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A B S T R A C T

This paper aims to unfold the information content of the implied liquidity measure, which
is introduced through the Conic Finance theory and considered a proxy for the market
liquidity level. We propose a partial information setting in which the dynamics of the implied
liquidity, representing the noisy information on the unobserved true market liquidity, follow
a continuous-time Markov-chain modulated exponential Ornstein–Uhlenbeck process. Model
inference requires the filtering of the unobserved states of the true market liquidity, as well
as the estimation of the unknown model parameters. We address the inference problem using
the EM algorithm methodology, in which we provide novel results on robust filters leading
to maximum likelihood estimates. We fit the proposed model to the implied liquidity series
obtained from the prices of (closest to) 1-year ATM call options on the S&P 500 covering the
period from January 2002 to August 2022. The data application shows that the unobserved true
market liquidity follows three regimes. The implied liquidity series contains relevant information
as the filtered trajectory of the underlying Markov chain moves according to the economic
environment changes due to the Federal Reserve’s actions, the global financial crisis of 2007-08,
and the COVID-19 pandemic.

. Introduction

Market liquidity has crucial importance in the smooth functioning of financial markets. The liquidity, or lack thereof, can have
profound impact on the financial system and the overall economy, disrupting their daily operations. Historical events such as the
ussian financial crisis in 1998 and the Long-Term Capital Management crash serve as reminders of how even a minor disruption

n liquidity can lead to significant and unforeseen consequences. More recently, the financial crisis of 2008 once again highlighted
he importance of liquidity in financial markets.

There is no single, universally accepted definition of liquidity; instead, different perspectives and interpretations make measuring
arket liquidity challenging. Nevertheless, numerous studies have delved into the subject of market liquidity, with earlier works

y Kyle (1985), Grossman and Miller (1988), Chordia et al. (2000), and Amihud (2002) shedding light on its significance. Recently,
here has been a growing focus on investigating market liquidity through the use of various liquidity measures, as explored by Ramos
nd Righi (2020), Zaremba et al. (2021) and Christensen and Gillan (2022).

Market liquidity is a multifaceted concept, making it difficult to capture with a single metric (see Kyle, 1985). The bid–ask spread,
s a transaction cost-based approach, stands as the most commonly used indicator to evaluate market liquidity levels (see Davis
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et al., 1993; Shreve and Soner, 1994; Cvitanić and Karatzas, 1996; and Barles and Soner, 1998). However, many models based on
bid–ask spreads fail to account for the observed spread magnitudes in financial markets fully. This deficiency became particularly
evident after the 2008 financial crisis, during which bid–ask spreads for many assets remained consistently high, surpassing what
could be explained solely by transaction costs. Additionally, bid–ask spreads can fluctuate in response to volatility or changes in
the spot price of an asset, irrespective of any actual changes in the underlying asset’s liquidity. To address this issue, Corcuera et al.
(2012) introduces the implied liquidity measure that facilitates liquidity comparisons across different assets and markets. Albrecher
et al. (2013) further expanded on this concept by fitting various stochastic models to the implied liquidity time series, suggesting a
stochastic, regime-switching, mean-reverting process as a suitable approach.

In this paper, we propose a setting to analyze the information content of the implied liquidity measure as a proxy for the
unobservable true market liquidity level. Recognizing the unobservability aspect of liquidity, we work in a partial-information setting

here the implied liquidity measure is considered a noisy indicator of the unobserved true market liquidity. Naturally, the true market
iquidity level is subject to policy changes, such as shifts from quantitative easing to tightening or transitions between bullish and
earish market conditions. To capture this dynamic nature, we model the true market liquidity level as a continuous-time finite-
tate Markov chain. Additionally, drawing upon previous findings that suggest a regime-switching mean-reverting process as an
ppropriate liquidity model (see Albrecher et al., 2013), we fit a Markov-chain modulated exponential Ornstein–Uhlenbeck (OU)
rocess to the implied liquidity series derived from prices of (closest to) 1-year ATM call options on the S&P 500 index.

Hidden Markov models (HMM) have been widely employed in other studies to analyze market liquidity regimes. For exam-
le, Flood et al. (2015) use a discrete-time HMM to examine system-wide liquidity conditions across various asset classes, concluding
hat three regimes adequately capture the dynamics. Tenyakov et al. (2016) investigate the relationship between funding and
arket liquidity using a hidden Markov-modulated OU model, finding that a 2-state model adequately explains the relationship.

imilarly, Gu et al. (2021) propose a hybrid multivariate discrete-time hidden Markov-modulated OU and geometric Brownian
otion models to capture regime switches and demonstrate the sufficiency of two regimes in explaining the dynamics.

