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ABSTRACT

COMPUTER-AIDED ESTIMATION OF ENDOSCOPIC ACTIVITY IN
ULCERATIVE COLITIS

Polat, Görkem
Ph.D., Department of Health Informatics

Supervisor: Prof. Dr. Alptekin Temizel

July 2023, 74 pages

Ulcerative colitis (UC) is a chronic inflammatory bowel disease that presents signif-
icant diagnostic and management challenges for clinicians. Accurate assessment of
disease severity is crucial for guiding appropriate treatment strategies and improv-
ing patient outcomes. The Mayo endoscopic score (MES) is a widely used tool for
evaluating UC severity; however, the assessment process relies heavily on subjective
interpretation, leading to substantial intra- and inter-observer variability.

In this thesis, we present a novel loss function, termed Class Distance Weighted Cross
Entropy (CDW-CE) loss, for the automated assessment of UC severity, harnessing
the power of convolutional neural networks (CNN) to analyze endoscopic images
of the colon. CDW-CE addresses the limitations of conventional cross-entropy loss
functions in ordinal classification problems.

The proposed CDW-CE loss effectively penalizes mispredictions based on their dis-
tance from the true class, taking into account the inherent ordinal relationships among
the output classes. CDW-CE has been evaluated against other loss functions and
consistently outperformed them across various performance metrics and CNN archi-
tectures. Moreover, the proposed approach enables the generation of more accurate
class activation maps, which can be utilized to explain model predictions —an es-
sential aspect of translating these techniques into clinical practice. To demonstrate
the generalizability of the proposed approach, it is also tested on a diabetic retinopa-
thy dataset and got similar results, indicating that the proposed approach can be used
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in other applications presenting ordinal classes. The dataset created for this study,
named Labeled Images for Ulcerative Colitis, is the largest publicly available labeled
UC dataset to date.

Keywords: Computer-Assisted Diagnosis, Convolutional Neural Networks, Ulcera-
tive Colitis, Ordinal Classification
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ÖZ

ÜLSERATİF KOLİT ENDOSKOPİK AKTİVİTESİNİN BİLGİSAYAR
YARDIMI İLE TAHMİN EDİLMESİ

Polat, Görkem
Doktora, Sağlık Bilişimi Bölümü

Tez Yöneticisi: Prof. Dr. Alptekin Temizel

Temmuz 2023, 74 sayfa

Ülseratif kolit (ÜK), klinisyenler için teşhis ve tedavi zorlukları iceren kronik bir inf-
lamatuar barsak hastalığıdır. Hastalık şiddetinin doğru bir şekilde değerlendirilmesi,
uygun tedavi stratejilerini izlemek ve hasta sonuçlarını iyileştirmek için çok önemli-
dir. Mayo endoskopik skoru (MES), ÜK şiddetini değerlendirmek için yaygın olarak
kullanılan bir araçtır; ancak, değerlendirme süreci büyük ölçüde öznel yorumlamaya
dayanır ve bu da gözlemci içi ve gözlemciler arası önemli değişkenliğe yol açar.

Bu tezde, ÜK şiddetinin otomatik değerlendirmesi için evrişimli sinir ağlarının kul-
lanacagi Sınıf Mesafe Ağırlıklı Çapraz Entropi (SMA-ÇE) Kaybı olarak adlandırılan
yeni bir kayıp fonksiyonu sunmaktayız. SMA-ÇE, sıralı sınıflandırma problemlerinde
geleneksel çapraz entropi kayıp fonksiyonlarının yetersizliğine çözüm getirmektedir.

SMA-ÇE fonksiyonu, yanlış tahminleri gerçek sınıftan uzaklıklarıyla orantılı olarak
etkili bir şekilde cezalandırır, böylece çıktı sınıfları arasındaki doğal sıralı ilişkileri
yakalar. SMA-ÇE, diğer kayıp işlevlerine karsi değerlendirildiğinde bütün perfor-
mans ölçümleri ve CNN mimarilerinde istikrarli bir sekilde onlardan daha iyi perfor-
mans göstermektedir. Ayrıca, önerilen yaklaşım, model tahminlerini açıklamak için
kullanılabilecek sınıf aktivasyon haritalarının daha dogru oluşturulmasını da sağla-
maktadır; daha doğru açıklanabilirlik görüntüleri, geliştirilmekte olan tekniklerin kli-
nik uygulamaya dönüştürülmesi için önemli bir özelliktir. Önerilen yaklaşımın başka
veri setlerindeki performansını ölçmek icin diyabetik retinopati veri seti üzerinde de
deneyler yapılmıştır ve benzer sonuçlar alınmıştır; bu durum önerilen yaklaşımın
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başka sıralı sınıf özelliğine sahip uygulamalarda da kullanılabileceğini göstermek-
tedir. Bu çalışma için oluşturulan, Etiketli Ülseratif Kolit Görüntüleri adlı veri seti,
bugüne kadar halka açık en büyük etiketli ÜK veri setidir.

Anahtar Kelimeler: Bilgisayar Destekli Teşhis, Evrişimsel Sinir Ağları, Ülseratif Ko-
lit, Sıralı Sınıflandırma
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CHAPTER 1

INTRODUCTION

Ulcerative colitis (UC) is a chronic inflammatory bowel disease that affects millions
of people worldwide. It is characterized by inflammation and ulcers in the inner lin-
ing of the colon and rectum, leading to various symptoms such as abdominal pain,
diarrhea, and rectal bleeding. Early and accurate diagnosis of UC is crucial for the ef-
fective treatment and management of the disease. To measure the endoscopic activity
of the UC, practitioners use scoring systems like Mayo endoscopic score (MES) [2]
or Ulcerative Colitis Endoscopic Index Of Severity (UCEIS) [3] to grade the severity
of the disease. However, this evaluation is dependent on the experience and educa-
tion of the endoscopist, which can lead to subjectivity in the assessment. Previous
studies have shown that there are significant differences in the grading of endoscopic
severity between observers, particularly regarding the level of experience [4, 3]. As a
result, the reliability and reproducibility of grading endoscopic severity remain major
concerns.

Over the past few decades, there has been an increasing interest in developing computer-
aided diagnosis (CAD) systems for the severity estimation of UC. In this regard, deep
learning algorithms, especially Convolutional Neural Networks (CNNs), have shown
promising results in analyzing endoscopic images of the colon and predicting the
severity of the disease [5, 6, 7, 8, 9]. The studies in this area have not only remained
at the academic level but also many private companies have integrated them into their
own products [10, 11, 12, 13].

This thesis presents an in-depth investigation into the development of a CAD system
for UC using CNNs. The proposed system aims to improve the accuracy and effi-
ciency of UC severity estimation, thereby facilitating timely and effective treatment
for patients. More specifically, we investigate the ways of incorporating ordinality
existing in the MES system to improve CAD performance. We have proposed a novel
loss function called Class Distance Weighted Cross Entropy (CDW-CE) and did ex-
tensive experiments to show its superiority to the previous approaches. In addition,
we have gathered the largest publicly available UC dataset called Labeled Images for
Ulcerative Colitis (LIMUC) [14].

A central consideration in the domain of machine learning is the robustness and gen-
eralizability of an algorithm or model. Beyond the efficacy and precision in a singular,
specialized dataset, an algorithm’s performance on external datasets is a measure of
its adaptability and resilience to varying contexts and conditions - its ability to gener-
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alize. The proposed loss function CDW-CE can be used in other domains that possess
an ordinal structure in their labels. To assess the adaptability and performance of our
proposed method on an external dataset, we conducted several experiments utilizing
a widely recognized diabetic retinopathy dataset. The results were consistent with
those from the UC experiments. This consistency demonstrates that our proposed ap-
proach is not confined to the domain of UC but extends its efficacy to other domains
characterized by an ordinal relationship among their labels.

In summary, this thesis aims to advance the field of computer-assisted diagnosis of
ulcerative colitis by proposing a novel loss function for training CNN models. We
anticipate that our findings will contribute to improving the accuracy and reliability
of UC severity estimation, ultimately leading to better patient care and outcomes. We
hope that the usage of CDW-CE will not only be limited to the UC, but other domains
will also benefit from that.

1.1 Research Questions

The primary goal of this research is to address the problem of accurately and reliably
estimating UC severity from endoscopic images using deep learning techniques. To
achieve this goal, our research will focus on the development of a novel loss function
that can improve the performance of CNNs in this specific application. In this context,
the central research question of this thesis is:

How can we develop a more effective and robust loss function for training CNN mod-
els that can accurately and reliably estimate UC severity from endoscopic images,
taking into account inter-class distance?

To answer this research question, we will address the following sub-questions:

1. What are the limitations of the existing loss functions used for training CNN
models in UC severity estimation, and how do they impact the model’s perfor-
mance and reliability?

2. How can we incorporate the distance between different severity levels into the
loss function to enhance the performance of CNN models in UC severity esti-
mation?

3. How does the proposed CDW-CE compare to the traditional loss functions in
terms of model performance and reliability for UC severity estimation? Does it
also generalizable to other domains that have an ordinal label structure?

4. To what extent can the proposed approach improve the explainability of UC
severity grading from endoscopic images?
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1.2 Contributions of the Study

This study makes several significant contributions to the field of CAD of UC severity
estimation. These contributions are expected to advance the state of the art and pro-
vide a solid foundation for future research in this area. The main contributions of this
study are as follows:

1. LIMUC dataset: We have collected and curated the largest publicly avail-
able dataset of labeled endoscopic images for UC, called the "Labeled Images
for Ulcerative Colitis" (LIMUC) dataset [14]. This comprehensive dataset will
enable researchers and practitioners to develop, test, and validate their own
models, providing a common benchmark for comparing methods and fostering
further advancements in the field. By making the LIMUC dataset publicly ac-
cessible, we aim to promote transparency, reproducibility, and collaboration in
the research community.

2. Class Distance Weighted Cross-Entropy (CDW-CE) Loss: We have pro-
posed a novel loss function, named Class Distance Weighted Cross-Entropy
[15], specifically designed for ordinal classification tasks in UC severity es-
timation. Through extensive experimentation and comparison with existing
loss functions, we have demonstrated that our proposed CDW-CE loss func-
tion consistently yields superior results in terms of prediction performance and
reliability. The CDW-CE loss function addresses the limitations of traditional
loss functions by effectively incorporating inter-class distance considerations,
thus enhancing the performance of CNN models for UC severity estimation.
By incorporating an additive margin term, we also share ways to further in-
crease the performance of the proposed method and the results of experiments
related to it. We have tested the generalizability and efficacy of CDW-CE on
an out-of-domain dataset, which possesses the ordinal structure, and got con-
sistent results with the UC experiments.

3. Explainability and robustness analysis of CDW-CE Loss: To ensure the
clinical utility and trustworthiness of our proposed approach, we have con-
ducted a thorough explainability and robustness analysis of the CDW-CE loss
function. This analysis is crucial for the widespread adoption of computer-
aided detection systems in UC diagnosis, as it provides insights into the decision-
making process of the CNN models and ensures that the models are resilient to
different settings. We identified challenging samples in the training set and
obtained the performance of the proposed approach on these samples to mea-
sure how robust it is. By demonstrating the explainability and robustness of the
CDW-CE loss, we aim to facilitate the translation of our research findings into
real-world clinical practice.

The work presented in this thesis has led to the following publications:

• G. Polat, H. T. Kani, I. Ergenc, Y. Ozen Alahdab, A. Temizel, and O. Atug,
“Improving the Computer-Aided Estimation of Ulcerative Colitis Severity Ac-
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cording to Mayo Endoscopic Score by Using Regression-Based Deep Learn-
ing,” Inflammatory Bowel Diseases, 11 2022.

• G. Polat, I. Ergenc, H. T. Kani, Y. O. Alahdab, O. Atug, and A. Temizel,
“Class distance weighted cross-entropy loss for ulcerative colitis severity esti-
mation,” in Medical Image Understanding and Analysis: 26th Annual Confer-
ence, MIUA 2022, Cambridge, UK, July 27–29, 2022, Proceedings. Springer,
2022, pp. 157–171.

• H. T. Kani, I. Ergenc, G. Polat, Y. O. Alahdab, A. Temizel, and O. Atug, “Eval-
uation of ulcerative colitis endoscopic mayo score with artificial intelligence,”
Endoscopy, vol. 54, no. S 01, p. eP083, 2022.

• H. T. Kani, I. Ergenc, G. Polat, Y. Ozen Alahdab, A. Temizel, and O. Atug,
“Evaluation of endoscopic Mayo score with an artificial intelligence algorithm,”
Journal of Crohn’s and Colitis, vol. 15, no. Supplement_1, pp. S195–S196,
2021.

1.3 Thesis Outline

Chapter 2 provides a comprehensive literature review of studies in computer-aided
diagnosis of the UC, and loss functions for the ordinal classification problems. It
highlights the key advancements and results of these studies.

Chapter 3 provides all the steps in the data collection and annotation process and
presents statistics related to the LIMUC dataset.

