 

However, the maximum valued fuzzy variable’s value is returned as the result of the 

OR statement. At last, for the NOT operator, the one minus the value is returned as 

the result of the operation. 

Value 

Cum. Frq. 
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Figure 2.16: Fuzzy Logic Reasoning Operators AND, OR, and NOT 

The concept of Fuzzy Logic has been integrated into fault tree analyses in various 

studies of different fields. Conventional FTA has some shortcomings, such as 

vagueness, absence of accurate data, and uncertainty (Mahmood et al., 2013). In 

addition, the failure probabilities of basic events are considered as an exact value, 

which is a single estimated value or crisp value in the FTA, and is not generaly 

representative due to insufficient data, vague characteristics of the events, and the 

high cost of data acquisition. Developing datasets by expert opinions can help to 

overcome these shortcomings. This condition requires verbal statements that must 

be converted to numerical representations to use the probability rate of the basic 

event in FTA. Therefore, conventional FTA is transformed into the FFTA. The 

method of FFTA is extensively used where system failures are observed for a broad 

range of industries and applications like image processing (Bezdek et al., 1999), risk 

evaluation of both upstream and downstream operations of the petroleum and gas 

natural sector (Rajakarunakaran et al., 2015; Cheliyan and Bhattacharyya, 2018; 

Badia et al., 2019), and process industries (Lavasani et al., 2015, Yazdi et al., 2017 

and 2020). The mining industry is also one of these industries. As an illustrative 

study, Mottahedi and Ataei (2019) used FFTA to analyze the coal burst occurrence 

probability. In the fault tree, the occurrence of a coal burst is introduced as the top 

event, and occurrence probability values of a coal burst with self-initiated and 

remotely triggered mechanisms are compared. In the fuzzy logic part of the study, a 

survey was conducted among professionals from relevant field. The analysis results 

were inputted to the FFTA to define occurrence probabilities of some sub-events. 
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Similarly, Shi et al. (2018) used the FFTA method to identify the risk factors of coal 

dust and gas explosions in the Xingli Coal Mine, China.  

In the literature, FFTA has been generally employed for OHS and equipment 

reliability assessments in mining; however, its use in mine planning or production 

has not been observed. FFTA is decided to be used as the primary method in the 

current study for evaluating and prioritizing uncertainties that can be effective on 

long-term (strategic) planning deviations. Accordingly, uncertainty occurrence 

frequencies and severities will be evaluated by a survey conducted with multiple 

experts from different metallic surface mining operations in the world. The content 

of the survey, its assessment using fuzzy logic, and the implementation of the fuzzy 

logic results into the fault tree will be discussed in detail in Section 3. 

2.5 Discrete Event Simulation (DES) 

The decision support methods, some of which were discussed in Section 2.4, are 

utilized in the decision-making period to determine the bottlenecks in an operating 

system and to evaluate the effects of variables qualitatively and quantitatively on the 

system outcomes. Therefore, these methods allow to comprehend the bounding 

variables and parameters to be concentrated in sequential system analysis. Since this 

research study will focus on understanding the uncertainty-based variations from 

long-term targets due to short-term results and their ranges, the outcomes of the fuzzy 

fault tree will specify the aspects to be considered more intensively in the following 

evaluations and will give the score of the doability of the plan. Since a mimic of the 

mining operations composed of the occurrence of sequential or independent 

activities and events is included in the scope of the study, event simulation is decided 

to be used for the production cycle of an open-pit metallic mine. In this regard, the 

simulation will be used to assign operation-related variations so that simulated 

variables will give a cluster of results. The simulation outputs and the constructed 

FFT will be discussed jointly to understand the range of the uncertainties and their 

forecasted effects on the variation between the production plans. Accordingly, this 
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section will briefly discuss the theory behind DES, the simulation type used in the 

study, and its applications in mining. Development of the DES model to be employed 

in the current study will be detailed in Section 4. 

The process of transferring the real world to the computer environment by mimicking 

natural laws, rules, and processes became more realistic with recent developments 

in the computer industry. In this way, outcomes of events or individual activities can 

be foreseen without the need for an actual event to be realized. This process is 

conducted in the computer environment with the aid of simulations. Simulation is 

defined as the imitation of the operation of a real-world process or system over time 

(Banks et al., 2014). A model is created for the system under investigation to create 

an artificial history considering the operating characteristics of the real system. Later, 

this history is used to find the solutions for the questions related to defining the most 

appropriate design criteria, what-if scenarios, and similar aspects. Setting the system 

scope and boundary is the core part of the simulation. A system is a group of objects 

combined with observable interactions or interdependences to achieve a joint target. 

Interaction between the system and its surroundings should also be defined to 

determine the system environment. At this point, boundary determination between 

the system and its environment is crucial to limit the interactions. In addition, there 

are system components: state and event. The state is the collection of variables 

required to define the system at any time, while an event is an instantaneous 

occurrence that might change the system’s state. After defining the content and 

boundaries of the simulation, the simulation type should be identified according to 

the model interactions being static or dynamic, deterministic or stochastic, and 

discrete or continuous: 

vi. Static Model: A system at a particular point in time without any variety in 

outcomes 

vii. Dynamic Model: A system that changes over time with a variety of 

outcomes 

viii. Deterministic Model: It represents a system containing no random variables 

or ineffective random variables. 
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ix. Stochastic Model: A system whose outcomes are highly affected by random 

values of its components 

x. Discrete Model: A system where variables change only at a discrete set of 

points in time. 

xi. Continuous Model: A system where variables change continuously over 

time. 

Considering the nature of mining operations, the model that will be developed in this 

study, will be stochastic, dynamic, and discrete, generally termed Discrete Event 

Simulation (DES) in the literature. Simulation work has sequential steps listed below 

(Banks et al., 2014) and illustrated in (Figure 2.17 and Figure 2.18).   

1. Problem Definition and Formulation: Statement of the problem. 

2. The setting of Objectives and Overall Project Plan: Determination of 

questions to be answered by the simulation.  

3. Model conceptualization or Initial Design: Construction of the model with 

determined system boundary, variables, sets, and assumptions. 

4. Data Collection: Collection of the needed input data. 

5. Model Translation: Transfer of initial model design to the computer 

environment via simulation software.  

6. Verification: Control the program to see if it is working correctly. 

7. Validation: Control and comparison of the model with the actual data. 

8.  Experimental Design: Determination of the alternative simulations 

9. Production Runs and Analysis: Production runs and their subsequent 

analysis. 

10. More Runs: Check whether additional runs are needed and what design those 

additional experiments should follow. 

11. Documentation and Reporting: Documentation of program and progress. 

12. Implementation: Realizing the simulation outcomes in the real world.  
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Figure 2.17: Selected Simulation Model Type 

 

Figure 2.18: Steps in a DES Model Creation (Banks et al., 2014) 

DES models are used especially in manufacturing, business processing, construction 

engineering and project management, logistics, transportation and distribution, 

military, and healthcare (Banks et al., 2014). In addition, mining is also another field 

where DES is used extensively due to its adequate coverage of uncertainty and 
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dynamic processes. Equipment selection, comparison and capacity determination, 

real-time dispatching of truck-shovel systems, management of drilling systems, 

long-term and short-term production planning and scheduling, maintenance policy 

determination, and crew optimization are some of the application areas of DES in 

the mining industry for both underground and surface mining applications. Although 

reliability and crew optimization topics are vital for the mining industry, since it is 

not related to the study scope, they are not considered in the literature review.  

Ben-Awuah et al. (2010) used the DES to correlate long-term predictive mine plans 

with short-term production schedules under uncertainty. The constructed model 

considers constraints and uncertainties associated with mining and processing 

capacities, crusher availability, stockpiling strategy, and blending requirements. An 

iron open pit mine case is used to show the model's effectiveness, and the resultant 

NPV of the simulation is compared with another commercial software. Hashemi and 

Sattarvand (2015) constructed a DES model for a copper mine. Match factor 

examination for the trucks and shovels, a dispatching simulation model creation, and 

ore grade blending consideration were evaluated in the study. It was concluded that 

a remedial action for production and hauling can improve production rates by 40%. 

Greberg et al. (2016) used DES to analyze ore transportation from loading points at 

the lower levels to the existing shaft points using trucks without employing ore 

passes for an operating underground mine. It is concluded in the study that haulage 

trucks can be used as a good alternative to the ore pass system for ore and waste 

transportation. Manríquez et al. (2020) utilized DES to generate short-term 

production schedules for improving schedule adherence. The study aims to reduce 

the discrepancy between the planned and actual tonnes in the short-term scheduling 

periods by considering the uncertainties involved in underground mining operations. 

The developed model is implemented to a Bench and Fill mine, and the 

implementation results showed a decrease in the discrepancy. Gölbaşı and Turan 

(2020) constructed a DES model to optimize maintenance policies for mining 

systems. The model incorporated corrective, preventive, and opportunistic 

maintenance concepts and derived comparative scenarios with their resultant cost 
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and availability measures. The developed model was applied to mining shovels and 

draglines. Uğurlu and Kumral (2020) employed a DES to examine the opportunity 

of increasing drilling efficiency. In the study, an approach to determine the number 

of bits required in each period and computing the number of holes to be drilled were 

handled. Yılmaz and Erkayaoğlu (2021) used DES to investigate shearer 

performance for a longwall top coal caving operation. The daily coal production 

amount achieved by the shearer ans total shearer usage times were examined in the 

study. Gölbaşı and Kına (2022) used DES in developing a microscopic-scale fuel 

consumption simulator for haul trucks under load and weather uncertainties. The 

simulation was implemented for a large-scale cement production network where 

different routes having varying profiles between a clay mine, limestone mine, 

processing plant, fueling points, and parking spots are available. 

To sum up, DES is an effective tool that can be used in different research fields where 

various uncertainties appearing in system components should be evaluated. To 

analyze and cover operational level uncertainties in metallic surface mine operations 

and the dynamic nature of the mining operations, a DES model with a boundary 

determined by fuzzy fault tree analysis will be developed under the scope of the 

current study. 

  



 

 

 

39 

CHAPTER 3  

3 PRIORITIZATION OF MINE PRODUCTION PLANNING 

UNCERTAINTIES FOR METALLIC SURFACE MINES USING FUZZY 

FAULT TREE ANALYSIS 

3.1 Introduction 

This chapter presents a fuzzy logic-based prioritization of uncertainties in the 

production plans of surface mines. The prioritized uncertainty factors will be 

involved in developing the discrete event simulation, which will be discussed in 

Section 4. Accordingly, the current section briefly introduces why uncertainty 

prioritization is required before the simulation part and its proposed methodology. 

Section 3.2 will detail the preparation and evaluation method of the questionnaire to 

be used in the analyses. Here, fuzzy logic as the evaluation method of a part of the 

questionnaire will also be mentioned briefly. Later on, in Section 3.3, the fuzzy fault 

tree construction will be detailed so that the prescribed method can be implemented 

for the uncertainty items to measure their effectiveness levels. The last part, Section 

3.4, will discuss how the survey results can be integrated into the fault tree by 

acquiring and evaluating the survey results. Additionally, uncertainty prioritization 

details are also given in this part. 

Even though attentive long-range production plans are conducted in a mining site 

regarding various uncertainty factors relying on past experiences, there can still be 

some deviation from the target production amount and the tonnage of the final 

product in varying ranges since some less frequent but severe risk parameters could 

be neglected or not detected, or the regarded risk factors are underestimated. 

Therefore, the risk (uncertainty) factors must be considered holistically to evaluate 

expected production deviation between long and short-range plans. Since the mining 

production itself is a highly time-dependent series of sequential events, discrete event 
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simulations can be utilized effectively to understand the stochasticity in the 

production. However, a production simulation including uncertainty factors without 

comprehending their effectiveness levels in the deviation cannot be practically 

beneficial. At this point, before constructing a discrete event simulation algorithm, 

it can be helpful to prioritize the uncertainty factors to be included in the simulation 

and estimate their range of effectiveness in the deviations. For this purpose, a 

questionnaire is conducted with experts highly experienced in the production 

planning of metallic surface mines and with a decision-making role in case of any 

positive or negative deviations from the target production. 

The questionnaire is constructed in such a way that the participants can give some 

linguistic expert scores to understand occurrence frequencies (probability of failure) 

and severity of the uncertainty factors. These scores will be exposed to a two-level 

analysis. First, they will be evaluated by fuzzy logic analysis considering the 

participant experience and knowledge weighting factors. Second, the analysis 

outcomes will be inputted in a constructed fault tree to make a comparative inference 

on the uncertainty prioritization. 

The questionnaire questions are developed following an extensive review of the 

available literature and annual/quarter reports of companies to branch out the 

uncertainties that can be observed in the production planning of surface mines. On 

this basis, the survey questions were classified into five main groups, as given below.  

i. Background Information 

ii. Geological Concerns 

iii. Economical Concerns 

iv. Operational Concerns 

v. External Concerns      

The branching of the question groups and the general framework for evaluating the 

questions are detailed in Section 3.2. As stated before, the prepared survey was 

applied to the experts generally employed in the production planning of surface metal 

mines with varying experience levels. Section 3.3 explains the fuzzy fault tree so that 

the basic events of the fault tree can be analyzed with fuzzy logic in Section 3.4. 



 

 

 

41 

3.2 Preparation of the Questionnaire and Its Analysis Methodology 

3.2.1 Preparation of the Questionnaire 

Questionnaires are widely used in data collection for social or technical complex 

systems. The questionnaires should be constructed consistently, and the participants 

should be selected carefully to produce high-quality data (Marshall, 2005). 

Accordingly, the questionnaire items under the scope of the current study are 

grouped into four main categories as geological, economical, operational, and 

external concerns. In addition, background information of the participants is also 

asked to evaluate their professional competencies.In this regard, an expert survey 

employing participants representing surface metal mines production planning and 

effective in the related decision making process from different companies worlwide, 

a total of eleven representative responders, was performed to reveal the common 

understanding on severity and frequency of each uncertainty item on production rate 

and throughput. 

