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ABSTRACT

A STUDY ON SPACE-HARD WHITE-BOX CRYPTOGRAPHY

GÜNER, HATİCE KÜBRA
Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Oğuz Yayla

Co-Supervisor : Dr. Ceyda Mangır

July 2023, 59 pages

Protecting secret keys from malicious observers is a major problem for cryptographic
algorithms in untrusted environments. White-box cryptography suggests hiding the
key in the cipher code with an appropriate method such that extracting the key be-
comes impossible in the white-box setting. The key is generally embedded into the
confusion layer with suitable methods. One of them is using encoding techniques.
Nevertheless, many encoding methods are vulnerable to algebraic attacks and side-
channel analysis. Another is the space hardness concept, which creates large lookup
tables that cannot be easily extracted from the device. In (M,Z)-space hard algorithms,
the secret key is embedded in large tables created as a substitution box with a suitable
block cipher. So the key extraction problem in the white-box setting turns into a key
recovery problem in the black-box case. One of the main issues in (M,Z)-space hard
algorithms is accelerating the run-time of the white-box/black-box implementation.
In this study, we aim to use the advantage of the efficiency of lightweight compo-
nents to speed up the diffusion layer of white-box algorithms without decreasing the
security size. Therefore, we compare the linear layer of NIST Lightweight Standard-
ization candidates for efficiency and suitability to white-box settings in existing space
hard ciphers. The performance results of the algorithms are compared with WARX
and SPNbox. According to the results, using the lightweight components in the diffu-
sion layer accelerates the performance of white-box algorithms by at least 16%. Ad-
ditionally, we propose an LS-design based white-box algorithm with better run-rime
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performance and an LS-design based table creation method to take advantage of the
bitslice implementation against side-channel attacks. When we compare the run-time
performance of our method with the SPNbox algorithm, we obtain 28% improvement
for white-box implementation and 27% for black-box implementation. At the same
time, in the white-box setting, the LS-design based method is also implemented to
the 256-bit block size.

Keywords: White-box Cryptography, Software Protection, Space-hard Ciphers, Lightweight
Components, Efficiency.
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ÖZ

UZAY-ZOR BEYAZ KUTU KRİPTOGRAFİSİ ÜZERİNE BİR ÇALIŞMA

GÜNER, HATİCE KÜBRA
Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Oğuz Yayla

Ortak Tez Yöneticisi : Dr. Ceyda Mangır

Temmuz 2023, 59 sayfa

Gizli anahtarları kötü niyetli gözlemcilerden korumak, güvenilmeyen ortamlarda krip-
tografik algoritmalar için büyük bir sorundur. Beyaz kutu kriptografisi, beyaz kutu
ayarında anahtarın çıkarılması imkansız hale gelecek şekilde uygun bir yöntemle
şifre kodundaki anahtarın saklanmasını önerir. Anahtar genellikle uygun yöntem-
lerle karıştırma katmanına gömülür. Bunlardan biri kodlama teknikleri kullanmak-
tır. Bununla birlikte, birçok kodlama yöntemi cebirsel saldırılara ve yan kanal ana-
lizine karşı savunmasızdır. Bir diğeri, cihazdan kolayca çıkarılamayan büyük arama
tabloları oluşturan alan sabitliği konseptidir. (M,Z)-uzay sabit algoritmalarında, gizli
anahtar, uygun bir blok şifre ile bir ikame kutusu olarak oluşturulan büyük tablolara
gömülür. Böylece, beyaz kutu ayarındaki anahtar çıkarma sorunu, kara kutu duru-
munda bir anahtar kurtarma sorununa dönüşür. (M,Z)-uzayı sabit algoritmalarındaki
ana sorunlardan biri, beyaz kutu/kara kutu uygulamasının çalışma zamanını hızlan-
dırmaktır. Bu çalışmada, güvenlik boyutunu düşürmeden beyaz kutu algoritmalarının
difüzyon katmanını hızlandırmak için hafif bileşenlerin etkinliğinin avantajını kul-
lanmayı amaçlıyoruz. Bu nedenle, NIST Hafif Standardizasyon adaylarının doğrusal
katmanını verimlilik ve mevcut uzay sabit şifrelerindeki beyaz kutu ayarlarına uy-
gunluk açısından karşılaştırıyoruz. Algoritmaların performans sonuçları WARX ve
SPNbox ile karşılaştırılmıştır. Sonuçlara göre, difüzyon katmanında hafif bileşenlerin
kullanılması, beyaz kutu algoritmalarının performansını en az %16 hızlandırıyor. Ek
olarak, yan kanal saldırılarına karşı bitslice uygulamasından yararlanmak için daha
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iyi çalışma zamanı performansına sahip LS tasarımı tabanlı bir beyaz kutu algorit-
ması ve LS tasarımı tabanlı tablo oluşturma yöntemi öneriyoruz. Metodumuzun ça-
lışma zamanı performansını SPNbox algoritması ile karşılaştırdığımızda, beyaz kutu
uygulaması için %28 ve kara kutu uygulaması için %27 iyileştirme elde ediyoruz.
Aynı zamanda, beyaz kutu ayarında, LS tasarımına dayalı yöntemı 256 bitlik blok
boyutuna da uyguluyoruz.

Anahtar Kelimeler: Beyaz Kutu Kriptografisi, Yazılım Koruması, Uzay-Zor Şifreler,
Hafif Bileşenler, Verimlilik
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CHAPTER 1

INTRODUCTION

Products used in an untrusted environment are vulnerable to capturing encryption

keys by a malicious observer, as the observer has the ability to gain access to the

cryptographic algorithms and the encryption keys. From DRM products and cloud

servers to endpoint users such as mobile phones, laptops, or lightweight devices re-

quire protection against third parties. White-box cryptography suggests software pro-

tection using an appropriate method to hide the key in the algorithm phases. The

key is generally embedded into the confusion layer with suitable methods. Accord-

ing to Delerablée et al. [22], the security primitives of white-box implementations

are unbreakability, one-wayness, incompressibility, and traceability. One-wayness is

required to avoid decryption by inverting the white-box algorithm. Traceability is

needed to prevent unauthorized usage of the white-box algorithm. Incompressibil-

ity is stated as one of the primitive properties of the white-box algorithms to avoid

extraction of the embedded key from the device.

The first white-box algorithms, white-box DES [16] in 2002 and white-box AES [15]

in 2003, were proposed by Chow et al. The secret key was embedded into the Sbox

by transforming the algorithm layers into lookup tables with internal and external

encodings. The suggested encoding methods to prevent key extraction were broken

by the algebraic attacks [5, 30]. Some other white-box AES variants [49, 33] were

proposed but were also broken [21, 39].

A dedicated white-box block cipher based on ASASA structure was proposed by

Biryukov et al. [6]. The paper defines weak white-box security and offers a memory-

hard white-box block cipher against code-lifting attacks. In code-lifting attacks, an
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attacker uses the original implementation as a large secret key for encryption and

decryption on a different device. Unfortunately, key recovery attacks were applied

in [26, 43] against the ASASA structure. Even if the structure was broken, the pro-

posed methods inspired space-hard approaches for white-box algorithms.

After DES, AES, and ASASA white-box block cipher designs, a new dedicated al-

gorithm called space-hard ciphers has been proposed by Bogdanov and Isobe [9, 10].

The secret key is hidden in large lookup tables created with a small block cipher in the

new structure. The constructed tables are used as a nonlinear layer in the algorithm.

With this approach, key extraction in the white-box setting becomes a key recovery

problem in the black-box case. Against code lifting attacks, (M,Z)-space hardness

is defined such that the algorithm provides Z-bit security until the size of the leakage

from the code (table) is reached M bits.

Two main issues exist for (M,Z)-space hard white-box algorithms. The first one is

updating the lookup tables after a particular leakage to provide security against code-

lifting attacks. Generally, the security size of the algorithms is limited to leaking 1
4

of

the lookup tables [9, 10, 14, 34, 42]. When the leak limit is reached, the tables must

be updated, either on the device or by remotely loading from the server [34].

The other issue is accelerating the black-box and the white-box implementations.

The encryption/decryption process of the space-hard ciphers is mainly based on Feis-

tel [9, 25, 36, 35] and SPN [10, 34, 42] structures. The black-box implementations

become costly since a small-scale block cipher is used in the nonlinear layer. While it

is essential to speed up the nonlinear layer on the black-box side, in the white-box im-

plementation, the nonlinear layer only takes a value from the lookup table. When ex-

amining SPN-based white-box implementations, the most time-consuming part is the

linear layer with the MDS matrix, which consists of matrix multiplication and mod-

ular reduction. Hence, speeding up the white-box and even the black-box implemen-

tations depend on the linear layer. Among the (M,Z)-space hard ciphers, SPNbox

aims to improve performance against Feistel-based space-hard cipher Space [9] by

taking advantage of parallelism and single instruction multiple data (SIMD) instruc-

tions. Another space-hard cipher WARX [42], is proposed with the motivation that

existing white-box implementations run slowly or need ample storage space. WARX
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improves the performance by decreasing the round number of the algorithm through

a random MDS matrix in the linear layer.

Lightweight algorithms are resource-constraint designs with heavyweight security

and fewer computational requirements. Some of the recent lightweight algorithms

offer new design ideas, including getting rid of the computational cost of the MDS

matrix [23, 45]. This study aims to propose a new space-hard white-box algorithm

that uses lightweight components other than MDS matrices used in the current algo-

rithms. With this motivation, the linear components of the NIST Lightweight compe-

tition [19] candidates were examined in the (M,Z)-space hard white-box setting for

efficiency without reducing the security level. The linear components of Spook [4]

were found suitable for an efficient space-hard white-box algorithm. A new LS-

design [27] based (M,Z)-space hard algorithm using Spook’s linear components is

implemented in this paper to accelerate the run-time performance of the existing one.

Also, a new table creation method based on LS-design is proposed to take advantage

of the bitslice implementation against side-channel analysis.

This thesis is organized as follows:

Chapter 2 discusses SPN-based space hard ciphers. The aim of the white-box imple-

mentations and specifications of the algorithms are defined.

