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LOW-DIMENSIONAL LINEAR REPRESENTATIONS OF

MAPPING CLASS GROUPS

MUSTAFA KORKMAZ

Abstract. Recently, John Franks and Michael Handel proved
that, for g ≥ 3 and n ≤ 2g−4, every homomorphism from the map-
ping class group of an orientable surface of genus g to GL(n,C) is
trivial. We extend this result to n ≤ 2g− 1, also covering the case
g = 2. As an application, we prove the corresponding result for
nonorientable surfaces. Another application is on the triviality of
homomorphisms from the mapping class group of a closed surface
of genus g to Aut(Fn) or to Out(Fn) for n ≤ 2g − 1.

1. Introduction

Let S be a compact connected oriented surface of genus g ≥ 1 with
q ≥ 0 boundary components and with p ≥ 0 marked points in the
interior. Let Mod(S) denote the mapping class group of S, the group
of isotopy classes of orientation–preserving self–diffeomorphisms of S.
Diffeomorphisms and isotopies are assumed to be the identity on the
marked points and on the boundary.
There is the classical representation of Mod(S) onto the symplectic

group Sp(2g,Z) induced by the action of the mapping class group on
the first homology of the closed surface of genus g. In [6], Question 1.2,
Franks and Handel asked whether every homomorphism Mod(S) →
GL(n,C) is trivial for n ≤ 2g − 1. They proved that, in fact, this is
the case for g ≥ 3 and n ≤ 2g − 4, improving a result of Funar [7]
who showed that every homomorphism from the mapping class group
to SL(n,C) has finite image for n ≤ √

g + 1.
The aim of this paper is to give a complete answer to the question of

Franks and Handel, and then consider the corresponding problem for
nonorientable surfaces. We first prove the following theorem.

Theorem 1. Let g ≥ 1 and let n ≤ 2g−1. Let φ : Mod(S) → GL(n,C)
be a homomorphism. Then the image Im(φ) of φ is

(1) trivial if g ≥ 3,
(2) a quotient of the cyclic group Z10 of order 10 if g = 2, and
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(3) a quotient of Z12 if (g, q) = (1, 0) and of Zq if g = 1 and q ≥ 1.

I was informed by Bridson [3] that he conjectured the above theorem.
He hints this in the page 2 of [2].
The first corollary to Theorem 1 is the following.

Corollary 2. Let g ≥ 2, n ≤ 2g−1, Γ be a quotient of Mod(S) and let

ϕ : Γ → GL(n,C) be a homomorphism. Then Im(ϕ) is trivial if g ≥ 3,
and is isomorphic to a quotient of Z10 if g = 2.

Note that the groups Sp(2g,Z), Sp(2g,Zm), PSp(2g,Z), and PSp(2g,Zm)
are quotients of Mod(S). Since Mod(S) is residually finite [9, 11], there
are many finite quotients.
In the definition of the mapping class group, if we allow the diffeo-

morphisms of S to permute the marked points, then we get a group
M(S), which contains Mod(S) as a subgroup of index p!.

Corollary 3. Let g ≥ 2 and let n ≤ 2g−1. Let φ : M(S) → GL(n,C)
be a homomorphism. Then Im(φ) is finite.

For a nonorientable surface N of genus g with p ≥ 0 marked points,
we define the mapping class group Mod(N) of N to be the group of
isotopy classes of diffeomorphisms preserving the set of marked points
(isotopies are assumed to fix the marked points). The action of a map-
ping class on the first homology of the closed surface N obtained by
forgetting the marked points give rise to an automorphism of H1(N ;Z)
preserving the associated Z2–valued intersection form. It was proved by
McCarthy and Pinkall [19], and also by Gadgil and Pancholi [8], that, in
fact, all automorphisms of H1(N ;Z) preserving the Z2–valued intersec-
tion form are induced by diffeomorphisms. By dividing out the torsion
subgroup ofH1(N ;Z), we get a representation Mod(N) → GL(g−1,C).
It is now natural to ask the triviality of the lower dimensional repre-
sentations of Mod(N). Since the mapping class group Mod(N) has
nontrivial first homology, we cannot expect that every such homomor-
phism is trivial. Instead, one may ask the following question.

Question 1.1. Let g ≥ 3, and let n ≤ g − 2. Is the image of every

homomorphism φ : Mod(N) → GL(n,C) finite?

