

TEZ ŞABLONU ONAY FORMU
THESIS TEMPLATE CONFIRMATION FORM.

1. Şablonda verilen yerleşim ve boşluklar
değiştirilmemelidir.

 1. Do not change the spacing and placement in the
template.

2. Jüri tarihi Başlık Sayfası, İmza Sayfası, Abstract ve
Öz’de ilgili yerlere yazılmalıdır.

 2. Write defense date to the related places given on
Title page, Approval page, Abstract and Öz.

3. İmza sayfasında jüri üyelerinin unvanları doğru
olarak yazılmalıdır. Tüm imzalar mavi pilot kalemle
atılmalıdır.

 3. Write the titles of the examining committee members
correctly on Approval Page. Blue ink must be used for
all signatures.

4. Disiplinlerarası programlarda görevlendirilen
öğretim üyeleri için jüri üyeleri kısmında tam zamanlı
olarak çalıştıkları anabilim dalı başkanlığının ismi
yazılmalıdır. Örneğin: bir öğretim üyesi Biyoteknoloji
programında görev yapıyor ve biyoloji bölümünde
tam zamanlı çalışıyorsa, İmza sayfasına biyoloji
bölümü yazılmalıdır. İstisnai olarak, disiplinler arası
program başkanı ve tez danışmanı için
disiplinlerarası program adı yazılmalıdır.

 4. For faculty members working in interdisciplinary
programs, the name of the department that they
work full-time should be written on the Approval
page. For example, if a faculty member staffs in the
biotechnology program and works full-time in the
biology department, the department of biology
should be written on the approval page.
Exceptionally, for the interdisciplinary program chair
and your thesis supervisor, the interdisciplinary
program name should be written.

5. Tezin son sayfasının sayfa numarası Abstract ve
Öz’de ilgili yerlere yazılmalıdır.

 5. Write the page number of the last page in the related
places given on Abstract and Öz pages.

6. Bütün chapterlar, referanslar, ekler ve CV sağ
sayfada başlamalıdır. Bunun için kesmeler
kullanılmıştır. Kesmelerin kayması fazladan boş
sayfaların oluşmasına sebep olabilir. Bu gibi
durumlarda paragraf (¶) işaretine tıklayarak
kesmeleri görünür hale getirin ve yerlerini kontrol
edin.

 6. All chapters, references, appendices and CV must be
started on the right page. Section Breaks were used
for this. Change in the placement of section breaks
can result in extra blank pages. In such cases, make
the section breaks visible by clicking paragraph (¶)
mark and check their position.

7. Figürler ve tablolar kenar boşluklarına taşmamalıdır. 7. All figures and tables must be given inside the page.
Nothing must appear in the margins.

8. Şablonda yorum olarak eklenen uyarılar dikkatle
okunmalı ve uygulanmalıdır.

 8. All the warnings given on the comments section
through the thesis template must be read and
applied.

9. Tez yazdırılmadan önce PDF olarak kaydedilmelidir.
Şablonda yorum olarak eklenen uyarılar PDF
dokümanında yer almamalıdır.

 9. Save your thesis as pdf and Disable all the comments
before taking the printout.

10. Tez taslaklarının kontrol işlemleri tamamlandığında,
bu durum öğrencilere METU uzantılı öğrenci e-posta
adresleri aracılığıyla duyurulacaktır.

 10. This will be announced to the students via their METU
students e-mail addresses when the control of the
thesis drafts has been completed.

11. Tez yazım süreci ile ilgili herhangi bir sıkıntı
yaşarsanız, Sıkça Sorulan Sorular (SSS) sayfamızı
ziyaret ederek yaşadığınız sıkıntıyla ilgili bir çözüm
bulabilirsiniz.

 11. If you have any problems with the thesis writing
process, you may visit our Frequently Asked
Questions (FAQ) page and find a solution to your
problem.

☒ Yukarıda bulunan tüm maddeleri okudum, anladım ve kabul ediyorum. / I have read, understand and accept all of the items above.

Name :
Surname :
E-Mail :
Date :
Signature : ________________________

https://fbe.metu.edu.tr/tr/tez-yazim-sureci
https://fbe.metu.edu.tr/tr/tez-yazim-sureci
https://fbe.metu.edu.tr/tr/tez-yazim-sureci

EXPLOSIVE PERCOLATION BASED ACTIVE SLAM EXPLORATION VIA
LIDAR IN UNSTRUCTURED MAP

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DOĞAN YILDIZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

ELECTRICAL AND ELECTRONIC ENGINEERING

AUGUST 2023

Approval of the thesis:

EXPLOSIVE PERCOLATION BASED ACTIVE SLAM EXPLORATION
VIA LIDAR IN UNSTRUCTURED MAP

submitted by DOĞAN YILDIZ in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Electrical and Electronic Engineering, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of the Department, Electrical and Electronics Engineering

Prof. Dr. Aydan Müşerref Erkmen
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Assoc.Prof. Dr. Mustafa Mert Ankaralı
Electrical and Electronics Engineering, METU

Prof. Dr. Aydan Müşerref Erkmen
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Kemalettin Erbatur
Mechatronics Engineering, Sabancı University

Assist. Prof. Dr. David M. Rosen
Electrical and Computer Engineering, Northeastern University

Assoc. Prof. Dr.Emre Özkan
Electrical and Electronics Engineering, METU

Date: 10.08.2023

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name Last name : Doğan Yıldız

Signature :

v

ABSTRACT

EXPLOSIVE PERCOLATION BASED ACTIVE SLAM EXPLORATION
VIA LIDAR IN UNSTRUCTURED MAP

Yıldız, Doğan
Doctor of Philosophy, Electrical and Electronic Engineering

Supervisor : Prof. Dr. Aydan Müşerref Erkmen

August 2023, 119 pages

This thesis proposes a novel exploration technique for simultaneous localization and

mapping (SLAM) in highly unstructured disaster regions for search and rescue

(SAR) operations. As is known to all, disaster regions are very dangerous

environments for humans to navigate and search for victims. For this reason, robotics

applications in SAR operations gain considerable attention for the last decade. In a

disaster region searching for survivors with robots needs finding a safe continuous

path to reach the victim's location, and extracting the map of the unstructured area to

be shared with SAR teams. However, the highly complex structure of rubbles, the

GPS-denied region, and the unpredictable nature of the environment make the

process difficult for such applications. Also, the unstable characteristic of debris

causes the collapse of certain areas of the disaster region, and this brings unwanted

dead-end occurrences making the search operation even harder than before.

Unfortunately, even if the distinct progress of SLAM applications in the robotic field,

these problems still preserve their effectiveness and they are waiting to be answered.

