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Control structure design
with constraints for a slung
load quadrotor system

Halit Ergezer1 and Kemal Leblebicioğlu2

Abstract
We propose a control structure for a quadrotor carrying a slung load with swing-angle constraints. This quadrotor is
supposed to pass through the waypoints at specified speeds. First, a cascaded PID autopilot is designed, which adaptively
gives attention to position and speed requirements as a function of their errors. Its parameters are found from an opti-
mization problem solved using the PSO algorithm. Second, this controller’s performance is improved by adding the
Complementary Controller employing an ANN. 5. Training data for the ANN is created by solving optimal control prob-
lems. The ANN is activated when the swing angle constraint is about to be violated. It is trained using optimal control
values corresponding to the cases where the swing angle falls in a particular band about the upper swing angle constraint.
Simulations are performed in a MATLAB environment. Finally, some of the simulation results are validated on a physical
system.
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Introduction

In recent years, with the technological developments in
unmanned aerial vehicles (UAV), studies on package
delivery,1 agricultural applications,2 search and rescue
in dangerous areas,3,4 and information gathering from
desired regions,5–7 and military applications have
gained momentum.8 Load transportation is vital in all
these applications.8 Two different methods are being
studied for carrying loads with rotary-wing UAVs. One
can carry a load using a manipulator9–12 integrated into
the vehicle. The other is to connect the load to the vehi-
cle with a cable or rope.13–15 In vehicles with a manipu-
lator, the vehicle’s inertia grows due to components
associated with the manipulator – consequently, energy
utilization of the vehicle with the manipulator increases.
One of the biggest problems for UAVs is the short mis-
sion time. In addition, especially when it is required to
perform agile movements, the growth in inertia will
oppose the maneuvering. For these reasons, hanging
loads seem more advantageous. However, using the
suspended load method is also challenging because sys-
tem dynamics change during the lift, hover, and flight.
Even though we have not covered it in this study, we
would like to emphasize that one of the important
issues about load-bearing quadrotors is precise landing.
This topic is covered in depth in Xuan-Mung et al.16

and Xuan Mung et al.17

As Khamseh et al.4 highlighted, a complete mathe-
matical model covering all phases of flight is the biggest
challenge. Models are created assuming the cable or
rope is constantly tense during flight. Flight profiles
that violate these assumptions should be prevented dur-
ing flight (e.g. the vehicle descends quickly). Usually,
there are swings during the flight due to the quadro-
tor’s acceleration. These motions have distorting effects
on the quadrotor’s dynamics.

A controller should be designed to make the vehicle
follow the desired path and minimize these swinging
effects. The controller designed in this study is carried
out based on these considerations.

In the literature, extensive studies have been pub-
lished to model the suspended load-bearing rotary-wing
UAV systems. Modeling was carried out using the
Udwadia-Kalaba Equations in Goodarzi et al.18 and
Almeida and Raffo,19 the Euler-Lagrange approach in
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Lee et al.20 and Lee et al.,21 the Newton-Euler method
in Jain,22 and the Kane method in Klausen et al.23 In
Pizetta et al.,24 the system dynamics are defined as the
second-order Euler-Lagrange model while ignoring the
aerodynamic effects. In Barikbin and Fakharian,25 the
Euler-Lagrange method was used, but the load’s
motion was assumed to be planar rather than 3-dimen-
sional. In this study, the controller is designed using the
mathematical model detailed in Lee26 based on the
Euler-Lagrange approach.

Measuring and estimating suspended load oscilla-
tions is critical for controlling the system. The oscilla-

tion frequency caused by the suspended load has been
investigated by Geronel et al.,27 in which the dynamic

model is constructed by obtaining dimensionless equa-

tions of motion. A method is proposed to determine

the vibration frequency of the payload during flight. In

recent years, studies have been focused on the control-
ler design for such systems to reduce the oscillations of

the suspended load. In Sadr et al.,28 a nonlinear control

algorithm is developed that applies a pulse to the sys-

tem to prevent oscillation, whose amplitude and time
locations are calculated by estimating the system’s nat-

ural frequency and damping ratio. Due to the quadro-

tor’s movements, the slung load will start to swing

while moving to the desired point. This swinging action

affects the quadrotor’s traveling motion.29 The sus-
pended load can create unstable oscillations due to its