Chapter 4 analyzes the cross-entropy loss function’s limitations for ordinal classifi-
cation problems, emphasizing its inability to factor in the ordinal relationship among
classes. This chapter reviews alternative methods, including binary sub-classification
and enforcing unimodal distributions, highlighting their respective drawbacks and
challenges. It details the proposed loss function CDW-CE and explains how it achieves
the desired result.

Chapter 5 provides an explanation of the experimental design, underscoring the ex-
tensive comparisons made across the different CNN architectures and loss functions
to ensure an objective and comprehensive evaluation. Additionally, the chapter details
the strategies employed in data split, model evaluation metrics, and training strategies,
enhancing the reliability of the performance results.

Chapter 6 provides the results of the experiments, comments on findings, and their
discussions.

Finally, Chapter 7 outlines the main points of this study and provides guidance for
future work.
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CHAPTER 2

LITERATURE REVIEW

The literature review in this thesis aims to provide an overview of the existing re-
search in two main areas: (1) computer-aided diagnosis of UC and (2) loss functions
for ordinal classification/regression tasks. These two domains are crucial for under-
standing the context and motivation behind our research, as our study lies at the inter-
section of ulcerative colitis diagnosis, computer-aided diagnosis systems, and ordinal
loss functions. By reviewing the literature in these fields, we will establish a solid
foundation for our proposed approach, identify the gaps in current knowledge, and
highlight the potential of our study to make significant contributions to the state of
the art in computer-assisted ulcerative colitis severity estimation. The following sub-
sections will present a comprehensive review of the relevant literature in each domain,
discussing the key advancements, challenges, and opportunities for future research.

2.1 Computer Aided Diagnosis of Ulcerative Colitis

In recent years, there has been a significant surge in research focusing on the au-
tomated detection and assessment of UC using CAD. The application of machine
learning techniques, particularly deep learning models such as CNNs, has led to the
development of numerous methods for the severity assessment of UC from endo-
scopic images and videos. This literature review aims to provide a comprehensive
overview of the current state-of-the-art approaches in this rapidly evolving field. We
will summarize various studies that have employed different CNN architectures, pre-
processing steps, and datasets to tackle the challenges associated with UC diagnosis.

Alammari et al. [16] used a simple 9-layers (4 convolution layers, 4 pooling lay-
ers, and 1 fully connected layer) CNN architecture to classify UC severity for four
severity levels (normal, mild, moderate, severe). They sampled two frames per sec-
ond from the 328 colonoscopy videos, which resulted in 92614 frames. The authors
applied preprocessing steps to distinguish informative frames from non-informative
ones, which include blurring, specularity, and other artifacts. After discarding the
non-informative frames, 17534 images from 65 videos were used to train the model
and performance measurement was performed using 10004 images from 29 videos.
They reported an accuracy of 67.9%. Furthermore, individual frame scores were aver-
aged to obtain a final score for the video, and a Pearson correlation coefficient of 0.68
is obtained. The authors reported that the proposed system can classify a 128 ⇥ 128
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image in 25 milliseconds, which makes the system usable in real-time. Although the
authors employed a naive CNN, this is the first study that employed deep learning in
the context of UC activity estimation from endoscopic images. Tejaswani et al. [17]
advanced the previous study using the same dataset with a more rigorous preprocess-
ing step, refinement of UC severity classes, and a more advanced model, AlexNet
[18]. The authors discarded frames that contain large amounts of water and bubbles,
have excessive specular reflection, and have uneven illumination. They subdivided
each class of UC severity, and in total, 14 classes were generated to train the CNN
architecture. These classes, then, were mapped to normal, mild, moderate, and se-
vere for the performance evaluations. They reported an accuracy of 60.6%, and the
Pearson correlation coefficient for the video-level scores was 0.94.

Maeda et al. [19] used endocytoscopy (EC) data to predict histologic inflammation.
EC images were labeled using the biopsy samples’ histologic activity, which was ob-
tained after the EC procedure. 12900 EC images were used to train the model, and
9935 images were used for the validation. In total, 312 features extracted from im-
ages were used to train a support vector machine (SVM), which has two diagnostic
classes, namely active and healing. Overall diagnostic sensitivity, specificity, and ac-
curacy were reported as 74%, 97%, and 91%, respectively. The reported performance
values indicate that the proposed CAD system is capable of estimating histologic in-
flammation.

Ozawa et al. [20] used GoogLeNet [21] to classify endoscopic images into three
classes, namely Mayo 0, Mayo 1, and Mayo 2-3. 26304 images from 444 unique pa-
tients were used to train the model, and 3981 images from 114 patients were used as
a validation set. The authors reported a classification accuracy of 70.4%, an AUROC
value of 0.86 for differentiating Mayo 0 from Mayo 1-3 and 0.98 for differentiating
Mayo 0-1 from Mayo 2-3. Although promising results were reported, having rela-
tively small patients that have severe inflammation (13 patients and 1 patient for the
training and validation sets, respectively) requires more experimentation on larger
datasets for reliable performance results.

Stidham et al. [22] employed Inception-v3 [23] model for distinguishing both remis-
sion state from moderate-to-severe disease and exact Mayo subscore. 16514 images
from 3082 unique patients were used in this study, where 90% was used for the model
development, and 10% was used as a test set. A weighted Kappa score of 0.84 was
obtained for the agreement between the CAD model and human reviewers. For distin-
guishing endoscopic remission from the moderate-to-severe disease, CNN obtained
an AUROC of 0.966, a sensitivity of 83.0% and a specificity of 96.0%. Moreover,
images of colonoscopy videos were aggregated to predict the video-level score by
applying threshold rules. The authors reported that 25 out of 30 videos were correctly
classified.

Takenaka et al. [24] developed a deep neural network for endoscopic images of UC,
DNUC, which is based on Inception-v3 [23] model, to predict endoscopic remis-
sion (yes/no), histologic remission (yes/no), and Ulcerative Colitis Endoscopic Index
of Severity (UCEIS) score. The DNUC model was developed using 40758 images
and 6885 biopsy results from 2012 patients. The authors validated the study in a
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prospective study with 4187 images and 4104 biopsy specimens from 875 patients. A
sensitivity of 93.3%, a specificity of 87.8%, an accuracy of 90.1%, and a kappa score
of 0.798 were obtained for the endoscopic remission classification. Predicting histo-
logic remission demonstrated similar performance. The authors reported an interclass
correlation coefficient (ICC) of 0.917 between DNUC and endoscopists’ scores. Re-
garding the subscores of UCEIS, 0.868, 0.796, and 0.851 ICCs were obtained for the
vascular pattern, bleeding, and erosions, respectively.

Bhambhvani et al. [25] used UC images in publicly available HyperKvasir dataset
[26] to train a ResNeXt-101 model [27]. The CNN model was trained with a total
of 777 labeled Mayo 1, Mayo 2, and Mayo 3 images. The authors reported that the
overall accuracy of the model was 77.2%, sensitivity was 72.4%, and specificity was
85.7%.

Gottlieb et al. [28] estimated MES and UCEIS directly for the full-length colonoscopy
videos. They used the dataset resulting from the mirikizumab clinical trial (Clinical-
Trials.gov ID: NCT02589665), which consists of 795 full-length colonoscopy videos
from 249 patients from 14 countries. They filtered the video frames to extract vi-
sually clear images using specialized CNNs, which are responsible for out-of-colon
filtering, fuzzy frame filtering, bad prep filtering, and abnormality feature extrac-
tion. The resulting frames were fed into 2-dimensional RNN [29] that consists of
long-short-term-memory cells [30]. The model’s overall performance of QWK was
0.844 for MES and 0.855 for UCEIS. This study showed that rather than labeling
the still-frames individually, full-length colonoscopy videos can be utilized to predict
endoscopic activity. Using the proposed end-to-end design, a significant workload of
manual annotation of individual frames can be eliminated.

Yao et al. [31] developed a fully automated video analysis system to grade endoscopic
activity. First, they trained a detector based on the Inception-v3 model [23] to clas-
sify informative and non-informative frames. The authors quantitatively showed that
using informative image classification to extract clear images improved the overall
MES classification performance. MES for each informative frame was obtained us-
ing a pretrained model, which is detailed in their previous work [22]. For each video,
the ratios of MES were extracted, and thresholds for each MES class were used to as-
sign an overall video score. The proposed system correctly predicted 40 of 51 (78%)
internal videos with a QWK of 0.840 and 151 of 264 (57.1%) clinical trial videos
(clinical trial ID: NCT02762500) with a QWK of 0.59. When clinical trial videos
went through a dual review process, and only 169 of them were included, accuracy
increased to 82.8% (140 of 169) with a QWK of 0.78. This study clearly demon-
strates that when performance evaluations are performed on samples from different
distributions, much lower values are obtained.

Huang et al. [32] employed a pretrained Inception-v3 model [23] on ImageNet dataset
[33] to extract features and feed them into three different classifiers: deep neural net-
work (DNN), SVM and k-nearest neighbor (k-NN). 856 colonoscopy images from 54
patients were used to train the different classifiers. The main outcome measures were
to differentiate Mayo 0-1 from Mayo 2-3 and Mayo 0 from Mayo 1. The ensemble
of the three classifiers resulted in 94.5% accuracy with a sensitivity of 89.2% and a
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specificity of 96.3%. The proposed system differentiated Mayo 0 and Mayo 1 with
an accuracy of 89.1%, sensitivity of 82.3%, and specificity of 92.2%.

Becker et al. [34] proposed an end-to-end fully automated system to train binary
classifiers to discriminate if a MES of an entire colon section is above or below a
certain grade (MES >= 1, MES >=2, MES >=3). First, they trained a quality control
model to differentiate readable and non-readable images. Then, they utilized a weak
label approach by assigning the Mayo score of each colon section to readable still
images. The final MES for the entire colon section was determined by averaging the
scores of all frames. 1672 videos from 1105 patients from 28 countries were used to
train a ResNet50 [35] model for the classification of the MES. The proposed system
achieved an AUROC of 0.84 for MES >=1, an AUROC of 0.85 for MES >=2, and an
AUROC of 0.85 for MES >=3.

Schwab et al. [36] employed a similar weak label approach for the entire colonoscopy
video as Becker et al. [34] did for the colon sections. Moreover, they incorporated
different ordinal regression frameworks to increase the overall performance. They
used a UNIFI clinical trial of Ustekinumab [37], which consists of 1881 endoscopic
videos from 726 subjects. This is the first study that utilized ordinal regression ap-
proaches for the estimation of endoscopic activity of UC. The proposed approach
obtained a QWK of 0.68 for the video-level MES estimation and a QWK of 0.66 for
the frame-level MES estimation.

Harada et al. [38] proposed a semi-supervised learning (SSL) method that utilizes
location and temporal ordering information of the colonoscopy images to classify UC
images as positive or negative (normal). 7183 images were used as a training set, and
only 10% of them were used by the proposed SSL approach. The authors reported
an accuracy of 84.5% and an F1 score of 75.3%. Although the reported performance
results are lower than the supervised learning approach (88.5% accuracy and 82.6%
F1 score), considering that only 10% of the labels of the training set are used, this
was a promising result in the context of incorporating SSL techniques in this domain.

Maeda et al. [39] has evaluated the real-time use of AI for predicting the clinical
relapse of UC. The employed AI system is based on their previous work [19], which
is trained to classify images into two categories (“Active” or “Healing”). 135 patients
were evaluated using AI; 74 patients were diagnosed as the AI-Active group, and 61
patients were diagnosed as the AI-Healing group. During the 12-month follow-up,
relapse occurred in 28.4% of the AI-Active group and 4.9% of the AI-Healing group.
The authors stated that real-time use of AI has the potential to help clinicians in their
decision-making regarding treatment.

Unlike previous studies in the automatic estimation of UC severity, Luo et al. [40]
proposed a new method called UC-DenseNet. On top of the DenseNet architecture,
they utilized an attention mechanism and RNN in two different branches, then the
outputs of the two branches were concatenated. They compared the proposed ap-
proach with existing methods on both the internal dataset consisting of 14306 images
and the Kvasir [16] dataset consisting of 1000 UC images. The authors reported that
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the proposed CNN architecture has superior performance compared to the previously
used methods.

Sutton et al. [41] compared several commonly used CNN models on publicly avail-
able HyperKvasir [26] dataset. The authors performed two binary classification tasks:
1) distinguishing UC from non-UC pathology on endoscopic frames, and 2) distin-
guishing inactive/mild (Mayo 0 and 1) from moderate/severe activity (Mayo 2 and 3).
The authors reported that when comparing UC with non-UC pathologies, all mod-
els achieved high predictive performances; when comparing remission to moderate-
to-severe activity, DenseNet121 [42] and Inception-v3 [23] models got the highest
results, which is AUROC of 0.90.

