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Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Özlem Tuğfe Demir
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ABSTRACT

NONLINEAR SIGNAL PROCESSING FOR EFFICIENT PHYSICAL
LAYER DESIGN IN 5G BEYOND

Salman, Murat Babek
Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Gökhan Muzaffer Güvensen

Co-Supervisor: Prof. Dr. Tolga Çiloğlu

July 2023, 164 pages

Nonlinear power amplifier (PA) distortion is a significant hardware impairment that

imposes limitations on communication systems, hindering their performance. This

thesis presents a comprehensive analysis framework for hardware impairments and

develops nonlinear signal processing techniques to mitigate the detrimental effects of

nonlinear distortion on communication system performance. The evaluation is based

on several criteria, including bit-error-rate (BER), achievable information rate (AIR),

and out-of-band radiation.

The thesis’s contribution can be divided into two independent parts. The first part

focuses on uplink communication, where the user terminal (UT) is equipped with a

nonlinear PA. For uplink communication, the investigation encompasses the effects

of frequency-selective communication channels and symbol-rate signal processing. A

critical phenomenon named as ’distortion amplification’, which significantly degrades

detection performance, is discovered. To overcome distortion amplification, the use

of a bank of nonlinear processing units for different fractional delays is proposed for

both single-input-single-output (SISO) and multiple-input-multiple-output (MIMO)
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systems, leading to substantial improvements in detection performance.

The second part of thesis examines downlink communication scenarios, where base

stations (BS) are equipped with nonlinear PAs. Firstly, a comprehensive analysis

of received distortion power is conducted to investigate the effects of multi-user di-

versity and frequency selectivity. Then, based on the obtained distortion power, a

power allocation scheme is proposed to enhance spectral efficiency for linear pre-

coders. Lastly, a low-complexity digital pre-distortion (DPD) design is developed for

two-stage hybrid beamforming systems with a fully connected analog beamforming

structure. The proposed DPD structure achieves sufficient linearization performance

with reduced complexity compared to state-of-the-art methods.

Keywords: Power amplifiers, Nonlinear Distortion, Post-distortion, Digital pre-distortion,

Distortion amplification, Distortion Analysis
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ÖZ

5G VE ÖTESİ SİSTEMLERDE FİZİKSEL KATMAN İÇİN ETKİN
DOĞRUSAL OLMAYAN SİNYAL İŞLEME

Salman, Murat Babek
Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Gökhan Muzaffer Güvensen

Ortak Tez Yöneticisi: Prof. Dr. Tolga Çiloğlu

Temmuz 2023 , 164 sayfa

Nonlineer güç amplifikatörü (PA) distorsiyonu, iletişim sistemlerinin yeterli perfor-

mansı elde etmesini önemli ölçüde sınırlayan önemli bir donanım bozulmasıdır. Bu

tez, donanım bozulmaları için kapsamlı bir analiz çerçevesi sunmakta ve iletişim sis-

temi performansını olumsuz yönde etkileyen nonlineer distorsiyonun etkilerini azalt-

mak için nonlineer sinyal işleme teknikleri geliştirmektedir. Değerlendirme, hata oranı

(BER), elde edilebilir bilgi oranı (AIR) ve bant dışı radyasyon gibi çeşitli kriterlere

dayanmaktadır.

Tezin katkısı iki bağımsız bölüme ayrılabilir. İlk bölüm, kullanıcı terminalinin (UT)

nonlineer PA ile donatıldığı yukarı bağlantı iletişimine odaklanmaktadır. Yukarı bağ-

lantı iletişimi için, frekans seçici iletişim kanallarının ve sembol örnekleme işlem

şemalarının etkileri incelenmektedir. Sembol tespit performansını önemli ölçüde bo-

zan ’distorsiyon amplifikasyonu’ olarak adlandırılan önemli bir olgu keşfedilmekte-

dir. Distorsiyon amplifikasyonunu aşmak için, tek girişli-tek çıkışlı (SISO) ve çoklu

girişli-çoklu çıkışlı (MIMO) sistemler için nonlineer işlem birimi bankasının kulla-
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nımı önerilmekte ve tespit performansında önemli iyileştirmeler sağlanmaktadır.

Tezin ikinci bölümü, baz istasyonlarının (BS) nonlineer PA’larla donatıldığı aşağı

bağlantı iletişimi senaryolarını incelemektedir. İlk olarak, çok kullanıcılı çeşitlilik ve

frekans seçiciliğinin etkilerini araştırmak için kapsamlı bir alındı distorsiyon gücü

analizi gerçekleştirilir. Ayrıca, elde edilen distorsiyon gücü ifadesine dayanarak bir

güç tahsis şeması önerilmektedir. Son olarak, tam bağlantılı analog hüzme oluşturma

yapısına sahip iki aşamalı hibrit MIMO sistemleri için düşük karmaşıklıkta bir sayısal

ön bozma (DPD) tasarımı geliştirilmiştir. Önerilen DPD yapısı, mevcut yöntemlere

göre daha düşük karmaşıklıkla yeterli doğrusallaştırma başarımı sağlamaktadır.

Anahtar Kelimeler: Güç yükselticiler, Doğrusal olmayan bozulma, sonradan bozma,

Sayısal ön bozma, Bozulma güçlendirme, Bozulma analizi
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CHAPTER 1

INTRODUCTION

1.1 Literature Review and Motivation

The advent of communication technologies has opened up new frontiers for commu-

nication systems, with the potential to revolutionize the way we interact with each

other and the world around us. Likewise, the emergence of new tools for human

interaction has led to an increase in the throughput demand placed on wireless net-

works [4]. Meeting the growing demand for higher throughput per user, as well as the

densification of communication networks, presents significant challenges in modern

communication systems. To satisfy the required data rates, communication system

design has evolved over time and continues to do so to meet future needs [5]. Early

communication systems were primarily based on wired telephone networks, which

transmitted voice signals [6]. The introduction of the first generation (1G) wireless

networks in the 1980s enabled cellular communication, which relied solely on analog

communication [7]. The subsequent evolution of wireless networks resulted in the

emergence of fully digital communication schemes in second generation (2G) net-

works [7]. The primary objective of both 1G and 2G cellular systems was to transmit

audio signals. However, the integration of the internet into everyday life rendered

these networks inadequate, prompting the introduction of third generation (3G) sys-

tems. 3G networks represented a significant milestone in the evolution of commu-

nication systems by enabling wireless data transmission [7]. Achievable data rates

have been improved further by forth generation (4G) systems by exploiting spatial

diversity with the help of antenna arrays [8]. Currently, studies mainly focus on de-

veloping systems in the context of fifth-generation (5G) systems to fully benefit from

smartphones and other devices connected to the internet [9].
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In order to provide sufficient user experience, more sophisticated communication sys-

tem designs were developed for each successive generation of wireless networks,

achieving higher spectral efficiencies. For instance, multiple-input multiple-output

(MIMO) systems have emerged as the most intriguing communication technology

in recent times, attracting significant attention from researchers and industry experts.

The growing interest in MIMO systems stems from their ability to enhance data rates,

increase spectral efficiency, improve link reliability, and mitigate the effects of mul-

tipath fading. Various studies have demonstrated the substantial performance gains

achieved through MIMO techniques in different wireless communication scenarios.

In [10] a comprehensive overview of MIMO systems, including their principles, ap-

plications, and performance metrics, is provided.

The advancements of new generations in the field of wireless communication have

brought about a host of fresh challenges. These include inter-cell interference, the

need to utilize higher frequencies, growing demand for energy efficiency, and hard-

ware imperfections [10–13]. Already, significant studies have been carried out, and

countless complicated signal processing techniques have been developed to multiply

the achievable spectral efficiency by mitigating these issues [14]. Nevertheless, there

exist unresolved and even unidentified problems that set limitations impeding the at-

tainment of optimal performance. One of the contributions of this thesis is to identify

a problem that is neither addressed nor observed in the current literature.

The desire to optimize spectral efficiency, energy efficiency, and cost efficiency at

once brings significant restrictions on hardware quality. Consequently, hardware im-

pairments set some important obstacles in achieving the desired performance of com-

munication systems since low-cost components are preferred to reduce the overall

system cost while preserving the power efficiency [15]. Power amplifiers (PAs) are

stated to be one of the key components due to their dynamic behavior across front-

end modules. PAs exhibit nonlinear characteristics, because of inherent heat dissi-

pation, near the saturation region, where they operate at maximum efficiency. This

also means that a greater portion of the input power is converted into useful output

power, resulting in reduced power consumption and longer battery life in portable

devices. The improved power efficiency is particularly valuable in wireless commu-

nication systems where power consumption is a critical concern. Therefore, either
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user equipment (UE) or base stations, which are equipped with low-cost nonlinear

PA, transmit nonlinearly distorted signals since low power efficiency brings a seri-

ous burden to portable wireless equipment [16]. Furthermore, the goal of achieving

high data rates with limited spectral resources makes higher-order quadrature ampli-

tude modulation (QAM) constellations attractive for future-generation wireless net-

works [17–19]. However, PA nonlinearities on the transmitted signal degrade the

received signal quality for single carrier (SC) transmission with higher modulation

orders or orthogonal frequency division multiplexing (OFDM) modulation, where a

high peak-to-average power ratio is a major issue.

Impacts of hardware impairments are even more evident for massive MIMO systems,

where the base station is equipped with many antennas. Massive MIMO systems have

attracted significant attention in the current literature thanks to their promise of multi-

plying the spectral efficiency greatly [20]. Multi-user (MU) massive MIMO systems

enable to serve more than one user simultaneously by using spatial diversity so that

different users can share the same time/frequency resources [21]. Besides, the spatial

diversity of the users influences the radiation of the distortion signal, and spatial radi-

ation of the distortion was studied in [22,23]. These studies numerically demonstrate

that the nonlinear distortion tends to decorrelate as the number of users increases.

The majority of the current literature uses uncorrelated distortion assumption and an-

alyzes/designs massive MIMO systems without taking distortion correlation into ac-

count. However, recent studies and this thesis have shown that neither the distortion

correlation nor its effects can be ignored.

Hardware imperfections also have very dominant effects on full-duplex communi-

cation [24]. Full duplex systems aim to double the spectral efficiency by enabling

simultaneous transmission and reception at the same time and frequency resources.

However, strong self-interference (SI) poses a significant challenge to achieving the

ultimate goal [25]. Furthermore, the SI signal is ∼ 100 dB stronger than the desired

signal-of-interest (SoI), which makes SI cancellation inevitable [26]. In addition, dis-

tortion due to PA nonlinearities leads to an additional challenge since the nonlinear

distortion signal is much stronger than the SoI. Therefore, accurate estimation of the

nonlinear distortion has vital importance [27]. Consequently, sophisticated signal

processing tools are needed to estimate and cancel the nonlinear distortion part of the
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SI signal.

Two major signal processing approaches are considered for mitigating nonlinear dis-

tortion due to PAs. The first approach aims to linearize the PA output signal. Among

the PA linearization methods, the digital pre-distortion (DPD) method has attracted

most of the attention in the research community due to its low complexity and re-

configurability compared to its analog counterparts [28–30]. DPD algorithms apply

a nonlinear pre-processing, and it nonlinearly modifies the input signal such that the

joint effects of DPD unit and PA yields the desired linear signal. Implementation of

DPD not only mitigates the but also reduces the power leakage to adjacent channels,

which is also referred out-of-band (OOB) radiation due to spectral re-growth. Al-

though the DPD can linearize a single PA effectively, its implementation in massive

MIMO systems requires a different perspective since per-antenna DPD is costly for

fully digital beamforming systems and not practical for analog-digital hybrid beam-

forming structures.

However, the success of DPD algorithms is not always guaranteed, especially for

PAs operated in the saturation region, in which the nonlinear function is not invert-

ible. In addition, DPD methods may require the implementation of complex signal-

processing tools such as deep neural networks [29,30]. However, implementing such

complex methods can be cumbersome for the user equipment [16]. Consequently, the

second class of signal processing scheme, namely nonlinear post-distortion or non-

linear equalization, is developed to mitigate the effects of nonlinear distortion at the

receiver side to improve the data detection accuracy [31, 32]. The nonlinear post-

distortion framework treats PA characteristics as a nonlinear channel. By elevating

this viewpoint, nonlinear equalizers are proposed in the aforementioned studies.

1.2 Summary of Contributions

This thesis presents a comprehensive signal processing framework aimed at address-

ing the challenges posed by PA nonlinearities in communication systems. The study

encompasses a broad perspective, examining the effects of nonlinear distortion and

proposing effective mitigation strategies for uplink communication scenarios where
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non-ideal PAs are integrated into the user equipment (UE). Additionally, it investi-

gates the impact of non-ideal PAs deployed in the base station (BS) on downlink

communication.

One of the most important shortcomings of the current literature is the treatment

of nonlinear distortion in the downsampled signal domain for the SC modulation

scheme, which is employed in uplink communication. All the studies related to the

effects of PA nonlinearities on the performance of SC-modulated systems ignore the

implications of pulse shaping filter and aliasing due to downsampling. However,

in Chapter 3, it is shown that PA amplifier nonlinearity distorts the pulse shaping

filter such that memory effects, namely nonlinear inter-symbol interference (ISI), are

observed at the received signal.

In Chapter 4, nonlinear post-distortion methods that take nonlinear ISI into account

is developed to mitigate the nonlinear distortion at the receiver side. The proposed

nonlinear post-distortion methods are employed in the detection of the nonlinearly

distorted symbols for uplink communication, where the communication channels ex-

hibit frequency selectivity. The previous studies either handle the linear communi-

cation channel and UE PA nonlinearity jointly or assume perfect decoupling of the

linear channel and PA non-linearity. By using perfect decoupling, they propose to use

zero-forcing or minimum mean square error (MMSE) filtering to mitigate the effects

of the frequency selectivity. Chapter 4 contains the first work that shows the mutual

effects of the received distortion signal in down-sampled signal domain and the linear

channel. It is the first work that reveals a significant phenomenon called distortion

amplification, which is the result of the mismatch between the effective channels of

the desired and distortion signals in downsampled signal domain. In Chapter 4, the

effects of distortion amplification are shown via numerical simulations for a single-

input single-output (SISO) system. In addition, a distortion-aware receiver structure

based on fractional sampling is developed to mitigate the effects of distortion am-

plification by elevating the diversity in the temporal domain.

The complexity of the post-distortion based on the fractional-sampling framework in-

troduced in Chapter 4, requires complex nonlinear signal processing for each fraction.

However, it might be cumbersome for multi-user MIMO systems since complexity
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also increases significantly with the number of users. In addition, the implementa-

tion of fractional sampling is not straightforward for reduced complexity operations.

In Chapter 5, we extend the post-distortion approach to a multi-user MIMO system

with a hybrid beamforming hardware structure. Then, we develop a sophisticated

distortion-aware receiver based on nonlinear distortion cancellation by using the non-

linear distortion estimation method introduced in Chapter 5. By using the distortion

cancellation approach, the required complexity is significantly decreased. In addition,

in Chapter 5, an extensive signal-to-distortion-plus-noise (SDNR) analysis is carried

out, and the effects of the distortion amplification are analytically investigated.

In addition to the investigation of PA nonlinearities on the user side, how the nonlin-

ear distortion is radiated from the multi-antenna base stations equipped with nonlinear

PAs is also considered in this thesis. Although it is known that nonlinear distortion

disperses in different directions in multi-user scenarios, the quantitative analysis of

the received distortion power has not been extensively explored in the literature. All

existing studies that derive closed-form SDNR expressions are based on the assump-

tion of uncorrelated distortion across the antenna array. However, in Chapter 6, the

validity of this assumption for massive MIMO systems has been investigated, reveal-

ing its limited applicability, particularly as the number of antennas increases. Further-

more, within the scope of Chapter 6, a method for finding optimal power allocation

coefficients considering distortion correlation across the antenna array has been de-

veloped.

Despite the reduction obtained through the spatial diversity techniques, the adverse

effects stemming from nonlinear distortion cannot be disregarded and necessitate ef-

fective mitigation strategies. Designing DPD for fully connected hybrid beamform-

ing systems poses significant challenges. The inherent complexity of these systems,

which integrate both analog and digital components, exacerbates the difficulty of DPD

design. The presence of multiple antennas and radio frequency (RF) chains in hybrid

beamforming architectures necessitates careful consideration of the nonlinear distor-

tion effects that arise from power amplifiers. In such systems, accurately modeling

and compensating for nonlinearities becomes increasingly intricate due to the inter-

actions between the analog and digital domains. Moreover, the coupling between

the different RF chains introduces additional complexities in capturing and mitigat-
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Figure 1.1: Contributions of the thesis.

ing nonlinear distortions effectively. Consequently, the design of DPD algorithms

for fully connected hybrid beamforming systems demands sophisticated techniques

and careful optimization to achieve satisfactory performance. In Chapter 7, we pro-

pose a correlation-based reduced complexity DPD design for hybrid beamforming

systems. In the proposed method, the complexity is reduced by avoiding redundant

signal processing operations by eliminating DPD implementations in the correlated

antenna branches.

The organization of the thesis is summarized in Figure 1.1 and listed below:

In Chapter 2, preliminaries for PA amplifier nonlinearities, which will be used through-

out the thesis, are introduced.

In Chapter 3, nonlinear ISI analysis is introduced, and employed post-distortion and

nonlinear modeling algorithms are introduced.

In Chapter 4, a receiver structure for single-carrier SISO uplink transmission with

frequency domain equalization (FDE) that is exposed to PA nonlinearities is pro-

posed, and several nonlinear distortion modeling techniques are proposed to mitigate

the nonlinear distortion [33], [34].
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In Chapter 5, the receiver structure proposed in Chapter 4 is extended to MIMO

channels, where a hybrid beamforming structure is employed [35].

In Chapter 6, downlink communication is considered for both single user [36] and

multi-user massive MIMO systems to examine the received distortion characteristics.

A closed-form SDNR expression is derived, and by using the derived expression, a

power allocation scheme is proposed.

In Chapter 7, a reduced complexity DPD method is proposed for fully-connected

hybrid massive MIMO systems.

Chapter 8, contains the conclusion that can be drawn from the thesis.
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CHAPTER 2

PRELIMINARIES ON POWER AMPLIFIER NONLINEARITIES

In this chapter, preliminary information on PA nonlinearities is presented. Firstly, var-

ious nonlinear PA modeling tools, namely the Saleh and generalized memory poly-

nomial models will be introduced. In addition, the effects of PA nonlinearities on the

output signal for both time and frequency domains will be demonstrated. Further-

more, essential metrics to evaluate the impact of PA nonlinearities will be introduced.

2.1 Power amplifier characterization

In order to investigate the effects of PA nonlinearities, one should have either valid

nonlinear PA models or a hardware setup with a PA to obtain meaningful observation.

Hence, we use both options in this thesis to provide comprehensive numerical and

empirical results.

2.1.1 Saleh Model

The Saleh model [37] is one of the widely employed models in the literature, repre-

senting both amplitude-amplitude (AM-AM) and amplitude-phase (PM-AM) distor-

tions. For the input signal at time n xn, the amplitude and the phase of the PA output

signal, namely |yn| and ϕyn, respectively, can be expressed as

|yn| =
g0|xn|

1 + (|xn|/Ao)2
, (2.1)

ϕyn =
α|xn|2

1 + β|xn|2
, (2.2)
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Figure 2.1: Input/output relation for Saleh Model PA and the linear PA.

where g0 is the gain of the PA, Ao determines the saturation point of the PA, α and β

are the parameters related to the phase distortion. Then the overall PA output signal

can be expressed as

yn = |yn|ejϕ
x
nejϕ

y
n (2.3)

where ϕxn is the phase of the input signal. In addition, from (2.1) and (2.2), it can be

observed that the PA output only depends on the current input signal, which means

that the Saleh model does not reflect the memory effects. In order to investigate the

nonlinearity effects, the input-output relationship of the Saleh model is studied as

demonstrated in Figure 2.1. As seen from Figure 2.1, the PA output signal tends to

saturate as the amplitude of the input signal increases; consequently, the output of

the PA cannot be expressed by a linear function of the input signal. Therefore, one

should include additional nonlinear terms to the linear signal term to reflect such kind

of saturation behavior.

In addition to the distortion in the time domain, nonlinearity causes unwanted signal

radiation on the adjacent band channel, which is called out-of-band (OOB) radiation.

The OOB radiation can be observed by investigating the power spectral density, which
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is shown in Figure 2.2. It should be noted that for Figure 2.2, the input signal is

generated as an OFDM waveform with upsampling factor 4. As can be observed

from the figure, the linear OFDM signal does not have nonzero PSD for normalized

frequencies −0.5−0.5; on the other hand, nonlinear distorted OFDM signal covers

a broader range of frequency band due to spectral regrowth, and it is called as out-

of-band radiation. OOB radiation is an undesired signal property of a nonlinearly

distorted signal since it degrades the quality of the received signal for other users,

which are being served at the adjacent band.

2.1.2 Generalized Memory Polynomial Model

Although the Saleh model provides insights into the nonlinear characteristics of PAs,

it cannot capture the hardware’s inherent memory effects. Hence, in order to have a

comprehensive investigation, in this thesis, a more general model, which is widely

employed in the literature, called the "Generalized Memory Polynomial (GMP)"

model, is also considered. The nonlinear function that represents PA can be expressed
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Figure 2.3: Hardware setup used to obtain GMP coefficients [2].

as

yn =

KPA−1∑
k=0

LPA−1∑
l=0

WPA−1∑
w=−WPA+1

ωk,l,wxn−l|xn−l+w|k, (2.4)

where ωk,l,w’s are the model coefficients, KPA represents the nonlinearity order, and

LPA and WPA represent the memory effects. It should be noted that if one selects

WPA = 1, then the resultant expression becomes the standard "Memory Polynomial

(MP)" model. Throughout the thesis, both GMP and MP models are used to model

PA nonlinearity. For this purpose, we employed both coefficients supplied by the

previous studies or extracted from a real hardware setup. For instance, in Chapter 4,

we employed MP coefficients provided in [1]. To extract the GMP coefficients from

the physical hardware, we employ the experimental test setup presented in [2], as

depicted in Figure 2.3.

The block diagram of the hardware setup can be seen in 2.4, where it can be seen

that measurements are captured from a GaN PA. In order to extract the GMP coeffi-

cients, the training sequence of length Ntr is formed using MATLAB software. The

generated training sequence can be expressed as

xtr =
[
xtr0 , x

tr
1 , . . . , x

tr
Ntr

]
. (2.5)

Then the sequence xtr is sent to the system shown in Figure 2.4, and passed through
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Figure 2.4: Block diagram of the hardware setup used to obtain GMP coefficients [2].

the PA, which can be represented by an arbitrary nonlinear function ψ(·), where each

element of PA output can be represented by ytrn = ψ({xtrn }). Then the PA output

sequence

ytr =
[
ytr0 , y

tr
1 , . . . , y

tr
Ntr

]
, (2.6)

is captured by the receiver chain. Then GMP model coefficients can be obtained by

using the least squares (LS) method as described in [38]

ω =
(
XH

trXtr

)−1
XH

try
tr (2.7)

where Xtr ∈ CJ×Ntr is the data matrix for the training sequence whose elements are

constructed by using the basis functions in (2.4) as xn−l|xn−l+w|k, ω is the vector

containing weight coefficients ωk,l,w, J is the number of coefficients, and Ntr is the

length of the training sequence.

In order to investigate the nonlinearity characteristics of the real PA provided in [2], in

Figure 2.5, input-output amplitude characteristics are demonstrated. Unlike the input-

output relationship in Figure 2.1, which has one-to-one mapping, the output of the

PA in [2] can have different values for the same input amplitude. The memory effects

account for this behavior since, depending on the neighboring samples, the PA output

can have different values. Therefore, it is important to consider the memory effects

while handling the PA nonlinearities, and GMP representation can successfully cover

memory effects.
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Figure 2.5: Input/output relation for PA in [2] and the linear PA.

2.2 System Parameters Related to Hardware Nonlinearities

2.2.1 Power backoff

Power backoff is an important system parameter that determines the operating region

of PAs. In some practical systems, in order to avoid nonlinear distortion, the output

power of the amplifier is reduced. The power reduction in the output power is called

output backoff (OBO); however, increasing OBO is not desired since it reduces the

efficiency of the power amplifier. Mathematically, OBO is defined as

OBO ≜
Pmax

Pav
, (2.8)

where Pmax and Pav are the maximum output power that PA can supply, and average

transmit power at the current operating point, respectively.

2.2.2 Adjacent Band Channel Leakage Ratio (ACLR)

Adjacent Band Channel Leakage Ratio (ACLR) is one of the most important metrics

that measures how much power is transmitted at the adjacent band, which can also be
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considered as the leakage power to the neigbouring channel. ACLR is defined by the

ratio between the leakage power and the in-band power as [39]

ACLR =
max

{∫ −B/2
−3B/2

Sy(f)dy,
∫ 3B/2

B/2
Sy(f)dy

}
∫ B/2
−B/2 Sy(f)dy

(2.9)

The maximum allowable ACLR is determined by the standards as ∼ −44 dB [13]. In

addition, ACLR can also be considered to be an quantitative indicator of the signifi-

cance of the OOB radiation since it involves the effects of the OOB power over the

whole adjacent band.
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CHAPTER 3

EQUIVALENT NONLINEAR ISI CHANNEL ANALYSIS

In this section, the nonlinear inter-symbol-interference channel for single-carrier (SC)

modulated signals, which occurs as a result of the downsampling of the received

nonlinearly distorted signal due to violation of the Nyquist-1 criterion, is investigated.

3.1 Signal Model

The objective of this section is to analyze the effects of downsampling on the non-

linearly distorted received signal; therefore, a simple line-of-sight transmission is

investigated for the equivalent nonlinear ISI channel analysis. Firstly data symbols

ak from a QAM alphabet are generated, and a pulse shaping filter is applied to those

symbols as

xn =
k=∞∑
k=−∞

akpn−µk, (3.1)

where xn is the desired transmitted signal, n is the discrete time index, µ is the up-

sampling factor, and pn is the pulse shaping filter, which is selected to satisfy Nyquit-

1 criterion to avoid linear ISI. In order to transmit signal xn, it is up-converted to

the carrier frequency, which is then passed through the nonlinear PA represented as

x̃n = ψ(xn). It should be noted that here perfect hardware besides non-ideal PA is

assumed. For the sake of generality, neither of the models presented in Chapter 2 is

considered, an arbitrary nonlinear function ψ(·) is investigated. In the next section,

the nonlinear ISI channel as a result of the downsampling operation is studied.
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3.2 Discrete-Time Equivalent Model for Nonlinear ISI Channel

In order to gain insight into the characteristics of nonlinear distortion, the distortion

term in the received signal is analyzed. For analytical convenience, we considered a

memoryless nonlinear model, expressed by arbitrary nonlinear basis functions, ψq(·),
where q is the nonlinearity order. Then, we can express the transmitted signal after

nonlinear amplification as

x̃n =

Q−1∑
q=0

ϖqψq

(
N−1∑
k=0

akpn−µk

)
, (3.2)

where {ϖq} are the model coefficients, ψ0(x) = x corresponds to linear term, and N

is the length of the data sequence. After matched filtering (MF), the received signal

can be written as

yn = ϖ0

N−1∑
k=0

akp̂n−µk +
∞∑

l=−∞

Q−1∑
q=1

ϖqψq

(
N−1∑
k=0

akpl−µk

)
p∗n−l, (3.3)

where p̂ = pn ⊛ p∗−n is ideal Nyquist-1 raised cosine impulse response. After sam-

pling, n = µm, received signal at symbol rate becomes

ym = ϖ0am +

Q−1∑
q=1

∞∑
l=−∞

ϖqψq

(
N−1∑
k=0

akpl−µk

)
p∗µm−l. (3.4)

From (3.4), it can be observed that the term in ψq(·) is a unique function for a specific

sequence, {an}. Consequently,
∑∞

l=−∞ ψq

(∑N−1
k=0 akpl−µk

)
p∗µm−l can be expressed

by a nonlinear mapping which depends on symbol index m and symbol sequence

{an}. Therefore, (3.4) can also be represented by employing a basis change as

ym = ϖ0am +

Q−1∑
q=1

ϖqψ
({an},m)
q

(
∞∑

l=−∞

N−1∑
k=0

akpl−µk(p̃
(q)
µm−l)

∗

)
, (3.5)

where ψ({an},m)
q (·) represents the unique mapping, which depends on the sequence

{an} and sampling instant m. p̃(q)l is the equivalent matched filter impulse response

distorted by the nonlinearity, ψq(·), which is also defined by another sequence de-

pendent nonlinear mapping1. By changing the summation order in nonlinearity, the

expression is further simplified to
1 In this work, we are not interested in finding the mapping, but existence of such mapping is sufficient for

rest of the analysis.
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ym = ϖ0am +

Q−1∑
q=1

ϖqψ
({an},m)
q

(
N−1∑
k=0

akp̄
(q)
m−k

)
. (3.6)

If the impulse response, p̄(q)m = pl ⊛ (p̃
(q)
−l )

∗|l=µm, in (3.6) were ideal raised cosine

then ψ
({an},m)
q (·) would depend only on the single symbol am, ψ({an},m)

q = ψ
(am)
q .

However, due to nonlinear distortion, there is a mismatch in matched filtering, which

creates ISI over sequence. Nevertheless, it can be observed that p̄l is a decaying

function, hence, it is assumed that nonlinearity depends on the sequence of a reduced

dimension, am = [am−Lq+1, ..., am, ..., am+Lq−1]
T . Consequently, received signal at

symbol rate is expressed as

ym = ϖ0am +

Q−1∑
q=1

ϖqψ
(am)
q

 Lq−1∑
k=−Lq+1

am−kp̄
(q)
k

 . (3.7)

It can be inferred from (3.7) that even for systems subjected the memoryless nonlin-

earity, distortion signal is a nonlinear function of transmitted sequence. Therefore,

sequence detection should be performed in order to decode the signal [40]. Con-

sequently, by limiting the memory of the sequence, efficient algorithms can be em-

ployed to detect the transmitted sequence. In the literature, several methods employ-

ing memoryless detection schemes were proposed [41, 42], which can be considered

as the special cases of (3.7), where am = am,

ym = ϖ0am +

Q−1∑
q=1

ϖqψ
(am)
q

(
p̄
(q)
0 am

)
. (3.8)

Eventually, received signal becomes a symbol dependent function and it can be rep-

resented by a symbol dependent coefficient, ϖ(am) as, ym = ϖ(am)am, where

ϖ(am) = ϖ0 +

(
Q−1∑
q=1

ϖqψ
(am)
q

(
p̄
(q)
0 am

)) 1

am
. (3.9)

The complexity of the optimal detector for (3.7) is tremendous; hence, instead of

directly implementing the optimal detector, a nonlinear predictor will be designed

to estimate am. This is more suitable, especially for the presence of the dispersive

channel, which increases the computational complexity even further.
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CHAPTER 4

AN EFFICIENT QAM DETECTOR VIA NONLINEAR POST-DISTORTION

BASED ON FDE BANK UNDER PA IMPAIRMENTS

4.1 Introduction

In this chapter, we propose a receiver structure with frequency domain equalization

(FDE) for single-carrier uplink transmission that is exposed to PA nonlinearities. A

two-stage approach is adopted, in which linear communication channel is equalized

at the first stage, and it is followed by post-distortion, where nonlinear distortion

is reduced. In the literature, nonlinear processing techniques are proposed, which

perform memoryless compensation of nonlinear distortion together with FDE. How-

ever, in Chapter 3, we show that even if memoryless nonlinearity exists, the received

signal is impaired by nonlinear inter-symbol interference. Therefore, we propose a

class of symbol rate post-distortion techniques, which use neighboring received sym-

bols to suppress the nonlinear interference. Three different post-distortion methods,

Gaussian process regression (GPR), neural network (NN) and Volterra series (VS)

based post-distorters, are considered. Also, a combiner, which intelligently combines

the outputs of fractional delayed bank of FDEs after post-distortion, is proposed to

overcome performance degradation of FDE for frequency selective channels under

nonlinear distortion. Performances of the proposed techniques are compared with

state-of-the-art approaches in terms of bit error rate (BER) and achievable informa-

tion rate (AIR) metrics. Simulation results demonstrate that post-distortion methods

together with bank of FDE outperform state-of-the-art techniques.