We use the Expectation-Maximization (EM) algorithm methodology to address the model inference problem. The work by Elliott
t al. (1999) provides the filtering and parameter estimation results for the Markov-chain modulated OU process. However, our
ovel contribution lies in providing an EM algorithm methodology with robust filtering and discretization in the sense of James
t al. (1996). By incorporating robust filters, we effectively mitigate numerical issues that may arise in applications with discrete
bservations. Additionally, this approach allows us to estimate the unknown noise variance within the algorithm.

Applying our proposed model to options data shows that the unobserved true market liquidity exhibits three distinct regimes.
urthermore, the implied liquidity series contains valuable information that reflects market liquidity variations stemming from factors
uch as Federal Reserve (Fed) interventions, financial crises, and the COVID-19 pandemic. Consequently, this paper contributes to
he understanding of market liquidity dynamics by introducing a model that effectively captures the relationship between the implied
iquidity measure and the underlying true market liquidity. Such insights offer decision-makers in policy and practice a framework
or effectively managing market liquidity.

The remaining sections of this paper are structured as follows: Section 2 introduces the model setting, while Section 3 presents
he results of robust filtering and the EM algorithm. In Section 4, we provide details about the data used in our study, present and
iscuss the application results. The appendix includes the proof of the main proposition.

. Underlying model setting

We consider a finite time interval [0, 𝑇 ] and a filtered probability space (𝛺, ,F,P), where F = (𝑡)𝑡≥0 is the global filtration that
atisfies the usual conditions.

We assume a Black–Scholes setting with an underlying asset 𝑆 with volatility 𝜎 and the risk-free interest rate 𝑟 > 0. We recall
hat, under the Conic Finance theory with a Wang distortion function and implied liquidity 𝐿, the bid price of a European call
ption written on 𝑆, with the strike price 𝐾 and the maturity 𝑇 is given as (see, e.g., Guillaume et al., 2019, Eqs. 15–16):

𝑏𝐿,𝑡 = 𝑆𝑡 exp(−𝐿𝜎
√

𝑇 − 𝑡) (𝑑1 − 𝐿) −𝐾 exp(−𝑟(𝑇 − 𝑡)) (𝑑2 − 𝐿), (1)

where 𝑑1 =
ln(𝑆𝑡∕𝐾)+(𝑟+𝜎2∕2)(𝑇−𝑡)

𝜎
√

𝑇−𝑡
, 𝑑2 = 𝑑1 − 𝜎

√

𝑇 − 𝑡, and  indicates the standard Normal distribution function. The ask price of the
ption is:

𝑎𝐿,𝑡 = 𝑆𝑡 exp(𝐿𝜎
√

𝑇 − 𝑡 (𝑑1 + 𝐿)) −𝐾 exp(−𝑟(𝑇 − 𝑡)) (𝑑2 + 𝐿), (2)

where 𝑑1 =
ln(𝑆𝑡∕𝐾)−(𝑟+𝜎2∕2)(𝑇−𝑡)

𝜎
√

𝑇−𝑡
, 𝑑2 = 𝑑1 − 𝜎

√

𝑇 − 𝑡.
Naturally, the true market liquidity level is prone to policy changes, for example, from quantitative easing to tightening or

inancial market regime shifts from bullish to bearish market conditions. Accordingly, we model the true market liquidity level
ith a continuous-time finite-state Markov chain 𝑋 = {𝑋𝑡; 0 ≤ 𝑡 ≤ 𝑇 } with the state space 𝑆 = {𝑒1, 𝑒2,… , 𝑒𝐾}, where 𝑒𝑘 is the 𝑘th

basis column vector of R𝐾 . We assume a given initial probability distribution 𝜋0, and the transpose of the infinitesimal generator
of 𝑋 is denoted by 𝐴. Thus, 𝐴 = (𝑎𝑖𝑗 ) such that, for 𝑖 ≠ 𝑗, 𝑎𝑖𝑗 ≥ 0, 𝑎𝑗𝑗 = −

∑

𝑖≠𝑗 𝑎
𝑖𝑗 , 𝑖, 𝑗 ∈ {1,… , 𝐾}.