In our proposed method we address these problems and offer an efficient and robust

solution with explosive percolation-based exploration technique combined with the

active SLAM approach for unstructured environments.

vi

The active SLAM approaches mainly focus on the minimization of the total entropy

of localization and mapping of the environment. However, in our method, we need

to consider not only the entropy values but our main goal of finding the survivors’

location for active exploration. Moreover, during the search finding a continuous

path by mapping the disaster environment is affected severely by successive dead-

ends. To tackle this problem, we offer a fluid behavior-based approach Explosive

Percolation (EP). With the power of this method, the robot can navigate within a

complex unstructured environment without being trapped by dead-ends.

The main contributions of the thesis to literature can be listed as; finding a novel

path-search algorithm based on Explosive Percolation and combining this method

with the SLAM approach to obtain a continuous path in a disaster area without being

interrupted by dead-ends.

Keywords: Explosive Percolation, SLAM, Localization, Mapping, Search and

Rescue

vii

ÖZ

AYRILMIŞ PERKÜLASYON TEORİSİ TABANLI AKTİF ANLIK
KONUMLAMA VE HARİTALAMA YOLUYLA IŞIK TESPİTİ VE

UZAKLIK TAYİNİ SENSÖRÜ KULLANILARAK YAPISAL OLMAYAN
ALANLARIN KEŞFİ

Yıldız, Doğan
Doktora, Elektrik ve Elektronik Mühendisliği

Tez Yöneticisi: Prof. Dr. Aydan Müşerref Erkmen

Ağustos 2023, 119 sayfa

Bu tez, arama ve kurtarma operasyonları için oldukça yapılandırılmamış afet

bölgelerinde anlık konumlama ve haritalama için yeni bir keşif tekniği önermektedir.

Bilindiği üzere afet bölgeleri, insanların gezinmesi ve kurban araması için oldukça

tehlikeli ortamlardır. Bu nedenle, SAR operasyonlarında robotik uygulamalar son on

yılda büyük ilgi görmektedir. Bir afet bölgesinde hayatta kalanları robotlarla aramak,

kurbanın konumuna ulaşmak için güvenli ve kesintisiz bir yol bulmayı ve arama ve

kurtarma ekipleriyle paylaşılacak şekilde yapılandırılmamış alanın haritasını

çıkarmayı gerektirir. Bununla birlikte, molozların oldukça karmaşık yapısı, global

konumlamanın kullanılamaz olduğu bölge ve ortamın öngörülemez doğası, bu tür

uygulamalar için süreci zorlaştırmaktadır. Ayrıca enkazın dengesiz olması, afet

bölgesinin belirli bölgelerinin çökmesine neden olmakta, bu da istenmeyen

çıkmazları beraberinde getirmekte ve arama çalışmalarını eskisinden daha da

zorlaştırmaktadır. Ne yazık ki robotik alanda anlık konumlama ve haritalama

uygulamalarının belirgin bir şekilde ilerlemesine rağmen bu problemler hala

etkinliğini korumakta ve cevaplanmayı beklemektedir. Önerilen yöntemimizde, bu

viii

sorunları ele alıyoruz ve yapılandırılmamış ortamlar için aktif anlık konumlama ve

haritalama yaklaşımıyla birleştirilmiş patlayıcı süzülmeye dayalı keşif tekniği ile

verimli ve sağlam bir çözüm sunuyoruz.

Aktif anlık konumlama ve haritalama yaklaşımları temel olarak, yerelleştirme ve

çevrenin haritalanmasının toplam entropisinin en aza indirilmesine odaklanır.

Bununla birlikte, yöntemimizde, yalnızca entropi değerlerini değil, aynı zamanda

hayatta kalanların aktif keşif için konumlarını bulma ana hedefimizi de dikkate

almamız gerekiyor. Ayrıca, arama sırasında afet ortamını haritalandırarak sürekli bir

yol bulma, birbirini izleyen çıkmazlardan ciddi şekilde etkilenir. Bu sorunun

üstesinden gelmek için, akıcı davranışa dayalı bir yaklaşım ayrılmış perkülasyon

sunuyoruz. Bu yöntemin gücü ile robot, çıkmaz yollara hapsolmadan karmaşık,

yapılandırılmamış bir ortamda gezinebilir.

Tezin literatüre katkıları başlıca şu şekilde sıralanabilir; ayrılmış perkülasyon dayalı

yeni bir yol arama algoritması bulmak ve bu yöntemi anlık konumlama ve haritalama

yoluyla yaklaşımıyla birleştirerek bir afet bölgesinde kesintiye uğramadan sürekli bir

yol elde etmek.

Anahtar Kelimeler: Ayrık Perkülasyon, Anlık Konumlama ve Haritalama,

Konumlama, Haritalama, Arama ve Kurtarma

ix

Dedicated to my family, beloved wife, and daughter

x

ACKNOWLEDGMENTS

Firstly, I would like to thank my supervisor Professor Aydan Müşerref Erkmen for

her motivation, guidance, patience, and encouragement which helped me enhance

my research. It was a great honor and experience to work with her for the last six

years and our cooperation influenced my academic perspective highly. This thesis

would not have been completed without her belief and endless and gracious support.

I would also like to thank Assoc. Prof. Mustafa Mert Ankaralı, Assoc. Prof. Oğuzhan

Çifdalöz and Assoc. Prof. Kemalettin Batur for their guidance in the thesis

monitoring committee meetings which help me very much in editing this thesis. In

addition, I would like to thank my thesis jury members Assist Prof. David M. Rosen

and Assoc. Prof. Emre Özkan for their comments, suggestions, and guidance.

I am very grateful to have my sister, Yaren Yıldız, and my parents, Songül and

Efendi Yıldız. I always feel their endless support, love, and patience to me.