21



4.2 Related Literature

In the literature, there are many methods proposed for the linearization of PAs at the

transmitter. Digital predistortion (DPD), which aims to linearize the transmitted sig-

nal subjected to nonlinear distortion, is the most popular technique among others [29,

30,38]. DPD is a suitable solution for downlink transmission since base stations (BS)

have quite sufficient computational power to implement complex DPD algorithms.

However, implementing DPD at UEs is quite costly; thus, techniques avoiding the

utilization of DPD are more suitable for uplink transmission [16, 43]. Post-distortion

techniques, which operate on nonlinearly distorted received signals, are developed

in order to implement complex compensation algorithms at BS [31, 32, 40, 44, 45].

In [32] and [40], VS based post-distorters are employed as a nonlinear equalizer to

detect the transmitted symbols. Besides, in [31], GPR is also adopted as nonlinear

equalizer for nonlinear channels to improve the detection performance. However,

nonlinear equalizers proposed in [31, 32, 40, 45], treat the nonlinearity together with

the wireless channel, which increases parameter optimization complexity. In addi-

tion, decision region optimization-based detectors [41, 42] are recently proposed to

decode nonlinearly distorted symbols. These techniques exploit constellation-point-

dependent distortion, where nonlinear distortion becomes more distinctive as symbol

power increases.

Recently, methods that decouple linear and nonlinear channels are proposed in or-

der to reduce computational complexity [44, 46]. These studies consider the system

as a memoryless nonlinearity followed by linear wireless channel. By exploiting

Hammerstein channel assumption, first, linear wireless channel is equalized by using

hybrid decision feedback FDE (HDFDE) then the equalized signal is processed by

the memoryless post-distorter, which is the estimated inverse of the memoryless non-

linearity. Complex valued B-spline neural network is utilized in order to extract the

inverse nonlinear model [44, 46, 47]. However, pulse shaping, which creates inherent

nonlinear memory, is not considered in these studies. The significance of the memory

due to pulse shaping is shown numerically in [41, 42] for memoryless PAs. These

studies demonstrate that nonlinear ISI yields I/Q correlated distortion and developed

modified decision metrics (MM) that outperform conventional detectors by taking
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the distortion term into account. However, these detectors do not consider memory

in detection, yet they only consider nonlinear ISI as additional distortion. In addi-

tion, the effects of nonlinear distortion on the FDE performance are not considered in

these studies since the signal model is formed in the symbol-sampled domain, where

perfect decoupling of linear and nonlinear systems is possible.

In [48], an iterative block decision feedback equalizer (IB-DFE), called robust re-

ceiver, is proposed. It considers nonlinearity as the source of an additional noise

component. In this study, the feedforward equalization matrix is modified by taking

the distortion power into account. Due to the lack of nonlinear receiver process-

ing, the performance of this method is expected to be limited especially for higher-

order constellations. In [49], an iterative approach is proposed for multiple-input and

multiple-output (MIMO) SC-FDE systems employing quadrature phase shift keying

(QPSK) modulation. This approach estimates the nonlinear distortion via an ampli-

fier model by using the tentative decisions at each iteration and cancels the distortion

in the frequency domain in order to improve the performance of the robust receiver.

This study also considers a symbol-sampled channel domain, where both the desired

and the distortion signals are exposed to the same effective channel in the frequency

domain; hence, the effects of sampling are not considered. Also, the performance of

the proposed algorithm depends on the tentative decisions at the first iteration since

the algorithm converges in a few iterations. However, for higher-order modulations,

tentative decisions can be erroneous, which may degrade the overall performance.

Therefore, a nonlinear compensation, before calculating the tentative decisions, may

improve the performance of the iterative approach.

In addition to state-of-the-art decision metrics, [41] and [42] develop a framework to

evaluate the performance of a system impaired by transceiver non-idealities. Capacity

expression based on generalized mutual information (GMI) metric [50] is adopted to

obtain mismatched decoding capacity [51, 52]. In this thesis, mismatched decoding

capacity is utilized in order to find a lower bound on AIR.

In this chapter, a receiver structure for uplink transmission is proposed, and extensive

analysis is carried out for the received signals impaired by transceiver nonlinearities.

Two-stage equalization is considered, where the first stage equalizes the linear chan-
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nel, and the second stage compensates for the nonlinear distortion.

4.2.1 Contributions

In this chapter, a receiver structure for uplink transmission is proposed, and extensive

analysis is carried out for the received signals impaired by transceiver nonlinearities.

Two-stage equalization is considered, where the first stage equalizes the linear chan-

nel, and the second stage compensates for the nonlinear distortion. Main contributions

can be summarized as follows:

• Firstly, a nonlinear distortion analysis is conducted to investigate the effects of

frequency-selective channels on the received nonlinear distortion signal. The

analysis reveals that the effective channels of the desired signal and the distor-

tion terms are different, and conventional feedforward FDE causes distortion

amplification. To the authors’ knowledge, this phenomenon is not discussed in

the literature.

• It is observed that the performance of the receiver, operating at the symbol rate,

is significantly affected by the sampling instant due to the difference between

the channels of desired and distortion signals. A receiver structure, which uti-

lizes fractionally spaced samples, is proposed to improve the performance by

exploiting channel diversity. In this structure, soft symbol estimates, produced

by nonlinear post-distortion filters at each fraction, are combined to detect the

transmitted symbols by taking the distortion for each effective channel into ac-

count.

• An equivalent nonlinear ISI channel model analysis is carried out, which shows

that even for memoryless nonlinearity, the received signal suffers from non-

linear distortion depending on the neighboring symbols due to pulse shaping.

Performance improvement is achieved compared to state-of-the-art techniques

[41, 42, 44] by including memory with cross-terms in the nonlinear process-

ing as presented in ISI channel analysis, even for the presence of memoryless

nonlinearity.
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• Three nonlinear post-distortion techniques, based on NN, GPR and VS struc-

tures following the linear FDE, are proposed. These methods are independent

of instantaneous channel state information (CSI). In addition, the best linear

unbiased estimator (BLUE) [53] is adopted to further decrease the complexity

of GPR hyper-parameter optimization.

4.3 System Model

4.3.1 SC-FDE Based Transmitter Model

A conventional SC-FDE-based transmission scheme shown in Figure 4.1 is consid-

ered. At each data block, ND number of P -QAM symbols, [a0, a1, ..., aND−1]
T
ND×1

with unit energy, E{|ak|2} = 1, are transmitted. A cyclic prefix (CP) and cyclic suf-

fix (CS) are added to prevent inter-block interference and create a circulant channel

matrix. Then, the symbol vector for the transmitted block becomes

a = [aND−NCP
, . . . , aND−1, a0, a1, . . . , aND−1, a0, . . . , aNCS−1]

T , (4.1)

QAM
Modulator

pn hn

Σ
MF
p∗−n

DFT FDE

CSI
acquisition

IDFT NL Post-
Distorter

NL param.
Learning

Symbol
Detector.

PA
bn an xn x̃n x̃n

νn

nµ

yn zn ãn ân

ĥn

Figure 4.1: Transciever structure for SC-FDE transmission system.

where NCP and NCS are the lengths of CP and CS respectively. In discrete time,

signal to be transmitted can be expressed as

xn =
N−1∑
k=0

akpn−µk, (4.2)
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where pn is the upsampled pulse shaping filter response with upsampling factor µ and

N = ND + NCP + NCS . Then, the transmitted signal, xn = |xn|ejϕi,n , is fed to

PA, which nonlinearly distorts the signal. In this study, Saleh model [37], which is

commonly employed in simulations, and a realistic PA model [1], which is extracted

from an actual hardware are considered. For Saleh model, output of the nonlinear PA,

x̃n = |x̃n|ejϕi,nejθn , can be expressed as

|x̃n| =
g0|xn|

1 + (|xn|/Asat)2
, θn =

α|xn|2

1 + β|xn|2
, (4.3)

where g0, Asat, α and β are the model parameters. In addition to Saleh model, we

considered a model that is extracted based on the measurements on the GaN power

amplifier [1]. This model is based on memory polynomial [38] and the output of the

PA is represented as

x̃n =

Kb−1∑
k=0

Pb−1∑
l=−Pb+1

Pc−1∑
m=−Pc+1

ck,l,mxn−l|xn−l−m|2k, (4.4)

where ck,l,m’s are the model coefficients. In general, PA output can be represented

by a generic nonlinear function as x̃n = Ψ({xn}). Details of PA models will be pre-

sented in Section 4.8. Then, the discrete-time baseband received signal after matched

filtering (MF) becomes

yn =

(
L−1∑
l=0

hlx̃n−l + νn

)
⊛ p∗−n, (4.5)

where hl’s l = 0, 1, ..., L − 1 are complex channel coefficients, ⊛ denotes convolu-

tion sum, and νn is zero-mean complex additive white Gaussian noise (AWGN) with

variance E{|νn|2} = N0.

ST
Training

FT
Training CP Data Stream CS

FT
Training CP Data Stream CS

NS NF ND

Figure 4.2: Frame structure for the transmition scheme.
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4.3.2 Frame Structure

The frame structure, which is employed in this study, is shown in Figure 4.2. At the

beginning of the transmission, a training sequence is sent to perform parameter learn-

ing for the nonlinear post-distortion. In the proposed system, nonlinearly distorted

transmitted signals are captured by the observation chain of UE and sent to BS, and

nonlinear parameter learning (NPL) is performed under no channel impairments with

high signal-to-noise ratio (SNR)1. Since PA characteristics show a slow change com-

pared to wireless channel, NPL, which can be referred as slow time (ST) training, is

not performed very often. Thus, NPL does not bring any overhead to the system. ST

sequence of length, NS , is only transmitted when the nonlinear characteristics of the

PA are changed. After NPL stage, data transmission starts. A block fading system is

assumed and the CSI is not available. Since channel estimation is beyond the scope

of this study, a sufficiently long training sequence having NF symbols is transmitted

at the beginning of each data block. Least squares (LS) method is employed to obtain

CSI in fast time (FT) training stage.

4.4 Distortion Analysis and Pre-processing : Bank of FDE

In this section, an analysis on the effects of nonlinear distortion on FDE performance

under frequency selective channels is presented. Also, based on this analysis, a re-

ceiver is proposed to decrease the effects of nonlinear distortion by exploiting channel

diversity.

4.4.1 Distortion Analysis for Frequency Selective Channels

To analyze the effects of frequency selective channels on a nonlinearly distorted sig-

nal, signal under consideration should be decomposed into linear and nonlinear parts

so that each term can be analyzed individually. Decomposition can be performed by

1 Alternatively, NPL can be performed at the BS after CSI acquisition and equalization stages under channel
impairments and at relatively low received SNR levels by repeating the same ST training sequence in order to
increase effective SNR for NPL.
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using Bussgang decomposition as

x̃n = αxxn + γn, αx =
E[x∗nx̃n]
E[x∗nxn]

, (4.6)

where xn and x̃n are defined in (4.2) and (4.3), respectively. Bussgang coefficient,

αx, can be found by Wiener filtering given in (4.6) and γn is the remaining distortion

term. Received signal after matched filtering can be expressed in frequency domain,

Y (ejω), as

Y (ejω) = αxX(ejω)H(ejω)P ∗(ejω) + Γ(ejω)H(ejω)P ∗(ejω), (4.7)

where X(ejω) =
∑ND−1

m=0 amP (e
jω)e−jmωµ is the desired signal spectrum, which is

equivalent to X(ejω) = P (ejω)A(ejµω) and A(ejω) =
∑ND−1

m=0 ame
−jmω. In (4.7),

H(ejω) =
∑L−1

k=0 hke
−jkω and P (ejω) =

∑∞
m=−∞ pme

−jmω are Fourier transforms of

hn and pn. Fourier transform of the distortion, Γ(ejω) ≜
∑µND−1

n=0 γne
−jnω, is related

to power spectral density (PSD) of the distortion term as

SΓ(e
jω) = lim

ND→∞
E
[

1

µND

|Γ(ejω)|2
]

(4.8)

which is given in [54] as

SΓ(e
jω) =

∞∑
s=1

pΓ,s SX(e
−jω)⊛ ...⊛ SX(e

−jω)︸ ︷︷ ︸
s terms

SX(e
jω)⊛ ...⊛ SX(e

jω)︸ ︷︷ ︸
s+1 terms

, (4.9)

where SX(ejω) is PSD of xn, and pΓ,s can be considered as the power of the sth order

nonlinearity. Furthermore, it can be inferred from (4.9) that spectral regrowth occurs

due to nonlinearity. Consequently, (4.7) is simplified to

Y (ejω) = αxA(e
jµω)|P (ejω)|2H(ejω) + Γ(ejω)H(ejω)P ∗(ejω). (4.10)

After decimation, sampling rate is reduced to symbol rate, and downsampled signal

in frequency domain, namely Y d(ejω), can be expressed as

Y d(ejω) =αxA(e
jω)

1

µ

µ−1∑
i=0

H(ej(
ω−2πi

µ
))|P (ej(

ω−2πi
µ

))|2︸ ︷︷ ︸
Φ(ejω): Linear Term

+

1

µ

µ−1∑
i=0

Γ(ej(
ω−2πi

µ
))H(ej(

ω−2πi
µ

))P ∗(ej(
ω−2πi

µ
))︸ ︷︷ ︸

Ψ(ejω): Distortion Term

,

(4.11)
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where αx

µ

∑µ−1
i=0 H(ej(

ω−2πi
µ

))|P (ej(
ω−2πi

µ
))|2 can be interpreted as the effective channel

frequency response, Heff (e
jω). In addition, PSD of downsampled distortion signal

can be expressed as

SΨ(e
jω) =

1

µ

µ−1∑
i=0

SΓ

(
ej(

ω−2πi
µ

)
) ∣∣∣H (ej(ω−2πi

µ
)
)∣∣∣2 ∣∣∣P (ej(ω−2πi

µ
)
)∣∣∣2 . (4.12)

From (4.11), it can be observed that the channels experienced by data symbols, am’s,

and the distortion signal are different, in general. Therefore, a particular frequency,

ωf , which yields fading, Heff (e
jωf ) ≈ 0, for symbol spectrum, may not cause fad-

ing for distortion. Consequently, distortion power is amplified during FDE operation

since large gain is applied to corresponding frequency component of distortion to

equalize deep fades of Heff (e
jω). On the other hand, if communication channel is

sparse such that non-zero taps only exist at symbol times then H(ejw) becomes peri-

odic with 2π
µ

. Therefore, for such a channel, H(ej(
ω−2πi

µ
)) term can be moved outside

the summations. Consequently, both linear and distortion terms experience similar

channels, which does not yield any distortion amplification. In Figure 4.3, PSD’s of

both distortion and linear signal terms are shown. It is observed from Figure 4.3(a)

that for a symbol rate channel both linear and distortion terms experience the same

equivalent channel. However, for a more realistic upsampled channel model, it can be

observed from Figure 4.3(b) that linear and distortion signals are subject to different

equivalent channels where linear signal is having a deep fade but distortion term is

not. Consequently, distortion amplification occurs after FDE operation and ampli-

fied distortion is spread over all symbols via IDFT operation. Besides, from Figure

4.3(c), it can be seen that if the sampling instant is shifted by T/4 then the resulting

effective channel may not have deep fades for the same wireless medium. Hence,

we propose a receiver structure, which is shown in Figure 4.4, that exploits channel

diversity obtained from different sampling instances.

4.4.2 Channel Acquisition and FDE Operation

Sampled signal is divided into µB branches such that the signal on the ith branch is

given as
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Figure 4.3: PSD of signals for (a) symbol sampled channel and a random channel

realization from the given Rayleigh model in Numerical Evaluations with fractional

delay of (b) 0 and (c) T/4.

y(i)n = ynµ+(i−1) µ
µB
, i = 1, ..., µB (4.13)

where it can be assumed that both cyclic prefix and suffix parts of the data block are

discarded. For each branch standard FDE procedure is followed. Firstly, by using fast

time training sequence, LS estimate of channel, ĥ(i) = [ĥ
(i)
−Lb+1, ..., ĥ

(i)
0 , ..., ĥ

(i)
Lf−1]

T ,

for the ith branch is obtained as

ĥ(i) = ([A]HA)−1[A]Hy
(i)
fast, (4.14)

where A ∈ CNF×(Lb+Lf−1) is the data matrix for FT sequence and the received se-

quence for FT training stage of the ith branch is

y
(i)
fast = [y

(i)
0 , y

(i)
1 , ..., y

(i)
NF−1]

T
NF×1. (4.15)

Note that estimated channel in (4.14) has also anticausal parts to recover synchro-

nization errors. In this study, conventional channel estimation is modified in or-

der to decrease the effects of nonlinear distortion on estimation accuracy. For this

purpose, elements of the data matrix are modified as, [A]k,l = ā(k−l)+Lb−1, where

ān =
(
Ψ(xm)⊛ p∗−m

)
|m=µn is the nonlinearly distorted symbol after MF and down-

sampling corresponding to the symbol an of the FT sequence. These symbols can

be obtained during ST training stage since the FT sequence is not changed during

transmission. If an’s are employed as the elements of A then the nonlinear distor-

tion would behave as additional noise; hence, the effective SNR for CSI acquisition

decreases.

FDE is performed for all branches on the received information signals. DFT of the

received signal is computed as y
(i)
f = QHy(i) where y(i) = [y

(i)
0 , y

(i)
1 , ..., y

(i)
ND−1]

T
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Figure 4.4: Block diagram for proposed bank of FDE’s based detector.

and Q is the ND × ND normalized DFT matrix with the (m,n)th element, qmn =

1√
ND
ej2πmn/ND . Then, the received signal in the frequency domain can be expressed

as

y
(i)
f = diag{λ(i)k }ND−1

k=0 af + n
(i)
f , (4.16)

where af ≜ QH a, n(i)
f ≜ QHν(i), where [ν(i)]n ≜ (νn ⊛ p∗−n)|n→nµ+(i−1) µ

µB
, and

the estimated equivalent channel frequency response can be expressed as λ(i)k =

1√
ND

∑Lf−1

l=−Lb+1 ĥ
(i)
l e

−j2πkl/ND for k = 0, . . . , ND − 1. To perform FDE, minimum

mean squared error (MMSE) estimation type filtering is applied in frequency domain

as

z
(i)
f = diag

{
[λ

(i)
k ]∗

|λ(i)k |2 + δ

}ND−1

k=0

y
(i)
f , (4.17)

where δ = No

Es
is the regularization parameter, Es is the average signal power and

No is the noise variance. After performing FDE, time domain signal, {z(i)n } for the

ith branch, is obtained via IDFT, z(i) = Qz
(i)
f . Note that, in this study, only linear

FDE is considered; however, the performance of the receiver can be improved further

by utilizing iterative FDE techniques [48, 55]. By using decision feedback, as in IB-

DFE [48], remaining interference effects can be reduced so that superior detection
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performance can be achieved. Following the linear equalization, post-distortion is

performed to suppress the nonlinear distortion.

4.5 Symbol Rate Nonlinear post-distortion based on FDE Bank

In this section, a symbol rate nonlinear post-distortion (NP) approach for higher-order

constellations is considered. In addition, a combiner, which employs FDE bank, will

be developed to exploit diversity to minimize distortion amplification effects.

4.5.1 Post Processing: Symbol rate nonlinear post-distortion

Different symbol rate NP techniques based on GPR, augmented real-valued time-

delay neural network (ARVTDNN) and VS are considered. The mentioned nonlinear

post-distortion units are trained in ST training mode, whose details will be presented

in the subsequent sections. The aim of the NP is to nonlinearly modify the incoming

signal so that desired output is produced. However, one should note that we are not

interested in finding the inverse model of the PA, Ψ−1(·) but performing a symbol

rate nonlinear processing, which eliminates the nonlinear ISI. A detailed analysis on

equivalent nonlinear ISI channel is provided in Chapter 3. In addition, the analy-

sis shows that combination of neighboring symbols are affected by the nonlinearity.

Hence methods, which utilizes cross-terms, should be considered for NP to reduce

the received nonlinear distortion.

4.5.2 Proposed Method for Slow-Time Training Data Set Formation

In order to train the post-distortion methods that are proposed in the thesis, a proper

training set should be constructed. Since the objective is to minimize the detection

error, it is desired to avoid imperfections other than the hardware impairments such

as AWGN and channel frequency selectivity. Otherwise, the training quality may de-

grade significantly. It should be noted that the main responsibility of the nonlinear

post-distortion unit is to recover the transmitted (desired) QAM symbols from the

nonlinearly distorted received signals. In addition, it is assumed that the effects of
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Figure 4.5: Block diagram of the hardware setup used to obtain training set at the UE.

the frequency-selective communication channel are mitigated prior to nonlinear pro-

cessing via FDE. Therefore, nonlinear post-distortion is used to eliminate the solely

nonlinear distortion in the down-sampled signal domain. Hence, in this study, two

methods are proposed to acquire training samples such that they only contain nonlin-

ear distortion after downsampling.

4.5.2.1 First Alternative: Acquisition of training samples via observation re-

ceiver at the UE

In order to capture the PA output, an observation receiver can be equipped at the UE.

The block diagram for the proposed data acquisition structure is shown in Figure 4.5.

In the proposed approach, the training QAM symbols are generated and pass through

the PA, which nonlinearly distorts the signal x̃n. Then the nonlinearly distorted signal

x̃n is captured by employing an additional Rx chain. The captured signal is converted

to digital signals and matched filtering is applied to that signal. Finally, matched filter

output is sampled with sampling rate µ to obtain training symbols for nonlinear post-

distortion zn. It should be noted that since the observation receiver directly measures

the PA output, SNR for parameter learning is high and the frequency response of the

observation channel is flat.
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4.5.2.2 Second Alternative: Acquisition of training samples at the BS based on

channel integration

An alternative procedure for the construction of the training set under channel impair-

ments with lower SNR is also proposed. For this case, ST training sequence is not

captured by the UE, but received ST sequence, passing through a wireless channel,

at BS is used for learning as depicted in Figure 4.1. For this case, in order to obtain

channel diversity against noise and distortion amplification after FDE stage, ST pe-

riod can be divided into K segments and the same training sequence is sent at each

segment. Then, we can denote, nth symbol of ith training sequence as a(i)n :

a(i)n = an, i = 1, . . . , K. (4.18)

Each training segment is sent consecutively and they are exposed to different com-

munication channels. After channel acquisition and linear equalization (FDE) stages,

the received symbol for each ST training segment can be written in time domain as

z(i)n = Ω(an) + η(i)n , (4.19)

where Ω(·) is the nonlinear function representing PA, η(i)n is the additional distortion

for the ith segment due to mismatch between linear wireless channel and channel

experienced by the nonlinear distortion term, and AWGN. After receiving all data

segments, they can be integrated as

zn =
K∑
i=1

wiz
(i)
n (4.20)

where wi is the weight of each segment. One can simply use wi as, wi = 1/K.

Thanks to this integration, received SNR is enhanced at least by the factor of K. The

number of segment can be chosen to be high enpugh to have sufficient SNR for NPL;

however, it should not be long enough to create latency problems. Then, {an, zn}
sequence can be utilized to train NPL.

34



4.5.3 GPR based NP

GPR is developed to predict the output of a nonlinear system by minimizing the mean

squared error in function space [56]. It can be considered as the Wiener solution of

the nonlinear identification problem since system output is assumed to have Gaus-

sian distribution. The nonlinear model based on GPR for real, aIn = Re{an}, and

imaginary, aQn = Im{an}, parts of the desired NP output is described as [56, 57]

aIn = ΩI(z̄n) + νIn and aQn = ΩQ(z̄n) + νQn , (4.21)

where νIn, νQn are the I/Q parts of the modeling error, which are zero-mean white

Gaussian processes (GP) independent of other sequences with variance σ2
ν , and the

latent functions ΩI(·) and ΩQ(·) are the functions to be identified. Input vector, z̄n,

has the augmented form as

z̄n = [Re{zn+M−1}, ...,Re{zn}, ...,Re{zn−M+1},

Im{zn+M−1}, ..., Im{zn}, ..., Im{zn−M+1}]T ,
(4.22)

whereM is the memory depth. Training set for GPR based NP is defined as, {an, z̄n}Ns−1
n=0

where an is the desired output. In this section, we focus on modelling the in-phase

component; however, one can use the same procedure for the imaginary part. In order

to express distribution of GP model in (4.21), required functions, vectors and matrices

are defined as follows:

• Kernel function, which is the cross correlation between different samples of the

latent process, is defined as k(z̄p, z̄q) ≜ E{ΩI(z̄p)ΩI(z̄q)}.

• Kernel matrix K is defined as the correlation matrix with entries, [K]p,q =

k(z̄p, z̄q).

• Kernel steering vector, namely k∗ ≜ E{aslowΩI(z̄∗)}, is defined as the cross-

correlation between the training and the test signals, and

aslow ≜ [aI0, a
I
1, ..., a

I
Ns−1]

T (4.23)

is the training sequence vector. It is used to predict the test symbol, aI∗ by using

z∗, where ∗ denotes time indices in data sequence, pth element of k∗ can be

calculated as [k∗]p = k(z̄p, z̄∗) due to the independence of ΩI(z̄p) and νIp .
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Based on defined kernel functions, the predictive distribution2 can be written as [56,

57]

p(aI∗|{an, z̄n}Ns−1
n=0 , z̄∗) ∼ N

(
µ∗, σ

2
∗
)
, (4.24)

where µ∗ and σ2
∗ are mean and variance of the distribution, and they can be obtained

as

µ∗ = kT∗
(
K+ σ2

νI
)−1

aslow, σ2
∗ = k(z̄∗, z̄∗)− kT∗ (K+ σ2

νI)
−1k∗ + σ2

ν . (4.25)

Then, symbol estimates at the output of NP becomes the mean of the predictive dis-

tribution:

ãI∗ = E{aI∗|{an, z̄n}Ns−1
n=0 , z̄∗} = kT∗

(
K+ σ2

νI
)−1

aslow. (4.26)

In this study, kernel function is chosen as the exponential function that is widely em-

ployed in literature, k(z̄p, z̄q) = σ2
f exp

(
−z̄TpQ

−1z̄q
)
, where Q = diag{c2i }4M−2

i=1 and

ci’s are the length scale parameters and σ2
f is the signal variance. Maximum likelihood

estimation is used to find the hyper-parameters, β = [σf , σν , c1, ..., c4M−2]
T [31, 57].

Hyper-parameter optimization is a time consuming process, and training time ex-

ponentially increases with the length of the training sequence. Hence, higher-order

P -QAM processing requires a long training sequence to train GPR parameters. In

order to reduce the training time, we propose BLUE type post processing such that

training sequence is divided into non-overlapping segments to train different GPR

units and intelligently combine the output of each unit.

Estimated symbol for ith segment with training set {a(i)n , z̄(i)n }N
(i)
S −1

n=0 is obtained as

ã
I,(i)
∗ = [k

(i)
∗ ]T

(
K(i) + σ2

νI
)−1

a
(i)
slow, where k

(i)
∗ is the cross-correlation vector, K(i)

is the kernel matrix, and a
(i)
slow is the training symbols for the ith segment, N (i)

S is the

training length for ith segment, and S is the number of segments:
∑S

i=1N
(i)
S = NS .

For simplicity, we dropped I/Q indices, and variance of each symbol estimate, (σi∗)
2,

can be obtained as

(σi∗)
2 = k(z̄(i)∗ , z̄

(i)
∗ )− [k(i)

∗ ]T
(
K(i) + σ2

νI
)−1

[k(i)
∗ ] + σ2

ν , (4.27)

where z̄
(i)
∗ is test data for ith segment. Estimates are fused based on BLUE combiner

2 GPR prediction is linear Wiener filtering in function space and it predicts the best function in MMSE sense
by using correlation information via Kernel functions. Hence, (4.25) still yields valid linear MMSE (LMMSE)
estimate in function space for non-Gaussian distortion.
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as in [53]

ã∗ =
S∑
i=1

wi∗ã
(i)
∗ , (4.28)

where w∗ = [w1
∗, ..., w

S
∗ ]
T is the weight vector obtained as, w∗ = D−1

∗ 1

1TD−1
∗ 1

, where

D∗ ≜ diag{(σ1
∗)

2, ..., (σS∗ )
2} is the diagonal variance matrix.

4.5.4 Neural Network (NN) based NP

In this chapter, ARVTDNN structure shown in Figure 4.6, which is employed to

design digital predistortion unit in [29] via behavioral modelling, is used as the non-

linear post-distorter. However, the functionality of the NN in this study is different

compared to that of DPD. In [29], NN is used for nonlinear system identification via

nonlinear regression so that the inverse of the nonlinear function is obtained. How-

ever, in this study, we are employing NN to estimate transmitted symbols chosen from

a discrete alphabet.

z−1

z−1

z−1

z−1

Σ

Σ

Σ

g(·)

g(·)

g(·)

Σ

Σ

Re{zn}

Im{zn}

w1,1

wL1,4M−2

b1,1

b1,L1

b1,2

b2,I

b2,Q

Re{ã}

Im{ã}

Figure 4.6: ARVTDNN architecture.

The same input signal, z̄n, which is defined for GPR estimation, is also used for

NN post-distortion. Then, symbol estimate at the output of NN can be expressed as

ãn = ΩI(z̄n) + jΩQ(z̄n), where ΩI(z̄n) and ΩQ(z̄n) are the estimates of real and
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imaginary parts respectively. The cost function is defined as

J =
1

2NS

NS−1∑
n=0

(Re{an} − ΩI(z̄n))
2 + (Im{an} − ΩQ(z̄n))

2. (4.29)

In the proposed network structure, there is a single hidden layer together with one

input and output layers. Therefore, network output can be expressed as

ΩI(z̄n) = wT
I g(W1z̄n + b1) + b2,I , (4.30)

where wI ∈ CL1×1 is the weight vector of the output layer, similarly output for the

quadrature part is obtained by the weight vector wQ and b2,Q. W1 ∈ CL1×4M−2 is

the weight matrix for the input layer with elements [W1]k,l = wk,l which connects

lth neuron of the input layer to kth neuron at the hidden layer, b1 and b2 are the bias

vectors, L1 is the number of neurons in hidden layer and g(·) is the activation function.