We consider implied liquidity series to provide noisy information on the true market liquidity level. Brunnermeier and Pedersen
(2009) and Brunnermeier (2009) report the ‘‘self-stabilizing behavior’’ of market liquidity, which may manifest itself in implied
liquidity series having mean-reversion property. Corcuera et al. (2012) support the idea of mean-reverting behavior, which is also
2
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confirmed by Albrecher et al. (2013). Putting those properties together with the positivity of the implied liquidity measure, we
model the logarithm of implied liquidity as a Markov-chain modulated OU process:

𝑑𝑌𝑡 = 𝜅(�̃�(𝑋𝑡) − 𝑌𝑡)𝑑𝑡 + 𝜍𝑊𝑡, (3)

where 𝜅 > 0 is the mean reversion speed, �̃�(𝑋𝑡) is the regime switching mean-reversion level, 𝜍 is the diffusion coefficient, and 𝑊 ,
representing the noise, is a standard (F,P)-Brownian motion independent of 𝑋. Here we point out that the regime changes on true
market liquidity impact the long-run equilibrium level of implied liquidity.

We denote by 𝐿 the implied liquidity. Applying Ito’s formula to 𝐿𝑡 = exp(𝑌𝑡) yields the following dynamics (note that variant of
this model (without Markov-chain modulation) is also known as Schwartz reduced-form model (Schwartz, 1997) ):

𝑑𝐿𝑡 = 𝜅(�̃�(𝑋𝑡) +
𝜍2

2
− log(𝐿𝑡))𝐿𝑡𝑑𝑡 + 𝜍𝐿𝑡𝑑𝑊𝑡. (4)

We assume that the Markov chain 𝑋 representing the true market liquidity level is not directly observable, and the market participants
observe only the implied liquidity. In (3), 𝜍 > 0 determines the magnitude of noise in the continuous noisy observations of 𝑋.

The information accessible to the observer of system is carried in the sigma algebra generated by the filtration Y, that is

Y = (𝑡)𝑡≥0, 𝑡 = 𝜎{𝐿𝑠, 0 ≤ 𝑠 ≤ 𝑡} = 𝜎{𝑌𝑠, 0 ≤ 𝑠 ≤ 𝑡}.

Accordingly, we consider the full information filtration F as the augmented filtration containing information on the Markov
chain and the implied liquidity:

F = (𝑡)𝑡≥0, 𝑡 = 𝜎{𝐿𝑠, 𝑋𝑠, 0 ≤ 𝑠 ≤ 𝑡} = 𝜎{𝑌𝑠, 𝑋𝑠, 0 ≤ 𝑠 ≤ 𝑡}.

We define the normalized observation process 𝑦𝑡 = 𝑌𝑡∕𝜍. Denote by 𝑔 = �̃�(.)∕𝜍, we have:

𝑑𝑦𝑡 = 𝜅(𝑔(𝑋𝑡) − 𝑦𝑡)𝑑𝑡 +𝑊𝑡. (5)

Hence, during the theoretical analysis, one may assume without loss of generality that 𝜍 = 1. In theory, the value of 𝜍 is equal to
[𝑌 ]𝑡∕𝑡 where [𝑌 ] is the quadratic variation of 𝑌 and is thus observable. However, in practice, the observations are not continuous,
and 𝜍 has to be estimated. This problem is addressed in Section 3.

3. EM methodology and filtering

Regarding model estimation, the partial information setting prevents us from using standard tools such as MLE. Instead, one can
address the inference problem using the Expectation-Maximization (EM) algorithm methodology. Elliott et al. (1999) introduce the
filtering and parameter estimation for the Markov-chain modulated OU process. In the following, we extend the existing results by
providing an EM algorithm methodology with robust filtering and discretization in the sense of James et al. (1996).