Background information: It is designed to obtain data about the relevancy and 

competency of the participants by blending the information on their previous 

experiences with mine planning and the decision-making process of productional 

deviations. Background information will be used when giving weights to the survey 

scores of participants by deriving some coefficients. On this basis, various weight 

rubrics deliver coefficients for expert opinions. For instance, Shi et al. (2018) used a 

5-score rubric under three categories: participants' titles, service times, and education 

times, as illustrated in Table 3-1 

A representative calculation of the weighting scores for five experts with different 

professional profiles can be examined in Table 3-2.  Here, each expert gets points 

from the relevant groups according to their titles, service times, and education levels, 

resulting in a total score for the expert. Then, the weighting score is calculated by 

dividing the total expert point by the cumulative expert points.  
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Table 3-1. A Rubric for the Weighting Scores Offered by Shi et al. (2018) 

Constitution Classification Score 

Title Senior academic 5 

 Junior academic 4 

 Engineer 3 

 Technician 2 

 Worker 1 

Service Time ≥ 30 years 5 

 20-29 4 

 10-19 3 

 6-9 2 

 ≤5 1 

Education Time PHD 5 

 Master 4 

 Bachelor 3 

 HND 2 

 School level 1 

 

Table 3-2: Weighting Score Calculations for Different Experts (Shi et al., 2018) 

No. of expert Title Service time (Year) Education level Weight factor Weighting score 

1 Senior ≥ 30 years PHD 5+5+5=15 15/57= 0.263 

2 Senior 6-9 PHD 5+2+5=12 12/57= 0.211 

3 Junior 10-19 Master 4+3+4=11 11/57= 0.193 

4 Engineer 10-19 Master 3+3+4=10 10/57= 0.175 

5 Technicist 20-29 Bachelor 2+4+3=9 9/57= 0.158 

 

Different weighting score rubrics are available in different studies, as shown in Table 

3-3 and Table 3-4. 

Table 3-3: Weighting Score Rubric by Cheliyan and Bhattacharyya (2018) 

Attributes 
Weight 

Title/ Designation Experience in Years Education Level Age in years 

Professor / Senior Manager ≥ 30 years Doctoral >50 5 

Associate Professor / Manager 20-30 Masters 40-50 4 

Asst. Professor / Asst. Manager 10-20 Bachelors 30-40 3 

Lecturer / Sr. Officer 5-10 Technical 25-30 2 

Worker / Officer < 5 Graduate <25 1 
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Table 3-4 Weighting Score Rubric by Mottahedi and Ataei (2019) 

Condition Classify Score 

Profession position Senior academic 5 

 Junior academic 4 

 Engineer 3 

 Technician 2 

 Worker 1 

Job experience ≥ 30 years 5 

 20-29 4 

 10-19 3 

 6-9 2 

 ≤5 1 

Education  PHD 5 

 Master 4 

 Bachelor 3 

 HND 2 

 School level 1 

Age >50 4 

 40-49 3 

 30-39 2 

 <30 1 

 

Title (position), experience (service time), and educational level are observed to be 

common for all three rubrics. Age item is also included in the last two rubrics. 

Accordingly, the current study will ask for background information from the 

participants to characterize their eligibility and competency in the survey scores. At 

this point, the experts will be enumerated anonymously by hiding private 

information. The rubric used in this study is discussed in Section 3.2.2 and can be 

viewed in Table 3-6. In addition to background information, expert-based questions 

are asked in four groups entitled geology, economy, operation, and external, as 

detailed below. 

Question Group01 – Geology: 

Geology-related uncertainties have frequently been attracted in the literature on 

surface mine planning. Ajak et al. (2018) stated that geological uncertainties develop 

inherent risks to all mining projects and lead to primary sources of uncertainties in 

the mining projects. Accordingly, various research studies discuss geological 

uncertainties, especially in strategic mine planning, and mention that a noticeable 

improvement in the NPV and planning of mining projects can be achieved by 

controlling and monitoring geological risks. In brief, geology-based uncertainties are 
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one of the main drivers that contribute to the discrepancy between long and short-

range plans, and they can be evaluated in five main sub-categories as variation in 

grade, tonnage (cut-off grade and specific gravity), metallurgical parameters, 

lithology, and geotechnical and hydrogeological parameters. 

Group01-1: Variation in grade (Metal Content) 

The grade values in production blocks are estimated using interpolation 

techniques such as distance weighting or geostatistical methods to achieve 

spatial grade distribution in an ore deposit (i.e. block model (BM)). The 

estimations use the actual but restricted data derived from the drill holes. 

Even though the drill holes are tried to be located with proper spacing and 

orientation in a way to represent the ore deposit, the long-term production 

plans using these estimations can deviate from short-term plans since ore-

control results of daily samples can be quite different from the expectations 

due to increased sample numbers and decreased sample intervals. 

Dimitrakopoulos et al. (2002) showed that BM produced with traditional 

geostatistical methods generally leads to unrealistic forecasting of NPV, 

mine design, ore production performance, and ultimate pit limits. Based on 

the study, NPV relying on traditionally produced BM has a 2-4 % probability  

of fiting into reality. In a later study, Dimitrakopoulos (2011) further detailed 

the involvement of grade uncertainty in strategic open pit production 

planning and stated that grade uncertainty consideration is a necessity to 

reduce risk on production plans and to produce more reliable plans. Thus, 

grade uncertainty is included in the survey. 

 

Group01-2: Variation in tonnage (or in cut-off grade or specific gravity) 

Tonnage variation in the ore is another parameter that must be considered. It 

becomes visible in the modeling phase or when estimating specific gravity or 

calculating the cut-off grade. In common applications, orebody modeling is 

achieved with two methods. These methods are implicit and explicit 

modeling, and both are susceptible to human interaction and open to error. 
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Eventhough people who have long-time professional experience conduct the 

operation, there is always a risk of misjudgment. Therefore, the total tonnage 

can deviate due to estimation errors in the modeling phase or density 

assumptions. For a mining operation, certain material classifications are 

achieved depending on its purpose. Ore/waste distinction is one of them and 

is achieved via the setup of a parameter called the cut-off grade. Cut-off grade 

calculation is based on certain assumptions, calculations, and managemental 

decisions. Asad and Dimitrakopoulos (2013) defined the optimal cut-off 

grade strategy as maximizing the NPV of an open pit mining operation 

subject to the mining, processing, and marketing/refining capacity 

constraints. Materials having grades greater than or equal to the cut-off grade 

are regarded as ore, while smaller values are regarded as waste. The total 

amount of material above the cut-off value contributes to reserve tonnage. In 

the literature, there are studies about the uncertainty of cut-off grades, such 

as Asad and Dimitrakopoulos (2013) and Birch (2017). Overall, tonnage 

variation is also a topic that needs to be addressed in the questionnaire. 

 

Group01-3: Variation in metallurgical parameters 

Generally, the ultimate goal for metallic mining projects is to produce metal 

above the target degree of purity. Metal production is performed in 

processing plants using certain enrichment operations. Such enrichment 

operations usually require specific metallurgical parameters at a certain range 

of values for the feeding to the plant. On this basis, ore materials are blended 

to meet the requirements. Metallurgical parameters like grade, are also 

regionalized attributes of the deposit and are assigned with certain 

assumptions, models, and estimations over samples taken from different parts 

of the deposit. In an illustrative study, Rahmanpour and Osanloo (2016)  

developed a stochastic optimization model to reduce underproduction 

probability sourced from quality deviation in the plant feed. The system 

developed in the study is defended to reduce the underproduction probability 
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from 87% to 13%. Since the value range of metallurgical parameters is 

crucial for processing operations, uncertainty on metallurgical parameters is 

vital for predictable continuity of a mining project. Thus, variations in 

metallurgical parameters are needed to be addressed in the questionnaire. 

 

Group01-4: Variation in lithology and/or the rock type 

Earth’s crust consists of different minerals and rocks. From a mining 

perspective, these minerals have different chemical and mechanical 

properties, which may cause deviation in the dominant lithological properties 

that need to be regarded in mineral processing operations and the safety of 

the mining structures. Since lithological assignments are achieved with 

assumptions, modeling, and estimations from samples, there is uncertainty 

involved in the process. Therefore, the effectiveness of lithology and/or rock 

type on production plans is also addressed in the questionnaire. 

 

Group01-5: Variation in geotechnical and hydrogeological parameters 

Structural safety in mining operations is driven by the mechanical properties 

of available rock formations of pit walls and their behaviors under different 

loading conditions with or without the presence of water. Geotechnical 

parameters are assigned for the intact rocks or the rock masses after 

laboratory or field tests. Hydrogeological parameters are also assigned for 

the area under consideration. These tests are performed with the samples 

considered to be representative of the whole deposit. However, deviations 

from these parameters are often observed in the fields in the form of different 

scales of failures. Such failures can cause severe results for mining 

operations. Therefore, the deviation in production plans should be evaluated 

with geotechnical and hydrogeological parameters. 
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Question Group02 – Economy: 

There is a balance between the demand and the supply of goods that designates the 

price in the market. Price is prone to increase if demand is increased or the supply is 

decreased and to decrease if demand is decreased or the supply is increased in ceteris 

paribus. Uncertainty of economic parameters in surface mine planning is observed 

to be discussed and studied from different perspectives. Supply, demand, and 

commodity price uncertainties have been regarded extensively for strategic mine 

planning. Although economic parameters can be classified under external factors 

since external authorities govern them in most studies (such as Ajak et al., 2019), 

economic factors are considered individually as a group other than the external group 

due to their importance for mining projects. Ramazan and Dimitrakopoulos (2013)  

considered the uncertainty of supply and claimed that a gold project's 10% increase 

in NPV can be achieved by incorporating supply uncertainty into production 

schedules. In another study, Senécal and Dimitrakopoulos (2020) considered the 

supply uncertainty to produce more stable plans over time. In addition, Chatterjee et 

al. (2016) evaluated the effect of commodity price uncertainty on the ultimate pit 

boundary problem solution. It was claimed that an increase in the NPV of an iron ore 

project by 48% could be achieved by including the price uncertainty. Some other 

studies have also investigated the combined effects of the uncertainty items. For 

example, Asad and Dimitrakopoulos (2013) assessed the joint effect of supply and 

demand uncertainties of the final product on the open pit mine design process. In 

addition to the effects of market price fluctuations over the production planning 

stages, variations in the values of mining and processing cost, and changes in the 

exchange rate can be other factors causing deviations from long to short-range 

production planning. In conclusion, uncertainties about economic parameters are 

considered in the literature remarkably, and recognition of these uncertainties in the 

planning stage is expected to contribute to the economic indicators of the mining 

project observably. Hence, economy-related uncertainties are given as follows. 
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Group02-1: Variation in the selling(market) price of the product  

The commodity price is the selling price of the end product of a mining 

operation. It drives the company's income; therefore, the operation's cash 

flow is highly dependent on the commodity price. Most of the operations 

worldwide are highly sensitive to the commodity price. Although companies 

take precautions against fluctuations in commodity prices, severe price drops 

over a long time can turn feasible mining operations into unfeasible ones. On 

the contrary, severe increases in the selling price of a commodity can allow 

unfeasible operations to be realized or prompt capacity increments. It is 

concluded that mining industry investments are highly sensitive to 

commodity price movements (Kim et al., 2023). As an illustration, Shafiee 

and Topal (2010) presented an example of the metal price drop in 2008 and 

early 2009. It was stated that many metal mining companies had difficulties 

in sustaining their operations, and some of the companies had to reduce their 

production rates. All in all, commodity price is one of the most critical 

parameters in a mining operation and should be analyzed attentively to see 

whether strategic or short-term plans deviate from the targets due to 

fluctuations in commodity price. It should be noted that fluctuations in 

demand and supply for a commodity are regarded as joint contributors to the 

price, so they will not be considered separately in the other parts of the 

questionnaire.  

 

Group02-2: Variation in operations and extraction cost  

In general, the cost is the financial item used to refer to the expenses of a 

mining operation that can be divided into capital and operating costs. Capital 

cost is defined as the expense incurred in buying and installing fixed capital 

items like machinery, buildings, and site development. On the other hand, 

operating cost is the day-to-day expense incurred in running an operation. 

The total cost can also be expressed as the summation of these fixed and 

variable costs, where fixed cost is the cost that does not rely on production 
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or sales levels like rent, property tax, and insurance. In contrast, variable cost 

is the cost that appears for the production like material purchases and is 

expressed mostly as per unit of product (Demirel and Güyagüler, 2008).  

Since capital cost is generally more predictable and not continuously spent 

over production time, operating cost and its associated uncertainty are more 

important for the cash flows of the mining operations and prone to 

uncertainties. Therefore, uncertainties on variable expense items in the 

mining operations and extraction costs are decided to be included in the 

questionnaire to understand their effects on production plans. 

 

Group02-3: Variation in foreign exchange rates  

Exchange rates are used to convert currencies to each other and are one of 

the indicators of the country's stability and economic reliability. For 

companies operating in undeveloped or developing countries, the local 

currency's stability against US$ plays a vital role in the financial 

predictability of projects. Revenue and operating costs currency units can be 

quite different from each other. Even though the selling price of the final or 

by-products of mining companies are rated in US$, their operating costs are 

generally estimated considering local currency. For example, 100,000 TL 

expense in August 2020 was equal to 14,286 $; however, it was equal to 

5,556 $ in August 2022. As seen from the example, foreign exchange rates 

need to be evaluated for the long-term predictability of NPV. Therefore, its 

effect on production planning deviations is also analyzed under the scope of 

the questionnaire. 

Question Group03- Operation: 

Operational plans in open pits are short-range plans, and they differ from long-term 

plans in terms of the type and/or size of the used Block Model (BM), discretization 

of time, objectives, constraints, and the level of detail. BM used in strategic planning 

consists of mostly millions of blocks of the whole economic orebody, but BM used 

in operational plans consists of related portions of the orebody. Time discretization 
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is in the shift, day, week, or month levels for short-term planning; however, it is in 

the degrees of month, quarter, or year for the long-term scale. Short-term planning 

generally intends to satisfy the total mine production and the plant feed, maximizing 

equipment utilization, minimizing the rehandling, and minimizing the cost. In this 

level of detail, truck and shovel movements, allocation, and dispatching play crucial 

roles, as the main constraints of a short-term plan. On the other hand, long-term plans 

generally aim to maximize the NPV of the project and minimize the cost. Equipment 

and plant capacities, blending for the plant feed and the waste dump (generally, it is 

the case for mines producing sulfide ore), and environmental and/or operational 

safety are the main constraints for long-term plans (Blom et al., 2019). Cumulative 

of the short-term production amounts and throughputs of processing plans for the 

related period is asked to serve the previously determined long-term plans.  