As an application of Theorem 1, we answer this question leaving only
one case open; the case g is even and n = g − 2.

Theorem 4. Let g ≥ 3, and let n ≤ g − 2 if g is odd and n ≤ g − 3
if g is even. Let N be a nonorientable surface of genus g with p ≥ 0
marked points and let φ : Mod(N) → GL(n,C) be a homomorphism.

Then Im(φ) is finite.
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The mapping class group of a nonorientable surface with boundary
components may also be considered, but we restrict ourself to surfaces
with marked points only in order to make the proof simpler.
As another application of Theorem 1, we prove the following result

on the homomorphisms from the mapping class group of a closed ori-
entable surface to Aut(Fn) and to Out(Fn), where Fn is the free group
of rank n. Compare Theorem 5 with Question 16 in [4].

Theorem 5. Let g ≥ 2 and let S be a closed orientable surface of genus

g. Let n be a positive integer with n ≤ 2g − 1. Let H denote either

of Aut(Fn) or Out(Fn) and let ϕ : Mod(S) → H be a homomorphism.

Then the image of ϕ is

(1) trivial if g ≥ 3, and
(2) a quotient of Z10 if g = 2.

In [6], the main theorem, Theorem 1.1, is proved by induction on g.
It is first proved for the cases g ≥ 3 and n ≤ 2. The main improvement
of this paper is that we can start the induction from the cases g = 2 and
n ≤ 3. The rest of the proof of Theorem 1 follows from the arguments
of [6]. We give a slight modification of this proof. The proofs in cases
g = 2 and n ≤ 2 follow from the proof of Lemma 3.1 of [6] with the
additional information that the commutator subgroup of Mod(S) is
perfect. In the case (g, n) = (2, 3) we need to treat all possible Jordan
forms of the image of the Dehn twist about a nonseparating simple
closed curve.

Acknowledgments. This paper was written while I was visiting the
Max-Planck Institut für Mathematik in Bonn. I thank MPIM for its
generous support and wonderful research environment. After the com-
pletion of the first version of this work, I was informed by John Franks
and Michael Handel that they also improved Theorem 1.1 in [6] to the
cases g ≥ 2 and n ≤ 2g − 1. I would like to thank them for sending
the new version of their paper, which now appears on Arxiv as version
3. I also thank Martin Bridson for his interest in this work.

2. Algebraic preliminaries

We state two properties of subgroups of GL(n,C). They are either
well-known, or easy to prove. Therefore, we do not prove them. These
properties will be used in the proof of Theorem 1.

Lemma 2.1. Let C =





z ∗ ∗
0 z ∗
0 0 z



 and D =





w ∗ ∗
0 w ∗
0 0 w



 be two

elements of GL(3,C). Then CDC = DCD if and only if C = D.
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Lemma 2.2. The subgroup of GL(n,C) consisting of upper triangular

matrices is solvable.

We will also require the following lemma from [6].

Lemma 2.3. ([6], Lemma 2.2) Let G be a perfect group, and H a

solvable group. Then any homomorphism G → H is trivial.

3. Mapping class groups and commutator subgroups

Let S be a compact oriented surface of genus g with p ≥ 0 marked
points and with q ≥ 0 boundary components. In this section we give
the results on mapping class groups required in the proof of Theorem 1.
For further information on mapping class groups, the reader is referred
to [12], or [5]. For a simple closed curve a on S we denote by ta the
(isotopy class of the) right Dehn twist about a.

Theorem 3.1. ([17], Theorem 1.2) Let g ≥ 1. Suppose that a and

b are two nonseparating simple closed curves on S. Then there is a

sequence

a = a0, a1, a2, . . . , ak = b

of nonseparating simple closed curves such that ai−1 intersects ai at

only one point

Theorem 3.2. Let g ≥ 2. Then the mapping class group Mod(S) is

generated Dehn twists about nonseparating simple closed curves on S.

Theorem 3.3. ([17], Theorem 2.7) Let g ≥ 2. Let a and b be two non-

separating simple closed curves on S intersecting at one point. Then

the commutator subgroup of Mod(S) is generated normally by tat
−1

b .

Theorem 3.3 should be interpreted as follows: If a normal subgroup
of Mod(S) contains tat

−1

b , then it contains the commutator subgroup of
Mod(S), the (normal) subgroup generated by all commutators [x, y] =
xyx−1y−1.

