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A B S T R A C T   

The different types of sugar employed in the food industry exhibit chemical similarity and are mostly dominated 
by sucrose. Owing to the sugar origin of and differences in production, the presence of certain minor organic 
compounds differs. To differentiate between sugars based on their botanical source, geographical origin, or 
storage conditions, commercial brown sugars and sugar beet extracts were analyzed by 1H NMR spectroscopy 
applying a segmented analysis by means of multivariate curve resolution-alternating least squares (MCR–ALS). 
Principal component analysis and partial least squares-discriminant analysis yielded excellent differentiation 
between sugars from different sources after the application of this preprocessing strategy; without loss of 
chemical information and with direct interpretation of the results. By applying a segmented analysis via 
MCR–ALS to 1H NMR sugar data, similar spectroscopic profiles could be differentiated. This improved the 
selectivity of 1H NMR spectroscopy for sugar source differentiation which can be useful for industrial sugar 
authentication purposes.   

1. Introduction 

Sugar constitutes one of the main ingredients in food formulations. 
Sucrose is the most commonly used form of sugar. It is a nonreducing 
sugar comprising glucose and fructose monomers (Queneau et al., 
2007). The anomeric carbons of both monomers are involved in glyco-
sidic linkages, which prevents their mutarotation (Kamerling & Vlie-
genthart, 2021). Having only one form in the aqueous solution results in 
easier crystallization of sucrose compared to other sugars. Sucrose is 
primarily produced from sugar beet (Beta vulgaris) or sugar cane (Sac-
charum officinarum). Worldwide, 80% of the annual sugar production is 
from sugar cane while 20% is from sugar beet (Arro et al., 2016; Ribeiro 
et al., 2016). 

In sugar beet, sodium, potassium, betaine, amino acids, and nitrate 
affect the quality of sugar as they cannot be eliminated from the juice of 
sugar beet during the purification process (Kenter & Hoffmann, 2009). 

Moreover, factors such as storage conditions of the raw material, cli-
matic temperature during the harvest, and soil composition of the sugar 
beet growing region can affect the efficiency of sugar extraction (Masetti 
et al., 2021; Vukov & Hangypal, 1985). Furthermore, the quality of 
sugar depends on the composition of sugar beet and, therefore, on the 
growing area and environmental conditions. Hence, the control and 
characterization of sugar beet, based on geographical region or culti-
vation area, are of great importance to the food industry to achieve high 
product quality. Several approaches using proton nuclear magnetic 
resonance (1H NMR) spectroscopy-based metabolic profiling, have been 
described. These include evaluation of differences in leaves and roots of 
sugar beets subjected to different durations of intermittent drought 
(Wedeking et al., 2018), different degrees of resistance to Cercospora leaf 
spot in sugar beets (Sekiyama et al., 2017), and differences in the 
phytochemical profile of red beetroot from three different harvests 
(Giampaoli et al., 2021). 
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Sucrose is mainly produced as white crystals; however, brown 
crystalline sugar (referred to as brown sugar hereafter) is an important 
commercial sugar that is widely produced and consumed globally (Chen 
et al., 2021a). 

Brown sugar is either prepared from sugar cane juice by means of 
thermal processing or by mixing refined beet sugar with cane molasses 
(Chen et al., 2021a). Different types of edible brown sugar, including 
non-centrifugal cane sugar (NCS), muscovado sugar (MS), or brown 
granulated sugar (BGS) can be obtained depending on the 
manufacturing process (Chen et al., 2021). In addition, coconut sugar is 
similar in appearance and aromatic profile to that of brown sugar pro-
duced from either beet or cane sugar (Bachmann et al., 2022). Coconut 
sugar is produced by heating the coconut sap till the juices are saturated 
and sugar crystals are obtained (Nurhadi et al., 2018). Owing to the 
similarity in color and flavor, it is difficult to distinguish the origin of 
these brown sugars by means of only sensory evaluation. Furthermore, 
because brown sugar is usually sold at a higher price than white sugar, 
the former is susceptible to adulteration. For example, white sugar can 
be coated with caramelized sugar or synthetic dyes and sold as brown 
sugar. 

Recently, gas chromatography–olfactometry-mass spectrometry has 
been used to differentiate between different types of brown cane sugars 
(NCS, MS, and BGS) as well as brown sugars produced in three provinces 
of China by comparing the constituent odor compounds (Chen et al., 
2021, 2022). Also, three-dimensional fluorescence spectroscopy was 
used to identify and differentiate between natural and commercial 
brown cane sugars (Chen et al., 2021b). Similarly, the metabolic profile 
of brown beet, unrefined cane, and coconut blossom sugar was analyzed 
with 1H NMR (Bachmann et al., 2022). 

In food analysis, NMR spectroscopy is considered similar to a 
fingerprinting technique (Caligiani et al., 2007) because it provides 
chemical information regarding the composition of the samples. How-
ever, elucidating the information in an NMR spectrum can be chal-
lenging given the strong overlap of the signals and complexity of its 
spectral interpretation (Masetti et al., 2021). To overcome these prob-
lems, multivariate analysis techniques can be applied to 1H NMR data to 
reduce its dimensionality and enable the extraction of relevant infor-
mation to identify similarities or differences between groups of samples. 
This has been illustrated by classifying samples from a number of 
different commodities based on geographical origin (Dimitrakopoulou 
et al., 2021; Longobardi et al., 2017; Schmitt et al., 2020; Wang et al., 
2021), harvest time (Giampaoli et al., 2021), temporary stress (Munyai 
et al., 2022; Saviano et al., 2019; Wedeking et al., 2018) and adultera-
tions (Bachmann et al., 2022; Ravaglia et al., 2019). 