In Chapter 3, the linear layers of NIST Lightweight competition finalists and second-

round candidates are examined to evaluate suitable designs for (M,Z)-space hard

white-box algorithms. The lookup table is used as a substitution box in the nonlinear

layer, and the linear components of the lightweight designs are used as a linear layer

in the white-box conversions. The tables are created using the WARX method for

16-bit word size algorithms and the SPNbox method for 32-bit word size algorithms.

We suggest fixing the security size to leaksize · 2−keysize bits to more precisely cal-

culate the round numbers of the algorithms based on the recommended security level.

The run-time of the white-box schemes is compared with the algorithms WARX and

SPNbox-32. We observed that lightweight components in the white-box setting are

faster than WARX and SPNbox-32, with appropriate round numbers and security

sizes.
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In Chapter 4, a new space-hard white-box algorithm and a new table construction

method based on the LS-design are proposed. The linear layer of the white-box al-

gorithm is taken from the Spook design. In the table creation method, the S-box of

Scream-v3 Algorithm [28] is used in the nonlinear layer, and the linear layer is taken

from an LS-design based lightweight algorithm Mysterion [31]. According to the

implementation results, the new white-box/black-box implementations accelerate the

run-time performance compared to the SPNbox-32’s for 128-bit block size.
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CHAPTER 2

SPACE-HARD CIPHERS

The (M,Z)-space hard white-box ciphers aim to provide security using a reliable

small block cipher instead of internal and external coding throughout the algorithm

phases. The nonlinear layer of the white-box algorithm is created with this small

block cipher. Thus, the secret key is embedded in the nonlinear layer and the nonlin-

ear layer is used as the substitution box. In this case, the key extraction issue in the

white-box setting becomes a key recovery issue in the black-box setting.

In this chapter, the first space hard cipher Space and current SPN-based space hard

algorithms are examined. Details of the algorithms are specified in Section 2.1. The

white-box and black-box security considerations are stated in Section 2.2.

2.1 Specifications of the Algorithms

2.1.1 Space

The first (M,Z)-space hard white-box algorithm proposed by Bogdanov and Isobe is

the Space [9] based on the Feistel structure, which uses the nonlinear layer F function

as a lookup table. The lookup table is created using AES components to hide the

secret key. The number of round is recommended as at least 128 to obtain desired

space-hard security level. The weak (M,Z)-space hardness is defined as a security

concept for space hard white-box algorithms.

Definition 1 (Weak (M,Z)-space hardness [9]). A white-box block cipher is called

weak (M,Z)-space hard if it is not possible to encrypt/decrypt a randomly selected
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text with a probability greater than 2−Z until the size of the leakage from the code

(table) is reached to M bits.

In this approach, the table must be updated when the leak size reaches the defined

limit. The security against obtaining a valid plaintext/ciphertext pair is defined with

strong (M,Z)-space hardness. In the strong (M,Z)-space hardness criteria, an at-

tacker aims to obtain a valid plaintext/ciphertext pair instead of obtaining ciphertext

for an arbitrary plaintext. The table must be updated when the defined leakage limit

is reached.

Definition 2 (Strong (M,Z)-space hardness [9]). A white-box block cipher is called

strong (M,Z)-space hard if it is not possible to encrypt/decrypt a valid text pair with

a probability greater than 2−Z until the size of the leakage from the code (table) is

reached to M bits.

2.1.2 SPNbox

The space-hard white-box algorithm SPNbox [10] is designed by Bogdanov A. et al.

The SPNbox aims to improve performance against Space using parallelism and SIMD

instructions. It is based on SPN structure using key-dependent lookup table T in the

nonlinear layer. The table T is generated using a small-scale block cipher with AES

components.

2.1.2.1 Table Construction

The key dependent substitution box T is constructed with a small SPN-type block

cipher. The table generation method consists of AES components with nin block size,

and state as x = (x0, ..., xl−1) where l = nin/8. In the implementation, the round

keys are generated using a reliable key derivation function such as SHAKE [24]. One

round of the algorithm is

Tnin
: GF (28)l → GF (28)l

xr → (RKr ◦MCnin
◦ SBox)(xr−1)
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The keys are xored with the state in the RKr layer. The MDS matrix of AES is used

at the MCnin
layer to provide diffusion in the small block cipher. The MDS matrices

Anin
for nin = 16, 24, 32 are recommended as

• A16=

2, 1
3, 2



• A24=


2 1 1

3 2 1

1 3 2


• A32 = cir(2, 1, 1, 3)

The identity matrix is used in the diffusion layer for nin = 8. Confusion is provided

with AES S-box in the nonlinear Sbox layer. The numbers of rounds are specified as

r8 = 64, r16 = 32, r24 = 20, r32 = 16. All elements of the field 2nin are encrypted by

the table creation method, and the size of the key dependent table T is nin · 2nin bits.

The table creation method is given in Algorithm 1.

Algorithm 1 T-Table generation algorithm of SPNbox

1: INPUT: Round keys (k0, k1, ..., krnin
), ki ∈ Fnin

2

2: OUTPUT: x

3: for x = 0 to 2nin − 1 do

4: x← x⊕ k0

5: for i = 1 to rnin
do

6: x← Sbox(x)

7: x← x · Anin

8: x← x⊕ ki

9: end for

10: end for

2.1.2.2 The Algorithm

SPN structure based SPNbox family consists of SPNbox-nin members with n-bit

block size, nin-bit word size (nin = 8, 16, 24, 32), and k-bit key. The SPNbox-24
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has a 120-bit block length and key size, while the remaining algorithms have 128-bit

block and key length. SPNbox-nin’s state vector is defined as xr = (xr
0, ..., x

r
t−1)

where r represents the related round and t = n/nin. The encryption process consists

of 10 rounds with the nonlinear γ, the linear θ, and the affine σr layers.

xr = (σr ◦ θ ◦ γ)(xr−1)

The nonlinear γ layer is a substitution layer using the generated key dependent table

T. The linear layer θ consists of matrix multiplication with a t×t MDS matrix defined

for cases nin = 8, 16, 24, 32 as

• M8 = had(8, 16, 8a, 1, 70, 8d, 24, 76, a8, 91, ad, 48, 5, b5, af, f8)

• M16 = had(1, 3, 4, 5, 6, 8, b, 7)

• M24 = cir(1, 2, 5, 3, 4)

• M32 = cir(1, 2, 4, 6)

M32 and M16 are the MDS matrices of the block ciphers Anubis [2] and Khazad [1],

respectively. M8 is an optimized Hadamard-Cauchy matrix [40]. The affine layer σr

applies xor with the related round constant defined as

cri = (r − 1) · t+ i+ 1 for 0 ≤ i ≤ t− 1

The pseudo-codes of the white-box and black-box implementations of the SPNbox

are given in Algorithm 2 and Algorithm 3.

2.1.3 Yoroi

Another SPN-based space-hard white-box algorithm called Yoroi was designed by

Koike and Isobe [34]. The motivation behind the Yoroi design is to eliminate the

need to re-encrypt data on the server side after updating the table in the SPNbox.

Therefore, longevity is defined as securing the white-box algorithm without changing

the master key of the lookup table and updating the table only on the client side to

prevent code-lifting attacks. (Z)-longevity parameter is considered instead of (M,Z)-

space hardness criterion.
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Algorithm 2 WBI of SPNbox

1: INPUT: x0
i ∈ Fnin

2 , i ∈ {0, · · · , t− 1}, T-Table

2: OUTPUT: xr
i ∈ Fnin

2 , i ∈ {0, · · · , t− 1}
3: for r = 1 to R do

4: for i = 0 to t− 1 do

5: xr
i ← T (xr

i )

6: end for

7: (xr
0, · · · , xr

t−1)←Mnin
· (xr

0, · · · , xr
t−1)

8: for i = 0 to t− 1 do

9: cri ← (r − 1) · (t) + i+ 1

10: xr
i ← xr

i ⊕ cri

11: end for

12: end for

Algorithm 3 BBI of SPNbox

1: INPUT: x0
i ∈ Fnin

2 , i ∈ {0, · · · , t− 1}, kj ∈ Fnin
2 , j ∈ {0, · · · , rnin

}
2: OUTPUT: xr

i ∈ Fnin
2 , i ∈ {0, · · · , t− 1}

3: for r = 1 to R do

4: for i = 0 to t− 1 do

5: xr
i ← xr

i ⊕ k0

6: for j = 1 to rnin
do

7: xr
i ← Sbox(xr

i )

8: xr
i ← x · Anin

9: xr
i ← x⊕ kj

10: end for

11: end for

12: (xr
0, · · · , xr

t−1)←Mnin
· (xr

0, · · · , xr
t−1)

13: for i = 0 to t− 1 do

14: cri ← (r − 1) · (t) + i+ 1

15: xr
i ← xr

i ⊕ cri

16: end for

17: end for
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Definition 3 ((Z)-longevity). A cryptographic function that retains the same func-

tionality while leaking to the adversary is called (Z)-longevity if, in terms of compu-

tational cost, the probability of correctly encrypting/decrypting a randomly selected

text is higher than 2(−Z).

Similar to the idea in the (M,Z)-space hardness concept, the table needs to be updated

after the table leak reaches the limit on the client side. The longevity is achieved by

applying encryption of another small block cipher to the output of the lookup table.

This additional small-scale block cipher is applied to u-bit of the nin-bit entries of

the table where u < nin. When the table update is required, the key of the added

small-scale block cipher is changed while the master key of the original table remains

the same.

The Yoroi structure differs from the SPNbox design by using a partial MDS matrix

in the white-box algorithm. Since encryption and decryption are applied sequentially

in the table creation method, a partial MDS matrix is required to ensure consistency

between rounds. Three lookup tables are used on the client side.

2.1.3.1 The Table Construction

The Yoroi differs from the construction of the lookup table as another small-scale

block cipher is added to the existing lookup table in the white-box model. A small-

scale block cipher EK and DK is added to the SPNbox’s method without breaking

the black-box side’s consistency. The tables T1, T2 and T3 are constructed using the

T table such as

T1 = EK(msbu(T (x)))||lsbv(T (x)),

T2 = EK(msbu(T (DK(msbu(x))||lsbv(x))))||lsbv(T (DK(msbu(x))||lsbv(x))),

T3 = T (DK(msbu(x))||lsbv(x)).