For an integrable and measurable process 𝑍, the Y-optional projection �̂�𝑡 ∶= 𝐸[𝑍𝑡|𝑡] 𝑎.𝑠. for all 𝑡 ≤ 𝑇 , gives the filtered estimate
of 𝑍𝑡. For a generic function 𝑓 , it holds that 𝑓 (𝑋𝑡) = ⟨𝑋𝑡, 𝐟⟩ where ⟨ , ⟩ denotes the scalar product and 𝐟𝑘 = 𝑓 (𝑒𝑘), 1 ≤ 𝑘 ≤ 𝐾 so that
functions of the Markov chain can be identified with 𝐾-vectors. Hence, it follows that the unobserved parameters to be estimated
are given by the vector 𝜃 =

(

𝑎𝑖𝑗 , 𝑔𝑗 , 𝜅, 𝜍; 𝑖, 𝑗 ∈ {1,… , 𝐾}
)

.
Our goal is to utilize the EM methodology to estimate the model parameters and infer the unobserved realizations of the state

process 𝑋, given the observations 𝑌𝑡, 0 ≤ 𝑡 ≤ 𝑇 . Denote by P𝜃 the probability measures corresponding to the parameter vector 𝜃.
Due to the unobservability of the Markov chain 𝑋, it is not possible to determine the full-information likelihood function. In the
current setting, we have the following partial-information log-likelihood ratio (see, e.g., Elliott et al., 1999):

𝐿(𝜃, 𝜃′) ∶= log
𝑑P𝜃
𝑑P𝜃′

|

|

|𝑇
=

𝑁
∑

𝑖=1
(𝜅𝑔𝑖�̂�𝑖

𝑇 − 1
2
𝜅𝑔𝑖2𝐽 𝑖

𝑇 + 𝜅𝑔𝑖𝐼 𝑖𝑇 ) +
𝑁
∑

𝑖≠𝑗
𝑖,𝑗=1

(�̂� 𝑖𝑗
𝑇 log(𝑎𝑗𝑖) − 𝑎𝑗𝑖𝐽 𝑖

𝑇 ) + �̂�(𝜃′), (6)

where �̂�(𝜃′) is independent of 𝜃, and we have: 𝐽 𝑖
𝑡 is the sojourn time of the Markov chain in state 𝑖 until time 𝑡; 𝑁 𝑖𝑗

𝑡 is the number
of transitions from state 𝑖 to 𝑗 of the process 𝑋 where 𝑖 ≠ 𝑗 up to time 𝑡; 𝐺𝑖

𝑡 is the level sum of the integral for state 𝑒𝑖 until time 𝑡;
𝐼 𝑖𝑡 is the time 𝑡 value of an auxiliary process for the state 𝑖.

The EM algorithm is an iterative procedure that leads to a sequence 𝜃𝑚 of parameter estimates such that the likelihood of the
bservations increases in each step. Given the optimal parameter vector 𝜃𝑚 after the 𝑚th iteration of the algorithm, the (𝑚 + 1)𝑡ℎ

teration of the EM algorithm consists of the following two steps:

i. Expectation (E): Compute the filtered estimate of the partial information log-likelihood 𝐿(𝜃, 𝜃𝑚).
ii. Maximization (M): Find 𝜃𝑚+1 ∈ argmax

𝜃
𝐿(𝜃, 𝜃𝑚).

Since 𝐿(⋅, 𝜃𝑚) is concave, the new parameter vector 𝜃𝑚+1 is given by equating the partial derivatives of (6) to zero. We thus obtain
that

(𝑎𝑗𝑖)𝑚+1 =
�̂� 𝑖𝑗

𝑇
𝑖
, (𝑔𝑗 )𝑚+1 =

(

𝜅𝑚+1)−1 �̂�𝑖
𝑇 + 𝐼 𝑖𝑇

𝑖
, (𝜅)𝑚+1 = 𝐶 , (7)
3

𝐽𝑇 𝐽𝑇 𝐷
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where, 𝐶 = ∫ 𝑇
0 𝑦𝑠𝑑𝑦𝑠 −

∑𝑁
𝑖=1

𝐼 𝑖𝑇 �̂�
𝑖
𝑇

𝐽 𝑖
𝑇

and 𝐷 =
∑𝑁

𝑖=1

(𝐼 𝑖𝑇 )
2

𝐽 𝑖
𝑇

− ∫ 𝑇
0 𝑦2𝑠𝑑𝑦𝑠.

It is evident in (7) that one has to obtain the filtered estimates of the quantities in (6) to determine the optimal parameters.
his is a non-linear filtering problem, and the corresponding theoretical results on normalized and unnormalized filters, denoted by
⋅̂) and 𝜎(⋅), respectively, can be found, e.g., in Elliott et al. (1999). Note that expressions for the optimal parameters can also be
btained by replacing normalized filters with unnormalized versions.