Last but not least, I would like to thank my wife, Nefise Yıldız. I am thankful for her

eternal love, unending patience during the preparation of this thesis, and continuous

encouragement in my life and, I would like to thank my future daughter who

accompanied me in the womb of her mother in the final stages of my thesis. Without

their support and giving strength, I could not finish this thesis.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vii

ACKNOWLEDGMENTS ... x

TABLE OF CONTENTS ... xi

LIST OF TABLES ... xiv

LIST OF FIGURES ... xv

1 INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Problem Statement .. 2

1.3 Objectives and Goals .. 3

1.4 Methodology ... 4

1.5 Main Contribution of Thesis ... 6

1.6 Outline of Thesis ... 6

2 LITERATURE REVIEW .. 9

2.1 SAR Robots in Literature .. 11

2.2 SLAM Methods in Literature .. 13

2.3 Percolation Theory Applications in Literature.. 16

3 MATHEMATICAL BACKGROUND .. 19

3.1 FastSLAM 2.0 ... 19

3.1.1 Motion and Perception Model ... 20

3.1.2 Occupancy Grid Map .. 23

3.1.3 Particle Filter ... 24

xii

3.1.4 FastSLAM 2.0 Algorithm ... 26

3.2 Percolation Theory and Explosive Percolation Method 30

3.2.1 Percolation Theory Basics .. 31

3.2.2 Explosive Percolation ... 33

4 EXPLOSIVE PERCOLATION-BASED SLAM .. 37

4.1 General ... 37

4.2 Enhancement of FastSLAM 2.0 ... 39

4.3 Landmark Detection ... 45

4.4 Frontier Target Selection and Vital Signal Search 49

4.5 Exploration Path Generation with Explosive Percolation 52

4.6 Path Pruning and Smoothing Algorithms ... 58

4.7 Path Following Control Algorithm ... 62

5 EXPERIMENTS .. 69

5.1 Simulation Environment ... 69

5.2 Explosive Percolation Exploration with Random Initial Position 1 72

5.3 Explosive Percolation Exploration with Random Initial Position 2 76

5.4 Map Changing and Encounter Dead-End with Collapsing of Debris 81

5.5 Sensitivity Analysis .. 90

5.5.1 Motion Error Parameter Analysis ... 90

5.5.2 Dead-End Detection Threshold Analysis ... 93

5.5.3 Explosive Percolation Selection Rule Analysis .. 96

5.5.4 Robot’s Vital Signal Detection Circle Change Analysis 99

5.6 Comparison Entropy-Based Active SLAM with Explosive Percolation-

Based Active SLAM .. 102

xiii

5.7 Comparison of Pathfinding Method Performances 104

6 CONCLUSION AND FUTURE WORK .. 111

REFERENCES .. 115

CURRICULUM VITAE .. 119

xiv

LIST OF TABLES

TABLES

Table 2.1 International SAR projects with their description and usage area. 12

Table 2.2 LIDAR and Vision-based SLAM algorithms in the literature. 15

Table 3.1 Particle in FastSLAM with robot states and feature estimation 27

Table 4.1 Particle filter propagation with the measurement at initial time 𝑡𝑡 = 0. .. 44

Table 4.2 Target points distance values .. 51

Table 5.1 Simulation Parameter Settings. ... 71

Table 5.2 Process Covariance Matrix 𝑅𝑅𝑅𝑅 Parameter Set .. 90

Table 5.3 Initial Conditions for SAR Robot and Target Location on Map. 103

Table 5.4 Pathfinding algorithm comparison for each map given in Figure 5.27. 105

Table 5.5 Target locations for each map in Figure 5.27. 108

xv

LIST OF FIGURES

FIGURES

Figure 2.1. (a) Carnegie Mellon University snake robot used for Mexico quake

survivors[10]. (b) Darpa SubT challenges the Cerberus team robot [8]. (c) Micro

rescue robot for searching disaster victims [9]. .. 10

Figure 2.2. Percolation model in the square lattice with occupation probabilities

𝑝𝑝 = 0.1,𝑝𝑝 = 0.3, and 𝑝𝑝 = 0.6. For this type square lattice 𝑝𝑝𝑝𝑝 = 0.5 [36]. 17

Figure 3.1. The schematic of kinematic motion parameters of the robot in 2D. 20

Figure 3.2. Site percolation process with the critical percolation threshold 𝑝𝑝𝑝𝑝 32

Figure 3.3. (a) The node selection in a network. (b)The comparison of the order

parameter of ER, PR, and BF methods. .. 35

Figure 4.1. An Overview of explosive percolation enhanced FastSLAM. 37

Figure 4.2. (a) Robot in global map with LIDAR raycasting. (b) Robot local map

with landmark indicated with green dots. ... 44

Figure 4.3. (a) Structure of REE algorithm. (b) Snapshot of the REE shape on an

irregular boundary. .. 46

Figure 4.4. (a) REE algorithm process on a point cloud data obtained from LIDAR

scan. (b) In the global map, the corner point detection of the triangular shape after

we apply REE algorithm. .. 48

Figure 4.5. Frontier-based search method on a occupancy grid map. 50

Figure 4.6. The blue circle represents the robot searching radius. The red circle

represents the vital signal of the victim emission range. .. 51

Figure 4.7. Target point selection in case of vital signal detection by the robot. ... 52

Figure 4.8. (a) Explosive percolation initial cluster emergence. (b) Clusters begin to

merge with respect to the neighbor cell cluster index. (c) Cluster approximate to the

emergence of percolation cluster. (d) Percolation cluster connecting the robot and

target locations is found. Here the red cluster is our percolation cluster. (e) The

percolation path is found in the percolation cluster. ... 56

xvi

Figure 4.9. Fractional dimension convergence of the largest cluster to lattice

dimension during explosive percolation process. .. 57

Figure 4.10. Path pruning strategy. Points with yellow stars symbolize inflection

points. .. 59

Figure 4.11. Smoothing of a corner point with Bezier Curve. 60

Figure 4.12. Smooth path creation with Bezier Curve. ... 61

Figure 4.13. Pruning and smoothing strategy on example scenario in Figure 4.8 (e).

Because there is no inflection point, the target and robot location are connected

with a line on the percolation path. ... 61

Figure 4.14. The Serret-Frenet frame with the orthogonal projection of the robot 𝑀𝑀

on the path 𝑃𝑃 .. 62

Figure 4.15 (a), (b),(c). Path following process with Samson control algorithm in

the occupancy grid map. The blue line represents the path to be followed. (d)The

path of the robot is shown on the global map with the green line. (e) Probabilistic

distribution of robot states. (f) The following error parameters history. 66

Figure 5.1. Global map used in the simulation. The drawings are selected randomly

to represent debris .. 69

Figure 5.2. Axis transformation between global, local, and robot frames 70

Figure 5.3. The explosive path is shown with a green line on the global map and

the projection of the local map onto the global map is expressed with green cells. 73

Figure 5.4. The local map of the SAR robot. The occupied cells are represented

with gray and black according to their occupancy probability. 73

Figure 5.5. Explosive percolation cluster occurrence and path post-process in each

target detection. (a) First target percolation path. (b) Second target percolation path.