It can be noted from (4.30) that nonlinearity g(·) is applied to the combination of the

neighboring received signals as motivated by the nonlinear ISI analysis in Chapter

3. In this study, hyperbolic tangent sigmoid transfer function, g(x) = 2
1+e−2x − 1,

is employed, which introduces the nonlinearity required for nonlinear compensation.

At each epoch, cost function is evaluated and weights of NN coefficients are updated

via back-propagation by using the Levenberg-Marquardt algorithm [58].

Furthermore, as part of the research effort, the application of a nonlinear post-distortion

technique is augmented with the utilization of a developed NN model for the purpose

of modeling the nonlinear self-interference in duplex communication systems in [34].

The proposed neural network structure is specifically designed to estimate the slowly

changing nonlinear characteristics exhibited by power amplifiers. By accurately es-

timating the nonlinear distortion leakage, it becomes possible to effectively cancel

out the adverse effects introduced to the received signal. The provision of precise

distortion estimation greatly enhances the likelihood of successful decoding of the

intended signal-of-interest. This integrated approach contributes to the advancement

of techniques employed in duplex communication systems, enabling improved signal

recovery and overall system performance.

38



4.5.5 Volterra series based NP

In this chapter, Volterra series (VS) is also adopted for NP. Post-distortion output can

be given by VS basis functions of third order [38] as

ãn =
M−1∑

p=−M+1

ϕpzn−p +
M−1∑

p=−M+1

M−1∑
q=−M+1

M−1∑
r=−M+1

ψp,q,r zn−pz
∗
n−qzn−r, (4.31)

where ϕp and ψp,q,r are the VS coefficients. To represent identification problem in a

more convenient way, post-distortion output is represented in matrix-vector form as,

ã = Zϕ, where [ã]n = ãn, ϕ ∈ C((2M−1)3+(2M−1))×1 is the coefficient vector, whose

elements are the Volterra series coefficients, Z ∈ CNS×((2M−1)3+(2M−1)) is the data

matrix formed by nonlinearly distorted training symbols after standard FDE opera-

tion, whose elements are basis functions for VS, zn−pz∗n−qzn−r. Then, LS method is

performed to estimate VS series coefficients as

ϕ =
(
ZHZ

)−1
ZHa, (4.32)

where [a]n = an is the vector of ST training symbols.

4.5.6 An Adaptive QAM Detection based on nonlinear post-distortion bank

In this section, a detector structure, which is novel in the aspect of taking the distortion

amplification into account, is proposed. In order to reduce the effects of distortion

amplification, the use of channel diversity is proposed in this study. Therefore, we

propose that fusion of the estimates for different sampling instances improves the

overall detection performance by taking the distortion powers for different effective

channels into account.

In Figure 4.4, NP produces soft symbol estimates, ã(i)n = Ω
({
z
(i)
n

})
as the output for

each branch, where Ω(·) denotes the output of nonlinear regression function. Then,

soft symbol estimates, ãn = [ã
(1)
n , ã

(2)
n , ..., ã

(µB)
n ]T , are fed into the distortion-aware

symbol by symbol detector (DA-SSD), which is based on the generalized Bussgang

decomposition for non-Gaussian signals [59]

ãn = βan + ηn, (4.33)
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where β is the Bussgang coefficient vector computed during fast time training period

as

β =
E{ãna∗n}
E{|an|2}

≈

(
NF−1∑
n=0

ãna
∗
n

)(
NF−1∑
n=0

|an|2
)−1

, (4.34)

and Rη is the autocorrelation matrix of distortion vector, ηn, which is calculated as

Rη = E{(ãn − βan)(ãn − βan)
H} ≈ 1

NF

NF−1∑
n=0

(ãn − βan)(ãn − βan)
H . (4.35)

Although the data symbols, an, are not Gaussian, it is shown in [59] and [60] that

Bussgang decomposition can be employed for modulated signals. This decomposi-

tion can be considered as the LMMSE estimate of non-Gaussian signal, ãn, by using

desired symbol, an. The aim is to decompose the received signal into the desired and

the uncorrelated distortion terms.

Soft symbol estimates are calculated by combining branch outputs to minimize the

overall distortion power. For this purpose, minimum variance distortionless response

(MVDR) method is adopted to find the combiner vector, wc ∈ CµB×1,

minwH
c Rηwc s.t. wH

c β = 1, (4.36)

which gives the combiner vector as

wc =
R−1
η β

βHR−1
η β

. (4.37)

Then the soft symbol estimate, ân, and the estimate of the distortion variance, σ̂2
a,

which will be utilized while calculating log-likelihood ratio (LLR) values, become

ân = wH
c ãn, σ̂2

a = wH
c Rηwc =

1

βHR−1
η β

. (4.38)

By using ân and σ̂a, LLR for the kth bit of symbol an, L(bkn), can be calculated as

L(bkn) =

log2

∑an∈A0,k
a

exp
(
− 1
σ̂2
a
[(Re{ân} − Re{an})2 + (Im{ân} − Im{an})2]

)
∑

an∈A1,k
a

exp
(
− 1
σ̂2
a
[(Re{ân} − Re{an})2 + (Im{ân} − Im{an})2]

)
 ,

(4.39)

whereAa is QAM symbol alphabet, A0/1,k
a is the ideal constellation point with bit 0/1

at given bit location, k. It should be noted that, LLR values are calculated assuming
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a Gaussian distribution, which is a reasonable assumption for two reasons. First,

if there is no distortion amplification, nonlinear distortion is compensated by NP.

Consequently, thermal noise, which has Gaussian distribution, becomes the dominant

term. Second, if distortion amplification occurs, distortion is multiplexed by IDFT;

hence, resultant distortion is approximately Gaussian.

4.6 Achievable Information Rate (AIR) based on mismatched decoding capac-

ity

In order to evaluate AIR performance of the proposed receiver, a lower bound on the

constrained capacity in terms of GMI metric is considered. In [51,52,61], mismatched

decoding capacity is given as

CP = log2 P − Ea,ã

[
log2

(∑
a′∈Aa

p̃(ã|a′)
p̃(ã|a)

)]
, (4.40)

where P is the modulation order. p̃(ã|a′) is the mismatched probability density func-

tion (PDF), which is used since exact knowledge on PDF is not available due to

nonlinearity. Hence, an approximate exponential PDF, p̃(ã|a), is assumed based on

the decompostion given in (4.33) as

p̃(ã|a) = 1

(π)µ|Rη|
exp

[
−(ã− βa)HR−1

η (ã− βa)
]
, (4.41)

where Gaussian distribution is assumed for the unknown PDF. Consequently, a lower

bound on the AIR is obtained due to mismatch between the actual and assumed

PDF’s. AIR, which is obtained by using the exact PDF, is shown to be greater than

the mismatched decoding capacity given in (4.40) [51]. Outage probability is another

performance metric that can be used to measure the performances of the detectors in

fading channels. Outage probability, Pout can be defined as the probability of the in-

stantaneous AIR being less then a threshold CT
P : Pout = Pr{CP < CT

P }. It can also

be inferred as the packet error rate since a significant amount of block errors occur if

instantaneous AIR of the system falls below the defined threshold.
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Table 4.1: Complexities of Baseline Schemes

Channel Est. FDE NP LLR Calc.

IB-DFE [49] O(LNF/ND) O(Nitlog2(ND)) O(Nit((2M − 1)L1)) O(Nitlog2(P )2P )

MM [41] O(LNF/ND) O(log2(ND)) - O(log2(P )6P )

DA-SSD (NN)

DA-SSD (GPR)

DA-SSD (VS)

O(µBLNF/ND) O(µBlog2(ND))

O(µB((2M − 1)L1))

O(µBNS)

O(µB(2M − 1)3)

O(log2(P )2P )

4.7 Complexity Analysis

In this section, computational complexity of the proposed detector is evaluated and

compared with the baseline techniques in terms of number of FLOP’s per symbol in

Table 4.1. Technique proposed in [49] has the same complexity as conventional IB-

DFE with additional complexity of applying the transmitter chain. In [49], the same

PA for transmitter is used at the receiver; however, in practice a PA model should be

used to perform nonlinear distortion cancellation. For comparison, we included com-

plexity of ARVTDNN structure in Table 4.1. In addition, FDE and NP operations are

repeated for Nit iterations. Major complexity of MM receiver comes from LLR cal-

culation especially for higher order modulations since matrix vector multiplications

are performed for each symbol. Despite the lack of NP unit, complexity of [41] is

comparable to NP based methods. Complexity of the proposed architecture increases

linearly with the number of FDE branches. Each branch performs the conventional

feedforward equalization together with NP for each symbol. Complexities of the pro-

posed DA-SSD and IB-DFE in [49] schemes are dominated by the implementation of

NP; however, implementation of NP is necessary to improve the performance signif-

icantly. Also note that the receiver in [49], does not require the FDE bank structure

since it is developed for symbol sampled domain, where distortion amplification is

not the issue. Therefore, the proposed DA+SSD can be employed together with the

IB-DFE structure to improve the performance of the systems for realistic fractionally

delayed channels.
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4.8 Numerical Evaluations

Numerical results are presented to evaluate the performance of the proposed receiver

structure. The proposed NP and DA-SSD techniques are compared with the state-of-

the-art methods. Two different cases are considered for performance evaluations.

In the first case, the Saleh model is used as the memoryless nonlinear PA. Both

AWGN channel and a clustered mmWave channel model containing 3 rayed 6 clusters

with a line-of-sight component with 10 dB Rician factor [3] are considered. In sim-

ulations, the channel length is chosen to cover 16 symbols with unity gain. For this

model, input signal power is scaled in such a way that the normalized output power,

which is the ratio of average output power to the maximum output power of the am-

plifier, refers to output backoff (OBO). In the second scenario, a model extracted

from an actual GaN PA, [1], and another PA, available at [2], are utilized. To test the

performance of the proposed architecture, the transmitted signal passes through a dis-

persive channel generated according to either a clustered mmWave channel model or

a Rayleigh distributed COST-207 channel model [62]. Also, the constellation order

is selected as 256 QAM.

In data transmission, the block length is selected to be ND = 8100, and the FT train-

ing sequence length is NF = 3000 symbols. A root raised cosine filter with 0.3

roll-off factor and µ = 8 is used as pn. For nonlinear parameter learning, an ST train-

ing sequence of length NS = 16384 is used. To utilize the proposed BLUE combiner

for GPR estimates, the training sequence is divided into 8 segments. ARVTDNN

structure with 30 neurons is employed. Unless otherwise stated, memory depth for

GPR, NN, and VS-based NPs is chosen as ±2 samples.

PA Model description: In simulations, model parameters for the Saleh model are cho-

sen as in [41], g0 = 2, Asat = 1, α = 2 and β = 1. Memory polynomial coefficients

for the GaN PA, given in [1], are derived from the measurements of a PA by using LS

fitting. The PA is operated at 2GHz with 200MHz sampling rate and 40MHz sig-

nal bandwidth. Model parameters are Kb = 5, Pb = 4, and Pc = 1. In addition, GaN

PA [2] is also modeled by using ARVTDNN structure to speed up the simulations.

In this model, upsampled signal samples at the output of the actual PA are utilized to
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Figure 4.7: Scatterplots for different receivers (a) conventional (b) MM (c) NP with

NN.

extract the model. Memory length of the model is chosen as, ±5, and the number of

neurons is 50. Normalized modelling error is ∼ −50 dB in the MSE sense.

Nonlinear Post-distortion Evaluation: Before investigating the performances of the

receiver structures in detail, received symbols are shown in Figure 4.7 for Saleh model

with 5 dB OBO. In Figure 4.7(a), the warping effect due to nonlinear behavior can be

observed since the conventional receiver does not attempt to compensate for the non-

linearity. Received symbols after memoryless correction is shown in Figure 4.7(b).

However, there is a strong nonlinear ISI remaining. NP methods compensate for

nonlinear ISI together with the warping effect as can be seen in Figure 4.7(c).

4.8.1 Performance evaluations with Saleh model PA

4.8.1.1 AWGN channel

Firstly, AIR analysis and BER performance evaluations are carried out for different

OBO values for 1024 QAM. For this scenario, the bank of FDE is not utilized since

the AWGN channel with Es/No = 50 dB is considered. To observe the effects of

nonlinear ISI, memoryless NP with memory depth M = 1 is also considered. In

Figure 4.8(a), AIRs obtained by GMI analysis are shown for different receiver struc-

tures. It can be observed that even for lower OBOs, higher AIR, ∼ 9.5 bps/Hz, is

44



-18 -16 -14 -12 -10 -8 -6 -4

6.5

7

7.5

8

8.5

9

9.5

10

-18 -16 -14 -12 -10 -8 -6 -4

10
-4

10
-3

10
-2

10
-1

Figure 4.8: (a) AIR and (b) BER of the receivers for Saleh Model for different OBOs

for fixed Es/No = 50 dB.
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Figure 4.9: (a) BER vs. OBO (b) BER vs. Es/No curves for Saleh Model and

mmWave channel with code rate r = 8/9.

achieved by the NPs compared to the conventional and MM-based receivers. Lastly,

the need for memory in detection is obvious since memoryless NP yields the same

performance as MM, which is in compliance with the nonlinear ISI analysis given

in Chapter 3. From Figure 4.8(b), it can be seen that the proposed NN, GPR, and

VS-based NPs significantly outperform the other methods in terms of uncoded BER

performances. Besides, the performance of the NP based on memory polynomial

(MP) is investigated. However, MP does not provide any improvement since NP re-

quires cross-terms as in NN, GPR, and VS, which is also in compliance with the

nonlinear ISI analysis in Chapter 3.
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4.8.1.2 Clustered mmWave channel

In this section, clustered mmWave channel is considered for 256 QAM. For this

scenario, a low-density parity check (LDPC) encoder is used with code rate, r =

8/9. In Figure 4.9(a), BER vs. OBO performances of receivers are shown for fixed

Es/No = 40 dB. In addition, the performance of the proposed DA-SSD is also eval-

uated by using the different number of FDE branches. Besides, for the MM detector,

an FDE bank is also utilized and the branch, which yields the minimum distortion

variance during FT training, is chosen to decode the sequence. It can be observed

that at lower OBO values, nonlinear distortion is dominant; however, as OBO in-

creases post-distortion algorithms compensate for nonlinearity. However, even for

lower OBOs, the proposed DA-SSD improves the performance of the receivers. As

OBO increases, the need for NP decreases since forward error correction (FEC) is

sufficient to decode the desired symbols. However, the need of employing FDE bank

is permanent since distortion amplification still occurs, which cannot be handled by

FEC. For instance, the FDE bank+DA-SSD receiver outperforms the receiver that em-

ploys NP with a single FDE branch for OBO greater than ∼ 8 dB. Besides, DA-SSD

with 2 branches provides improvement compared to NP with a single branch. As can

be noted from Figure 4.9(a), the performances of the receivers with 4 and 8 branches

are almost identical.

The robustness of the receivers to AWGN is also investigated for the same scenario

with 5 dB OBO in Figure 4.9(b). The figure demonstrates that the proposed NP

structure is robust to additive Gaussian noise at the receiver side. There is ∼ 4 dB

difference in required Es/No to achieve BER of 10−5 between the systems with ideal

linear PA and the proposed NP+DA-SSD architecture. In addition, methods that do

not employ DA+SSD or NP suffer from significant error floor.

In addition, a lower code rate, r = 2/3, is also employed for 3 dB OBO. In Figure

4.10, it can be observed that the effects of distortion amplification dominate the sys-

tem performance since significant error floor cannot be eliminated even with higher

FEC capabilities for systems with a single FDE branch. Also, the BER performance

of the MM detector is improved by using a lower code rate. However, its performance

improvement is limited since nonlinear distortion is also effective for such low OBO
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Figure 4.10: BER vs. Es/No curves for Saleh Model with 3 dB OBO and mmWave

channel with code rate r = 2/3.
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Figure 4.11: (a) Uncoded BER vs. Es/No (b) Pout vs. Es/No curves for GaN Model

[1] .

levels and NP with memory is needed to mitigate the nonlinear ISI. Otherwise, there

is significant error floor since residual nonlinear distortion significantly degrades the

detection performance.

4.8.2 Performance evaluations for GaN PA model [1] for Rayleigh Channel

In this section, the performances of receivers are evaluated for the PA model given

in [1]. In Figure 4.11(a), uncoded BER performances of the receivers are evaluated.

Detectors that rely on a single FDE suffer from significant error floor. However,

employing a fractionally delayed FDE bank with DA-SSD decreases the error floor

levels substantially. In addition, the performance of memoryless MM-based detector

is far from those of NP-based detectors.

To test the block error performances of the detectors, Pout performances are presented

in Figure 4.11(b). The threshold for the AIR is chosen as CT
P = 7.5 bps/Hz. It is ap-

parent that receivers with a single FDE branch experience outages very often; hence,

it can be concluded that observed performance degradation stems from fluctuations

in the AIR of the system due to channel variations. When the AIR falls below the

threshold, block errors occur, and overall BER increases. However, NP+DA-SSD

reduces Pout by giving more weight to the branch having less distortion.
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Figure 4.12: BER vs. Es/No for GaN PA [2] for (a) mmWave with code rate r = 9/10

(b) Rayleigh channels with code rate r = 2/3.

4.8.3 PA Model based on real measurements [2]

In this section, BER performances of the receivers are compared for an actual hard-

ware [2].

4.8.3.1 Clustered mmWave Channel

BER vs. Es/No results are presented in Figure 4.12(a), where LDPC encoder is used

with rate r = 9/10. It can be observed that performances of NP+DA-SSD methods

are very close to that of linear PA. NP methods with single branch suffer from an

error floor around BER of 10−4. However, employing DA-SSD without any NP or

MM with FDE bank eliminates the floor but required Es/No increases.

4.8.3.2 COST-207 Rayleigh Channel

In Figure 4.12(b), BER results are demonstrated for Rayleigh channel with code rate

r = 2/3. It is observed that BER performances of the all techniques with DA-SSD

detector is close to that of the ideal system. Even without any NP method, DA+SSD

performs close to ideal since FEC can handle errors due to PA nonlinearities. How-

ever, receivers with single branch suffer from error floor since distortion amplification

is dominant and FEC cannot handle outage due to distortion amplification.
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Figure 4.13: Performance of the NN based Nonlinear post-distortion for NPL with

different SNR with channel impairments.

Consequently, it can be concluded that FEC can handle the errors stemming from

the nonlinear distortion if there is no distortion amplification. However, distortion

amplification would have dramatic effects depending on the channel characteristics

as can be observed from Rician and Rayleigh fading case, where the system severely

suffers from outage as in Figure 4.11(b). In the presence of distortion amplification,

FEC cannot handle the burst errors. As a result, the need of NP decreases with the

help of FEC; however, performance improvement is permanent in the case of channel-

dependent distortion amplification thanks to DA-SSD.

4.8.4 Nonlinear parameter learning under channel impairments

The simulation experiments were conducted to evaluate the performance of the sys-

tem under various SNR levels and with different numbers of segments, as depicted

in Figure 4.13. The figure presents the BER curves for the Saleh Model with a 5 dB
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OBO and a mm-Wave channel employing a code rate of 8/9. Specifically, we investi-

gated the impact of practical NPL on the performance of the proposed NN+DA-SSD,

considering a parameter µB = 8.

In our simulation setup, each training segment for the spread spectrum detector con-

sists of 2048 symbols. We observed that the proposed learning procedure mitigates

the performance degradation caused by channel impairments. Moreover, the observed

degradation was found to be negligible for practical SNR values, indicating the feasi-

bility and effectiveness of our proposed learning approach.

These findings provide valuable insights into the performance characteristics of the

NN+DA-SSD system, particularly considering different SNR levels, the number of

segments, and the presence of NPL in the mm-Wave channel. The results highlight

the robustness of the proposed learning methodology, which demonstrates promising

performance even in the presence of realistic channel impairments.

4.8.5 The effects of the length of the FT sequence

Lastly, the effects of the length of the FT training sequence and channel estimation

accuracy are studied. For this purpose, BER vs. training length (for given SNR

values required to achieve BER of 10−5 are shown in Figure 4.14. It can be seen that

the channel estimation performance of the proposed approach is very close to that of

linear PA, which also requires NF = 1500 training symbols.

4.9 Conclusions

In this chapter, we addressed the effects of PA nonlinearities impaired by memory.

It is shown that even if a memoryless nonlinearity exists, nonlinear ISI occurs since

the Nyquist-1 criterion is violated. Therefore, we developed a post-distortion scheme

to reduce nonlinear distortion power by taking the nonlinear ISI into account. The

proposed scheme divides the problem into two independent parts. In the first part, a

standard FDE procedure is employed, where the linear wireless channel is equalized

so that the dimension of the problem is reduced. Then, it is followed by nonlinear

51



0 500 1000 1500 2000 2500 3000 3500 4000 4500

10
-5

10
-4

10
-3

10
-2

Figure 4.14: Performance evaluations for different training length BER vs. NF .
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processing, which suppresses the nonlinear ISI. In addition, the effects of dispersive

communication medium are considered. For this case, it is observed that FDE per-

formance is significantly affected by the nonlinear PA due to distortion amplification.

To overcome this problem, we propose to utilize samples obtained by a fractional

delayed sampling so that channel diversity is obtained. By taking the fading effects

of each timing offset into account, DA-SSD based on FDE bank is proposed. Per-

formance improvement provided by the proposed structure is shown via numerical

simulations.
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CHAPTER 5

NONLINEAR DETECTION FOR MULTIUSER HYBRID MIMO SYSTEMS

AND PERFORMANCE ANALYSIS

5.1 Literature Review

In the literature, post-distortion or nonlinear distortion cancellation techniques at the

receiver side have been deployed to mitigate the nonlinear distortion [33,40,44,45,48,

63–68]. In [40], Volterra series (VS) based post-distortion is employed as a nonlinear

equalizer to detect the transmitted symbols from the nonlinearly modified received

signals. Machine learning algorithms have demonstrated significant efficacy in per-

forming nonlinear signal processing, as evidenced by various studies [45,67,68]. For

instance, a method for digital signal recovery from the nonlinearly distorted received

signal via a deep NN (DNN) structure is proposed in [67] for satellite channels. In

addition, the neural network (NN) structure is further employed for joint equaliza-

tion of both the linear wireless channel and the nonlinearity as proposed in the stud-

ies [45, 68]. In these studies, nonlinear equalization is performed to mitigate the

combined effects of frequency selective linear wireless channel and PA nonlinearity.

However, joint linear and nonlinear equalization brings an additional computational

burden to the system due to the requirement of frequent nonlinear parameter learning

during communication.

Methods that decouple linear and nonlinear channels are proposed in order to reduce

the computational complexity [33, 44, 48, 63–66]. In mobile environments, the linear

communication channel exhibits significantly faster variations compared to the non-

linear behavior of the hardware. Thus, it is practical to continuously estimate the lin-

ear time-varying channel to account for the mobility-induced changes rather than fre-
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quently performing nonlinear parameter learning (NPL). Consequently, the required

processing time for NPL is reduced, and the algorithms, which decouple linear and

nonlinear parameter learning, may improve the system performance in terms of age

of information metric [69, 70]. Furthermore, two-stage detection schemes has gained

popularity for detection purposes in NOMA schemes to improve detection accuracy

and covarage [71]. In [63] and [64], a receiver, which employs nonlinear distor-

tion cancellation based on tentative decisions following FDE, is proposed for OFDM

modulation. Also, as the interest in SC-FDE schemes increases, receiver design under

hardware impairments has attracted significant attention [33, 44, 48, 65, 66]. In these

studies, the linear wireless channel is equalized at the first stage, and the nonlinear

processing follows it to reduce the effects of nonlinear distortion. In [48], a robust

receiver is introduced for analog-to-digital converter (ADC) nonlinearities. In [65],

a nonlinear distortion cancellation scheme based on tentative decisions is adopted to

SC modulation with iterative block decision feedback equalization (IB-DFE) receiver

for MIMO systems. Likewise, [44] presents a method based on a nonlinear hybrid de-

cision feedback equalizer for single-input single-output (SISO) systems. This method

equalizes the linear channel through a decision feedback equalizer and mitigates non-

linearity through the inverse of the power amplifier (PA) nonlinearity. Based on [44],

the authors extend their work to fully digital MIMO scheme to perform multi-user

detection in [66].

In the aforementioned studies [44, 63–66], the effect of fractionally delayed channel

response on nonlinear distortion after downsampling is ignored by simply assuming a

symbol-rate channel model. However, this assumption is shown to be inaccurate, and

leads to a remarkable performance degradation depending on the mismatch between

the channels of linear and nonlinear terms of the transmitted signal after downsam-

pling, and this mismatch causes distortion amplification after performing minimum

mean square error (MMSE) filtering for realistic upsampled channel models [33]. In

order to overcome the distortion amplification problem and exploit channel diversity

in SISO systems, a non-iterative receiver structure, which is based on a bank of frac-

tionally delayed linear FDEs, is proposed, and a nonlinear post-distortion algorithm is

developed to mitigate the nonlinear distortion for single user channel [33]. Moreover,

in [72], nonlinear post-distortion is deployed for hybrid MIMO systems, where users
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of different groups are differentiated in the spatial domain by using a sophisticated

analog beamformer.

Implementing the bank of FDEs in [33] is not straightforward for MIMO architec-

ture, which employs MMSE multi-user detection as in [48, 65, 66] since there are

many active parallel operating radio frequency (RF) chains. Therefore, in this study,

we focus on converting the multi-user MIMO detection into the multiple single-user

detection problems by exploiting spatial correlation of the user channels. In [72],

it is achieved by using generalized eigen-beamformer (GEB) [73] to form orthog-

onal user beams so that inter-user-interference (IUI) is suppressed almost perfectly.

However, in practice, to reduce the hardware complexity, non-orthogonal beams are

created, and IUI becomes a significant problem [74]. In this study, in order to keep

the hardware complexity low, a simple phase-only analog beamforming scheme is

utilized. Thus, residual IUI affects the MIMO system performance greatly, especially

for higher-order constellations, even if the users are not closely spaced in the angular

domain. Thus, the primary motivation in this study is to propose a reduced complex-

ity and efficient receiver architecture for nonlinear multi-user uplink SC-FDE based

MIMO channels, when practical BDMA-based analog beamforming is employed.

5.1.1 Contributions

Based on the aforementioned discussion, the main contributions lie with the proposed

multi-user (MU) receiver structure and analytical performance evaluation for hybrid

MIMO-based uplink SC BDMA under PA impairments:

• In this chapter, a novel receiver structure, that utilizes a bank of NP units,

which are fed by FDE outputs for different sampling instances, is proposed

for fully connected hybrid massive MIMO systems that GEB as the analog

beamformer. Two different NP methods, which are based on Volterra series ex-

pansion and augmented real-valued time-delay neural network (ARVTDNN),

are considered. Employed NP methods also include memory so that nonlinear

inter-symbol-interference (ISI) is suppressed. Besides, a decision metric, which

combines outputs of different post-distortion units for each user, is proposed to
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exploit channel diversity so that distortion amplification is compensated.

• Novel aspects of the proposed MU receiver structure can be explained in terms

of distortion modeling, nonlinear interference cancellation (nIC), distortion-

aware MU detection, and computational complexity. First, it is shown that a

simple single-layer feedforward NN structure can accurately mimic the non-

linear distortion of each user channel, which contains memory emerging from

matched filtering and decimation operations in addition to PA nonlinearities.

As a result, the NN model is extracted by a practical slow-time learning stage,

and it is seen to bring significant nIC capability for improved multi-user detec-

tion.

• Second, a novel and special implementation type of nIC, based on the idea of

decoupling the slow and fast varying components of the nonlinear channel, has

been proposed. The nonlinear distortion is mitigated for each user with the help

of extracted slow-time NN-based distortion model and fast-time fractionally

sampled BDMA channel. Then, beamspace channel equalization is performed

at each fractional delay by a per user IB-DFE (PU-IB-DFE) algorithm, which

avoids performing joint MMSE detection. Finally, the distortion amplification

effect on IUI is also mitigated at the detector stage via proper filtering of frac-

tionally delayed IB-DFE outputs based on the residual interference statistics.

• Aside from the proposed structure, this work includes an analytical perfor-

mance evaluation, which discloses an important distortion amplification phe-

nomenon for nonlinear IUI affecting the performance of MU detection. More-

over, it has been analytically demonstrated that the proposed MU receiver ar-

chitecture improves the BER performance considerably under PA impairments.

To sum up, in the considered hybrid MIMO framework, both numerical evalua-

tions and analytical methods have been employed to demonstrate the significant re-

duction in distortion amplification effect on multi-user interference at the detector

stage. This reduction is achieved through a proper combination of fractionally de-

layed beamspace equalizer outputs, which considerably minimizes nonlinear distor-

tion power and enhances multi-user detection capability. These results are compared
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to state-of-the-art schemes, and the proposed method has been shown to outperform

them.

5.2 A Nonlinear Detector for Uplink SC-FDE mm-Wave Hybrid Massive MIMO

under Hardware Impairments

5.2.1 Introduction

In this chapter, we propose a detector structure for fully connected hybrid massive

MIMO systems with transceiver impairments at user equipments. In literature, mem-

oryless compensation of nonlinear effects at the receiver side is recently proposed for

systems employing frequency domain equalization. However, in these studies, the

system model is restricted to be symbol sampled, where pulse shaping and fractional

delays in channel impulse response (CIR) are not taken into consideration. However,

memory effects of nonlinear distortion become more apparent when the system is

considered in the upsampled signal domain. In this chapter, we propose a receiver

architecture, where the received signal of each user is nonlinearly modified by the

post-distortion unit with memory to recover the transmitted symbols. In addition,

based on the proposed receiver structure, a novel detection criterion is introduced in

order to compensate the distortion amplification due to fractional delays in the CIR.

Lastly, performance improvement brought by the proposed detector is verified by nu-

merical simulations.

5.2.2 System Model

5.2.3 mm-Wave Uplink Channel Model

In this section, uplink transmission, where user terminals are equipped with nonlinear

PA’s, is considered. In the considered system, U single antenna users are communi-

cating with a BS, which is equipped with Kt antennas and D RF chains, D < Kt.

In the considered hybrid beamforming structure, user grouping is employed so that

spatially closer users are jointly processed, where number of RF chains, which are
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assigned to a specific group, is significantly less than the total number of RF chains.