Theorem 3.4. ([17], Theorem 4.2) Let g ≥ 2. Then the commutator

subgroup of Mod(S) is perfect.

Note that, in [17], the group Mod(S) of this paper is denoted by
PMS. In that paper, Theorems 3.3 and 3.4 above are proved for sur-
faces with marked points (=punctures), but the same proof apply to
surfaces with boundary as well since Mod(S) is generated by Dehn
twists about nonseparating simple closed curves.
We record the following well–known relations among Dehn twists.

Lemma 3.5. Let a and b be two simple closed curves on S, and let ta
and tb denote the right Dehn twists about them.
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(1) If a and b are disjoint, then ta and tb commute.

(2) If a intersects b transversely at one point, then they satisfy the

braid relation tatbta = tbtatb.

Recall that the first homology group H1(G;Z) of a group G is iso-
morphic to the abelianization G/G′, where G′ is the (normal) subgroup
of G generated by all commutators [g1, g2].

Theorem 3.6. ([15], Theorem 5.1) Let g ≥ 1. Then the first homology

group H1(Mod(S);Z) is

(1) trivial if g ≥ 3,
(2) isomorphic to the cyclic group of order 10 if g = 2,
(3) isomorphic to the cyclic group of order 12 if (g, q) = (1, 0), and
(4) isomorphic to Zq if g = 1 and q ≥ 1.

Note that since any two Dehn twists about nonseparating simple
closed curves are conjugate in Mod(S), their classes in H1(Mod(S);Z)
are equal. In particular, we conclude the next lemma.

Lemma 3.7. Let g ≥ 1, and let b and c be two nonseparating simple

closed curves on S. If H is an abelian group and if φ : Mod(S) → H
is a homomorphism, then φ(tb) = φ(tc).

4. Homomorphisms Mod(S) → GL(n,C)

In this section we prove Theorem 1. So let n ≤ 2g − 1 and let
φ : Mod(S) → GL(n,C) be a homomorphism.
For the proof, we adopt the proof of Theorem 1.1 in [6]. Franks and

Handel use the fact that when g ≥ 3 the group Mod(S) is perfect. If
this is rephrased as ”the commutator subgroup of Mod(S) is perfect”
then it is still true for the case g = 2 as well, and that is what we use
below. The proof given in [6] for the case g ≥ 3 and n ≤ 2, also works
for the case g = 2 and n ≤ 2 with a slight modification. For the case
g = 2 and n = 3, we need to analyze six possible Jordan forms of the
image of the Dehn twist about a nonseparating simple closed curve.
Once Theorem 1 is established for the cases g = 2 and n ≤ 3, we then
again follow a modified version of the idea of Franks and Handel to
induct g.
Following [6], for a simple closed curve x on S we denote φ(tx) by

Lx. If λ is an eigenvalue of a linear operator L, the corresponding
eigenspace is denoted by Eλ(L). We write Ex

λ for Eλ(Lx).

Proposition 4.1. Let g = 2 and n ≤ 2. Then Im(φ) is a quotient of

the cyclic group Z10.
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Proof. If n = 1 then GL(n,C) = C∗ is abelian. Hence, φ factors
through the first homology of Mod(S), which is isomorphic to Z10. So
assume that n = 2. In this proof, we set G = Mod(S).
Let a, b and c be three nonseparating simple closed curves on S such

that a is disjoint from b∪ c, and that b intersects c transversely at one
point. Clearly, in order to complete the proof, it suffices to prove that
φ(G′) = {I}, where G′ is the commutator subgroup of G. There are
three possibilities for the Jordan form of La.
(i). Suppose that La has two distinct eigenvalues λ1 and λ2, with

corresponding eigenvectors v1 and v2; La(vi) = λivi. With respect to
the basis {v1, v2}, the matrix La is diagonal. Since Lb and Lc preserve
each eigenspace of La, they are diagonal too. In particular, they com-
mute. Now from the braid relation LbLcLb = LcLbLc, we get Lb = Lc,
or φ(tbt

−1
c ) = I. Since G′ is generated normally by tbt

−1
c (c.f. Theo-

rem 3.3), we conclude that φ(G′) is trivial
(ii). If the matrix La has only one eigenvalue λ and if the Jordan

form of La is λI, then Lx = λI for each nonseparating simple closed
curve x on S. This is because Lx is conjugate to La. Since the group
G is generated by Dehn twists about such curves, we have that φ(G)
is cyclic.
(iii). Suppose finally that the Jordan form of La is not diagonal, so

that the matrix of La is
(

λ 1
0 λ

)

in some fixed basis. Because Lb and Lc preserve the eigenspace of
La, with respect to the same basis, the matrices Lb and Lc are upper
triangular whose diagonal entries are λ. In particular, we have LbLc =
LcLb. From the braid relation LbLcLb = LcLbLc again, we get Lb = Lc,
or φ(tbt

−1
c ) = I. From this we conclude that φ(G′) is trivial.