disturbing dynamics and reduce the performance of the

UAV. They may even cause crashes in some cases.30

Therefore, it has been studied for a long time to solve

the difficulties of UAVs in carrying suspended loads.
Controller and path planning is the most critical parts

of these studies. In Jain,22 a controller is designed for a

quadcopter carrying a point-mass load with a rigid

cable. Predictive control is considered for carrying the

payload from point to point with swing angle con-
straints along the desired trajectory.23,24 Guerrero

et al.31 present a passivity based-controller design to

minimize the load swing. However, a simplified 2D

model is used in this study. In Kusznir and Smoczek,32

sliding mode control is used for horizontal positioning

and payload vibration damping, while a linearizing

feedback controller is used for altitude and attitude

control. In Yu et al.,33 the backstepping procedure is

applied to design a controller for the load to follow a
pre-determined trajectory by defining a virtual thrust

force. They find the actual forces using this virtual

force. Another controller based on the backstepping

method is proposed by Dai et al.34 to reduce the swing

angle of the load. There, the swing angle of the sus-
pended payload is estimated using the harmonically

extended state observer. In Shi et al.,35 an adaptive con-

trol scheme with unknown mass transportation is pro-

posed. Lee et al.36 proposes an adaptive sliding mode

controller to achieve the goal of altitude tracking con-
trol in the presence of considerable system parameter

variations and the ground effect.

After choosing the controller type, its parameters
should be determined to optimize the performance.
Usually, evolutionary algorithms are preferred for this
purpose; PSO (The PSO technique is used to design the
PID controller to stabilize the humanoid robot,37,38)
Ant Colony Optimization (ACO) technique,39 Genetic
Algorithm (GA),40 Differential Evolution (DE),41 (the
pitch angle controller of a rocket system is optimized
algorithm). Comparisons made by El-Ghandour and
Elbeltagi42 have demonstrated through in-depth studies
that PSO is more efficient and has lower computational
complexity simultaneously.

There are many reasons why Artificial Neural
Networks are used in control applications. First, the
self-learning ability of neural networks eliminates the
use of complex and challenging mathematical analysis
that predominates in many adaptive and optimal con-
trol methods. Second, it provides a nonlinear mapping
capability to solve highly nonlinear control problems
by incorporating the Activation Function into hidden
neurons. Third, unmodelled dynamics and perturba-
tions in the system are expected to be dealt with using
an ANN. Thus, neural controllers can be applied over
a broader range of uncertainty.

As ANN has proven to have excellent approxima-
tion and learning capabilities, they have become popu-
lar tools in control applications of nonlinear
systems.43,44 A unified framework for describing and
controlling nonlinear dynamical systems is proposed in
Polycarpou.45 The adaptive nonlinear control and the
parametric method of adaptive linear control theory
can be applied to perform stability analysis. Typical
stable neural network approach control schemes based
on Lyapunov training designs are given in Mughees
and Mohsin.39 Training neural networks using a back-
propagation algorithm (BP) has dramatically increased
the development of these structures in control applica-
tions.46 Many research studies have proven the approx-
imation capabilities of neural networks.47 In this
context, many neural control approaches have been
developed with BP neural networks.45,48,49 Moreover,
the ANN structure has been used in different control
applications; Guo et al.50 provides a decentralized
robust optimal monitoring control scheme for the class
of nonlinear systems interconnected with disturbances
and actuator attacks, for which the optimal control
problem is solved by NN-based adaptive dynamic
programing.

We aim to make a quadrotor carry a suspended load
following a given path without the load swinging too
much. Here, the slung-load system is supposed to fol-
low a path using the generalized waypoint guidance
algorithm (waypoints and desired speeds are specified).
The original contributions of this study are described
below:

1. An autopilot is designed consisting of cascaded
PID controllers for inner and outer loops. This
autopilot is supposed to control the position and
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velocity of the quadrotor and prevent high swing
angles of the suspended load.

2. The primary controller adaptively changes (the
percentage of) its attention to speed or position
depending on its errors. While the PID coeffi-
cients are found, the controller gains associated
with positions and velocities are adaptively tuned
by gain adjustment (see equations (8)–(11)).

3. Finally, the whole structure is fine-tuned using
delta force and torques produced by a
Complementary Controller with an ANN to
attenuate the oscillations if there is too much
swinging.