Kadota et al. [43] proposed a cost-effective approach in terms of labeling. Instead
of labeling individual Mayo scores of still-frames (absolute-labels), their approach
utilizes labels that represent ranking between different image pairs (relative-labels).
Since comparing two images with each other is much faster than assigning a score for
a given image, the total annotation process for the whole dataset takes much less time
(overall, 10% of the conventional method). Their proposed system utilizes RankNet
[44] approach using relative-labels and a small set of absolute-labels in multi-task
learning settings. The authors reported that the proposed approach even performs
better than the conventional methods (0.578 vs. 0.559 for F1 score).

Xu et al. [45] used additive angular margin loss (ArcFace) [46] to train a DNN for the
classification of UC severity. The ArcFace loss uses feature embeddings and weights
in the last fully connected layer to improve the discriminative power of DNNs. The
authors trained ResNet-152 [35], DenseNet-161 [42], and EfficientNet [47] with dif-
ferent scaling (b0, b1, b3, b4, b7) with ArcFace function and demonstrated improved
performance compared to the cross-entropy loss. The authors used HyperKvasir [26]
dataset in their experiments.

2.2 Ordinal Classification

Ordinal classification is an active field of research in machine learning due to the
prevalence of ordinal categories in numerous real-world problems, particularly within
the healthcare domain. The intrinsic nature of ordinal categories, where the order of
the labels carries valuable information, necessitates specialized methodologies and
techniques for optimal prediction performance. As a result, many studies have been
conducted to develop innovative approaches to address these challenges, including
loss functions for CNNs. These studies show that the proposed methods for ordinal
classification give much better results than the classical methods. In this section, we
will summarize the recent advancements targeting ordinal loss functions for CNNs.

Niu et al. [48] proposed an end-to-end deep learning approach for ordinal regres-
sion problems, specifically for age estimation from face images. They transformed
ordinal regression into a series of binary classification sub-problems and employed a
multiple-output CNN to solve these tasks jointly. Output nodes are responsible for if
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Figure 1: In the binary classification approach, output nodes are independent of each
other; therefore, inconsistencies in their individual predictions may occur. Although
both predictions are correct for the case in the figure, the prediction on the right-hand
side is more ideal.

they are greater than a certain rank or not. For N classes, N � 1 output nodes are suf-
ficient for the output layer, where the label extension should be applied to the target
class for this approach. The authors observed improved performance in comparison
to other ordinal regression techniques, such as metric learning and the prevalent cross-
entropy loss function. Despite the enhanced results achieved by the proposed method,
inconsistencies in the ranking of the outputs were present in the output classification
subtasks. Additionally, they published the Asian Face Age Dataset (AFAD), contain-
ing over 160000 facial images with precise age labels, making it the largest public
age dataset at the time.

Cao et al. [49] proposed a consistent rank logits (CORAL) framework for rank-
inconsistencies. The authors addressed the issue of classifier inconsistencies in neural
network-based implementations of extended binary classification approaches. Nor-
mally, the confidence of the model predictions should follow a non-increasing order
when the rank increases; however, in Niu et al.’s work, this is not guaranteed (see Fig-
ure 1). The main difference between this framework compared to Niu et al.’s work is
that during the training, weight sharing (except the bias term) is applied in the penul-
timate layer. They showed that the CORAL framework offers theoretical guarantees
for classifier consistency. By implementing CORAL in common CNN architectures
like ResNet, they demonstrated improved predictive performance in age estimation
tasks compared to the previous approaches.

Shi et al. [50] introduced the Conditional Ordinal Regression for Neural Network
(CORN) framework, which aims to enhance the capacity of neural networks by loos-
ening the constraint on the penultimate layer of the CORAL framework and incor-
porating conditional probabilities. The authors conducted experiments on various
datasets such as MORPH-2 [51], AFAD [48], AES [52], and FIREMAN [53] and
reported that the performance of the CORN method surpassed earlier approaches.

A significant drawback of techniques similar to CORN is the necessity to modify both
the model architecture (output layer) and the labeling structure. Another line of ap-
proach for the ordinal classification problems is integrating unimodality distribution
on the model’s output predictions. This method enforces unimodality by penalizing
inconsistencies in the posterior probability distribution between neighboring labels.
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Figure 2: Assuming Mayo-2 is the true class, the CE loss function provides the same
loss for both cases. The unimodal distribution is more intuitive and provides more
realistic results.

Typically, the penalizing term is incorporated alongside the primary loss function,
with cross-entropy being the most commonly used.

Belharbi et al. [54] proposed a non-parametric ordinal loss for neural networks that
aims at promoting output probabilities to follow a unimodal distribution (see Figure
2). Basically, they evaluated the neighborhood couples in the output probabilities
and applied a punishment if their probabilities are not compatible with the unimodal
distribution. They have validated their methods on different problems such as breast
cancer grading [55], predicting the decade of a photograph taken [56], and age estima-
tion [48]. Albuquerque et al. [57] applied the same technique by adding unimodality
losses onto cross-entropy (referred to as CO2 in Equation 1) and entropy losses (re-
ferred to as HO2 in Equation 3) for the final loss function. The Herlev dataset [58],
consisting of 917 images of individual cervical cells in different stages of the disease,
is used in their experiments, along with a range of CNN architectures. Both papers
reported superior performance when compared to Niu et al.’s work [48] and CE loss.

CO2 and HO2 losses are frequently used for comparison in this study:
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where CE and H refer to Cross entropy and Entropy losses, respectively, yn is ground
truth, ŷn is model predictions, K is the total number of classes, � is a parameter that
determines the strength of the unimodal loss, and � is the margin term.

An alternative group of methods involves utilizing regression to estimate a single
continuous value at the output or applying a sigmoid activation function on top of
it to constrain the prediction within the range of [0, 1]. Subsequently, thresholds or
probability distributions are employed to transform the output into discrete levels.
Beckham et al. [59] proposed a method that adds another layer consisting of a single
node on top of the final layer and employs squared-error loss. They reported that if
the final output is processed through a sigmoid function followed by multiplication
of K (Number of classes) -1, it gives better results. For the inference, they simply
rounded the predicted value to the nearest integer. They have compared their method
on a diabetic retinopathy dataset [60] and reported better performance compared to
the standard CE loss. However, regression-based approaches have been shown to be
inferior to other methods in many studies [57, 54].
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Table 1: Detailed overview of studies in CAD of UC domain. In studies that have multiple datasets, labeling as A and B is performed
to show their performance results separately in 2 and 3.

Study (year) Dataset Model Development Set Test Set Model

Alammari et al. (2017) [16] Private, single center 17534 images from 65 videos (A)
32753 images from 116 videos (B) 10004 images from 29 videos 9-layers CNN

Tejaswani et al. (2019) [17] Private, single center 29841 images from 254 videos 14925 images from 62 videos AlexNet
Ozawa et al. (2019) [20] Private, single center 26304 images from 444 patients 3981 images from 114 patients GoogLeNet

Stidham et al. (2019) [22] Private, single center 14862 images from 2778 patients3 1652 images from 304 patients
11432 images from 30 videos Inception-v3

Maeda et al.(2019) [19] 1 Private, single center 12900 images from 87 patients 9935 images from 100 patients SVM
Takenaka et al. (2020) [24] Private, single center 40758 images from 2012 4187 images from 875 patients Inception-v3

Bhambhvani et al. (2021) [25] Public (HyperKvasir),
single Center 90% of 777 images from 777 patients 10% of 777 images from 777 patients ResNext-101

Gottlieb et al. (2021) [28] 2 Private, multi center 80% of 795 videos from 249 patients3 20% of 795 videos from 249 patients3 Proprietary algorithm, RNN

Yao et al. (2021) [31] 4 Private, multi center 16000 images from 3000 patients 3 51 videos (A)
264 videos from 157 patients (B) Inception-v3

Huang et al. (2021) [32] Private, single center 70% of 856 images from 54 patients 30% of 856 images from 54 patients Inception-v3, SVM, k-NN
Becker et al. (2021) [34] Private, multi center 80% of 1672 videos from 1105 patients3,4 20% of 1672 videos from 1105 patients3,4 ResNet50
Schwab et al. (2021) [36] Private, multi center 80% 1881 videos from 726 patients3,4 20% 1881 videos from 726 patients3,4 ResNet34

Harada et al. (2021) [38] Private, single center 7183 images for training
2052 images for validation 1027 images -

Maeda et al.(2021) [39] 5 Private, single center 44097 images 135 patients SVM

Luo et al. (2022) [40] Private, single center
80% of 9928 images (A)
80% of 4378 images (B)
A+B: 1317 patients

20% of 9928 images (A)
20% of 4378 images (B)
A+B: 1317 patients

UC_DenseNet

Sutton et al. (2022) [41] Public (HyperKvasir),
single center

80% of 2642 images (A)3
80% of 840 images (B)3

20% of 2642 images (A)3
20% of 840 images (B)3 DenseNet121

Kadota et al. (2022) [43] Private,single center 80% of 10265 images3 20% of 10265 images3 DenseNet169 % RankNet
Polat et al. (2022) [61] Public (LIMUC), single center 9590 images from 462 patients3 1686 images from 85 patients DenseNet121
Polat et al. [15] Public (LIMUC), single center 9590 images from 462 patients3 1686 images from 85 patients Inception-v3

1 This work is based on Endocytoscopy data.
2 In this study, the DL model is trained with video-level labels.
3 Cross-validation is applied for model performance assessment.
4 MES estimations were performed for the whole video, not still frames.
5 Contact microscopy.
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Table 2: Performance results of the studies (Part 1).

Study (year) Outcome Measures Performance result
(MES based)

Remission Estimation
(Mayo 0-1 vs. Mayo 2-3)

Histologic
Remission

Frame
Scoring

Alammari et al. (2017) [16] MES Macro accuracy (A): 0.676
Macro accuracy (B): 0.436 - - Frame, Video

Tejaswani et al. (2019) [17] MES Macro accuracy: 0.606 - - Frame, Video

Ozawa et al. (2019) [20] MES (Mayo 0, Mayo 1, and Mayo 2-3) Accuracy: 0.704⇤ AUROC: 0.980
Accuracy: 0.946⇤ - Frame

Stidham et al. (2019) [22] MES Kappa: 0.840
Accuracy: 0.778⇤

AUROC: 0.970
Accuracy: 0.917⇤

Sensitivity: 0.830
Specificity: 0.960

- Frame, Video

Maeda et al.1 (2019) [19] Histologic inflammation estimation (active vs. healing) - -
Accuracy: 0.910
Sensitivity: 0.740
Specificity: 0.970

Frame

Takenaka et al. (2020) (2020) [24]
Histologic remission
Endoscopic remission
UCEIS

-

Kappa: 0.798
Accuracy: 0.901
Sensitivity: 0.933
Specificity: 0.878

Kappa: 0.859
Accuracy: 0.929
Sensitivity: 0.924
Specificity: 0.935

Frame

Bhambhvani et al. (2021) [25] MES estimation (Mayo 1, Mayo 2, and Mayo 3)
Accuracy: 0.772
Sensitivity: 0.724
Specificity: 0.857

- - Frame

Gottlieb et al.2 (2021) [28] MES
UCEIS

QWK: 0.844
Accuracy: 0.702⇤

Sensitivity: 0.716⇤*
Specificity: 0.901⇤

Accuracy: 0.866⇤ - Video

Yao et al. (2021) [31] MES

QWK (A): 0.840
Accuracy (A): 0.780
QWK (B): 0.590
F1 (B): 0.571

Accuracy (B): 0.837 - Video

Huang et al. (2021) [32] MES 0-1 vs. MES 2-3
MES 0 vs. MES 1 -

Accuracy: 0.945
Sensitivity: 0.892
Specificity: 0.963

- Frame

⇤ Performance metrics marked ⇤ are calculated using the reported numerical values in the study.
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Table 3: Performance results of the studies (Part 2).