In most finance applications, the data constitute discrete observations. No matter the frequency of data observations, one must
iscretize the (continuous) filtering results. Applying standard discretization techniques (such as Euler–Maruyama) to normalized or
nnormalized filters may result in numerical issues and the non-smoothness of the filtered state trajectories. Thus, in Proposition 3.1,
e obtain the so-called robust filters in the sense of James et al. (1996). Here, the idea is to transform the filter dynamics so that the

esulting expressions involve minimal stochastic integrals. The derivation of robust filters requires the unnormalized filters 𝜎(𝐻𝑇 )
or 𝐻𝑇 = 𝑁 𝑖𝑗

𝑇 , 𝐺𝑖
𝑇 , 𝐽

𝑖
𝑇 and 𝐼 𝑖𝑇 and 𝜎(𝐻𝑇 ) = ⟨𝜎(𝐻𝑇𝑋𝑇 ), 𝟏⟩ where 𝟏 = 𝑑𝑖𝑎𝑔(1,… , 1).

Proposition 3.1 (Robust Filters). Let 𝛷 given by 𝛷𝑡 = exp(𝜅𝐵𝑡𝑦𝑡 −
1
2
𝜅2𝐵2

𝑡 𝑡) and let 𝛷−1
𝑡 denote its inverse. The unnormalized filter 𝜎(𝑋𝑡)

f the state process 𝑋 has a robust version defined as

�̄�(𝑋𝑡) = 𝛷−1
𝑡 𝜎(𝑋𝑡), �̄�(𝑋0) = 𝜎(𝑋0),

hich is a finite variation process and solves the linear ordinary differential equation (ODE) in R𝐾 :

𝑑
𝑑𝑡

�̄�(𝑋𝑡) = 𝛷−1
𝑡 𝐴𝛷𝑡�̄�(𝑋𝑡), �̄�(𝑋0) = 𝜎(𝑋0). (8)

Moreover, we have

𝑑�̄�(𝑁 𝑖𝑗
𝑡 𝑋𝑡) = ⟨�̄�(𝑋𝑡), 𝑒𝑖⟩𝑎𝑗𝑖𝑒𝑗𝑑𝑡 +𝛷−1

𝑡 𝐴𝛷𝑡�̄�(𝑁
𝑖𝑗
𝑡 𝑋𝑡)𝑑𝑡, �̄�(𝑁 𝑖𝑗

0 𝑋0) = 0,

𝑑�̄�(𝐽 𝑖
𝑡𝑋𝑡) = ⟨�̄�(𝑋𝑡), 𝑒𝑖⟩𝑒𝑖𝑑𝑡 +𝛷−1

𝑡 𝐴𝛷𝑡�̄�(𝐽 𝑖
𝑡𝑋𝑡)𝑑𝑡, �̄�(𝐽 𝑖

0𝑋0) = 0,

𝑑�̄�(𝐺𝑖
𝑡𝑋𝑡) = ⟨�̄�(𝑋𝑡), 𝑒𝑖⟩𝑒𝑖𝑑𝑦𝑡 +𝛷−1

𝑡 𝐴𝛷𝑡�̄�(𝐺𝑖
𝑡𝑋𝑡)𝑑𝑡, �̄�(𝐺𝑖

0𝑋0) = 0,

𝑑�̄�(𝐼 𝑖𝑡𝑋𝑡) = 𝑦𝑡⟨�̄�(𝑋𝑡), 𝑒𝑖⟩𝑒𝑖𝑑𝑡 +𝛷−1
𝑡 𝐴𝛷𝑡�̄�(𝐼 𝑖𝑡𝑋𝑡)𝑑𝑡, �̄�(𝐼 𝑖0𝑋0) = 0.

Proof. Proof is provided in Appendix.

After obtaining the robust filters, we follow the methodology given in James et al. (1996) and discretize the robust filters by
Euler–Maruyama method. That yields an equivalent discrete time model: for a small enough time step 𝛥 = 𝑡𝑛 − 𝑡𝑛−1, 𝑃 ∗ = [𝐼 + 𝛥𝐴]
represents transition probabilities of the corresponding discrete time Markov chain 𝑋𝑛; the discrete time observations are represented
through the fast-sampled observations 𝑧𝛥𝑛 = (𝑦𝑡𝑛 −𝑦𝑡𝑛−1 )∕𝛥, 𝑛 = 1, 2,… , 𝑁 . Then we set, e.g., 𝜎(𝑋𝑛) = 𝛷𝑡𝑛 �̄�(𝑋𝑛), and let 𝛹𝑛 = 𝛷𝑡𝑛𝛷𝑡𝑛−1 .
We define the normalization constant 𝑐𝑛 = ⟨𝛹𝑛𝑃 ∗𝜎(𝑋𝑛−1), 𝟏⟩ and obtain the following normalized discrete time recursive filters:

𝜎(𝑋𝑛) = 𝛹𝑛𝑃
∗𝜎(𝑋𝑛−1)∕𝑐𝑛,

𝜎(𝑁 𝑖𝑗
𝑛 𝑋𝑛) = [𝛹𝑛𝑃

∗𝜎(𝑁 𝑖𝑗
𝑛−1𝑋𝑛−1) + ⟨𝜎(𝑋𝑛−1), 𝑒𝑖⟩⟨𝛹𝑛𝑃

∗𝑒𝑖, 𝑒𝑗⟩𝑒𝑗 ]∕𝑐𝑛,

𝜎(𝐽 𝑖
𝑛𝑋𝑛) = [𝛹𝑛𝑃

∗𝜎(𝐽 𝑖
𝑛−1𝑋𝑛−1) + ⟨𝜎(𝑋𝑛−1), 𝑒𝑖⟩𝛹𝑛𝑃

∗𝑒𝑖]∕𝑐𝑛,

𝜎(𝐺𝑖
𝑛𝑋𝑛) = [𝛹𝑛𝑃

∗𝜎(𝐺𝑖
𝑛−1𝑋𝑛−1) + 𝑧𝛥𝑛 ⟨𝜎(𝑋𝑛−1), 𝑒𝑖⟩𝛹𝑛𝑃

∗𝑒𝑖]∕𝑐𝑛,

𝜎(𝐼 𝑖𝑛𝑋𝑛) = [𝛹𝑛𝑃
∗𝜎(𝐼 𝑖𝑛−1𝑋𝑛−1) + 𝑦𝑛−1⟨𝜎(𝑋𝑛−1), 𝑒𝑖⟩𝛹𝑛𝑃

∗𝑒𝑖]∕𝑐𝑛.

Under the discretized setting, following the methodology in Section VI of James et al. (1996), we obtain the ML estimate of the
unknown noise variance:

�̂�2 = − 𝛥
𝑁

( 𝐾
∑

𝑖
(𝜅2(𝑔𝑖)2(𝐽 𝑖

𝑁 )2 − 2𝜅2𝑔𝑖𝐼 𝑖𝑁 − 2𝜅𝑔𝑖�̂�𝑖
𝑁 ) +

𝑁
∑

𝑛=1
|𝑧𝛥𝑛 |

2 + 𝜅2
|𝑦𝑛−1|

2 + 2𝜅|𝑦𝑛−1𝑧𝛥𝑛 |
)

.

4. Application to S&P 500 index options

This section implements the model on the S&P 500 index options data. We use the S&P 500 index options data due to several
reasons. Given its size, scope, and influence on other markets, the S&P 500 index is considered a key proxy for the U.S. economy.
Thus, the index options data may also represent the overall stock options market well. Moreover, the composition of the S&P 500
index allows us to assume that the company-related (idiosyncratic) effects on the calculation of option values will be minor and
that any significant changes in option prices can be attributed to financial market factors.
4
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4.1. The data

The data comprise the daily bid and ask prices of European call options written on the S&P 500 index from January 2002 to
ugust 2022.1 The data set also contains daily values of the underlying S&P 500 index, daily values of the implied volatility, and
aily values of the 3-month US Treasury bill rate.2

A large data set with 34,438,878 price observations with various strikes and maturities are employed. We produce the implied
iquidity series following the procedure in Albrecher et al. (2013). Denote by 𝑛 the 𝑛th day of the data period 𝑛 ∈ 1,… , 𝑁 . On
ach day of the sample period, we first choose an option based on two criteria: (closest to) 1-year ATM call options and the highest
rading volume if several options are available the same day after applying the first criteria. After extracting the option series, we
ind the implied liquidity parameter, 𝐿𝑛, that best matches the theoretical bid–ask prices with the observed bid–ask prices at day
: we obtain the implied liquidity by minimizing the squared error (SE) between the theoretical bid–ask prices (𝑎𝐿,𝑛, 𝑏𝐿,𝑛) and the

observed bid–ask prices (𝑎𝑛, 𝑏𝑛). That is, we solve the following minimization problem:

min
𝐿𝑛

SE𝑏𝑖𝑑,𝑎𝑠𝑘(𝐿𝑛) =
(

(𝑏𝑛 − 𝑏𝐿,𝑛)2 + (𝑎𝑛 − 𝑎𝐿,𝑛)2
)

𝑠.𝑡. 𝐿𝑛 ≥ 0.