4. Training data for the ANN is created by solving
optimal control problems to calculate the
attenuating delta force and torque inputs to the
plant when the swing angle is above a certain
threshold. These calculations are performed
while the vehicle tries to follow specially chosen
paths.

To the best of our knowledge, there is no such study
for a slung-load quadrotor system.

The rest of the paper is organized as follows; Firstly,
the dynamic model of the system is given in Section II.
Secondly, the structure and design procedure of the
controller are described in Section III. Section IV
contains the experimental results. Then, this study is
concluded in Section V.

Dynamic model

This section will describe the 3D dynamic model for the
slung-load quadrotor system. It starts with the coordi-
nate system definitions in the mathematical model, as
shown in Figure 1. The mathematical model used in this
study is borrowed from Lee.26 The detailed derivation
of this model can be found there.

This model is differentially flat; the flat outputs are
the load’s position and the quadrotor’s yaw angle.
Unlike Lee,26 the 3D dynamic model is preferred over
the flat model since we imposed constraints on the quad-
rotor’s position and attitude. Additionally, different
from previous studies,46,51,52 we do trajectory planning
for both the load and the quadrotor to avoid obstacles.

The state vector is, x tð Þ= xTL pT R _xTL _pT OT
� �T 2 R

18

where xL is the position vector of the load, and p is the
unit vector from the quadrotor to the load in the inertial
frame. The input vector is,

v= f Mf Mu Mc

� �T
where f=T1+T2+T3+T4

is the lifting force acting on the system
M = Mf Mu Mc

� �T
are roll, pitch, and yaw moments

(see Figure 1).
The dynamic model for the slung-load quadrotor

system is valid under the following assumptions:

� The payload is connected with a cable at the
quadrotor’s center of gravity.

� The cable is rigid, massless, and inelastic.
� The quadrotor has no external disturbances or

interactions, such as wind, except for the load.

The input vector v is found as;

v=

f
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where vj, j=1, 2, 3, 4ð Þ is the angular velocity of
rotor j, Kf aerodynamic force constant, KM aerody-
namic moment constant. The mathematical model
equations are given below:

d

dt
xL = _xL ð2Þ

d

dt
_xL =

1

mq +ml
p:fRez �mql _pj jj j
� �

p� gez ð3Þ

d

dt
p= _p ð4Þ

d

dt
_p=

1

mql
(p3 p3fRezð Þ � _pj jj jp ð5Þ

d

dt
R=RΩ̂ ð6Þ

d

dt
Ω= I�1 M�Ω3IΩð Þ ð7Þ

where R is the rotation matrix from Body Frame to
Inertial Frame, ez is the unit vector along the reference

Figure 1. Slung-load quadrotor system coordinate frames.
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z-direction. Ω is the angular velocity of the quadrotor.
I is the inertia matrix, and mq and ml are the mass of
the quadrotor and the load, respectively. Ω̂ is the skew-
symmetric matrix described in Lee.53

Controller design

Our study gives the waypoints the unmanned aerial
vehicle should visit and the desired speed values at these
points. When the system reaches a certain proximity to
a desired waypoint, this point is considered already vis-
ited, and a command is produced to go to the next way-
point. Figure 2 shows this structure for two consecutive
waypoints. In our study, as in the trajectory tracking

approach, the entire path is not given, but only specific
waypoints (the dashed lines between the waypoints are
drawn to show the approach easily).

The slung-load quadrotor system is an under-
actuated system having 8 degrees of freedom (DOF)
and 4 control surfaces. It is a challenging task to con-
trol this system with velocity constraints. The controller
structure shown in Figure 3 has been created to over-
come this challenge. In this figure, each controller
block consists of a PID controller. The vehicle’s roll
and pitch angles must be changed for position and
speed control. Since we want to perform speed and
position control, another block for gain adjustment has
been added. The gain adjustment block adjusts effec-
tiveness by changing the roll or pitch angles according
to speed and position errors. This effect is achieved by
calculating the g1 and g2 parameters at each time step.
They are set between 0.2 and 0.8 according to the error
in speed and the angle between the current position
and the target waypoint adaptively (equations (8)–
(11)). Figure 3 shows the controller structure used for
position and speed control. This structure does not
have a complementary controller, and the swing angle
constraint is not expected to be satisfied in scenarios
not used to determine PID gains. The gain adjustment
parameters g1 and g2 are calculated as follows:

Ddirection = abs
arctan

wpy�cpy
wpx�cpx

� �
p

0
@

1
A ð8Þ

Dspeed =
(Vdesired � Vmeasured)

Vmax
ð9Þ

g1=min max
Ddirection

Ddirection +Dspeed
, 0:001

� 	
, 1

� 	
ð10Þ

g2=1� g1 ð11Þ

where Vmax is the maximum allowable quadrotor’s
speed, wpx and wpy are the x and y coordinate of the
target waypoint, cpx and cpy are the x and y coordinate
of the quadrotor’s current position. Ddirection is the nor-
malized angle between the quadrotor’s current position
and the target waypoint. Dspeed is the normalized speed
error. Ddirection and Dspeed are saturated between 0.001
and 1 to ensure not to get zero division error and to
compensate for round-off errors.

Tuning the PID coefficients has been proposed as an
optimization problem solved using the PSO algorithm.
The problem definition is given below in detail.

Definition of the optimization problem

The control objective is to ensure that all waypoints are
visited in a certain order and at the desired speed at the
waypoint in minimum time. The system must visit the

Figure 2. Waypoint geometry used in controller design.

Figure 3. Controller structure without the complementary
controller.
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waypoints sequentially. A proximity radius is defined
for waypoints considered visited when the distance to a
waypoint less than the proximity radius is. The proxim-
ity radius may change according to the task performed,
which is considered one of the problem’s input
parameters.

min
K1, ..., K27

J K1, . . . ,K27ð Þ=

(a1

XN

j
perror2j +a2

XN

j
verror2j )+a3Tend

s:t:

bij j4bmax i=0,Dt, 2Dt . . .Tend

Eq: 2 to 7

ð12Þ

where K1, . . . ,K27 are the PID coefficients. For ease of
expression, they are enumerated starting from the pro-
portional gain of the PID1. (i.e. K1 is the proportional
gain of the PID1, K2 is the integral gain of the PID1,
and K27 is the derivative gain of the PID9).
a1, a2, and a3 values are appropriately selected, they
create a convex sum. bi is the swing angle at ith time-
step, and bmax is the maximum allowable swing angle.
Tend is the duration of the mission. Dt is the simulation
time step (Dt=1msec):The connection between
optimization problem (also Algorithm-1) and the
model is that the system’s dynamical model is taken as
the constraint of the optimization problem given in
equation (12).

Details of the objective function calculation are given
below.

perrorj =

0 j= next wp AND dj4rproximity

dj j= next wp AND dj . rproximity

dmax j 6¼ next wp

8><
>:

j=1, 2, . . .N

ð13Þ

where, rproximity is the distance required for the waypoint
to be considered visited. It can be determined according
to the mission to be performed. As stated before, the
system must visit the waypoints in order. Considering
this constraint, perrorj is calculated. This calculation
includes the system’s distance to the waypoints at the
time of the visit. dj is the distance between the jth way-
point and the quadrotor’s position. dmax is the furthest
distance that the system can travel. For waypoints that
have not yet been visited and are not the next waypoint
in the visiting queue, perrorj is taken as dmax.

verrorj =
vd � vaj jj j dj4rproximity

Vmax dj . rproximity



ð14Þ

Since the speed objective is valid only within the radius
of the proximity area, the function is written in parts,

and the velocity error outside this region is considered
the maximum allowable velocity value.

PID gains using particle swarm optimization

Our optimization problem (equations (12)–(14))
depends on the Simulink model; we prefer to use a
derivative-free evolutionary algorithm. PSO is a
population-based iterative algorithm.49,54 Populations
are structured with some topology comprising bidirec-
tional edges connecting particle pairs.

The power of PSO comes from the interaction of
individuals and movement to a better objective value
that occurs when the individuals interact. All particles
in the same neighborhood communicate so they move
toward their new position, influenced by the best objec-
tive value obtained by the individuals in the topology.
Topologies of the neighborhood are scrutinized in Poli
et al.47

In PSO, many particles are positioned in the prob-
lem’s search space, each evaluating the objective func-
tion at its present location. Each particle in the swarm
is composed of three vectors in R

27; the current position
xie R

27, the previous best position pi e R
27 and the

velocity vi e R
27. At each iteration of the algorithm, xi

vectors are taken as the controller gains. If xi is better,
then the PID gains are stored in the second vector, pi.
The best value in the neighborhood is denoted by
g e R