Study (year) Outcome Measures Performance result
(MES based)

Remission Estimation
(Mayo 0-1 vs. Mayo 2-3)

Histologic
Remission

Frame
Scoring

Becker et al. (2021) [34]
MES 0 vs. MES 1-2-3
MES 0-1 vs. MES 2-3
MES 0-1-2 vs. MES 3

-
AUROC: 0.850
Precision: 0.850
Recall: 0.810

- Video

Schwab et al. (2021) [36] MES QWK: 0.680 (video-level)
QWK: 0.660 (frame-level) - - Frame, Video

Harada et al. (2021) [38] UC vs. normal
Accuracy: 0.845
F1: 0.753
Specificity: 0.899

- - Frame

Maeda et al. (2021) [39] Healing group vs. Active group - - - Frame, Video

Luo et al. (2022) [40] MES

Accuracy (A): 0.906
F1 (A): 0.868
Accuracy (B): 0.916
F1 (B): 0.858

Accuracy (A): 0.976
F1 (A): 0.976

AUROC (A): 0.975
Accuracy (B): 0.989
F1 (B): 0.989

AUROC (B): 0.988

- Frame, Video

Sutton et al. (2022) [41] MES 0 vs MES 1-2-3 (A)
MES 0-1 vs MES 2-3 (B) -

F1: 0.913
Accuracy: 0.875
Sensitivity: 0.790
Specificity: 0.910

- Frame

Kadota et al. (2022) [43] MES QWK: 0.578
Accuracy: 0.720 - - Frame

Polat et al. (2022) [61] MES

QWK: 0.854
F1: 0.697
Accuracy: 0.772
Sensitivity: 0.693
Specificity: 0.911

Kappa: 0.827
F1: 0.858
Accuracy: 0.957
Sensitivity: 0.974
Specificity: 0.876

- Frame

Polat et al. (2022) [15] MES, Remission
QWK: 0.8678
F1: 0.7261
Accuracy: 0.7880

Kappa: 0.8598
F1: 0.8847
Accuracy: 0.9590

- Frame

⇤ Performance metrics marked ⇤ are calculated using the reported numerical values in the study.
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CHAPTER 3

LABELED IMAGES FOR ULCERATIVE COLITIS DATASET

In the field of machine learning research, datasets play a fundamental role as they
are the core part of developing, training, and evaluating various algorithms and mod-
els. The availability of high-quality, diverse, and representative datasets is essential
for driving advancements in the field and fostering a deeper understanding of com-
plex problems. The process of annotating a medical dataset is laborious and demands
the involvement of numerous experts, with a strong emphasis on attention and accu-
racy. As detailed in Section 2, the majority of studies conducted on the computer-
aided diagnosis (CAD) of UC have relied on private datasets. To our knowledge, the
HyperKvasir dataset [26] is the sole publicly available resource containing labeled
UC images. However, its limited size, comprising only 851 images, has hindered its
widespread adoption in related studies. All in all, the practice of using private datasets
has several drawbacks that hamper the advancement of research in this field:

• Reproducibility. It becomes difficult for other researchers to reproduce the
same result, leading to a lack of validation of the proposed work. As a result,
the study becomes questionable.

• Comparison. It prevents transparent comparisons between different studies
and methodologies, which creates uncertainty about which method works well
and which works poorly, and complicates the transition of these studies to clin-
ical use.

• Advancement of technology. It is difficult for researchers who cannot reach
the necessary datasets but have sufficient technical knowledge to advance in
this field. So, research and development in this field becomes less democratic.

In light of these, it was necessary to form a labeled UC dataset. As a result, we
have created the largest publicly available UC dataset, LIMUC, which has been uti-
lized extensively in our research. LIMUC aims to foster more effective and accurate
machine-learning models for the automated diagnosis and treatment of UC. In this
section, details on the data collection and labeling process will be shared.
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3.1 Ulcerative Colitis and Mayo Endoscopic Score

Inflammatory bowel disease (IBD) encompasses a group of disorders characterized by
chronic inflammation of the gastrointestinal (GI) tract. The two primary types of IBD
are UC and Crohn’s disease (CD). These chronic, lifelong conditions can be managed
through treatment but are currently incurable. UC, in particular, is characterized by
continuous inflammation and ulcers in the lining of the colon and rectum, causing
symptoms such as abdominal pain, diarrhea, and rectal bleeding. The disease’s sever-
ity and extent can vary among individuals, necessitating personalized approaches to
treatment and ongoing monitoring. UC typically starts in the rectum and lower colon
before progressively extending throughout the entire colon, as illustrated in Figure 3.

Figure 3: Example patterns of affected parts of CD and UC [1].

Endoscopic procedures, such as colonoscopy and sigmoidoscopy, are vital in eval-
uating the endoscopic activity of both UC and CD. These procedures enable medi-
cal professionals to visualize the entire colon using a slender, flexible, lighted tube
equipped with an attached camera. During the examination, the physician may also
collect small tissue samples for histopathological analysis. The assessment of IBD
does not rely on a single gold standard method; instead, experts consider various pa-
tient data sources, including blood tests, endoscopic evaluations, genetic factors, and
histopathological examination results, to determine an activity score. Among these
indicators, endoscopic assessment plays a pivotal role in the overall evaluation of
IBD.

There are several scoring systems for the assessment of UC from endoscopic images.
Among these, MES is the most widely used scoring system to assess the disease
severity of the UC [62]. Moreover, it is also one of the most reliable scoring systems
in terms of low intra- and interobserver variability [4]; therefore, it is chosen as the
main scoring system for this study. MES system evaluates the stage of UC based only
on endoscopic examination, and each Mayo grade is given according to the frequency
of certain symptoms and patterns on the tissue as seen in Figure 4.
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Figure 4: Example UC images from the LIMUC dataset and their corresponding
scores according to the MES grading systems.

When experts perform an assessment, they mainly try to answer the questions for the
following three descriptors:

• Vascular Pattern: How much obliteration exists in the vascular pattern? Are
capillaries clearly defined, or is there complete obliteration? Is there an ery-
thema in the tissue?

• Bleeding: Is there a bleeding? If yes, how prevalent and spontaneous is that?

• Erosions and Ulcers: Is the mucosa normal? If there are erosions, what are
their sizes? Are the ulcers superficial or deep?
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Table 4: Characteristics of the cohort (n=561, three patients have no information in
the hospital’s database). Values are in mean ± standard deviation format.

Male/female 317 (56.5%) / 244 (43.5%)
Age (year) 43.3 ± 13.7

Male 44.3 ± 13.7
Female 42.1 ± 13.7

Colonoscopies per patient 2.0 ± 1.2
Male 2.0 ± 1.3
Female 1.9 ± 1.2

3.2 Data Collection and Processing

A total of 19537 endoscopic images were collected from 1043 colonoscopy proce-
dures involving 572 UC patients who underwent colonoscopy at Marmara University
Institute of Gastroenterology between December 2011 and July 2019. During this
time interval, the gastroenterologists applying the colonoscopy procedures captured
some frames, and these frames were recorded in the hospital’s database. All images
were captured using a Pentax EPK-i video processor and Pentax EC-380LKp video
colonoscope (Pentax, Tokyo, Japan) and were resized to a resolution of 352 ⇥ 288
when added to the database. The images to be captured were chosen by the opera-
tor at various moments throughout the colonoscopy procedure: as a result, there is
no spatial connection among the images belonging to the same colonoscopy proce-
dure. This leads to greater heterogeneity, resulting in a more diverse dataset. The re-
search design and all data obtained from electronic health records received approval,
prior to this study, from the Ethical Review Board of Marmara University School of
Medicine (Study Protocol No: 09.2020.627, Approval date: 12.06.2020). Figure 5
shows a sample image for each Mayo class from the dataset. The original version of
the images contained certain information such as patient-id and date/time. Before the
images were made public, these regions were covered with black pixels. Moreover,
the captions of the images were changed to make them anonymized.

Along with the images, patient age and sex information is drawn from the database of
the hospital. Statistics related to the study cohort are given in Table 4. The mean age
for the cohort is 43.3 ± 13.7 years, with males having a slightly higher mean age of
44.3 ± 13.7 years, while females have a mean age of 42.1 ± 13.7 years. On average,
each patient underwent 2.0 ± 1.2 colonoscopies, with both male and female patients
exhibiting similar numbers of colonoscopies per patient (2.0 ± 1.3 for males and 1.9
± 1.2 for females).
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Figure 5: Sample images from the LIMUC dataset (a: Mayo-0, b: Mayo-1, c: Mayo-
2, d: Mayo-3).
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3.3 Data Labeling

The whole dataset was initially given to two experienced gastroenterologists, who
specialized in IBD, to be annotated. The annotators were asked to label images
into five different classes, namely, ‘not suitable for evaluation’, ‘Mayo-0’, ‘Mayo-
1’, ‘Mayo-2’, and ‘Mayo-3’. MES was chosen as the scoring system as it is the most
common and reliable grading system that is used to assess the disease severity of
UC [62, 4]. The annotators simply put the currently evaluated image into a folder
named with the target class when performing the annotation. Results of the review
process were presented in Table 5. The total number of images to evaluate was 19537
for both reviewers. Reviewer-1 considered 7621 images as not suitable for evalua-
tion, while Reviewer-2 deemed 9207 images as not suitable. There were 11916 and
10330 images evaluated as one of the Mayo scores by Reviewer-1 and Reviewer-2,
respectively, with 5720 images being commonly assessed by both reviewers. The in-
terreader reliability for the annotation was measured with quadratic weighted kappa
(QWK) score and obtained as 0.781. 7652 images, which are annotated differently
by two reviewers and at least one reviewer has annotated as one of the Mayo classes,
were reviewed by a third experienced gastroenterologist. The third reviewer indepen-
dently annotated these differently labeled images as one of the five classes without
observing the previous annotations. A web-based user interface for labeling the con-
tradictory samples was prepared for the third reviewer, as seen in Figure 6. Final
scores were determined using majority voting. Table 6 shows the breakdown of an-
notations of the third reviewer. Out of 7652 images, 1895 images were assessed as
not suitable to annotate, and 5757 images were evaluated into one of the Mayo scores
by the third reviewer. The third reviewer had differing Mayo annotations from the
previous two reviewers for 201 images, in which both the first two reviewers also as-
signed a Mayo score. The remaining 5556 images were in agreement with one of the
initial reviewers. Combining these images with the 5720 images from the first and
second reviewers’ common annotations, the final dataset consisted of 11276 images.
The Final column in Table 6 corresponds to the resulting dataset, which is published
as the LIMUC dataset. The LIMUC dataset is shared on the Zenodo platform1 under
the Creative Commons Attribution 4.0 license.

Table 5: Distributions of annotation among different classes.

Reviewer-1 Reviewer-2 Common
Total images to evaluate 19537 19537 -
Evaluated as not suitable for evaluation 7621 9207 -
Evaluated as one of the Mayo scores 11916 10330 5720
Mayo-0 7398 4503 3472
Mayo-1 2473 3796 1210
Mayo-2 1190 1014 470
Mayo-3 855 1017 568

1 https://doi.org/10.5281/zenodo.5827695
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Figure 6: User interface designed for the third reviewer to annotate images.

Table 6: Distribution of annotations of the third reviewer

Reviewer-3 From Reviewer 1&2 Final
Total images to evaluate 7652 - -
Evaluated as not suitable to annotate 1895 - -
Evaluated into one of the Mayo scores 5757 - -
Differently Annotated from the other
reviewers 201 - -

To join dataset (agreement with one of
the observers) 5556 5720 11276

Mayo-0 2633 3472 6105
Mayo-1 1842 1210 3052
Mayo-2 784 470 1254
Mayo-3 297 568 865

Statistics related to both the original dataset and annotated dataset are presented in
Figures 7 and 8. On average, each patient has 1.8 colonoscopy procedures in the
data collection time period, and for each colonoscopy, 18.8 images exist on average
for the dataset (19537 samples); as a result, there were nearly 34 images on average
per patient before the annotation process. The final dataset has an imbalanced struc-
ture in terms of class sizes, where Mayo-0 is 54.14%, Mayo-1 is 27.07%, Mayo-2
is 11.12%, and Mayo-3 is 5.67% of all annotated images. Since some of the im-
ages were excluded during the annotation process, the average number of images per
patient has fallen to 20.
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Figure 7: Left: Number of colonoscopy operations per patient in the original dataset
(mean: 1.8). Right: Histogram of number of images per colonoscopy (mean: 18.8).

Figure 8: Left: Distributions of images among Mayo classes. Right: Histogram of
the number of images per patient for the final dataset (mean: 20).
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CHAPTER 4

CLASS DISTANCE WEIGHTED CROSS ENTROPY

4.1 Motivation

The Cross-entropy (CE) loss function (Equation 5) is one of the most commonly used
loss functions in classification problems. When using CE loss, the output layer of
the DL model contains as many nodes as the number of classes, where each node
corresponds to a different class. Then, the model’s output predictions are converted
to a scalar loss value using the ground-truth values.

CE = �
N�1X

i=0

yi ⇥ log ŷi = � log ŷc (5)

In Equation 5, i refers to the index of the class in the output layer, c is the index
of the ground-truth class, y is the ground-truth label, and ŷ refers to the prediction.
This widely adopted approach for tackling classification tasks misses very critical in-
formation that exists among the ordinal classes, which is the ranking of the classes.
Given that one-hot encoding is employed for ground-truth labels at the output layer,
yi becomes 0 for 8i 6= c. Consequently, the CE loss only evaluates the predicted con-
fidence of the true class. However, in scenarios where an ordinal relationship exists
among output classes, whole probability distributions should be taken into account.
For instance, within an ordinal class structure ranging from 0 to 9, a prediction of
0 for class 9 is considerably more detrimental than predicting 8. However, CE loss
results in exactly the same value for those two different predictions (given that their
output confidences are the same). An improved loss function should assess the rank-
ing and impose a greater penalty on predictions that deviate further from the true class
(see Table 7). Due to its inability to penalize predictions at a greater distance from
the correct classes more heavily than those closer, the CE loss function is suboptimal
for ordinal classification problems.