Generally, the chemometric models applied to 1H NMR spectroscopy 
data use ‘data binning’ to eliminate small variations between different 
samples due to chemical shifts produced by fluctuations in the pH, 
temperature, or concentration (Alam & Alam, 2004). However, binning 
the data across a defined frequency width decreases the spectral reso-
lution. Also, grouping of overlapping signals in the same bin makes the 
direct interpretation of the results challenging. To improve spectral 
interpretation, Pérez et al. (2020) developed a methodology based on 
multivariate curve resolution-alternating least squares (MCR–ALS) (De 
Juan et al., 2014). This method was derived from the Decision Tree 
Correlation methodology reported by Puig-Castellví et al. (2017). The 
latter authors applied it as an independent preprocessing method to 
resolve the concentration (C) and spectral (ST) profiles in an 1H NMR 
dataset of zebrafish samples. Furthermore, this method improves sample 
clustering when using PCA. In addition, Cavallini et al. (2021) proposed 
a strategy based on evaluating intervals via MCR–ALS as a resolution 
technique to characterize beer. The authors highlighted that the reso-
lution of ST profiles simplified the information, making it easily 
interpretable. 

To the best of our knowledge, the application of segmented analysis 
via MCR–ALS to the 1H NMR spectra for the differentiation based on 
geographical origin and storage conditions of sugar beet, and the 

botanical source of commercial sugars has not been explored before. 
Herein, segmented analysis via MCR–ALS was applied to 1H NMR 
spectroscopy data to differentiate sugars based on their sources. 
MCR–ALS allow analysis of the 1H NMR spectra of sugars, avoiding the 
issues associated with loss of chemical information that are observed 
when data binning preprocessing is used. It also removes, spectral noise 
and identifies the main chemical compounds responsible for the differ-
ences and the subsequent classification. Thus, segmented analysis via 
MCR–ALS was evaluated as a novel alternative method to data binning 
for classification or authentication purposes in the sugar industry. 

2. Materials and methods 

2.1. Reagents and chemicals 

Deuterium oxide (D2O, 99.9%), 3-(Trimethylsilyl)-propionic- 
2,2,3,3-d4 acid sodium salt (TSP-d4, 98%), potassium phosphate 
monobasic anhydrous (KH2PO4, >99%), potassium phosphate dibasic 
anhydrous (K2HPO4, >98%), and methanol (high-performance liquid 
chromatography grade) were purchased from Sigma-Aldrich (Darm-
stadt, Germany). 

2.2. Sample collection and preparation 

In 2022, twelve sugar beet samples, that were harvested from two 
geographical regions of the center-south of Chile (San Carlos and Los 
Ángeles) and three cultivation fields (Santa Isabel, Luciana, and Santa 
Laura) were kindly provided by the National Federation of Beet Growers 
(FENARE, Chile). Detailed information regarding the origin of the 
samples is provided in Table 1. From these samples, four fresh sugar 

Table 1 
Information of sugar beet and commercial sugar samples, including geograph-
ical region, country, cultivation field, brand, and code.  

Source of 
sugar 

Geographical 
region or country 

Cultivation field or 
commercial brand 

N◦ of 
samples 

Code 

Fresh sugar 
beet 

San Carlos, Chile Santa Laura 
(− 36.460742◦, 
− 71.878242◦) 

4 F-SB1  

Los Ángeles, Chile Santa Isabel 
(− 37.43337◦ , 
− 72.29983◦) 

2 F-SB2  

Los Ángeles, Chile Luciana (− 37.43191◦, 
− 72.31375◦) 

2 F-SB2 

Stored 
sugar 
beet 

San Carlos, Chile Santa Laura 
(− 36.460742◦, 
− 71.878242◦) 

4 S-SB1 

Coconut 
sugar 

Chile NN 1 Coco-S  

Chile NO 1 Coco-S  
Colombia SL 1 Coco-S  

United States MT 1 Coco-S 
Brown 

Cane 
sugar 

Türkiye KY 1 Br- 
CaneS  

Chile IA 1 Br- 
CaneS  

Colombia DL 1 Br- 
CaneS  

Colombia CO 1 Br- 
CaneS  

Perú DU 1 Br- 
CaneS 

Proportion mixtures between 
coconut and brown cane sugar 

(% w/w) 

NN:KY 15:15 1 Mix-S   

NO:IA 20:10 1 Mix-S   
SL:DL 10:20 1 Mix-S   
MY:CO 25:5 1 Mix-S   

Total number of 
samples 

25 Mix-S  
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beets from San Carlos (F-SB1) and Los Ángeles (F-SB2) were selected, 
washed, cut into slices, freeze-dried, pulverized in a mortar, and stored 
at − 80 ◦C. In parallel, to establish the robustness of the segmented 
analysis and assess the discrimination capacity of the chemometric 
models by adding a new variable, four samples obtained from San Carlos 
(S-SB1) were stored in a growth chamber under controlled conditions at 
20 ◦C (without humidity control) for 1 month. After this period, the 
samples were collected, washed, cut into slices, freeze-dried, pulverized 
in a mortar, and stored at − 80 ◦C. 

In addition, nine commercial sugars, four coconut sugars (Coco-S), 
and five brown cane sugars (Br-CaneS) were purchased from local 
markets in different countries. These commercial sugars were pulverized 
in a mortar and, subsequently, intentionally mixed in different pro-
portions for simulated adulterations (Mix-S) (Table 1). 

2.3. Extraction of carbohydrates from the sugar beet samples 

The extraction of carbohydrates from F-SB1, F-SB2, and S-SB1 sam-
ples was conducted using the methanol/water protocol reported by 
Yang et al. (2012) with some modifications. Briefly, 150 mg freeze-dried 
sugar beet was suspended in 1000 µL cold (4 ◦C) MeOH:H2O (1:1 v/v) 
solution, vortexed for 1 min, and sonicated for 15 min. Following 
centrifugation at 17,000 × g for 10 min, the supernatant was collected 
and transferred to a 2-mL Eppendorf tube. The extraction process for 
each sample was performed twice, and subsequently, both supernatants 
were combined, freeze-dried, and stored at − 80 ◦C until analyzed. 