This completes the proof of the proposition.

Lemma 4.2. Let a, b, x, y be four nonseparating simple closed curves

on S such that there is an orientation–preserving diffeomorphism f of

S with f(x) = a and f(y) = b. Let λ be an eigenvalue of La = φ(ta).
Then Ea

λ = Eb
λ if and only if Ex

λ = Ey
λ.

Proof. Let F = φ(f). The assumptions f(x) = a and f(y) = b imply
that ftxf

−1 = ta and ftyf
−1 = tb, and hence FLxF

−1 = La and
FLyF

−1 = Lb. Therefore,

Ea
λ = Eλ(La) = Eλ(FLxF

−1) = F (Ex
λ)

and
Eb

λ = Eλ(Lb) = Eλ(FLyF
−1) = F (Ey

λ).
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The lemma now follows from these two.

Proposition 4.3. If g = 2 then the image of any homomorphism

φ : Mod(S) → GL(3,C) is a quotient of the cyclic group Z10

Proof. Let G = Mod(S), and let G′ denote the commutator subgroup
of G. Since H1(G,Z) is isomorphic to Z10, it suffices to prove that φ(G)
is abelian, or equivalently that φ(G′) is trivial.
Since φ(G′) is generated normally by a single element txt

−1
y for any

two nonseparating simple closed curves x and y intersecting at one
point, it is also sufficient to find two such curves with φ(txt

−1
y ) = I.

Let a be a nonseparating simple closed curve on S. The Jordan form
of La is one of the following six matrices:

(i)





λ1 0 0
0 λ2 0
0 0 λ3



 , (ii)





λ 0 0
0 λ 0
0 0 λ



 , (iii)





λ 0 0
0 µ 1
0 0 µ



 ,

(iv)





λ 1 0
0 λ 1
0 0 λ



 , (v)





λ 0 0
0 λ 1
0 0 λ



 , (vi)





λ 0 0
0 λ 0
0 0 µ



 .

Here, distinct notations represent distinct eigenvalues. In each case we
fix a basis with respect to which the matrix La is in its Jordan form.
Recall that the eigenspace of Lx corresponding to an eigenvalue λ is
denoted by Ex

λ . We now analyze each case.
(i). In this case, each eigenspace of La is 1–dimensional. Let b1

and b2 be two nonseparating simple closed curves intersecting at one
point such that each bi is disjoint from a. Then each eigenspace Ea

λi
is

invariant under each Lbi , so that Lbi are diagonal. In particular, Lb1 and
Lb2 commute. Now the braid relation Lb1Lb2Lb1 = Lb2Lb1Lb2 implies
that Lb1 = Lb2 . Thus, we have φ(Lb1) = φ(Lb2), i.e. φ(tb1t

−1

b2
) = I.

(ii). If b is a nonseparating simple closed curve on S, then Lb is
conjugate to La, so that Lb = λI. Since G is generated by all such
Dehn twists, we get that φ(G) is cyclic.
(iii). Let b1 and b2 be two nonseparating simple closed curves inter-

secting at one point such that they are disjoint from a. The matrices
Lb1 and Lb2 preserve each eigenspace Ea

λ and Ea
µ, so that they are of

the form

Lbi =





xi 0 wi

0 yi ui

0 0 zi



 .

The braid relation Lb1Lb2Lb1 = Lb2Lb1Lb2 implies that x = x1 = x2,
y = y1 = y2 and z = z1 = z2. The equality LbiLa = LaLbi then gives
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wi = 0 and y = z. Hence, we have x = λ, y = z = µ, and so

Lbi =





λ 0 0
0 µ ui

0 0 µ



 .

But then we have Lb1Lb2 = Lb2Lb1 . The braid relation Lb1Lb2Lb1 =
Lb2Lb1Lb2 again implies that Lb1 = Lb2 , and hence φ(tb1t

−1

b2
) = I.