The small-scale AES [17] or PRESENT [37] can be used in EK block cipher. The

table construction method is stated in Algorithm 4. In the white-box implementation,

the key of EK and DK are changed to update Yoroi’s substitution tables T1, T2, and

T3. There is no need to update the master key of the table T directly in the black-box

implementation.
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Algorithm 4 T-Tables generation algorithm of Yoroi
1: INPUT: T-table, small scale encryption key k

2: OUTPUT: T1, T2, T3

// Generate T1

3: while x < 2nin do

4: x← T (x)

5: x← EK(msbu(x))||lsbv(x)
6: end while

// Generate T2

7: while x < 2nin do

8: x← DK(msbu(x))||lsbv(x)
9: x← T (x)

10: x← EK(msbu(x))||lsbv(x)
11: end while

// Generate T3

12: while x < 2nin do

13: x← DK(msbu(x))||lsbv(x)
14: x← T (x)

15: end while

2.1.3.2 The Algorithm

The Yoroi has a 128-bit block size, nin = 16/32 bits word size, and a 128-bit key with

8/16 rounds. The state vector is defined as xr = (xr
0, x

r
1, ..., x

r
t−1), where t = 128/nin.

Each element xr
i is taken as (msbu(x

r
i )||lsbv(xr

i )) where u+ v = nin and v = 4. The

Yoroi algorithm consists of the nonlinear γi, the affine σi, and the linear θ layers. In

the last round, ten rounds of fixed-key AES are applied in the function A to achieve

diffusion, as in WhiteBlock [25] and WEM [14] algorithms.

xR = A ◦ γR ◦ (⃝R−1
i=1 (θ ◦ σi ◦ γi))(x0).

The nonlinear γi consists of key-dependent nin-bit T1, T2, and T3 substitution boxes.

In the first round, T1, in the last round, T3 and in the rest of the rounds, T2 are applied.

In the affine layer σi, the state is xored with constants ci = i for 1 ≤ i ≤ R −
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1. The linear layer θ consists of an t × t MDS matrix over GF (2v) applied to the

state’s least significant v bits. The pseudo-codes of the white-box and the black-box

implementations are given in Algorithm 5 and Algorithm 6.

Algorithm 5 WBI of Yoroi

1: INPUT: (x0
i ∈ Fnin

2 , i ∈ {0, · · · , t− 1}, T1, T2, T3

2: OUTPUT: xR
i ∈ Fnin

2 , i ∈ {0, · · · , t− 1}
3: (x0

0, · · · , x0
t−1)← (T1(x

r
0), · · · , T1(x

r
t−1))

4: (x0
1, · · · , x0

t−1)← (x0
0 ⊕ c0, · · · , x0

t−1 ⊕ c0)

5: (lsb(x0
0), · · · , lsb(x0

t−1))←Mv · (lsb(x0
0), · · · , lsb(x0

t−1))

6: for r = 2 to R-1 do

7: (xr
0, · · · , xr

t−1)← (T2(x
r
0), · · · , T2(x

r
t−1))

8: (xr
0, · · · , xr

t−1)← (xr
0 ⊕ cr, · · · , xr

t−1 ⊕ cr)

9: (lsb(xr
0), · · · , lsb(xr

t−1))←Mv · (lsb(xr
0), · · · , lsb(xr

t−1))

10: end for

11: (xR
0 , · · · , xR

t−1)← (T3(x
R
0 ), · · · , T3(x

R
t−1))

12: (xR
0 , · · · , xR

t−1)← A(xR
0 , · · · , xR

t−1)

Algorithm 6 BBI of Yoroi

1: INPUT: (x0
i ∈ Fnin

2 , i ∈ {0, · · · , t− 1}, T
2: OUTPUT: xR

i ∈ Fnin
2 , i ∈ {0, · · · , t− 1}

3: for r = 1 to R do

4: (xr
0, · · · , xr

t−1)← (T (xr
0), · · · , T(x

r
t−1))

5: (xr
0, · · · , xr

t−1)← (xr
0 ⊕ cr, · · · , xr

t−1 ⊕ cr)

6: (lsb(xr
0), · · · , lsb(xr

t−1))←Mv · (lsb(xr
0), · · · , lsb(xr

t−1))

7: end for

8: (xR
0 , · · · , xR

t−1)← (T(x
R
0 ), · · · , T(x

R
t−1))

9: (xR
0 , · · · , xR

t−1)← A(xR
0 , · · · , xR

t−1)

2.1.4 WARX

The space-hard white-box algorithm WARX [42] is proposed by Liu J. et al. with

the motivation that existing white-box implementations run slowly or need ample

storage space. Therefore, WARX proposes using ARX (Addition/Rotation/XOR) ap-
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proach [23] to generate the lookup table used in the nonlinear layer. Additionally,

speeding up the run-time performance of the white-box implementation is suggested

by reducing the number of round by one according to SPNbox-16 [10] and WEM [14]

with the random MDS matrix recommendation.

2.1.4.1 Table Construction

The lookup table T used in the nonlinear layer is generated with mSPARX-16 stated

in Algorithm 7, inspired by SPARX algorithm [23]. It consists of 24 rounds with

xoring the round keys and output of ARX-based mSPECKEY stated in Algorithm 8.

The round keys are generated using a trusted key derivation function.

Algorithm 7 mSPARX-16

1: INPUT: x ∈ F16
2 , round keys (k0, ..., k23)

2: OUTPUT: x ∈ F16
2

3: x← x⊕ k0

4: for i = 0 to 23 do

5: x← mSPECKEY (x)⊕ ki

6: end for

Algorithm 8 mSPECKEY
1: INPUT: Plaintext x

2: OUTPUT:

3: l← lsb(x, 8)

4: m← msb(x, 8)

5: l← l ≫ 7

6: l← l ⊞m

7: m← m ≪ 2

8: m← m⊕ l

9: RETURN: l||m
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2.1.4.2 The Algorithm

WARX is an SPN-based white-box block cipher with a 16-bit word size, 128-bit

key length, and seven rounds. Each round consists of nonlinear, linear, and constant

addition layers. The random MDS matrix used in the linear layer is generated by

multiplying a well-designed MDS matrix with a randomly generated diagonal matrix.

Mrand = diag(rc0 , ..., rc7) ·MDS

where ri ∈ 216 and randomly generated. The MDS matrix of lightweight Khazad al-

gorithm [1] is used to generate the random matrix in WARX. The pseudo-codes of the

white-box and the black-box implementations of WARX are specified in Algorithm 9

and Algorithm 10.

Algorithm 9 WBI of WARX

1: INPUT: xi ∈ F16
2 , i ∈ {0, · · · , 7}, T-Table

2: OUTPUT: xi ∈ F16
2 , i ∈ {0, · · · , 7}

3: for r = 7 to 1 do

4: (x0, · · · , x7)← (x0, · · · , x7)
⊕

(8(r− 1) + 1, 8(r− 1) + 2, ..., 8(r− 1) + 8)

5: (x0, · · · , x7)← (x0, · · · , x7) · (M−1
rand)

T

6: (x0, · · · , x7)← (T (x0), T (x1), ..., T (x7))

7: end for

The attack types to white-box implementations are detailed since the WARX struc-

ture has randomness in the linear layer, unlike other space-hard ciphers. Moreover,

guessing the unknown part of the lookup table is added to the success probability of

the (M,Z)-space hardness criteria. Therefore, the round number of the white-box

algorithms is computed more accurately.

2.1.5 Other Space-Hard Ciphers

Other than these (M,Z)-space hard algorithms, Feistel-based WhiteBlock [25], FPL [36]

and Galaxy [35], Even-Mansur structure based WEM [14] were proposed to acceler-

ate run-time performance while keeping the security strength of the white-box algo-

rithms.
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Algorithm 10 BBI of WARX

1: INPUT: xi ∈ F16
2 , i ∈ {0, · · · , 7}, kj ∈ F16

2 , j ∈ {0, · · · , 23}
2: OUTPUT: xi ∈ F16

2 , i ∈ {0, · · · , 7}
3: for r = 7 to 1 do

4: (x0, · · · , x7)← (x0, · · · , x7)
⊕

(8(r− 1) + 1, 8(r− 1) + 2, ..., 8(r− 1) + 8)

5: (x0, · · · , x7)← (x0, · · · , x7) · (M−1
rand)

T

6: for i = 0 to 7 do

7: xi ← xi ⊕ k0

8: for j = 0 to 23 do

9: xi ← mSPECKEY (xi)⊕ kj

10: end for

11: end for

12: end for

2.2 Security

The security of the algorithms is considered for white-box and black-box attacks,

respectively.

2.2.1 White-box Security

The white-box security of an algorithm is evaluated by its resistance to key extraction

from the lookup table and by its inability to use the table as a large key outside of the

white-box environment called code lifting attacks [9].

2.2.1.1 Key Extraction Security

In the space-hard ciphers, extracting the secret key from the white-box structure turns

into recovering the key from the lookup table in black-box setting [9] since the secret

key is embedded into the table. Therefore, the algorithm is as resistant to key ex-

traction attacks as the reliability of the table creation method. A malicious observer

should not be able to obtain the secret key from the table values used in the internal

steps of encryption or from the leaked portion of the table.
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The table generation method of SPNbox consists of AES components with 16 rounds.

The differential probability of the S-box is 2−6 and the linear correlation value is 2−3.

The number of branches of the MDS matrix is 5. The minimum number of active S-

boxes was calculated using the method described by Mouha et al. in [44]. According

to the active S-boxes number in Table 2.1, the table creation method provides 128-bit

security with ten rounds against key extraction attacks.

Table 2.1: Active S-box number of table creation method of SPNbox-32.
round 1 2 3 4 5 6 7 8 9

Active Sbox 1 5 6 10 11 15 16 20 21
round 10 11 12 13 14 15 16 17 18

Active Sbox 25 26 30 31 35 36 40 41 45

The base table creation method of the Yoroi is the same with the SPNbox’s method.

Therefore. key extraction security of Yoroi is depends on the security strength of the

using additional small block cipher to construct T1, T2, and T3 tables as stated in the

article [34].

WARX’s table creation method is similar to the ARX-box of the SPARX algorithm [23].