2.4. NMR sample preparation 

The sugar beet extracts were dissolved in 800 µL of a D2O solution 
containing 100 mM K2HPO4/KH2PO4 pH 7.4 as a buffer and TSP-d4 
0.1% w/w as an internal standard. For Coco-S, Br-CaneS, and Mix-S, 
300 mg of each sample was dissolved using the same solution. The 
samples were centrifuged at 17,000 × g for 5 min, and 600 µL super-
natant was transferred to a 5-mm NMR tube. 

2.5. NMR acquisition 

All 1H NMR spectra were acquired using a Bruker 400 MHz spec-
trometer model AscendTM (Bruker Biospin, Germany) operating at 
400.13 MHz and equipped with a PABBI 1H/D-BB-Z-GRD liquid probe. 
For the 1H NMR spectra, 96 number of scans were recorded for each 
sample with 65,536 data points over a spectral width of 6393.862 Hz, 
with an acquisition time of 1.26 s, receiver gain of 57.0, and relaxation 
delay of 1.00 s using the zg30 pulse sequence at 293 K. A representative 
1H NMR spectrum was obtained for each sample by averaging these 96 
scans. 

2.6. NMR data preprocessing using chemometric tools 

2.6.1. Processing 1H NMR dataset 
All 1H NMR spectra were manually phased, baseline corrected, and 

referenced to the TSP-d4 resonance signal (δH = 0.00) using MestreNova 
v.12.0 (MestreLab Research, Spain) software and imported into MAT-
LAB R2021a (TheMathWorks Inc., Natick, MA, USA) as a spectral data 
matrix. The spectral regions of δH = 3.32–3.38 and δH = 4.68–5.17 
caused by the presence of residual resonance signals from methanol and 
water, respectively, were excluded from the data. The spectral regions 
with chemical shifts < δH = 0.20 and > δH = 9.50 were also removed. 
The final 1H NMR dataset comprised a data matrix with 25 spectra in 
rows with δH = 35,886 values in columns. To minimize any variability 
due to chemical shifts that may affect the chemometrics models, the 
resonance misalignments were corrected using the icoshift algorithm 
(Savorani et al., 2010), and rows of the dataset were normalized to the 
total area. The corrected and normalized 1H NMR dataset (processed 1H 
NMR dataset) was subjected to two independent preprocessing methods 

before the unsupervised and supervised analysis, i.e., 1H NMR data 
binning and segmented analysis via MCR–ALS, respectively. 

2.6.2. 1H NMR data binning 
The processed 1H NMR dataset was used to make a binning dataset 

with a bucket width of 0.04 ppm using MestreNova v.12.0. The result 
consisted of a matrix with 25 spectra in rows and 219 buckets in 
columns. 

2.6.3. Segmented analysis via MCR–ALS 
Alternative to data binning, a segmented analysis via MCR–ALS was 

applied to the processed 1H NMR dataset using the methodology 
developed by Pérez et al. (2020). The 1H NMR dataset was manually 
divided into 29 subarrays (segments) to maintain the multiplicity of the 
resonance signals. Each subarray encompassed one or more resonance 
signals with distinct intensities in relation to the spectral noise. The 
dimensions of the 29 subarrays are reported in detail in Table S1. The 29 
subarrays were independently analyzed using MCR–ALS GUI 2.0 
Toolbox (Jaumot et al., 2015) via MATLAB R2021a. Every subarray was 
resolved via MCR–ALS using the single value decomposition (SVD) to 
find the optimal number of components. Non-negativity constraints 
were applied to the C and ST profiles in the ALS optimization. The 
quality of all MCR–ALS models was determined by evaluating the values 
of lack of fit (LOF) and percentage of explained variance. The combi-
nation of the 29 concentration profile matrices with different number of 
components produced a combined C matrix with 25 samples in rows and 
37 components in columns. 

2.7. Unsupervised and supervised analyses 

Exploratory analysis by PCA using data binning and combined C 
matrix as an independent X matrix, composed by the 25 samples 
(described in Table 1), was applied to evaluate the maximization sample 
clustering according to the intrinsic variance in the dataset. In addition, 
mean centering in combination with variance or Pareto scaling was used 
as a pretreatment for the different PCA models to evaluate the influence 
of the pretreatment on the sample clustering. 

To improve the separation between the sample groups and evaluate 
the variables that produced considerable differences in the discrimina-
tion, two PLS–DA models were applied to the combined C matrix. The 
first PLS–DA model was used to discriminate between stored sugar beets 
and fresh sugar beets and between the different geographical regions of 
cultivation, considering 12 samples. The second PLS–DA model was 
applied to discriminate between coconut sugar, brown cane sugar, and 
their simulated adulterations, with a total of 13 samples. For each 
PLS–DA model, mean centering with variance scaling was used as a 
pretreatment. 

All the PCA and PLS–DA models were constructed using PLS_Toolbox 
9.0 (Eigenvector Research Inc.) via MATLAB R2021a. The quality of the 
PCA and PLS–DA models was evaluated using the Venetian blinds cross- 
validation method with 5 and 6 blinds, respectively. The optimal num-
ber of components (and latent variables [LVs]) was determined based on 
the percentage of explained variance. To identify the most discriminant 
variables from the PLS–DA models, the values from the variable 
importance in the projection (VIP) were analyzed. The variables with a 
VIP of ≥ 1 were considered relevant for discrimination. To assess the 
statistical significance of each relevant variable, a one-way analysis of 
variance (ANOVA) test with Bonferroni correction was applied to adjust 
the significance level, and for pairwise differences, t-tests were per-
formed using OriginPro 2016 (OriginLab Corporation, Northampton, 
MA, USA). VIP values with p < 0.05 statistical significance were 
recognized as discriminant. 