Consequently, employing user grouping significantly reduces complexity of the re-

ceiver structure. U users are grouped into G groups each having Ug users based on

users’ spatial statistics. Received signal, yn = [y
(1)
n y

(2)
n , ..., y

(Kt)
n ]T at the BS can be

expressed as,

yn =
L−1∑
l=0

Hlx̃n−l + νn. (5.1)

where x̃n = [(x̃
(1)
n )T, (x̃(2)

n )T, ..., (x̃(G)
n )T]T is the transmitted signal vector of the users

of G groups, x̃(g)
n = [x̃

(g1)
n , x̃

(g2)
n , ..., x̃

(gUg )
n ]T, Hl ∈ CKt×U is the lth multipath compo-

nent (MPC) of the CIR and νn is the additive zero-mean circularly symmteric white

complex Gaussian noise. Each MPC of the channel is assumed to be composed of

uncorrelated rays which are locally scattered according to wide sense stationary un-

correlated scattering model [75], where statistics of channel vectors of different users

can be given by the channel covariance matrix (CCM),

E{h(gu)
l [h

(g′
u′ )

l′ ]H} = R
(g)
l δgg′δuu′δll′ , (5.2)

where R
(g)
l is the CCM of lth MPC for the users in group g and h

(gu)
l is the channel

vector for uth user of the gth group and it corresponds to a vector in Hl. In this study,

block transmission is considered. In each block,ND M-QAM symbols, {ak}ND−1
k=0 are

transmitted by employing SC modulation. Transmitted signal for gthu user is formed

as,

x(gu)n =

ND−1∑
k=0

a
(gu)
k pn−µk, (5.3)

where pn is the upsampled pulse shaping filter with upsampling factor µ and a(gu)k ’s

are i.i.d. QAM symbols with E{a(gu)k (a
(g′

u′ )

k′ )∗} = E
(gu)
s δkk′δgg′δuu′ . In order to realize

FDE, cyclic prefix and suffix are appended to each block. Then, x(gu)n is fed into

the PA, which outputs nonlinearly distorted signal, x̃(gu)n = ψn({xn(gu)}N−1
n=0 ), where

ψn(·) represents nonlinearity. In this study, two different nonlinear PA models, Saleh

model [37] and generalized memory polynomials (GMP) [1], are considered in order

to define nonlinearity.
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5.2.3.1 Hybrid Beamforming Architecture

Hybrid beamforming architecture is employed at BS in order to use a relatively small

number of RF chains compared to the number of antennas. Received signal process-

ing is performed in two stages. At the first stage, analog beamforming (BF) performs

spatial processing such that spatially uncorrelated users are decoupled. Then, digi-

tal beamforming is applied on reduced dimensional signal to carry out ZF-FDE for

multi-user detection.

Statistical Beamforming: In the considered system, analog BF is designed based on

slowly varying spatial characteristics of users, which is in compliance with JSDM

framework. Different beamformers are used for different groups, which projects Kt

dimensional input intoDg dimension, whereDg is the number of RF chains dedicated

to group g. BF output, y(g)
n ∈ CDg×1 for each group can be written as,

y(g)
n = [S(g)]Hyn =

L−1∑
l=0

H
(g)
eff,lx̃

(g)
n−l + ξ(g)n , (5.4)

where H
(g)
eff,l ≜ [S(g)]HH

(g)
l is the effective channel matrix in reduced dimension,

H
(g)
l = [h

(g1)
l ,h

(g2)
l , ...,h

(gUg )

l ] is the channel matrix of gth group, and

ξ(g)n =
G∑

g′=1
g′ ̸=g

L−1∑
l=0

[S(g)]HH
(g′)
l x̃

(g′)
n−l + [S(g)]Hνn (5.5)

is the interference-plus-noise term.

In digital domain, H(g)
eff,l will be utilized while designing digital beamformer. In this

study, angle only generalized eigenspace beamforming (AO-GEB) [76] is employed

since MPC’s are equalized in frequency domain, where it is not necessary to distin-

guish different MPC’s. Consequently, analog BF matrix for group g is obtained as the

Dg dominant eigenvectors as the generalized eigenvalue problem

S(g) = eigs(R(g)
sum,Ry, Dg), (5.6)

where R(g)
sum ≜

∑L−1
l=0 R

(g)
l and Ry ≜ E{ynyHn } =

∑G
g=1

(∑Ug

u=1E
(gu)
s

)∑L−1
l=0 R

(g)
l +

NoI. This can be considered as the generalization of Capon beamformer to general

rank signal models [76]. Note that, fully connected analog beamforming architecture

is utilized, where each RF chain is the combination of all antenna outputs.
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5.2.4 Synchronization, Channel Estimation and Digital Beamforming

5.2.4.1 Frame Structure and Decoder Architecture

In this study, the same frame structure, proposed in [33], is also employed, where two-

stage training is performed. Transmission starts with sending a long training sequence

of lengthNS in order to perform nonlinear parameter learning for NP. Training data is

obtained by capturing PA outputs for the training sequence and it is transmitted to BS.

This stage is referred as slow time training since it is only sent when nonlinear char-

acteristics of the PA change, which is a slow process compared to signaling interval.

Data transmission starts after completing the slow-time training. A training sequence

of length NF , which is also called fast time training, is transmitted at the beginning of

each frame so that instantaneous channel state information (CSI) is acquired by using

the least squares (LS) estimator.

In addition, it is shown in [33] that equivalent channels in the symbol sampled domain

for the desired signal and distortion terms are not the same in the case of fractionally

delayed CIRs. For some channels, the linear signal term may experience deep fading;

however, the equivalent channel frequency response for the distortion term may not

have deep nulls. In order to equalize the desired term experiencing deep fading, a

significant gain is applied to both desired signal and distortion terms, which causes

significant distortion amplification. Consequently, overall received distortion power

increases tremendously. To compensate effects of distortion amplification, fraction-

ally spaced samples are used to achieve channel diversity. In this study, bank of FDE

structure, which is developed in [33] for single-input-single-output (SISO) channels,

is employed in mm-Wave MIMO channels. In this structure, signals are obtained with

different sampling offsets for branches and FDE is performed for each branch indi-

vidually. For each FDE output, NP is performed to compensate for nonlinear effects

at the receiver.
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5.2.4.2 MIMO Channel Estimation

Group processing is performed to eliminate intra-group interference via ZF-FDE for

each sampling branch, i = 0, . . . , µ− 1. Consider received samples for ith sampling

branch after analog BF for group, g, in vector form, y(g),i

y(g),i ≜ vec

{[
y
(g),i
0 ,y

(g),i
1 , . . . ,y

(g),i
NF−1

]
Dg×NF

}
(5.7)

where y
(g),i
n =

(
y
(g)
n ⊛ p∗−n

)
n→nµ+i

is the sampled signal for ith branch, ⊛ denotes

convolution. y(g),i ∈ CDgNF×1 is the signal vector that contains all training signals

on all RF chains. Similarly, effective channel for uth user of group g can be defined

in vector form as

h(gu),i ≜ vec
{[

h
(gu),i
−Lb+1, ...,h

(gu),i
0 , ...,h

(gu),i
Lf−1

]}
, (5.8)

note that anti-causal components are also estimated in order to take synchronization

errors into consideration. By using channel vectors of users in the group g, the overall

channel vector for that group can be constructed as

h(g),i ≜ vec
{
[h(g1),i,h(g2),i, ...,h(gUg ),i].

}
. (5.9)

Then, by using channel representation given in (5.9), received signal, y(g),i, can be

expressed as

y(g),i =

[A(g1)A(g2) · · ·A(gUg )︸ ︷︷ ︸
≜A(g)

]⊗ IDg

h(g),i + ξ(g),i, (5.10)

where A(gu) ∈ CNF×(Lb+Lf−1) is the convolution matrix for the fast time train-

ing sequence of user gu, whose elements are [A(gu)]k,l = a
(gu)
(k−l)+Lb−1, and ξ(g),i ≜

vec{[ξ(g),i0 ξ
(g),i
1 · · · ξ(g),iNF−1}], ξ

(g),i
n =

(
ξ(g)n ⊛ p∗−n

)
n→nµ+i

, and ⊗ is the Kronecker

product operator. Least squares method can be used to obtained channel estimate,

ĥ(g),i, as

ĥ(g),i =
[(
(A(g))HA(g)

)−1
(A(g))H ⊗ IDg

]
y(g),i (5.11)

By using estimated channel coefficients obtained in vector form, effective channel

matrix of the lth MPC of gth group is formed as, Ĥ(g),i
eff,l =

[
ĥ
(g1),i
l , ĥ

(g2),i
l , ..., ĥ

(gUg ),i

l

]
.
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5.2.4.3 Digital Pre-processing: Linear Beamspace FDE

In order to detect symbols of each user, regularized ZF-FDE is employed for each

branch, i, where digital beamforming matrix is defined in frequency domain as,

W
(g),i
k =

(
[Ω

(g),i
k ]HΩ

(g),i
k +No

)−1

[Ω
(g),i
k ]H , (5.12)

where Ω(g),i
k = 1√

ND

∑Lf−1

l=−Lb+1 Ĥ
(g),i
eff,le

−j2πkl/ND , is the estimated frequency response,

No = diag{ No

E
(gu)
s

}Ug

u=1, and No is the noise variance. Intra-group users are discrimi-

nated in the frequency domain via FDE; hence, the received signal vector of group, g

is transformed into the frequency domain as,

y
(g),i
f,k =

1√
ND

ND−1∑
n=0

y(g),i
n e−j2πkn/ND , (5.13)

hence, equalized signal in frequency domain is obtained as, z(g),if,k = W
(g),i
k y

(g),i
f,k ,

which is transformed into time domain,

z(g),in =
1√
ND

ND−1∑
k=0

z
(g),i
f,k e

j2πkn/ND , (5.14)

where z
(g),i
n = [z

(g1),i
n , z

(g2),i
n , ..., z

(gUg ),i
n ]T is the equalized symbol vector of users of

the group g, which is only corrupted by nonlinear PA. It is assumed that all linear

channel effects are compensated via ZF-FDE operation and the remaining nonlinear

distortion will be compensated by the following NP unit.

5.2.5 Distortion Aware Symbol Detection via Nonlinear Post-Distortion

In this section, a distortion-aware detector is developed, which performs detection by

using the NP outputs of each branch. The proposed detector combines NP outputs of

each branch intelligently by using distortion covariance information acquired during

fast-time training. Two approaches, based on Volterra series and neural network, are

considered to design NP units.

5.2.5.1 Digital Post-Processing: Nonlinear Post-distortion

The objective of the nonlinear post-distortion is to modify ZF-FDE output nonlinearly

so that desired symbol is obtained. For notational simplicity, group and bank indices,
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(g) and i superscripts are ignored.

5.2.5.2 Volterra Series based NP

Post-distortion output can be given by Volterra series basis functions of third order as

ãn =
Lv−1∑

p=−Lv+1

ϕpzn−p+

Lv−1∑
p=−Lv+1

Lv−1∑
q=−Lv+1

Lv−1∑
r=−Lv+1

ψp,q,r zn−pz
∗
n−qzn−r,

(5.15)

where ϕp and ψp,q,r are the Volterra series coefficients. To represent the identification

problem in a more convenient way, the post-distortion output is represented in matrix-

vector form as, ã = Zϕ, where [ã]n = ãn, ϕ ∈ C((2Lv−1)3+(2Lv−1))×1 is the coefficient

vector, Z ∈ CNS×((2Lv−1)3+(2Lv−1)) is the data matrix formed by nonlinearly distorted

training symbols after standard FDE operation, whose elements are, basis functions

for Volterra series, zn−pz∗n−qzn−r. Then, the LS method is performed to estimate

Volterra series coefficients as

ϕ =
(
ZHZ

)−1
ZHa, (5.16)

where [a]n = an is the vector of training symbols.

5.2.5.3 Neural Network based NP

In addition to Volterra series based post-distortion, ARVTDNN structure, which is

originally proposed for DPD design in [29], is used as the NP. In this study, ARVTDNN

structure, shown in Figure 4.6, is used to predict transmitted symbols by using non-

linearly distorted received signals, zn. Predicted symbol, ãn, can be expressed as,

ãn = ΩI(z̄n) + jΩQ(z̄n), where ΩI(z̄n) and ΩQ(z̄n) are the estimates of real and

imaginary parts. z̄ is the input vector, which is defined as

z̄n = [Re{zn+P−1}, ..., Re{zn}, ..., Re{zn−P+1},

Im{zn+P−1}, ..., Im{zn}, ..., Im{zn−P+1}]T.
(5.17)
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where P is the memory depth. Nonlinear function, ΩI(z̄n), which is used to predict

the in-phase part can be expressed as

ΩI(z̄n) = wT
I g(W1z̄n + b1) + b2,I , (5.18)

where W1 is the input layer weight matrix with elements [W1]k,l = wk,l. b1 and

b2 = [b2,I , b2,Q]
T are the bias vectors and g(·) is the activation function. wI is the

coefficient vector, which gives in-phase part of the output signal, similarly wQ and

b2,Q are used to obtain quadrature part of the output. Hyperbolic tangent sigmoid

transfer function, g(x) = 2
1+e−2x − 1, is employed, which introduces the nonlinearity

required for nonlinear compensation. At each epoch, the cost function, which is given

as

J =
1

2NS

NS−1∑
n=0

(Re{an} − ΩI(z̄n))
2 + (Im{an} − ΩQ(z̄n))

2, (5.19)

is evaluated and weights are updated via back-propagation by using the Levenberg–Marquardt

algorithm [58].

5.2.5.4 Adaptive QAM Detection based on NP Bank

In this section, proposed detector structure based on FDE bank is introduced. In

[33], it is shown that nonlinear distortion amplification occurs since equivalent chan-

nels for linear and nonlinear components of the received signal are subject to dif-

ferent effective channels. To prevent such undesired signal amplification, distortion-

aware symbol by symbol detector (DA-SSD) is proposed in [33] to exploit channel

diversity. In this study, DA-SSD is extended to MIMO systems to achieve simi-

lar diversity gain where ZF-FDE causes distortion amplification. Consider multi-

dimensional Bussgang decomposition for NP output vector for gthu user, ã
(gu)
n ≜

[ã
(gu),0
n , ã

(gu),1
n , ..., ã

(gu),µ−1
n ]T, which is combination of the received signals at different

sampling branches,

ã(gu)
n = β(gu)a(gu)n + η(gu), (5.20)
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where β(gu) is the vector Bussgang coefficient computed at fast time training period

as,

β(gu) =
E{ã(gu)

n (a
(gu)
n )∗}

E{|a(gu)n |2}

≈

(
NF−1∑
n=0

ã(gu)
n (a(gu)n )∗

)(
NF−1∑
n=0

|a(gu)n |2
)−1

,

(5.21)

and R
(gu)
η is the correlation matrix of distortion vector, η(gu),

R(gu)
η = E{(ã(gu)

n − β(gu)a(gu)n )(ã(gu)
n − β(gu)a(gu)n )H}

≈ 1

NF − 1

NF−1∑
n=0

(ã(gu)
n − β(gu)a(gu)n )(ã(gu)

n − β(gu)a(gu)n )H .
(5.22)

Assuming Gaussian distribution, PDF of the NP output vector, ã(gu)
n , can be expressed

as,

p̃(ã(gu)
n |an) =

exp
{
−[∆(gu)

n (an)]
H(R

(gu)
η )−1∆(gu)

n (an)
}

(π)µ|R(gu)
η |

, (5.23)

where, ∆(gu)
n (an) ≜ ã

(gu)
n − β(gu)an. By using the PDF in (5.23), DA-SSD is ex-

pressed as,

â(gu)n = argmin
an

(∆(gu)
n (an))

H(R(gu)
η )−1(∆(gu)

n (an)). (5.24)

Note that due to its memoryless structure, decision metric introduced in (5.24) has

the same computational complexity as the conventional QAM detector.

5.3 Numerical Results

Numerical results are presented to assess the performance of the proposed detector. In

addition, systems with linear PA and nonlinear PA with DPD unit are also considered

so as to obtain a benchmark for the performance limits. In the considered scenario,

summarized in Table 5.1, there are 8 users, which are grouped into 4 groups each hav-

ing 2 users and each group contains 2 MPC’s with equal power,
∑L−1

l=0 tr
(
R

(g)
l

)
= 1

and 256 QAM is selected as constellation order. Each MPC consists of a cluster of

rays, which spans a symbol duration. In this study, MPC cluster centers are separated

by 16 symbols. There are Kt = 120 antenna in the BS with uniform linear array

geometry and they are connected to D = 12 RF chains. Slow time training sequence
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Table 5.1: Scenario

Group 1st MPC Angular Sector 2nd MPC Angular Sector

1 [−31◦,−29◦] [−21◦,−19◦]

2 [−11◦, 9◦] [−1◦, 1◦]

3 [9◦, 11◦] [19◦, 21◦]

4 [29◦, 31◦] [39◦, 41◦]

of length NS = 8192 is used for nonlinear parameter learning, a sufficiently long fast

time training NF = 3000 symbols are used to acquire CSI, and transmission block

length is set to ND = 8192. In this study, a lower bound on achievable information

rate (AIR) is obtained via GMI metric assuming a Gaussian distribution [33].

Firstly, performance of the proposed detectors are demonstrated for different output

backoff levels for Saleh model for noise free case. It can be observed that both BER,

in Figure 5.1 (a), and AIR, in Figure 5.1 (b), performances of conventional detectors

are significantly degraded, however, NP algorithms provide significant performance

improvement. Besides, it can be seen that as output power increases, which makes

PA’s behave more nonlinear, performances of all methods degrade. It can be observed

that proposed DA-SSD outperforms the NP with single FDE branch by exploiting

channel diversity. Furthermore; AIR performance of the proposed DA-SSD is very

close to that of systems with DPD unlike the BER performance. This stems from the

fact that occurrence of bulk errors, which can be avoided by using channel coding,

increases BER when post-distortion algorithms are employed; however, such bulk

errors are not observed for system with DPD since PA is already linearized. In this

study, DPD is designed by using GMP basis functions as proposed in [38].

Furthermore, robustness against AWGN is also studied for Saleh model, where output

backoff is chosen as, 9.3 dB. For this purpose, WGN is added to the received signal

according to the average SNR definition given in [33]. It can be observed that post-

distortion algorithms are not significantly affected by the presence of AWGN. It can

be seen from BER results, shown in Figure 5.2, that DA-SSD performs similar to

linear PA until it reaches its error floor. It can also be observed that use of FDE bank
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Figure 5.1: BER (a) and AIR (b) vs. output backoff curves for Saleh Model.
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Figure 5.2: BER vs.SNR curves for Saleh Model with 9.3 dB output backoff.
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Figure 5.3: BER vs. SNR curves for GaN PA model.

reduces error floor significantly compared to systems with single FDE branch.

Lastly, performances of receiver structures are evaluated for a GMP model, that is

extracted from a GaN amplifier [1]. From Figure 5.3, it can be observed that similar

conclusions can be drawn for a more realistic PA model. Performance of the proposed

DA-SSD approaches to performance of system employing DPD. However, systems,

which employ NP with single ZF-FDE branch, suffer from significant performance

degradation since relatively high error floor is present.

5.3.1 Conclusions

In this chapter, a novel detector structure is proposed to compensate nonlinear PA ef-

fects under dispersive communication channel via bank of ZF-FDE followed by NP. It

can be concluded that conventional detectors, which only employs ZF-FDE, perform

poorly compared to methods that employ NP and DPD. On the other hand, systems

performing NP suffer from performance degradation compared to system with DPD

prior to nonlinear PA that is as expected since signal at the output of the PA is almost
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linear for systems employing DPD. Hence, nonlinear effects, which cannot be han-

dled after FDE operation, are significantly reduced. As a result, it can be concluded

that post-distortion algorithms provides a trade-off between conventional detectors

and DPD solution, which requires complex signal processing tasks at UE’s. As a

future work, application of the proposed method to systems, which contain receiver

side nonlinearities such as low resolution analog-to-digital converters (ADC)’s, will

be investigated.

5.4 Low Complexity Nonlinear Detection for Multiuser Hybrid MIMO Sys-

tems and Performance Analysis

5.4.1 Introduction

This section proposes an analytical framework and a system of distortion-aware re-

ceiver structures for single-carrier uplink hybrid beamforming-based multiple-input-

multiple-output (MIMO) channels. Proposed single-user processing units cooperate

at the base station (BS) in an iterative manner for multi-user symbol detection under

hardware impairments. Firstly, in the proposed system, an iterative nonlinear interfer-

ence cancellation (nIC) based on feedforward neural network (NN) modeling is devel-

oped to eliminate the nonlinear distortion effects of power amplifiers (PAs). Further-

more, depending on the fading pattern of the instantaneous channel, it is analytically

shown that a large gain may be applied to the distortion signal during the equaliza-

tion stage, which yields distortion amplification causing a significant decrease in the

signal-to-distortion-plus-noise ratio (SDNR). A reduced complexity distortion aware

detector, based on a bank of fractionally delayed iterative block decision feedback

equalization (IB-DFE) receivers, is introduced to adjust the combiner weights for

fractionally delayed IB-DFE outputs so that distortion power is minimized before

detection. Consequently, multi-user detection capability is enhanced considerably.

Secondly, an asymptotic SDNR analysis is performed. The theoretical analysis, ver-

ified via numerical evaluations, clearly shows that distortion amplification limits the

achievable SDNR at the BS, and the proposed reduced complexity multi-user receiver

architecture improves the BER performance by effectively mitigating this effect.
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5.4.2 System Model

5.4.2.1 Uplink SC-FDE Transmission

This chapter considers uplink SC-FDE transmission for frequency selective MIMO

systems, where U single-antenna users communicate with a BS, which is equipped

with U RF chains and K antennas (K > U ), and user terminals are equipped with

nonlinear PAs. In the proposed system, simultaneously served users are chosen in a

manner that enables their spatial differentiation within beamspace. As a consequence,

a single radio frequency (RF) chain is allocated per user to detect their respective

symbols. Received signal at the BS front-end before beamforming (in full dimension)

yfull,n ∈ CK×1 at time index n can be expressed as

yfull,n =
U∑
u=1

L−1∑
l=0

h
(u)
full,lx̃

(u)
n−l + ν full,n, (5.25)

where x̃(u)n is the nonlinearly distorted transmitted signal of user u, h(u)
full,l ∈ CK×1

is the lth multipath component (MPC) of the channel response for uth user, and

ν full,n ∈ CK×1 is the additive zero-mean circularly symmetric spatially and tem-

porally complex white Gaussian (CSCG) noise. In this work, a spatially correlated

Rician fading channel model for each MPC, which consists of both a non-zero mean

and a Rayleigh component, is adopted [77]. Channel vector, h(u)
full,l for l = 0, . . . , L−1,

of each user is modeled by spatially correlated multivariate complex Gaussian as

h
(u)
full,l = h̄

(u)
full,l + h̃

(u)
full,l, (5.26)

where h̄
(u)
full,l is the mean component, h̃(u)

full,l ∼ CN
(
0,R

(u)
l

)
is the Rayleigh compo-

nent, and R
(u)
l is the channel covariance matrix of h̃(u)

full,l. According to the uncorre-

lated scattering assumption, the Rayleigh distributed term of the multipath component

is formed by the composition of many rays stemming from far-field scatterers [78]

and [79]. Hence, the resultant channel covariance matrix (CCM) of the multipath

component h̃(u)
full,l can be expressed as the superposition of the CCMs of the individual

rays, where CCM of each ray R
(u)
l,p for p = 1, . . . , P can be written as [75]

R
(u)
l,p =

γ
(u)
l

P
q(θp)[q(θp)]

H, (5.27)
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where q(θ) is the array response vector, γ(u)l is the power delay profile for Rayleigh

components, θp is the angle of arrival (AoA) of the ray p. Uniform power angular

spectrum is assumed, and a uniform linear array with half wavelength antenna sep-

aration is considered, where [q(θ)]k ≜ 1√
K
ejkπ sin(θ) so that the power of each ray

becomes Tr(R(u)
l,p ) =

γ
(u)
l

P
. Then the overall CCM can be obtained as the sum of the

CCMs of individual rays with the AoA values spanning over the set [θu,lc −∆u,l θu,lc −
∆u,l]. According to the diffuse scattering model, the superposition of CCMs of many

rays can be represented by the integral, which is given as

R
(u)
l = lim

P→∞

P∑
p=1

γ
(u)
l

P
q(θp)[q(θp)]

H =
γ
(u)
l

2∆u,l

∫ θu,lc +∆u,l

θu,lc −∆u,l

q(θ)[q(θ)]Hdθ, (5.28)

where 2∆u,l is the angular spread, θu,lc is the mean AoA, and θp = θu,lc − ∆u,l +

p−1
P

2∆u,l. In (5.26), h̄(u)
full,l = κ

(u)
l q(θu,lc ), where κ(u)l is the non-random complex

constant, and then Rician factor can be given as
∣∣∣κ(u)l

∣∣∣2 /γ(u)l .

In this section, block transmission is considered. In each block, ND M-QAM sym-

bols {a(u)m }ND−1
m=0 are transmitted by employing SC modulation after appending proper

cyclic prefix (CP) and cyclic suffix (CS) as

x(u)n =

ND+NCS−1∑
m=−NCP

a(u)m pn−µm, (5.29)

where x(u)n is the transmitted signal of the uth user, NCP and NCS are the lengths of

CP and CS, respectively, pn is the upsampled pulse shaping filter with upsampling

factor µ, and a(u)m ’s are i.i.d. QAM symbols with E{a(u)m (a
(u′)
m′ )∗} = δtt′δuu′ . Then, the

transmitted signal x(u)n = |x(u)n |ejϕ
(u)
n is fed to the PA, which nonlinearly modifies the

signal as x̃(u)n = Ψ(u)
({
x
(u)
n

})
, where Ψ(u)(·) represents the nonlinearity of the PA

of the user u.

At the BS, a receiver structure based on hybrid beamforming, which is summarized

in Figure 5.5, is employed. In the considered system, a simple phase-only analog

beamformer b(u) of uth user, formed by the steering vector q (θu,0c ), which focuses

on the statistically strongest MPC, is employed to reduce the hardware complexity.
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Figure 5.4: Block diagram for hybrid beamforming based system.

Then, beamformer output is obtained for each user as

y(u)n =
[
b(u)

]H
yfull,n

=
L−1∑
l=0

h
(u,u)
l x̃

(u)
n−l +

U∑
u′=1
u′ ̸=u

L−1∑
l=0

h
(u′,u)
l x̃

(u′)
n−l + ν(u)n ,

(5.30)

where h(u,u)l ≜ [b(u)]Hh
(u)
full,l is the effective channel of the intended user u, h(u

′,u)
l ≜

[b(u)]Hh
(u′)
full,l is the leakage channel of user u′ to the intended user, and the effective

noise ν(u)n ≜ [b(u)]Hν full,n.

Although the users are separated in beamspace via analog beamforming, there still

exists a considerable amount of IUI due to the suboptimality of the analog stage. The

remaining IUI and inter symbol interference (ISI) are mitigated in the digital domain

as shown in Figure 5.4. Hence, we propose a reduced complexity receiver structure,

which estimates and eliminates the interference of other users on the intended user

beam. After eliminating the interference due to other users up to some extent via

analog beamforming, the per-user equalization procedure is carried out in the digital

domain. However, due to the suboptimality of the beamformer, a significant amount
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4.4.2

4.4.2

4.4.2

4.4.3

Figure 5.5: Receiver structure for a single user.

of interference remains to be canceled. Therefore, in this chapter, we propose a re-

duced complexity receiver structure, which estimates and eliminates the interference

of other users on the intended user beam.

5.4.2.2 System Description

The proposed system contains different subsystems, which collaborate to decode the

information symbols, which are shown in Figure 5.4.

• The first stage is the analog beamforming in Figure 5.4, which is used to sepa-

rate user signals in beamspace up to some extent. However, due to the subop-

timality of the beamformer, a significant amount of interference remains to be

canceled out via the proposed digital processing.

• The second stage is the single-user processing unit, shown in Figure 5.5, where

symbol detection via per-user IB-DFE is performed by using tentative symbol
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estimates of both intended and interfering users. This block utilizes the channel

estimates of intended and leakage channels. These estimates are acquired via

small-time scale operations at each coherence block, which enable accurate

estimation and cancellation of the received interference signal. In addition to

symbol estimates, nonlinear distortion estimates, which are obtained through

the nonlinear model Ω(u)(·) as shown in Figure 5.4, are also exploited in the

processing stage to reduce the nonlinear distortion effects.

• The last sub-block is the nonlinear distortion estimation stage, where a non-

linear PA model is applied to the tentative decisions to eliminate the nonlinear

distortion. Note that nonlinear characteristics of hardware are stationary during

communication; hence, "Nonlinear Parameter Learning (NPL)" for nonlinear

function (Ω(u)(·)) estimation is performed infrequently on a large-time scale

through slow time (ST) training by using NS symbols.

5.4.3 Parameter Learning and Channel Estimation

5.4.3.1 Nonlinear Parameter Learning (NPL)

In this section, a NN-based nonlinear (NL) model is introduced. This model will

be used to estimate and cancel out the nonlinear distortion from the received signal

through IB-DFE with nonlinear interference cancellation (nIC) block in Figure 5.4.

To construct the model structure, we consider a PA model, expressed by a set of

arbitrary basis functions ψq(·), where q is the nonlinearity order. NPL is examined

under ideal conditions (noise-free, flat fading channel) for each user, and we dropped

the user index (u) in the following discussion for the sake of simplicity. However,

the NL model can be extracted at the BS per user basis under channel impairments

by using the block integration capability over the ST training sequence to enhance

the received training signal quality. Then, we can approximate the transmitted signal

after nonlinear amplification x̃n = Ψ({xn}), as

x̃n =

Q−1∑
q=0

ϖqψq

(
N−1∑
t=0

atpn−µt

)
, (5.31)
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where {ϖq} are the basis coefficients, and ψ0(x) = x corresponds to linear term.

After applying matched filtering (MF) in the NPL stage, the received signal is down-

sampled to the symbol rate of n = µm. Following these steps, the received signal is

rescaled to a magnitude of ϖ0 = 1 at the symbol rate, which can be expressed after

performing basic mathematical manipulations, as detailed in [33] as

y′m = am +

Q−1∑
q=1

ϖqψ
(am)
q

 Lq−1∑
t=−Lq+1

am−tp̄
(q)
t

 , (5.32)

where ψ(am)
q (·) is the sequence dependent nonlinearity, and p̄(q)t is the downsampled

nonlinearly distorted filter response. It is important to note that p̄(q)t is not a Nyquist-1

pulse; hence,
∑Lq−1

t=−Lq+1 am−tp̄
(q)
t term yields ISI, where Lq is the truncated memory.

Besides, the term, which is exposed to ISI, is nonlinearly distorted at the symbol rate.