Although mine operations need to be modeled and analyzed attentively, their 

associated uncertainties have been less studied in the literature. At the operational 

plan level, different sources of uncertainties, including geology, economy, and 

operations (uncertainty in cycle time, productivities, availabilities, and reliabilities) 

(Blom et al., 2019), can be considered. Soleymani and Benndorf (2016) evaluated 

the effect of geological uncertainty on pre-defined KPIs of a short-term plan. The 

method developed in the study is stated to forecast critical situations affecting the 

continuous supply of raw materials to customers and the system's performance. Li 

and Knights (2009) considered the fuel price uncertainty in their study for 

operational mine planning, which profoundly affects shovel-truck system costs and 

the mining economy. Since tactical-level uncertainty factors of geology and 

economy are already considered in the earlier sections, operation-related 

uncertainties are the target of this part. Tokamani and Askari-Nasab (2015) 

constructed a DES model for operation-related uncertainties in short-term planning 

for a shovel-truck system. In brief, uncertainty determination on operational 

parameters is beneficial to be considered in the questionnaire with the branches 

discussed below.   
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Group03-1: Variation of workforce efficiency  

Although the mining industry has become more machine-intensive in recent 

decades, workforce efficiency still plays a decisive role. The workforce is 

used not only for force-required jobs but also to drive and/or control heavy-

duty equipment. An efficiency rating is estimated to represent how the 

workforce is expected to be operated during the plan preparation phase. 

However, most of the time, deviations occur from the estimated efficiency 

level due to numerous reasons, which need to be considered in the plan 

preparation period. Therefore, variation in workforce efficiency is decided to 

be considered in the questionnaire. 

 

Group03-2: Variation of mining equipment efficiency  

Surface mining operations heavily rely on the reliability and maintainability 

of the equipment with a high production capacity. Main production 

equipment is generally responsible for drilling, excavating, and hauling waste 

or ore material. Auxiliary equipment is also important; they assist in the 

smooth and safe operation of the main equipment. For example, loaders, 

graders, and rollers maintain haul roads on which off-highway trucks operate, 

where dozers are employed to provide an even ground and advance in waste 

dumps. Hence, auxiliary equipment is as essential as the main production 

equipment to continue mining operations safely and effectively. Efficiency 

assignment is also performed for the mining equipment in the planning stage 

that relies upon certain assumptions which can change over time. Thus, 

changes in mining equipment efficiency should be considered in the 

questionnaire since all mining projects include a considerable number of 

equipment in varying types. 

 

Group03-3: Variation of mining equipment availability  

The availability of the mining equipment is correlated with the efficiency of 

the maintenance policy applied in the mining site. Maintenance is achieved 
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in three common ways; corrective, preventive, and opportunistic. Corrective 

maintenance is performed when the system/equipment is down, while 

preventive maintenance is organized to reduce system/equipment halts by 

setting preventive component replacements and/or repairs. As a third type, 

opportunistic maintenance is considered to allocate preventive maintenance 

for non-failed components of the halted systems. The long-term planning 

team considers expected maintenance hours for all equipment/systems to 

calculate the availability factors for each. The calculated availability factor 

can change over time due to deviations in the base assumptions, which makes 

the equipment availability factor to be regarded as an uncertain item. Hence, 

it should be considered in the questionnaire as well.   

 

Group03-4: Variation in equipment allocation (spatial plan compliance)  

The equipment allocation topic has been discussed in the literature from 

different perspectives. Matamoros and Dimitrakopoulos (2016) considered 

the mining fleet allocation and developed a stochastic approach to optimize 

fleet and production, which resulted in lower cost, minable patterns, and 

efficient fleet allocation, ensuring higher and less variable utilization of the 

fleet. Upadhyay et al. (2021b) considered the allocation of shovels to mining 

faces using a MIP model. In addition to fleet allocation and shovel 

assignment to the working phases, determining the faces that need to be 

worked is also a source of uncertainty. It can cause deviation in either 

production rates or plant feed quality and quantity. With the increased plan 

resolution, the number of blocks to be scheduled increases; therefore, blocks 

are aggregated into mineable cuts depending on the scale of the plan to realize 

the solution. This aggregation is higher for long-term scheduling. For 

example, a whole bench can be a mining cut for LOM planning, but a couple 

of blocks can be the mining cut for daily/weekly planning. Production of the 

whole bench might take several weeks or months, so how this bench should 

be produced is the topic of a shorter-range plan. It can affect the KIPs of the 
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planned long-term period, such as total plant feed and grade. Depending on 

the conditions in which the short-term plan is produced, the face position can 

deviate from the areas foreseen to be produced by long-term plans. Therefore, 

such differences can cause deviations from the target and should be 

considered in the questionnaire. 

 

Group03-5: Variation in weather forecasts  

Unlike underground operations, surface mining operations are open to the 

atmospheric condition that affect the operations. Although weather forecasts 

are available, they do not always offer an accurate level of estimation for 

mining operations. Weather forecast variations on which plans are 

constructed can cause production rate and product quality deviations. For 

example, road conditions can worsen due to heavy rain; but if road 

maintenance teams are ready to maintain and prepare the roads on time, time 

loss can be avoided. However, if the forecasts deviate, the team will not be 

ready, and production losses are observed due to the limited mobility of 

trucks with increased cycle times. Therefore, uncertainties in weather 

forecasts should also be considered in the questionnaire.   

 

Group03-6: Variation in mineral processing parameters and requirements 

Reserve parameters rely on samples taken from different resource locations 

with some particular assumptions. All feasibility studies are constructed on 

these estimations, and mining facilities, equipment, mineral processing 

facilities, and equipment are selected based on these reserve parameters. As 

discussed earlier, metallurgical parameters, lithology, and ore quality 

deviations are experienced when the exploitation is started. Consequently, 

the plant might not work as designed or require additional constraints not 

foreseen in the design process. Therefore, the feed requirement of the plant 

can change over time, although it is not considered in the long-term planning 

phase. Therefore, this aspect is decided to be included in the questionnaire 
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for a holistic evaluation of the production planning deviations regarding both 

mining and milling considerations.  

  

Group03-7: Variation in unit production cycle activities  

The production cycle consists of some unit operations in surface mining 

operations. Depending on the company policy and ore complexity, additional 

unit operations may be available, but basic unit operations include drilling, 

blasting, loading, and hauling. The cycle starting with drilling and ending 

with hauling and dumping, is repeated for every production location almost 

every day. Such a cycle also requires interactions with professionals with 

different expertise, requiring high levels of communication, collaboration, 

and discipline. A delay or a productivity variation in one of them can affect 

the whole process since they are all dependent and sequential activities, 

resulting in production deviations due to delays. Accordingly, delays and/or 

deviations in the unit production cycle activities are included in the 

questionnaire. 

 

Group03-8: Variation in corporate communication efficiency  

Mining activities are engaged with each other with different but bounded 

work packages that different departments or sub-departments of the main and 

contracted companies should fulfill. Therefore, there should be a well-

defined vertical and horizontal communication structure that should ensure 

proper managemental and technical flow. On the other hand, improper 

communication flow may cause descending efficiency and a lack of good 

information transition inside or between the divisions, resulting in a drop and 

interruption in production. For instance, a standard surface mining operation 

cycle combines the work that should be completed sequentially by the 

drilling, blasting, loading, and hauling divisions, where operators and 

administrators of each division can be separated for micro-effective control. 

However, they depend highly on each other regarding their duties and work 
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efficiencies so that any communication problem may halt the whole system. 

As another example, any communication problem between long-term and 

short-term planning staff can cause misunderstanding of each other and result 

in a problem in the quantity or quality of the ore to be produced. Therefore, 

different parties of an organization are responsible for the employment of 

effective communication and quality control, not to interrupt operations. 

Therefore, communication efficiency is also considered in the questionnaire. 

Question Group04- External: 

High capital-required projects like mining operate over long periods. Since the 

durations of such projects are long, the involvement of uncertainties driven by 

internal or external factors is observed (Kazakidis, 2001). Such uncertainty factors 

result in deviations from the expected economic returns for most mining projects. 

Internal factors are either foreseen with higher accuracies or revealed better when 

the detail level increases. However, most of the external uncertainty factors are tough 

to be quantified with certain confidence levels since they can also be driven by 

external authorities unpredictably. Furthermore, although companies can evaluate 

internal factors with their severity and frequency levels, there is a lack of complete 

control over external factors since various types of local, national, or international 

authorities can be involved in the existence of an external event that can be effective 

in production plan deviations.  

Previously-discussed uncertainties mainly related to geology and operation can be 

regarded as internal. On the other hand, external factors can be detailed under 

environmental, governmental, industrial, legislation/regulation, market price, 

political, and social aspects (Ajak et al., 2019) or market price, industrial relations, 

legislation/regulation, country stability, government policy, social issues, and 

environmental issues (Mayer and Kazakidis, 2007). The current research study will 

evaluate external uncertainty factors as i) community relations, ii) permit, legislation, 

and regulation, iii) political stability, iv) force majeure events, and v) environmental 

and other OHS-related issues. Although financial uncertainty factors such as 

commodity price, cost items, foreign exchange rate, and discount rate are also valued 
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externally, in this study, they are evaluated under Group02- Economy to avoid 

underrating these factors and highlight their crucial effects on production.  

Generally, external factors are underestimated or neglected during long- and short-

term production planning stages. However, they can result in catastrophic damage to 

production. Predicting their occurrence and severity characteristics in mine 

production planning can be highly useful in developing a holistic approach. Details 

of the external uncertainties included in the questionnaire are given as follows. 

 

Group04-1: Variation in community relations assumptions 

As a sustainable development goal, most mining companies would like to 

continue their operation with the high acceptance, involvement, and 

development of local communities living in the mining area and close-by 

areas for a long time. However, some arguments or disassociations between 

locals and mine management might exist. In such cases, quantitative and 

qualitative drops in production can be observed depending on the duration 

and extent of the arguments or disassociations. These types of production 

halts are neglected in the planning stage; however, it is included in the 

questionnaire to quantify the effect of such cases on mining operations.  

 

Group04-2: Variation in the permit, legislation, and regulation 

assumptions 

Every mining company needs different types of permits to be authorized to 

operate in the area. To get such approval from the host government, the 

company needs to obey and follow certain rules, legislation, and regulations 

set by the related organizations of the host government. To be dissuasive, the 

host country can apply some financial and operational penalties when the 

rules are not followed properly. Such penalties can deeply affect the 

company's cash flow if production is interrupted or a delay on any permit is 

available. Therefore, variation in the permit, legislation, and regulation 
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assumptions can be critical for the mining companies, and it is raised in the 

questionnaire with a related question. 

 

Group04-3: Variation in the political stability assumptions 

Countries have different levels of development and political stability due to 

their backgrounds, the structure of the society, and economic wealth. 

Different organizations measure the level of development and political 

stability with different ranking systems and variables. As an example, the 

World Bank provides a public database. Different subject-related data can be 

found in the database, such as World Development Indicators, Education 

Statistics, Gender Statistics, and Health Nutrition and Population Statistics. 

Such factors are considered, especially in the feasibility study stage of the 

project. For countries with higher political risks, companies are prone to 

desire higher profit levels than stable countries due to the possibility of even 

losing the operation permits with the high risk and uncertainty involved. 

Thus, political uncertainties are critical for mining ventures, which should be 

included in the questionnaire. 

 

Group04-4: Variation in the force majeure assumptions 

Force majeure is used for an event that can be realized due to uncontrollable 

or unpredictable circumstances, resulting in catastrophic results. Some of 

these events that will trigger a Force Majeure are war, terrorist attacks, 

strikes, pandemics, or natural disasters. Among them, natural hazards are 

natural phenomena like earthquakes, floods, avalanches, and drought, 

affecting not only the living creators but also the environment and structures. 

In the designing phase, predefined natural hazards are considered with their 

possible destructive effect on the structures. Additionally, there should be 

plans considering the occurrences of such events to forecast the effect of the 

realization. Certain measures should be taken, and alternative schedules 

should be prepared in the designing phase. As well known, events ending up 
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with a force majeure have uncertainty about the hazards' time, magnitude, 

and exact location. Therefore, the questionnaire should consider uncertainties 

about such events to catch their effect on the mine production targets. 

 

Group04-5: Variation in environmental and other Occupational Health 

and Safety(OHS)-related issues  

In a mining area, there can happen a wide range of unwanted events with 

varying consequences in terms of health, safety, damage to physical assets, 

damage to the environment, effect on corporate image, effect on local or 

national community obligations and penalties according to national 

regulations, financial loss of productional interruption, and loss of value of a 

market share. Since any unwanted event may cause a single or multiple of 

these consequences, not all events may result in a shortage in production. The 

length of shortage can be affected by technical, site managemental, and 

external auditing aspects. For instance, if a bench-scale slope failure happens 

in the production area, the failed zone should be removed technically after an 

internal site investigation to re-prepare the area for production. Besides, this 

recovery process should be managed by attentively-prepared emergency 

response action plans and should be recorded and reported. In addition to 

these internal activities, external authorities can demand the completion of 

their inspections regarding their work schedule to allow reinitiating 

production. Even though the area is re-prepared for production, there can be 

an extended period of delay due to extended time of external investigation 

and approval for operation. Although technical and site managemental 

aspects are internal, they are also affected remarkably by external decisions 

and attitudes of these external authorities. Therefore, unwanted events 

considered under the scope of health, safety, and environment (HSE) that can 

result in production loss are regarded as an external uncertainty factor and 

included in the questionnaire. 
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As given in detail, uncertainties in mining operations arise from different sources 

that can trigger dependently or independently of each other. In this study, these 

sources are grouped into four main topics as summarized in Figure 3.1.  

 

Figure 3.1. Uncertainty Categories of the Study 

Within the scope of the questionnaire, two types of data can be collected to evaluate 

the priorities and levels of the uncertainties listed above: Objective data that can be 

gathered from particular operations and subjective data that can be obtained from the 

people experienced in mine planning. Since objective data can be site-specific 

without offering any holistic acceptance for the surface metallic mines with variety 

in geology, economic conditions, the operational environment, and external factors, 

subjective expert data was decided to be assessed under the scope of this study. 

Therefore, for a more collective and comprehensive evaluation of the uncertainties 

without bounding the study with a particular site, multiple experts from different 

mining sites of worldwide surface mining operations were informed about the 

questionnaire and asked to respond to the questions according to their experiences. 

It is a common application in the literature to apply linguistic expressions in 

responses to the questionnaire questions and elaborate the responses according to the 

weighting scores of the participants based on some predetermined weighing criteria, 

as mentioned in Tables 3.1 to 3.4. Evaluation of the linguistic responses and 

aggregation of all experts to have a common conclusion on the uncertainties will be 

discussed in detail in Section 3.4.1. The evaluation will be performed using fuzzy 

logic and some probabilistic outcomes will be derived from the analysis to generate 
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inputs for the fault trees. In this way, a priority matrix of uncertainties that measures 

their individual effects on the top event, which refers to the deviation between long 

and short-range production plans, will be achieved. The questionnaire is also decided 

to include some quantitative parts in addition to the qualitative linguistic responses. 