3. Results and discussion 

The processed 1H NMR dataset of the 25 samples is shown in Fig. 1A. 
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Similarities were observed mainly in the spectral region of carbohy-
drates with δH = 3.50–6.00. In addition, lower resonance signals in the 
spectral regions of aliphatic compounds with δH = 0.20–3.50 and those 
of aromatic/aldehyde compounds with δH = 6.00–9.50 were detected in 
all the 1H NMR spectra (Fig. 1B and 1C), suggesting similar spectro-
scopic profiles in all the samples. The identification of these resonance 
signals in the processed 1H NMR dataset will be discussed on detail in 
section 3.4. 

3.1. Resolution of resonance signals via MCR–ALS 

The 29 manually selected subarrays across the full range of reso-
nances (δH = 0.20–9.50) were independently resolved via MCR–ALS. For 
example, two different sub-arrays in the processed 1H NMR dataset, 
containing resonance signals in the ranges of δH = 4.16–4.25 and δH =

1.80–1.96 are presented in Fig. S1A and S1B, respectively. The optimal 
number of components required to resolve C and ST profiles for each 
resonance signal was determined using the SVD method using 
MCR–ALS. The resonance signal of the first subarray was successfully 
resolved with only one component (Fig. S1A), whereas for the second 
subarray, two components were found to be optimal for accurately 
resolve resonance signals with good symmetry with a certain degree of 
overlap (Fig. S1B). For this preprocessing, 1–3 components were 
required to describe the C and ST profiles for each subarray, obtaining a 
total of 45 components with a convergence between 4 and 500 itera-
tions. Of these 45 components, 8 were discarded because they contained 
only noise or were incorrectly resolved. The remaining 37 components 
had an LOF of ~ 4.46% and a total explained variance of 98.4%. Owing 
to their chemical shifts, components 1–17, 18–33, and 34–37 described 
resonance signals associated with the aliphatic, carbohydrate, and aro-
matic/aldehyde spectral regions, respectively. More precise represen-
tation of all the chemical shifts according to each C and ST profiles is 
shown in Table S2. 

3.2. Effect of the pretreatment on the exploratory analysis using PCA 

3.2.1. Binning data 
The PCA score plot, obtained using mean centering with variance 

scaling as a pretreatment, is shown in Fig. 2A. The first two principal 
components (PCs) explained 45.29% of the total variance. No clear 
clustering trend was observed with respect to the sugar source (Fig. 2A); 
however, separations between S-SB1 and F-SB2 and Br-CaneS in PC1 
(25.79% explained variance) were observed. PC2 (19.50%) showed 
lesser differences between Br-CaneS and Coco-S compared to PC1. In 
this case, the data binning did not allow a good differentiation between 
the sample groups. Using mean centering and Pareto scaling as a pre-
treatment, the total explained variance could be increased, based on the 
contribution of lower-intensity resonance signals; providing equal 
weighting to each variable (van den Berg et al., 2006). Thus, the dif-
ferentiation was not biased toward variables with greater magnitude, as 
seen in the case of resonance signals present in the carbohydrate spectral 
region (Fig. 1A), which maximized the differentiation as in the case of 
the S-SB1 samples (Fig. 2B). In this case, the first two PCs explained 
79.94% of the variance. The first source of variation was attributed to 
storage, in which S-SB1 differed from F-SB2, Coco-S, Br-CaneS, and Mix- 
S in PC1, (56.13% of the explained variance). PC2 (23.81%) demon-
strated greater differentiation between F-SB1 and F-SB2 with respect to 
S-SB1, Coco-S, and Mix-S than PC1. Despite these observations, satis-
factory results in differentiating sugar beet extracts and commercial 
sugars were not achieved. 

3.2.2. Combined C matrix 
PCA applied to the combined C matrix using mean centering and 

variance scaling as a pretreatment, is shown in Fig. 2C. The first two PCs 
explained 56.29% of the total variance. Variance scaling uses the stan-
dard deviation of each variable as a scaling factor (Ebrahimi et al., 
2017), thereby rendering each variable equally important (same vari-
ance). However, erroneous estimations can be observed for those vari-
ables that do not contain chemical information or a certain degree of 

Fig. 1. Processed 1H NMR dataset (400.13 MHz) from the 25 samples (carbohydrates extracted from eight fresh sugar beets, four storage sugar beets, four coconut 
sugars, five brown cane sugars, and four simulated adulterated samples) used for the segmented analysis via MCR–ALS. A) Complete range of resonance signals δH =

0.20–9.50. B) Expanded aliphatic spectral region δH = 0.20–3.50. C) Expanded aromatic/aldehyde spectral region δH = 6.00–9.50. Numbers 1–37 represent reso-
nance signals (Table 3) associated to: (1): Leucine; (2): Valine + Isoleucine; (3): Lactate; (4): Alanine; (5): Acetate; (6–9-14): GABA; (7–8): Glutamate; (10–13): 
Acetate + Malate; (11): Pyroglutamate; (12): Glutamine; (15): Choline; (16): Betaine; (17–18-19–20-21–22-23–25-27–32): Sucrose; (24–26): Fructose; (29): 
β-glucose; (30): α-glucose; (31): α-xylose; (34): trans-aconitate; (35): Tyrosine; (36): Fumarate; (37): Formate. 
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overlap, as in the case of data binning. While binning data minimizes 
variations caused by chemical shifts, it also results in loss of spectral 
resolution and superposition of resonance signals in the same bin, 
making sample clustering challenging (Fig. 2A and 2B). However, this 
does not occur with the combined C matrix, because each C profile is 
described by an ST profile regardless of the degree of overlap. The 
spectral noise is modelled in an independent matrix of residuals, and 
even small variations within the variables can be detected, thereby 
maximizing clustering in PCA (Fig. 2C). Thus, with mean centering and 
Pareto scaling used as a pretreatment (Fig. 2D), MCR–ALS preprocessing 
achieved clustering of similar samples. These results agreed with those 
reported by Pérez et al. (2020) and Khakimov et al. (2020) in zebrafish 
and human urine samples, respectively. MCR–ALS maximized the 
between-group variability and decreased the within-group variability. 
Therefore, different pretreatments can be applied depending on the 
objectives of the study. 