(c) Target is the victim's location here. The robot directly heads into this location

after detection. ... 75

Figure 5.6. Clusters fractional dimension propagation until the emergence of

percolation cluster for Figure 5.5 (a). .. 76

xvii

Figure 5.7. The explosive path in experiment 2 is shown with a green line on the

global map and the projection of the local map onto the global map is expressed

with green cells. .. 77

Figure 5.8. The local map of the SAR robot in experiment 2. The occupied cells are

represented with gray and black according to their occupancy probability. 78

Figure 5.9. Explosive percolation cluster occurrence and path-finding process in

each target detection. (a) First target percolation path. (b) Second target percolation

path. (c) Third target percolation path. (d) Fourth target percolation path (e)Target

is the victim's location here. The robot directly heads into this location after

detection. ... 79

Figure 5.10. Selection of target point as the robot closes to the victim location. ... 80

Figure 5.11. . Clusters fractional dimension propagation until the emergence of

percolation cluster for Figure 5.9 (a). ... 81

Figure 5.12. The initial condition of robot and victim locations on the global map.

 ... 82

Figure 5.13. The collapsing of debris at 𝑡𝑡 = 5 on global map. 83

Figure 5.14. Dead-end detection process in the local map. 84

Figure 5.15. Dead-end detection and occupied cell number intersected with the path

 ... 85

Figure 5.16. The explosive path in experiment 3 is shown with a green line on the

global map and the projection of the local map onto the global map is expressed

with green cells. .. 86

Figure 5.17. The local map of the SAR robot in experiment 3 until the detection of

the victim's location. ... 87

Figure 5.18. Explosive percolation cluster occurrence and path-finding process in

each target detection.. 88

Figure 5.19. Clusters fractional dimension propagation until the emergence of

percolation cluster for Figure 5.18 (a). ... 89

xviii

Figure 5.20. Selected global map to test process noise effects on explosive

percolation-based SLAM. The robot and vital signal location are given in blue and

red circles respectively. ... 91

Figure 5.21. Simulation results according to selected process noise values in Table

5.1 .. 92

Figure 5.22. Dead-end threshold analysis results with different threshold values. . 96

Figure 5.23. Example occupancy grid map lattice to perform summation and

product rule selection. ... 98

Figure 5.24. Fractal dimension comparison for each selection rule until the

emergence of percolation cluster. .. 98

Figure 5.25. Percolation probability comparison for each selection rule until the

emergence of the percolation cluster. .. 99

Figure 5.26. Vital signal detection circle of the robot analysis (a) The 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

10 is selected in ℛ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. (b) The 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 20 is selected in ℛ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(c) The

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 40 is selected in ℛ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. .. 101

Figure 5.27. Search path length comparison until finding of vital signal location on

the global map. .. 104

Figure 5.28. Map formats to be used in the comparison of pathfinding algorithms

from simple to complex are presented. .. 105

Figure 5.29. Path length comparison of path-finding algorithms PRM, RRT, GA,

A*, and Explosive Percolation for each location is given in Table 5.5 for the maps

in Figure 5.27 (a) For Map 1 in Figure 5.27 (b) For Map 2 in Figure 5.27 (c) For

Map 3 in Figure 5.27 ... 110

xix

1

CHAPTER 1

1 INTRODUCTION

1.1 Motivation

The inclusion of robotic applications in our daily activities increases day by day

with the development of complex mechanical manipulation mechanisms, powerful

sensor types, control allocation methods, and artificial intelligence algorithms. The

noticeable application of robots can be observed in search and rescue (SAR)

operations in disaster regions. Disaster regions can be a result of natural (e.g.

earthquakes, landslides, hurricanes, avalanches, and floods) or manmade disasters

(bombing, nuclear disasters, fires). The common points of disaster regions are

including complex, sharp, and unpredictable rubbles, very small voids to navigate,

and hazardous environments for humans such as possible poisonous gases. In those

areas, highly hostile to humans, SAR operations executed by robots should be fast

enough to reach victims in time and carefully handled to avoid any risk of causing

additional damage or collapse in the disaster area. Under these circumstances, the

usage of autonomy in robots for those areas is gaining more importance than

before. People in SAR operations can be assisted by robots to reach deeper regions

of debris with small confined areas and generate a map of the environment to

detect critical parts of the debris to handle the situation carefully without

endangering themselves and the survivors.

In the last decade, the advancements in SAR robotics have increased with the

development of hardware and software technologies. Different types of unmanned

ground vehicles (UGV) and unmanned air vehicles (UAV) are utilized for the vast

majority of tasks such as; exploration, surveillance, reconnaissance, and inspection

in SAR operations [2-11]. Despite the advances in the area of applications, there

are still considerable challenges to overcome for further developments. Especially

2

in highly unstructured environments, robots need to navigate in harsh and

challenging fields without global knowledge of the terrain and complex structure of

obstacles, and dead-end occurrences with possible collapsing of some part of the

debris. Also finding a safe and continuous path with the adaptation of map

changing, uncertainty in measurement in harsh environments, uncertainty and fault

case scenarios in the robot actuator mechanism can be added to the previously

listed challenges.

The utilization of robots in SAR operations still needs meticulous attention to cope

with these problems and to present more robust and trustworthy solutions for future

practices. By considering the listed challenges, we propose the Explosive

Percolation-based SLAM approach for SAR operations in challenging

environments. Today robotics SAR solutions consider large and relatively

structured environments to be searched such as caves, mines, etc. However, when

we considered highly unstructured and hard-to-reach environments like the debris

in an earthquake, there are limited research on that area and the existing ones

hardly answer the needs within this perspective.

1.2 Problem Statement

The main structure of the problem is built on navigation in a highly unstructured

field of a disaster region. The voids among the rubbles can be very narrow and the

rubbles consist of irregular shapes, which makes environmental recognition hard

for mapping and localization. Besides these problems, the structure of the debris is

fragile and the structure can change under collapsing debris. This causes the

occurrences of successive trapped regions and dead-ends. It is expected from a

SAR robot to find a continuous and safe path to the victim's location and map the

shape-changing environment adaptively.

The map of the inner structure of the environment cannot be known prior.

Therefore the initial position of the robot is not known globally by the robot. This

3

brings an initial uncertainty for the localization of the robot and the mapping of the

region for exploration purposes. The uncertainty of the sensors and the robot's

inner actuation system should be considered as well during a search. These

uncertainties will highly likely affect the performance of the robot’s search in SAR

operations.

The main purpose of exploration is to find the victim’s vital signal in a limited

time. Thus, the selection of a target direction that brings in more knowledge to find

the location of a victim gains importance for SAR operations. Thus, another

important problem during exploration is the selection of the proper search direction

within the debris for a guided exploration toward possible victims.

1.3 Objectives and Goals

The main objective of this thesis is to enhance SLAM methods with explosive

percolation in order to reach the unknown and unstructured regions under the

rubbles of the disaster area toward the victim’s vital signs by deciding a possible

path utilizing rubble voids within them.