In Section 2.2, several approaches addressing this issue were presented. However,
some of these approaches bring different problems within themselves. For example,
approaches that transform the multiclassification problem into binary sub-classification
tasks, such as CORAL [49] and CORN [50], require a change in model architecture
and labeling structure, so they cannot be used out-of-box. Although the approaches
that use enforcing unimodal distributions [54, 57] can be used for the existing ar-
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Table 7: Consider the following three sample cases with the same cross-entropy loss,
where Class 0 is the ground truth, and the classes exhibit an ordinal relationship. An
ideal loss function for ordinal classification should assign the lowest cost to Case 1,
indicating the most favorable outcome, while allocating the highest cost to Case 3,
signifying the least favorable outcome.

Classes Case 1 Case 2 Case 3
0 0.6 0.6 0.6
1 0.3 0.1 0
2 0.1 0.3 0.1
3 0 0 0.3

Table 8: Approaches enforcing unimodality distribution result in the same loss value
for the two different cases, where Class 0 is the ground truth, and the classes exhibit
an ordinal relationship. For both cases, the loss value is calculated in transitions from
0 to 0.19 and from 0.19 to 0.21.

Classes Case 1 Case 2
0 0.6 0.6
1 0.0 0.0
2 0.19 0.0
3 0.21 0.19
4 0.0 0.21

chitectures, they only evaluate the neighborhood couples ordering, which makes it
insufficient in assessing the distance of the predictions to the real classes (see Table
8). Moreover, regression-based approaches have been shown to be inferior to other
ordinal losses in many studies [48, 49, 50, 54, 57].

4.2 Class Distance Weighted Cross Entropy Loss Function

We introduce a novel, non-parametric loss function, denoted as CDW-CE (6), which
evaluates the confidences of non-true classes as opposed to focusing on the true class
confidence. Our proposed methodology incorporates two primary components. First,
we impose a penalty that reflects the degree of deviation of each misprediction from
the actual value, employing log loss as the metric. Given that one-hot encoding is
the standard encoding technique for class labels in multi-class classification prob-
lems, the predicted confidences for non-true classes are expected to be zero. Thus,
as the mispredictions move away from the zero value, the loss increases. Secondly,
we incorporate a coefficient into the loss calculation for each class. This coefficient
leverages the distance to the ground-truth class and exhibits an increasing trend with
respect to the distance. This added component ensures that our proposed loss function
effectively accounts for the ordinal nature of the classes and penalizes mispredictions
more heavily as they deviate further from the true class. We use a power term ↵ in
the loss coefficient that determines its strength. The power term ↵ in the loss coeffi-
cient plays a crucial role in our proposed loss function. As a hyperparameter, alpha
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governs the degree of penalization with respect to the distance between predicted and
ground-truth classes. As alpha increases, the influence of the distance grows, leading
to stronger penalization for mispredictions that deviate further from the true class.

CDW-CE = �
N�1X

i=0

log(1� ŷi)⇥ |i� c|↵ (6)

where the notation is the same as in Eqn. 5. CDW-CE loss is differentiable; therefore,
it can be directy used in backpropogation calculation:

d(L)

d(ŷi)
= �

N�1X

i=0

d

d(ŷi)
(log(1� ŷi)⇥ |i� c|↵)

Notice that only the term where the index i is in the summation will have a nonzero
derivative. For all other terms, the derivative will be zero. So, we can rewrite the
expression as:

d(L)

d(ŷi)
= � d

d(ŷi)
(log(1� ŷi)⇥ |i� c|↵)

d(L)

d(ŷi)
= �|i� c|↵ ⇥ d

d(ŷi)
(log(1� ŷi))

d(L)

d(ŷi)
= �|i� c|↵ ⇥

✓
� 1

1� ŷi

◆

d(L)

d(ŷi)
=

|i� c|↵

1� ŷi
(7)

As seen in Equation 7, when the prediction value deviates further away from its target
value of zero, the derivative term increases.

The implementation of CDW-CE with the PyTorch framework is presented in Ap-
pendix A.
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CHAPTER 5

EXPERIMENTAL SETTINGS

In this section, details of the experimental environment are given as it is foundational
for the comparison of the results. An important deficiency in both the CAD of UC
and ordinal classification literature is that in most of the studies, the proposed methods
are not compared with each other sufficiently. For example, in section 2.1, in a large
portion of all studies, there is no comparison with other CNN architectures. Likewise,
in section 2.2, proposed ordinal losses were only evaluated against naive methods
such as CE or regression-based losses. In this work, we perform a comprehensive
evaluation by training different CNN architectures over different loss functions, and
in this chapter, we give the details of the experimental settings.

5.1 Model Training and Evaluation

In our study, we allocated 15% of the images (comprising 1686 images from 85 pa-
tients) as the test set, ensuring that the class (i.e., MES) ratios remained consistent
with the overall study group. We performed the splitting at the patient level, assign-
ing all images from a single patient to either the test set or the model development
set. The remaining 85% of images (which included 9590 images from 479 patients)
were utilized for 10-fold cross-validation.

For each fold, the training and validation split was conducted at the patient level,
with random selection while maintaining class ratios, mirroring the approach used
for the test set. CNN architectures, trained using different cross-validation folds, were
evaluated on a separate, held-out test set (refer to Figure 9). We report performance
metrics as the mean values derived from the 10-fold cross-validation results.

We assessed model performance based on two baselines: full 4-level Mayo score clas-
sification and remission state classification, which consists of two levels (remission:
Mayo 0 or 1, and non-remission: Mayo 2 or 3). While the CNNs were trained exclu-
sively for full Mayo scores, we converted model predictions to remission states for
remission classification purposes. We compared model predictions with ground-truth
labels provided by human experts to measure performance.

Given the presence of class imbalances and ordinal relationships among them, we
identified the Quadratic Weighted Kappa (QWK) score as the primary performance
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metric but also reported other related metrics such as macro F1 score, accuracy, and
mean-absolute score (MAE) for the classification of all Mayo scores. For remission
classification, we report Cohen’s kappa, accuracy, and F1 scores. The QWK is a
commonly used statistic for evaluating agreement on an ordinal scale and serves as
one of the most suitable singular performance metrics for this problem, considering
class imbalances.

The QWK is calculated based on a confusion matrix of the model’s predictions. It
involves the following steps:

• Confusion Matrix: First, a confusion matrix is created that outlines the actual
versus the predicted classifications.

• Weights Matrix: Next, a weights matrix is created as in Equation 8. This
matrix is the same shape as the confusion matrix, but it’s filled with the squared
difference between the actual and predicted ratings.

wi,j =
(i� j)2

(N � 1)2
(8)

• Expected Matrix: This is a matrix showing what we would expect the confu-
sion matrix to look like if the predictions were random. It’s calculated as the
outer product of the row and column totals of the confusion matrix.

• Normalization: Both the confusion matrix and the expected matrix are nor-
malized by dividing each by the total number of observations.

Finally, QWK is calculated as in Equation 9.

QWK = 1�
P

i,j wi,jOi,jP
i,j wi,jEi,j

(9)

where O is the correlation matrix and E is the expected matrix.

We employed three widely recognized CNN architectures, namely ResNet18 [35],
Inception-v3 [23], and MobileNet-v3-large [63], for training with various loss func-
tions. Both ResNet and Inception model families have been extensively utilized for
estimating UC severity in the literature [22, 20, 24, 25, 34, 36, 31]. MobileNet-v3-
large, a more recent model, distinguishes itself through its exceptional speed and
performance, rendering it an ideal candidate for real-time UC severity estimation de-
rived from video frames. Therefore, measuring performance on these three models is
compatible with the literature and the domain.

For data augmentation, we incorporated random rotation (0� � 360�) and horizontal
flipping techniques and initialized the weights using pretrained models from the Im-
ageNet dataset [33]. Due to class imbalance among the dataset, when forming the
batch for each forward-pass operation, an equal number of samples from each class
is ensured to overcome class imbalance problems. We employed the Adam optimizer
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Figure 9: Data splitting for the model training and evaluation. Image is reprinted
from the author’s publication in [61].

[64], featuring a learning rate of 2e4, and implemented learning rate scheduling with
a scaling factor of 0.2 when no improvement in validation set accuracy was observed
over the last 10 epochs. Early stopping was utilized to terminate training if perfor-
mance did not enhance during the previous 25 epochs. The optimal model checkpoint
on the validation set for each fold was employed to measure test set performance. The
training and testing code is implemented using PyTorch [65] and CNN architectures
obtained from the Torchvision library [66].

The initial version of the images incorporated specific details, including software ID
and date/time information. Before the images are used for the training, a black-out
operation is applied for these regions to prevent any bias in the model (Figure 10).

In the interest of promoting transparency and ensuring the replicability of the exper-
iments presented in this thesis, all source code associated with the research has been
made publicly available. This initiative aligns with the growing trend in the scientific
community to encourage open research practices, which facilitate the validation and
extension of findings by other researchers.
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Figure 10: Masking regions including text.

The source code can be accessed through a dedicated repository hosted on the GitHub
platform 1, with appropriate documentation provided to enable ease of use and under-
standing. By releasing the source code, this research aims to contribute to the on-
going advancement of knowledge in the field and foster collaborative efforts among
researchers. It is encouraged that any researchers interested in building upon or vali-
dating the findings presented in this thesis make use of this resource.

We assessed the proposed model in comparison with four distinct methodologies
specifically tailored for ordinal regression tasks: the CORN framework [50], CO2
[57], HO2 [57], using regression with MSE loss, and the CE loss function, which
serves as the primary baseline. For the CORN approach, three output nodes are used
at the output layer, where each node is responsible for an independent binary task. In
particular, node-0 predicts if the ground truth is greater than Mayo-0 or not, node-1
predicts if the ground truth is greater than Mayo-1 or not, and node-2 predicts if the
ground truth is greater than Mayo-2 or not. Then, the final loss value is calculated as
the sum of binary cross-entropy losses obtained from each node. Label extension is
applied for the CORN loss. For the CO2 (Equation 1) and HO2 (Equation 3) losses,
the main loss function (either cross-entropy or entropy loss) is scaled with a � co-
efficient as in the original paper implementation [67]. Although the formulation in
the paper is different, where the ordinal loss term is scaled (see Equation 1 and 3),
mathematically, both formulations work in the same way, which basically adjusts the
ratio between the main loss term and ordinal loss term. Tuning of the hyperparam-
eter � was carried out by exploring values from the set {0.1, 0.01, 0.001}, utilizing
10-fold cross-validation to evaluate the performance of each value. For the regression
approach, we followed the approach of Polat et al. [61]. A single node at the output
layer without any activation function is employed, and MSE is used to calculate the
loss. As a baseline method, we employed standard cross entropy loss as shown in
Equation 5.

Apart from the ordinal losses, other loss function-specific approaches were also eval-
uated in this work to see the state of the proposed approach with respect to other uti-

1 https://github.com/GorkemP/labeled-images-for-ulcerative-colitis
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Figure 11: Training a CNN with the ArcFace loss. The margin penalty m and feature
scale s are hyperparameters that need to be tuned [46].

lized losses in this domain. Recently, Xu et al. [45] employed additive angular margin
loss (ArcFace) [46], which is one of the state-of-the-art techniques in face recogni-
tion domain, for training CNNs in the task of UC severity classification. ArcFace loss
increases the discriminative capacity of DNNs by leveraging feature embeddings and
weights in the final fully connected layer. As seen in Figure 11, a margin m angle is
added to the angle between the feature vector and the weight vector. Then, the result-
ing logits are scaled with s. Scaled logits are processed through the softmax function
and then evaluated in CE to obtain a loss value. In our study, we replicated their
experiment to see its result on the LIMUC dataset and compare it with the CDW-CE.

Another line of experiments was also performed by adding a margin to the CDW-
CE loss function as in Equation 10. As shown in ArcFace and several other works
(CosFace [68], SphereFace [69], NormFace [70]), adding a margin to the loss func-
tion enforces intra-class compactness and increases inter-class distances. This idea is
incorporated into CDW-CE loss by adding a margin to the class probabilities. Since
CDW-CE penalizes the non-ground truth classes (logits, whose value must be zero),
we need to incorporate the margin in an additive way. Moreover, the value of the new
logit is limited to a value of one for numerical stability. Therefore, the addition of
margin onto predicted confidence should be clipped at the value of one.

CDW-CE with Margin = �
N�1X

i=0

log(1�max(1, ŷi +m))⇥ |i� c|↵ (10)

Some images, which were labeled differently by the first two reviewers, had to be
labeled by the third reviewer. If the third reviewer agreed with one of the first two re-
viewers, a 2 versus 1 condition occurred, and these images were entered into the final
data set. We have marked these images as hard samples because at least one reviewer
made a different assessment on these images, which means these are challenging (or
confusing) images for experts. In order to provide a more fine granular analysis, we
have also provided performance results and analysis for the hard samples.
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5.2 Explainability Analysis

In order to enhance the transparency and interpretability of CNN models, a variety
of visualization techniques have been proposed in recent literature, including Class
Activation Mapping (CAM) [71] and Gradient-weighted Class Activation Mapping
(Grad-CAM) [72]. The ability to visualize the most salient regions that a model uti-
lizes for making predictions is particularly crucial within the medical domain, where
the alignment of a model’s decision-making process with that of domain experts is of
paramount importance. As a result, models that demonstrate similar focus areas as
experts are more likely to gain trust and adoption among end-users.