3.2.3. Differentiation of sugar beet extracts and commercial sugars using 
the combined C matrix 

The score plot in Fig. 2C shows that the first source of variation 
corresponded with sugar beet extracts or commercial sugar samples, in 
which separation between S-SB1, F-SB1, and F-SB2 and Coco-S, Br- 
CaneS, and Mix-S was achieved with 32.20% of the variance explained. 
The second source of variation allowed the differentiation between the 
stored and fresh sugar beet samples S-SB1, F-SB1, and F-SB2, as well as 

differentiation of Coco-S and Br-CaneS with 24.09% of variance 
explained. Notably, the clustering of samples based on the sugar source 
was maximized when using the combined C matrix. Also, the simulated 
adulteration samples (Mix-S) were separated from the Coco-S and Br- 
CaneS clusters, with one sample of Coco-S clustering with the group of 
Mix-S samples. Most samples remained inside the 95% confidence level, 
except for one sample from S-SB1. The samples that showed Q residuals 
over the 95% confidence level and did not exhibit significant improve-
ment in the percentage of explained variance following their exclusion 
were not considered outliers. 

The variables that contributed to the clustering according to the 
sugar source can be observed in the loading plots of both PCs in Fig. 2E 
and 2F. These loadings are shown as a bar plot, in which each compo-
nent represents C that was described by its respective ST profile. The 
variables 3, 5, 11, 17–32 (except 19 and 31), 34, and 37 were most 
relevant for the clustering of the commercial sugars Coco-S, Br-CaneS, 
and Mix-S (Fig. 2E). The variables 1–16 (except 3, 5, and 11), 19, and 31 
contributed to the clustering of the stored and fresh sugar beet samples 
S-SB1, F-SB1, and F-SB2, followed by less relevant variables 33, 35, and 
36. Regarding the spectral regions of each variable (Table S2), the car-
bohydrates region made the greatest contribution to the differentiation 
of commercial sugars from sugar beet extracts, whereas the aliphatic 
region exhibited a high relevance for differentiating sugar beet extracts 
under storage conditions, except for certain resonance signals. The 
spectral region of aromatic/aldehyde compounds also exhibited specific 

Fig. 2. PCA plots derived from the binning data (A, B) and the combined C matrix obtained via MCR–ALS (C, D) for the differentiation of sugar beet extracts and 
commercial sugars. A) PCA score plot (PC1 vs PC2) using mean centering and variance scaling on binning data. B) PCA score plot (PC1 vs PC2) using mean centering 
and Pareto scaling on binning data. C) PCA score plot (PC1 vs PC2) using mean centering and variance scaling on the combined C matrix. D) PCA score plot (PC1 vs 
PC2) using mean centering and Pareto scaling on the combined C matrix. E) and F): Loading bar plots of PC1 and PC2 from PCA described in C), respectively. G) 
Scatter loadings plot of PC1 vs PC2 of PCA described in C). Variables were represented as a bar plot and blue dots in which each number represented a concentration 
profile (C) that is associated to its respective spectral profile (ST). S-SB1: storage sugar beet from San Carlos (red); F-SB1: fresh sugar beet from San Carlos (brown); F- 
SB2: fresh sugar beet from Los Ángeles (yellow); Coco-S: coconut sugar (light blue); Br-CaneS: brown cane sugar (blue); Mix-S (green). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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resonance signals that contributed to the differentiation of sugar beet 
extracts and commercial sugars. The loading plot for PC2 (Fig. 2F) 
illustrated that the variables from the carbohydrate spectral region 18, 
20, 24, and 26 were more relevant for clustering S-SB1, Coco-S, and 
some samples of Mix-S, whereas the variables 19, 21, 22, 23, 25, 27, 31, 
32, 33 and 34 were relevant for F-SB1, F-SB2, Br-CaneS, Mix-S, and one 
sample of Coco-S, implying the possible influence of resonance signals 
associated with different sugars contributing to the differentiation. 
Similarly, the loading plot for PC2 shows that the variables 2–16 (except 
1 and 12) of the aliphatic spectral region made a clear contribution to 
the clustering of S-SB1, Coco-S and some Mix-S samples. According to 
the scatter plot of the loadings (Fig. 2G), variables 18, 24, 26, 29, and 30 
characterized the clustering of Coco-S samples, while stored samples 
were characterized by variables 2, 6, and 16. Variables 19 and 31 
characterized the samples F-SB1 and F-SB2, while variables 21, 22, 23, 
25, 27, 32, and 34 had a high contribution for Br-CaneS. 