To be able to reach this aim, we can list our goals as,

1) The localization of the robot needs to be sustained without the initial information

about the highly unstructured territory. The robot should be capable of initiating the

SAR process with unknown initial position states.

2) We select our target points during searching to lead us to the unknown territory

of the disaster area. This target point selection should serve to find the vital signal

location by exploring the farthest distance in the area. We need to cover disaster

regions as far as possible to increase the chance of detecting vital signs.

3) A safe path without obstacles avoiding dead-ends needs to be determined in

reaching the victim's location. This path needs to be optimally modified if the

environment changes during collapse while SAR operations are undergoing. Since

4

the disaster regions especially after earthquakes include fragile structures that can

collapse and change the internal structure in debris, the SAR robot should be

capable of avoiding dead-ends and traps and adapting itself the shape-changing

environments.

4) The map of the environment needs to be extracted alongside the victim search to

assist SAR teams and also visualize safe paths under debris. The SAR team can

initialize the rescue mission by analyzing this safe path and reach the victim's

location without endangering themselves and the victim.

1.4 Methodology

The search and rescue operations consist of two phases as it is understood by name.

The search refers to finding the victim’s location and the rescue is about the

activities related to extracting the victim safely. In our thesis, we focus on the

search part and annunciation of the victim's location to SAR teams with a safe path

and mapping of the exploration part of the debris.

In localization and mapping algorithms, there are different Bayesian approaches

such as Kalman Filter, Extended Kalman Filter, Unscented Kalman Filter, etc.

However, to overcome the linearization error and adapt to the nonlinear effects of

the robot motion and sensor measurements, and multi-modal noise characteristics

apart from the Gaussian Filters, we choose the Particle Filter (PF) method because

of its ease of implementation and applicability in real-time problems. In this sense,

the FastSLAM 2.0 algorithm is one of the methods that include a particle filter

approach. Therefore, in our approach, the localization and mapping of the debris by

the SAR robot are sustained with FastSLAM 2.0 algorithm

The features in debris can be very complex shapes to express them in mapping.

Therefore, the representation of obstacles and indentations is achieved with the

occupancy grid map. The reasons to choose the occupancy grid map are in two

ways. The first reason is that the representation of complex shapes can be achieved

5

with grid cells' occupancy value. In this way, a large and complex area map can be

scaled down to a simple scale according to grid size to increase computational

performance. The second reason is that the Explosive Percolation method needs to

occupancy probability of the obstacles in the penetration region. Similarly, each

cell in the occupancy grid map includes a probability value representing the

occupancy probability. In this sense, the occupancy grid map method is ideally

suited for this approach. The occupancy probabilities can be assigned with different

measurement sensors such as cameras, sonar range sensors, or LIDAR. If we

consider the search region with low light conditions it will be not suitable for the

camera. Also, the sonar sensors have limited sensor range and can give faulty

readings in case of absorption of sound waves. Thus, the LIDAR sensor can sustain

our needs in such a harsh environment to measure the occupancy values of grids

within the extracted map.

The main contribution of this thesis is utilizing Explosive Percolation (EP) to

obtain a novel continuous path finding within rubbles and avoid successive dead-

ends encountered during the search. Fundamentally, the percolation theory deals

with the connection of components in large clusters in statistical mechanics. For

example, consider a square lattice and try to occupy this lattice with random cells

with occupation probability 𝑝𝑝. When this occupation probability is below the

threshold probability 𝑝𝑝𝑐𝑐, there will be no large cluster to walk from one side of the

lattice to the other side. However, when this value is greater than 𝑝𝑝𝑐𝑐, we can find a

path that connects two ends. By utilizing this principle, to extract our obstacle-free

path into unknown regions in our occupancy grid map, the explosive percolation

method is used to obtain a percolation path that connects the robot location to the

unknown target location. The details of EP can be found in Chapter 3.2.

After we obtain a percolation path within the voids in debris, the path should be

revised to be followed by the robot. With path pruning and smoothing algorithms,

it is aimed to obtain a more suitable path for the robot. For the path control

algorithm, we take the advantage of Serret-Frenet frame on the path curve.

6

1.5 Main Contribution of Thesis

The main contribution of the thesis can be listed as follows:

• A novel path-search algorithm is developed for the navigation of robots

in a highly unstructured, complex environment. Although our approach

can be combined with any SLAM algorithm, we bring together the

FastSLAM and Explosive Percolation to find a continuous path into an

unknown region of the debris. Therefore, this study is the first

implementation endeavor to reveal the power of EP in the robotic field.

• In literature, avoiding successive dead-ends and continuing the search

within rubbles still preserve its importance. EP method sustains

avoiding obstacles and dead-ends by treating the robot like a fluid

particle finding its way among the porous media. An obstacle-free path

can be achieved by utilizing the voids of the debris without extra effort.

• Most of the active SLAM approaches in the literature focus on

decreasing the entropy in localization and mapping information. To

procure this objective, the existing studies consider the coverage of the

maximum area. However, in addition to minimization of localization

and mapping entropy, in SAR operations the crucial point is the

exploration of the debris to find the victim’s location. In our approach,

this criteria comes first instead of covering the maximum area objective.

1.6 Outline of Thesis

The remainder of this thesis is organized as follows.

In Chapter 2, we provide the related work about SAR robot applications in

literature, SLAM methods for exploration and exploitation, and percolation theory

application areas in literature.

7

In Chapter 3, The mathematical background of FastSLAM 2.0 is presented in

detail. After that, percolation theory basics and explosive percolation are shared.

In Chapter 4, our proposed explosive percolation-based SLAM approach for SAR

operations is given in detail with the enhancement of the FastSLAM 2.0 algorithm,

frontier target selections, explosive percolation path generation algorithms, path

pruning, and smoothing algorithms, and path following control structure.

In Chapter 5, we present the experiments and discussion of the proposed method

with different scenarios. For the experiments, we prepare a simulation

environment. At the final of this chapter, we share the sensitivity analysis of our

approach for different simulation parameters and comparison results of proposed

method with the widely used entropy-based SLAM method and mostly used

pathfinding algortihms.

In Chapter 6, the conclusion and future work are given with a summary and

planned future adaptation of the algorithm.

9

CHAPTER 2

2 LITERATURE REVIEW

Historically, SAR robot utilization was proposed with the tragic loss of serious

events. In 1995, early publications about the use of robots in the Hanshin-Awaji

earthquake in Kobe were presented. After 2005, wide usage of SAR robots was

observed in a terrorist attack on the World Trade Center, and the natural disasters

of Katrina, Rita, and Wilma [1]. As of today, the abilities of SAR robots have been

extended to diverse platforms. Ground robots have been observed for underground

operations [2], aerial platforms for surveillance and searching [3], and water-based

platforms for search and rescue on/under the sea [4].