Consequently, we should construct a model that should, firstly, model the ISI-related

term, a(q)ISI,m ≜
∑Lq−1

t=−Lq+1 am−tp̄
(q)
t . Here, it is crucial to note that the required NL

model for distortion characterization contains memory, which emerges from matched

filtering and decimation operations. This term can equivalently be expressed as

aISI,m = WISIam, (5.33)

where aISI,m =
[
a
(0)
ISI,m, a

(1)
ISI,m, . . . , a

(Q−1)
ISI,m

]T
is the vector, which contains ISI terms

for different nonlinearity orders, WISI ∈ CQ×2Lq−1 is the coefficient matrix with

elements [WISI]q,l = p̄
(q)
Lq−1−l, where p̄(0)n = δn, and am ∈ C2Lq−1×1 is the symbol

vector with elements [am]k = am+k−Lq+1. Then, nonlinearity is applied to the vector

aψ,m = Ψ (aISI,m) , (5.34)

where Ψ(·) =
[
ψ

(am)
0 (·), ψ(am)

1 (·), . . . , ψ(am)
Q−1 (·)

]T
is the vector function containing

the nonlinear basis functions, and [aψ,m]q = ψ
(am)
q (a

(q)
ISI,m). Based on (5.32) and

(5.34), the model output is obtained as the combination of the elements of nonlin-

ear basis functions outputs

y′m = ϖTaψ,m, (5.35)

where ϖ ∈ CQ×1 is the vector, which contains basis coefficients, [ϖ]q = ϖq. As a

result, by combining the expressions (5.33)-(5.35), model output can be expressed as

y′m = ϖTΨ (WISIam) . (5.36)

78



From (5.36), one can observe that the model has a similar structure to a feedforward

neural network in [29]. Therefore, we adopt the augmented real-valued time-delay

neural network (ARVTDNN) structure in this study. The output of the model can be

expressed as

y′m = Ω(am) = ΩI(am) + jΩQ(am), (5.37)

where ΩI(·) and ΩQ(·) are model functions of real and imaginary parts, respectively.

The real part of the network output can be expressed as

ΩI(am) = wT
I g

W1

Re{am}
Im{am}

+ b1

+ b2,I, (5.38)

where wI ∈ CL1×1 is the weight vector and b2,I is the bias term of the output layer.

Similarly, output for the quadrature part is obtained by the weight vector wQ and the

bias term b2,Q. In (5.38), W1 ∈ CL1×4Lq−2 is the weight matrix for the input layer,

b1 and b2 are the bias vectors, L1 is the number of neurons in the hidden layer, and

g(x) = 2
1+e−2x − 1 is the activation function, which is shown to provide minimum

modeling error compared to the other activation functions in [29].

Via this analysis, we observed that a simple single-layer ARVTDNN is sufficient to

capture PA nonlinearities; hence, using more complicated structures, such as convo-

lutional NN (CNN) and DNN, can be avoided to keep the computational complexity

lower.

5.4.3.2 Neural Network Training

In order to train the neural network in a supervised manner, the first step is to generate

the training data. For this purpose, a symbol sequence am of length NS is generated

from a QAM alphabet. Next, the training waveform xn is obtained after upsampling

and pulse shaping stages, as expressed in (5.29). The waveform xn is then passed

through the power amplifier (PA) of the corresponding UE, and the upsampled train-

ing sequence is acquired, resulting in labeled data.

As the next step, the upsampled training data x̃n is captured. This can be done either

in the transmitter side by using an observation chain or it can be directly received

at the BS. After matched filtering and downsampling, the labeled symbols y′m =
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(
x̃n ∗ p∗−n

)
|n=µm are obtained. These labeled symbols serve as the training pairs

{am, y′m}
NS−1
m=0 that are used to train the NN coefficients.

The weights of NN coefficients are updated via back-propagation by using the Levenberg-

Marquardt algorithm [58]. NN training aims to find a model that minimizes the mean

square of the estimation error. Hence, the loss function to be minimized can be ex-

pressed as

J =
1

2NS

NS−1∑
m=0

(Re{y′m} − ΩI(am))
2 + (Im{y′m} − ΩQ(am))

2. (5.39)

Equivalently, a simple gradient descent algorithm can be performed to update NN

coefficients. In order to train the NN coefficients W1, wI and wQ, an iterative coeffi-

cient update procedure is employed. Then the update equations of wI and wQ for the

ith iteration can be expressed as,

wI[i] = wI[i− 1] + λa′
ieI,i, (5.40a)

wQ[i] = wQ[i− 1] + λa′
ieQ,i (5.40b)

where the error signals eI,i ≜ Re{y′i}−ΩI(ai), eQ,i ≜ Im{y′i}−ΩQ(ai) and the input

vector a′
i ≜ g

(
W1

[
Re{aT

i } Im{aT
i }
]T)

. Weight vector for the pth neuron can be

represented as the pth row of W1, namely wp
1 = [W1]p,:, and it is updated as

wp
1[i] = wp

1[i− 1] + λ
(
āi [wI[i]]p eI,i + āi [wQ[i]]p eQ,i

)
(5.41)

where āi ≜
(
1− g

(
(a′

i)
Twp

1[i− 1]
)2)

a′
i, and λ is the learning rate.

5.4.3.3 Nonlinear Interference Prediction

In the considered system, the NN model is used to predict the nonlinearly modified

signal by using the tentative decisions obtained after receiver processing âm so that

nonlinear distortion can be canceled. A nonlinear model at symbol rate is extracted

via NN for each user. The model output is estimated by using the tentative decisions

â
(u)
m as ŷ′(u)m = Ω(u)

(
â
(u)
m

)
. By using the model output, distortion signal for uth user,

namely d̂(u)m , can be simply estimated as

d̂(u)m = ŷ′(u)m − â(u)m . (5.42)
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5.4.3.4 Channel Estimation with Fractional Sampling

In this study, we consider FDE to compensate for the effects of frequency selectiv-

ity of channels. It is shown numerically in [33] that distortion amplification occurs

due to a mismatch between the channels of linear and nonlinear signal components;

hence, a receiver structure based on a fractionally spaced FDE bank is proposed to

exploit channel diversity. The same approach is adopted, and the effect of shifting the

sampling instant fractionally is shown analytically in Section 5.4.5, and a nonlinear

FDE method is proposed, which takes both distortion amplification and multi-user

scenario into account.

Channel acquisition at BS is performed for each user u and fractional sampling instant

i = 0, . . . , µB − 1 by taking the interference of other users on the intended user beam

into account, where µB is the number of sampling instants as shown in Figure 5.5.

The received signal for the ith branch after analog beamforming in (5.30) and MF is

expressed as

y(u),i ≜
[
y
(u),i
0 , y

(u),i
1 , . . . , y

(u),i
NT−1

]T
, (5.43)

where y(u),im =
(
y
(u)
n ∗ p∗−n

)
n=mµ+i µ

µB

is the downsampled signal for the ith branch,

and y(u),i ∈ CNT×1 is the signal vector that contains all training symbols on the uth

RF chain and NT is the number of training symbols. By using this training sequence,

the fractionally delayed channel, which represents the interference channel of user u′

onto uth user’s beam, h(u′,u),i =
[
h
(u′,u),i
−Lb+1, . . . , h

(u′,u),i
0 , . . . , h

(u′,u),i
Lf−1

]T
can be estimated

via different estimation techniques [72].

5.4.4 Distortion-Aware Iterative Detector with nIC

In this section, the proposed nIC-based receiver, which is the single-user digital pro-

cessing unit detailed in Figure 5.6, is introduced. The advantages of the proposed

algorithm over existing methods are two-fold in terms of performance and complex-

ity. Firstly, existing MIMO receivers proposed in [48] and [65] do not take distor-

tion amplification into account. Therefore, they suffer from performance degrada-

tion since they do not aim to mitigate amplified nonlinear distortion. In addition,

these methods perform joint MMSE detection, and they require matrix inversion.
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The proposed PU-IB-DFE algorithm reduces the problem dimension to a single user

by performing beamspace operations as detailed in the "Complexity Analysis" Sec-

tion 5.4.6. Therefore, the proposed algorithm reduces the equalization complexity

to single scalar multiplication, which is lower than that of existing methods [48, 65].

Secondly, the proposed IB-DFE receiver estimates nonlinear distortion independent

of the sampling branch; hence, a single NN implementation is sufficient. Hence, it

has significantly lower computational complexity than the SISO receiver, which re-

quires multiple complex NN implementations [33]. In addition, since the proposed

algorithm proposes an iterative decision-directed detection, its performance is also

superior than that of the non-iterative method in [33] as shown in the "Performance

Evaluations" Section 5.5.

In the considered system, a nonlinear FDE technique, called IB-DFE with nIC, is

used to suppress ISI and IUI iteratively.

5.4.4.1 Description of the proposed algorithm

The proposed algorithm is developed based on the received signal expression in

(5.30), which contains two main signal terms.

• The first signal component is related to the intended signal
∑L−1

l=0 h
(u,u)
l x̃

(u)
n−l.

However, this signal is nonlinearly distorted, as explained in Section 5.4.3.1.

Hence, the first step is to cancel the nonlinear distortion term in symbol rate,

which is denoted as d(u)m . The distortion estimate is obtained using the tentative

decisions as in (5.42). Furthermore, the distortion estimate is convolved with

the channel estimate h(u
′,u),i

m to obtain the received distortion signal. The fre-

quency domain equivalent of this step, which corresponds to the cancellation

of the "Self nonlinear distortion" term, is given in (5.44).

• The second signal component is related to the IUI component in (5.30), which is

given as
∑U

u′=1
u′ ̸=u

∑L−1
l=0 h

(u′,u)
l x̃

(u′)
n−l. Note that this signal component is a function

of both leakage channel h(u
′,u)

l and the nonlinearly distorted interfering users’

signals x̃(u
′)

n−l. The leakage signal affects the received signal quality, which in

turn, degrades the detection performance. Hence, cancellation of the "Nonlin-
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Figure 5.6: PU-IB-DFE with nIC block. For simplicity, all variables are represented

in DFT domain.

ear IUI" term in (5.44) is performed in downsampled signal domain to increase

the received signal quality.

• After removing nonlinear distortion and the IUI, conventional IB-DFE oper-

ations are applied on the received signal per user basis to obtain soft symbol

estimates.

• By using the PU-IB-DFE algorithm, soft symbol decisions are obtained for

each sampling branch, where the resultant distortion power varies over sam-

pling branch output depending on channel frequency response. Consequently,

in the last stage, soft symbol estimates are combined in a way that the ultimate

distortion power is minimized.

5.4.4.2 IB-DFE with nIC

Consider the frequency domain representation of the received signal after MF for the

ith sampling branch for user u, y(u),im in (5.43), which is denoted by Y (u),i
k . One can

obtain the signal Ȳ (u),i
k (l) from Y

(u),i
k after nIC for all users and linear IUI cancellation
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for the interfering users at the lth iteration as

Ȳ
(u),i
k (l) = Y

(u),i
k −

∑
u′=1
u′ ̸=u

Ĥ
(u′,u),i
k Ŷ

′(u′)
k (l − 1)

︸ ︷︷ ︸
Nonlinear IUI

− Ĥ
(u,u),i
k D̂

(u)
k (l − 1)︸ ︷︷ ︸

Self nonlinear distortion

,

(5.44)

where the frequency domain signals are defined as Y (u),i
k = F

{
y
(u),i
m

}
is the received

signal, Ĥ(u′,u),i
k = F

{
ĥ
(u′,u),i
m

}
is the estimated effective channel frequency response

of user u′, seen by uth RF chain, D̂(u)
k (l) = F

{
d̂
(u)
m (l)

}
is the estimated distortion

signal of user u at lth iteration obtained from (5.42), and Ŷ ′(u)
k (l) = F

{
ŷ
′(u)
m (l)

}
is

the estimate of nonlinearly distorted signal in (5.42).

After interference cancellation, IB-DFE type equalization [48, 65] for the uth user on

(5.44) is performed, and we obtain the soft symbol estimate in the frequency domain

for the ith sampling branch at the lth iteration as

Ã
(u),i
k (l) = F

(u),i
k Ȳ

(u),i
k (l)− ρ(u),l−1B

(u),i
k Â

(u)
k (l − 1), (5.45)

where F (u),i
k is the feedforward MMSE filter given by

F
(u),i
k =

[
Ĥ

(u,u),i
k

]∗(∣∣∣Ĥ(u,u),i
k

∣∣∣2 + ϵ

)−1

, (5.46)

and ϵ = 1
SDNR

is the regularization parameter. In this study, the regularization pa-

rameter is selected as a function of SDNR as proposed in the robust receiver in [48].

In (5.45), reliability metric ρ(u),l is found as

ρ(u),l = E
{
â(u)m (l)

(
a(u)m

)∗}(E{∣∣a(u)m

∣∣2})−1

, (5.47)

where â(u)m (l) is the hard decision produced by the detector, Â(u)
k (l) = F

{
â
(u)
m (l)

}
at the lth iteration, and B(u),i

k is the feedback filter, which is used to eliminate the

remaining linear ISI of the intended user, which can be given as

B
(u),i
k = F

(u),i
k Ĥ

(u,u),i
k − 1. (5.48)

In the next section, a distortion-aware detector, which combines soft symbol esti-

mates obtained for each fractional delay, namely ã(u),im (l) = F−1
{
Ã

(u),i
k (l)

}
, will be

introduced.
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5.4.4.3 Distortion-Aware Adaptive QAM Detection with IB-DFE

In (5.45), soft symbol estimates are obtained for each sampling branch, and it is

shown in Section 5.4.5 that SDNR is different on the fractional sampling channels

due to the distortion amplification phenomenon. From (5.46), it can be observed that

the applied gain to equalize the frequency selective channel is roughly proportional

to 1/Ĥ
(u,u),i
k ; therefore, if the magnitude of the channel frequency response Ĥ(u,u),i

k

is small then the applied gain can be significantly large. Consequently, to equalize

the linear signal, the distortion term is multiplied with a large gain. This may yield

amplification of the distortion signal since its channel characteristics differ as can be

seen from the equivalent channel representation analysis in Appendix A, specifically

from (A.11). Furthermore, this effect is more evident in practical spatially correlated

mm-wave channels since all the antenna elements have a similar frequency response

due to channel correlation across antenna elements. On the other hand, for a rich scat-

tering environment, the effects of distortion amplification might be mild since each

antenna observes an uncorrelated channel, which results in channel hardening. There-

fore, the fading pattern of the effective channel might be smoother; however, the spa-

tially correlated channel model, which is employed in this study, is considered to be

more practical for next-generation wireless networks [75]. Hence, a distortion-aware

symbol-by-symbol detector (DA-SSD), which is introduced in [33], can be adapted to

multi-user detection problems as a feasible solution for the considered system. DA-

SSD is used to estimate the transmitted symbols for each user independently, and

those symbol estimates are exploited to cancel IUI and nonlinear distortion through-

out the iterations (5.44) and (5.45).

The vector input of the DA-SSD for user u can be formed by the soft symbol esti-

mates as ã(u)
m ≜

[
ã
(u),0
m , ã

(u),1
m , ..., ã

(u),µB−1
m

]T
, and it can be expressed by employing

generalized Bussgang decomposition for non-Gaussian signals, which is a useful tool

for quantifying the distortion power of the nonlinearly distorted signal [59]. Thanks

to the quantification of the distortion power, a combiner, which minimizes the overall

distortion power can be calculated. Via the generalized Bussgang decomposition, the

soft symbol estimate vector ã(u)
m can be represented by the desired useful term a

(u)
m
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and the uncorrelated distortion-plus-noise (DN) vector η(u)
m as

ã(u)
m = β(u)a(u)m + η(u)

m , (5.49)

where β(u) is the Bussgang coefficient vector, which is found in the training phase as

β̂
(u)

≈

(
NT−1∑
m=0

ã(u)
m

(
a(u)m

)∗)(NT−1∑
m=0

|a(u)m |2
)−1

. (5.50)

The correlation matrix for the DN vector can be obtained by using training symbols

as

R̂(u)
η = E{(ã(u)

n − β(u)a(u)n )(ã(u)
n − β(u)a(u)n )H}

≈ 1

NT

NT−1∑
m=0

(ã(u)
m − β̂

(u)
a(u)m )(ã(u)

m − β̂
(u)
a(u)m )H.

(5.51)

Note that the correlation matrix R̂
(u)
η can also be calculated analytically as expressed

in (A.13).

Symbol estimates from different branch outputs can be combined by using minimum

variance distortionless response (MVDR) filter. Combiner vector for uth user w(u)
c ∈

CµB×1 can be expressed as

w(u)
c =

((
R̂(u)
η

)−1

β̂
(u)
)((

β̂
(u)
)H (

R̂(u)
η

)−1

β̂
(u)
)−1

. (5.52)

The soft symbol estimate at lth iteration is obtained as

ã(u)m (l) =
(
w(u)
c

)H
ã(u)
m (l). (5.53)

Then, hard detector outputs â(u)m (l) are obtained from ã
(u)
m (l) based on minimum dis-

tance criterion. Also, after the last IB-DFE iteration in (5.45), low density parity

check (LDPC) decoding can be employed as forward error correction (FEC).

5.4.5 SDNR Analysis for the Proposed Detector

In this section, SDNR analysis of the proposed detector in Section 5.4.4 will be per-

formed to present the performance improvement brought by the use of fractionally

spaced FDE bank structure in hybrid MIMO systems. In the analysis, based on IB-

DFE with nIC and DA-SSD, residual distortion power is derived and used to calculate

the received SDNR.
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We start the analysis by expressing the soft symbol estimates after IB-DFE with nIC

in (5.45) and MVDR combining in (5.53), which are described in Section 5.4.4.2 and

5.4.4.3 1, as

Ã
(u)
k (l) =

µB−1∑
i=0

w(u),i
c

[
F

(u),i
k Ȳ

(u),i
k (l)− ρ(u),l−1B

(u),i
k Â

(u)
k (l − 1)

]
, (5.54)

where w(u),i
c =

[
w

(u)
c

]
i
, and Ȳ (u),i

k can be expressed as

Ȳ
(u),i
k (l) = Y

(u),i
k −H

(u,u),i
k D̂

(u)
k (l − 1)

−
U∑

u′=1
u′ ̸=u

[
H

(u′,u),i
k

(
Â

(u′)
k (l − 1) + D̂

(u′)
k (l − 1)

)]
,

(5.55)

where, D̂(u)
k (l) is the estimate of D(u)

k in (A.9) based on tentative decisions at lth

iteration via (5.42). Soft symbol estimate expression in (5.54) can be further written

as in (5.56) by using the equivalent channel representations derived in Appendix A,

including the noise term, so that each term can be investigated individually

Ã
(u)
k (l) = P

(u,u)
k A

(u)
k −Q

(u)
k Â

(u)
k (l − 1)︸ ︷︷ ︸

(Λ1
k)

+P
(u,u)
k

(
D

(u)
k − D̂

(u)
k (l − 1)

)
︸ ︷︷ ︸

(Λ2
k)

+
U∑

u′=1
u′ ̸=u

P
(u′,u)
k

(
A

(u′)
k − Â

(u′)
k (l − 1)

)
︸ ︷︷ ︸

(Λ3
k)

+
U∑

u′=1
u′ ̸=u

P
(u′,u)
k

(
D

(u′)
k − D̂

(u′)
k (l − 1)

)
︸ ︷︷ ︸

(Λ4
k)

+
U∑

u′=1

µB−1∑
i=0

w(u),i
c F

(u),i
k D̃

(u′,u),i
k +

µB−1∑
i=0

w(u),i
c F

(u),i
k V(u),i

k︸ ︷︷ ︸
(Λ5

k)

,

(5.56)

where the scalars are defined as P (u′,u)
k ≜

[∑µB−1
i=0 w

(u),i
c F

(u),i
k H

(u′,u),i
k

]
, Q(u)

k ≜[∑µB−1
i=0 w

(u),i
c B

(u),i
k ρ(u),l−1

]
, and D̃(u′,u),i

k is mismatched distortion defined in (A.11).

The MVDR filter in (5.52) can be analytically calculated by employing the correlation

matrix R
(u)
η of the remaining distortion, and R

(u)
η can be computed as

R(u)
η =

U∑
u′=1

R
(u′,u)
d , (5.57)

1 In the analysis, both nonlinear modeling and channel estimation errors are not considered assuming that
both are estimated accurately via training.
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where (i, r)th entity of R
(u′,u)
d is the correlation between distortion in ith and rth

branches, expressed by (A.13) in Appendix A.

By using the symbol estimate expression in (5.56), we can calculate the distortion-

plus-noise power, namely S(u)
DN(l), of the received signal at lth iteration as

S
(u)
DN(l) =

1

ND

ND−1∑
k=0

E
{∣∣∣A(u)

k − Ã
(u)
k (l)

∣∣∣2} . (5.58)

By assuming the orthogonality of the symbols for different users, and the distortion

signals2, which is based on generalized Bussgang theorem, we can express S(u)
DN(l) as

the summation of the following power terms as

S
(u)
DN(l) =

1

ND

ND−1∑
k=0

[
S
(u)
PQ,k(l) + S

(u)
d,k (l) + J

(u)
k (l) + J

(u)
d,k (l)

]
+ S̃

(u)
d . (5.59)

Under these assumptions, different terms in (5.59) can be calculated as follows.

Remaining signal power due to imperfect decision feedback in IB-DFE operations

S
(u)
PQ,k(l) ≜ E

{
|A(u)

k − Λ1
k|2
}

can be calculated as

S
(u)
PQ,k(l) =

∣∣∣P (u,u)
k − 1

∣∣∣2 + ∣∣∣Q(u)
k

∣∣∣2 − 2Re
{
ρ(u),l−1

(
P

(u,u)
k − 1

)∗
Q

(u)
k

}
, (5.60)

where E
{
|A(u)

k |2
}

= E
{
|Â(u)

k (l)|2
}

= 1. The remaining distortion power S(u)
d,k ≜

E {|Λ2
k|2} due to imperfect symbol estimation at the previous iteration can be com-

puted as

S
(u)
d,k (l) = 2

(
1− Re

{
ρ
(u),l−1
d

}) ∣∣∣P (u,u)
k

∣∣∣2 E{∣∣∣D(u)
k

∣∣∣2} , (5.61)

where ρ(u),ld is the reliability factor for the distortion estimation, which is defined as

ρ
(u),l
d ≜ E

{
d̂n

(u)
(l)
(
dn

(u)
)∗}(

E
{∣∣∣dn(u)∣∣∣2})−1

. (5.62)

Similar to the power term of the intended user, we can calculate the remaining power

of interfering users after IUI cancellation and nIC. Residual power due to non-ideal

symbol detection of interfering users J (u)
k (l) ≜ E

{
|Λ3

k|
2
}

can be obtained as

2 Note that distortion estimation error term Λ4
k and mismatch distortion related term Λ5

k are assumed to be
orthogonal since estimation error stems from incorrect tentative decisions; however, mismatch distortion is due to
the channel mismatch, which is uncorrelated to tentative decisions.
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J
(u)
k (l) =

U∑
u′=1
u′ ̸=u

2
(
1− Re

{
ρ(u

′),l−1
}) ∣∣∣P (u′,u)

k

∣∣∣2 . (5.63)

Residual power due to non-ideal nIC of interfering users J (u)
d,k (l) ≜ E

{
|Λ4

k|
2
}

is

obtained as

J
(u′,u)
d,k (l) =

U∑
u′=1
u′ ̸=u

2
(
1− Re

{
ρ
(u′),l−1
d

}) ∣∣∣P (u′,u)
k

∣∣∣2 E{∣∣∣D(u′)
k

∣∣∣2} . (5.64)

Finally, the residual power of the combination of mismatch distortion and the thermal

noise S̃(u)
d ≜ 1

ND

∑ND−1
k=0 E

{
|Λ5

k|
2
}

can be computed by using the correlation matrix

of the residual distortion component in (5.57) as S̃(u)
d =

[
w

(u)
c

]H
R

(u)
η w

(u)
c . SDNR

expression can be written by combining all terms as SDNR(u)(l) = 1/S
(u)
DN(l), and

one can obtain the uncoded BER expression by taking the following expectation for

M -QAM constellation with respect to channel realizations as

Pb ≈
1

U

U∑
u=1

4

log2(M)
E{

h
(u′,u)
m

}
Q

√3
SDNR(u)

M − 1

 . (5.65)

In (5.65), the Gaussian assumption is made for the distortion term after nIC and IB-

DFE. However, the remaining distortion does not exactly have a Gaussian probability

density function (pdf ). It is stated in [80] that the pdf has a relatively smaller slope on

the tail due to nonlinear distortion. In the IB-DFE receiver, additional non-Gaussian

interference comes from imperfect decision feedback. Therefore, relatively high tails

departing from Gaussian distribution become more problematic since they yield bit

errors for uncoded systems. We employed FEC to reduce the effects of tails in the

pdf of the residual distortion term after MVDR combining [w
(u)
c ]Hη

(u)
n . Therefore,

LDPC coding with a high code rate (r = 8/9) is utilized to compensate for errors due

to high tails.

5.4.6 Complexity Analysis

In Table 5.2, we compared the proposed receiver’s computational complexity with

baseline techniques based on the number of floating-point operations (FLOPs) per

symbol for one iteration. For the comparison, we considered the complexities of
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both the conventional Robust MMSE and the Robust MMSE with nIC techniques.

When comparing the complexities of the considered techniques, it is noted that the

proposed PU-IB-DFE with nIC and Robust MMSE with nIC [65] are both heavily

influenced by the nonlinear distortion estimation. Specifically, in order to create the

input of an activation function of the NN-based nonlinear model, 4Lq real multipli-

cations are needed to perform real/imaginary processing. Consequently, 4LqL1 real

multiplications are required to generate L1 neuron inputs. However, one should note

that employing the FDE bank does not increase NN-based nIC complexity since the

same NL model output is used for each sampling branch, unlike in [33], where NN-

based predictors are employed at each branch. Robust MMSE [48] may seem to have

lower computational complexity due to lack of nIC; however, it suffers from signif-

icant performance degradation due to remaining nonlinear distortion, which will be

presented in numerical results. Besides, it should be noted that nonlinear distortion

estimation for each symbol should not be repeated at every iteration when the tentative

decisions for a specific symbol estimate remain the same. The total number of com-

putations might be decreased by avoiding unnecessary nonlinear processing, which

in turn, reduces the circuit power consumption. This is a common and necessary

operation for the algorithms that employ nIC, such as Robust MMSE with nIC [65]

and the proposed PU-IB-DFE + DA-SSD. Hence, the energy efficiency of the system

can be improved further. Furthermore, to estimate the received distortion in a multi-

user MIMO scenario, the estimated distortion signal in the frequency domain must be

multiplied by each user’s intended/leakage channel. This operation requires O(U2)

real multiplications for Robust-MMSE with nIC [65] and O(µBU
2) for the proposed

algorithm. On the other hand, the proposed IB-DFE algorithm for multi-user MIMO

scenarios has lower complexity required for frequency domain equalization than the

MMSE-type receivers, which require matrix inversion for each FFT bin. In Robust

MMSE algorithms, the equalization matrix is calculated after performing matrix in-

version, requiring O (U3) multiplications, followed by matrix multiplication, requir-

ing O (U3) multiplications. However, the proposed algorithm only requires scalar

multiplications for each sampling branch, resulting in O(µBU) multiplications due to

the reduced effective dimension enabled by analog beamforming. It is important to

acknowledge that the proposed algorithm necessitates computation for each sampling

beach, resulting in a complexity increase by µB. Nonetheless, it should be noted
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Table 5.2: Complexities of Baseline Schemes

Distortion

estimation

via NN

Effective

NL interference

estimation

Distortion

cancellation

Matrix

inversion

Matrix

multiplication

for equalization

MVDR

combiner

Robust MMSE

Robust [47]
- - - O

(
U3

)
O

(
U3

)
+O

(
U2

)
-

Robust MMSE

with nIC [64]
O (U4LqL1) O

(
U2

)
O (U) O

(
U3

)
O

(
U3

)
+O

(
U2

)
-

PU-IB-DFE

with nIC

+DA-SSD

O (U4LqL1) O
(
µBU

2
)

O (µBU) - O (µBU) O (µBU)

that the PU-IB-DFE architecture that is being suggested reduces the problem’s di-

mensionality into scalar operations. Therefore, the additional complexity that arises

from using multiple branches is not comparable with that of MMSE-type equaliza-

tion. Consequently, it can be concluded that the proposed PU-IB-DFE with the nIC

scheme provides superior performance with relatively low computational complexity.

5.5 Performance Evaluations

In this section, the performance of the proposed IB-DFE with nIC method is evaluated

and compared with conventional state-of-the-art schemes via computer simulations.

5.5.1 Simulation Settings

In the considered scenario, a BS withK = 64 antennas is servingU = 8 mobile users,

which randomly reside in 8 angular sectors distributed over [−45◦, 45◦], and a single

RF chain is dedicated to a single user. A spatially correlated channel model similar

to that in [75] and [3], containing 5 MPCs per-user at fractional delays, which are

distributed randomly over 16 symbol length, is considered. Each MPC is formed in a

clustered manner, where each cluster contains additional µ channel taps at fractional

delays around its center. Relative powers of each cluster are 0, −3, −5, −10 and

−20 dB, Rician factor of MPCs are set to 10 dB, and angular spread of each MPC
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cluster is 2◦. The first three strong MPCs originate from the same angular sectors as

the intended user, and the remaining MPCs are received over [−45◦, 45◦].

In data transmission, the block length is selected to be ND = 8100. A root raised

cosine filter with 0.3 roll-off factor and µ = 8 is used for pn. In the simulations,

all users are assumed to be synchronized; however, even for asynchronous cases,

channel estimation, and equalization will handle the synchronization. For NPL, a

training sequence of length 16384 symbols is sent before data transmission and is not

repeated during the transmission phase. The number of neurons in the NN structure

is 30, and memory length is chosen as ±3. In this study, the Saleh model, [37], is

employed in simulations, output of the PA, x̃n = |x̃n|ejϕnejθn , can be expressed as

|x̃n| = g0|xn|
1+(|xn|/Asat)

2 , θn = α|xn|2
1+β|xn|2 , where g0 = 2, Asat = 1, α0 = 2 and β0 = 1

are the model parameters [33].