3.3. Discrimination of a group of samples using PLS–DA 

3.3.1. Sugar beet under storage conditions and geographical origin 
Samples coming from sugar beet were analyzed by PLS–DA to eval-

uate differences by storage conditions and geographical origin. The first 
two LVs explained 55.62% of the total variance. The discrimination of S- 
SB1 from F-SB1 and F-SB2 was achieved with the first LV (LV1), with 
40.27% of the variance explained. This discrimination is depicted in the 
score plot of the PLS–DA model in Fig. 3A. The PCA score plot revealed 
that the same differences were obtained with PC1, with 41.47% of the 
variance explained (Fig. S3A). Discrimination based on geographical 
origin (F-SB1 from F-SB2) was possible with LV2 (15.35% of explained 
variance). In the PCA score plot, a similar differentiation was observed 
but to a lesser extent in the fourth PC, which explained 7.64% of the 

variance (Fig. S3B). 
The VIP plot (Fig. 3B) revealed that the highest contributions asso-

ciated with the discrimination between S-SB1 and F-SB1 and F-SB2 were 
from the variables 2, 3, 8, 10, 16, 18, 21, 22, 23, 25 and 36. After the 
analysis of the statistical significance of each relevant variable (VIP of ≥
1), only variables 2, 8, 10, 16, and 36 were observed to contribute to 
differentiate S-SB1 from the fresh samples. This was expected due to the 
other variables being related to the resonance signals of the sucrose 
molecule. Table 2 summarized the VIP values obtained by the PLS–DA 
model for these vaiables. Based on the identification of resonances sig-
nals (Table 3), these variables were associated with valine, isoleucine, 
glutamate, citrate, malate, betaine, and fumarate. The score plot for LV1 

Fig. 3. PLS–DA plots derived from the combined C matrix obtained via MCR–ALS for the discrimination of sugar beets and commercial sugars. A) PLS–DA score plot 
(LV1 vs LV2). B) VIP plot for S-SB1. C) PLS–DA score plot (LV1 vs LV2). D) VIP plot for Coco-S. Variables with VIP ≥ 1 were considered relevant for discrimination. S- 
SB1: storage sugar beet from San Carlos (red); F-SB1: fresh sugar beet from San Carlos (brown); F-SB2: fresh sugar beet from Los Ángeles (yellow). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Variables that contribute to the discrimination of sugar beet extracts and com-
mercial sugars associated with the VIP values (p < 0.05) obtained by PLS-DA.  

Source of sugar Variable (C) and (ST) Compound VIP value 

S-SB1 2 Valine-Isoleucine 1.50  
8 Glutamate 1.41  
10 Citrate-Malate 1.30  
16 Betaine 1.30  
36 Fumarate 1.18 

F-SB1 1 Leucine 1.82 
Coco-S 3 Lactate 1.05  

5 Acetate 1.03  
11 Pyroglutamate 1.03  
24 Fructose 1.31  
26 Fructose 1.26  
29 β-glucose 1.42  
30 α-glucose 1.24  
37 Formate 1.07 

Br-CaneS 31 α-xylose 1.22  
32 Sucrose 1.03  
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(Fig. 3A) revealed that storage time affected sugar beet, characterized by 
an increase in the intensity of concentration profiles associated with 
amino acids and nitrogenous compounds (Figure S6). This could be 
explained by a possible tendency toward the hydrolysis of proteins to 
amino acids and their catabolism via the tricarboxylic acid (TCA) cycle 
(citrate, malate, and fumarate), thereby increasing the concentration of 
drought stress–induced N-amino compounds (Wedeking et al., 2018). 
Furthermore, an increase in the intensity of betaine concentration pro-
files was observed (Figure S6E). This, could be related to a decrease in 
the intensity of resonance signals associated with sucrose, because its 
biosynthesis requires energy from sucrose. Regarding discrimination 
according to geographical region, the VIP plots (Figure S4) indicate the 
variables with more relevance are associated with the concentration 
profiles of amino acids. Based on this, only leucine showed significant 
discrimination for F-SB1 (Figure S6A), suggesting possible differences in 
soil type per cultivation field, generating variations in the concentration 

of free amino acids. 

3.3.2. Coconut sugar, brown cane sugar, and simulated adulterations 
A separated analysis was performed for the of commercial brown to 

identify compounds responsible for discrimination based on botanical 
source using PLS–DA. The PLS–DA model enabled the discrimination 
between Coco-S and Br-CaneS, with the first two LVs explaining 71.51% 
of the total variance. The PLS–DA score plot (Fig. 3C) revealed that the 
discrimination between Coco-S and Br-CaneS was achieved with LV1, 
explaining 53.76% of the variance. The same differentiation was 
possible with PCA, with 54.34% of the explained variance in PC1 
(Fig. S3C). LV2 showed that discrimination of Mix-S from Coco-S and Br- 
CaneS was possible to a certain extent, with 17.75% of the variance 
explained (Fig. 3C), whereas Mix-S was mostly differentiated from both 
commercial sugars with PC1 (Fig. S3C). Comparing these results with 
the PCA score plot of Fig. 2C, it was observed that in all models, the Mix- 

Table 3 
Identification and assignments of each spectral profile (ST) obtained by MCR-ALS for 1H NMR dataset from sugar beets and commercial sugars. S-SB1: Storage sugar 
beet from San Carlos; F-SB1: Fresh sugar beet from San Carlos; F-SB2: Fresh sugar beet from Los Ángeles; Coco-S: Coconut sugar; Br-CaneS: Brown cane sugar; s: singlet; 
d: doublet; t: triplet; dd: doublet of doublets; dq: doublet of quartets; m: multiplet.  

Variable (ST) Compound δH in ppm (mult, J in Hz) Group Detected in sugar beet extracts Detected in commercial sugars 

Amino acids and amino compounds      
2 Valine 1.00 (d, J = 6.64) γCH3 + Only in 3 samples of Coco-S 

1.04 (d, J = 6.86) γ’CH3 

1 Leucine 0.93 (t, J = 6.80-6.30) δCH3 + Only in 3 samples of Coco-S 
2 Isoleucine 1.07 (d, J = 7.06) γCH3 + Only in 3 samples of Coco-S 
4 Alanine 1.50 (d, J = 7.22) βCH3 + - 
6-9-14 GABA 1.91 (m) βCH2 + - 