Accordingly, the occurrence frequency and the severity of each uncertainty item 

were asked to be answered according to their minimum, most expected, and 

maximum occurrence conditions. This quantitative part will be used in the event 

simulation, which will be discussed in Chapter 4, to generate random values on their 

occurrence times and their dependencies with the other operational aspects.  

In brief, the questionnaire was prepared in a way that two main sections for each 

uncertainty should be filled using qualitative (linguistic part to be evaluated using 

fuzzy logic for fault tree analysis to prioritize the uncertainties) and quantitive 

(frequency and severity parts to be evaluated using statistical tools to generate 

random values later on within the event simulation model) responses. Table 3-5 

illustrates the questionnaire window where some drop down menus of some 

uncertainty items are visible. In addition, representative views of the questionnaire 

window presented to the responders are added to the Appendix A. 
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Table 3-5. A Representative Illustration of the Questionnaire Questions 

QUESTION GROUP QUESTION ID QUESTION RESPONSE TYPE 

  G1 BACKGROUND INFORMATION 
  
G1Q1 Background Information G1Q1.0 Name and Surname Short Free Text 

  G1Q2.0 Age Short Free Text 

  G1Q3.0 Educational Level List (Dropdown) 

  G1Q4.0 Professional Experience in 
Surface Mine Planning 

Array of 
Experiences 
(Text) 

 G2 GEOLOGICAL UNCERTAINTIES 

G2Q1 Grade Uncertainty 

G2Q1.1 Deviation in grade causes a 
change in either the short-term 
production plan or the plant 
feed plan …linguistic variable… 

List of Linguistic 
Variables 
(Dropdown) 

G2Q2 Tonnage Uncertainty 

G2Q1.2 Deviation in grade causes a 
change in either the short-term 
production plan or the plant 
feed plans every …# of day to 
the below table…day. 

Array of Lowest, 
Most Expected, 
and Highest 
Values (Text) 

G2Q3 Metallurgical Parameters Uncertainty 

G2Q1.3 In cases where the short-term 
production plan or the plant 
feed plan is affected by the 
deviation in grade, what is the 
amount of this deviation in 
percent you experienced 
before? (can be positive or 
negative) 

Array of Lowest, 
Most Expected, 
and Highest 
Values (Text) 

G2Q4 Lithology/Rock Type Uncertainty       

G2Q5 Geotechnical and/or Hydrogeological 
Parameters Uncertainty 

      

 G3 ECONOMICAL UNCERTAINTIES 

G3Q1 Commodity Price Uncertainty 

G3Q1.1 Deviation in commodity price 
causes a change in either the 
short-term production plan or 
the plant feed plan …linguistic 
variable… 

List of Linguistic 
Variables 
(Dropdown) 

G3Q2 Operation and Extraction Cost Uncertainty 

G3Q1.2 Deviation in commodity price 
causes a change in either the 
short-term production plan or 
the plant feed plans every …# of 
day to the below table…day. 

Array of Lowest, 
Most Expected, 
and Highest 
Values (Text) 

G3Q3 Foreign Exchange Rates Uncertainty 

G3Q1.3 In cases where the short-term 
production plan or the plant 
feed plan is affected by the 
deviation in commodity price, 
what is the amount of this 
deviation in percent you 
experienced before? (can be 
positive or negative) 

Array of Lowest, 
Most Expected, 
and Highest 
Values (Text) 
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Table 3-5. A Representative Illustration of the Questionnaire Questions (cont’d) 

QUESTION GROUP QUESTION ID QUESTION 
RESPONSE 

TYPE 

G4 OPERATIONAL UNCERTAINTIES 

G4Q1 Workforce Efficiency Uncertainty 

G4Q1.1 Deviation in workforce 
efficiency causes a change in 
either the short-term 
production plan or the plant 
feed plan …linguistic 
variable… 

List of 
Linguistic 
Variables 
(Dropdown) 

G4Q2 Mining Equipment Efficiency Uncertainty 

G4Q1.2 Deviation in workforce 
efficiency cost causes a 
change in either the short-
term production plan or the 
plant feed plans every …# of 
day to the below table…day. 

Array of 
Lowest, 
Most 
Expected, 
and Highest 
Values (Text) 

G4Q3 Mining Equipment Availability Uncertainty 

G4Q1.3 In cases where the short-term 
production plan or the plant 
feed plan is affected by the 
deviation in workforce 
efficiency, what is the amount 
of this deviation in percent you 
experienced before? (can be 
positive or negative) 

Array of 
Lowest, 
Most 
Expected, 
and Highest 
Values (Text) 

G4Q4 Equipment Allocation Plan Uncertainty       

G4Q5 Weather Forecast Uncertainty       

G4Q6 Mineral Processing Parameters and 
Requirements Uncertainty 

      

G4Q7 Unit Production Cycle Activities Uncertainty       

G4Q8 Corporate Communication Efficiency 
Uncertainty 

      

 G5 EXTERNAL UNCERTAINTIES 

G5Q1 Community Relations Uncertainty 

G5Q1.1 Deviation in community 
relations causes a change in 
either the short-term 
production plan or the plant 
feed plan …linguistic 
variable… 

List of 
Linguistic 
Variables 
(Dropdown) 

G5Q2 Permit, Legislation, and Regulation Uncertainty 

G5Q1.2 Deviation in community 
relations causes a change in 
either the short-term 
production plan or the plant 
feed plans every …# of day to 
the below table…day. 

Array of 
Lowest, 
Most 
Expected, 
and Highest 
Values (Text) 

G5Q3 Political Stability Uncertainty 

G5Q1.3 In cases where the short-term 
production plan or the plant 
feed plan is affected by the 
deviation in community 
relations, what is the amount 
of this deviation in percent you 
experienced before? (can be 
positive or negative) 

Array of 
Lowest, 
Most 
Expected, 
and Highest 
Values (Text) 

G5Q4 Force Majeure Uncertainty 
      

G5Q5 Environmental and OHS Uncertainty 
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3.2.2 The Questionnaire Analysis Methodology 

As mentioned in Sections 2.4.3 and 2.4.4, the fault tree method integrated with fuzzy 

logic analysis will be used to evaluate the questionnaire results. Conventional fault 

tree basic events require using exact values; however, integration of fuzzy logic 

allows the usage of a fault tree when there is no or enough data to determine and 

introduce the failure rate of the basic events with collected expert data. First, a 

conventional fault tree should be constructed, as will be detailed in Section 3.3. Then, 

fuzzy logic results will be input into the conventional fault tree. The ultimate purpose 

of the current section is prioritizing, ranking, and quantifying the uncertainty items 

to be regarded in the discrete event simulation. Therefore, the steps below are 

followed in the evaluation of the questionnaire that requires linguistic responses: 

Step 1: Weighting factor determination for each participant  

Step 2: Fuzzy number type and linguistic variable determination 

Step 3: Membership function determination 

Step 4: Fuzzification and fuzzy aggregation 

Step 5: Defuzzification 

Step 6: Conversion of fuzzy possibilities to fuzzy failure probabilities 

 

Step 1. Weighting Factor Determination: Although the eleven participants are 

selected from people who are experts in surface mine planning, their 

background, working experiences, and their approaches to different cases 

show variations. Therefore, certain weighting factors will be assigned to each 

expert when weighing their responses to the questions. There are various 

studies using similar weighting factors (Liu et al., 2012; Cheliyan and 

Bhattacharyya, 2018; Shi et al., 2018; Suh et al., 2021). Different attributes 

of experts are evaluated to achieve the weightings. The most commonly used 

attributes used are title/position, experience (total years), education level, and 

age (in years), as detailed in Section 3.2.1. When the participant profiles are 

examined, it is observed that the vast majority have BSc degrees; just one 
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expert has a Ph.D., and one has an M.Sc. degree. Therefore, excluding the 

educational degree, current professional title, experience in mine planning, 

and age are decided to be used in the expert weighting process.  5-score 

weights are used for each attribute, where scores of 1 and 5 refer to the 

maximum and minimum contribution to the weighting score of each attribute, 

respectively (Table 3-6). For instance, a participant with a senior mine 

planning manager title, an experience of over 25 years, and an age over 50 

will have a total score of 15. 

Table 3-6: Expert Weighting Factors of the Study  

Attributes 
Weight 

Title Experience in Years Age in years 

Senior Mine (Planning) Manager ≥ 25 years >50 5 

Mine (Planning) Manager 20-25 40-50 4 

Mine Planning Superintendent 10-20 35-40 3 

Mine Planning Chief/ Senior Mine Planning Engineer 5-10 30-35 2 

Mine Planning Engineer < 5 <30 1 

 

The years of experience of the eleven participants can be observed in Figure 

3.2. The data are clustered as <5, [5, 10), [10, 20), [20, 25), and >=25.

 

Figure 3.2: Available Data of Experience in Mine Planning 



 

 

 

65 

To determine the age extremes, the age information of the junior engineers in the 

mining sector was concluded by statistical evaluation of 520 people who graduated 

from a mining engineering department between 2010 and 2022. The statistical 

outcomes determined a lower bound for the starting employment age to be used in 

Table 3-6. Accordingly, the data was first exposed to outlier testing via box and 

whiskers analysis, as illustrated in Figure 3.3. Outlier values are extremely high and 

low values that can disturb the general behavior of the dataset. The data out of the 

whiskers can point to the outlier availability and may need elimination from the data. 

 

Figure 3.3: Box and Whiskers Plot of Available Data for Age 

After eliminating twenty-two outlier values from the data set, the age histogram of 

the freshly graduated mining engineers is obtained in Figure 3.4. Owning 

symmetrical behavior in frequencies, normal distribution was fitted into the values 

with a mean value of 25.1 and a standard deviation of 1.6. It can be concluded that 

the average graduation age is 25, and a mining engineer with five years of experience 

is assumed to be around 30 years old. Therefore, the equivalence of <5 years 

experience was taken as < 30 years old as the minimum extreme of the age attribute 

in Table 3-6. Regarding the questionnaire data, the remaining extremes are also 

assigned for the final table of weighting factor determination. 
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Figure 3.4. Histogram of Available Data for Age 

Step 2. Fuzzy Number Type and Linguistic Variable Determination: Crisp inputs are 

transferred into fuzzy numbers at the end of the fuzzification process, which 

is the first stage of fuzzy logic analysis. Therefore, selecting the fuzzy 

number is crucial for the results. Different fuzzy numbers are in use in the 

literature; however, trapezoidal and triangular ones have the most significant 

usage frequency (Liu et al., 2012). Triangular fuzzy numbers are a special 

form of trapezoidal fuzzy numbers used in most FFTA applications. 

Consequently, triangular fuzzy numbers are decided to be used in the study, 

so there will be three components of the used fuzzy number as Fn={a,b,c} 

where a represents the minimum, b represents the most expected, and c 

represents the maximum value as represented in Figure 2.15. 

Within the scope of the study, regarding the multiplication of occurrence 

frequency and severity of an uncertainty item, a linguistic choice is asked 

from the participants, necessitating a linguistic variable. The values of this 

linguistic variable are expressed as linguistic terms. According to Suh et al. 

(2021), the typical estimation of human working memory capacity follows 
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the concept of seven plus minus two score ranges. Therefore, the suitable 

number of comparisons for a human being to judge simultaneously is 

expected to be between five and nine. In this regard, a seven-score linguistic 

choice was selected, covering the words very high, high, mildly high, 

medium, mildly low, low, and very low.  

Step 3. Membership Function Determination: The membership function is the 

function used to relate input linguistic variables to a membership value 

between 0 and 1. In other words, the membership function helps to convert 

input linguistic fuzzy sets to a numeric output fuzzy set at the end of the 

fuzzification process. Since it determines the degree of membership, it is vital 

for fuzzy logic analysis. A membership function needs to be in place for each 

determined linguistic variable. The membership function values can be 

determined from historical data or a detailed questionnaire. Since no 

historical data is available, the membership functions in the study were 

determined with a generic approach instead of using already available 

membership functions in the literature. Accordingly, the extremes of the 

linguistic variables were also asked of the questionnaire responders. Since 

the determined fuzzy number was triangular, responders were asked to fill a 

table for each linguistic variable’s minimum, maximum, and most expected 

values out of ten to fully understand what they meant with their linguistic 

responses to the questions. The collected responses from eleven responders 

are presented in Table 3-7. When the descriptive statistics of data are 

examined, it is observed that the mean, median, and mode values are similar 

for most linguistic variables (Table 3-8). In addition, mean value ± 1.96 

standard deviations can also be estimated to see the 95% confidence interval 

range of the responses. The resultant fuzzy membership function can be 

investigated in Figure 3.5. 
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Table 3-7: Responses for Membership Function  

Responder ID   Linguistic Variable 

  
Very High High Mildly High Medium Mildly Low Low Very Low 

1 Min 8 7 5 4 3 2 1 

 Most Exp. 9 8 6 5 4 3 2 

 Max 10 9 7 6 5 4 3 

2 Min 8 7 5 4 3 2 1 

 Most Exp. 9 8 6 5 4 3 2 

 Max 10 9 7 6 5 5 3 

3 Min 8 7 5 4 3 2 1 

 Most Exp. 9 8 6 5 4 3 2 

 Max 10 9 7 6 5 5 3 

4 Min 8 8 7 5 3 1 1 

 Most Exp. 9 8 7 5 4 2 2 

 Max 10 8 7 6 5 3 3 

5 Min 8 7 6 5 4 3 2 

 Most Exp. 9 8 7 6 5 4 3 

 Max 10 9 8 7 6 5 4 

6 Min 9 8 7 5 4 3 1 

 Most Exp. 9 9 8 7 5 3 2 

 Max 10 9 9 8 7 4 2 

7 Min 9 8 7 5 3 2 1 

 Most Exp. 9 8 7 5 4 3 1 

 Max 10 9 8 5 4 3 2 

8 Min 8 7 5 4 3 2 1 

 Most Exp. 9 8 6 5 4 3 2 

 Max 10 9 7 6 5 4 3 

9 Min 8 7 6 5 4 3 1 

 Most Exp. 9 8 7 6 5 4 2 

 Max 10 9 8 7 6 5 3 

10 Min 8 6 5 4 3 2 1 

 Most Exp. 9 7 6 5 4 3 2 

 Max 10 8 7 6 5 4 3 

11 Min 8 7 6 5 4 3 2 

 Most Exp. 9 8 7 6 5 4 3 

 Max 10 9 7 7 6 5 4 

 

Table 3-8: Descriptive Statistics of Extreme Values of Linguistic Variables 

 

Very High High Mildly High Medium 

Min Most Exp. Max Min Most Exp. Max Min Most Exp. Max Min Most Exp. Max 

Mean 8.2 9.0 10.0 7.2 8.0 8.8 5.8 6.6 7.5 4.5 5.5 6.4 

StDev 0.4 0.0 0.0 0.6 0.4 0.4 0.8 0.6 0.7 0.5 0.7 0.8 

Median 8.0 9.0 10.0 7.0 8.0 9.0 6.0 7.0 7.0 5.0 5.0 6.0 

Mod 8.0 9.0 10.0 7.0 8.0 9.0 5.0 6.0 7.0 5.0 5.0 6.0 

             

 Mildly Low Low Very Low    

 Min Most Exp. Max Min Most Exp. Max Min Most Exp. Max    

Mean 3.4 4.4 5.4 2.3 3.2 4.3 1.2 2.1 3.0    

StDev 0.5 0.5 0.8 0.6 0.6 0.7 0.4 0.5 0.6    

Median 3.0 4.0 5.0 2.0 3.0 4.0 1.0 2.0 3.0    

Mod 3.0 4.0 5.0 2.0 3.0 5.0 1.0 2.0 3.0    
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Figure 3.5: Fuzzy Membership Function of Fuzzy Numbers 

 

Step 4. Fuzzification and Fuzzy Aggregation: As mentioned in the earlier step, the 

membership function helps to convert linguistic variables into fuzzy 

numbers. The ranges in Table 3-9 obtained from the Fuzzy Membership 

Function in Figure 3.5, can be used for transition. 