The optimal differential characteristic probability is 2−19 and the optimal linear trail

is 2−9 after 9 rounds as detailed in the article [42]. Therefore, the table is secure

against single trail differential and linear cryptanalysis with 24 rounds.

2.2.1.2 Code Lifting Security

Resistance to code-lifting attacks is a crucial security measurement for space-hard

ciphers since lookup tables are used as a large key in the design. Incompressible

tables are needed to limit leakage of the code (table) and prevent table decomposition

and code lifting attacks [22]. Code lifting security is defined with weak (M,Z)-space

hardness in [9].

The space hardness attack types are discussed as known-space attacks, chosen-space

attacks, and adaptively-chosen-space attacks in [10] according to the attacker’s con-

trol capacity on the white-box environment. The success probability 2−Z of space

hardness is computed according to Theorem 1 for known-space and chosen-space
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attack types.

Theorem 1. [9] For the size M of the table T is known from an adversary, a randomly

chosen text can be encrypted with a success probability (M/T )t·R, where t is the

number of table entries in a round and R is the round number.

Space hardness is specified for the Yoroi algorithm with Theorem 2 by including three

tables used in the white-box implementation.

Theorem 2. [34] For the size M1,M2 and M3 of tables T1, T2 and T3 are known from

an adversary, a randomly chosen text can be encrypted with a success probability

(
M1

T1

)t × (
M2

T2

)t·(R−2) × (
M3

T3

)t

From the longevity property in Yoroi, the tables are updated without changing the

least significant t-bit. Therefore, the success probability of space hardness is intu-

itively proven in the article according to the updated tables.

The attack types in WARX are detailed as a cipher, linear layer, nonlinear layer, and

hybrid attacks according to the leakage of code and table segments since a random

MDS matrix is used in the linear layer. Hybrid attacks consist of a certain number

of combinations of each identified attack. When computing space hardness success

probability, the white-box security level is limited to tablesize · 2blocksize bits. Addi-

tionally, correctly guessing the unknown table entries is included in the probability of

encrypting the randomly selected plaintext.

2.2.2 Black-box Security

The black-box security of the block ciphers is important against key recovery attacks,

as the same key is used until the table is updated.

2.2.2.1 Differential Cryptanalysis

To compute the security strength of a block cipher against differential attacks, firstly

maximum differential probability of the nonlinear layer is needed. The differential
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probability of T : 2nin → 2nin is defined as

DP (α, β) = 2−nin ·#{x | T (x)⊕ T (x⊕ α) = β}

where α, β ∈ 2nin . The maximum differential probability (MDP) is taken as

max
∀(α,β)

DP (α, β)

The MDP values for SPNbox-nin are stated according to paper [29], as 2−4, 2−11,

2−18.42, and 2−26 for nin = 8, 16, 24, 32 word sizes, respectively. The branch number

of the used MDS matrix is five, and the desired security is provided after four rounds

for nin = 8, 16, 24 and after two rounds for nin = 32.

The maximum differential probability of the table WARX is given as 2−19, and 9 T-

box is active after two rounds using the MDS matrix. Therefore, WARX is provided

desired security level with seven rounds.

2.2.2.2 Linear Cryptanalysis

Similar to differential cryptanalysis, the maximum linear correlation is needed to de-

termine the security level against linear attacks. The linear correlation of T : 2nin →
2nin is defined as

LC(α, β) = (21−nin ·#{x | α • x = β • f(x)} − 1)2

where α, β ∈ 2nin and • represents the inner product. The maximum linear correla-

tion (MLC) is obtained from

max
∀(α,β)

LP (α, β)

The MLC values for SPNbox-nin are stated in [10] as 2−3.67, 2−10.62, 2−18.02, and

2−2.61 for nin = 8, 16, 24, 32 cases. The active T-box number is 51 after 6 rounds for

nin = 8, 18 after 4 rounds for nin = 16, 12 after 4 rounds for nin = 24, and 5 after 2

rounds for nin = 32.

The WARX’s substitution box has 2−9 MLP. Hence, the WARX provides expected

resistance to linear cryptanalysis after two rounds with nine active T-boxes.
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2.2.2.3 Slide Attacks

The slide attacks are based on the similarity of the rounds instead of the total round

number of a block cipher. A different round constant is used for each round in

SPNbox-nin, Yoroi, and WARX to prevent slide attacks.

2.2.2.4 Algebraic Attacks

The idea of an algebraic attack comes from solving low-order or multivariate non-

linear equations consisting of plaintext and ciphertext samples to obtain the key. Al-

gebraic attacks are not applicable to the ciphers because of their T-box generation

method.
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CHAPTER 3

SPACE-HARD WHITE-BOX IMPLEMENTATIONS WITH THE

LIGHTWEIGHT COMPONENTS

The linear layer is the most time-consuming part of a space-hard white-box algo-

rithm. For this reason, we aim to observe the efficiency of linear lightweight compo-

nents in the white-box setting. Ten finalists and 19 second-round candidates of the

NIST Lightweight competition [19] were examined by compatibility of the space-

hard white-box conditions. The nonlinear layer of the white-box conversions are

utilized from WARX and SPNbox. Since the structure of these layers is based on

16-bit and 32-bit word sizes respectively, only the algorithms with 16/32 bits word

sizes are taken into consideration. By the security reasons stated in Section 3.2.3, the

linear components of Sparkle [3] from finalists, Spook [4], and Saturnin [13] among

the second-round candidates are used in the performance comparisons.

Saturnin [13] is an SPN-based lightweight algorithm. It uses Sbox and MDS matrices

to provide confusion and diffusion properties. Sparkle and Spook algorithms are

permutation constructs with no key scheduling or key addition layer. Sparkle is based

on ARX design consisting of addition, rotation, and xor operations [23]. The ARX

design uses the long trail strategy (LTS) approach [23], based on the powerful built-

in Sbox and the use of a linear layer with reduced computational cost. Spook has

two permutations named Clyde and Shadow for different block sizes but uses the

same bitslice implemented structure based on LS-design [27]. The permutation-based

designs are well suited for generating (M,Z)-space hard white-box algorithms. They

can be considered a more efficient linear layer than the existing space-hard ciphers

with the desired white-box security.
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In this chapter, linear components of the lightweight algorithms are examined in the

white-box setting. Algorithm specifications are stated in Section 3.1. Round num-

bers of the white-box algorithms are computed according to the code lifting security

criteria in Section 3.2. The run-time performance of 16-bit designs is compared with

WARX, and 32-bit designs are compared with SPNbox-32 in Section 3.3.

3.1 Specifications of the White-box Algorithms

This section outlines the table creation method and white-box conversion features.

3.1.1 Table creation method

The lookup table used as a substitution box in a white-box context is created using

a small-block cipher [10, 42]. Round keys of the small-block cipher are generated

using a trusted extendable output function (XOF) with a secret key, and all values

in the 2wordsize field are encrypted with the cipher. The generated table is used as

a substitution box to ensure nonlinearity in the white-box implementation. In any

case, SHAKE [24] algorithm was used to generate the round keys. In the conversions,

WARX’s table creation method is used for 16-bit word size algorithms, and SPNbox’s

method is used for 32-bit algorithms. The table creation method of WARX 2.1.4 is

based on ARX design and the table size is 128 KiB. The SPNbox’s table creation

method 2.1.2 uses AES components, and the table size is 16 GiB.

3.1.2 Saturnin

Saturnin [13] is a 256-bit block cipher with 16-bit word size and super-rounds, where

even and odd rounds are implemented successively in each round. The state of Sat-

urnin is taken as a 4× 4 square in 16-bit words. In a super round of Saturnin, S−box

and MDS layers are implemented in the even part. For the odd part, the layers are

divided into two branches after applying S−box. If the round number is equiva-

lent to 1 according to mod 4, the round consists of SR−slice, MDS, SR−slice−inv,

adding round constants, and XOR_key_rotated layers. In the other branch, the lay-
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ers SR−slice and SR−slice−inv change to SR−sheet and SR−sheet−inv layers.

In the linear layer, an MDS matrix is applied to 4 nibbles in parallel and defined as

M : GF (24)4 → GF (24)4

(u0, u1, u2, u3)→


α2(u0)⊕ α2(u1)⊕ α(u1)⊕ u2 ⊕ u3

u0 ⊕ α(u1)⊕ u1 ⊕ α2(u2)⊕ u2 ⊕ α2(u3)⊕ α(u3)⊕ u3

u0 ⊕ u1 ⊕ α2(u2)⊕ α2(u3)⊕ α(u3)

α2(u0)⊕ u0 ⊕ α2(u1)⊕ α(u1)⊕ u1 ⊕ u2 ⊕ α(u3)⊕ u3


The α transformation used in the matrix is taken as

α : GF (2)4 → GF (2)4

(v0, v1, v2, v3)→ (v1, v2, v3, v0 ⊕ v1)

Linear transformations SR−slice and SR−sheet are used to provide diffusion into

16-bit state words. In SR−slice, rotation is applied inside each 4-bit part of the

state-word, while in SR−sheet, 4-bit parts of the state-word are rotated. The round

constants RC0 and RC1 are generated using two different LFSR with feedback poly-

nomials x16 + x5 + x3 + x2 + 1 and x16 + x6 + x4 + x+ 1.

3.1.2.1 White-box conversion

The linear layer and round constants of wSaturnin are taken from the lightweight

design [13]. The XOR−key−rotated layer is removed, and the lookup table and

S−box layer are replaced. Also, instead of applying layers SR−slice and SR−sheet

only in even rounds, SR−slice is applied on odd rounds and SR−sheet on even

rounds. The wSaturnin is implemented in 8 rounds. The pseudo-code of wSaturnin is

stated in Algorithm 11.

The computational cost of the MDS layer is 38 · xor operations. SR−slice, and

SR−slice−inv layers have 24 · and + 12 · or operations, respectively. Moreover,

SR−sheet, and SR−sheet−inv layers have 12 · or operations, respectively. There

are 2 · xor operations from adding round constants. Thus, computational cost of the

wSaturnin is 320 · xor + 192 · or + 192 · and operations.
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Algorithm 11 wSaturnin.