27

Data generation for ANN

The controller structure given in Figure 3 was tested in
many different scenarios. During these trials, if the
vehicle is supposed to make a sharp turn between con-
secutive waypoints, the swing angle of the load may vio-
late the constraints. This problem has been solved by
adding a complementary controller, which computes
the required controller inputs using an ANN. This
structure (see Figure 4) with ANN creates complemen-
tary control inputs when necessary. It accepts velocity
and position error vectors as inputs and generates nec-
essary force and moments as its outputs. If the swing
angle of the load is within the specified range, this struc-
ture will not contribute to the overall control inputs.

The input data for training the ANN has been cre-
ated by running the structure shown in Figure 3 for dif-
ferent and challenging scenarios. Instances that did not
meet the angle constraint were found in the results of
these runs. Figure 5 shows the plot of a swing angle
obtained from a scenario and the points that do not
satisfy the constraint value. A particular optimal con-
trol problem is solved for each point (indicated by red
dots in Figure 5) in the zoomed image. In these optimal
control problems, the aim is to obtain the value of the
complementary control inputs that will bring the swing
angle below the constraint value. A complementary
input Dvij tð Þ t= tij � DT, . . . , tij

� �
have been added to
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the model. Then, the optimal control problem is formu-
lated as follows:

min
Dvij tð Þ

ðtij
tij�DT

max b tð Þ � eð Þð Þ2dt ð15Þ

subject to

Dynamic constraints of quadrotor slung load system

i:e:,Eq: 3� 8ð Þ and PID controllers:

where i 2 1, . . . ,Nsf g and j 2 1, . . . ,Nif g are scenario
and instance indices, respectively. The total number of
scenarios is Ns, and the total number of instances in
scenario i is Ni. So, we have obtained NsNi points to
train ANN. Eighty percent of these points were taken
as training and 20% as validation sets. In equation
(15), e is inserted into the equation to satisfy this strict
inequality constraint. The objective of the optimal con-
trol problem (equation (15)) is to determine the comple-
mentary inputs that should additionally be applied to
the PID outputs such that the swing angle constraint is
satisfied. The Dvij tð Þ values, which should be applied
DT steps before the time step when the constraints are
violated, were considered the optimal control problem

variables. Since applying complementary inputs when
the swing angle exceeds the constraint value does not
guarantee the satisfaction of the constraint, the comple-
mentary controller should start contributing some time
before a violation occurs. We preferred to use an inter-
val of DT=200 msec (i.e. 200 time-step) by trial and
error to take care of the system’s inertia. These comple-
mentary input values obtained were used as ANN out-
puts during training. In the training process, ANN’s
inputs and outputs are:

Input: xij tð Þ= f u px py pz Vx Vy Vz p q r Ox Oy Oz

� �
,

Output: Dvij tð Þ (complementary inputs for force and
moments).

Training of the ANN

The scaled conjugate gradient backpropagation algo-
rithm Møller55 is used because it avoids the line search
per learning iteration. Instead, this algorithm uses gra-
dient calculations to update weights instead of the
Jacobian calculations used by other methods such as
Levenberg-Marquardt and Bayesian regularization.
The feedforward calculation has been given as follows;

NNout = h
XnH

j=1
wkjh

Xm
i=1

wjixi +wj0

 !
+wk0

 !

ð16Þ

where the subscript i indexes units on the input layer, j
for the hidden; wji denotes the input-to-hidden layer
weights at the hidden unit j, the subscript k indexes
units in the output layer (three, in our case) and nH
denotes the number of hidden units (20, in our case).
The activation function, h, is the hyperbolic tangent
sigmoid activation function;

h sð Þ= 2

1+ e �2sð Þ � 1 ð17Þ

Simulation results

Results without using the complementary controller

A sufficiently challenging scenario with a 30� swing
angle constraint is suggested to determine the PID coef-
ficients using Algorithm 1. The top view of the resul-
tant paths for the quadrotor and slung load is given in
Figure 6. As shown in Figure 7, where the swing angle
of the load is plotted with respect to time, the maxi-
mum swing angle has been obtained as 9.83�. In Figure
8, the graph of the vehicle’s speed is presented, and the
speeds at the waypoints are marked. It is observed that
the speeds at the waypoints are close to the desired
speeds. There are minor deflections from desired speeds
due to the swinging of the load. A more challenging
scenario with very sharp turning points is used in this

Figure 5. Points at which swing angle constraint is violated.