Table 3-9: Fuzzy Number Conversion Scale 

Linguistic Term Fuzzy Set 

Very High (0.8, 0.9, 1.0) 

High (0.7, 0.8, 0.9) 

Mildly High (0.6, 0.7, 0.7) 

Medium (0.5, 0.5, 0.6) 

Mildly Low (0.3, 0.4, 0.5)  

Low (0.2, 0.3, 0.4) 

Very Low (0.1, 0.2, 0.3) 

 

The extreme values in the table are used regarding the linguistic response of 

the responder first. For example, if there were not any aggregation, the 

answer of VH by a responder would be turned into the fuzzy number of (0.8, 

0.9, 1). However, eleven experts have different linguistic responses for the 
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same uncertainty items, with different weightings in the system. Hence, these 

weightings must be considered as well. Accordingly, the linear opinion pool 

method, one of the most successful and widely used methods, is used 

(Cheliyan and Bhattacharyya, 2018). The method is defined as the following:   

𝑀𝑖 =∑𝐴𝑖𝑗𝑤𝑗

𝑁𝑒

𝑗=1

 for ∀ i=(1,…, N) (3-1) 

 

where N is the number of basic events of the fault tree, Ne is the number of 

experts, wj is the weighting factor of the expert j, Aij is the corresponding 

linguistic expression fuzzy number conversion scale of the ith basic event 

given by jth expert, and Mi is the resultant aggregated triangular fuzzy number 

of the BEi. 

For such aggregation to be achieved, the weighting factors of eleven 

responders must be known before the process. Table 3-10 the weighting of 

each responder calculated in accordance with the Expert Weighting Factors 

stated in Table 3-6. The responder names and profiles are kept anonymous; 

therefore, they are called with unique IDs. 

Table 3-10: Responder Weights 

 

The related weights can be used for fuzzification and fuzzy aggregation.  

 

Step 5. Defuzzification: In a study by Cheliyan and Bhattacharyya (2018), the left 

and the right fuzzy ranking method is used for defuzzification which is the 

method used to convert fuzzy numbers into single crisp output. The left and 

right fuzzy ranking method is one of the most common methods to obtain the 
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possibility scores. In the related study, this single crisp output is called a 

fuzzy possibility score (FPS), representing the possibility of the basic event 

of the fault tree. The left and right utility scores for the trapezoidal fuzzy set 

number of Fn = (a, b, c, d) is expressed as: 

𝐹𝑃𝑆 =
𝜇𝑟 + (1 − 𝜇𝑙) 

2
 where  𝜇𝑙 =

1−𝑎

1+𝑏−𝑎
 and  𝜇𝑟 =

𝑑

1+𝑑−𝑐
 (3-2) 

If the FPS is reformulated for a triangular fuzzy set number of Fn = (a, b, c), 

the following equations can be followed. 

𝐹𝑃𝑆 =
𝜇𝑟 + (1 − 𝜇𝑙) 

2
 where  𝜇𝑙 =

1−𝑎

1+𝑏−𝑎
 and  𝜇𝑟 =

𝑐

1+𝑐−𝑏
 (3-3) 

As a result, with the above formulation, the defuzzification of all basic events 

can be calculated in the form of a fuzzy possibility score as a single crisp 

output. 

Step 6. Conversion of Fuzzy Possibility to Fuzzy Failure Probability: The previously 

calculated FPS can be converted to fuzzy failure probability, P(Xi), using the 

following formula (Cheliyan and Bhattacharyya, 2018): 

𝑃(𝑋) = {

1

10𝑘
  𝑓𝑜𝑟 𝐹𝑃𝑆 ≠ 0

0     𝑓𝑜𝑟 𝐹𝑃𝑆 = 0
 where k =2.301(

1−𝐹𝑃𝑆

𝐹𝑃𝑆
)1/3 (3-4) 

 

Fuzzy failure probabilities of all basic events of the fault tree can be calculated using 

the six steps explained above. Upon the calculation, the prioritization ranking can be 

achieved so that the most contributing basic events to the top event, which is the 

deviation from long-term production plans, can be detected with their contribution 

percentages. The major uncertainty items with their effectiveness levels will be 

evaluated in the discrete event simulation discussed in Section 4.   
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3.3 Construction of the Conventional Fault Tree  

The fuzzy fault tree method was selected as the decision support method to evaluate 

why long-term production plans deviate from short-range plans in metallic surface 

mines. The details of these methods were already discussed in Sections 2.4.3 and 

2.4.4. Two major strengths of these methods are to provide quantitative measures 

and reveal the most contributing events in the failure of the top event. In this sense, 

a conventional FFT was created after deciding on the scope of the questionnaire, as 

discussed in Section 3.2.1. The basic events of the FFT are related to each uncertainty 

item evaluated in the questionnaire.  

Complete fault tree construction requires various steps, such as problem formulation, 

actual construction, evaluation, and interpretation of the result. This section will 

concentrate on the problem formulation and actual construction steps, while the 

evaluation and interpretation steps of the fault tree will be detailed in Section 3.4.2. 

The problem definition of the fault tree accepts that a long-term schedule (all 

strategic decisions) is already available in an open-pit metal mine and is a fixed plan. 

After the long-term plan is already prepared under certain practical assumptions, on 

the short-term scale, the plan is investigated with the aspects where uncertainties 

cause deviations. Therefore, the problem statements that should be responded under 

the scope of the current thesis study when constructing a fault tree are as follows: 

i. What are the branching structure and inter-dependencies of the uncertainties 

leading to deviations from short to long-term production plans? 

ii. How can the occurrence frequencies and severities of these factors be 

evaluated to have a holistic approach to reveal their comparative 

effectiveness on the top event, which is the observable deviations in 

production plans? 

iii. What are the levels of impact of uncertainties on production planning in a 

percentile weight to prioritize the least number of factors with the highest 

effectiveness to be simulated? 
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The top event of the fault tree was defined as the failure of a long-term plan in short-

range (in-place) applications. It is divided into sub-components as geological, 

economic, operational, and external concerns with a dependency on the OR gate 

(Figure 3.6). It means that any of these uncertainty branches can cause the occurrence 

of the top event independently. These branches were in line with the questionnaire 

question groups previously discussed in Section 3.2.1. 

Firstly, geological concerns are further divided into the following basic events: 

failure of i) grade, ii) tonnage, iii) metallurgical parameters, iv) lithology & rock 

type, and v) geotechnical & hydrogeological parameters combined with OR gate 

(Figure 3.7). 

 

Figure 3.6: Top event of the Fault Tree 

 

Figure 3.7: Geological Concerns of Fault Tree 



 

 

 

74 

Second, economic concerns are further divided into basic events of failure of i) 

selling price estimations, ii) cost estimations, and iii) foreign exchange rate 

estimation with a dependency of the OR gate (Figure 3.8). 

 

Figure 3.8: Economical Concerns of Fault Tree 

Third, operational concerns are further divided into basic events related to the 

estimation and expectations failures of i) workforce efficiency, ii) mining equipment 

efficiency, iii) mining equipment availability, iv) equipment allocation, v) weather 

forecasts, vi) mineral processing parameters, vii) unit production cycle activities, and 

viii) corporate communication, connected to the Operational Concern with OR gates 

(Figure 3.9). 

 

Figure 3.9: Operational Concerns of Fault Tree 

Last, external concerns can be classified into basic events of failure of i) community 

relations, ii) permit, legislation & regulation, iii) political stability, iv) force majeure, 
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and v) environment & OHS (HSE: health, safety, and environment), with an 

interdependency of OR gate (Figure 3.10).  

 

Figure 3.10: External Concerns of Fault Tree 

The general look of the FFT is given in Figure 3.11 and the basic events are listed in 

Table 3-11. 

Table 3-11: List of Basic Events of Fault Tree 

 

Basic Even ID, BEi Basic Event 

BE1 Deviation in grade 

BE2 Deviation in tonnage 

BE3 Deviation in metallurgical parameters 

BE4 Deviation in lithology/rock type 

BE5 Deviation in geotechnical and/or hydrogeological parameters 

BE6 Deviation in commodity price 

BE7 Deviation in operation and extraction cost 

BE8 Deviation in foreign exchange rates 

BE9 Deviation in workforce efficiency 

BE10 Deviation in mining equipment efficiency 

BE11 Deviation in mining equipment availability 

BE12 Deviation in the equipment allocation plan 

BE13 Deviation in the weather forecast 

BE14 Deviation in mineral processing parameters and requirements 

BE15 Deviation in unit production cycle activities 

BE16 Deviation in corporate communication efficiency 

BE17 Deviation in community relations 

BE18 Deviation in the permit, legislation, and regulation 

BE19 Deviation in political stability 

BE20 Deviation in force mejaure 

BE21 Deviation in environmental and OHS assumptions 
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Figure 3.11: The General Look of Fault Tree 
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3.4 Integration of Questionnaire Outcomes and Conventional Fault Tree: 

Development of the Fuzzy Fault Tree Analysis 

The questionnaire outcomes are evaluated in Section 3.4.1, while integrating the 

outcomes into the conventional fault tree to develop a fuzzy fault tree for analysis of 

uncertainty prioritization is given in Section 3.4.2. As mentioned previously, the 

quantified uncertainties with their effectiveness levels will be used as stochastic 

variables in the discrete event simulation that will be concentrated in Section 4. 

3.4.1 Evaluation of the Questionnaire Results 

There are six steps to convert linguistic fuzzy terms into fuzzy failure probabilities, 

already defined in Section 3.2.2, so that they can be used for the fuzzy fault tree 

analysis (FFTA). The calculation steps are followed as given below for each basic 

event listed in, Table 3-11. 

Step 1. Weighting Factor Determination: For responders, certain factors are 

determined so that their titles, experiences, and ages can be involved in the 

evaluation process with different weighting factors, as discussed previously 

in Table 3-10. 

Step 2. Fuzzy Number Type and Linguistic Variable Determination: The decided 

fuzzy number type is triangular, Fn={a,b,c}, and the set of linguistic variables 

consist of seven components, L= {very high (VH), high(H), mildly high(MH), 

medium(M), mildly low(ML), low(L), very low(VL) }. 

Step 3.  Membership Function Determination: The membership function is one of 

the most critical items for fuzzy logic analysis. The membership function 

data is obtained from the questionnaire, Table 3-7, and the extremes for the 

seven linguistic variables are provided in Table 3-9 and illustrated in Figure 

3.5. 

Step 4. Fuzzification and Fuzzy Aggregation: By considering the expert weighting 

factors, linguistic response fuzzification is achieved with aggregated fuzzy 
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numbers. The responses of the experts involved in the questionnaire are 

presented in Table 3-12 for each basic event, and calculations are done with 

Equation 3-1. In this regard, the resultant aggregated fuzzy numbers are 

obtained as given in Table 3-13. 

Step 5. Defuzzification: In the defuzzification process, the left and the right fuzzy 

ranking method is decided to be used. In this regard, for the fuzzy numbers 

given in Table 3-13, Equation 3-3 is applied, which resulted in fuzzy 

possibility scores as given in the Table 3-14. 

Step 6. Conversion of Fuzzy Possibility to Fuzzy Failure Probability: The fuzzy 

possibility scores are converted to fuzzy failure probability using Equation 

3-4. The conversion results are provided in Table 3-14 in addition to a 

ranking based on the failure probability scores.  

In the following part, the fuzzy failure probability scores for each basic event are 

used to calculate the failure probability of the top event and execute related analyses.  