The employment of CAM visualizations as a comparative criterion enables the assess-
ment and selection of models based on their interpretability, especially when their
performance metrics are comparable. In such cases, models with more reasonable
and justifiable activation maps could be favored over others, despite having similar
performance outcomes. Furthermore, these visualizations offer developers a valuable
tool for debugging their approach, identifying any potential biases or issues in the
model’s prediction process, and ultimately refining the model’s performance [72].

In this study, we have generated CAM visualizations using the methodology outlined
by Zhou et al. [71]. It is important to note that CAMs are specifically generated
for each class, highlighting only the class-specific discriminative regions correspond-
ing to the target class. In this context, we have compared CDW-CE’s explainability
characteristics with the widely used CE loss function. This comparison aims to eluci-
date further the advantages and potential improvements offered by our proposed loss
function in the realm of deep neural network interpretability.

To conduct a quantitative and objective evaluation of the CAMs generated by the
models trained with CDW-CE and CE loss functions, two ResNet18 models trained
with CE and CDW-CE losses are used to generate CAMs for different images in the
test set. Only the predictions, which were correctly predicted by the two models,
were included in the comparison. Then, the CAMs of these images were evaluated by
three IBD experts independently. These experts were asked to assess the compatibil-
ity of the CAMs with symptomatic areas in the tissue, i.e., to determine which CAM
is more closely aligned with the regions they would consider in their own decision-
making process. Additionally, the experts were provided with the option to indicate
that both CAMs were equally reasonable if they were unable to discern a clear dis-
tinction between the two visualizations. We have implemented a user interface for
IBD experts to make their decisions easily (see Figure 12). In the user interface,
we have shown the original image, indicating its class, accompanied by CAMs. The
CAM images generated by the models for each image were randomly labeled as AI-1
(Artificial Intelligence 1) and AI-2 to ensure anonymity. The clinicians were then
asked to select between the three available options: 1) AI-1 seems more reasonable
than AI-2, 2) AI-2 seems more reasonable than AI-1, and 3) Both AI systems seem
equally reasonable. In total, the IBD experts were presented with 240 images, includ-
ing 60 images from each class. This evaluation process was completed independently
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Figure 12: User interface provided to the experts displays the CAM visualizations
alongside the image. Experts are asked to evaluate the spots used in the decision-
making process of CE and CDW-CE and choose the one which they think is more
reasonable to them (i.e., more aligned with their decision-making).

by each IBD expert to ensure an unbiased comparison of the CAMs produced by the
CE and CDW-CE loss function-trained models.

5.3 Experimental Evaluation on an Additional Dataset: Diabetic Retinopathy

In order to further validate the generalizability and applicability of the proposed
CDW-CE loss function, it is essential to examine its performance on other datasets
that exhibit ordinality in their annotations. Assessing the proposed method on various
datasets is critical for establishing its robustness, as well as highlighting its poten-
tial for adaptation and usage across a diverse range of medical imaging applications.
Conducting such evaluations will not only provide valuable insights into the trans-
ferability of the CDW-CE loss function but also ensure that the research findings are
comprehensive, thereby strengthening the overall conclusions drawn from the study.

One such suitable problem for the evaluation of the CDW-CE loss function is the dia-
betic retinopathy (or diabetic eye disease) assessment. Diabetic retinopathy (DR) is a
common complication of diabetes that affects the blood vessels in the retina and is a
leading cause of blindness worldwide [73]. The severity of DR is often assessed using
ordinal grading systems [74], which makes the DR dataset an appropriate choice for
assessing the performance of the proposed CDW-CE loss function in the context of
ordinal classification tasks.

By conducting an extensive experimental evaluation of the CDW-CE loss function
on the DR dataset, this study aims to provide a thorough and rigorous assessment of
the proposed method’s ability to handle ordinal classification tasks in various medical
imaging domains. The results obtained from this evaluation will not only serve to
reinforce the validity of the CDW-CE loss function in the context of UC severity esti-
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mation but also demonstrate its potential applicability and effectiveness in addressing
other ordinal classification problems in the medical imaging field.

We utilize the dataset used in Diabetic Retinopathy Challenge [75] hosted on the
Kaggle platform, which is aimed at developing automated methods for detecting DR
from digital retinal images. The dataset provided for this challenge offers an excellent
resource for evaluating the performance of the proposed CDW-CE loss function on
ordinal classification tasks in the context of DR due to the following reasons:

• The retinal images in the dataset are labeled by clinicians using a grading sys-
tem that assigns an ordinal severity level to each image. The severity levels
range from 0 (no diabetic retinopathy) to 4 (proliferative diabetic retinopathy),
with each level representing increasing severity of the disease (DR-0: No DR,
DR-1: Mild, DR-2: Moderate, DR-3: Severe, DR-4: Proliferative DR).

• Training and test sets are large, which contain 35126 and 53576 images, respec-
tively. This ensures a fair assessment of the model’s generalization capabilities
and helps to prevent overfitting.

• Images are provided in high resolutions, where the average image width is 4009
and height is 2712 in pixels.

Figure 13 shows the distribution of the samples across different DR classes. The
majority of the samples belong to the DR-0 class, which has 25810 samples. This in-
dicates that a large portion of the dataset consists of images with no signs of diabetic
retinopathy. The number of samples in the other classes (DR-1 to DR-4) is signifi-
cantly lower than that in the DR-0 class. The difference is particularly pronounced
for the DR-1, DR-3, and DR-4 classes, which have 2443, 873, and 708 samples,
respectively. This suggests that the dataset is heavily skewed toward non-diabetic
retinopathy cases.

Figure 14 shows two DR images belonging to DR-0 and DR-4 images. When the
severity of DR increases, hard exudates appear (yellowish spots), blood vessels grow
abnormally, and hemorrhages occur on the retina wall.

The 30% of the training set is separated as the validation set, and images are down-
scaled into 256⇥256 before feeding into the model. The same augmentation, learning
rate scheduling, and early stopping procedures were applied as we did in UC training.
QWK score is the main performance metric to compare different approaches, which
is also employed in the challenge as the target performance metric.
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Figure 13: Class distributions of the training set of the DR dataset. There is a very
high class imbalance where nearly 7 out of 10 images belong to DR-0 class, and DR-0
to DR-3 and DR-4 ratio is 32:1. The test set also follows the same pattern.

Figure 14: Two sample images from the DR dataset. Left: DR-0, healthy retina.
Right: DR-4, proliferative retina.
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CHAPTER 6

RESULTS AND DISCUSSION

In this chapter, we present the results obtained from the implementation of the pro-
posed CDW-CE loss function for estimating UC severity in endoscopic images and
discuss the findings in detail. The assessment of our proposed approach is conducted
in comparison with several existing state-of-the-art methods, including the CORN
framework, CO2, HO2, regression, and the CE loss functions. Furthermore, we ex-
plore additional experiments involving the integration of margins with CDW-CE, as
well as the comparison with the ArcFace approach in UC severity estimation. More-
over, we share the results of the experimental evaluation on a diabetic retinopathy
dataset. Our evaluation extends beyond model performance metrics, encompassing an
in-depth analysis of explainability through CAM visualizations. The insights gained
from the comparison of CAMs generated by models trained with CDW-CE and CE
loss functions are subjected to expert evaluation, providing a valuable perspective on
the potential improvements offered by our proposed loss function in terms of deep
neural network interpretability. Through this extensive analysis, we aim to demon-
strate the superiority of our novel CDW-CE loss function in facilitating more accurate,
reliable, and interpretable ulcerative colitis severity estimation using CNN models.

6.1 Power Factor Analysis of CDW-CE

The power term ↵ present in the CDW-CE loss serves as a mechanism to regular-
ize the extent of penalization of the distant classes. With an increase in the value of
↵, the penalty imposed on more distant classes intensifies. However, the degree of
penalization is subject to variation due to external factors, including the dataset, the
number of labels, and the specific CNN model employed. Therefore, before perform-
ing a comparison of different approaches, we need to determine the optimal values
of ↵ for the CDW-CE loss function. In order to ascertain the most suitable ↵ value
for each CNN model, we conducted an extensive analysis of various ↵ values. The
outcomes reported in this chapter for CDW-CE are obtained from models trained with
experimentally determined optimal ↵ values. For each CNN model, we present the
mean and standard deviation of the QWK scores corresponding to different ↵ values
in Figure 15, offering a comprehensive insight into the impact of the power term on
model performance. When choosing the optimal ↵ value, the QWK score is chosen
as the target performance metric.
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Figure 15: Change of mean and standard deviation of QWK scores according to
varying ↵ for three models.

Figure 15 demonstrates that different models may exhibit varying optimal ↵ param-
eters. As the value of ↵ increases and approaches the optimum, the model’s perfor-
mance increases, too; however, once the value surpasses the optimum, the accuracy
of the model declines. Given that ↵ is an exponential term, elevating it beyond the
optimal value results in a substantially heightened cost coefficient, which in turn,
destabilizes the training process and leads to an increase in the standard deviation
of cross-validation results, as illustrated in Figure 15. The power analysis indicates
that, counterintuitively, imposing a relatively high penalty on distant classes facilitates
more effective optimization of model training (e.g., for ↵ = 5, a 2-level neighborhood
coefficient of 25 = 32 and a 3-level neighborhood coefficient of 35 = 243, which is a
very high cost coefficient compared to the 1-level neighborhood). It is worth noting
that ↵ is not an exceedingly sensitive parameter with respect to performance, as Fig-
ure 15 reveals that even training with non-optimal ↵ values can surpass the baseline
and other ordinal approaches in terms of performance. As Figure 15 shows, opti-
mum ↵ values for ResNet18, Inception-v3, and MobileNet-v3-large are 5, 6, and 7,
respectively.

6.2 Comparison of Approaches Targeting Loss Functions

6.2.1 Ordinal Approaches

Table 9 and Table 10 show the comparison of approaches, which utilizes the ordinality
information of the problem, for the full Mayo score estimation and remission state
estimation, respectively.

For the full Mayo score estimation, the CDW-CE loss function consistently outper-
forms the other methods, achieving the highest QWK, F1 score, and accuracy, as well
as the lowest MAE. In contrast, the CE loss function demonstrates the weakest per-
formance, which indicates that this widely used loss function is not optimal and other
approaches that incorporate the ordinality information are preferable. The remaining
loss functions - MSE, CORN, CO2, and HO2 - exhibit intermediate performance lev-
els, with some variations across the different CNN models. However, none of them
manage to surpass the CDW-CE loss function in any of the evaluation metrics. Uni-
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modality approaches (CO2 and HO2) compare favorably to the CORN framework
for the ResNet18 and Inception-v3 models while only falling slightly behind for the
MobileNet-v3-Large model, with an insignificant margin. Among the unimodality
approaches, the HO2 results are mostly better than those of CO2, which aligns with
the findings reported in the literature [57]. An important result presented by this com-
parison is that the naive MSE loss gives very good results compared to other methods
except for the CDW-CE.

Due to IBD experts’ interest in the binary classification of the UC disease (remission
vs. non-remission), similar performance measurements were performed for the remis-
sion case as seen in Table 10. We also see a similar trend here. For each metric and
across all three CNN models, the CDW-CE loss function once again demonstrates
superior performance, achieving the highest Kappa, F1-score, and accuracy values
consistently. The CE loss function generally performs the worst among the tested
methods, with the lowest scores. However, it should be noted that it does not consis-
tently yield the lowest scores in this case, as CORN and CO2 results are slightly lower
in some metrics and CNN models. The remaining loss functions (MSE, CORN, CO2,
and HO2) exhibit varying intermediate performance levels, with the MSE loss func-
tion typically attaining better results than the rest. The CO2 and CORN frameworks
demonstrate closely comparable performances across the experiments. However, the
HO2 method consistently surpasses them for all models, suggesting that HO2 is more
effective at concentrating estimations around the true class.

Along with the summary performance metrics as shown in Table 10 and Table 9, we
also present the confusion matrices for CE and CDW-CE loss to examine and compare
the individual class performances in Figure 16 and Figure 17. To obtain an average
confusion matrix that represents all cross-validation results, each individual confusion
matrice is summed, and numbers are normalized with the total true predictions for
each class (sum of rows); therefore, each diagonal cell corresponds to the recall (i.e.,
sensitivity or true positive rate) value for that class. Figure 16 reveals that the CDW-
CE loss substantially diminishes mispredictions with a two-class distance or greater
from the true class (for example, see the results of predictions for Mayo-2 and Mayo-
3, which were in fact Mayo-0 or predictions for Mayo-0 and Mayo-1 which were
in fact Mayo-3). CDW-CE predominantly centers incorrect estimates around classes
with a one-neighborhood distance which results in higher performance. This behavior
is more apparent in remission classification (see Figure 17) because, in this case,
each class (remission/non-remission) corresponds to two Mayo classes, where 1-level
neighborhood mistakes become unimportant (except for Mayo-2 predicted as Mayo-3
and Mayo-3 predicted as Mayo-2 because the decision boundary is between Mayo-2
and Mayo-3).