In the modern world, with the developing sensor types and actuation mechanisms,

the expected tasks to be accomplished by robots can be; surveillance,

reconnaissance, an inspection of the structure, removal of rubbles, mapping,

searching for victims, or a combination of them. Another critical aspect of the

robotic SAR missions is the size and shape of the robot. This feature directly

affects the success of the mission. There are various sizes and shapes of robots

existing in the literature. For example, bio-inspired snake-like robots [5], shape-

change drones [6], tracked and/or wheel-type robots with/without a robotic arm to

grasp [7], walking robots [8], and micro-scale robots [9]. In Figure 2.1, some of

these robot types are shared to form an estimate.

10

(a) (b)

(c)

Figure 2.1. (a) Carnegie Mellon University snake robot used for Mexico quake

survivors[10]. (b) Darpa SubT challenges the Cerberus team robot [8]. (c) Micro

rescue robot for searching disaster victims [9].

Recent studies propose the collaboration of a multi-robot system to eliminate faults

and errors during search and rescue. Perception of disaster regions with

heterogeneous multi-robot systems shows significant improvements in SAR

operations[11].

In this chapter, we present the developments in SAR robotic fields and compare them

with our approach to indicate the gaps in literature and how we address them. Firstly,

we take a look at the SAR robotic publications in the literature. Later on, SLAM

approaches that have been used in SAR are investigated. Finally, to give insight into

the percolation theory, the application areas and studies on percolation are shared.

11

2.1 SAR Robots in Literature

Early designs of SAR robots reach out to the COMETS project [12]. In this project,

multi-UAV systems were utilized collaboratively with heterogeneous UAVs. The

robot team used this architecture for fire detection and monitoring with terrain

mapping. ICARUS is a European project to search for victims in a crisis scenario

[7]. With two main UGVs, it was aimed to enter small enclosures, detecting human

survivors. The high-level instructions come from the base station, therefore, this

project is semi-autonomous in that manner. As part of TRADR projects, the

researchers focus on the human-robot team effort in disaster response [13], [14]. As

in these early research, the studies do not deal with the SAR in a highly complex

and unstructured environment. They find their search path based on relatively large

disaster regions, not a confined irregular small-scale debris. Also, they are semi-

autonomous and they need a person to supervise the robot search.

In recent years, a major competition in the field of search and rescue robotics has

been presented under Darpa Subterranean (SubT) Challenge. This competition

especially covers the usage of underground UGVs for ground operations [15].

Team CERBERUS is one of the competitors who won the DARPA challenge [8].

The main approach of the CERBERUS is multi-modal and multi-robot mapping

which is centralized with a server. They used LIDAR, IMU, vision, and encoder

sensors. The local map of the competition area is extracted from each walking,

flying, and roving robot. Then, the submaps are integrated to obtain a globally

consistent map of the area. The major performance problem of the CERBERUS is

the fine-tuning of SLAM and sensor parameters. They need to be hand-tuned and

differ among the robot platforms. Another competitor is Team CoSTAR. They used

different sensor types LIDAR, visual-inertial, and encoders in their multi-sensor

front-end and back-end structure. The system consists of three interfaces: 1)

Single-robot front-end interface for local robot trajectory and perception. 2) Multi-

robot front-end interface for the base station to receive each robot’s trajectory and

map knowledge. 3) Multi-robot back-end interface for calculating optimal

12

trajectory to continue mapping [16]. One of the significant problems of the team is

finding a suitable set of parameters for front and back-end sections. The other

teams in this competition are Team CSIRO, Team CTU-CRAS-Norlab, and Team

MARBLE. Detailed information about the projects can be found in reference [15].

The SAR robots used in this project mainly focus on autonomous mapping in a

mine. They compare their mapping and localization performances to cover search

regions. Again the mapping environment in these projects is large indoor areas.

They do not address finding victims in highly unstructured confined places and a

safe path to reach the victim's location. When we compare the pathfinding and

mapping in a large and structured environment versus in an irregular complex

space with a shape-changing environment because of collapsing debris, we can

observe that the studied projects cover the SAR in robotics only at a certain level in

a specified environment.

In below Table 2.1, important SAR projects with their description can be found in

time sequence. The detailed version can be found in reference [11].

Table 2.1 International SAR projects with their description and usage area.

Projects Year Description Usage Area

COMETS 2002-

2005

Real-time control of multiple

UAVs.

Forest Fire

PeLoTe 2002-

2005

Human-robot team for SAR. Firefighting

MEXT.DDT 2002-

2007

Rubble robots for earthquakes Earthquake

Guardians 2006-

2010

Swarm robots for urban ground. Firefighting

NIFTi 2010-

2013

Human-robot coop. in dynamic

envr. for SAR.

Urban disaster

Darius 2012-

2015

Unmanned systems for SAR. Forest, urban,

maritime

13

Table 2.1 (Continued)

ICARUS 2012-

2016

Assist for human SAR

operations.

SAR integration

TRADR 2013-

2017

Long-term human-robot

teaming

Industrial envr.

Centauro 2015-

2018

SAR with telepresence Harsh envr.

AutoSOS 2020-

2022

Multi-UAV for maritime SAR Maritime

In summary, although the success of the given studies, none of them addresses the

navigation within rubbles considered highly unstructured and irregular shapes. The

search areas for the given studies consider mines, underground tunnels, forest fires,

and marine-type search and rescue missions which can be considered relatively

well-structured environments. In our approach, we aim to fill that gap in the

literature with a novel path-finding approach by utilizing explosive percolation.

2.2 SLAM Methods in Literature

Simultaneous localization and mapping (SLAM) include the estimation of robot

states with the construction of the environment model with the help of onboard

sensors. The states of the robot can be counted as the position and orientation

parameters (localization) and the mapping procedure consists of the representation

of landmarks and obstacles within the operating environment. Even if the published

resourceful research in the SLAM field area, there are still open problems waiting

to be answered in terms of the robustness, and resilience of the algorithms for a

variety of scenarios in a real-world application.