Table 3-12: Expert Linguistic Responses for Basic Events of the Study 

 



 

 

 

79 

Table 3-13: Aggregated Fuzzy Numbers of the Study 

 

Table 3-14: Fuzzy Possibility Scores, Fuzzy Failure Probability, and Ranking of 

Basic Events of the Study 

Aggregated Fuzzy Numbers 

BEi Min Most Exp. Max 

1 0.70 0.79 0.87 

2 0.58 0.66 0.75 

3 0.57 0.66 0.75 

4 0.40 0.49 0.58 

5 0.61 0.69 0.79 

6 0.37 0.46 0.55 

7 0.41 0.51 0.60 

8 0.40 0.49 0.59 

9 0.58 0.66 0.75 

10 0.59 0.67 0.76 

11 0.62 0.71 0.80 

12 0.49 0.58 0.67 

13 0.37 0.46 0.56 

14 0.53 0.62 0.71 

15 0.54 0.63 0.72 

16 0.28 0.37 0.47 

17 0.39 0.48 0.57 

18 0.56 0.64 0.74 

19 0.43 0.52 0.61 

20 0.42 0.50 0.60 

21 0.48 0.57 0.66 

 

BEi Aggregated Fuzzy Numbers FPS P(Xi) Rank 

  (a,b,c)       

1 (0.70, 0.79, 0.87) 0.7649 0.0280 1 

2 (0.58, 0.66, 0.75) 0.6509 0.0135 5 

3 (0.57, 0.66, 0.75) 0.6472 0.0132 7 

4 (0.40, 0.49, 0.58) 0.4887 0.0046 17 

5 (0.61, 0.69, 0.79) 0.6802 0.0162 3 

6 (0.37, 0.46, 0.55) 0.4641 0.0039 20 

7 (0.41, 0.51, 0.60) 0.5074 0.0053 14 

8 (0.40, 0.49, 0.59) 0.4919 0.0047 16 

9 (0.58, 0.66, 0.75) 0.6499 0.0134 6 

10 (0.59, 0.67, 0.76) 0.6590 0.0142 4 

11 (0.62, 0.71, 0.80) 0.6941 0.0177 2 

12 (0.49, 0.58, 0.67) 0.5719 0.0081 11 

13 (0.37, 0.46, 0.56) 0.4670 0.0039 19 

14 (0.53, 0.62, 0.71) 0.6095 0.0104 10 

15 (0.54, 0.63, 0.72) 0.6196 0.0111 9 

16 (0.28, 0.37, 0.47) 0.3853 0.0020 21 

17 (0.39, 0.48, 0.57) 0.4780 0.0043 18 

18 (0.56, 0.64, 0.74) 0.6342 0.0121 8 

19 (0.43, 0.52, 0.61) 0.5191 0.0057 13 

20 (0.42, 0.50, 0.60) 0.5054 0.0052 15 

21 (0.48, 0.57, 0.66) 0.5645 0.0078 12 
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3.4.2 Evaluation of the Fault Tree Analysis Results 

The conventional fault tree constructed in Section 3.3 and illustrated in Figure 3.11 

covers 21 basic events with OR-gate dependency. Therefore, probabilities of the four 

different branches of the Top Event and their basic events can be multiplied as given 

in Equation 3-5 to find out the probability of occurrent of the Top Event, which refers 

to the occurrence probability of the deviation from long-term production plans in 

short-range (in-place) application. 

D1=PFailure of Grade*PFailure of Tonnage*PFailure of Metallurgical Parameters*PFailure of Lithology & Rock 

Type*PFailure of Geotech & Hydrogeological Parameters                

D2=PFailure of Selling Price Estimations*PFailure of Foreign Exchange Rate Estimation*PFailure of Cost Estimations 

D3=PFailure of Workforce Efficiency Estimation*PFailure of Mining Equip. Availability Estimation*PFailure of 

Equipment Allocation*PFailure of Mining Equipment Efficiency Estimation*PFailure of Weather Forecasts*PFailure of 

Mineral Processing Parameters*PFailure of Unit Production Cycle Activities*PFailure of Corporate Communication 

D4=PFailure of Community Relations*PFailure of Political Stability*PFailure of Force Majeure*PFailure of Permit, 

Legislation & Regulation*PFailure of Environment & OHS Assumptions 

PSystem= D1*D2*D3*D4                                                                   (3-5) 
 

As an alternative and more generic way of calculating the top event failure 

probability, P(T), of a system consisting of AND and OR logic gates is the following: 

P(T) = {
  Πi=1

N P(Xi)   for ANG gate

1 − Πi=1
N {1 − P(Xi)}   for OR gate

 
where N is the 

number of BEs 
(3-6) 

In the constructed fault tree, the OR gate is used; hence the OR gate function of 

Equation 3-6 is active. The calculated fuzzy failure probability scores are inputted 

into the equation, and the failure probability of the top event and sub-events are 

calculated as tabulated in Table 3-15. 
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Table 3-15: The Failure Probability of the Top Event And Sub-events 

Event Explanation Failure Probability 

  Sub-Events   

D1 Failure in Geological Concerns 0.0734 

D2 Failure in Economical Concerns 0.0138 

D3 Failure in Operational Concerns 0.0782 

D4 Failure in External Concerns 0.0346  
Top Event 

 

Psystem Failure of Long-term Plans 0.1869 

 

It was stated that the ultimate goal of the FFTA is determining the most influential 

uncertainty items. In other words, in addition to the top event failure probability 

calculation, found as 0.1869, the effect of the basic event failure on the system failure 

should also be investigated. In this way, events that contribute to the failure of the 

top event can be determined and ranked.  

A ranking list of the basic events was provided in Table 3-14 according to the fuzzy 

probability scores. These ranks consider the failure rates of the events. However, the 

consideration should be made based on the system manner, where the effect of the 

event failure on the system failure should also be considered. Therefore, the 

following equation is used to calculate the failure criticality index (FCI), which is a 

relative index showing the percentage of times that a failure of a component caused 

a system failure: 

FCI𝑗 =
Number of System Downing Failures (NSDF) by Comp. j

Number of Failures (NF)
 (3-7) 

where NSDF is the number of times a component’s downtime causes the overall 

system downtime, and NF is the total number of system downs. In this sense, the 

calculations are conducted for each sub-event and basic event to see their effect on 

the system failure behavior. The rankings of the uncertainty items (basic events) 

according to both failure criticality index (FCI) and Fuzzy Probability (FP) scores 

are presented in Table 3-16, Figure 3.12, and Figure 3.13.  
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Figure 3.12: Treemap of Basic Event FCI 

Table 3-16: Failure Criticality Index for Each Sub-Event and Basic Event 

Event Explanation 
FCI, 

% 

FCI 

Based 

Rank 

FP 

Based 

Rank  

Subevents 

D1 Failure in Geological Concerns 37.38 - - 

D2 Failure in Economical Concerns 6.57 - - 

D3 Failure in Operational Concerns 39.22 - - 

D4 Failure in External Concerns 16.82 - - 

Basic Events 

BE1 Deviation in grade 13.82 1 1 

BE2 Deviation in tonnage 6.30 6 5 

BE3 Deviation in metallurgical parameters 7.52 4 7 

BE4 Deviation in lithology/rock type 2.01 19 17 

BE5 Deviation in geotechnical and/or hydrogeological parameters 7.74 3 3 

BE6 Deviation in commodity price 2.01 20 20 

BE7 Deviation in operation and extraction cost 2.45 15 14 

BE8 Deviation in foreign exchange rates 2.12 18 16 

BE9 Deviation in workforce efficiency 6.07 7 6 

BE10 Deviation in mining equipment efficiency 7.47 5 4 

BE11 Deviation in mining equipment availability 8.52 2 2 

BE12 Deviation in the equipment allocation plan 4.79 10 11 

BE13 Deviation in the weather forecast 2.23 17 19 

BE14 Deviation in mineral processing parameters and requirements 5.01 8 10 

BE15 Deviation in unit production cycle activities 4.57 11 9 

BE16 Deviation in corporate communication efficiency 0.56 21 21 

BE17 Deviation in community relations 2.34 16 18 

BE18 Deviation in the permit, legislation, and regulation 5.01 9 8 

BE19 Deviation in political stability 2.84 13 13 

BE20 Deviation in force mejaure 2.67 14 15 

BE21 Deviation in environmental and OHS assumptions 3.96 12 12 
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Figure 3.13: Pie Chart of Sub-Event FCI 

As observed from Figure 3.12, deviation in production plans that was stated as the 

Top Event in the fault tree is expected to occur due to grade variability by 14 percent, 

with the highest priority. In second place in both rankings, mining equipment 

availability is observed with nearly 9% criticality. These two uncertainties alone can 

cause a deviation in the long-term plans by nearly 23%, which is about one-fourth 

and considerably high. Additionally, deviations in geotechnical & hydrological, and 

metallurgical parameters are the sources of nearly 15% of the deviation. As the fifth 

and sixth critical basic events, mining equipment efficiency, and tonnage deviations 

take up nearly another 14%. More than 50% of the uncertainties can be explained 

with the explanation and consideration of these six events. Alternatively, it is seen 

that the geological, operational, and external concerns cover more than 93% of the 

uncertainties, Figure 3.13. Therefore, it can be concluded that uncertainty in long-

term plans is mainly caused by geological, operational, and external factors, and they 

should be addressed attentively in the planning phase. It is observed that time, 

economic and human resources related to mine planning should be allocated to solve 

the uncertainties of geological, operational, and external factors rather than 

concentrating on the other risk factors of economic concerns since economic factors, 

as a result of the conducted FFTA, are found the least criticality with nearly only 7% 
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FCI value, meaning that only 7 out of 100 production deviations are due to economic 

concerns. Because economic parameters in the long-term planning phase are 

generally included conservatively, and any cut-off grade change throughout the 

planned year is not expected in general. Anyway, the cut-off estimations can be 

renewed in the long-term production planning stages of the new production years 

and generally kept stable through the relevant year. 

In the development of the discrete event simulation (DES) model in Section 4, 

implementation of the geological uncertainties, Basic Events from 1 to 5, can be 

prioritized. Deviation in grade, tonnage, and metallurgical parameters, BE1 to 3, 

directly affect the production rates and/or the total metal amount. Grade deviation 

and metallurgical parameters deviation factors can be assigned in the DES per block 

randomly, while tonnage uncertainty can be implemented to the model by random 

assignment of specific gravity over distributions to determine the block tonnage. 

Deviation in lithology and geotechnical and/or hydrogeological parameters, BE4 and 

5, affect the structural safety and mineral processing performance. These parameters’ 

deviation factors can also be assigned in the DES blockwise. In the end, when all of 

these geological items are included in the model, nearly 37% of the failure sources 

can be identified using DES. 

Secondly, operational factors can also be implemented in the DES practically. When 

the basic events covering operational concerns, from BE9 to BE16, are considered, 

it is seen that all events are related to the mine production/output other than the BE14, 

deviation in mineral processing parameters and requirements. Therefore, BE14 can 

be jointly regarded with the earlier given mineral processing performance, BE3. The 

rest of the items can be summarized under three main headings: deviation in 

workforce efficiency, BE9 and BE16; deviation in mining equipment efficiency, 

BE10, 12, 13, and 15; and deviation in mining equipment availability, BE11. In this 

way, the efficiency concept is divided into two for workforce and equipment, while 

availability is presented for the equipment. These three factors can be used to 

determine the normalized production rates which are affected by uncertainty items 

in each cycle as a result of increased cycle times and/or decreased output per cycle. 
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For instance, let us assume that a mine is considering 320 days of operating time in 

a year and 21 working hours per day. The excavators will be available throughout 

this operating period with a pre-estimated cycle time. In that case, a total operating 

time of 6,720 hours should be achieved with 8,960 cycles/shovel and a total output 

of 89,600 tonnes, assuming 45 seconds of cycle time and 10 tonnes/cycle production. 

However, due to mismanagement or lack of proper planning that can be classified 

by uncertainties listed from BE9 to BE 16, either normalized cycle time is extended, 

leading to a drastic drop in the number of cycles like 8,064 cycles/shovel for the 

cycle time of 50 seconds or normalized output of the system per cycle is dropped by 

a reduction in the production per cycle like 71,680 tonnes of total output for 8 

tonnes/cycle for one year period. Therefore, if the operational uncertainty factors can 

be included in the DES, nearly 39% of the uncertainties can be explained.  

Last, the external factors (BE17 to BE21) have a high potential to be implemented 

in the DES. These events can occur independently of each other, and the occurrence 

of one does not affect the occurrence of the other; however, any external factor can 

interrupt production majorly in case of their existence.  

In brief, using FFTA, the failure probability of the top event and the most effective 

basic event are presented in the current section. The effect of each item’s failure on 

the top event is investigated, and further recommendations are made for their usage 

in developing a DES model. To accumulate more than one basic event and use them 

jointly, weighting their contribution to the joint item can be achieved using the FCI 

values. The joint interactions of the relevant basic events can be viewed in Table 

3-17. These joint interactions will also be benefitted in the DES model for better 

applicability of the simulation model by combining basic events with similar sources 

of uncertainties and/or operational consequences under particular DES Items. 
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Table 3-17: Grouping of BE for DES 

 

 

 

 

 

DES Item Number Basic Event Numer FCI, % Rank

DES1 Grade Based Uncertainty 13.82 2

BE1 Deviation in grade 13.82

DES2 Tonnage Based Uncertainty 6.30 7

BE2 Deviation in tonnage 6.30

DES3 Mineral Processing Uncertainty 12.53 3

BE3 Deviation in metallurgical parameters 7.52

BE14 Deviation in mineral processing parameters and requirements 5.01

DES4 Structural Uncertainty 9.75 4

BE4 Deviation in lithology/rock type 2.01

BE5 Deviation in geotechnical and/or hydrogeological parameters 7.74

DES5 Workforce Efficiency Uncertainty 6.63 6

BE9 Deviation in workforce efficiency 6.07

BE16 Deviation in corporate communication efficiency 0.56

DES6 Mining Equipment Efficiency Uncertainty 19.05 1

BE10 Deviation in mining equipment efficiency 7.47

BE12 Deviation in the equipment allocation plan 4.79

BE13 Deviation in the weather forecast 2.23

BE15 Deviation in unit production cycle activities 4.57

DES7 Mining Equipment Availability Uncertainty 8.52 5

BE11 Deviation in mining equipment availability 8.52

DES8 Community Relations Uncertainty 2.34 12

BE17 Deviation in community relations 2.34

DES9 Permit, Legislation, and Regulation Uncertainty 5.01 8

BE18 Deviation in the permit, legislation, and regulation 5.01

DES10 Political Stability Uncertainty 2.84 10

BE19 Deviation in political stability 2.84

DES11 Force Mejaure Uncertainty 2.67 11

BE20 Deviation in force mejaure 2.67

DES12 Environment and OHS Uncertainty 3.96 9

BE21 Deviation in environmental and OHS assumptions 3.96

Explanation
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CHAPTER 4  

4 DEVELOPMENT AND IMPLEMENTATION OF A SIMULATION-BASED 

UNCERTAINTY QUANTIFICATION MODEL  

4.1 Development of the Simulation Algorithm 

To navigate day-to-day productions in operating mines, mine plans with different 

detail levels are employed to catch operational targets. Specific inputs are used to 

constitute plans, and outputs of these plans are generally production performance 

indicators of a mine as tonnage and grade for different material types. These values 

are calculated with the aid of inputs coming from quantitative data, assumptions, and 

subjective perspectives. Ultimately, such assumptions, quantitative and qualitative 

data with expert opinions jointly produce production indicators. Since surface metal 

mining operations with a truck-shovel haulage system consist of sequential and 

recursive cyclic events, discrete event simulation is a good candidate for modeling 

such stochastic operations, as discussed in detail in Section 2.5 so as to analyze 

deviations of production plans stochastically (under uncertainty) and iteratively 

(with all possible combinational scenarios). The main goal of the simulation will be 

to give quantified factors/indicators of a long-term plan by considering short-term 

events and uncertainties associated with the resolutions of the plan to the decision-

makers. In this regard, a discrete event simulation algorithm is developed to show 

the effect of contributing factors on normalized production performance indicators, 

the tonnage of production, and metal throughput, in each truck cycle. In Section 3, 

the uncertainty items were categorized and analyzed using FFTA under geological, 

operational, external, and economic groups. The categories excluding economic 

factors were highly recommended to be used in the DES. Economic factors are not 

recommended to be included in the simulation model since their conservative 

estimations and the resultant cut-off grade values are recursively included in the 
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long-term planning of each year and kept stable through the related production year 

in general. Although related reasons were already discussed in Section 3.4.2, it is 

good to emphasize that each uncertainty-causing factor’s operational detectability 

and measurability levels are considered for model integrity and applicability. Based 

on the survey results, it is found that economic concerns (deviations in commodity 

price, operation and extraction costs, and foreign exchange rates) are not effective in 

the short-term time scale for a plan deviation and are not detectable. Therefore, 

geological, operational, and external concerns are the primary uncertainty sources in 

the model within the groups given in Table 3-17, and are considered to cover more 

than 93% of the uncertainties on a long-term plan based on their failure criticality 

index, FCI, %.  