High-quality embeddings are crucial as they facilitate better representation of the
dataset and class distinction, ultimately leading to improved classification perfor-
mance. To compare the embeddings of a ResNet18 model trained with the CE and
CDW-CE, we transformed the feature of the last fully connected layer of each im-
age in the test set into 2D points using t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) dimensionality reduction technique [76]. Figure 18 and 19 show the
t-SNE embeddings of features obtained from the ResNet18 model trained with CE
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Table 9: Experiment results for all Mayo scores.

Loss Function ResNet18 Inception-v3 MobileNet-v3-Large

QWK

Cross-Entropy 0.8296 ± 0.014 0.8360 ± 0.011 0.8302 ± 0.015
MSE 0.8540 ± 0.007 0.8517 ± 0.007 0.8467 ± 0.005
CORN 0.8366 ± 0.007 0.8431 ± 0.009 0.8412 ± 0.010
CO2 0.8394 ± 0.009 0.8482 ± 0.009 0.8354 ± 0.009
HO2 0.8446 ± 0.007 0.8458 ± 0.010 0.8378 ± 0.007
CDW-CE 0.8568 ± 0.010 0.8678 ± 0.006 0.8588 ± 0.006

F1

Cross-Entropy 0.6720 ± 0.026 0.6829 ± 0.023 0.6668 ± 0.028
MSE 0.6925 ± 0.015 0.6881 ± 0.013 0.6946 ± 0.011
CORN 0.6809 ± 0.014 0.6832 ± 0.013 0.6847 ± 0.020
CO2 0.6782 ± 0.014 0.6846 ± 0.016 0.6793 ± 0.012
HO2 0.6856 ± 0.016 0.6901 ± 0.008 0.6741 ± 0.030
CDW-CE 0.7055 ± 0.021 0.7261 ± 0.015 0.7254 ± 0.010

Accuracy

Cross-Entropy 0.7566 ± 0.015 0.7600 ± 0.012 0.7564 ± 0.011
MSE 0.7702 ± 0.009 0.7690 ± 0.008 0.7677 ± 0.009
CORN 0.7591 ± 0.009 0.7600 ± 0.008 0.7613 ± 0.012
CO2 0.7601 ± 0.008 0.7654 ± 0.008 0.7572 ± 0.009
HO2 0.7625 ± 0.011 0.766 ± 0.010 0.7583 ± 0.005
CDW-CE 0.7740 ± 0.011 0.7880 ± 0.011 0.7759 ± 0.010

MAE

Cross-Entropy 0.2581 ± 0.018 0.2526 ± 0.013 0.2563 ± 0.012
MSE 0.2346 ± 0.009 0.2359 ± 0.009 0.2383 ± 0.009
CORN 0.2517 ± 0.012 0.2497 ± 0.010 0.2480 ± 0.012
CO2 0.2497 ± 0.011 0.2404 ± 0.008 0.2524 ± 0.010
HO2 0.2460 ± 0.011 0.2424 ± 0.011 0.2487 ± 0.005
CDW-CE 0.2300 ± 0.011 0.2147 ± 0.010 0.2272 ± 0.011

and CDW-CE, respectively. As seen from both figures, edge classes (Mayo-0 and
Mayo-3) are well separated from each other, while intermediate classes (Mayo-1 and
Mayo-2) are intertwined with their neighbor classes. Nevertheless, when these two
figures are compared with each other qualitatively, it is hard to say whose representa-
tion of the dataset is better.

To quantitatively compare the embeddings generated by models trained with CDW-
CE and CE, we employ the Silhouette score metric [77], which evaluates intra-class
compactness and inter-class separation. A higher Silhouette coefficient score is in-
dicative of a model with more distinct and well-defined clusters. The Silhouette co-
efficient is a metric that is individually computed for each sample, incorporating two
distance measurements:

• ds: The average distance between a sample and all other data points within the
same class.

• dn: The average distance between a sample and all other data points in the
nearest adjacent cluster.

Subsequently, the Silhouette coefficient (s) for a singular sample is calculated using
the following formula:

42



Table 10: Experiment results for remission classification.

Loss Function ResNet18 Inception-v3 MobileNet-v3-Large

Kappa

Cross-Entropy 0.8077 ± 0.023 0.8074 ± 0.021 0.8122 ± 0.018
MSE 0.8406 ± 0.013 0.8404 ± 0.017 0.8339 ± 0.012
CORN 0.8191 ± 0.021 0.8077 ± 0.022 0.8203 ± 0.016
CO2 0.8185 ± 0.020 0.8243 ± 0.011 0.8067 ± 0.020
HO2 0.8318 ± 0.015 0.8251 ± 0.015 0.8283 ± 0.018
CDW-CE 0.8521 ± 0.016 0.8598 ± 0.012 0.8592 ± 0.012

F1

Cross-Entropy 0.8419 ± 0.018 0.8420 ± 0.017 0.8451 ± 0.016
MSE 0.8691 ± 0.011 0.8686 ± 0.014 0.8634 ± 0.010
CORN 0.8511 ± 0.016 0.8425 ± 0.018 0.8523 ± 0.013
CO2 0.8513 ± 0.015 0.8561 ± 0.009 0.8404 ± 0.017
HO2 0.8618 ± 0.012 0.8565 ± 0.011 0.8583 ± 0.015
CDW-CE 0.8785 ± 0.013 0.8847 ± 0.010 0.8842 ± 0.010

Accuracy

Cross-Entropy 0.9436 ± 0.009 0.9432 ± 0.007 0.9456 ± 0.005
MSE 0.9531 ± 0.004 0.9536 ± 0.006 0.9514 ± 0.005
CORN 0.9473 ± 0.007 0.9429 ± 0.008 0.9473 ± 0.006
CO2 0.9461 ± 0.008 0.9479 ± 0.004 0.9444 ± 0.006
HO2 0.9507 ± 0.005 0.9485 ± 0.005 0.9504 ± 0.005
CDW-CE 0.9566 ± 0.005 0.9590 ± 0.003 0.9588 ± 0.005

s = dn � ds

max(dn, ds)
(11)

For a collection of samples, the overall Silhouette coefficient is determined by com-
puting the mean Silhouette coefficient (s) of each individual sample within the set.
The overall Silhouette coefficient is bounded between �1 and 1, and the score is
higher when the clusters are compact and distinctly separated from each other. When
we compare the representations of embeddings of two models trained with CE and
CDW-CE, they get a value of 0.121 and 0.222, respectively. As a result, the mod-
els trained with CDW-CE learn better representations of the dataset compared to the
standard CE loss.

6.2.2 Non-Ordinal Approaches

In this study, to provide a comprehensive analysis, we not only compared ordinal loss
functions but also conducted comparisons with non-ordinal loss functions that have
been studied in the context of CAD of UC. As mentioned previously, ArcFace loss
is compared against the proposed CDW-CE loss in this regard. The experiments are
performed on the ResNet18 model following the same cross-validation settings as be-
fore. As indicated in the ArcFace paper [46], m and s parameters are sensitive to the
dataset; therefore, they need to be tuned accordingly. Different combinations from
the set {1, 2, 4, 8, 16, 32} and {0, 0.2, 0.4, 0.5} for the feature scale parameter s and
margin m, respectively, are experimented with. ArcFace loss gave the best results
when the scale parameter was around 4, and the margin parameter was around 0.4.
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Figure 16: Mean confusion matrix of each CNN model trained with CE and CDW-CE
for full Mayo score classification.

When the scale was above 8, the performance was mostly worse than the CE loss.
One important point we draw from these experiments is that these two hyperparame-
ters are highly dependent on each other; therefore, they need to be tuned together very
carefully. In Table 11, we have shared the result of the top three performing combi-
nations, where a margin of 0.5 and scaling of 1 gives the best performance. Although
they are better than the baseline loss function CE, they consistently underperformed
compared to CDW-CE.
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Figure 17: Mean confusion matrix of each CNN model trained with CE and CDW-CE
for remission classification.

Table 11: CDW-CE vs. ArcFace. Only the top three performing results were shared
for the ArcFace.

Approach s m QWK
CE - - 0.8296
CDW-CE - - 0.8568
ArcFace 1 0 0.8385
ArcFace 1 0.5 0.8399
ArcFace 4 0.4 0.8371
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Figure 18: t-SNE embeddings of features obtained from ResNet18 model trained with
CE.
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Figure 19: t-SNE embeddings of features obtained from ResNet18 model trained with
CDW-CE.
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6.3 Pushing the Boundaries of CDW-CE with Additive Margin

By integrating the concept of margin, which has been successful in other applications,
the CDW-CE with margin (Equation 10) loss function demonstrates better perfor-
mance compared to the original CDW-CE. First, in order to observe the consistency,
we have obtained the result for varying ↵ values for the ResNet18 model. Figure 20
shows the performances of CDW-CE and CDW-CE with margin. We used a margin
value of 0.5, and it outperformed the base CDW-CE result until the value of 5 for
the ↵ parameter. When experimenting with ↵ = 6, it underperformed compared to
the baseline; therefore, we have changed the margin value to obtain an improvement.
Finally, a margin of 0.015 surpassed the baseline result. Eventually, Figure 20 shows
that with a properly fine-tuned margin value, CDW-CE with margin can provide better
results. For Inception-v3 and MobileNet-v3-large architectures, we directly tried to
improve the results with the optimum ↵ values, where they perform the best (6 for the
Inception-v3 and 7 for the MobileNet-v3-large). After experimenting with different
margin values, better-performing results were obtained. All in all, for all three mod-
els, the best results obtained with CDW-CE were exceeded by the additive margin
strategy. Although the additive margin strategy outperforms the proposed approach,
it comes with the cost of tuning an additional hyperparameter. Moreover, obtained
performance increase is not that significant (0.37%, 0.34%, 0.48% for ResNet18,
MobileNet-v3-large, and Inception-v3, respectively); therefore, it creates a trade-off
between performance and experimental-effort.

Table 12: CDW-CE vs. CDW-CE with margin (m refers to additive margin value).

Loss function ResNet18 Inception-v3 MobileNet-v3-large
CDW-CE 0.8568 0.8678 0.8588
CDW-CE w/ margin 0.8600 (m=0.05) 0.8719 (m=0.025) 0.8617 (m=0.0025)
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Figure 20: CDW-CE vs. CDW-CE with margin for varying ↵ values. Numbers above
the blue markers show the margin value.

6.4 Performance on the Hard Samples

A total of 863 samples are identified as hard samples (explained in section 5) in the
test set (breakdown with respect to classes are given in Table 13). In Table 14, we
present the results and performance increase ratios for all samples and hard samples.
Performance results obtained only for the hard samples in the test set are much lower
compared to all samples, which is very intuitive because these images are challeng-
ing for the human experts and, naturally, for the CNN model, too. For example, the
QWK value for CE loss drops from 0.8296 to 0.7673 for ResNet18, from 0.8360 to
0.7688 for the Inception-v3, and from 0.8302 to 0.7774 for the MobileNet-v3-large
model. When we obtain how much performance increase is obtained by CDW-CE
compared to the CE, we observe a much more performance gain compared to when
it is tested on all test samples. This situation indicates that CDW-CE loss is more
effective when the samples are more challenging. In real-life scenarios, during the
colonoscopy procedure, frames are taken in very different and challenging environ-
ments. So, an approach that performs much better in challenging conditions is more
favorable in the clinical setting.

Table 13: Number of hard samples for each class in the test set.

Class Number of samples
Mayo 0 404
Mayo 1 314
Mayo 2 105
Mayo 3 40
Total 863
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Table 14: Performance increase comparison for the hard samples vs. all samples (full
test set). QWK refers to full Mayo score estimation, and Kappa refers to remission
estimation. The ratio column indicates how much percentage gain is obtained with
CDW-CE compared to CE loss.