5.5.2 Simulation Results

5.5.2.1 SDNR Analysis Results

In this section, the performance of PU-IB-DFE is evaluated based on the analytical

SDNR expression derived in Section 5.4.5. Firstly, we verify the analytical SDNR

expression obtained in Section 5.4.5 by comparing it with the residual SDNR val-

ues (after PU-IB-DFE with nIC) based on link-level simulations via Monte Carlo

(MC) trials. In Figure 5.7, CDF of the received SDNR of users for different channel

realizations are presented for both one, µB = 1, (PU-IB-DFE + DA-SSD(1)) and

four, µB = 4, (PU-IB-DFE + DA-SSD(4)) sampling branches, where output backoff

(OBO) of PA model is set to 4 dB. OBO is defined as OBO ≜ Pmax
Pav

, where Pmax and

Pav are maximum output power that PA can supply, and average transmit power at the

current operating point, respectively. The results demonstrate a close match between

the analytical SDNR curves and the empirical outcomes. Additionally, it is evident

that the adoption of fractional sampling can lead to a significant improvement in the

SDNR of the system. Our investigation reveals that for specific channel instances, the

PU-IB-DFE technique with µB = 1 experiences a severe deterioration in the received

SDNR, which results in a substantial number of bit errors beyond the FEC’s error
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Figure 5.7: CDF of the received SDNR for the proposed PU-IB-DFE method with

and without employing FDE bank.

correction capability. However, using different sampling instances avoids such a no-

ticeable decrease in received SDNR; hence, overall system performance is enhanced

remarkably. For instance, the probability of SNDR value being less than 25 dB, which

can be considered as an outage threshold for 256-QAM transmission, is close to 3%

for PU-IB-DFE + DA-SSD(1). This presents the frequency of the outage event, which

indicates the significance of the distortion amplification. On the other hand, the CDF

tail of PU-IB-DFE + DA-SSD(4) method starts at relatively higher SNDR values;

hence, an outage event does not frequently occur for this method, which results in

improved BER performance. However, the probability of SDNR being less than the

threshold is less than 0.5%, which indicates performance improvement achieved by

the detector.
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5.5.2.2 Monte Carlo Simulations Results

In this section, BER performances of the considered methods for 256 QAM are eval-

uated and compared via MC simulations over 5000 channel realizations, where the

instantaneous channel is estimated via the least squares method. In MC simulations,

LDPC is used for channel coding with a code rate r = 8/9. In the simulations, Ro-

bust MMSE [48] and Robust MMSE with nIC [65] receivers are also included. In

addition, the approximate BER expression in (5.65) is verified via different setups.

In Figure 5.8 (a), BER results for MC trials are shown for 4 dB OBO. It can be seen

that PU-IB-DFE + DA-SSD(1) without fractional sampling suffers from severe error

floor due to distortion amplification phenomenon; however, the proposed method with

DA-SSD(4) decreases the floor to a lower level. The proposed PU-IB-DFE + DA-

SSD(4) improves the performance by using channel diversity via MVDR combining.

The proposed MVDR combiner assigns larger combining weights to the sampling

branches, which does not experience distortion, by exploiting the distortion correla-

tion matrix Rη. Furthermore, it can also be observed that the BER performance of

the proposed per-user IB-DFE algorithm is very close to the state-of-the-art methods,

namely Robust MMSE [48] and Robust MMSE with nIC [65]. MMSE-type filtering

requires matrix inversion for each frequency bin, which is avoided in the proposed

receiver thanks to per-user processing enabled by spatial pre-processing. In Figure

5.8, implementation of the single user post-distortion method in [33] is also consid-

ered. It can be seen that the method in [33] suffers from significant performance loss

due to lack of IUI cancellation, and the proposed nIC method is necessary to perform

enhanced multi-user detection.

In Figure 5.8 (b), uncoded BER curves of PU-IB-DFE without any nIC and DA-

SSD for µB = 1, 4 for the same scenario are demonstrated by using analytical SDNR

expression in Section 5.4.5. In addition, an uncoded analytical BER curve for the case

of linear PA is also obtained for the sake of completeness. It can be observed that the

BER of the coded case has a similar tendency and match with the analytical uncoded

BER curves. The reason is that burst errors due to distortion amplification, which

cannot be avoided with the use of such a high code rate (r = 8/9), are the primary

source of overall bit errors. FEC is only effective in compensating the outliers due to
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Figure 5.8: BER vs. Es/No curves for 256 QAM for 4 dB OBO (a) numerical results

with code rate r = 8/9 (b) analysis results.

residual nonlinear distortion after nIC.

BER results for different PA operating points, which is indicated by output backoff

(OBO), and different constellation orders, namely 265 and 1024 QAM constellations,

are presented for 50 dB Es/No in Figure 5.9. Lower OBO values correspond to

the scenarios where PA is operated closer to saturation; hence, nonlinearity is more

severe. Figure 5.9 (a), provides the numerical BER performances for PU-IB-DFE

with DA-SSD(4), DA-SSD(1), and w/o nIC methods. It is observed that the proposed

PU-IB-DFE + DA-SSD(4) exhibits robustness to power amplifier nonlinearities. Even

for lower OBO levels, it can achieve superior BER performances compared to the

methods which do not employ fractional sampling. In addition, for the 1024 QAM

constellation, the proposed method provides better BER performance than PU-IB-

DFE + DA-SSD(1) with 256 QAM. For both constellations, the proposed method can

eliminate the error floor. However, DA-SSD(1) suffers from error floor even for a

relatively linear PA operating region. Analytical BER results are shown in Figure 5.9

(b), where it can be observed that the analytical BER expression in (5.65) provides

a good approximation for the practical system. The performed analysis is able to

capture outage events stemming from SDNR drops due to distortion amplification.

BER performance of the proposed algorithm is also evaluated in a different scenario

with a memory polynomial-based PA model, which is extracted from a PA and used

in [3] as shown in Figure 5.10. A more dense communication system, where a BS with
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Figure 5.9: BER vs. OBO curves for 256 and 1024 QAM constellations (a) numerical

BER results with code rate r = 8/9 (b) analytical BER results.

K = 100 antennas serves U = 16 users, is considered. In addition, for this case, al-

ternative nonlinear basis functions (NBF), namely VS and memory polynomial (MP)

based modeling, are considered for nonlinear modeling. Consistent with previous

evaluations, the proposed PU-IB-DFE algorithm outperforms the state-of-the-art al-

gorithms, as seen from Figure 5.10 (a). Even though the MP-based modeling has the

same structure as the PA model, it suffers from performance degradation since it is

shown in (5.32) that nonlinearity after downsampling contains a memory effect prior

to the NBF. However, in the MP-based model, memory effects are considered after

the nonlinearity. Hence, MP is not a proper choice for symbol-sampled processing.

VS expansion-based method provides BER performance close to NN modeling since

it contains cross-memory terms for NBF. However, it suffers from high computational

complexity. Lastly, the BER curves based on SDNR analysis are shown in Figure 5.10

(b). Even though the analysis assumes a memoryless nonlinearity, it can accurately

estimate the distortion amplification effects since the NN modeling compensates for

memory effects. Therefore, analytical BER is consistent with the numerical results.

5.6 Conclusions

In this chapter, we developed a multi-user nIC method in the downsampled signal

domain for multi-user hybrid MIMO beamforming framework. In the considered
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Figure 5.10: BER vs. Es/No curves for 256 QAM for polynomial PA model in [3]

(a) numerical results with code rate r = 8/9 (b) analysis results.

approach, the nonlinearly distorted IUI and nonlinear distortion component of the

intended users are removed from the received signal so that a reduced complexity

per-user IB-DFE receiver can be implemented. Then, fractionally spaced IB-DFE re-

ceiver outputs are combined intelligently via the distortion-aware detector to reduce

the distortion amplification effects. Also, a theoretical framework is constructed to

analyze the system performance under PA nonlinearities. It is observed that the pro-

posed approach achieves superior performance compared to state-of-the-art methods,

and the theoretical framework is verified by comparing the analytical results with

those of MC simulations.
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CHAPTER 6

ANALYTICAL NONLINEAR DISTORTION CHARACTERIZATION AND

POWER ALLOCATION FOR MULTI-USER FREQUENCY-SELECTIVE

MASSIVE MIMO CHANNELS

6.1 Introduction

In this section of the thesis, our attention is directed towards the downlink communi-

cation aspect, where the occurrence of nonlinear distortion is observed at the PAs of

the BSs. We delve into analyzing the characteristics of received distortion in fully dig-

ital massive MIMO systems, examining the influence of different system parameters

on the received distortion. It is demonstrated that the spatial correlation of distortion

has significant effects, particularly in the context of massive MIMO systems. The

analysis results highlight the importance of spatial correlation in distortion modeling.

Building upon the insights gained from the analysis, a power allocation scheme is

proposed, taking the spatial correlation of distortion into account. Through extensive

evaluations, we show that the proposed power allocation approach surpasses the per-

formance of methods that overlook the spatial correlation of distortion. This finding

underscores the significance of incorporating spatial correlation in the power alloca-

tion process to optimize system performance.

6.2 Literature Review

The Bussgang decomposition technique has emerged as a prominent tool extensively

employed for analyzing the impact of hardware nonlinearities on communication

systems [59]. By decoupling the nonlinearly distorted signal into two uncorrelated
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components, namely the useful component and the uncorrelated distortion compo-

nent, the Bussgang decomposition enables a comprehensive investigation of these

effects [81]. Various studies in the literature have utilized the Bussgang decomposi-

tion to examine the consequences of hardware distortion, treating it as an additional

additive noise [82,83]. For MIMO systems, researchers have performed the Bussgang

decomposition individually for each antenna, modeling the distortion as spatially and

temporally uncorrelated noise [82–85]. Nevertheless, although the Bussgang decom-

position offers valuable insights, it falls short in adequately representing the spectral

characteristics of the nonlinear distortion. Subsequently, in order to attain a modeling

approach that better captures the power spectral density (PSD) of the distortion term,

researchers have devised alternative methodologies [22,86,87]. Notably, several stud-

ies [48,86,87] have employed polynomial expansion techniques to model the spectral

characteristics of nonlinear distortion on an individual basis for each antenna. These

methodologies enable the estimation of distortion power at various frequency compo-

nents. This modeling approach has been found to yield accurate results, particularly

in scenarios where the number of users is relatively large. In such cases, the inputs to

the antennas tend to exhibit decorrelation as the number of users increases, thereby

enhancing the efficacy of the modeling approach [88]. Consequently, these studies

suggest that as the number of antennas increases, the detrimental effects of nonlinear

distortion diminish.

However, the spatially uncorrelated distortion noise assumption is not accurate for

massive MIMO systems, where the number of antennas is much larger than the num-

ber of users. For instance, in [89] and [90], it is shown for single-user cases that the

distortion signal is also beamformed towards the intended user. This means that the

distortion is spatially correlated, and it is coherently combined at the receiver side.

In [89], the spatial correlation of the distortion signal is exploited to devise a pre-

coding vector that minimizes the received distortion power. Furthermore, this study

optimizes the transmit power to mitigate the adverse effects of nonlinear distortion.

In the works of [22, 23], the spatial distribution of radiated distortion power is ex-

amined for both multi-user and frequency-selective channel scenarios, employing the

Ito-Hermite polynomial expansion representation to model the power spectral den-

sity (PSD) of the nonlinear distortion signal. Numerical simulations demonstrate that
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the distortion is not only beamformed towards the intended user direction but also in

other directions. Additionally, it is observed that, as the number of users increases,

the number of directions towards which the distortion is beamformed grows expo-

nentially. Consequently, this leads to a reduction in received distortion power at the

intended user terminal. Moreover, when the number of users is sufficiently large, the

distortion exhibits isotropic radiation, thereby validating the assumption of spatially

uncorrelated distortion for such cases [82–85]. The framework introduced in [23] is

adopted in [83] to obtain a semi-analytical semi-analytical BER expression. In [83],

the autocorrelation matrix of the distortion across the antenna array is calculated for

the given channel state information so that spatial correlation is taken into account

in BER analysis. In [91], spatial correlation of the distortion is considered for corre-

lated MIMO channels, and the signal-to-distortion-plus-interference-plus-noise ratio

is derived for given CSI. However, this study does not present the effects of spatial

diversity and frequency selectivity.

In the existing literature, several studies have been conducted with the objective of op-

timizing the transmit power of BSs. One fundamental approach is to employ power

backoff techniques to operate the PAs within their linear region, as discussed in [92].

Furthermore, in the work presented by authors in [89], the transmit power is adap-

tively adjusted based on the instantaneous channel state information (CSI). Similarly,

a power allocation framework for distributed MIMO systems considering hardware

impairments is developed in [93]. This framework, similar to the approach in [89],

tackles the power allocation problem by utilizing the instantaneous CSI. However,

this study primarily focuses on employing maximum ratio transmission precoding,

which has limited capability in suppressing inter-user interference, for digital pre-

processing.

Moreover, joint precoding and power allocation frameworks have been proposed

in [94] and [95]. Nonetheless, these investigations concentrate on MIMO systems

operating under high-load conditions. As a consequence, these studies make the as-

sumption of spatially uncorrelated distortions in their optimization problems. It is

worth noting that this assumption may not hold in scenarios where there is a substan-

tial correlation between distortions introduced by different PAs.
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Thus, while previous research has made valuable contributions to power optimization

in BSs, there is still a need for comprehensive approaches that address the challenges

posed by hardware impairments in MIMO systems, considering both spatial correla-

tion among distortions and inter-user interference suppression capabilities of digital

pre-processing techniques.

6.2.1 Contributions

This chapter presents a comprehensive analysis that derives a fully closed-form ex-

pression for the received distortion power, which, to the best of our knowledge, has

not been previously conducted in the literature. The derived expression captures the

effects of spatial diversity and frequency selectivity on the received distortion. No-

tably, it is a function of slowly varying parameters, primarily the user locations. It

is crucial to consider spatial correlation when dealing with massive MIMO systems,

where the number of antennas is extremely large. Neglecting distortion correlation in

such systems leads to significant mis-evaluation.

By utilizing the developed analysis framework, a power allocation problem is formu-

lated while considering distortion correlation. The proposed power allocation scheme

demonstrates superior performance compared to methods that overlook the spatial

correlation of distortions, particularly in terms of spectral efficiency. It is worth high-

lighting that incorporating distortion correlation in the power allocation problem is es-

sential for optimizing the system’s overall performance and ensuring accurate power

allocation decisions.

6.3 System Model and Distortion Characterization

6.3.1 System Model

This chapter considers a cellular system where a BS with M antennas is serving

U single-antenna users. A frequency-selective block fading channel is assumed such

that channel realization within each block is stationary. In this chapter, we denote sig-

nals in the discrete domain; however, to approximate the continuous-time operations,
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we consider oversampled signals with oversampling factor µ. According to these

assumptions, the transmitted orthogonal frequency-division multiplexing (OFDM)

modulated signal can be expressed in the time domain as

x[n] =

Ns/2∑
k=−Ns/2+1

U∑
u=1

wu,kau,ke
j 2π
µNs

kn, (6.1)

where wu,k ∈ CM×1 is the precoding vector at the kth subcarrier for uth user, {ak}’s

are the QAM digital information signals, which are non-zero for k = −Ns/2 +

1, . . . , Ns/2, and N = µNs is the symbol duration.

In order to suppress inter-user interference, zero-forcing (ZF) type precoding is em-

ployed and the precoder vector wu,k can be expressed as

wu,k =
√
ρuw̄u,k, (6.2)

where ρu is the power allocation coefficient of uth user, and

w̄u,k = αu

[
Hk

(
HH
kHk

)−1
]
:,u
, (6.3)

where Hk = [h1,k, . . . ,hU,k] is the channel matrix, whose columns are the chan-

nel vectors of each user in the frequency domain with the auto-correlation matrix

E
[
hu,kh

H
u,k

]
≜ Ru, and [A]:,k denotes the kth column of A matrix. The large-

scale fading coefficient is included in Ru such that 1
M
Tr(Ru) = βu. The coefficient

αu is the scaling factor, which normalizes the average input power of each PA as

E [∥w̄u,k∥2] = M , and the average power constraint can be used to obtain a closed-

form expression for αu as

E
[
∥w̄u,k∥2

]
= α2

uE
[[(

HH
kHk

)−1
HH
kHk

(
HH
kHk

)−1
]
u,u

]
= α2

uE
[[(

HH
kHk

)−1
]
u,u

]
.

(6.4)

In order to find αu, firstly, we focus on the term E
[[(

HH
kHk

)−1
]
u,u

]
, and we can ex-

press the correlated channel by using the eigenvalue decomposition of Ru = BuΛuB
H
u ,

where Bu is unitary and Λu = diag{λu,1, . . . , λu,M} as
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hk,u = BuΛ
1
2
u h̃k,u, (6.5)

where h̃k,u ∼ CN (0, IM). Then, we can express the (i, r)th element of the matrix

HH
kHk as

[
HH
kHk

]
(i,r)

= h̃H
k,iΛ

1
2
i B

H
i BrΛ

1
2
r h̃

H
k,r. (6.6)

In order to obtain a closed-form expression of the expectation in (6.4), the spatially

uncorrelated channel model will be considered to exploit the properties of a Wishart

matrix, where Λu = βuIM and Bu = IM . Then, (6.4) can be re-written as

E
[
∥w̄u,k∥2

]
= α2

uE
[[(

HH
kHk

)−1
]
u,u

]
= α2

uE

[[(
ΛH̃H

k H̃kΛ
)−1
]
u,u

]

= α2
u

[
Λ−1E

[(
H̃H
k H̃k

)−1
]
Λ−1

]
u,u

,

(6.7)

where Hk = H̃kΛ and Λ = diag(
√
β1, . . . ,

√
βU). By using the identity in [96],

the scaling coefficient can be determined as αu =
√
βuM(M − U) to satisfy the

constraint E [∥w̄u,k∥2] = M . Then the overall precoding vector for user u can be

expressed as

w̄u,k =
√
βuM(M − U)

U∑
u′=1

hu′,kh̄u′,u, (6.8)

where h̄u′,u =
[(
HH
kHk

)−1
]
u′,u

. For each antenna element m, we can define the

scalar precoding coefficient as

w̄
(m)
u,k =

√
βuM(M − U)

U∑
u′=1

h
(m)
u′,kh̄u′,u, (6.9)

and the transmit power constraint for each antenna element can be re-formulated as

E

[
U∑

u′=1

h
(m)
u′,kh̄

(m)
u′,u

U∑
u′′=1

h
(m)
u′′,kh̄u′′,u

]
=

1

βuM(M − U)
. (6.10)

For analytical simplicity, we will assume that h̄u′,u’s are deterministic and h̄u,u ≫
h̄u′,u for u ̸= u′ for large M. This is also a valid approximation for the spatially
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correlated channels since user channels become nearly orthogonal if users are located

at different angular sectors for large M . By using this approximation, (6.10) can be

re-written as

E

[
U∑

u′=1

h
(m)
u′,kh̄

(m)
u′,u

U∑
u′′=1

h
(m)
u′′,kh̄u′′,u

]
≈ E

[
|h(m)
u,k |

2
]
h̄2u,u =

1

βuM(M − U)
. (6.11)

Then h̄u,u can be approximated as

h̄u,u =
1√

β2
uM(M − U)

. (6.12)

Before radiating through the air, the modulated signal is amplified via PAs to increase

the signal power to a sufficient level. However, the nonideality of the PA hardware

causes nonlinear distortion. For the sake of generality, we represent the nonlinearity

for mth antenna element as x̃(m)[n] = Ψ(x(m)[n]). The transmitted signal from the

antenna array becomes x̃[n] = [x̃(1)[n], . . . , x̃(M)[n]]T . Then the received signal at the

single-antenna user terminal can be expressed as

yu[n] =
Lu−1∑
l=0

hH
u [τu,l]x̃[n− τu,l] + ηu[n], (6.13)

where Lu is the number of significant taps of user u, and h[τu,l] is the channel vector

in the time domain, which can be equivalently represented in the frequency domain

as

hk =
Lu−1∑
l=0

h[τu,l]e
−j 2π

µNs
kτu,l , (6.14)

for k = −N/2 + 1, . . . , N/2, and ηu[n] is the additive white Gaussian noise with

variance σ2
η , and τu,l is the discrete time index for the lth multipath component of uth

user.

6.3.2 Spectral characterization of the nonlinear distortion under frequency-

selective channels

It is known that if the number of subcarriers is high enough, the distribution of OFDM

modulated signals can be approximated by the circularly symmetric complex Gaus-

sian distribution thanks to the central limit theorem. By exploiting this fact, we can
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adopt a complex Itô-Hermite polynomial representation to acquire the second-order

statistics of the nonlinear distortion in the frequency domain [23]. Consequently, the

nonlinearly transmitted signal is re-written by focusing on only the third-order non-

linearity as

x̃(m)[n] = α1mx
(m)[n]︸ ︷︷ ︸

Desired signal : z(m)[n]

+α3mσ
3
x(m)H3

(
x(m)[n]

σx(m)

)
︸ ︷︷ ︸

Distortion signal : d(m)[n]

, (6.15)

where H3(·) is the third-order Hermite basis function

H3(x) ≜
1∑
i=0

(−1)ii!

2

i

1

i

x|x|2−2i, (6.16)

and σx(m) is the standard deviation of x(m).

This representation has the following useful property, which enables spectral analysis.

The desired and the distortion signals are uncorrelated E
[
z(m)[n](d(m

′)[n− n′])∗
]
=

0 ∀n′,m,m′, so that we can write the cross-spectral density as the summation of two

uncorrelated signal terms as

Sx̃(m)x̃(m
′) [k] = α1mα

∗
1m′Sx(m)x(m

′) [k] + Sd(m)d(m
′) [k], (6.17)

where Sx(m)x(m
′) [k] = F {Rx(m)x(m

′) [n− n′]} is the cross-spectral density for the de-

sired term, which is defined by the Fourier transform of cross-correlation function

Rx(m)x(m
′) [n− n′] = E

[
x(m)[n]x(m

′)[n′]
]
. Similarly, Sd(m)d(m

′) [k] is the Fourier trans-

form of the cross-correlation function of the distortion term, which can be expressed

by exploiting the Gaussianity of the PA input signals as

Rd(m)d(m
′) [n− n′] = 2α3mα

∗
3m′Rx(m)x(m

′) [n− n′] |Rx(m)x(m
′) [n− n′]|2 . (6.18)

By using the expression in (6.18), cross-spectral density Sd(m)d(m
′) [k] can be obtained

as

Sd(m)d(m
′) [k] = 2α3mα

∗
3m′

(
Sx(m)x(m

′) [k] ∗ Sx(m)x(m
′) [k] ∗ S∗

x(m)x(m
′) [−k]

)
, (6.19)

where ∗ denotes the convolution operation. The cross-spectral density for the desired

term Sx(m)x(m
′) [k] can be written for the given channel state information (CSI) as
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Sx(m)x(m
′)|Hk

[k] =
U∑
u=1

ρuw̄
(m)
u,k

(
w̄

(m′)
u,k

)∗
(6.20)

Cross-spectral density for the distortion term can be written by using the cross-spectral

density for the desired term as

Sd(m)d(m
′)|Hk

[k] =
2

N2
s

|α3|2
N/2∑

k′=−N/2+1

N/2∑
k′′=−N/2+1[(

U∑
u=1

ρuw̄
(m)
u,k′

(
w̄

(m′)
u,k′

)∗)( U∑
u′=1

ρu′w̄
(m)
u′,k′′

(
w̄

(m′)
u′,k′′

)∗)∗

(
U∑

u′′=1

ρu′′w̄
(m)
u′′,k′+k′′−k

(
w̄

(m′)
u′′,k′+k′′−k

)∗)]
(6.21)

for |k′| ≤ NS/2, |k′′| ≤ NS/2 and |k′ + k′′ − k| ≤ NS/2.

6.4 Achievable Rate Analysis

In this section, an achievable information rate expression is derived. To this end, co-

herent distortion beamforming is taken into account and the received distortion power

is obtained to calculate the SDNR. In addition, the derived expression contains power

allocation coefficients so that they will further be utilized to optimize the spectral

efficiency of the massive MIMO system.

The symbol estimates can be expressed by using Itô-Hermite polynomial representa-

tion as

yũ[n] =

Lũ−1∑
l=0

hH
ũ [τũ,l]x[n− τũ,l] +

Lũ−1∑
l=0

hH
ũ [τũ,l]d[n− τũ,l] + ηũ[n], (6.22)

where d[n] =
[
d(1)[n], . . . , d(M)[n]

]T, which can be represented in frequency domain

as

yũ,k = hH
ũ,kwũ,kaũ,k︸ ︷︷ ︸

Desired symbol

+
U∑

u=1,u̸=ũ

hH
ũ,kwu,kau,k︸ ︷︷ ︸

Multi-user interference

+ hH
ũ,kdk︸ ︷︷ ︸

Received nonlinear distortion

+ηũ,k. (6.23)

By using the received signal expression in (6.23) and use-and-then-forget (UatF)

bound [97], spectral efficiency for user ũ SEũ can be given by

107



SEũ = log2 (1 + SDNRũ) , (6.24)

where signal-to-distortion-plus-noise ratio SDNRũ is calculated as

SDNRũ[k] =
ρũ
∣∣EHk

[
hH
ũ,kw̄ũ,k

]∣∣2∑U
u=1 ρucu,k − ρũ

∣∣EHk

[
hH
ũ,kw̄ũ,k

]∣∣2 + EHk

[∣∣hH
ũ,kdk

∣∣2]+ σ2
η

,

(6.25)

where cu,k = EHk

[∣∣hH
ũ,kw̄u,k

∣∣2].
6.4.1 Spectral analysis of the received distortion

In this section, we will derive the spectral characteristics of the received distortion

signal. The received power by the intended user ũ at the subcarrier k is

S
(ũ)
yy|Hk

[k] =
M∑
m=1

M∑
m′=1

h
(m)
ũ,k Sx̃(m)x̃(m

′)|Hk
[k]
(
h
(m′)
ũ,k

)∗
. (6.26)

By utilizing the decomposition of S(ũ)

x̃(m)x̃(m
′) [k] in (6.17), we can rewrite the PSD of

the received signal as

S
(ũ)
yy|Hk

[k] = S
(ũ)
zz|Hk

[k] + S
(ũ)
dd|Hk

[k], (6.27)

where Szz[k] is the PSD of the desired term, and S(ũ)
dd|Hk

[k] = E
[∣∣hH

ũ,kdk
∣∣2 |Hk

]
.

The received distortion signal at ũ can be written as

S
(ũ)
dd|Hk

[k] =
2

N2
s

|α3|2
N/2∑

k′=−N/2+1

N/2∑
k′′=−N/2+1

U∑
u=1

U∑
u′=1

U∑
u′′=1

ρuρu′ρu′′

M∑
m=1

M∑
m′=1

[(
h
(m)
ũ,k

)∗
w̄

(m)
u,k′

(
w̄

(m)
u′,k′′

)∗
w̄

(m)
u′′,k′+k′′−k

]
[(
h
(m′)
ũ,k

)∗
w̄

(m′)
u,k′

(
w̄

(m′)
u′,k′′

)∗
w̄

(m′)
u′′,k′+k′′−k

]∗
(6.28)

for |k′| ≤ NS/2, |k′′| ≤ NS/2 and |k′ + k′′ − k| ≤ NS/2.

From (6.28), it is observed that the received distortion signal has three components.

The first component is the result of the summation for ũ = u = u′ = u′′. In this case,
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the distortion is coherently combined at the receiver location. The second component

also yields a coherent combination of summation indices ũ = u, u′ = u′′, u ̸= u′ and

ũ = u′, u = u′′, u ̸= u′′, which also yields coherent distortion combining. The last

component includes the remaining terms, which correspond to an uncoherent combi-

nation of the distortion. Besides, this case can be considered as isotropic radiation of

the distortion.

6.4.2 Calculation of distortion power for different components

In order to find a closed form expression for the received distortion power, spatially

uncorrelated channel assumption will be exploited. One should note that this as-

sumption yields accurate approximations if the angular spread is large enough for

the one-ring scatter model for large antenna arrays, where the eigenvalue spread of

the autocorrelation function is also large enough. Furthermore, the validity of the

obtained closed-form expression in the case of spatially correlated channels will be

shown numerically via simulations.

6.4.2.1 Power of the distortion term due to the intended user

The distortion power expression for this case is identical to the single-user scenario

with frequency selectivity. The distortion power for this component S(ũ)
dd,1[k] can be

expressed as

S
(ũ)
dd,1|Hk

[k] =
2

N2
s

|α3|2
N/2∑

k′=−N/2+1

N/2∑
k′′=−N/2+1

ρ3ũS
(ũ)
dd,1a[k, k

′, k′′] (6.29)

where

S
(ũ)
dd,1a[k, k

′, k′′] ≜

∣∣∣∣∣
M∑
m=1

[(
h
(m)
ũ,k

)∗
w̄

(m)
ũ,k′

(
w̄

(m)
ũ,k′′

)∗
w̄

(m)
ũ,k′+k′′−k

]∣∣∣∣∣
2

(6.30)

for |k′| ≤ NS/2, |k′′| ≤ NS/2 and |k′+k′′−k| ≤ NS/2. However, we can exploit the

massive spatial diversity achieved when having a large number of antennas to obtain

a deterministic closed-form expression for the received signal and distortion power.

Consider Sdd,1a[k, k′, k′′] term
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S
(ũ)
dd,1a|Hk

[k, k′, k′′] =
M∑
m=1

(
h
(m)
ũ,k

)∗
w̄

(m)
ũ,k′

(
w̄

(m)
ũ,k′′

)∗
w̄

(m)
ũ,k′+k′′−k, (6.31)

which is the summation of many independent random variables; hence, the law of

large numbers (LLN) implies that

S
(ũ)
dd,1a|Hk

[k, k′, k′′]

M
→ E

[(
h
(m)
ũ,k

)∗
w̄

(m)
ũ,k′

(
w̄

(m)
ũ,k′′

)∗
w̄

(m)
ũ,k′+k′′−k

]
(6.32)

when M → ∞. For a large but finite number of antennas, we can use the LLN to

approximate the random variable Sdd,1a[k, k′, k′′] by a single deterministic scalar as

S
(ũ)
dd,1a|Hk

[k, k′, k′′] ≈ME
[(
h
(m)
ũ,k

)∗
w̄

(m)
ũ,k′

(
w̄

(m)
ũ,k′′

)∗
w̄

(m)
ũ,k′+k′′−k

]
, (6.33)

which can be re-written by expanding the pre-coding vector w̄(m)
u,k as

Sdd,1a|Hk
[k, k′, k′′] ≈M (βũM(M − U))

3
2

E

[(
h
(m)
ũ,k

)∗( U∑
v=1

h
(m)
v,k′h̄v,ũ

)(
U∑

v′=1

h
(m)
v′,k′′h̄v′,ũ

)∗( U∑
v′′=1

h
(m)
v′′,k′+k′′−kh̄v′′,ũ

)]
(6.34)

By using the approximation in (6.11), Sdd,1a|Hk
[k, k′, k′′] can be simplified as

Sdd,1a|Hk
[k, k′, k′′] ≈M

(βũM(M − U))
3
2

(β2
ũM(M − U))

3
2

E
[(
h
(m)
ũ,k

)∗
h
(m)
ũ,k′

(
h
(m)
ũ,k′′

)∗
h
(m)
ũ,k′+k′′−k

]
︸ ︷︷ ︸

Ek,k′,k′′

,

(6.35)

Calculation of this expectation is not straightforward and depends on the channel’s

frequency selectivity. To find the correlation between the subcarriers’ channels in

(6.35), consider the equivalent representation of the expectation as

Ek,k′,k′′ = E
[
h
(m)
k

(
h
(m)
k′

)∗ (
h
(m)
k′′

)∗
h
(m)
k′+k′′−k

]
=

∑
τl,τl′ ,
τ̂l,τ̂l′

∈Lũ

E
[
h
(m)
ũ [τl]

(
h
(m)
ũ [τl′ ]

)∗ (
h
(m)
ũ [τ̂l]

)∗
h
(m)
ũ [τ̂l′ ]

]

e−j
2π
N
kτlej

2π
N
k′τl′ej

2π
N
k′′τ̂le−j

2π
N

(k′+k′′−k)τ̂l′ ,

(6.36)

where Lũ ⊂ ZLũ is the set of MPC indices of the intended user, [Lũ]l ∈ [0, τũ,max],

and for the sake of notational simplicity we have removed subscript u for time delays.
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Note that the different multipath taps are uncorrelated; therefore, only a subset of the

terms in (6.36) are non-zero, which can be expressed as

Ek,k′,k′′ =
∑
τl∈Lũ

E
[∣∣∣h(m)

ũ [τl]
∣∣∣4]

+
∑
τl∈Lũ

∑
τl′∈Lũ

l ̸=l′

(
E
[∣∣∣h(m)

ũ [τl]
∣∣∣2] e−j 2πN (k−k′)τl

)(
E
[∣∣∣h(m)

ũ [τl′ ]
∣∣∣2] e−j 2πN (k′−k)τl′

)

+
∑
τl∈Lũ

∑
τl′∈Lũ

l ̸=l′

(
E
[∣∣∣h(m)

ũ [τl]
∣∣∣2] e−j 2πN (k−k′′)τl

)(
E
[∣∣∣h(m)

ũ [τl′ ]
∣∣∣2] e−j 2πN (k′′−k)τl′

)
.