Before introducing the model’s computational steps, it is decided to introduce 

parameters, sets, and variables to be used in the model with the system's boundary. 

Afterward, algorithm logic will be given to increase awareness about the model. In 

addition to the logic, the details of the model computational steps will be mentioned. 

The last part will give step-by-step algorithm implementation in a discrete event 

simulation software (Rockwell Arena). 

The model starts with introducing information about sets/parameters, probability 

density functions, and variables to be used in the model. For this purpose, two 

different tables are constructed with related explanations. Table 4-1 details the 

model's variables and probability distribution functions (PDF), while Table 4-2 

provides sets/parameters not changed over the computational time. Parameters and 

sets are defined as deterministic values. On the other hand, variable values are over-

written during computation, and their values change in time whenever any related 

process is triggered. PDFs are used to generate random values for the uncertainty 

items and contribute to the stochastic environment of the model. 
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Table 4-1: Variables and PDFs Used in the Simulation Algorithm 

Variable/PDF Description 

Di The PDF of the density for the ith block (Triangular Distribution (TRD)) 

GVFi The PDF of the grade variance factor for the ith block (TRD) 

MPi The PDF of the mineral processing-related deviation factor for the ith block (TRD)  

SUi The PDF of the structural uncertainty-related deviation factor for the ith block (TRD) 

OBCt Total produced ore block count at time t 

TOHt Total hauled ore tonnage at time t 

WBCt Total produced waste block count at time t 

TWHt Total hauled waste tonnage at time t 

BTi Calculated block tonnage of the ith block where BTi = DXi * DYi * DZi * Di 

LCi
t Total loads delivered to the crusher or to the waste dump from the ith block at time t 

CTi
 The PDF of the cycle time of shovel (loading time) assigned for the ith block (TRD) 

TCi The PDF of the truck capacity determined for the production of the ith block (TRD)  

WEi The PDF of the workforce efficiency factor for the ith block (TRD) 

MEEi The PDF of the mining equipment efficiency factor for the ith block (TRD) 

MEAi The PDF of the mining equipment availability factor for the ith block (TRD) 

HBTi
t Total hauled block tonnage of the ith block at time t where HBTi

t = HBTi
t-1+(TCi*WEi*MEEi*MEAi) 

RBTi
t The remaining block tonnage of the ith block at time t where RBTi

t = BTi - HBTi
t 

STi The loading start time of the ith block 

FTi The loading finish time of the ith block 

SE The start time of downtime due to an external event(s) occurrence 

FE The end time of downtime due to an external event(s) occurrence 

TTFj Time to Failure for external factors occurrences (TRD) (j={ 1, …, 5}) 

             j=1 represents community relations 

             j=2 represents permit, legislation, and regulation 

             j=3 represents political stability 

             j=4 represents force mejaures 

             j=5 represents environment and OHS 

TTRj Time to Recover for external factors occurrences (TRD) (j= {1, …, 5}) 

             j=1 represents community relations 

             j=2 represents permit, legislation, and regulation 

             j=3 represents political stability 

             j=4 represents force mejaures 

             j=5 represents environment and OHS 
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Table 4-2: Set and Parameters Used in the Simulation Algorithm 

Set/Parameter Description 

IDi Block ID of the ith block 

DXi X dimension of the ith block 

DYi Y dimension of the ith block 

DZi Z dimension of the ith block 

MTYi The material type of the ith block (ore or waste) 

Gi The grade of the ith block 

 

The simulation system boundary is determined with the following assumptions: 

- The model is designed for surface metal mines with a shovel-truck haulage 

system, 

- Block Model (BM) input deviation factors are assigned for each block 

individually, 

- The block tonnage and truck output are assigned randomly, 

- The majority of the 21 basic events are joined by considering the FCI factors, 

- Operational factors are considered to have a normalized effect on the 

production performance indicators, and the uncertainty factors are assigned 

for each block separately, 

- Input block IDs are given according to their production sequence, 

- Active block production should first be completed before passing to the 

sequential block. In compliance with the practical applications in mines, the 

last load less than the truck capacity is also hauled individually without 

mixing it with the sequential block, even if the remaining tonnage is small, 

- Block Model and operation based variables are assumed to realize 

continuously during the operation, so their values are assigned per block,  

- External basic events are assumed to be independent of each other. Therefore, 

their occurrence frequencies do not affect each other. 
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After drawing the simulation boundary, the simulation algorithm logic can be 

constructed. The general framework of the simulation algorithm is given in Figure 

4.1. 

 

Figure 4.1: The Algorithm Logic Employed in the Simulation Model 

Implementation of the logic flow illustrated in Figure 4.1 is performed in a discrete 

event simulation environment. The developed model will be at a macroscopic scale 

regarding equipment interactions (entity: truck and source: shovel) with each other. 

For example, instead of concentrating on the dumping, spotting, queuing, loading, 

and traveling times for a cycle by evaluating the behaviors of each piece of 

equipment at each position, the total simulation time is increased with the amount of 

cycle time of the shovel (loading time) without concentrating on equipment side in 

each state. In other words, the behavior of the overall system of a mine, including 

external and internal factors and their effect on production, is considered in the 

model. 
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The model introduces the following items as the input data into the system: 

- Block model (BM) information, variance factors of BM data, and production 

sequence (Block ID in a sequential manner, material type information, x, y, 

and z dimensions of the block, density of the block in triangular distribution 

form, BM grade of the block, and variance factors of grade, mineral 

processing, and structural in triangular distribution form), 

- Operational variance factors (workforce efficiency, mining equipment 

efficiency, availability) in triangular distribution form, 

- Truck capacity and shovel cycle time (loading time) in triangular distribution 

form for each block,  

- TTFj and TTRj variable factors for five external factors in triangular 

distribution form. 

Considering the model components discussed in Table 4-1and Table 4-2 and the 

general framework illustrated in Figure 4.1, the algorithm steps are summarized as 

follows: 

i. The model starts with the creation of the entity that is truck in this model, 

meaning that the truck is the unit traveling in the system, being affected 

by the changes in the system, and its state is changed, 

ii. As the second step, initial assignments are achieved. First, blocks’ 

properties are introduced into the system by assigning the related 

operational factors of that block. Additionally, occurrence intervals of the 

external events and their effective durations on production (TTF and 

TTR) are generated randomly for the first time.  

iii. At the end of the second step, the entity can start the operation by 

reducing tonnes from the block tonnage in each cycle by hauling material 

from the block to either the crusher or the waste dump. To determine the 

destination, material type separation is achieved in the system. The logic 

of these two sub-modules is the same, but if the entity enters the waste 
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sub-module, waste counters in the system are increased, whereas ore 

counters are increased if the entity activates the ore sub-module. Since 

these two modules have similar functionality but different purposes, only 

the ore sub-module will be discussed later. 

iv. The classified block is then started to be hauled. A remaining tonnage of 

the block check station is used right after material type separation to 

check whether the block tonnage is reached.  

v. If the remaining block tonnage is greater than zero, hauled block tonnage 

and load count variables are increased (HBTi
t and LCi

t). The hauled block 

tonnage is increased with the normalized output calculated for that block 

(TCi * WEi *MEEi * MEAi), and the ore load count is increased by one. 

The remaining block tonnage (RBTi
t) is also calculated for the following 

tonnage check.  

However, when the remaining block tonnage is equal to zero, total hauled 

ore tonnage and block count (OBCt and TOHt) are increased with the 

block tonnage being produced and by one, respectively. After these 

updates, block-based production figures, uncertainty factors, operational 

variables, and block production start and end times are stored. Following 

this, block id is increased by one to switch the following block, and the 

simulation returns to step iii.  

vi. Upon hauled block tonnage and load count increments, the simulation 

time needs to be increased with the loading time assigned from a 

triangular distribution for the block, so the simulation time increaments 

are achieved following the tonnage increament. 

vii. Since the model proceeds discretely, external events’ TTF values are 

examined at the end of each loading time to check if an external 

downtime occurs in the system. Accordingly, the minimum of the five 

external factors’ TTF values is assigned to a variable as the earliest 

external event occurrence, and the simulation clock is examined after 
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each cycle against this variable. The examination is achieved by checking 

whether the minTTF is less than or equal to the simulation clock. The 

system continues with the material type check if the external factor query 

is false. However, if it is true, the external factor module is activated. 

viii. When the external factor module is activated, the entity comes to the first 

checkpoint to detect which type of external factor failure occurred. Then, 

the entity follows the signal point that verifies the failure. Upon 

verification, SE and FE variables representing the start and end times of 

the downtime caused by this external factor are assigned. SE is assigned 

to the TTF of the verified external factor, while FE is assigned to the 

summation of TTF and TTR values. Since the failure of the external 

factor verified is achieved, new TTF and TTR value re-assignments are 

also achieved.  

ix.  After SE and FE assignment, before delaying simulation time, also other 

external factors’ TTF values are checked. The purpose is to catch if there 

is another failure within the period of the TTR. To illustrate the situation, 

an extreme case is presented in Figure 4.2. As observed in the figure, 

political stability fails with the min TTF value, so SE=80 hrs and FE=130 

hrs values with an expected system downtime of 50 hrs are assigned. 

However, within this duration, community relations, permits, legislation, 

regulation, and force majeure factors also failed. Since the political 

stability failure cannot happen earlier, the initial SE is not changed, but 

the FE value should be updated with the value coming from the latest-

ending force majeure. Ultimately, SE=80 hrs and FE=150 hrs values are 

the final values, and the expected simulation downtime is 70 hrs. Due to 

these conditions, another checkpoint is introduced to the system, which 

checks if FE is greater than or equal to the TTFj for external factors other 

than the one with the min TTF value. If the query holds, FE is updated 

with the summation of the TTF and TTR values of the external factors if 

the FE is less than that summation; if not, FE is not changed. TTF and 
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TTR values are re-assigned for the ones holding the FE greater than or 

equal to the TTFj condition at the end of the check for the other external 

factors. 

x. The last piece of the external factor module is updating the simulation 

time. The simulation time is increased with the difference between the 

start time and end time of the downtime caused by external factors (FE-

SE). After this update, SE and FE values are reset, and the simulation 

continues with item iii. 

 

Figure 4.2: Illustration of How External Factor Module Works 

At this point, the implementation of the algorithm in the Rockwell Arena software 

environment will be introduced briefly. Arena software is a simulation package built 

on SIMAN general-purpose simulation language. Using a general-purpose 

simulation language provides various advantages, including reduced programming 

effort and time, a user-friendly interface, acceptance from the authorities, and 

flexibility. Flowcharts and data modules are used to simulate a DES model in Arena. 
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Flowchart modules are objects in the model window to describe the simulation 

process. In contrast, data modules are the set of objectives in the spreadsheet view 

of the model that defines the characteristics of various process elements, such as 

resources and queues (Automation, 2004). The widely used flowchart and data 

modules are given in Table 4-3and Table 4-4 with their explanations and usage in 

this study. 

Table 4-3: Commonly used Flow Chart Modules of Arena 

Flowchart 

Module 
Name Explanations Usage 

 

Create Entities are created 

with either a schedule 

or a constant time  

To create truck entities 

 

Process The processing method 

in the simulation. 

Allows seize, delay, 

and release 

To delay the simulation 

time 

 

Decide Allows decision-

making based on one or 

more query 

To separate material, 

check remaining 

tonnage, simulation 

time, and external 

factors occurrence 

 

Assign Used for assigning new 

values to variables, 

entity attributes, and 

types 

To manipulate variable 

values 

 

Read Write Used for reading from 

an input file and 

writing to an output file 

To read data from the 

input file and print 

output to an output file 
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Table 4-4: Commonly used Data Modules of Arena 

Data Modules Name Explanations Usage 

 

Entity Used to define entity types 

that move in the system and 

change state 

To define truck entities 

 

Variable Used to define a variable’s 

dimension and initial value 

To define variables 

 

Expression Used to define expressions 

and their associated values. An 

expression value can be in the 

form of integers or statistical 

distributions. 

To define sets in the 

distribution form 

 

File Used to access external files 

with the use of the Read-write 

module. 

To in/out input/output 

files 

 

The model in the Arena can be divided into two main modules. The first is the 

haulage module, and the second is the external factors module. Figure 4.3, presents 

the complete module; however, since the external factors module has multiple flow 

chart modules, a partial section of this module is presented in Figure 4.4 for external 

factors. 

 

Figure 4.3: Haulage Module in Arena 
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Figure 4.4: External Factor Module in Arena 

As indicated in the model step (i) and illustrated in Figure 4.1, and Figure 4.3, the 

simulation starts with the creating the hauling truck entity. Upon creation, initial 

values of external factors’ TTF and TTR are assigned randomly in addition to the 

input of block model data and operational parameters for the block under 

investigation (Figure 4.5). In addition, distinguishment among the material type is 

achieved after initial assignments. 