ResNet18 ratio Inception-v3 ratio MobileNet-v3-large ratio
All samples

QWK Cross-Entropy 0.8296 ± 0.014 0.8360 ± 0.011 0.8302 ± 0.015
CDW-CE 0.8568 ± 0.010 3.40% 0.8678 ± 0.006 3.80% 0.8588 ± 0.006 3.50%

Kappa Cross-Entropy 0.8077 ± 0.023 0.8074 ± 0.021 0.8122 ± 0.018
CDW-CE 0.8521 ± 0.016 5.50% 0.8598 ± 0.012 6.50% 0.8592 ± 0.012 5.80%

Hard samples

QWK Cross-Entropy 0.7673 + 0.019 0.7688 + 0.015 0.7774 + 0.021
CDW-CE 0.8046 + 0.016 4.90% 0.8124 + 0.013 5.70% 0.8137 + 0.006 4.60%

Kappa Cross-Entropy 0.7576 + 0.026 0.7593 + 0.030 0.7696 + 0.039
CDW-CE 0.8211 + 0.017 8.40% 0.8299 + 0.015 9.30% 0.8323 + 0.016 8.20%

Figure 21 shows the inference results of models trained with CE and CDW-CE on
hard samples. Individual class performances are mostly lower than when the infer-
ence was performed on the full test set, which is expected. However, general trends
and improvements are very similar to the full test set (see Figure 16). For all models,
there are not any three-level neighborhood mistakes (Mayo-0 predicted as Mayo-3 or
vice versa); moreover, 2-level neighborhood mistakes (Mayo-0 predicted as Mayo-2
or Mayo-1 predicted as Mayo-3) are very low in CDW-CE when compared to the CE
loss. Naturally, this result is also reflected in confusion matrices for the remission
classification (see Figure 22)

50



Figure 21: Confusion matrices for inference on hard samples for full Mayo score
estimation.
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Figure 22: Confusion matrices for inference on hard samples for remission classifi-
cation.
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6.5 Explainability Analysis

The training of CNNs using the proposed CDW-CE loss function not only enhances
their overall performance but also improves the explainability of these networks through
CAM visualizations. By utilizing the CDW-CE loss function, the trained models are
able to highlight more relevant and discriminative regions for all Mayo scores com-
pared to models trained with the classic CE loss function.

A closer examination of sample CAM visualizations, as depicted in Figure 23, re-
veals that the CDW-CE loss function enables the model to extract features that are
more compatible with disease symptoms, ultimately leading to superior performance.
The CAM regions extracted by CDW-CE appear to be more extensive, and these
expansions predominantly occur in relevant areas rather than unrelated ones. For ex-
ample, in Figure 23, the most active regions for CAM generated with CDW-CE for
the Mayo-0 class represents the underlying health tissue (where capillaries are clearly
seen) better. For the Mayo-1 case, CDW-CE CAM successfully highlights the region
around the lumen, and for Mayo-2 and Mayo-3 samples, the most active regions are
better overlapped with the ulcers. These observations suggest that CDW-CE has ef-
fectively captured semantically meaningful features.

In order to further assess the quality of CAM visualizations, we sought the opinions
of three experts who compared the visualizations produced by models trained with
CDW-CE and CE loss functions. As illustrated in Figure 24, the experts unanimously
found the CAM visualizations of the CDW-CE-trained model to be more reasonable
across all Mayo classes. On average, the experts found that nearly half of the images
were equally reasonable (47.4%), while the rate of selecting CDW-CE was twice
as high as that of CE (35.0% vs. 17.6%). CDW-CE CAMs perform much better,
especially in severe classes (37.8% vs. 4.4% for Mayo-2 and 24.4% vs. 12.8% for
Mayo-3).

The improved interpretability provided by CDW-CE, in conjunction with its superior
estimation performance, enhances the credibility and trustworthiness of CAD systems
for clinical use. As the CDW-CE loss function bolsters interpretability, the transition
of such systems into clinical practice is expected to be expedited.
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Figure 23: Original images and CAM visualizations of the ResNet18 model trained
with Cross-Entropy and CDW-CE. The model trained with CDW-CE highlights
broader and more relevant areas related to the disease.
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Figure 24: The assessment results of CAM visualizations for models trained with
CE and CDW-CE were evaluated by experts. The percentage values representing the
instances where experts found both visualizations to be equally reasonable were as
follows: 37.7%, 31.1%, 57.8%, 62.8%, and 47.4%, respectively. Image is reprinted
from the author’s publication in [15].
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6.6 Experiment Results on Diabetic Retinopathy Dataset

Table 15 shows the results of the performance comparisons with respect to the QWK
score across three different CNN architectures. The CDW-CE loss shows competitive
results across all three architectures. Notably, it consistently outperforms the baseline
CE and other loss functions except the MSE across all models. The best-performing
loss function varies with the choice of CNN architecture: MSE loss yields the highest
performance for ResNet18 and Inception-v3, while for MobileNet-v3-large, the pro-
posed CDW-CE demonstrates the superior result. However, the differences between
MSE and CDW-CE are very small. The other loss functions, namely CORN, CO2,
and HO2, show varying results across different architectures, but generally, they are
better than the baseline CE loss, however, they can’t surpass the proposed CDW-CE
or the MSE loss functions. The performance of loss functions seems to vary with
different CNN architectures. This observation suggests that the choice of model ar-
chitecture can significantly impact the performance of the loss function, and thus, the
overall performance of the model.

The reason behind this result can be attributed to the fundamental principle that both
these methods, MSE and CDW-CE, essentially operate on. At their core, these two
functions punish mispredictions based on distance; therefore, they may result in very
similar performances. Meanwhile, CDW-CE loss has advantages, particularly in two
critical aspects:

1. Interpretability and Decision Confidence: The CDW-CE loss function uti-
lizes discrete output nodes, which provide class-specific confidence levels. This
distinct characteristic facilitates a more nuanced and comprehensible interpreta-
tion of the model’s output, thereby aiding in decision-making. On the contrary,
the implementation of MSE in a CNN architecture typically incorporates a sin-
gle output node, which provides a continuous numerical output. Consequently,
the interpretation of the MSE output becomes challenging. For instance, de-
ciphering the confidence level or certainty associated with a continuous output
like 7.3 poses a significant interpretative challenge. Thus, the CDW-CE loss
function offers an inherent advantage in providing interpretable and confidence-
associated outputs.

2. Compatibility with Class Activation Mapping (CAM) Methods: Class Ac-
tivation Mapping is an important technique in the interpretability and under-
standing of CNN models, as it highlights the regions in the input image that
are instrumental in the model’s decision-making. These mapping techniques
are designed to work with individual output nodes corresponding to each class,
which is the approach adopted by the CDW-CE loss function. Conversely, these
methods are incapable of generating meaningful maps for architectures with a
single output node, which is responsible for all classes, as is the case with MSE.
Therefore, the use of CDW-CE loss further enhances the model’s interpretabil-
ity by enabling compatibility with Class Activation Mapping methods.
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Table 15: Comparison of loss functions on diabetic retinopathy dataset.

ResNet18 Inception-v3 MobileNet-v3-large
CE 0.6490 0.6440 0.6121

CORN 0.6608 0.6682 0.6325
CO2 0.6729 0.6753 0.6325
HO2 0.6614 0.6456 0.6099
MSE 0.6818 0.6894 0.6522

CDW-CE 0.6754 0.6867 0.6560

In summary, while the proposed CDW-CE loss function is not the absolute best across
all architectures, it performs consistently well and shows competitive performance
compared to other loss functions. This observation reinforces the efficacy of the pro-
posed CDW-CE loss function in ordinal classification tasks across various domains.
Furthermore, the results emphasize the importance of considering both the loss func-
tion and the model architecture in the design of effective deep-learning models. De-
spite the seemingly comparable performance of the CDW-CE and MSE loss func-
tions, the CDW-CE provides superior interpretability and compatibility with CAM
techniques, thereby offering a more holistic and practical solution in the realm of
ordinal classification tasks.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This thesis has presented a comprehensive study on improving the performance of
deep learning models on UC datasets by taking into account relationships between
classes. The primary objective of this work was to develop a robust loss function for
the computer-aided diagnosis of UC from endoscopic images.

In the dataset creation phase, we collected the largest publicly available annotated UC
dataset, called LIMUC, which is one of the main contributions of this study. Due to
the lack of a comprehensive dataset for UC research and the drawbacks associated
with using private datasets, we created LIMUC to foster more effective and accu-
rate machine-learning models for the automated diagnosis and treatment of UC. The
dataset contains 19537 endoscopic images collected from 1043 colonoscopy proce-
dures involving 572 UC patients. The images were labeled using the widely used
MES system by experienced gastroenterologists, and the final annotated dataset con-
sists of 11276 images from 564 patients. We have provided details on the data col-
lection, processing, and labeling procedures, along with the challenges faced during
the annotation process. Finally, we shared the detailed statistics, distribution of anno-
tations and the final LIMUC dataset, which is publicly available under the Creative
Commons Attribution 4.0 license.

Class Distance Weighted Cross Entropy loss was introduced as a novel, non-parametric
method to address the limitations of the standard Cross-Entropy loss function for ordi-
nal classification tasks. The CDW-CE loss function not only evaluates the confidence
of non-true classes but also considers the ordinal relationship between classes by in-
corporating a distance-based coefficient. This coefficient penalizes mispredictions
more heavily as they deviate further from the true class, effectively accounting for
the ordinal nature of the classes. Compared to other approaches such as CORAL,
CORN, unimodal constraints, and regression-based methods, the CDW-CE loss func-
tion is more suitable for ordinal classification problems as it provides an efficient
and effective way to consider the ordinal relationship between classes without requir-
ing any changes to the model architecture or labeling structure. The implementation
of CDW-CE demonstrates its usability and ease of integration into existing deep-
learning architectures.
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One of the key highlights of our study was the successful application of the proposed
method to an external dataset - a widely acknowledged diabetic retinopathy dataset.
The consistency of the results obtained from these external experiments with those
from the UC experiments serves as a strong signal to the robustness and adaptability
of our proposed method. The ability of our approach to effectively handle and yield
high performance on this distinct dataset provides clear evidence of its generalization
capacity.

The experimental results demonstrated that the proposed CDW-CE loss function con-
sistently outperformed the other methods in all performance metrics and CNN mod-
els, showcasing its ability to handle complex classification tasks effectively. More-
over, the CDW-CE loss function was observed to provide better explainability of the
model through class activation maps, which is an important criterion in determining
its use in clinical settings.

7.2 Future Work

The work in this thesis was focused on evaluating individual endoscopic frames and
assigning a score independent of each other. A natural extension of this study would
be to perform an automated diagnosis for entire endoscopic video sequences rather
than individual frames. Currently, the assessment of UC severity is conducted us-
ing the Mayo endoscopic score, which is assigned to the whole video captured dur-
ing the endoscopic examination. By considering the complete video sequence, the
model would be able to account for the temporal dynamics and contextual informa-
tion present in the endoscopic videos, potentially leading to a more accurate and
holistic diagnosis of UC severity. Developing an efficient and effective approach for
processing and analyzing such video sequences would not only enhance the model’s
clinical applicability but also contribute to a more comprehensive understanding of
the progression and manifestation of ulcerative colitis.

Looking ahead, there are a multitude of avenues for further exploration and expansion
of the present work. An especially promising prospect lies in the potential application
of our proposed CDW-CE loss function to more fine-grained scoring systems, such as
the Ulcerative Colitis Endoscopic Index of Severity (UCEIS). The UCEIS represents a
more intricate and detailed system for assessing UC severity, where the assessment is
performed for the three distinct major indicators, namely, vascular pattern, bleeding,
erosions and ulcers. Each group has an ordinal grading in itself, and the total score
of the UCEIS is determined as the sum of the sub-indicators. This granularity poses
an exciting challenge and opportunity for the application of the CDW-CE. Given its
robust performance in both the UC and diabetic retinopathy datasets, we believe that
the CDW-CE could provide a valuable tool for enhancing the accuracy and efficacy
of these finer-scale severity indices.

Another promising direction for future work involves addressing the challenges as-
sociated with obtaining accurately labeled ulcerative colitis images. The presence
of high intra- and inter-observer variability, coupled with the limited availability of
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publicly shared datasets, creates a bottleneck in the development of robust computer-
aided diagnosis models. To overcome these limitations, it would be worthwhile to
investigate the integration of self-supervised or semi-supervised learning techniques
into the current framework. These alternative learning strategies could enable the
effective utilization of limited labeled data by leveraging the inherent structure and
patterns present in the vast amounts of unlabeled ulcerative colitis images.
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APPENDIX A

THE IMPLEMENTATION OF CDW-CE WITH PYTORCH

Implementation of CDW-CE with PyTorch framework:
1 import numpy as np
2 import torch
3 from torch import Tensor
4

5 class ClassDistanceWeightedCrossEntropyLoss(torch.nn.Module):
6

7 def __init__(self, class_size: int, power: float = 2.0, reduction: str
,! = "mean"):

8 super(ClassDistanceWeightedCrossEntropyLoss, self).__init__()
9 self.class_size = class_size

10 self.power = power
11 self.reduction = reduction
12

13 def forward(self, input: Tensor, target: Tensor) Tensor:
14 input_sm = input.softmax(dim=1)
15

16 weight_matrix = torch.zeros_like(input_sm)
17 for i, target_item in enumerate(target):
18 weight_matrix[i] = torch.tensor(
19 [abs(k � target_item) for k in range(self.class_size)]
20 )
21

22 weight_matrix.pow_(self.power)
23 reverse_probs = (1 � input_sm).clamp_(min=1e4)
24

25 log_loss = �torch.log(reverse_probs)
26 loss = log_loss ⇤ weight_matrix
27 loss_sum = torch.sum(loss, dim=1)
28

29 if self.reduction == "mean":
30 loss_reduced = torch.mean(loss_sum)
31 elif self.reduction == "sum":
32 loss_reduced = torch.sum(loss_sum)
33 else:
34 raise Exception("Undefined reduction type: " + self.reduction)
35

36 return loss_reduced
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