2.29 (t, J = 7.42) αCH2 

3.01 (t, J = 7.95-7.84) γCH2 

8-7 Glutamate 2.04 (m) βCH2 Only in S-SB1 - 
2.14 (m) β’CH2 

11 Pyroglutamate 2.42 (m) γCH2 - Only in 3 samples of Coco-S 
2.52 (m) βCH2 

12 Glutamine 2.44 (m) γCH2 Only in F-SB1 and F-SB2 - 
15 Choline 3.17 (s) N(CH3)3 Only in S-SB1 Only in Coco-S 
16 Betaine 3.27 (s) N(CH3)3 + - 
35 Tyrosine 6.89 (d, J = 8.73) 3,5-CH Only in 3 samples - 

7.19 (d, J = 8.88) 2,6-CH  

Organic acids      
10-13 Malate 2.37 (dd, J = 15.1-9.53) βCH Only in S-SB1 Only in 3 samples of Coco-S 

2.68 (dd, J = 15.4-3.53) β’CH 
5 Acetate 1.94 (s) CH3 - +

10-13 Citrate 2.54 (d, J = 16.2) CH2 Only in S-SB1 Only in 3 samples of Coco-S 
2.71 (d, J = 16.3) CH2 

3 Lactate 1.34 (d, J = 6.93) βCH3 + +

36 Fumarate 6.54 (s) (CH=)2 + Only in 3 samples of Coco-S 
37 Formate 8.47 (s) CH - +

34 trans-aconitate 6.59 (s) CH= - Only in Br-CaneS  

Carbohydrates      
17 Sucrose 3.47 (t, J = 9.38) G4H + +

18  3.56 (dd, J = 9.97-3.85) G2H + +

19  3.67 (s) F1H + +

20  3.76 (t, J = 9.56) G3H + +

21  3.82 (m) F6H + +

22  3.85 (m) G5H + +

23  3.89 (dq, J = 8.30-4.01) F5H + +

25  4.05 (t, J = 8.76) F4H + +

27  4.22 (d, J = 8.54) F3H + +

32  5.41 (d, J = 3.87) G1H + +

24 Fructose 4.01 (m) C6H2 + +

26  4.11 (m) C3H+C4H + +

31 α-xylose 5.20 (d, J = 3.82) CH + Only in Br-CaneS 
30 α-glucose 5.23 (d, J = 3.76) CH + +

29 β-glucose 4.65 (d, J = 7.93) CH + +

Not identified      
28 Unknown 4.39 (d, J = 8.77) - + +

33 Unknown 5.62 (d, J = 3.82) - + +
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S samples were clustered with Coco-S and Br-CaneS, with one sample of 
Coco-S considered as Mix-S, suggesting a slight difference from the other 
Coco-S samples. The identification of resonance signals (Table 3) 
revealed that only the variables 15 (choline), 5 (acetate), 3 (lactate), 37 
(formate), 17–32 (sucrose), 24–26 (fructose), 30 (α-glucose), and 29 
(β-glucose) were detected in all the samples of Coco-S, whereas some 
resonance signals associated with amino/organic acids were only 
detected in three samples of Coco-S. This indicated that the use of the 
combined C matrix obtained from segmented analysis via MCR–ALS 
represents the pure resonance signals resolved in the processed 1H NMR 
dataset. This allows, supervised or unsupervised models to present a less 
biased contribution to each variable and, therefore, be able to differ-
entiate the one sample of Coco-S from the other three Coco-S samples. 

The VIP plot (Fig. 3D and Table 2) showed that the contribution 
associated with the discrimination of Coco-S and Br-CaneS were from 
the variables 3, 5, 11, 24, 26, 29, 30, 31, 32, and 37. Regarding the 
identification of resonance signals (Table 3), these variables corre-
sponded to lactate, acetate, pyroglutamate, fructose, β-glucose, 
α-glucose, α-xylose, sucrose, and formate. The high intensities of vari-
ables 3 (lactate), 5 (acetate), and 37 (formate) in Coco-S (Figure S7A, 
S7B, and S7H) may be partly due to fermentation after harvesting and 
the Maillard reaction (Bachmann et al., 2022; E. Chen et al., 2021), 
contributing to its discrimination. The formation of pyroglutamate 
through the intramolecular cyclization of glutamate or glutamine 
(Gazme et al., 2019) due to high temperatures and pressure during the 
production of coconut sugar contributed to its discrimination. In addi-
tion, the C of the variables 24–26 (fructose), 29 (β-glucose), and 30 
(α-glucose) exhibited higher intensities in Coco-S than in Br-CaneS 
(Figure S7D, S7E, S7F, and S7G). Conversely, the high intensities of C 
associated with resonance signals of sucrose and possibly related to 
α-xylose contributed to the differentiation of Br-CaneS (Figure S8A and 
S8B). 

3.4. Tentative identification of resonance signals and assignment for sugar 
beet extracts and commercial sugars through the spectral profiles (ST) 
obtained via MCR–ALS 

The 37 ST profiles obtained via MCR–ALS according to each subarray 
were evaluated to determine the spectroscopic parameters as chemical 
shifts (δH), multiplicity, and coupling constants (J) using MestreNova 
v.12.0. All the resolved ST profiles are presented in Figure S2. The 
spectral regions of aliphatic, carbohydrate, and aromatic/aldehyde 
compounds were determined by comparing the spectroscopic parame-
ters with values from previously reported studies (Bachmann et al., 
2022; Boffo et al., 2012; Dimitrakopoulou et al., 2021; Giampaoli et al., 
2021; Saviano et al., 2019; Wedeking et al., 2018; Yang et al., 2012), 
using reference library Chenomx NMR suite 8.3, and the online available 
Human Metabolome Database (HMDB) (Wishart et al., 2009). The latter 
was used for some primary compounds present also in plant metab-
olome. Overall, 22 polar compounds were identified in the sugar beet 
extracts and commercial sugar samples, i.e., 9 amino acids, 2 amino 
compounds, 7 organic acids, and 4 sugars. The identification, assign-
ment, chemical shifts, coupling constants, and multiplicities of all the 
compounds are presented in detail in Table 3. The identification of the 
resonance signals through ST profiles was consistent with the results of 
the scores and loading plots obtained with PCA (Fig. 2C, 2E, and 2F). 
The specific resonance signals for sugar beet extracts and commercial 
sugars, i.e., variables 4 (alanine), 6, 9, 14 (gamma-aminobutyric acid 
[GABA]), 8, 7, (glutamate), 11 (pyroglutamate), 12 (glutamine), 16 
(betaine), 35 (tyrosine), 5 (acetate), 37 (formate), and 34 (trans-aconi-
tate), demonstrated accurate contribution to the clustering and differ-
entiation according to the sugar source. 