(iv). Let b1 and b2 be two nonseparating simple closed curves inter-
secting at one point such that they are disjoint from a. In this case,
ker(La − λI) = Ea

λ is 1-dimensional, ker(La − λI)2 is 2-dimensional,
and they are Lbi–invariant for i = 1, 2. It follows that

Lbi =





λ ∗ ∗
0 λ ∗
0 0 λ



 .

Since there is the braid relation Lb1Lb2Lb1 = Lb2Lb1Lb2 , Lemma 2.1
implies that Lb1 = Lb2 . Hence, φ(tb1t

−1

b2
) = I.

(v). The eigenspace Ea
λ is 2-dimensional in this case. Suppose first

that Ea
λ 6= Eb

λ for some (hence all) nonseparating simple closed curve
b intersecting a at one point. Choose two nonseparating simple closed
curves c1 and c2 disjoint from a ∪ b such that c1 intersects c2 at one
point. Then Ea

λ ∩Eb
λ and Ea

λ are Lci–invariant subspaces, so that with
respect to a suitable basis

Lci =





λ ∗ ∗
0 λ ∗
0 0 λ



 .

Note that we have the braid relation Lc1Lc2Lc1 = Lc2Lc1Lc2 . We now
use Lemma 2.1 to conclude that Lc1 = Lc2 , so that φ(tc1t

−1
c2
) = I.

If Ea
λ = Eb

λ for some (hence all) b intersecting a at one point, then
Ea

λ = Ex
λ for all nonseparating simple closed curves x. This is because,

by Theorem 3.1 there is a sequence a = a0, a1, a2, . . . , ak = x of nonsep-
arating simple closed curves such that ai−1 intersects ai at one point
for all 1 ≤ i ≤ k, and E

ai−1

λ = Eai
λ . Since G is generated by Dehn

twists about nonseparating simple closed curves, Ea
λ is φ(G)–invariant,

so that φ induces a homomorphism φ̄ : G → GL(Ea
λ) = GL(2,C). By

Proposition 4.1, φ̄(G) is cyclic, and hence φ̄(f) = I all f ∈ G′. Thus
the matrix of φ(f) is of the form





1 0 z1
0 1 z2
0 0 z3



 .
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Since the subgroup of GL(3,C) consisting of upper triangular matrices
are solvable and since G′ is perfect, φ(G′) is trivial.
(vi). In this last case, the eigenspace Ea

λ is, again, 2-dimensional. If
Ea

λ = Eb
λ for some nonseparating simple closed curve b intersecting a

at one point, then from Theorem 3.1 and Lemma 4.2 we obtain that
Ea

λ = Ex
λ for all nonseparating simple closed curves x. We conclude

now as in the case (v) that φ(G′) is trivial.
Suppose finally that Ea

λ 6= Eb
λ for some (hence all) nonseparating

simple closed curve b intersecting a at one point. By Lemma 4.2,
Ex

λ 6= Ey
λ for all nonseparating simple closed curves x and y intersecting

once. Let a = c4 and b = c5. Choose three nonseparating simple closed
curves c1, c2, c3 such that

• ci intersects cj at one point if |i− j| = 1, and
• ci is disjoint from cj if |i− j| ≥ 2.

Let v1 ∈ Ea
λ ∩ Eb

λ, v2 ∈ Ea
λ and v3 ∈ Ea

µ so that {v1, v2, v3} is a basis.
With respect to this basis, the matrix of La is its Jordan matrix. Since
Ea

λ ∩ Eb
λ, E

a
λ and Ea

µ are Lci–invariant for i = 1, 2, we have

Lci =





xi wi 0
0 yi 0
0 0 zi



 ,

with {xi, yi, zi} = {λ, µ}. Then the braid relation

(1) Lc1Lc2Lc1 = Lc2Lc1Lc2

gives us x1 = x2 = x, y1 = y2 = y and z1 = z2 = z.
If z = µ then x = y = λ, and hence Lc1Lc2 = Lc2Lc1. Now the braid

relation (1) implies again that Lc1 = Lc2. It follows that φ(G
′) is trivial

as above.
Suppose that z = λ. We will show that this case is not possible by

arriving at a contradiction. If x = λ then y = µ. But then we have
Ec1

λ = Ec2
λ , which is a contradiction. If x = µ then y = λ. Since Ec1

µ is
Lc3–invariant, we have

Lc3 =





u ∗ ∗
0 ∗ ∗
0 ∗ ∗



 .