1: Input: xi ∈ F16
2 , i ∈ {0, · · · , 15}, T-Table

2: Output: xi ∈ F16
2 , i ∈ {0, · · · , 15}

3: for i = 0 to R-1 do

4: for j = 0 to 15 do

5: xj ← T (xj)

6: end for

7: if ((i&1) == 0) then

8: (x0, · · · , x15)← SR−slice((x0, · · · , x15)

9: (x0, · · · , x15)←MDS(x0, · · · , x15)

10: (x0, · · · , x15)← SR−slice−inv((x0, · · · , x15)

11: else

12: (x0, · · · , x15)← SR−sheet((x0, · · · , x15)

13: (x0, · · · , x15)←MDS((x0, · · · , x15)

14: (x0, · · · , x15)← SR−sheet−inv((x0, · · · , x15)

15: end if

16: x0 ← x0 ⊕RC0[i]

17: x8 ← x8 ⊕RC1[i]

18: end for

3.1.3 Sparkle

The Sparkle permutation [3] is a combination of SPN and Feistel structures with

32-bit word size and 256/384/512-bit block size variants. The Sparkle permutation

is created as an SPN cipher, while the layers are in a simple Feistel structure. It

consists of a step counter layer, an ARX-based Alzette box for nonlinearity, and a

linear diffusion layer Lw that swaps the branches. The linear transformation Lw is

defined as

Lw : GF (2w)l → GF (2w)l

((x0, y0), · · · , (xl−1, yl−1))→ ((u0, v0), · · · , (ul−1, vl−1))

where (ui, vi) pairs are computed from the equations

ui ← xi ⊕ α(
l−1⊕
j=0

yj), vi ← yi ⊕ α(
l−1⊕
j=0

xj), i ∈ 0, · · · , l − 1
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α(t)← (t ≪ w/2)⊕ (t & 0× FFFF )

3.1.3.1 White-box conversions

The 256-bit variant are examined for internal details of the white-box conversion.

Although Sparkle is designed with a 32-bit word size, we also implement the 16-

bit word size option when converting to the white-box setting. The Alzette box is

discarded, and the constructed lookup tables are used in the nonlinear layer. The

pre-defined round constants ci are taken directly from the lightweight design. The

white-box conversions are stated in Algorithm 12. The round numbers of wSparkle-

16 and wSparkle-32 are computed as 8 and 14, respectively, in the white-box setting.

Algorithm 12 wSparkle-16/wSparkle-32.

1: Input: (xi, yi) ∈ Fw
2 × Fw

2 , i ∈ {0, · · · , l}, w = 16, 32, l = 256/w, T-Table

2: Output: (xi, yi) ∈ Fw
2 × Fw

2 , i ∈ {0, · · · , l}
3: (c0, · · · , cl)← algorithm−constants

4: for i = 0 to R-1 do

5: y0 ← y0 ⊕ c(i mod 8)

6: y1 ← y1 ⊕ i

7: for i = 0 to l do

8: (xi, yi)← (T (xi), T (yi))

9: end for

10: (x0, y0), ..., (xl, yl)← Lw((x0, y0), ..., (xl, yl))

11: end for

One round of wSparkle-16 consists of 2 · xor operations from round constants, and

26 · xor + 2 · or operations from the linear layer. Hence, computational cost of the

wSparkle-16 is 224 ·xor+16 ·or operations. Similarly, one round of the wSparkle-32

has 2 · xor operations from round constants, and 14 · xor+2 · or operations from the

linear layer, so the total computational cost is 224 · xor + 28 · or operations for the

wSparkle-32.
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3.1.4 Spook

The Spook is an LS-design based lightweight algorithm. It has the Clyde permutation

with a 128-bit block size, and the Shadow permutation with 384/512-bit block sizes.

The permutations are based on bitslice implemented LS-design and consist of non-

linear Sbox, linear Lbox, and round constant addition layers in one round. Shadow’s

difference from Clyde is linear Dbox and another round constant layers. Bitslice im-

plemented Lbox takes two 32-bit state words to increase the branch number. The

inner operations are specified as in Table 3.1. Since Lbox is applied to 128-bit sub-

blocks, the additional linear component Dbox is used to diffuse 128-bit blocks to each

other in the Shadow.

Table 3.1: Lbox
u = x⊕ (x ≪ 12); v = y ⊕ (y ≪ 12);

u = u⊕ (u ≪ 3); v = v ⊕ (v ≪ 3);

u = u⊕ (x ≪ 17); v = v ⊕ (y ≪ 17);

t = u⊕ (u ≪ 31); z = v ⊕ (v ≪ 31);

u = u⊕ (z ≪ 26); v = v ⊕ (t ≪ 25);

u = u⊕ (t ≪ 15); v = v ⊕ (z ≪ 15)

3.1.4.1 White-box conversions

The white-box conversions are applied to 128/256/384 bits block sizes with 32-bit

word size. Since the lightweight design does not have a 256-bit block variant, the

white-box conversion with some modifications has been performed for this block

size. The lightweight permutation is converted to the white-box setting by adding the

lookup table as a nonlinear layer at the beginning of the permutation. The nonlinear

layer of the lightweight permutation is discarded. In the white-box implementations,

two Lboxes are used in a round successively, and we change the input order of Lboxes

according to the round number to increase diffusion property. In the even rounds,

the first Lbox takes the upper half of the state words and the second Lbox takes the

other side of the words. However, in the odd rounds, the first Lbox gets the first

and third words of the state, and the second Lbox gets the remaining words. At the

same time, the 256-bit wShadow is performed by changing the linear Dbox with a

256-bit variation since the Dbox in lightweight design cannot be directly adapted.

26



Implementation details of the Dboxes are given in Algorithm 13 and Algorithm 14.

The round constants generated from a 4-bit LFSR, as well as linear components, are

taken from the lightweight design to the white-box conversions.

Algorithm 13 Dbox for 256-bit.

1: Input: xi ∈ (F32
2 ), i ∈ {0, · · · , 7}

2: Output: xi ∈ (F32
2 ), i ∈ {0, · · · , 7}

3: for i = 0 to 3 do

4: xi ← xi ⊕ (xi+4 ≪ 15)

5: xi+4 ← xi ⊕ (xi ≪ 19)

6: end for

Algorithm 14 Dbox for 384-bit.

1: Input: xi ∈ (F32
2 ), i ∈ {0, · · · , 11}

2: Output: xi ∈ (F32
2 ), i ∈ {0, · · · , 11}

3: for i = 0 to 3 do

4: u← x4·i

5: v ← x4·i+1

6: t← x4·i+2

7: x4·i ← u⊕ v ⊕ t

8: x4·i+1 ← u⊕ t

9: x4·i+2 ← u⊕ v

10: end for

The pseudo-code of the white-box conversions are specified in Algorithm 15. Round

numbers for 128/256/384 bits block sizes of the white-box implementations are calcu-

lated as 12/14/15, respectively. The wClyde has 24·xor+24·or from lbox−layer and

4 ·xor operations from add−rc in one round. Total computational cost of the wClyde

is 336 ·xor+288 ·or operations. One round of the wShadow256 has 48 ·xor+48 ·or
from lbox−layer, 8 · xor and 8 · or operations from dbox−layer, and 16 · xor op-

erations from add−rc. Therefore, total computational cost of the wShadow256 is

1008 · xor + 784 · or operations. Similarly, one round of the wShadow384 has

72 · xor + 72 · or from lbox−layer, 16 · xor operations from dbox−layer, and

24 · xor operations from add−rc. Total computational cost of the wShadow384 is

1680 · xor + 1080 · or operations.

3.1.5 Computational Cost Comparisons

The computational cost of the white-box algorithms is stated in Table 3.2. The cost of

WARX is discarded since it uses a library for finite field computations. The word size

of the opeartions is 16-bit for wSaturnin and wSparkle-16, while 32-bit operations are

applied for the remaining algorithms. wSaturnin has more operations when compared
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Algorithm 15 wClyde/wShadow256/wShadow384.

1: INPUT: xi ∈ (F32
2 ), i ∈ {0, · · · , 4 · n− 1}, T-Table

2: OUTPUT: xi ∈ (F32
2 ), i ∈ {0, · · · , 4 · n− 1}

3: for i = 0 to R-1 do

4: for j = 0 to 4 · n− 1 do

5: xj ← T (xj)

6: end for

7: for j = 0 to n-1 do

8: (x4·j, x4·j+1+(j&1))← lbox−layer(x4·j, x4·j+1+(j&1))

9: (x4·j+2−(j&1), x4·j+3)← lbox−layer(x4·j+2−(j&1), x4·j+3)

10: (x4·j, · · · , x4·j+3)← add−rc((x4·j, · · · , x4·j+3), 2 · i, j)
11: end for

12: if n>1 then

13: (x0 · · ·x4·n)← dbox−layer(x0 · · ·x4·n)

14: for j = 0 to n-1 do

15: (x4·j, · · · , x4·j+3)← add−rc((x4·j, · · · , x4·j+3), 2 · i+ 1, j)

16: end for

17: end if

18: end for

to wSparkle-16. For 32-bit word size algorithms, the most costly algorithm is the

white-box wShadow384, and the cheapest one is the white-box wSparkle-32.

Table 3.2: Computational cost
Algorithm Cost

wSaturnin 320 · xor + 192 · or + 192 · and
wSparkle-16 224 · xor + 16 · or
SPNbox-32 512 · xor + 192 · and+ 192 ·mul

wClyde 336 · xor + 288 · or
wSparkle-32 224 · xor + 28 · or
wShadow256 1008 · xor + 784 · or
wShadow384 1680 · xor + 1080 · or

28



3.2 Security

The white-box security of an algorithm is evaluated by its resistance to key extraction

from the lookup table and by its inability to use the table as a large key outside of the

white-box environment called code lifting [9].

3.2.1 Key Extraction Security

The key extraction security of the white-box conversions relies on the security of

the table creation methods of WARX [42] and SPNbox [10]. WARX’s table creation

method is similar to ARX-box of the SPARX [23]. The optimal differential character-

istic probability and the details of the optimal linear trail are given in the article [42].

Security of the table construction method of SPNbox-32 is discussed in Section 2.2.