We repeat this procedure each day of the data and obtain the implied liquidity series. Then, we multiply the resulting series with
100 to obtain the values in basis points.

4.2. Implementation, results and discussion

As next, we fit the proposed model to the implied liquidity series. As it is not a priori clear how many states one should assume
for the underlying Markov chain, we refer to the related literature (see, e.g., Flood et al., 2015) and set the number of states 𝐾 = 3,
epresenting the three liquidity regimes: low, intermediate, and high. We apply the EM algorithm with the following steps:

Step 1: Initialize the algorithm with parameters 𝜃0.
Step 2: Obtain the robust filtered estimates of the quantities of interest.
Step 3: Compute 𝜃𝑛+1.
Step 4: Terminate if |𝜃𝑛+1−𝜃𝑛|

|𝜃𝑛| are below the termination tolerance 0.01; else return to step N.

he evolution and convergence of parameter estimates are depicted in Fig. 1, indicating that the algorithm is relatively fast,
onverging on iteration 15. The estimated generator matrix with respect to Low (state 1), Intermediate (state 2) and High (state
) states is presented in Table 1 at which the estimated intensities of transitions from High to Low and Low to High states are zero.
he parameter estimates for the observation process are presented in Table 2. Moreover, the corresponding log-likelihood (LL) and
he Mean Absolute Percentage Error (MAPE) values are computed as LL = 109.912, MAPE = 1.5859𝑒 − 05. The high value of the

log-likelihood and minimal value of the MAPE indicate a good performance of the model.3
We depict the logarithm of the daily implied liquidity series on the upper panel of Fig. 2. By definition, higher value of implied

liquidity corresponds to lower liquidity level in the underlying market and vice versa. We also provide the filtered trajectory of
the Markov chain, representing the unknown true market liquidity level, in the lower panel of Fig. 2. It is natural to expect that
any sound measure of market liquidity should reflect the changes in market liquidity due to changes in the underlying economic
environment. The market liquidity level in the U.S. has been influenced by various factors, including the Fed’s monetary policy,
economic conditions, and global events. The Fed started cutting interest rates in 2002 to stimulate the economy following the 2001
recession. The implied liquidity measure captures this increase in liquidity (see region P1 in Fig. 2). By 2005, inflation was becoming

concern, and the Fed began raising interest rates to keep it under control. The housing market was experiencing a bubble at this
ime due to increased sub-prime mortgages. The use of complex financial instruments and leverage was on the rise, which would
ventually lead to the global financial crisis of 2007–08 (see Helleiner, 2011; Gorton, 2012; and Brunnermeier, 2009). All these
easons led to a decrease in the market liquidity level starting from 2005, and it experienced its lowest level between mid-2005 and
id-2009. The financial crisis erupted in 2007 and continued to escalate, and in response, central banks worldwide, including the

ed, took several interventions. The money injections increased the liquidity level slightly in 2008 but were not enough to prevent
he financial crisis. While the liquidity shortage during the mid-2005 and mid-2009 could not immediately be reflected in the S&P
00 index itself, it is present in the filtered trajectory of the unobservable true market liquidity (see region P2 in Fig. 2).

In response to the 2008 financial crisis, the Fed implemented a series of large-scale asset purchases known as quantitative
asing(QE). In 2013, the Fed declared its intention to gradually decrease its asset purchases and reduce monthly bond purchases,
ltimately concluding the QE program in 2015. Nevertheless, between the end of 2013 and the start of 2014, the market experienced
period of high liquidity due to the three QE programs implemented. That increase in liquidity manifests as an increase in the filtered

rajectory of the Markov chain over the region P3. Within the period covering 2014 to 2018, the Fed kept the size of its balance

1 The data is obtained from ivolatility.com
2 Interest rate data is obtained from fred.stlouis.org
3 We also fit a 2-state Markov-chain model, which performs worse than the current one whose results can be provided upon request.
5
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Fig. 1. Evolution of parameter estimates during the iterations of EM algorithm (left to right: �̂�, �̂�, �̂�, �̂�).