(6.37)

From (6.37), it can be seen that the expectation depends on the difference between

the subcarriers k − k′. Therefore, one can interpret Ek,k′,k′′ as a correlation between

the subcarriers. Furthermore, the expression of Ek,k′,k′′ can be simplified as

Ek,k′,k′′ =
β2
ũ

L2
ũ

∑
τl∈Lũ

e−j
2π
N

(k−k′)τl
∑
τl′∈Lũ

e−j
2π
N

(k′−k)τl′

︸ ︷︷ ︸
L2
ũf [k−k′;Lũ]

+
β2
ũ

L2
ũ

∑
τl∈Lũ

e−j
2π
N

(k−k′′)τl
∑
τl′∈Lũ

e−j
2π
N

(k′′−k)τl′

︸ ︷︷ ︸
L2
ũf [k−k′′;Lũ]

,

(6.38)

which yields

Ek,k′,k′′ = β2
ũf [k − k′;Lũ] + β2

ũf [k − k′′;Lũ]. (6.39)

Note that f [k−k′;Lũ] is a positive real number since it is the result of the multiplica-

tion of a conjugate pair. It can be seen that f [k− k′;Lũ] is a function of the temporal

distribution of multipaths, which causes f [k − k′;Lũ] to be a random variable. By

using (6.39), the distortion power for a given MPC realization can be calculated as

S
(ũ)
dd,1|Hk

[k] ≈ 2M2 |α3|2ρ3uβũ
N3
S

∑
k′,k′′

(f [k − k′;Lũ] + f [k − k′′;Lũ])2, (6.40)

for |k′| ≤ NS/2, |k′′| ≤ NS/2 and |k′ + k′′ − k| ≤ NS/2.
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As mentioned above, we can treat the MPC distribution as a random variable; hence,

We can find the average distortion power by taking the expectation with respect to the

MPC distribution S(ũ)
dd,1[k] = EHk

[
S
(ũ)
dd,1|Hk

[k]
]

as

S
(ũ)
dd,1[k] ≈ 2M2 |α3|2ρ3uβũ

N3
S

∑
k′,k′′

ϵf2k,k′ + 2ϵffk,k′,k′′ + ϵf2k,k′′ (6.41)

for |k′| ≤ NS/2, |k′′| ≤ NS/2 and |k′+ k′′− k| ≤ NS/2, where variables are defined

as ϵf2k,k′ ≜ EHk

[
f 2[k − k′;Lũ]

]
, and ϵffk,k′,k′′ ≜ EHk

[
f [k − k′;Lũ]f [k − k′′;Lũ]

]
. We

can evaluate ϵffk,k′,k′′ analytically, assuming that the time delays τl have a particular

random distribution. We obtain the expression (6.42) by assuming that the time delays

are uniformly distributed independent random variables U [0, τmax], where τmax is the

maximum delay spread.

ϵffk,k′,k′′ =
1

L4
ũ

Lũ−1∑
l=0

Lũ−1∑
l′=0

Lũ−1∑
l̂=0

Lũ−1∑
l̂′=0

EHk

[
e−j

2π
N

(k−k′)τle−j
2π
N

(k′−k)τl′e−j
2π
N

(k−k′′)τl̂e−j
2π
N

(k′′−k)τl̂′
]
.

(6.42)

Note that for the set Lũs = {l = l′ and l̂ = l̂′
∣∣∀l, l′, l̂, l̂′}, the term in the expectation

in (6.42) becomes 1; hence, we can rewrite this expectation by only focusing on the

dominant terms, which results in (6.43)

ϵffk,k′,k′′ ≈
1

L2
ũ

+
1

L4
ũ

L−1∑
l,l′,l̂,l̂′ /∈Lũ

s

EL

[
e−j

2π
N

(k−k′)τl
]
EL

[
e−j

2π
N

(k′−k)τl′
]

EL

[
e−j

2π
N

(k−k′′)τl̂
]
EL

[
e−j

2π
N

(k′′−k)τl̂′
] (6.43)

We also note that EHk

[
e−j

2π
N

(k−k′)τl
]
EHk

[
e−j

2π
N

(k′−k)τl′
]

is the multiplication of two

complex conjugate numbers, so we can simplify (6.43) as

ϵffk,k′,k′′ ≈
1

L2
ũ

+
1

L4
ũ

L−1∑
l,l′,l̂,l̂′ /∈Ls

∣∣∣∣EHk

[
e−j

2π
N

(k−k′)τ
]

︸ ︷︷ ︸
ξk−k′

∣∣∣∣2∣∣∣∣EHk

[
e−j

2π
N

(k−k′′)τ
]

︸ ︷︷ ︸
ξk−k′′

∣∣∣∣2,
≈ 1

L2
ũ

+
L4
ũ − L2

ũ

L4
ũ

|ξk−k′|2 |ξk−k′′ |2 .

(6.44)

Then the expectation for ξk−k′ can be evaluated as
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ξk−k′ =

τũ,max−1∑
τ=0

1

τũ,max

e−j
2π
N

(k−k′)τ

=
1

τũ,max

e−j
2π
N

(k−k′)
τũ,max

2

e−j
2π
N

(k−k′) 1
2

sin
(
2π
N
(k − k′)

τũ,max

2

)
sin
(
2π
N
(k − k′)1

2

) .

(6.45)

Similarly, we can approximate ϵf2k′ = EHk
[f 2[k − k′;L]] as

ϵf2k,k′ ≈
1

L2
ũ

+
L4
ũ − L2

ũ

L4
ũ

1

τ 4ũ,max

sin4
(
2π
N
(k − k′)

τũ,max

2

)
sin4

(
2π
N
(k − k′)1

2

) . (6.46)

To sum up, the received distortion power component for this case can be expressed as

S
(ũ)
dd,1[k] ≈ ρ3ũβũS̄

(ũ)
dd,1[k] (6.47)

where S̄(ũ)
dd,1[k] = 2M2 |α3|2

N3
S

∑
k′,k′′ ϵ

f2
k,k′+2ϵffk,k′,k′′+ϵ

f2
k,k′′ is the distortion power, which

independent of the power allocation coefficients.

As can be interpreted from (6.41), the distortion power depends on the frequency

selectivity via ϵf2k,k′ and ϵffk,k′,k′′ terms, which have the form of sin(τmaxx)/ sin(x) (sinc-

type behavior). The terms in (6.41) are larger for the main lobe of the sinc-type

function, which makes τmax another factor that impacts the received distortion. If τmax

is large, then the distortion power is dominated by the constant term 1/L2
ũ in (6.41)

since the main lobe is narrow. Consequently, as L increases, the received distortion

power reduces. On the other hand, if τũ,max is small (the main lobe is wide), then the

in-band distortion power, where |k − k′| is small, is roughly proportional to L4
ũ/L

4
ũ,

which corresponds to the case that the received distortion remains the same.

6.4.2.2 Power of the distortion stemming from coherently combined distortion

due to interfering users

We will derive the distortion power expression for the first sub-case ũ = u, u′ = u′′,

u ̸= u′, for which the distortion is also coherently combined at the received location.

Consider the received distortion component for this sub-case S(ũ)
dd,2a|Hk

[k, k′, k′′] as
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S
(ũ)
dd,2a|Hk

[k, k′, k′′] = ρũ

U∑
u′=1,u′ ̸=ũ

ρ2u′

∣∣∣∣∣∣∣∣∣∣∣∣
M∑
m=1

[(
h
(m)
ũ,k

)∗
w̄

(m)
ũ,k′

(
w̄

(m)
u′,k′′

)∗
w̄

(m)
u′,k′+k′′−k

]
︸ ︷︷ ︸

S
(ũ,u′)
dd,2aa|Hk

[k,k′,k′′]

∣∣∣∣∣∣∣∣∣∣∣∣

2

(6.48)

Similar to the first case, LLN will be used to approximate the random variable, which

is denoted by Sdd,2aa|Hk
[k, k′, k′′] by a single deterministic scalar as

S
(ũ,u′)
dd,2aa|Hk

[k, k′, k′′] ≈ME
[(
h
(m)
ũ,k

)∗
w̄

(m)
ũ,k′

(
w̄

(m)
u′,k′′

)∗
w̄

(m)
u′,k′+k′′−k

]
(6.49)

which can be expressed under the assumption in (6.10) as

S
(ũ,u′)
dd,2aa|Hk

[k, k′, k′′] ≈M

√
βũβu′

βũβu′
2 E

[(
h
(m)
ũ,k

)∗
h
(m)
ũ,k′

(
h
(m)
u′,k′′

)∗
h
(m)
u′,k′+k′′−k

]
︸ ︷︷ ︸

Qk,k′,k′′

.
(6.50)

Since the user channels are independent, the expectation Qk,k′,k′′ can be decomposed

as

Qk,k′,k′′ =ME
[
h
(m)
ũ,k

(
h
(m)
ũ,k′

)∗]
E
[(
h
(m)
u′,k′′

)∗
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(m)
u′,k′+k′′−k

]
(6.51)

where E
[
h
(m)
ũ,k

(
h
(m)
ũ,k′

)∗]
can be evaluated by using the Fourier transform representa-

tion as
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Lũ
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similarly E
[
h
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(
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can be evaluated as
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(6.53)

114



Consequently, for a given channel realization the distortion power for the first sub-

case of the second component becomes

S
(ũ,u′)
dd,2aa|Hk

[k, k′, k′′] →M

√
βũ
L2
ũ

∑
τl∈Lũ

e−j
2π
N

(k−k′)τl
∑

τl′∈Lu′

e−j
2π
N

(k′−k)τl′ . (6.54)

Then the average distortion power can be calculated by using the independence of the

channels of different users S(ũ)
dd,2a[k, k

′, k′′] = E
[
ρũ
∑U

u′=1
u′ ̸=ũ

ρ2u′
∣∣∣S(ũ)

dd,2aa|Hk
[k, k′, k′′]

∣∣∣2]
as
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where Γu[k − k′] ≜ E
[∣∣∣∑τl∈Lu

e−j
2π
N
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∣∣∣2], and it is evaluated as in (6.56).
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Also, note that the value of S(ũ,u′)
dd,2a [k, k

′, k′′] only depends on the different k − k′;

hence, we can denote it as S(ũ,u′)
dd,2a [k − k′]. Similarly for the second sub-case ũ = u′′,

u = u′, u ̸= u′, the received distortion component S(ũ,u′)
dd,2b [k, k

′, k′′] = S
(ũ,u′)
dd,2b [k − k′′]

can be obtained as

S
(ũ)
dd,2b[k − k′′] =M2βũρũ

L2
ũ

Γũ[k − k′′]
U∑

u=1,u̸=ũ

ρ2u
L2
u

Γu[k − k′′]. (6.57)

Consequently, the overall received distortion power for the second component is rep-

resented as

S
(ũ)
dd,2[k] =

βũρũ
L2
ũ

U∑
u=1,u̸=ũ

ρ2u
L2
u

Γũ2 [k], (6.58)

where

Γũ2 [k] =M
22|α3|2

N2
s

N/2∑
k′=−N/2+1

N/2∑
k′′=−N/2+1

(Γũ[k − k′′]Γu[k − k′′] + Γũ[k − k′]Γu[k − k′])

(6.59)

for |k′| ≤ NS/2, |k′′| ≤ NS/2 and |k′ + k′′ − k| ≤ NS/2.
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6.4.2.3 Distortion power due to isoropic radiation

In this section, the distortion components for ũ ̸= u and ũ ̸= u′′ cases will be an-

alyzed. For this case, it can be observed that distortion is not coherently combined

since phases of the distortion terms are not aligned. Therefore, the received distortion

for ũ ̸= u and ũ ̸= u′′ can be expressed as

S
(ũ)
dd,3a[k] =

∑
m,m′

[
h
(m)
k,ũ w̄

(m)
u,k′

(
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]
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]
.

(6.60)

which can be expressed by using the assumption in (6.10) as
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(6.61)

It is observed from (6.61) that distortion power scales with M , and it is independent

of the frequency bin. Hence, this component is incoherently combined at the receiver,

and its effect is negligible if the number of antennas is large. The overall distortion

power due to all uncoherent components is expressed as

S
(ũ)
dd,3[k] = βũΓ

ũ
3 [k]ϱũ (6.62)

where

Γũ3 [k] ≜M
2|α3|2

N2
s
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N/2∑
k′′=−N/2+1

1. (6.63)

and ϱũ ≜
∑

u,u′,u′′

ũ̸=u,ũ̸=u′′
ρuρu′ρu′′ and it is simplified as ϱũ = 1− 2ρũ

∑U
u=1 ρ

2
u + ρ3ũ. As

a result, we can express the received distortion power S(ũ)
dd [k] = EHk

[∣∣hH
ũ,kdk

∣∣2] as

S
(ũ)
dd [k] ≈ ρ3ũβũS̄

(ũ)
dd,1[k] +

βũρũ
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ũ
3 [k]ϱũ. (6.64)

116



6.5 Power Allocation via Geometric Programming

In this section, a power allocation framework based on the derived distortion power

expression is developed. Based on the expressions given by (6.25) and (6.64), it is

evident that the frequency dependency is exclusively present in the received distortion

power. Furthermore, it can be observed from the convolution operations in (6.19) that

the maximum distortion power is concentrated at the center frequency, specifically

k = 0. Hence, to obtain power allocation coefficients that are independent of subcar-

rier index, we will consider the peak distortion power in the optimization problem.

As a result, the sum-rate Rsum can be expressed as

Rsum =
U∑
u=1

log2(1 + SDNRu[0]). (6.65)

Then the following optimization problem is solved to find the optimal user powers as

maximize
ρ

Rsum

subject to
U∑
u=1

ρu ≤ 1. (6.66)

It is obvious from (6.66) that the optimization problem does not have a standard

form to be solved efficiently. Nevertheless, it is feasible to approximate the prob-

lem, thereby rendering it equivalent to a form that can be efficiently solved. By using

the assumption SDNRu[0] ≫ 1 [94], (6.66) can be approximated as

(P1) : maximize
ρ

U∏
u=1

SDNRu[0]

subject to
U∑
u=1

ρu ≤ 1.
(6.67)

It can be observed from (6.67), denominator of the objective function consists of mul-

tiplication of the posynomials and the numerator contains a monomial.Therefore, P1

can be formulated such that it can be solved via geometric programming. Note that
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maximization of
∏U

u=1 SDNRu[0] is equivalent to minimization of
∏U

u=1
1

SDNRu[0]
;

hence, P1 can be expressed interms of minimization. Furthermore, since we are

employing zero-forcing type precoding, we can remove the effects of inter-user inter-

ference for the optimization problem since its effects are negligible compared to the

nonlinear distortion power.

(P2) : minimize
ρ

U∏
u=1

ρ3uβuS̄
(u)
dd,1[0] +
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(6.68)

By dividing both the numerator and denominator of the objective function by the

factor
∏U

u=1 ρu, the problem turns into the standard form of geometric programing as

(P3) : minimize
ρ

U∏
u=1

cuS̄
(u)
dd,1[0] +

βu
L2
ũ

∑U
u′=1,
u′ ̸=u
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u
3 [0]ϱuρ
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u + σ2

ηρ
−1
u

EH0

[∣∣hH
u,0w̄u,0

∣∣2]
subject to

U∑
u=1

ρu ≤ 1.

(6.69)

where cu = ρ2uβu. Since the objective function to be minimized is the multiplica-

tion of U posynomials, power allocation coefficients can be obtained via employing

general-purpose solvers such as CVX [98].

6.6 Simulation Results

In this section, the derived distortion power expression at the user location is verified,

and the performance of the proposed power allocation scheme is tested for different

scenarios. In the simulations, the effects of several factors, such as the number of

users U , the number of antennas M , and the frequency selectivity, is investigated.
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For the simulations, a memoryless polynomial PA model in (2.4) with WPA = 1,

whose parameters are given in [99], is employed. In order to provide a practical

investigation, the bandwidth of the signal is assumed to be 20 MHz, and the sampling

rate is 80 MHz, which corresponds to oversampling factor µ = 4. The noise variance

is taken as −174 dBm/Hz, and the maximum total power that the BS can supply is

43 dBm. The path loss parameter βu in dB scale can be modeled as

βu,dB = −30.5− 36.7 log10

(
du
1

)
dB, (6.70)

where du is the distance of the uth user to the BS. The users are randomly generated

in a region of 1km× 1km area.

6.6.1 The effects of the number of users on nonlinear distortion

Firstly, the distortion behavior exhibits variations in response to the number of users

being served. In order to specifically investigate the impacts of multi-user diver-

sity, we focus our analysis on a noise-free scenario characterized by flat fading. By

adopting this approach, we isolate and examine the influence of multi-user diver-

sity, thereby excluding the confounding effects of additional impairments. For this

purpose, the PSD of the received distortion, which is normalized by the total received

power, is shown in Figure 6.1 to show the relative distortion power to the useful signal

forM = 64 antennas. It can be observed that as the number of served users increases,

the received distortion power decreases more rapidly to distortion power since the

number of the directions where the distortion is beamformed can be expressed by U3,

which means that distortion power decreases by 1
U3 for U ≪ M . However, the re-

ceived power for the useful part is reduced by 1
U

. Therefore, up to some threshold, a

reduction in the effective distortion power is observed. However, after that threshold,

even if the number of users increases, the received distortion power remains the same

since distortion is radiated isotropically. Hence, the relative distortion power seems

to increase since the power of the useful part is decreased to serve more users, while

the total received distortion power remains the same. In addition, it can be seen that

the analytical distortion PSD is well in line with the numerical results, which verifies

the performed analysis.
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Figure 6.1: PSD of the received distortion term for the different number of users.

Besides, to show the significance of the distortion correlation, the estimated PSD for

the uncorrelated distortion assumption is shown in Figure 6.2. It can be seen that the

estimated distortion power under the assumption of uncorrelated distortion is much

less than the exact distortion power. However, the proposed analytical framework is

able to take the distortion correlation into account.

6.6.2 The effects of frequency-selectivity on nonlinear distortion

In Fig. 6.3, normalized PSDs of the received signals, for which the received signal

power is scaled to be 1, are shown to examine the effects of both the number of MPCs

and the delay spread. It can be observed from Fig. 6.3 that the received distortion

power tends to decrease as the number of MPCs increases; however, different be-

haviors are observed for the in-band and OOB distortion characteristics. The decay

rate of the OOB distortion power is higher compared to that of in-band distortion,

which is also verified by the analytical expression in (6.41) since (6.41) can indicate

the distinctive characteristics for the in-band and OOB distortion as can be seen from

In Fig. 6.3, and the obtained analytical distortion curves overlap with the numerical

ones. The difference between the decay characteristics stems from the variation of

120



-0.5 0 0.5

-32

-30

-28

-26

-24

-22

-20

-18

Figure 6.2: The effects of distortion correlation on PSD of the received distortion

term for U = 4 and M = 64.

the correlation between the subcarriers contained in ϵf2k,k′ and ϵffk,k′,k′′ terms, which are

described by the sinc-type behavior. The reason is that terms in the summation (6.41)

are only non-zero for larger k−k′, k−k′′ terms, which correspond to side-lobes of the

sinc-type function. However, in the case of in-band distortion, the terms are also non-

negative for the neighborhood of k, which corresponds to the main lobe of the sinc

function. Eventually, the received distortion power is larger for the in-band distortion

than for the OOB distortion. As the number of MPCs increases, the significance of

the sinc-related term becomes dominant over the constant term (L or L2). This yields

a substantial difference between the in-band and OOB distortion powers. Fig. 6.3 also

shows the PSD of the received signal forM = 1000 to examine the nearly asymptotic

case. It can be seen that as M increases, the numerically PSD converges to the ana-

lytical PSD for higher MPC numbers since the approximations in (6.35) are tighter.

Therefore, it can be concluded that the obtained analytical received distortion expres-

sion provides an accurate asymptotic deterministic approximation. In addition, the

analytical received distortion expression is a good approximation for many practical

scenarios. It provides close approximations in practical parameter ranges.
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Figure 6.3: PSD of the received signal for different number of MPCs for τmax/µ = 25

.

The impact of the maximum delay spread is demonstrated in Fig. 6.4. It can be ob-

served that as the delay spread increases, the in-band distortion power converges to the

OOB distortion power since the main lobe of the sinc-type function gets narrower. A

narrower main lobe reduces the number of significant terms in the summation (6.41),

which yields a reduction in the received distortion power.

6.6.3 Sum SE Evaluations

The performance evaluation of the proposed power allocation scheme is conducted

under various scenarios, encompassing both frequency-flat and frequency-selective

channels. Firstly, we examine the sum spectral efficiency (SE) performance of mas-

sive MIMO systems employing M = 64 antennas with the presence of U = 4 users.

As a benchmark for comparison, we consider a power allocation scheme that disre-

gards the distortion correlation across the antenna arrays. In Figure 6.5, CDF of the

sum SE is shown for the proposed power allocation scheme (Prop. Pow. All.), and

it is compared with the power allocation based on uncorrelated distortion assump-

tion (Unc. Pow. All.) for both flat and frequency-selective channels. Furthermore,
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Figure 6.4: PSD of the received signal for different delay spread for L = 20.
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Figure 6.5: CDF of the sum SE for M = 64 and U = 4.
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the CDFs of the sum SE obtained from the analytical framework are illustrated us-

ing dashed lines accompanied by diamond markers. The results demonstrate that the

developed analytical expression for SDNR accurately captures the SE behavior. How-

ever, when SE analysis is based on the assumption of uncorrelated distortion (referred

to as SE for Unc. Dist. Assump.), it leads to a significantly flawed evaluation of sys-

tem performance as it overestimates the achieved spectral efficiency. In addition, it is

observed that by taking the spatial correlation of the distortion into account, one could

improve the system performance significantly. Besides, it can be concluded that the

achievable performance of the systems improves with the frequency-selectivity since

less number of subcarrier channels contributes distortion, yielding smaller received

distortion power. Hence, higher SE can be achieved under frequency-selective chan-

nels.

To investigate the behavior of nonlinear distortion, we examined various scenarios

where the number of served users was systematically increased. Figure 6.6 displays

the results, revealing that the enhancement achieved by incorporating distortion cor-

relation across the antenna array diminishes as the number of users grows. This out-

come is in line with expectations, as the escalating number of served users causes

the antenna input to decorrelate, resulting in uncorrelated distortion. Consequently,

the disparity in performance between methods considering and disregarding spatial

distortion correlation diminishes proportionally to the system’s load. These findings

contribute to a comprehensive understanding of the impact of user quantity on the

effectiveness of distortion correlation schemes.

To further investigate the influence of the number of antennas, we extended our in-

vestigation to consider a scenario with M = 100 antennas. The objective was to

assess the effects of antenna quantity on system performance. Figure 6.7 illustrates

the spectral efficiency (SE) results obtained for M = 100 antennas and U = 4 users.

It is evident from the figure that an increase in the number of antennas leads to more

pronounced performance improvements. To provide a comprehensive analysis, we

included results for scenarios involving U = 6 and U = 8 users. The results indicate

that performance improvement becomes more significant when considering distortion

correlation. This is primarily due to the fact that as the number of antennas increases,

the correlated distortion power relative to the uncorrelated distortion power becomes
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(b) M = 64, U = 8

Figure 6.6: CDFs of the sum SE for M = 64, U = 6 and U = 8

more substantial. Thus, accounting for distortion correlation becomes increasingly

advantageous.

Lastly, the effects of the number of antennas and the number of users are investigated.

In Figure 6.9 (a), the sum SE efficiency is shown for different numbers of antennas,

where the number of users is fixed to U = 8. For the smaller number of antennas,

both the proposed distortion correlation-aware power allocation scheme and power

allocation based on uncorrelated distortion have similar performances since distortion

becomes uncorrelated for a smaller M/U ratio. However, as the number of antennas

increases distortion correlation starts to become significant, and ignoring distortion

correlation degrades the system performance. In Figure 6.9 (b), the effects of the

number of users are shown by examining per-user average SE performance. It can be

seen that when the number of users is increased from U = 4 to U = 6, the per-user

SE increases since the relative received distortion power decreases, which means that

the effect of noise power is negligible compared to the distortion power. Also, it can

be seen that the performance gap is larger for the lower number of users since the

M/U ratio is higher, and distortion correlation is more effective.
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Figure 6.7: CDF of the sum SE for M = 100, U = 4
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Figure 6.8: CDFs of the sum SEs for M = 100, U = 6 and U = 8
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Figure 6.9: (a) Average sum SE with respect to number of antennas for U = 8 users

(b) average SE per user with respect to number of users for M = 100 antennas

6.7 Conclusion

This chapter presents a comprehensive analysis of the received distortion in multi-user

massive multiple-input-multiple-output (MIMO) systems with frequency-selective chan-

nels. The analysis accurately characterizes the received distortion power by consider-

ing the spatial correlation of the distortion and leveraging slowly varying large scale

parameters. By incorporating these factors, the proposed analysis provides an in-

depth understanding of the received distortion behavior.

The results of the analysis reveal important insights. It is observed that the relative

distortion power exhibits a decreasing trend as the number of users increases, up to a

certain threshold. However, beyond this threshold, the relative distortion power starts

to increase. This finding suggests that increasing the number of users can initially

mitigate the effects of nonlinear distortion, but there is a point where the distortion

power begins to dominate and adversely affect system performance.

Furthermore, the influence of frequency selectivity on the distortion signal across

the antenna array is investigated. The analysis demonstrates that as the degree of

frequency selectivity increases, the distortion signals become decorrelated across the

antenna array. This decorrelation effect contributes to a reduction in the received

distortion power, ultimately improving system performance.
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Lastly, based on the insights gained from the analysis, a power allocation framework

is proposed. The aim of this framework is to dynamically adjust the power allo-

cated to each user, thereby mitigating the adverse effects of nonlinear distortion. By

optimizing the power allocation, the proposed framework enables a more effective

management of the nonlinear distortion in the system.

128



CHAPTER 7

REDUCED COMPLEXITY CORRELATION-BASED MULTI-STREAM DPD

FOR HYBRID MASSIVE MIMO

7.1 Introduction

Hybrid beamforming for massive MIMO is a cost-effective solution to reduce the

number of RF chains, which are prohibitively expensive, especially for mmWave

scenarios, while enabling high-performance beamforming capabilities. To achieve

further energy efficiency and cost reduction, use of highly non-linear and low-cost

power amplifiers operating close to saturation can be necessary when the number of

antennas is large. This necessitates the employment of high-performance, yet com-

putationally low-complex, digital predistortion (DPD) that can work effectively for

hybrid massive MIMO structures. In this study, we propose a vector digital predis-

tortion algorithm for fully-connected massive MIMO. Our results demonstrate that

we can outperform the existing DPD solutions for fully-connected hybrid MIMO in

terms of out-of-band emissions, the error-vector magnitude of the received signals,

and computational complexity.

7.2 Literature Review and Contributions

Extensive research has been conducted in the field of linearization of power ampli-

fiers, and it has been established through various studies that the implementation of

digital pre-distortion (DPD) techniques can effectively meet the necessary linearity

constraints [38]. Particularly for single PA linearization, inverse learning architecture

(ILA) is the state-of-the-art approach, which calculates DPD parameters by estimat-
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ing the inverse of the PA characteristics [38]. However, the design of the DPD unit

for hybrid beamforming systems is a nontrivial as there is no direct path between

the digital front-end and PA. Moreover, the effectiveness of DPD is closely tied to

the connection structure of the analog beamformer [3]. For instance, when using

sub-array connected analog beamformers, a dedicated DPD system per RF chain is

feasible [3, 99, 100], as each antenna is linked solely to one RF chain, allowing the

implementation of a DPD system that is specifically tailored to the characteristics of

that particular RF chain [3,99,100]. However, individual DPD per RF chain does not

provide sufficient linearization for fully connected analog beamformers since each

antenna input is formed by the linear combination of the signals of all RF chains, and

in order to achieve the required linearization performance, vector DPD methods are

recently proposed [76, 101–103].

In the studies [101–103], a multi-stream DPD method, where the basis functions for

DPD implementation are generated as the products of the signals on all RF chains, is

proposed. However, the computational complexity of the multi-stream DPD methods

in [101] and [102] escalates exponentially with the increasing number of data streams,

posing a significant challenge. The complexity of [103] increases with the number of

transmit antennas, which must be avoided for large arrays. In this letter, we propose a

correlation-based vector DPD method whose complexity is independent of the num-

ber of antennas, and grows almost linearly with the number of users. The complexity

reduction of the proposed algorithm relies on a greedy virtual DPD branch selec-

tion, based on the correlation between the transmit antennas and a two-stage linear

transformation onto the reduced dimensional space to achieve a similar predistortion

output compared to a full complexity vector DPD solution. The proposed vector DPD

(vDPD) achieves a remarkable complexity reduction and outperforms the benchmark

DPD techniques for fully-connected hybrid MIMO systems.
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7.3 System Model

7.3.1 Multi-carrier Downlink Transmission

In this study, we consider a mmWave massive MIMO system with hybrid beamform-

ing (BF) architecture, where a base station with M antennas and D RF chains serves

U ≤ D single-antenna users simultaneously. Data symbol at kth subcarrier for user u

is denoted by au[k], and digital precoder FD[k] ∈ CD×U is applied to each subcarrier.