According to the number of active Sboxes, the method provides 128-bit security with

10 rounds. On the other hand, at least 18 rounds are required to provide 256-bit

security.

3.2.2 Code Lifting Security

Resistance to code-lifting attacks is a crucial security measurement for space-hard

ciphers since lookup tables are used as a large key in the design. Therefore, incom-

pressible tables are needed to limit leakage of the code (table) and prevent code lifting

attacks [22]. Code lifting security is defined by weak (M,Z)-space hardness crite-

ria [9].

When computing the probability of success of the encryption/decryption in a white-

box context, we also include correctly guessing the corresponding entry of the table

in Equation 3.1 if the entry is not located in the leaked part of the lookup table, as

specified in [42]. Let the size of the entire table in memory be T, and the size of the

leaked part of the table be M. We can generalize the success probability as

p = (
M

T
+ (

1

T −M
) · (1− M

T
))r·t (3.1)
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where r represents the round number, and t represents the table lookup number for

one round. If the corresponding entry is in the leaked part of the table, the probability

of being correct is 1. The probability of encountering such entries is at most M
T

,

depending on the leak size. If the corresponding value is not in the leaked part, the

probability of correctly guessing the value is 1
T−M

. The probability of encountering

such an entry is 1− M
T

.

The maximum achievable security for a white-box algorithm is calculated by consid-

ering the leaked size of the lookup table [25, 14, 42] and limited to keysize − log2(T )

bits. Since M
T

is considered a small rate, the level of security is generalized to the leak

of the entire table. However, we think it is more convenient to take the security level

as keysize − log2(M) bits for more precise calculations on round numbers. The

round number may be smaller than the desired number assuming the entire table is

leaked. If the leak limit is exceeded, the lookup table must be updated to provide the

recommended size of security.

The numbers of rounds of the white-box implementations are calculated according to

Equation (3.2) and the results are given in Table 3.3. The table and leakage sizes are

taken as T = wordsize · 2wordsize-bit and M =
T

4
-bit.

M · 2−keysize = (
M

T
+ (

1

T −M
) · (1− M

T
))rt (3.2)

Table 3.3: Round numbers

Algorithm (keysize, wordsize) t =
keysize

wordsize
r =

log2(M)− keysize

t · log2(
M + 1

T
)

wSaturnin (256,16) 16 8
wSparkle-16 (256,16) 16 8
wClyde (128,32) 4 12
wSparkle-32 (256,32) 8 14
wShadow256 (256,32) 8 14
wShadow384 (384,32) 12 15

Similar to [9], we assumed that space-hardness is fixed to the leakage of 1
4

of the

lookup table. The relation between the leak size of the table and the round numbers

is shown in Figure 3.1. As the defined leak size increases, the round number of the

white-box algorithm increases to provide the expected security level. For fixed leak
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(a) (b)

Figure 3.1: Relation between leakage size and round numbers.

size, if an algorithm offers higher security than others with the same number of lookup

table entries in one round, the algorithm has more rounds than the others. Also, as the

lookup table number in a round increases, the number of round decreases.

3.2.3 Diffusion Criteria

The strict avalanche criteria [48] is used to measure the diffusion property of the

white-box conversions. The SAC test aims to measure the effect on the output bits

when one bit of the input is changed. The experiments were performed on 220 random

samples as described in [3]. For each sample, i-th bit of the input was complemented,

and its effect on each output bit was examined, respectively. If the j output bit was

changed then the entry of Mi,j was increased by one. The minimum and maximum

Mi,j values are stated in Table 3.4 The mean µ value of binomial distribution of M is

computed as

µ =
1

n2

n−1∑
i=0

n−1∑
j=0

Mi,j (3.3)

where n represents the block length of the cipher. The variance var of the distribution

matrix is computed as
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var =
1

n2

n−1∑
i=0

n−1∑
j=0

(Mi,j − µ)2 (3.4)

According to the SAC test results in Table 3.4, the WARX provides diffusion prop-

erty after two rounds, but the wSaturnin provides it after 3 rounds. The wSparkle-

16/wSparkle-32 needs four rounds to diffuse every bit of the output. The wClyde and

the wShadow256/wShadow384 supply diffusion property after the two round, while

SPNbox-32 provides full diffusion after first round.

Table 3.4: SAC test results with 220 random samples.
Algorithm (n, round) Min. Value Max. Value µ var

WARX (128,2) 522177 526165 524285 262294
wSaturnin (256,3) 522108 526384 524290 262414
wSparkle-16 (256,4) 521898 526455 524259 272673
SPNbox-32 (128,1) 522413 526444 524283 263596
wClyde (128,2) 521725 526323 524290 265564
wSparkle-32 (256,4) 521984 526579 524289 260823
wShadow256 (256,2) 522136 526472 524287 261908
wShadow384 (384,2) 522129 526902 524288 260957

3.3 Performance Results

The run-time performance of the white-box and black-box implementations were

compared with the algorithms WARX and SPNbox-32. Since the lookup tables dif-

fer according to word sizes, the wSaturnin and the wSparkle-16 were compared with

WARX and other algorithms with SPNbox-32. WARX code using Givaro library [41]

for finite field computations was taken from GitHub [32]. The SPNbox-32 was im-

plemented without using a library by us. While using the linear layers of lightweight

designs in the white-box setting, we referenced the NIST GitHub repository [47]. The

white-box conversion algorithms 1, run on randomly generated 3072 bytes messages

with 100000 cycles and -O3 optimization on a laptop equipped with x86-64 archi-

tecture and a 2.80 GHz Intel Core i7-1165G7 CPU. The operating system is Ubuntu

20.04.5 LTS with Linux Kernel 5.15.0, and the compiler is gcc-9.4.0. The perfor-

mance results for white-box implementations are in Table 3.5 and Table 3.6. Simi-
1 https://github.com/hkcryp/wbc
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larly, the performance results for black-box implementations are given in Table 3.7

and Table 3.8.

According to the performance results in Table 3.5, the wSaturnin is almost eleven

times faster than the WARX, with a MAS level of 242-bit. At the same security

level, the wSparkle-16 is 48 times faster than WARX. The code size of wSaturnin

and wSparkle-16 is almost half of the WARX’s code size, while WARX’s memory

usage is twelve times higher than the white-box conversions.

Table 3.5: Performance results of the 16-bit word size white-box implementations.
Algorithm Key Size Round MAS Cycle Memory Usage Code Size

(bit) (bit) (per byte) (KiB) (KiB)
WARX 128 7 114 288 852.5 223
wSaturnin 256 8 238 26 72 133.7
wSparkle-16 256 8 238 6 72 131.5

Since the round number of SPNbox-32 was calculated as 16 instead of 10 according

to the code lifting security criteria, it was taken as 16 in the experiments. Based on

performance comparisons for 32-bit word size algorithms in Table 3.6, all white-box

conversions are faster than SPNbox-32. The wClyde is 38% faster than SPNbox-

32 with a 96-bit MAS level. The wSparkle-32 and the wShadow256 are faster than

SPNbox-32 with 42% and 16%, respectively. The wShadow384 is 24% faster than

SPNbox-32 with a 354-bit MAS level. Although the memory usage of all algorithms

is the same, SPNbox-32 and wSparkle-32 have the smallest code size. The largest

code size in white-box implementations belongs to the wShadow384.

Table 3.6: Performance results of the 32-bit word size white-box implementations.
Algorithm Key Size Round MAS Cycle Memory Code Size

(bit) (bit) (per byte) Usage (GiB) (KiB)
SPNbox-32 128 16 128 140 16 1.9
wClyde 128 12 93 87 16 2.8
wSparkle-32 256 14 221 82 16 1.9
wShadow256 256 14 221 118 16 3.6
wShadow384 384 15 349 107 16 3.9

While the white-box algorithm is used in the client side, the black-box algorithms is

utilized for server side. In the black-box impementations, instead of using a lookup

table, the table generation method is integrated into the nonlinear layer. The table
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creation method of WARX is implemented in the nonlinear layer of the black-box

wSaturnin and the black-box wSparkle-16, while SPNbox’s method is implemented

in the remaining black-box algorithms.

According to the results in Table 3.7, the black-box wSaturnin is two times faster than

WARX, while the black-box wSparkle-16 is 2.3 times faster than WARX. Similar to

the white-box implementations, both wSaturnin’s and wSparkle-16’s code sizes are

smaller than WARX, while WARX’s memory usage is almost 12 times higher than

the 16-bit implementations.

Table 3.7: Performance results of the 16-bit word size black-box implementations.
Algorithm Key Size Round Cycle Memory Usage Code Size

(bit) (per byte) (KiB) (KiB)
WARX 128 7 460 852.5 94
wSaturnin 256 8 220 72 5.4
wSparkle-16 256 8 199 72 5.2

According to performance results in Table 3.8, the black-box wClyde and the black-

box wSparkle-32 are 11% and 14% faster than the black-box SPNbox-32. Unfortu-

nately, the black-box implementations of wShadow256 and wShadow384 are 4% and

12% slower than SPNbox-32. Memory usage of the black-box implementations is

the same. When the code sizes of the algorithms are compared, the smallest is the

wSparkle-32, and the largest is the wShadow256.

Table 3.8: Performance results of the 32-bit word size black-box implementations.
Algorithm Key Size Round Cycle Memory Usage Code Size

(bit) (per byte) (KiB) (KiB)
SPNbox-32 128 16 2007 72 2.9
wClyde 128 12 1784 72 3.3
wSparkle-32 256 14 1722 72 2.7
wShadow256 256 14 2090 72 3.8
wShadow384 384 15 2241 72 3.5

The different leak sizes for 114-bit and 98-bit expected security levels are defined in

Table 3.9. According to the table, there is an inverse relationship between the block

size of the algorithms and the table leak sizes at the same security level. Because

wShadow384’s block size is larger than the others, providing the same security until

a larger table leaks. The table leak size of SPNbox-32 is calculated as T/21.53 for the
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98-bit security level since the table leak is not included when calculating the round

number in [10].