In the survey of Durrant et al. The foundation of the SLAM problem was laid in

1986 at the IEEE Robotics and Automation Conference [17]. Thrun et al. [18]

achieved the usage of the Kalman Filter in SLAM and approach the problem with

14

probabilistic localization and mapping methods. In Thrun’s book, we encounter

different probabilistic estimation techniques. Firstly Kalman Filter is used for the

estimation of robot states and landmark position estimation based on linear system

dynamics. The Gaussian noise assumption is also accepted in robot motion and

measurements. However, in the real world, we can encounter non-linearities and

multi-modal errors which does not show Gaussian characteristics. Therefore,

Extended Kalman Filter (EKF) is a widely excepted method in SLAM problems to

handle nonlinearities by linearizing them. In this way, we can continue to use the

Gaussian noise assumption. Also, EKF-SLAM is considered an online-SLAM

approach, in other words, the posterior estimations are calculated by using

momentary pose values. Another SLAM method is GraphSLAM. GarphSLAM

from a sparse graph including nonlinear constraints of measurement and motion

model. By optimizing these constraints, the maximum likelihoods of robot and

landmark states are obtained. The drawback of this method is solving offline-

SLAM problems. It needs the history of poses of robots and feature states on the

map. In return, GraphSLAM produces more accurate maps than EKF-SLAM.

Apart from the Gaussian assumption, nonparametric filters are encountered

commonly in estimation problems. Instead of using a functional form,

nonparametric filters utilize random samples selected from posterior functions.

Thus, they have a finite size value. The famous one of these filters is the Particle

filter. The application of particle filters into SLAM problems appears as

FastSLAM. The advantages of FastSLAM are maintaining the posterior estimation

over each particle not most likely one as in previous ones, solving non-linear robot

motion models instead of using linear functions, and implementing an online

SLAM algorithm [19].

In the last decade, by taking the previous SLAM methods as a reference, with

advancing sensor types fusion we have witnessed the emergence of various 2D/3D

SLAM types. These types can be divided into two parts: 1) LIDAR SLAM. 2)

Visual SLAM. In Table 2.2, we present some of the lidar and visual-based methods

[20],[21].

15

Table 2.2 LIDAR and Vision-based SLAM algorithms in the literature.

LIDAR SLAM VISUAL SLAM

LIO-SLAM (3D LIDAR)

HDL Graph SLAM (3D Lidar)

LOAM (3D Lidar)

LEGO-LOAM (3D Lidar)

HECTOR-SLAM (2D Lidar)

Gmapping (2D Lidar)

SVO-SLAM (Monocular)

ORB-SLAM (Monocular/Stereo)

PTAM (Monocular)

LSD-SLAM (Monocular)

DSO-SLAM (Monocular)

RTAB (Stereo)

The examples of some research on mentioned SLAM approaches can be shared as

follows: Chen et al. [22] use the LOAM method for indoor mapping and they

compare the results with LEGO-LOAM and LIO-SLAM. They present the results

by using ROS and Gazebo in a simulation environment with a turtle bot. Lim et al.

[23] suggest a new visual SLAM method with a monocular camera and they

evaluate the results with the KITTI database. As for the search and rescue

operations, Tardioli et al. [24] purposes the usage of semantic feature recognition

with EKF to navigate within tunnels for underground operations. Petrlík et al. [25]

show a 2D occupancy grid Hector SLAM approach in the aerial platform for SAR

operations within a constrained workspace.

So far we present the SLAM algorithms as a passive estimation problem of robot

and landmarks states. To improve the mapping and localization results, active

SLAM is used to control robot motion. Two concepts come forward in this

discussion; exploitation, and exploration. By exploration, we aim to discover

unknown areas in a searching area and we use exploitation to diminish the

uncertainty in localization error by revisiting the previously discovered areas.

Therefore, active SLAM searches for a balance between exploration and

exploitation [26]. Entropy reduction for both map and pose estimation error is a

proposed method for autonomous SLAM in research [27]. Blanco et al. [28]

propose an expected map (EM) and mean information approach [MI] to optimize

16

pose and map uncertainties. Carlone et al. [29] consider the Kullback-Liebler

divergence for the posterior approximation. This metric allows the robot to make

decisions between exploration and exploitation.

In our study, we choose the FastSLAM algorithm because of its ease of

implementation, and real-time applicability. Furthermore, besides the consideration

of map (exploration) and localization uncertainty value (exploitation), we take into

account the search for a survival location. Therefore, survivor location is another

parameter for the exploration and exploitation strategies of the robot to head in the

direction of the victim’s location prioritizing vital signs in exploration.

2.3 Percolation Theory Applications in Literature

Percolation theory has been a popular studied area in physics to explain the onset

of large connectivity within networks, clusters, and porous media. To understand

the process of percolation institutively, let us give an example of an infinite-size

square grid of points. Consider we connect the neighbor points with a line in

random order. We represent this randomness value with 𝑝𝑝 which is occupation

probability. As we increase the 𝑝𝑝 value more connections occur in the lattice and

after a certain value of 𝑝𝑝 ≥ 𝑝𝑝𝑐𝑐 where 𝑝𝑝𝑐𝑐 is percolation threshold, the largest cluster

in the lattice will be obtained that connects two ends of the lattice [30]. The

illustration is given in Figure 2.2.

Percolation theory has found a broad application area for various problems:

networks [31], magnetic models [32], conducting materials [33], and forest fire

[34], epidemic disease spread [35], etc.

17

Figure 2.2. Percolation model in the square lattice with occupation probabilities

𝑝𝑝 = 0.1,𝑝𝑝 = 0.3, and 𝑝𝑝 = 0.6. For this type square lattice 𝑝𝑝𝑐𝑐 = 0.5 [36].

Recent research reveals that another important phenomenon in percolation could be

its order. In other words, the emergence of large clusters in percolation models

shows continuous transitions which are also called second-order transitions.

Achlioptas et al. [37] show that by changing the random selection rule in the classic

Erdös-Rényi (ER) model, the percolation show discontinuous transition which is

known as first-order characteristics. This abrupt transition in the occurrence of a

large cluster is called Explosive Percolation (EP). In real-world examples, we

encounter the EP process in network structure, and disordered media (i.e. flow in

porous media, thermal conductivity, polymerization) [38]. Rozenfeld et al. [39]

present the evolutionary human protein network process which is initialized with

disconnected proteins and added sequentially afterward to lead large isolated

components of connected nodes between them. Cho et al. [40] consider the

Brownian motion of clusters in diffusion-limited cluster aggregation work. They

show that the largest cluster Brownian motion prevents growth and leads to the

emergence of giant clusters discontinuously.