The precoded signal s[k] ∈ CD×1 at kth subcarrier is expressed as

s[k] = FD[k]a[k], k = −NA/2, . . . , NA/2− 1, (7.1)

where [a[k]]u = au[k], and NA is the number of active subcarriers. The time domain

signal can be obtained via inverse Fourier transform for the dth RF chain as

ŝd,n =
1

NA

NA/2−1∑
k=−NA/2

sd[k]e
j 2π
N
kn, (7.2)

where N > NA is the total number of subcarriers, and sd[k] = [s[k]]d. After proper

cyclic prefix insertion and windowing on ŝd,n, the time domain signal sd,n at time n

is obtained in Figure 7.1. The analog beamforming output can be represented as

xn = FRFsn, (7.3)

where sn ≜ [s1,n, . . . , sD,n]
T. Prior to transmission, the beamformed signal under-

goes amplification via PAs, yielding nonlinear distortion. For brevity, we represent

the nonlinear PA output for mth antenna element as ym,n = ψ (xm,n), xm,n ≜ [xn]m.

Then, the received signal for uth user becomes

run =
L−1∑
l=0

hH
u,lyn−l, (7.4)

where hu,l is the lth multipath component of uth user channel. To have a practi-

cal wideband mmWave channel model, we use the Saleh–Valenzuela channel model

[104]. Then, the channel response vector hu,l can be expressed as
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hu,l =
C∑
c=1

R∑
r=1

gu,crρ(l − lu,c − lu,r)a(θu,cr), (7.5)

where gu,cr is the complex gain for rth ray of cth cluster with Rician distribution

gu,cr ∼ CN (κu,cr, σ
2
u,cr), ρ(·) is the band-limitation function, θu,cr = ϑu,c+

r−1
R
∆u,c−

∆u,c

2
is the angle of arrivals (AoA) of rth ray of cth cluster, ϑu,c is the mean AoA,

∆u,c is the angular spread, and a(θ) is the array manifold vector with mth element

[a(θ)]m = 1√
M
ej

2π
λc
dam sin θ, where λc is the carrier wavelength and da is antenna spac-

ing.

7.3.2 Nonlinear PA and Inverse PA Models

In order to have an accurate model, we use a generalized memory polynomial (GMP)

to represent nonlinear PA characteristics ym,n = ψ (xm,n), which is given as [38]

ym,n =
K−1∑
k=0

LPA−1∑
l=0

W−1∑
w=−W+1

ak,l,wxm,n−l|xm,n−l+w|k, (7.6)

where ak,l,w are the weight coefficients of the PA model. To achieve linearity in the

PA output, it is desired to employ an appropriate DPD technique that can accurately

model and compensate for the nonlinear behavior of the amplifiers. For this purpose,

we have employed DPD structure based on GMP basis functions, and inverse learning

architecure is used to obtain the weight coefficients for the per-antenna DPD model

ϕ(·), which can be represented as ϕ(·) = ψ−1(·) [38].

7.4 Vector DPD (vDPD) for Fully Connected Hybrid Beamforming Architec-

ture

7.4.1 Full Complexity Array Projection Based vDPD

The core of this method is in the linearization of each PA individually. Therefore,

to find multi-stream DPD, the analog beamforming should be replicated in the dig-

ital domain to generate the desired transmitted signal as xn = FRFsn. The main

objective is to find the DPD output vector s̃n in Figure 7.1, which minimizes ||xn −
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Figure 7.1: Proposed reduced complexity correlation based two-stage vDPD archi-

tecture

ψ (FRFs̃n) ||22. Instead of obtaining optimal s̃n directly from this minimization, it is

more convenient to re-formulate the problem in an indirect fashion by employing

virtual per-antenna DPD outputs ỹv
n ≜ ϕ(xn) = ψ−1(xn) as

minimize
s̃n

||ỹv
n − FRFs̃n||22. (7.7)

Then, the least-squares (LS) solution of (7.7) yields the vDPD output inD-dimensional

space:

s̃n = PFϕ (FRFsn) , (7.8)

where PF =
(
FH

RFFRF

)−1
FH

RF is the linear transformation matrix, which is obtained

to have the desired transmitted vector at the antenna array output as a solution of the

equivalent optimization problem (given digital precoder output sn):

minimize
PF

||ϕ(FRFsn)− FRFPFϕ(FRFsn)||22. (7.9)

It should be noted that the synthesized vDPD output after analog beamforming, namely

x̃n = FRFs̃n, can be expressed as x̃n = FRF

(
FH

RFFRF

)−1
FH

RFϕ (FRFsn), where the

term PP ≜ FRF

(
FH

RFFRF

)−1
FH

RF is a projection matrix. It projects the full dimen-

sional desired virtual vDPD output, namely ỹv
n = ϕ (FRFsn), onto the range space of

FRF by reducing the signaling dimension from M to D.
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7.4.2 Proposed Low Complexity Correlation-Based vDPD

It is known that nonlinear distortion in antenna arrays is correlated when antenna

inputs are correlated, which is especially noticeable in massive MIMO systems with

a large number of antennas relative to users (where M ≫ U ) [23].

In order to reduce the high complexity of (7.8), which requires the generation of

ỹvm,n = ϕ (xm,n) for each antenna element, we propose a method to form the vir-

tual PA inputs required for vDPD synthesis. Due to the high correlation among the

antenna elements, the required number of virtual per-antenna DPD outputs in (7.8)

can be significantly reduced by using a linear transformation matrix, with a size in-

dependent of M . This implies a two-stage processing for reduced complexity vDPD

synthesis summarized in Figure 7.1.

In the first stage, virtual analog beamforming output is generated via the following

transformation matrix PRF ∈ CP×D:

PRF = EHFRF, (7.10)

where P < M is the number of per-antenna DPD operations to be performed for re-

duced complexity vDPD construction. In (7.10), E ∈ CM×P is the antenna selection

matrix, whose columns are composed of elementary vectors. The index of non-zero

element in each column of E specifies the selected row of FRF. For a given P , matrix

E is to be constructed such that the maximum value among the entries of EHRxE

is minimized, where Rx ≜ E{xnxHn } for xn = FRFsn is the correlation matrix for

the actual array output (without vDPD). It can be approximated as in the following

proposition:

Proposition 1. Rx ≜ E{xnxHn } can be approximated as

Rx ≈ FRFB
−1FH

RF (7.11)

where B = diag {β1, . . . , βU}.

Proof. See Appendix B.

In order to form the antenna selection matrix E, the antenna index set S with cardi-

nality P , namely |S| = P , is constructed. The S{p}th entry of the pth column of E
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is set to 1, i.e. [E](S{p},p) := 1 for p = 1, . . . , P . By using these definitions, matrix E

is constructed according to Algorithm 1. Consequently, the new element to be added

to the set S is determined such that the maximum pairwise correlation among the

selected elements is minimized.

Algorithm 1 Construction of E
Input: P , FRF, B

1: Set S{1} := 1 {Since Rx is Toeplitz, one can always start with the first antenna.}

2: p := 2

3: while p ≤ P do

4: S{p} = argmin
n,n ̸=m

max
m

∣∣∣[Rx](m,n)

∣∣∣ for m ∈ S{1 : p− 1}

5: end while

After obtaining PRF, the virtual array output in reduced dimension is formed as

x̃v
n = PRFsn at the first stage of the proposed vDPD algorithm in Figure 7.1. Then,

per-antenna DPD is performed over each element of x̃v
n as ỹvp,n = ϕ(x̃vp,n), where

x̃vp,n = [x̃v
n]p for p = 1, . . . , P . Finally, the virtual per-antenna DPD output ỹv

n =

[ỹv1,n, . . . , ỹ
v
P,n]

T is projected onto D-dimensional space via a transformation matrix

PD at the second stage of the proposed two-stage vDPD as follows:

s̃n = PH
Dỹ

v
n = PH

Dϕ(x̃
v
n) = PH

Dϕ(PRFsn). (7.12)

The linear transformation matrix PD ∈ CP×D can be acquired during a training phase

with a training sequence {sn}LT−1
n=0 of length LT, and the observation sequence can be

generated by using the full complexity projected vDPD output in (7.8). Then, the

matrix PD can be found such that it minimizes the Frobenius norm of the difference

between the full complexity vDPD in (7.8) and the proposed vDPD method in (7.12)

as

J =
∣∣∣∣∣∣PFZ̃−PH

DỸ
v
∣∣∣∣∣∣2

F
, (7.13)

where Z̃ = [ϕ (FRFs0) , . . . , ϕ (FRFsLT−1)], and Ỹv =
[
ỹv
0 , . . . , ỹ

v
LT−1

]
for ỹv

n =

ϕ(PRFsn). By using LS method, the linear transformation matrix PD can be found as

PD =

([
Ỹv
]H)†

Z̃HPH
F , (7.14)

where † represents pseudo-inverse operation.
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7.5 Computational Complexity

The computational complexity of the proposed algorithm can be assessed by investi-

gating (7.12) and per-antenna DPD operation ỹvp,n = ϕ(x̃vp,n). The required number of

complex multiplications for virtual beamforming and back-projection operations de-

fined in (7.12) is O(PD), individually. For each virtual antenna branch, the required

number of complex computations is OGMP ≜ O(KLPA) + 2O(KLPAW ), which

yields a total of POGMP complex multiplications for virtual DPD outputs. Then, the

total computational complexity can be expressed as OC = POGMP + 2O(PD). The

full complexity multi-stream DPD solution in [103]; on the other hand, has the com-

plexity of OC = MOGMP + 2O(MD). It is readily observed the multi-stream DPD

in [103] has higher computational complexity compared to the proposed method by

the factor of M/P . On the other hand, the required number of multiplications is

tremendous for the method proposed in [102] since the basis functions are gener-

ated by multiplexing signals of D data streams. For instance, for the same GMP

parameters given in Section 7.6, the required number of complex multiplications for

the proposed algorithm for U = 6 users, where P is selected as 32, is 1280. The

number of complex multiplications for the multi-stream DPD in [102] is 2448, and

that of multi-stream DPD in [103] is 20000 for M = 500 and 4000 for M = 100

antennas, respectively. It is important to note that the required complexity of the pro-

posed vDPD is independent of the number of antennas. However, for U = 12, the

required number of complex multiplications for the proposed algorithm, where P is

chosen as 64, is 2560; however, multi-stream DPD in [102] requires 16236 complex

multiplications.

7.6 Numerical Results

The performances of the DPD methods are evaluated via several performance criteria.

The proposed vDPD method is compared with the state-of-the-art methods that are

multi-stream DPD methods in [102] and [103]. We consider an OFDM waveform

with NA = 1024 active subcarriers and oversampling factor 4 (N = 4096). User

symbols are selected from the 64 QAM alphabet. PA models are extracted from

136



-2 -1 0 1 2
Normalized Frequency (f/B)

-60

-50

-40

-30

-20

-10

0

P
S

D
 (

d
B

)

No DPD

Proposed vDPD (P=8)

Proposed vDPD (P=16)

Proposed vDPD (P=32)

Multi-stream DPD [102]

FC Multi-stream vDPD

[103]

vDPD no corr. (P=8)

vDPD no corr. (P=16)

vDPD no corr. (P=32)

(a) M = 100, U = 6

-2 -1 0 1 2
Normalized Frequency (f/B)

-60

-50

-40

-30

-20

-10

0

P
S

D
 (

d
B

) No DPD

Proposed vDPD (P=8)

Proposed vDPD (P=16)

Proposed vDPD (P=32)

Multi-stream DPD [102]

FC multi-stream vDPD

[103]

vDPD no corr. (P=32)

(b) M = 500, U = 6

-2 -1 0 1 2

Normalized Frequency (f/B)

-60

-50

-40

-30

-20

-10

0

P
S

D
 (

d
B

)

No DPD

Proposed vDPD (P=16)

Proposed vDPD (P=48)

FC Multi-stream vDPD

[103]

vDPD no corr. (P=16)

(c) M = 100, U = 12

-2 -1 0 1 2

Normalized Frequency (f/B)

-70

-60

-50

-40

-30

-20

-10

0

P
S

D
 (

d
B

)
No DPD

Proposed vDPD (P=16)

Proposed vDPD (P=32)

Proposed vDPD (P=64)

FC Multi-stream DPD

[103]

vDPD no corr. (P=32)

(d) M = 500, U = 12

Figure 7.2: PSD for M = 100/500, U = 6/12.

the measurements from RF Weblab by using 50 MHz OFDM signal [2] with GMP

parameters K = 4, L = 3, M = 3.

In order to assess the performance of the proposed reduced complexity vDPD method,

power spectral density (PSD) of the received signal is evaluated for the proposed and

benchmark methods. Various system configurations are considered to observe the

effects of the system parameters. For this purpose, we select the number of antennas

as M = 100 or M = 500, and the number of users as U = 6 or U = 12, and the

user locations are generated randomly in a 1 × 1 km2 region, with MPC distribution

having 2◦ angular spread and 10 dB Rician factor. In Figure 7.2, the PSD of the

received signal of the edge user is demonstrated, which is more critical from an inter-

cell interference perspective. In Figure 7.2 (a), M = 100 antennas and U = 6 users
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case is studied, where the proposed vDPD approach is evaluated for different number

of virtual DPD branches, namely P . It can be observed from Figure 7.2 (a) that

the proposed method outperforms the multi-stream DPD method in [102], despite

having lower computational complexity. In addition, the necessity of the correlation-

based antenna selection algorithm is shown by choosing the virtual antenna elements

randomly without considering the antenna correlations. It can be seen that virtual

array design, without considering the input correlation, yields significant performance

degradation, especially for lower P values. To show that the required complexity for

the proposed vDPD method is independent of the number of antennas, we consider

M = 500 antennas at the BS. From Figure 7.2 (b), it can be observed that by using the

same P value, the proposed reduced complexity vDPD algorithm achieves a similar

performance with the M = 100 scenario. Moreover, if the maximum PSD values at

the out-of-band (OOB) section are compared, the proposed vDPD provides similar

performance compared to the full complexity DPD solution in [103], despite having

much less complexity.

In order to observe the effects of the number of users, a scenario with U = 12 users is

also considered, where the number of antennas is chosen as M = 100 and M = 500,

as in the previous setup. It can be observed from Figure 7.2 (c) and Figure 7.2 (d),

the number of required virtual DPDs increases for larger number of users since the

distortion correlation between antennas is reduced, which necessitates using a larger

number of virtual DPD units. Furthermore, for the same P value, similar vDPD per-

formance is achieved for different numbers of antennas. Moreover, comparing U = 6

and U = 12 cases, the number of necessary vDPD branches P scale gracefully (al-

most linearly) with the number of users for the proposed vDPD method, implying a

linear complexity increase of the proposed vDPD method with the number of users,

rather than an exponential increase. The performance of multi-stream DPD in [102]

is not included for U = 12 for conciseness since it suffers from a significant perfor-

mance loss. The reason is that the required number of basis functions are tremendous

for U = 12, thus singularity problems occur in matrix inversions to find the weight

coefficients for the DPD proposed in [102].

In addition to PSD performances at a specific direction, the angular distribution of

the OOB distortion is also obtained. To simplify the visualization, we consider a
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scenario with M = 50 antennas at the BS, serving U = 2 users. In Figure 7.3, the

radiation pattern of the total OOB distortion power on the adjacent frequency band

is shown. It is observed that state-of-the-art DPD methods for fully connected array

architecture can only mitigate the nonlinear distortion along the intended user direc-

tions. However, we also achieve OOB suppression along the spatial harmonic angles,

in which the nonlinear distortion is coherently combined, by extending the analog

beamformer to direct beams along the spatial harmonic angles. It is also observed

that the multi-stream DPD method in [102] suffers from a significant performance

loss compared to the proposed vDPD algorithm. Moreover, the proposed reduced

complexity vDPD provides sufficient OOB suppression, which is very close to the

full complexity DPD method in [103] in the intended user directions. It is impor-

tant to note that the proposed DPD method can mitigate the unwanted OOB radiation

along angles other than the intended user direction, especially on the spatial harmonic

angles, unlike [102], [103].

The received signal quality is also assessed for the intended users by measuring the

error vector magnitude (EVM) for the received data symbol estimates. For this pur-

pose, the scenarios for M = 500 antennas and U = 6/12 user are considered. It is

seen that for U = 6 and U = 12 case, the proposed algorithm provides almost optimal

performance with P = 32 and P = 64, respectively, which means that it provides

almost the same performance with multi-stream DPD in [103] with more than 80%

complexity reduction. Moreover, the performance of the multi-stream DPD in [102]
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is very inferior (especially for U = 12) compared to the proposed vDPD.

7.7 Conclusion

Hybrid MIMO architecture is a key enabler for cost efficient implementation of mas-

sive MIMO systems with superior beamforming capabilities. A further reduction

in system cost can be through employment of low-cost power amplifiers with high-

nonlinearity, whose negative impact on the system performance can be mitigated by

effective digital predistortion methods. In this study, a vector DPD algorithm for

fully-connected hybrid MIMO architectures is proposed. The proposed algorithm

outperforms the existing DPD algorithms for fully-connected hybrid MIMO arrays in

terms of OOB emissions, EVM and computational complexity.
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CHAPTER 8

CONCLUSIONS

In conclusion, this thesis has made significant contributions to the field of signal

processing for addressing the challenges posed by power amplifier nonlinearities in

communication systems. The research presented in this work has explored various

aspects of nonlinear distortion and proposed effective mitigation strategies, thereby

advancing the understanding and practical implementation of communication systems

with non-ideal power amplifiers.

Firstly, the thesis investigated the effects of nonlinear distortion in both uplink and

downlink communication scenarios, considering the integration of non-ideal power

amplifiers in user equipment and base stations. Unlike previous studies, this research

acknowledged the implications of pulse shaping filters and aliasing due to downsam-

pling in the SC modulation scheme used in uplink communication. By considering

the nonlinear inter-symbol interference caused by amplifier nonlinearity, the thesis

developed nonlinear post-distortion schemes and distortion modeling techniques to

mitigate the effects of nonlinear distortion at the receiver side.

Furthermore, the thesis extended its scope to explore full-duplex communication sys-

tems, providing insights into the complexities and potential solutions associated with

simultaneous bidirectional transmission. It introduced the concept of distortion am-

plification, which arises due to the mismatch between the effective channels in the

downsampled domain of the desired and distortion signals. To mitigate this effect

and elevate diversity in the temporal domain, a distortion-aware receiver structure

based on fractional sampling was developed.

Moreover, the thesis addressed the challenges posed by nonlinear distortion in multi-
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user MIMO systems with hybrid beamforming hardware structures. By employing

nonlinear distortion cancellation and the distortion estimation method proposed ear-

lier, a sophisticated distortion-aware receiver was designed, significantly reducing

complexity while maintaining performance. Additionally, the thesis conducted an

extensive analysis of signal-to-distortion-plus-noise (SDNR) and investigated the ef-

fects of distortion amplification analytically.

The research also considered the radiation of nonlinear distortion from multi-antenna

base stations, which had not been extensively explored in the literature. It investigated

the validity of the assumption of uncorrelated distortion across the antenna array in

massive MIMO systems and developed a method for finding optimal power allocation

coefficients considering distortion correlation. These findings contribute to a better

understanding of the quantitative analysis of received distortion power and provide

insights for future system design.

Lastly, the thesis addressed the challenges of designing digital pre-distortion (DPD)

algorithms for fully connected hybrid beamforming systems, which integrate ana-

log and digital components. It proposed a correlation-based reduced complexity

DPD design that avoids redundant signal processing operations in correlated antenna

branches, thereby achieving satisfactory performance while reducing complexity.

In summary, this thesis has made significant contributions to the field of signal pro-

cessing for communication systems with power amplifier nonlinearities. The pro-

posed frameworks, mitigation strategies, and receiver structures offer valuable in-

sights and practical solutions for improving system performance and managing non-

linear distortion effects in various communication scenarios. These contributions

pave the way for future research and advancements in the field, ultimately leading

to more efficient and robust communication systems in the presence of power ampli-

fier nonlinearities.

There are several promising avenues for extending the proposed frameworks to fur-

ther enhance performance and reduce computational complexity. Firstly, an online

learning approach could be developed to continuously track the time-varying behav-

ior of PAs. This would allow for real-time adaptation to changing PA characteristics,

leading to improved system performance. Additionally, the length of the ST sequence
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required for distortion modeling can be reduced by employing decision feedback

techniques, effectively optimizing the trade-off between accuracy and computational

overhead.

Secondly, to mitigate distortion amplification, modifications to the spectral content of

the transmitted signal can be explored. By strategically shaping the frequency band

used for data transmission, it is possible to avoid regions where distortion amplifica-

tion occurs, leading to improved signal quality at the receiver.

Thirdly, investigating the effects of the distortion amplification phenomenon on OFDM

modulated signals holds great potential for understanding its impact on modern com-

munication systems. By analyzing the interplay between distortion amplification and

OFDM, new insights can be gained and novel solutions devised.

Lastly, for downlink communication, an integrated approach can be pursued, com-

bining distortion-aware precoding with the proposed power allocation scheme. This

joint design would optimize the transmission process, resulting in enhanced received

signal quality and overall system performance.

In conclusion, exploring these academic research directions can lead to valuable ad-

vancements in signal processing for communication systems, enabling better manage-

ment of nonlinear distortion effects and paving the way for more efficient and robust

communication technologies.
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Appendix A

EQUIVALENT CHANNEL REPRESENTATIONS

In this section, equivalent channels for the linear desired signal and the received dis-

tortion channels are analyzed. In order to investigate the linear and nonlinear parts

of the received signal, we employ generalized Bussgang decomposition [59] for the

nonlinearly distorted transmitted signal as

x̃(u)n = α(u)
x x(u)n + γ(u)n , (A.1)

where α(u)
x is the Bussgang coefficient, and γ(u)n is the orthogonal distortion term. To

reveal the mismatch between the linear and nonlinear channels, we investigate the

noise free received signal for uth user y(u)n in (5.30), after MF, which can be written

in the frequency domain as

Y (u)(ejω) =
U∑

u′=1

α(u′)
x X(u′)(ejω)H(u′,u)(ejω)P ∗(ejω)

+
U∑

u′=1

Γ(u′)(ejω)H(u′,u)(ejω)P ∗(ejω),

(A.2)

where X(u)(ejω) = P (ejω)A(u)(ejµω) and A(u)(ejω) ≜
∑ND−1

m=0 a
(u)
m e−jmω. In (A.2),

H(u′,u)(ejω) ≜
∑L−1

n=0 h
(u′,u)
n e−jnω and P (ejω) ≜

∑∞
m=−∞ pme

−jmω are discrete time

Fourier transforms (DTFT) of h(u
′,u)

n and pn.

Bussgang decomposition decouples the signal into uncorrelated terms; however, it

does not provide any information about the spectral characteristics of the nonlinearly

modified signal. Hence, inter-modulation product analysis is also used to identify

the frequency domain characteristics of the distortion signal, similar to the approach

in [48]. The DTFT of the distortion Γ(u)(ejω) ≜
∑µND−1

n=0 γ
(u)
n e−jnω is related to the
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power spectral density of the distortion term as

S
(u)
Γ (ejω) = lim

ND→∞
E
[

1

µND

|Γ(u)(ejω)|2
]
, (A.3)

which can be approximated as in [54]

S
(u)
Γ (ejω) ≈

∞∑
s=1

p
(u)
Γ,s S

(u)
X (e−jω) ∗ ... ∗ S(u)

X (e−jω)︸ ︷︷ ︸
s terms

∗S(u)
X (ejω) ∗ ... ∗ S(u)

X (ejω)︸ ︷︷ ︸
s+1 terms

,

(A.4)

where p(u)Γ,s is the power of the sth order nonlinearity.

After downsampling, the received signal for branch i in (5.43) can be obtained in

frequency domain from (A.2) as

Y (u),i(ejω) =
U∑

u′=1

H(u′,u),i(ejω)A(u′)
(
ejω
)

+
U∑

u′=1

µ−1∑
m=0

H̄(u′,u),i
m

(
ejω
)
Γ(u′)

(
ej

(ω−2πm)
µ

)
.

(A.5)

In (A.5), H(u′,u),i(ejω) is the frequency domain effective channel of the ith branch for

the desired term, which is given in terms of upsampled channel H(u′,u)(ejω) as

H(u′,u),i(ejω) =
α
(u′)
x

µ

µ−1∑
m=0

H(u′,u)
(
ej

(ω−2πm)
µ

) ∣∣∣P (ej (ω−2πm)
µ

)∣∣∣2 ej i(ω−2πm)
µB , (A.6)

and H̄(u′,u),i
m is the effective distortion channel of branch i for the nonlinear term

H̄(u′,u),i
m (ejω) =

1

µ
H(u′,u)

(
ej

(ω−2πm)
µ

)
P ∗
(
ej

(ω−2πm)
µ

)
e
j
i(ω−2πm)

µB . (A.7)

It can be observed from (A.5)-(A.7) that channels corresponding to the linear and

nonlinear terms are different. Hence, there is a mismatch between the channel, which

is used for nIC in (5.44), and the channel in (A.7), which the distortion experiences.

Eventually, mismatched channels may yield significant performance degradation due

to distortion amplification.

From (A.6), it can be inferred that employing fractional sampling provides diversity

since the effective channel is obtained as the summation of the same terms in dif-

ferent phases due to ej
i(ω−2πm)

µB . Therefore, there may be a sampling instant, which
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may prevent nulls in the frequency response, and thus, undermine the effects of the

aforementioned mismatch.

The received signal in (A.5) can be re-written in DFT domain, in which IB-DFE

operations are performed, by sampling the DTFT at ω = 2πk/ND, as

Y
(u),i
k =

U∑
u′=1

H
(u′,u),i
k A

(u′)
k +

U∑
u′=1

D̃
(u′,u),i
k,all , (A.8)

where H(u′,u),i
k = H(u′,u),i

(
e
j 2πk
ND

)
, A(u)

k = A(u)
(
e
j 2πk
ND

)
, the total nonlinear dis-

tortion D̃(u′,u),i
k,all =

∑µ−1
m=0 H̄

(u′,u),i
m,k Γ

(u′)
m,k, H̄(u′,u),i

m,k = H̄
(u′,u),i
m

(
e
j 2πk
ND

)
is the distortion

channel for branch i and Γ
(u)
m,k = Γ(u)

(
e
j
2π(k−NDm)

µND

)
.

As can be noted from Section 5.4.3.1, the symbol-rate nonlinear model in (5.37) is

obtained for the flat channel during ST training, and acquired model output is passed

through the estimated symbol-rate channel of the ith branch in (A.6). Hence, defining

the distortion term d
(u)
n for uth user for the flat channel at symbol rate is necessary,

and it can be expressed for the kth DFT bin as

D
(u)
k =

1

α
(u)
x

µ−1∑
m=0

P ∗
(
e
j
2π(k−NDm)

µND

)
Γ(u)

(
e
j
2π(k−NDm)

µND

)
. (A.9)

By using (A.9), we can decompose the distortion signal in (A.8) into two components.

The first component is the modeled term, which is given as H(u′,u),i
k D

(u′)
k , and the

remaining is the not-modelable term D̃
(u′,u),i
k ≜ D̃

(u′,u),i
k,all −H

(u′,u),i
k D

(u′)
k that we refer

to as the mismatch distortion. Consequently, the received signal of user u in (A.8)

can be written for the ith branch by using the modeled and not-modelable distortion

terms as

Y
(u),i
k =

U∑
u′=1

[
H

(u′,u),i
k

(
A

(u′)
k +D

(u′)
k

)
+ D̃

(u′,u),i
k

]
, (A.10)

and the mismatched distortion, D̃(u′,u),i
k , can be explicitly written from (A.7)-(A.9) as

D̃
(u′,u),i
k =

µ−1∑
m=0

H̃
(u′,u),i
m,k Γ

(u′)
m,k, (A.11)

where H̃(u′,u),i
m,k ≜ H̄

(u′,u),i
m,k − 1

α
(u′)
x

P 0
m,kH

(u′,u),i
k , is the resultant mismatched channel,

and

P i
m,k ≜ P ∗

(
e
j
2π(k−NDm)

µND

)
e
j
i(2π(k−NDm))

µBND . (A.12)
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R
(u′,u)
d [i, r] =

1

ND

ND−1∑
k=0

E

{(
F

(u),i
k D̃

(u′,u),i
k

)(
F

(u),r
k D̃

(u′,u),r
k

)∗
+ F

(u),i
k V(u),i

k

(
F

(u),r
k V(u),r

k

)∗
δuu′

}

=
1

ND

ND−1∑
k=0

F
(u),i
k

(
F

(u),r
k

)∗ µ−1∑
m=0

[
H̃

(u′,u),i
m,k

(
H̃

(u′,u),r
m,k

)∗
S
(u′)
Γ

(
e
j
2π(k−NDm)

µND

)

+ P i
m,k

(
P r
m,k

)∗
Noδuu′

]
(A.13)

By using (A.11)-(A.12), (i, r)th entity of R(u′,u)
d can be obtained as in (A.13).
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Appendix B

PROOF OF PROPOSITION 1

To obtain the autocorrelation matrix of the beamformed signal Rx, we firstly define

the effective channel matrix in frequency domain, namely H̃[k], as

H̃[k] =
N−1∑
l=0

FH
RFHle

−j 2π
N
kl, (B.1)

where Hl ≜ [h1,l, . . . ,hU,l]. Since the beamforming matrix FRF is designed to il-

luminate the strongest multi-path component (MPC), that has Rician distribution,

of the intended user, the effective channel vector of uth user in frequency domain

can be expressed as h̃u[k] ≈
[∑N−1

l=0 αu,le
−j 2π

N
kl
]
eu for D = U , where αu,l =∑R

r=1 ρ(l − lu,1 − lu,r)gu,1r, eu is all zero vector, except its uth element, equal to 1.

Assuming that MPCs belonging to the same cluster are not resolvable and Nyquist-1

pulse is used, which implies ρ(l − lu,1 − lu,r) = δl−lu,1 , h̃u[k] can be further approxi-

mated as

h̃u[k] ≈ e−j
2π
N
klu,1

(
R∑
r=1

gu,1r

)
eu. (B.2)

Then, h̃H
u1
[k]h̃u2 [k] ≈ δu1−u2

∣∣∣∑R
r=1 gu1,1r

∣∣∣2 and it can be further approximated as

H̃[k] ≈ diag
{∑R

r=1 gu,1re
−j 2π

N
klu,1

}U
u=1

. By using these approximations, one can

obtain Rx as

Rx =
1

N
FRFEhu,l

 NA/2−1∑
k=−NA/2

FD[k]FD[k]
H

FH
RF,

≈ 1

N
FRFEhu,l

 NA/2−1∑
k=−NA/2

diag


∣∣∣∣∣
R∑
r=1

gu,1r

∣∣∣∣∣
−2

FH

RF,

(B.3)

where FD[k] = H̃[k]
(
H̃H[k]H̃[k]

)−1

. Therefore, we can approximate Rx as
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Rx ≈ FRF

(
diag {βu}Uu=1

)−1

FH
RF, (B.4)

where βu ≜ N
NA

E
[∣∣∣∑R

r=1 gu,1r

∣∣∣2].
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