Now the braid relation LaLc3La = Lc3LaLc3 gives u = λ, while the
braid relation Lc3Lc2Lc3 = Lc2Lc3Lc2 gives u = µ. Since λ 6= µ, we get
a contradiction again.
This completes the proof of the proposition.

Finally, we are in a position to prove Theorem 1.
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Proof of Theorem 1. If g = 1 then n = 1, and φ : Mod(S) → GL(1,C).
Since GL(1,C) is abelian, φ factors through H1(Mod(S);Z). The the-
orem now follows from Theorem 3.6. If g = 2 then n ≤ 3. These
cases are proved in Propositions 4.1 and 4.3. We assume that g ≥ 3
and that the theorem holds true for all surfaces of genus g − 1. Since
GL(k − 1,C) is isomorphic to a subgroup of GL(k,C), it suffices to
prove the theorem for n = 2g − 1.
In what follows R denotes a subsurface of S diffeomorphic to a com-

pact connected surface of genus g − 1 with one boundary component.
We embed Mod(R) into Mod(S) by extending self-diffeomorphisms of
R to S by the identity. We set G = Mod(S) and HR = Mod(R).
If, for some subsurface R, there exists a φ(HR)–invariant subspace V

of dimension r with 2 ≤ r ≤ n−2, then φ induces homomorphisms φ1 :
HR → GL(V ) = GL(r,C) and φ2 : HR → GL(Cn/V ) = GL(n − r,C).
Note that r ≤ 2(g − 1)− 1 and n− r ≤ 2(g − 1)− 1. By assumption,
the image of each φi is cyclic. In particular, if b and c are two simple
closed curves on R intersecting at one point, then φi(tb) = φi(tc) by
Lemma 3.7. That is, φi(tbt

−1
c ) = I. Since the commutator subgroup

H ′

R of HR is generated normally by tbt
−1
c we get that φi(f) = I for all

f ∈ H ′

R. It follows that, with respect to some basis of Cn,

φ(f) =

(

Ir F
0 In−r

)

for all f ∈ H ′

R. Since the subgroup of GL(n,C) consisting of such
matrices is abelian and since H ′

R is perfect, we conclude that φ(H ′

R) is
trivial. In particular, we have φ(tbt

−1
c ) = I. Since G′ = G is generated

normally by tbt
−1
c , φ(G) is trivial.

We now fix a subsurface R of genus g − 1 with one boundary com-
ponent. Let a and b be two nonseparating simple closed curves on S
intersecting at one point such that a ∪ b is disjoint from R.
CASE 1. Suppose that there is a subspace V of dimension r with

2 ≤ r ≤ n−2 which is a direct sum of eigenspaces of La (Note that there
exists such a subspace if La has at least three distinct eigenvalues.).
Then V is φ(HR)–invariant. Hence, φ(G) is trivial.
CASE 2. Suppose that there is no subspace V as in CASE 1. In

particular, La has at most two eigenvalues and each eigenspace of La is
either 1–dimensional, or (n − 1)–dimensional, or n–dimensional. The
Jordan form of La is one of the following four matrices:
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(i) λIn, (ii)













λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ













, (iii)

















λ 0 · · · 0 0 0
0 λ · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · λ 0 0
0 0 · · · 0 λ 1
0 0 · · · 0 0 λ

















,

(iv)

(

λIn−1 0
0 µ

)

.

We fix a basis so that the matrix La is equal to its Jordan form.
In the case (i), if x is a nonseparating simple closed curve on S, then

Lx = λI since it is conjugate to La. Since G is generated by Dehn
twists about nonseparating simple closed curves, φ(G) is cyclic, and
hence it is trivial.
In the case (ii), the subspace ker(La − λI)2 is a φ(HR)–invariant

subspace of dimension 2, so that φ(G) is trivial.
It remain to consider the cases (iii) and (iv). In these cases, the

eigenspace Ea
λ is of dimension n − 1. The eigenspace Eb

λ is also of
dimension n − 1. If Ea

λ 6= Eb
λ, then Ea

λ ∩ Eb
λ is a φ(HR)–invariant

subspace of dimension n− 2(> 1). Hence, φ(G) is trivial.
Suppose finally that Ea

λ = Eb
λ. It follows from Lemma 4.2 that

Ex
λ = Ey

λ for any two nonseparating simple closed curves x and y on
S intersecting at one point. We then conclude from Theorem 3.1 that
Ea