Table 3.9: Table leakage size for 2−114 and 2−98 success probability.
Algorithm Security Size Table Size Leakage Size

(bit) (T) (bit)
WARX 114 128 KB T/22

wSaturnin 114 128 KB T/20.89

wSparkle-16 114 128 KB T/20.89

SPNbox-32 98 16 GB T/21.53

wClyde 98 16 GB T/22.04

wSparkle-32 98 16 GB T/20.88

wShadow256 98 16 GB T/20.88

wShadow384 98 16 GB T/20.54
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CHAPTER 4

A NEW LS-DESIGN BASED WHITE-BOX BLOCK CIPHER

The reliability of the table creation method is important to prevent key extraction at-

tacks in space-hard ciphers as the key is embedded in the table. LS-design based

algorithms [27, 31] aim to prevent differential side-channel analysis with bitslice im-

plementations. In this context, we proposed a white-box algorithm and a table gener-

ation method based on LS-design to take advantage of security considerations along

with efficiency. The table construction method is detailed in Section 4.1. The details

of the white-box algorithm is given in Section 4.2. Security of the designed method

is discussed in Section 4.4 and performance comparisons are stated in Section 4.5.

4.1 Table Creation Method

A new LS design-based small-block cipher is derived as a method of creating tables

for use in the white-box context. The block size of the table construction algorithm

is 32-bit, and the state is taken as an (8 × 4)-bit grid as shown in Figure 4.1. The

round transformation of the algorithm has a key addition layer, a nonlinear layer as

a substitution box, a bitslice implemented linear layer, and a round constant layer.

The nonlinear layer tSbox is applied to two concatenated 4-bit columns, while the

linear layer tLbox is applied to 8-bit rows. The round keys are obtained with an XOF

instead of key scheduling algorithm, and the round constants are generated with an

8-bit LFSR. The algorithm consists of 12/16 rounds to provide 128/256-bit security.

In the table creation method, each element of the field F32
2 is encrypted with the

LS-design based small block cipher. At the beginning of the algorithm, the input
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tLbox

tSbox

Figure 4.1: State of the Input

is reordered with the bitslice function as the concatenating 4-bit columns, as shown

in the grid structure. After round transformations, it is sorted in initial order with

the unbitslice function. We applied the bitslice and unbitslice functions only once to

improve run-time performance, rather than each tsbox and tlbox layers. The pseudo-

code of the table construction method is given in the Algorithm 16.

Algorithm 16 Table Construction

1: INPUT: x ∈ (F32
2 )

2: OUTPUT: x

3: x← bitslice(x)

4: for i = 0 to tr do

5: x← addroundkey(x, key[i])

6: x← tsbox(x)

7: x← tlbox(x)

8: x← addroundconstant(x)

9: end for

10: x← unbitslice(x)

4.1.1 tSbox

The 8-bit tSbox is taken from Scream-v3 algorithm [28], the second round candidate

of CAESAR competition [18]. The tSbox consists of three steps based on the Feistel

structure. The first and third steps are almost perfect nonlinear (APN) functions, and

the second step is a permutation with differential uniformity 4. Details of the Feistel

structures are stated in Table 4.1. In the implementation, the nonlinear layer tsbox is

pre-computed and used as a substitution box.
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Table 4.1: tSbox.

Step 1

x0 = (s1 & s2)⊕ s0
x1 = s1 ⊕ s3
x2 = s2 ⊕ x0

s4 = s4 ⊕ ((s3 ⊕ x2) & (s2 ⊕ x1))

s5 = s5 ⊕ x2

s6 = s6 ⊕ (s3 & x0)

s7 = s7 ⊕ (x1 & x2)

Step 2

x0 = (s4 & s5)⊕ s6
x1 = (s5 | s6)⊕ s7
x2 = (s7 & x0)⊕ s4
x3 = (s4 & x1)⊕ s5
s0 = s0 ⊕ x0

s2 = s2 ⊕ x1

s1 = s1 ⊕ x2

s3 = s3 ⊕ x3

Step 3

x0 = ¬((s1 & s2)⊕ s0)

x1 = s1 ⊕ s3
x2 = s2 ⊕ x0

s4 = s4 ⊕ ((s3 ⊕ x2) & (s2 ⊕ x1))

s5 = s5 ⊕ x2

s6 = s6 ⊕ (s3 & x0)

s7 = s7 ⊕ (x1 & x2)

4.1.2 tLbox

The linear layer tLbox is taken from Mysterion algorithm [31]. The permutation is a

recursive MDS matrix obtained from an [16, 8, 9]F24
MDS code with the branch num-

ber 9. The recursive MDS matrix is constructed by calculating the k-power of the

complementary matrix in the field F2q . In the Mystreion algorithm, the companion

matrix M is taken as
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M=



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 8 3 f 5 f 3 8


The MDS matrix and its inverse are computed as 8-power of the companion matrix

M for q = 4 with the reduction polynomial p(x) = x4 + x+ 1.

M8=



1 8 3 f 5 f 3 8

8 d 3 2 1 4 4 f

f 9 f 9 4 b 6 5

5 1 6 9 b 2 4 8

8 9 a 7 7 a 9 8

8 4 2 b 9 6 1 5

5 6 b 4 9 f 9 f

f 4 4 1 2 3 d 8


(M8)−1=



8 d 3 2 1 4 4 f

f 9 f 9 4 b 6 5

5 1 6 9 b 2 4 8

8 9 a 7 7 a 9 8

8 4 2 b 9 6 1 5

5 6 b 4 9 f 9 f

f 4 4 1 2 3 d 8

8 3 f 5 f 3 8 1


In the implementation, the xtime function for the finite field multiplication is defined

as:

(((x) << (1))⊕ ((((x) >> (3))&1) · (0x13)))

Depending on the matrix values, the xtime function is applied to 4-bit inputs up to 3

times in succession. The size of these pre-computed xtime values is 192 bits. There-

fore, the xtime values are pre-computed to achieve efficiency in the implementation.

4.1.3 Round Keys

The round keys are generated using extendable output function SHAKE [24] with the

master key. For the 128-bit security case, the 128-bit master key is expanded to 384-

bit for twelve rounds. Similarly, the 256-bit master key is expanded to a 512-bit key

40



for 16 rounds of 256-bit security level. The extended outputs are divided into 32 bits,

and the state is xored with the corresponding round key in the addroundkey layer.

4.1.4 Round Constants

Round constants are generated with an 8-bit LFSR with the feedback polynomial

p(x) = x8 + x6 + x5 + x4 + 1. The output of the LFSR is divided into 32 subwords

of length 8, and the subwords are taken as round constants. The state is xored with

the corresponding round constant in the addroundconstant layer.

4.2 Specifications of The Algorithm

The LS-design based white-box algorithm is implemented with 32 bits word and

128/256 bits key and block sizes. The round transformation of the algorithm is im-

plemented to 128-bit subblocks. One round of the algorithm consists of a table-based

nonlinear layer, a bitslice implemented linear layer, and a round constant layer. The

generated table T is used as a substitution box in the nonlinear layer. The pseudo-code

of the white-box implementation is given in Algorithm 17. The numbers of rounds

for the white-box implementations’ 128-bit and 256-bit block sizes are calculated as

12 and 14, respectively.

4.2.1 Nonlinear layer

The nonlinear layer is implemented as a key-dependent substitution box generated by

a small-scale block cipher. This small block cipher is also based on the LS-design

approach with a 32-bit block size. The details of the small block cipher are given in

Table Construction part 4.1.

4.2.2 Linear Layer

The linear layer Lbox is taken from the lightweight design Spook [4]. Bitslice im-

plemented linear layer lbox takes two 32-bit inputs and is applied twice in one round.
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Figure 4.2: Two rounds of the white-box algorithm of 128-bit block size

The internal operations are specified as in Table 4.2. As detailed in Section 3.1.4,

the order of the lbox entries is chosen according to the round number to increase the

diffusion effect.

Table 4.2: Lbox

u = x⊕ (x ≪ 12); v = y ⊕ (y ≪ 12);

u = u⊕ (u ≪ 3); v = v ⊕ (v ≪ 3);

u = u⊕ (x ≪ 17); v = v ⊕ (y ≪ 17);

t = u⊕ (u ≪ 31); z = v ⊕ (v ≪ 31);

u = u⊕ (z ≪ 26); v = v ⊕ (t ≪ 25);

u = u⊕ (t ≪ 15); v = v ⊕ (z ≪ 15)

Since the round transformation of the implementation is applied to 128-bit blocks, an

additional linear component, Dbox, is used to diffuse 128-bit subblocks to each other

for 256-bit block size. The Dbox has left-rotate and xor operations shown in Table 4.3.

Each word of one subblock is rotated to the left and xored to the corresponding state

of the other subblock.
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Algorithm 17 The new LS-design based white-box algorithm

1: INPUT: xi ∈ (F32
2 ), i ∈ {0, · · · , 4 · n− 1}, T-Table

2: OUTPUT: xi ∈ (F32
2 ), i ∈ {0, · · · , 4 · n− 1}

3: for i = 0 to R-1 do

4: for j = 0 to 4·n-1 do

5: xj ← T (xj)

6: end for

7: for j = 0 to n-1 do

8: (x4·j, x4·j+1+(j&1))← lbox(x4·j, x4·j+1+(j&1))

9: (x4·j+2−(j&1), x4·j+3)← lbox(x4·j+2−(j&1), x4·j+3)

10: (x4·j, · · · , x4·j+3)← add−rc((x4·j, · · · , x4·j+3), i)

11: end for

12: if n==2 then

13: (x0 · · · x4·n)← dbox(x0 · · ·x4·n)

14: for j = 0 to n-1 do

15: (x4·j, · · · , x4·j+3)← add−drc((x4·j, · · · , x4·j+3), i)

16: end for

17: end if

18: end for

Table 4.3: Dbox

x = x⊕ (y ≪ 15);

y = y ⊕ (x ≪ 19)

4.2.3 Round Constants

Round constants are generated from a 4-bit LFSR with the feedback polynomial

f(x) = x4 + x3 + 1. For 256-bit block size, an additional round constant layer is

implemented after the Dbox layer. These round constants are generated from 8-bit

LFSR with the feedback polynomials f(x) = x8 + x5 + x3 + x+ 1.
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4.2.4 Computational Cost

One round of 128-bit white-box implementation has 24 · xor+24 · or from lbox, and

4 · xor operations from add−rc. Hence, the total computational cost of the white-box

implementation is 336 · xor+288 · or operations. Similarly, one round of the 256-bit

block has 48 · xor + 48 · or from lbox, 8 · xor and 8 · or operations from dbox, and

16·xor operations from add−rc. Therefore, the total computational cost of the 256-bit

white-box implementation is 1008 · xor + 784 · or operations.