3.4.1. Carbohydrates 
As anticipated, most of the intense resonance signals present in the 

1H NMR dataset (Fig. 1A) corresponded to the resonance signals of 

sucrose in the carbohydrate spectral region. Glucose anomers (α and β), 
α-xylose, and sucrose were represented by the doublets of protons 
bonded to the anomeric carbon at δH = 5.23 (d, J = 3.76 Hz), δH = 4.65 
(d, J = 7.93 Hz), δH = 5.20 (d, J = 3.82 Hz), and δH = 5.41 (d, J = 3.87 
Hz), respectively. Resonance signals from fructose were detected as 
multiplets at δH = 4.01 and 4.11. 

3.4.2. Amino acids and amino compounds 
The compounds in the aliphatic region associated with the branched- 

chain amino acid signals of valine δH = 1.00, 1.04 (d, J = 6.64, 6.86 Hz), 
leucine δH = 0.93 (t, J = 6.80–6.30 Hz), and isoleucine δH = 1.07 (d, J =
7.06 Hz) were identified in S-SB1, F-SB1, F-SB2, and only in three Coco-S 
samples. Alanine δH = 1.50 (d, J = 7.22 Hz) and GABA δH = 1.94 (m), 
2.29 (t, J = 7.42 Hz), and 3.01 (t, J = 7.95–7.84 Hz) were detected only 
in sugar beet extracts. The resonance signal associated with betaine δH =

3.27 (s) was found only in the sugar beet extracts, as betaine is a specific 
molecule of sugar beet (Bachmann et al., 2022; Palmonari et al., 2020). 
The multiplets of glutamate at δH = 2.04, 2.14 were detected only in S- 
SB1, and the multiplet of glutamine δH = 2.44 was found in F-SB1 and F- 
SB2. Pyroglutamate δH = 2.42, 2.52 (m) was present in only three 
samples of Coco-S, possibly due to the heat-degradation of glutamate or 
glutamine during sugar production (Wedeking et al., 2018). The reso-
nance signal belonging to choline δH = 3.17 (s) was detected in S-SB1 
and Coco-S. 

3.4.3. Organic acids and derivates 
Malate δH = 2.37, 2.68 (dd, J = 15.1–9.53, 15.4–3.53 Hz), acetate δH 

= 1.94 (s), citrate δH = 2.54, 2.71 (d, J = 16.2–16.3 Hz), and lactate δH 
= 1.34 (d, J = 6.93 Hz) were identified as the most prominent organic 
acids in Coco-S (except for lactate), suggesting the occurrence of mixed 
acid fermentation between the harvesting of the sugar juice and heating 
(Bachmann et al., 2022). In sugar beet extracts, only malate and citrate 
were detected in S-SB1, whereas lactate was identified in F-SB1, F-SB2, 
and S-SB1. In the aromatic/aldehyde spectral region, tyrosine at δH =

6.89–7.19 (d, J = 8.73, 8.88 Hz) was detected in only three samples of 
the sugar beet extracts, i.e., one fresh and two stored samples. 
Furthermore, the resonance signal of fumarate δH = 6.54 (s), an inter-
mediate of the TCA cycle with citrate and malate (Wedeking et al., 
2018), was detected in S-SB1, F-SB1, F-SB2, and three samples of Coco-S. 
Formate δH = 8.47 (s) was identified only in Coco-S and Br-CaneS 
samples. The identification of formate and acetate only in Coco-S and 
Br-CaneS could be related to the formation of these compounds due to 
the degradation of sugars at high temperatures and the Maillard reaction 
(Chen et al., 2021). Finally, the presence of trans-aconitate δH = 6.59 (s) 
was detected only in Br-CaneS, consistent with the results of Bachmann 
et al. (2022) and Palmonari et al. (2020). Aconitate is a specific acid 
produced by sugar cane, and its predominant form is trans-aconitate 
(Montoya, Londono, Cortes, & Izquierdo, 2014), formed by the isom-
erization of cis-aconitate. 

4. Conclusion 

The application of a segmented analysis via MCR–ALS to 1H NMR 
spectral data was effective in discriminating sugar beet extracts and 
commercial sugars with respect to botanical source, geographical re-
gion, and storage. This had not been possible using other preprocessing 
methods such as data binning. In addition, the discrimination was suc-
cessful without the loss of chemical information required for identifying 
compounds. The spectral assignment, based on ST profiles using 
MCR–ALS, allowed the identification of 22 compounds present in the 
sugar beet extracts and commercial sugars. Valine, isoleucine, gluta-
mate, betaine, acetate, malate, and fumarate were responsible for 
discriminating stored from fresh sugar beet, whereas lactate, acetate, 
pyroglutamate, fructose, α-glucose, β-glucose, and formate were 
responsible for discriminating coconut sugar from brown cane sugar. 
Finally, this study demonstrated that sugar from different sources, with 
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similar spectroscopic profiles and which are dominated by sucrose, can 
be differentiated independent of their degree of spectral overlap. The 
use of MCR–ALS enables greater selectivity in chemometric models. It is 
important to note that the number of samples used for the analysis was 
small, and more samples are required in both groups (sugar beet and 
commercial sugars) to improve robustness of the models and ensure that 
the methodology is more generalizable in future. 
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