Figure 4. Overall controller structure with ANN.
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new study (Scenario-2). In this scenario, first, PID coef-
ficients are found using an angle constraint of 15�.

The resultant paths followed by the quadrotor and
slung load are presented in 3D in Figure 9. The top
view of these paths is shown in Figure 10. The swing
angle of the load is presented in Figure 11. As observed
in this figure, the maximum swing angle is 12.49�. In
Figure 12, the vehicle’s speed with respect to time is
given.

Afterward, we wondered what happens to PID coef-
ficients and the system’s performance if the swing angle
constraint is relaxed to 30� (using the same scenario with
a different swing angle constraint, i.e. Scenario-2_2).

When we run Algorithm 1 with this constraint on
this scenario, we obtain the paths given in Figure 13,
and the corresponding swing angle is given in Figure
14. The maximum swing angle is 25.81� in this case.
We want to point out that by relaxing the system’s
swing angle constraint (i.e. Figures 11 and 14) from 15�
to 30�, task duration is decreased from 35.619 s to
25.764 s. This (i.e. decrease in task duration) is an
expected result because as the system is more relaxed, it
can behave faster to minimize costs further.

The PID coefficients found in the scenario with 15�
swing angle constraint are tested on a new scenario
(Scenario-3) shown in Figure 15. The resultant maxi-
mum swing angle (14.78�) can be observed in Figure 16,
which is not much different than the result in Figure 11.

To check the sensitivity of PID autopilot coefficients
concerning the path in the chosen scenario and the

Figure 6. Top view of the path of quadrotor slung-load system
(Scenario-1).

Figure 7. The swing angle of the load versus time (Scenario-1).

Figure 8. Quadrotor’s speed versus time (Scenario-1).

Algorithm 1: PSO-based PID tuning

Input: w1, w2 8Adjustment Weights
Input : N, S 8Swarm Size, Neighbor fraction
Input : W 8Inertia Range
Output:~x=½K1, :::, K27� 8 PID Gains
Stop false;
GENERATESWARM(N, S);
for Each Particle-i do

CHECKBOUNDS(~xi);
fi QSLMODEL(~xi)
pbesti  fi 8 initial personel bests

end
~g FINDBESTNEIGHBOR(f); 8 g: neighbor pos.
while Stop = false do

for Each Particle-i do
~vi  W~vi + w1 ~u1 � (~pi �~xi) + w2 ~u2 � (~g �~xi)
~xi  ~xi + ~vi

CHECKBOUNDS(~xi);
fi  QSLMODEL(~xi)
if fi \ pbesti then

pbesti  fi
pi  xi

end
end
~g FINDBESTNEIGHBOR (f);
UPDATENEIGHBORS();
if Objective Limit is reached then

Stop true
end

end

Ergezer and Leblebicioğlu 7



constraints, we performed the final test on a new sce-
nario (Scenario-4), shown in Figure 17. This scenario
has many sharp turns that may cause swing-angle con-
straint violations. Indeed, when the controller structure
in Figure 3 is used, the swing angle of the load is given
in Figure 18. The swing angle constraint for this sce-
nario is 30�, but the resultant swing angle is about 38�.
Therefore, since optimizing the PID coefficients for
every possible path, desired speeds, and swing angle
constraint is impossible, we have concluded that the
autopilot structure should be extended/complemented
in Figure 4.

Results using the complementary controller

The training data for ANN in improved structure is
obtained from Figure 18 when the swing angle con-
straint was 30�. This new structure (with ANN) is tested
on the same scenario (Scenario-4) with a swing angle
constraint of 20�.

Figure 9. 3D view of the path of quadrotor slung-load system
(Scenario-2_1).

Figure 10. Top view of the path of quadrotor slung-load
system (Scenario-2_1).

Figure 11. The swing angle of the load versus time
(Scenario-2_1).

Figure 12. Quadrotor’s speed versus time (Scenario-2_1).

Figure 13. Top view of the path of quadrotor slung-load
system (Scenario-2_2).
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The results are shown in Figure 19; the path with the
same set of waypoints is given. In this case, the control
structure given in Figure 4 is employed. The ANN part
is activated automatically when the swing angle of the
load is within 18�–22�. Otherwise, it does not generate
any delta inputs. As shown in Figure 20, the constraint
is violated around 40th seconds by 0.0077�.