4.3 The Black-Box Algorithm

The only difference in the black-box implementation is that the table construction

algorithm, which is used in the nonlinear layer, is implemented instead of used as a

pre-computed table. The pseudo-code of the black-box algorithm is given in Algo-

rithm 18.

4.4 Security

The security strength of the table creation method and the LS-design based white-box

algorithm are evaluated against black-box and white-box attacks.

4.4.1 The Security of Table Construction Method

The table construction method is analyzed against the known black-box attacks. Also,

the structural attacks based on the faulty construction of LS-design are discussed for

our design method.
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Algorithm 18 Black-box algorithm

1: INPUT: xi ∈ (F32
2 ), i ∈ {0, · · · , 4 · n− 1}, T-Table

2: OUTPUT: xi ∈ (F32
2 ), i ∈ {0, · · · , 4 · n− 1}

3: for i = 0 to R-1 do

4: for j = 0 to 4·n-1 do

5: xj ← bitslice(xj)

6: for i = 0 to tr do

7: xj ← addroundkey(xj, key[i])

8: xj ← tsbox(xj)

9: xj ← tlbox(xj)

10: xj ← addroundconstant(xj)

11: end for

12: xj ← unbitslice(xj)

13: end for

14: for j = 0 to n-1 do

15: (x4·j, x4·j+1+(j&1))← lbox(x4·j, x4·j+1+(j&1))

16: (x4·j+2−(j&1), x4·j+3)← lbox(x4·j+2−(j&1), x4·j+3)

17: (x4·j, · · · , x4·j+3)← add−rc((x4·j, · · · , x4·j+3), i)

18: end for

19: if n==2 then

20: (x0 · · ·x4·n)← dbox(x0 · · ·x4·n)

21: for j = 0 to n-1 do

22: (x4·j, · · · , x4·j+3)← add−drc((x4·j, · · · , x4·j+3), i)

23: end for

24: end if

25: end for

4.4.1.1 Differential and Linear Cryptanalysis

The LS-design is based on WTS approach [20]. The linear and differential probability

are formalized in [27] as,

Prdiff(2r) ≤ Prmax
diff (S)

r·B(L) (4.1)
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and

Prlin(2r) ≤ Prmax
lin (S)r·B(L) (4.2)

The differential and linear probability of the tSbox is 2−5 and 2−2, and the branch

number of the tLbox is 9. From Equation 4.1 and 4.2, the table generation method

provides 128-bit security after eight rounds and 256-bit security after 14 rounds. Also,

according to the MILP method in [44], there are 54 active tSboxes for twelve rounds

and 72 active tSboxes for 16 rounds. Hence, the method resists differential and linear

attacks with the determined round numbers.

4.4.1.2 Slide Attacks

Slide attacks [7, 8] exploit the algorithm’s high degree of self-similarity vulnerability

regardless of the round numbers. A different round constant is used to prevent slide

attacks in every round of the table construction algorithm.

4.4.1.3 Algebraic Attacks

Algebraic attacks aim to recover the encryption key by solving the multivariate alge-

braic equations of the encryption system. The upper bound for the maximum alge-

braic degree for a block cipher is given in [12, 11]. Therefore, at least three rounds

are required to reach the algebraic degree 31 against the attacks.

4.4.1.4 Structural Attacks

The invariant subspace attacks [38] and the nonlinear invariant attacks [46] are ap-

plied against LS-design algorithms. Both attacks rely on the vulnerability of using

the weak key and sparse constants in the algorithms. Our table generation method is

resistant to such attacks, as a different round key, generated by a reliable key deriva-

tion function, is used in each round. Also, round constants are generated with an

LFSR instead of random sparse numbers.

46



4.4.2 The White-box Security

Key extraction and code-lifting security are the most fundamental security considera-

tions for white-box algorithms. The key extraction security is related to the reliability

of the table construction algorithm. The leak limit in (M,Z)-space hardness against

code lifting attacks determines the white-box algorithm’s round number. Hence, key

extraction and code-lifting security are detailed for our white-box design.

4.4.2.1 Key Extraction Security

In space-hard ciphers, key extraction security is vital since the secret key is hidden

in the lookup table used in the nonlinear layer. Therefore, key recovery attacks are

needed to extract the key from the table created with a small block cipher in the black-

box setting. The white-box algorithm is as resistant to key extraction attacks as is the

reliability of the small-block cipher against key recovery attacks [9]. The key extrac-

tion security of our white-box implementation depends on the table creation method.

The table creation method is designed to be secure against known attacks. Also, the

purpose of bitslice implementation is to prevent side-channel attacks. Therefore, our

LS-design based white-box implementation is secured against the key extraction at-

tacks.

4.4.2.2 Code Lifting Security

In space-hard ciphers, the secret key is embedded in the lookup table, like a large de-

vice key. If an attacker retrieves the table from the device, he gets the encryption key.

Therefore, incompressible tables must be used to prevent code lifting attacks [22].

Using a reliable small-block cipher to construct the lookup table provides incom-

pressible tables for white-box implementation. On the other hand, since malicious

sides observe the device in an untrusted environment, the table can be leaked piece

by piece. According to the weak (M,Z)-space hardness definition, the table must be

renewed when the leakage limit is reached.

The round number of the white-box algorithm is calculated according to the MAS
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level determined by the leakage limit in the weak (M, Z)-space hardness definition.

The MAS size is defined as keysize− log2(tablesize) in [25, 14, 42]. We have taken

the MAS size by the leak size for white-box algorithms as keysize− log2(leaksize)

to calculate the round number more precisely. The round numbers are computed with

the Equation (4.3)

r =
log2(L)− keysize

n · log2(
L+ 1

T
)

, (4.3)

where L is size of leakage, T is the table size, and n is the number of lookup table in

a round. According to Equation 4.3, the white-box implementation requires at least

12/14 rounds to provide 93-bit/221-bit MAS strength for 128-bit/256-bit block size.

4.4.3 The Black-Box Security

The encryption algorithm is analyzed against differential and linear cryptanalysis,

slide and structural attacks in the black-box environment.

4.4.3.1 Differential and Linear Cryptanalysis

The branch number of the linear layer is 16, and the algorithms are applied in 12/14

rounds. According to Equation 4.1 and 4.2, the desired security levels against differ-

ential and linear attacks are provided.

4.4.3.2 Other Attacks

The round constants are generated with an LFSR against slide attacks and LS-design

based structural attacks. The reliability of the table creation method provides security

against algebraic and related attacks.
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4.5 Performance Results

The run-time performance of the white-box and black-box implementations was com-

pared with the SPNbox-32 algorithm. The algorithms 1, run on randomly generated

3072 bytes messages with 100000 cycles and -O3 optimization on a laptop equipped

with x86-64 architecture, a 2.80 GHz Intel Core i7-1165G7 CPU and 8 GB DDR4-

3200 RAM. The performance results are given in Table 4.4 for white-box implemen-

tation and in Table 4.5 for black-box implementation.

According to the performance results in Table 4.4, wClyde is 28% faster than SPNbox-

32, and wShadow is 15% faster than SPNbox-32.

Table 4.4: Performance results of the WBI.

Algorithm Key Size Round MAS WBI in Cycle

(per byte)

SPNbox-32 128 16 128 138
wCylde 128 12 96 99
wShadow 256 14 221 117

The run-time performance of the black-box implementation was compared with the

black-box SPNbox-32. SPNbox’s method is implemented in 16 rounds for 128-bit

security in the table creation, while our LS-based design is in 12 rounds. For the

256-bit security level, our table creation method is applied in 16 rounds. According

to performance results in Table 4.5, the run-time performance of black-box wClyde

is 27% faster than black-box SPNbox-32. Nevertheless, black-box wShadow is 26%

slower than black-box SPNbox-32.

Table 4.5: Performance results of the BBI.

Algorithm Key Size Table Cycle

(per byte)

SPNbox-32 128 SPNbox 1801
wClyde 128 LS-design 1317
wShadow 256 LS-design 2272

1 https://github.com/hkcryp/wbc
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CHAPTER 5

CONCLUSION

White-box cryptography aims to provide software security for devices in untrusted

environments where key security cannot be achieved by TPM or TEE similar hard-

ware tools. In white-box cryptography, the key is embedded in encryption algorithm

layers by appropriate methods. Using encoding methods has not provided security

against key extraction attacks until now. However, (M,Z)-space hard algorithms

suggest hiding the secret key in a large lookup table using a small block cipher. This

large table is used as the nonlinear layer in the white-box algorithm design. One of

the issues of these ciphers is to improve the run-time performance of white-box and

black-box implementations.

This thesis examined lightweight designs for efficiency and suitability to white-box

settings. With this approach, linear layers of the appropriate algorithms from the

NIST Lightweight Standardization candidates were adapted to the white-box settings

to speed up the run-time of the white-box/black-box implementations according to

space hard ciphers WARX and SPNbox-32. The nonlinear layers, and if there was a

round key addition part, of the lightweight designs were discarded in the white-box

setting. White-box conversions of the selected algorithms have been tested with SAC

security criteria. According to test results, linear components of Saturnin, Sparkle,

and Shadow provided the diffusion property in the white-box conversions.

The round numbers of the white-box algorithms were calculated according to (M,Z)-

space hardness criteria. In order to make more accurate calculations, the security

size of the algorithms was taken as leaksize − log2(M) bits. According to the per-

formance results, all white-box conversions were faster than (M,Z)-space hard al-
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gorithms WARX and SPNbox-32 without decreasing the white-box security level.

Using the lightweight components in the white-box settings enabled reasonably fast

algorithm designs.

In this study, we proposed a new LS-design-based white-box algorithm and table con-

struction method. With this white-box algorithm, we had performance improvement

as 28% for white-box implementation and 27% for black-box implementation for

128-bit block size. Moreover, we proposed an LS-design-based white-box algorithm

for 256-bit block size using the suggested table creation method.
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