Fig. 2. Implied liquidity series and filtered estimate of the Markov-chain trajectory: Logarithm of implied liquidity (top) and filtered states of 𝑋 (bottom).

Table 1
Estimated generator matrix of the Markov chain 𝑋 with three states.

Low Intermediate High

Low −0.542 0.542 0.000
Intermediate 0.109 −0.331 0.222
High 0.000 0.222 −0.222

Table 2
Parameter estimates for the observation process: 𝑔, 𝜅 and 𝜍.
�̂�𝑙𝑜𝑤 �̂�𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 �̂�ℎ𝑖𝑔ℎ �̂� �̂�

1.934 0.959 0.428 18.658 3.804
6
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sheet steady; thus, tapering program had a limited effect on the market liquidity. A high market liquidity level characterized the
period between 2014 and 2018, again reflected in the filtered trajectory in the region P4.

Throughout 2017–2018, the Fed raised interest rates several times. It reduced the size of its balance sheet through gradual asset
unoff, which led to a decrease in the market liquidity level as reflected by the behavior of implied liquidity series in the region P5

of Fig. 2. However, in response to the economic challenges posed by the COVID-19 pandemic, the Fed paused its interest rate hikes
and began to expand its balance sheet again, which led to again high market liquidity level (see Chari et al., 2021) as seen in the
region P6.

In summary, our findings demonstrate the strong association between the filtered trajectory of the underlying Markov chain and
significant economic events, including the actions of the Fed, the global financial crisis of 2007–08, and the COVID-19 pandemic. This
highlights the immense value of the implied liquidity series as a reliable indicator of market liquidity level and its fluctuations over
time. The ability to accurately assess the true state of market liquidity empowers decision-makers to make informed interventions
and take proactive measures to prevent liquidity shortages or crises. By closely monitoring and analyzing the implied liquidity
series, policymakers can adjust their strategies in response to changes in economic conditions and the actions of central banks.
Moreover, market participants can utilize this information to make more informed investment decisions, optimize trading strategies,
and effectively manage their exposure to liquidity risks.
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Appendix

Proof. Proof of Proposition 3.1
Given the dynamics of unnormalized filter 𝜎(𝑋𝑡) in Elliott et al. (1999), we apply Ito’s product rule to 𝛷−1

𝑡 𝜎(𝑋𝑡).

𝑑�̄�(𝑋𝑡) = 𝑑𝛷−1
𝑡 𝜎(𝑋𝑡)

= 𝛷−1
𝑡 𝑑𝜎(𝑋𝑡) + 𝑑𝛷−1

𝑡 𝜎(𝑋𝑡) + [𝛷−1
𝑡 , 𝜎(𝑋)]𝑡

= 𝛷−1
𝑡 𝐴𝜎(𝑋𝑡)𝑑𝑡 + 𝜅𝐵𝑡𝛷

−1
𝑡 𝜎(𝑋𝑡)𝑑𝑦𝑡 − 𝜅𝐵𝑡𝛷

−1
𝑡 𝜎(𝑋𝑡)𝑑𝑦𝑡

+ 𝜅2𝐵2
𝑡 𝛷

−1
𝑡 𝜎(𝑋𝑡)𝑑𝑡 − 𝜅2𝐵2

𝑡 𝛷
−1
𝑡 𝜎(𝑋𝑡)𝑑𝑡

= 𝛷−1
𝑡 𝐴𝜎(𝑋𝑡),

with replacing 𝜎(𝑋𝑡) = 𝛷𝑡�̄�(𝑋𝑡),

�̄�(𝑋𝑡) = 𝛷−1
𝑡 𝐴𝛷𝑡�̄�(𝑋𝑡)𝑑𝑡.

In the same vein, applying Ito’s product formula to 𝛷−1
𝑡 𝜎(𝑁 𝑖𝑗

𝑡 𝑋𝑡), 𝛷−1
𝑡 𝜎(𝐽 𝑖

𝑡𝑋𝑡), 𝛷−1
𝑡 𝜎(𝐺𝑖

𝑡𝑋𝑡) and 𝛷−1
𝑡 𝜎(𝐼 𝑖𝑡𝑋𝑡) gives the corresponding

obust filters.
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