λ = Ex
λ for all such nonseparating x on S. Since Mod(S) is generated

by Dehn twists about nonseparating simple closed curves, it follows
that for each f ∈ G, the matrix φ(f) is upper triangular. Hence, φ(G) is
contained in the subgroup consisting of upper triangular matrices. But
this subgroup of GL(n,C) is solvable. Since G is perfect, we conclude
from Lemma 2.3 that φ(G) is trivial.
This completes the proof of Theorem 1.

5. Nonorientable surfaces

The purpose of this section is to prove Theorem 4. So let φ :
Mod(N) → GL(n,C) be a homomorphism, where N is a nonorientable
surface of genus g ≥ 3 with p ≥ 0 marked points, and n ≤ g − 2 for
odd g and n ≤ g − 3 for even g.

Proof of Theorem 4. If g = 3 or g = 4 then n = 1, and GL(1,C) is
abelian, so that φ factors through the first homology H1(Mod(N);Z).
Since H1(Mod(N);Z) is finite (c.f. [13, 14]), the result follows. So we
assume that g ≥ 5.
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Let T denote the subgroup of the mapping class group Mod(N).
Write g = 2r+1 if g is odd and g = 2r+2 if g is even. Hence, we have
r ≥ 2 and n ≤ 2r − 1.
Let S be a compact orientable surface of genus r with one bound-

ary component. Embed S into N , so that the boundary of S bounds
a Möbius band (resp. Klein bottle with one boundary) on N with p
marked points if g is odd (resp. even). Extending diffeomorphisms
S to N by the identity induces a homomorphism η : Mod(S) →
Mod(N). Then the composition φη is a homomorphism from Mod(S)
to GL(n,C).

Mod(N)

Mod(S)

GL(n,C)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
..
..

.

.

.

.

.

..

.

..

..

η

....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
....
.....
.....
....
.....
...........
.
.
..

.......
..
..
.φη

......................................................................................................................................................

....
..
.
..
.
.
.

φ

If r ≥ 3 (g ≥ 7) then φη is trivial by Theorem 1. It follows that
φ(ta) = I for any Dehn twist supported on S. If b is a two-sided nonsep-
arating simple closed curve on N whose complement in nonorientable,
it follows from Theorems 3.1 and 5.3 in [14] that a Dehn twist tb about
b is conjugate to a Dehn twist supported on S. Hence, φ(tb) is trivial
for all such b. Since T is generated by such Dehn twists (c.f. [14], proof
of Theorem 5.12), we get that φ(T ) is trivial. We also know that the
index of T in Mod(N) is p! · 2p+1 ([14], Corollary 6.2). The conclusion
of the theorem now follows.
If r = 2 (g = 5 or g = 6) then φη is cyclic by Theorem 1. It follows

that φ(tat
−1

b ) = I for any two nonseparating simple closed curves on
S. Let x and y be two two-sided nonseparating simple closed curves
on N intersecting at one point such that the complement of each is
nonorientable. It can easily be shown that there is a diffeomorphism f
of N such that f(x∪ y) ⊂ S, so that txt

−1
y can be conjugated to tat

−1

b ,

where a and b are on S. Hence, φ(txt
−1
y ) = I, or φ(tx) = φ(ty). We

now apply Theorem 3.1 in [14] to conclude that φ(tx) = φ(ty) for all
two-sided nonseparating simple closed curves whose complements are
nonorientable. (Such simple closed curves are called essential in [14].)
Since T is generated by such Dehn twists, we get that φ(T ) is cyclic,
so that φ(T ′) = {I}, where T ′ is the commutator subgroup. Stukow
proved that the index of T ′ in T is 2 (c.f. [20], Theorem 8.1). We
conclude that φ(Mod(N)) is a finite group of order at most p! · 2p+2.
This finishes the proof of Theorem 4.

Remark 5.1. If g ≥ 7 and if N is closed, then the above proof shows
that the image of φ in Theorem 4 is either trivial or is isomorphic to Z2.
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In fact, it is easy to find a homomorphism whose image is Z2; send all
Dehn twists to the identity and crosscap slides (=Y -homeomorphisms)
to an element of order 2.