Figures 21 to 23 give delta inputs for thrust, roll,
and pitch moments. As can be seen from these figures,
the ANN structure is activated when the swing angle is
within the defined interval (i.e. between 18� and 22�).
Also, delta inputs are saturated, as in the case of PSO.
We now change the swing angle constraint from 20� to
17� to better observe the Complementary Controller’s
performance. Data is collected from the band
blower bupper

� �
= 15 19½ �� to train the ANN. One can

observe the swing angle graph in Figure 24. Note that
the maximum value of the swing angle is 18.79�, which

Figure 15. Top view of the path of quadrotor slung-load
system (Scenario-3).

Figure 18. Swing Angles using controller structure without the
complementary controller (Scenario-4).

Figure 14. The swing angle of the load versus time
(Scenario-2_2).

Figure 16. The swing angle of the load versus time
(Scenario-3).

Figure 17. Resultant paths using controller structure without
the complementary controller (Scenario-4).
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is slightly above the constraint for a short duration.
You can compare this performance with the case when
the complementary controller is trained for the band
blower bupper

� �
= 28 32½ ��; naturally, the resultant con-

troller satisfies the constraint better as the constraint
relaxes (Figure 25).

The overall simulation structure, including the state
flow diagram (yellow block), is given in Figure 26. In
this model, the state flow diagram manages waypoint
guidance.

A few of these simulation studies were realized physi-
cally in an experimental setup. We use a similar method
in Li et.al.56 to measure swing angles. Firstly, swing
angle measurements of slung load were tested in a
laboratory medium using the setup in Figure 27. The

Figure 19. Resultant paths using controller structure with
complementary controller (Scenario-4).

Figure 20. Swing Angles using controller structure with using
the complementary controller (ANN has been trained for
½blower bupper �= ½18 22�� degrees swing angle constraint)

(Scenario-4_1).

Figure 21. Thrust generated by complementary controller
versus time (Scenario-4_1).

Figure 22. Roll Moment. It was generated by complementary
controller versus time (Scenario-4_1).

Figure 23. Pitch Moment. It was generated by complementary
controller versus time (Scenario-4_1).
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measurement accuracy was verified using a Single
Board Computer (SBC) and a camera at the top of the
setup. Next, the angular displacements of the slung load
measurements were obtained using the same (Inertial
Measurement Unit) IMU in the quadrotor-slung load
system. Later, this swing angle measurement setup is
integrated into a quadrotor.

Conclusions

This study designed a controller for a quadrotor carry-
ing a suspended load. The quadrotor is supposed to

reach its destination by passing through waypoints with
speed constraints. This problem is solved successfully
using the proposed complex control structure in Figure
4. In this structure, the primary controller adaptively
changes the gains for speed and position as a function
of their errors. The Complementary Controller is acti-
vated whenever the swing angle constraint is violated.
The resultant structure performs much better than the
one without the complementary structure. Simulations
have been performed in MATLAB/Simulink environ-
ment. Measurements of the swing angle are first
obtained in a laboratory setup, then tested on a quad-
rotor in the open field.

Studies on this problem will be extended to the slung
load case with multiple quadrotors.
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Figure 24. Swing Angles using controller structure with using
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Figure 27. The swing angle measurement setup to collect IMU
data.
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Appendix

Notation

f The lifting force.
xq The position vector of the quadrotor’s center of

mass with respect to (wrt.) inertial frame.
xl The position vector of load wrt. Inertial frame.
x State vector
Mf Roll moment acting on the quadrotor.
Mu Pitch moment acting on the quadrotor.
Mc Yaw moment acting on the quadrotor.
vj The angular velocity of rotor j.
Kf Force-constant.
KM Moment-constant.
R The rotation matrix from Body Frame to Inertial Frame,

(continued)

Ω The angular velocity.
I The inertia matrix.
mq The mass of the quadrotor.
l Length of Rope.
ml The mass of the load.
f The roll angle.
u The pitch angle of the quadrotor.
pT The unit vector from the quadrotor to load in the inertial

frame.
u The vector that defines a Maneuver.
v The input vector of the quadrotor-slung-load system.
Tj The thrust generated by the jth motor.
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