 

Figure 4.5: Entity Generation and Initial Assignments 
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According to the material separation, two paths are available: ore and waste (Figure 

4.6). Although both paths have similar functionalities, ore haulage parameters are 

updated in the ore path, whereas waste parameters are updated if the waste path is 

activated. Both paths start with checking the remaining tonnage of the block. If the 

remaining block tonnage is more than zero, the operation proceeds; if not, it is 

understood that the total block is mined, and related information about the block is 

written to the output file. After the remaining load check, the last load check is 

performed to see if the cycle will be completed with an under-capacity truck. In this 

part, increments of the hauled block tonnage indicators (tonnage and metal amount) 

are achieved, and a delay of simulation time is reached. Upon delay, a minimum of 

five external factors TTF values are assigned to a variable. If an external event does 

not occur, then the hauling operation continues. 

 

Figure 4.6: Material Type Separation in Arena 

To activate the external factor module, min TTF must be last than or equal to the 

current simulation time. Details of the model are well defined in Figure 4.1, model 

steps (vii), (viii), (ix), an (x), and Figure 4.2. According to the given steps, the 

module is created in the Arena, as shown in Figure 4.7. This figure illustrates the 

Community relations sub-module alone. A similar process is also repeated for the 

remaining four external factors. At the end, downtime start and end times are 
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determined, related external factors’ TTF and TTR values are updated, and the 

simulation time is delayed with the difference between downtime start and end times. 

 

Figure 4.7: External Factors Initiation and Representation for Community 

Relations Failure 

4.2 A Case Study of the Simulation Algorithm 

Section 4.1 gives the parameters, sets, and variables of the algorithm, the system's 

boundary, stepwise DES algorithm logic, and algorithm construction in Arena. An 

implementation of the algorithm will be performed in the current section. First, the 

model input data will be discussed. Second, a case study will be presented to 

facilitate an understanding of the simulation model’s use by computing two cases: 

The first case is deterministic representing long-term schedule while the second case 

is stochastic representing short-term production schedule.  

In the design phase of the survey and DES model, the logic was to create a generic 

study that different parties can use in a wide variety of areas in mine planning. In the 

survey preparation process, the attandees who have experiences in different mining 

corporates and operations worldwide are selected to diversify results. In this way, 

obtained survey results can be used as input in a generic model in case of the absence 

of datasets particular to a mining site. 
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As mentioned in Section 3.2, three types of questions, one of them is linguistic 

(qualitative) and two are quantitative, are asked for each uncertainty item. The survey 

results of the quantitative questions (frequency and severity of the items) for 11 

responders are presented for 21 basic events in Table 4-5. The values are calculated 

based on the weighting factors of 11 experts (Table 3-10) and their survey responses, 

as discussed in Section 3.4.1. 

Table 4-5: Weighted Survey Responses of Basic Events Data 

 

Table 4-5 consists of two general groups of triangular distribution data. The first 

group consists of days passed for a failure to occur for a basic event (frequency, i.e. 

time to failure - TTF) (Figure 4.8). The second group of the obtained data is the 

percent deviations of long-term plans when the deviation in the short term is 

observed due to the determined 21 basic events. The purpose of this group is to 

quantify the severity of the plan deviation (time to repair - TTR) (Figure 4.9). 
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Figure 4.8: Survey Results of Days for a Failure (Frequency, TTF) 
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Figure 4.9: Survey Results of Percent Deviations in Plan Failure (Severity, TTR) 
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The ultimate goal of the simulation model was to include all factors that affect the 

plan failure to the model; however, due to the reasons detailed in Section 3.4.2, 

economic concerns are not included in the model. Additionally, some similar basic 

events are joined under single items for practicality. To group such items, FCI values 

of each basic event are recommended to be used. In this sense, DESj items are formed 

out of basic events, BEi, by using their FCI values as the weighting factor (Table 

4-6). The data is given in triangular distribution form under two groups as frequency 

and severity in Figure 4.10 and Figure 4.11, respectively. 

Table 4-6: Collected and Weighted Survey Results for the DES Input Data 

 

For the DESj from 1 to 7, grade-based, tonnage-based, mineral processing, structural, 

workforce efficiency, mining equipment, efficiency and availability uncertainties, 

the day values (frequencies) are not used in the simulation model discretely,. Rather, 

these uncertainties are considered to occur continuously over the mining operation 

period. Therefore, their values are assigned to each block without considering their 

frequency values from the survey results presented in Table 4-6. The frequency 

values are also presented for future usage. 

As mentioned earlier, the generic values of basic event frequencies and their 

percentile effects on production and final throughput, given in Table 4-5 and Table 

4-6, can be used for any mine in case of the absence of site-specific data. The current 
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case study from a gold mine located in Türkiye uses some of the survey outcomes 

and site-specific information jointly. 

 

Figure 4.10: DES Days for a Failure (Frequency) 

 

Figure 4.11: DES Percent Deviations in Plan Failure (Severity) 
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TTF and TTR values of the External Events between DES IDs of 8 and 12 are 

updated considering site-specific information, while the remaining DES IDs are 

taken from the survey results, as shown in Table 4-7. Additionally, frequency and 

severity distributions of the site-specific are also presented in Figure 4.12 and Figure 

4.13, indicating with dashed lines. 

Table 4-7: Survey Results Combined with Field Data for the DES Input Data 

 

 

Figure 4.12: The Case Study DES Days for a Failure (Frequency) 
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Figure 4.13: The Case Study DES Percent Deviations in Plan Failure (Severity) 

Besides the survey results, the DES model's remaining inputs are taken from long-

term schedule outputs. For the open pit gold mine block model, a representative case 

was assumed for a year of planned production, as given in Figure 4.14. 

 

Figure 4.14: A representative Open Pit Gold Mine 

Additional assumptions and inputs are presented in  

Table 4-8 for the deterministic case that represents the prepared plan by the long-

term planning department. The results are obtained at the end of the deterministic 

run of the simulation model. 
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Before running the model, the output was calculated manually from the scheduled 

1,215 blocks for a year, as shown below. After calculations, the model is first 

computed with deterministic inputs for verification. Model outputs are compared 

with the manually calculated values. When two results are compared, it is seen that 

hauled tonnage, ore tonnage, grade, and metal content are identical. The long-term 

schedule is obtained at the end of the run, which will be compared with the 

stochastically produced schedule in the following parts. The model is assumed to be 

verified since the results align with manual calculations. 

- # of cycles/year: 415,800/4.5 = 92,400 

- Hauled tonnage per cycle: 45 tonnes 

- Hauled tonnage per year: 45*92,400*0.9*0.9*0.9 = 3,031,182 tonnes 

- Hauled ore tonnes and grade = 2,177,500 tonnes at 6.90 ppm 

- Total metal with 90% plant recovery =  434,558 ounces 

Second, a stochastic case was computed to validate and see the model's performance 

with the inputs presented in Table 4-9 with involved short-term uncertainties. The 

simulation is replicated by 40 runs with a computational time of nearly 48 hours. The 

results of the replication are shown in Table 4-10. Variations in the simulation results 

are evaluated to ensure that number of runs gives representative results.  Normalized 

average values of the annual production amounts after the runs are expected to be 

flattened after a while. As observed from Figure 4.15, the normalized results are 

almost flattened after the 35th run. Therefore, it is decided that 40 replications of the 

case will offer representative results. The results reveal that 1,215 blocks are planned 

to be produced in the long-term plans; however, only an average of 1,041 blocks can 

be produced in the field. It means that production targets will deviate at short-range 

if the long-range plan is not updated with interim forecasts. However, it should be 

noted that such updates will also affect the life of mine (LOM) schedules. Therefore, 

for the related year, the results can be assumed to give the worst-case scenario where 

the deviations are not reduced by interim forecasts and the plan changes to satisfy 

the targeted total production and metal throughput at the end of the year.  
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Table 4-8: Deterministic Case Inputs 

 

Table 4-9: Stochastic Case Inputs 
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Figure 4.15: Variation in the Simulation Replications 

Table 4-10: Results of Stochastic Simulation Run for Total Material 
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Since the short-term case is created with stochastic inputs, varied results are obtained 

in the simulation replication results. Therefore, instead of giving a single 

deterministic value, the results are fitten into distributions. Accordingly, the total 

annual production distribution is provided in Figure 4.16. It is observed that the data 

normally distributes nearly with a mean of 2.6M tonnes and a standard deviation of 

0.2M tonnes.  

 

Figure 4.16: Total Annual Production Statistics of the Stochastic Case 

In addition, the same examination was conducted for the total metal recovered, as 

given in Figure 4.17. The total amounts of metal recovered annually for 40 runs are 

also fitted into normal distribution. 
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Figure 4.17: Total Annual Recovered Metal Statistics of the Stochastic Case 

 

The average values of the total annual hauled material, total annual hauled ore 

material, metal recovered, and ore grade for the stochastic case are as follows: 

- Hauled tonnage per year = 2,601,760 tonnes 

- Hauled ore tonnes and grade = 1,761,338 tonnes 5.79 ppm 

- Total metal with 90% plant recovery = 294,858 ounces 
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The expected ore production is also provided in Table 4-11. Based on the grade 

variance factor, it is expected to obtain an ore grade greater than the Block Model 

assumptions by 11%, so the expected ore grade is 6.43 ppm. Therefore, the metal 

content is expected to increase to 327,757 ounces with 90% plant recovery. 

Table 4-11: Results of Stochastic Simulation Run for Ore Production 

 

One of the main reasons for the production loss is spotted as downtime due to 

external factors. In Table 4-12, the estimated total system downtimes are presented. 

On average, 79,231 minutes of downtime is expected to occur in a year for the case 

study, which is considerably high.  
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Table 4-12: Estimated Downtimes 

 

As a result, the created model is verified and validated with the aid of the case study 

belonging to an open pit gold mine case. The planned production for a year is 

estimated to be 3M tonnes with 434,558 ounces poured. However, based on the 

available model input, the production is estimated to be 2.6M tonnes with 294,858 
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ounces poured for the worst-case scenario as illustrated in Table 4-13 and Figure 

4.18. 

Table 4-13: The Comparison Table of LTP and STP 

 

 

Figure 4.18: The Comparison Figure of LTP and STP 

  

Value

Production, tonnes Long-term 3,031,182

Short-term 2,601,760

Variation 17%

Grade, ppm Long-term 6.9

Short-term 5.79

Variation 19%

Gold Poured, ounces Long-term 434,558

Short-term 294,858

Variation 47%

Item
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CHAPTER 5  

5 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

In the mining industry, production planning is conducted under two timeframes, 

long-term and short-term. The ultimate pit boundary determination, phasing, and 

Life of Mine (LOM) studies are conducted for the long-term plans of surface mines. 

It mainly aims to maximize the company’s profit, i.e., the operation's net present 

value (NPV). On the other hand, tactical or operational decisions are taken in short-

term plans to achieve long-term targets. Since the time discretization, level of detail, 

and the utilized input data do not have high resolution in long-term plans for day-to-

day mining operations, deviations in the plans are observed in the short-term, which 

can cause drastic deviations from long-term targets and company profit at the end of 

the related production year. 

This research study intends to develop a research methodology to provide quantified 

measures to the decision-makers about how achievable the long-term plan is by 

considering short-term operations. As a result, the following conclusions are drawn: 

➢ A comprehensive literature survey was conducted so that 21 main uncertainty 

factors (shown previously in Figure 3.1) are observed to be effective in 

deviations from long-term production plans in surface metal mines. 

➢ A conventional fault tree was created with a top event as the failure of a long-

term plan. The top event is further subdivided into geological, economic, 

operational, and external branches with OR gate dependency. These sub-

events are further branched down to 21 basic events, each representing an 

uncertainty factor. 
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➢ A comprehensive expert survey has been conducted among 11 participants 

working in different mining corporations that operate mines worldwide. Most 

of the participants have authorized signatures for international projects or 

have experience in various mines of different countries in the role of mine 

planning decision maker. 

➢ Since conventional fault tree analysis cannot process linguistic data, fuzzy 

logic analysis was conducted, and the results (occurrence probability of 

uncertainty items) were integrated into the conventional fault tree.  

➢ A fuzzy logic analysis was conducted for linguistic survey results to 

determine the failure probabilities of basic events used in Fuzzy Fault Tree 

Analysis. Additionally, the failure criticality index (FCI) was calculated for 

each basic event to determine the most effective list of system failures, which 

is then used in DES item determination. 

➢ The system failure probability is calculated as 0.1869, and geological, 

operational, and external factors were detected as the most influential 

branches with a total 93% impact on the failure according to the Fuzzy Fault 

Tree analysis performed. 

➢ When the FCI numbers are considered, it is observed that the grade with 14% 

effectiveness is the most influential uncertainty item, while corporate 

communication efficiency with 0.6% impact is the least influential 

uncertainty item. 

➢ Including uncertainty factors recommended by FFTA, a DES algorithm was 

constructed, and the model was realized in Rockwell Arena software to 

mimic short-term conditions in a long-term schedule period.  

➢ The model consists of two main modules, which are haulage and external 

factor modules. The simulation time in the model is increased with the 

loading time of the shovel and checks the occurrence of an external factor 

failure in each cycle.  
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➢ The model is verified and validated with a case study. According to the 

deterministic simulation results of a long-term schedule, a 3M tonne of total 

production and 435 koz gold pour are obtained as the target. However, when 

the model is computed with stochastic inputs representing the short-term 

case, the total production is expected as 2.6M tonne and 295koz gold pour 

due to lost 79,231 minutes of downtime of geological, operational and 

external factors for the worst-case scenario where there is not any interim 

forecasts and plan revisions during the production year. 

➢ Considering how uncertainty items can be effective in deviations from the 

annual production targets of mining companies, developing proactive actions 

in the long-term planning stage is seen to be vital for the plans' success. In 

brief, the current study introduced an uncertainty quantification methodology 

that can be utilized in the production planning stages of surface metal mines 

and filled the gap in the corresponding literature. 

5.2 Recommendations 

The following improvements are recommended for future studies: 

➢ The DES model can be improved by detailing the interactions between the 

equipment. A complete production cycle can be simulated, but it is good to 

note that the simulation running time should be tolerable and manageable. 

➢ The created model can be computed by including a complete site-specific 

dataset. 

➢ The DES model observation time can be extended to simulate the whole life-

of-mine period. 

➢ The cost of failures not achieving targeted production can be considered in 

the model to see the economic consequences of such deviations and potential 

trade-offs.  
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APPENDICES 

A. Survey Window Presented to the Responders 

 

Figure A.1: Opening Window of the Questionnaire 
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Figure A.2: General Information Window for Question Groups: A Representative 

Example of Geological Uncertainty Group 
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Figure A.3: Uncertainty Item Window: A Representative Example of Grade 

Uncertainty under Geological Uncertainty Group 

 