6. Homomorphisms to Aut(Fn) and Out(Fn)

We prove Theorem 5 in this section. The proof in the case n = 1 is
trivial. So we assume that 2 ≤ n ≤ 2g − 1.
Let Fn denote the free group of rank n. The action of the automor-

phism group Aut(Fn) of Fn on the abelianization of Fn gives rise to a
surjective homomorphism η : Aut(Fn) → GL(n,Z). The kernel of this
map is usually denoted by IAn. Let Out(Fn) denote the group of outer
automorphisms of Fn, so that it is the quotient of Aut(Fn) with the
(normal) subgroup Inn(Fn) of inner automorphisms.
Suppose that S is a closed surface of genus 2. Choose five pairwise

nonisotopic nonseparating simple closed curves c1, c2, c3, c4, c5 on S such
that ci is disjoint from cj if |i − j| ≥ 2 and that ci intersects cj at
one point if |i − j| = 1. Let ti denote the right Dehn twists about
ci. Then the group Mod(S) is generated by t1, t2, t3, t4, t5. Let us set
σ = t1t2t3t4t5. It is well–known that σ is a torsion element of order six.
One can easily show that

(2) σtiσ
−1 = ti+1

for each 1 ≤ i ≤ 4.

Lemma 6.1. Let g = 2. The normal closure of σ2 in Mod(S) is equal
to the commutator subgroup of Mod(S).

Proof. Let N denote the the normal closure of σ2 in Mod(S), the in-
tersection of all normal subgroups containing σ2. Since any right Dehn
twist in Mod(S) about a nonseparating simple closed curve maps to
the generator of H1(Mod(S),Z) under the natural homomorphism and
since σ2 is a product of 10 such Dehn twists, we see that σ2 is contained
in [Mod(S),Mod(S)]. Hence, N ⊂ [Mod(S),Mod(S)].
Let q : Mod(S) → Mod(S)/N denote the quotient map. The equal-

ity (2) implies that q(t1) = q(t3) = q(t5) and q(t2) = q(t4). On the
other hand, from the braid relation we get

q(t1)q(t4)q(t1) = q(t1)q(t2)q(t1)

= q(t1t2t1)

= q(t2t1t2)

= q(t2)q(t1)q(t2)

= q(t4)q(t1)q(t4).
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Since t1 and t4 commute, we obtain q(t1) = q(t4). It follows that
Mod(S)/N is cyclic. In particular, N contains [Mod(S),Mod(S)], fin-
ishing the proof of the lemma.

Proof of Theorem 5. Suppose that H = Aut(Fn). Let φ be the com-
position of ϕ with η, so that we have a commutative diagram:

Mod(S)

1 IAn Aut(Fn) GL(n,Z) 1.

.........
....

.............

.............

....
.........

.............
..
.
.
.
.
.
.
.
.

..
...
.......

ϕ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

..
.

.

.

.

.

.

.

.

..

..
.

ϕ
.....................................................................................................................

..........
..
..
.
.
.
.
.
.
.
.

φ

.......................................................................
...
.

.....
..
..
.
..

............................................................................
...
.

.....
..
..
.
..

......................................................................................
...
.

.....
..
..
.
..

η
.............................................................

...
.

.....
..
..
.
..

We now apply Theorem 1. If g ≥ 3 then φ is trivial, implying that
the image of ϕ is contained in IAn. Since IAn is torsion–free by a result
of Baumslag-Taylor [1], all torsion elements in Mod(S) are contained
in the kernel of ϕ. Since Mod(S) is is generated by torsion elements
(cf. [18, 10, 16]), we conclude that ϕ is trivial.
Suppose now that g = 2. Theorem 1 gives us that the image of

φ is cyclic, implying that the commutator subgroup N of Mod(S) is
contained in the kernel of φ. Therefore, ϕ(N) is contained in IAn.
Since IAn is torsion–free and since σ2 ∈ N is a torsion element (of
order 3), we have ϕ(σ2) = 1. It follows from Lemma 6.1 that ϕ(N)
is trivial. Consequently, ϕ factors through the natural homomorphism
Mod(S) → H1(Mod(S),Z), and so the image of ϕ is a quotient of Z10.
This completes the proof of Theorem 5 for Aut(Fn).
The case H = Out(Fn) is completely similar and uses the fact that

the subgroup IAn/Inn(Fn) is torsion–free (c.f. [1]).
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