Percolation theory is rather new to robotic applications in SLAM, and there are

only a limited number of studies that demonstrate the applicability of basic

percolation methods. Topal et al. [41] propose a percolation-enhanced multi-robot

exploration of the unstructured environment. Actually, this study does not directly

apply percolation theory to guide the robot but uses a method inspired by

18

percolation theory and the demonstration is realized in a relatively structured

environment. Karahan et al. [42] show firstly invasion percolation theory and

entropy-based SLAM algorithm for robot exploration. Invasion percolation is the

main exploration guidance module for predicting upcoming voids from the

frontiers of explored parts of the structure. The one problem in this study is the

assumption of obstacle continuity which is not always the situation. Moreover,

finding a path within voids based on invasion percolation uses three matrices with

the size of the occupancy grid map. This brings a considerable computational

burden to the SLAM approach although presented in a simple structured

environment.

As we mentioned in the introduction, we propose here an explosive percolation-

based FastSLAM algorithm to eliminate the previous research gaps in finding a

safe path and mapping in highly unstructured disaster regions such as earthquakes

and collapsing of structures. And we present a solution by testing it with a different

SAR algorithm and at different maps and initial state conditions without giving

priory information about the search region to guide a robot within a complex

shape-changing environment due to collapsing of debris for SAR operation.

19

CHAPTER 3

3 MATHEMATICAL BACKGROUND

In this chapter, we provide the mathematical background used in our explosive

percolation-based SLAM approach. Firstly we introduce the FastSLAM 2.0

algorithm basics and its inner algorithms which are motion and perception models,

occupancy grid map, and particle filter. Secondly, we present the percolation theory

mathematical overview and explosive percolation formulation that we used in our

approach.

3.1 FastSLAM 2.0

FastSLAM divides the SLAM problem into two parts. The first is robot localization

and the second one is landmark estimation conditioned on the robot’s states. This

approach comes from the conditional independence of the SLAM problem [43].

This observation makes valid the use of Rao-Blackwellized particle filters in

FastSLAM. Therefore, FastSLAM uses low-dimensional EKFs to estimate map

features that are conditionally independent.

The advantages of the FastSLAM algorithm [18]:

• FastSLAM algorithm is computationally advantageous over only EKF-

based SLAM.

• FastSLAM maintains the posterior estimation for each particle not for

the most likely one. Therefore, this makes FastSLAM most robust

compared to other algorithms.

• Non-linear motion models can be adapted to particle filters. In that

sense, FastSLAM does not need linear approximation for non-linear

models.

20

• FastSLAM solves the online-SLAM problem and uses particle filters to

estimate one pose at a time.

In the following subsections, we analyze the important aspects of the FastSLAM

2.0 algorithm.

3.1.1 Motion and Perception Model

In probabilistic estimation problems, the motion model consists of the state

transition probability 𝑝𝑝(𝑥𝑥𝑡𝑡| 𝑢𝑢𝑡𝑡, 𝑥𝑥𝑡𝑡−1). This model sustains us in the prediction of

the next step in motion. Another important feature is the measurement (perception)

model 𝑝𝑝(𝑧𝑧𝑡𝑡| 𝑥𝑥𝑡𝑡) which is useful in the calculation of the posterior section (i.e.

measurement update step). We will begin firstly with motion models, then describe

the measurement model that we used in our approach.

We describe the motion of the robot in 2D space with its 3-pose variable (𝑥𝑥,𝑦𝑦,𝜃𝜃).

The illustration of the robot’s states is given in Figure 3.1.

Figure 3.1. The schematic of kinematic motion parameters of the robot in 2D.

The probabilistic kinematics of the motion model can be expressed with different

approaches. These are velocity and odometry models. Moreover, these methods can

be subdivided into closed-form calculation and sampling calculation. We mention

here velocity models with sampling calculation which is used in our approach. The

details about these methods can be found in reference [18].

𝑥𝑥

𝑦𝑦

𝜃𝜃

𝑂𝑂

21

The velocity motion model uses the two velocities as a control parameter for robot

states. These are translational and rotational velocity values 𝑣𝑣𝑡𝑡 ,𝜔𝜔𝑡𝑡. The positive

directions for the inputs: counterclockwise for rotation is positive and forward

motion is positive for translation.

Algorithm 1: Sample Velocity Motion Model (𝑢𝑢𝑡𝑡, 𝑥𝑥𝑡𝑡−1)

1: 𝑣𝑣� = 𝑣𝑣 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1𝑣𝑣2 + 𝛼𝛼2𝜔𝜔2)

2: 𝜔𝜔� = 𝜔𝜔 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼3𝑣𝑣2 + 𝛼𝛼4𝜔𝜔2)

3: 𝛾𝛾� = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼5𝑣𝑣2 + 𝛼𝛼6𝜔𝜔2)

4: 𝑥𝑥′ = 𝑥𝑥 − 𝑣𝑣�
𝜔𝜔�

sin(𝜃𝜃) + 𝑣𝑣�
𝜔𝜔�

sin(𝜃𝜃 + 𝜔𝜔 �Δ𝑡𝑡)

5: 𝑦𝑦′ = 𝑦𝑦 + 𝑣𝑣�
𝜔𝜔�

cos(𝜃𝜃) − 𝑣𝑣�
𝜔𝜔�

cos(𝜃𝜃 + 𝜔𝜔 �Δ𝑡𝑡)

6: 𝜃𝜃′ = 𝜃𝜃 + 𝜔𝜔� Δ𝑡𝑡 + 𝛾𝛾� Δ𝑡𝑡

7: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑥𝑥𝑡𝑡 = (𝑥𝑥′,𝑦𝑦′,𝜃𝜃′)

Algorithm 2: Sample Normal Distribution(𝑏𝑏2)

1: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 1
2

 ∑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(−𝑏𝑏, 𝑏𝑏)12
𝑖𝑖=1

In Algorithm 1, instead of using the conditional probability function of motion

model 𝑝𝑝(𝑥𝑥𝑡𝑡| 𝑢𝑢𝑡𝑡, 𝑥𝑥𝑡𝑡−1), we sample from the motion model to generate the model of

density function for fixed control input 𝑢𝑢𝑡𝑡 and 𝑥𝑥𝑡𝑡−1. The variables 𝛼𝛼1 to 𝛼𝛼6 are the

noise parameters to perturb the input parameters. To generate the samples we

utilize 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏2) given in Algorithm 2 with zero mean and variance 𝑏𝑏2.

Function rand represents the pseudo-random generator with uniform distribution.

Note that we need to perturb the final orientation with 𝛾𝛾�. The reason is to eliminate

the degeneracy in the calculation of the posterior distribution which has pose states

represented in three-dimensional

Next to the motion model, the measurement model covers the description of the

environment with sensor measurements in probabilistic robotics. Different types of

22

sensors (e.g. sonar, LIDAR, visual) are used nowadays in robotics to generate the

physical world model. In robot perception, probabilistically we represent the

measurements with noise parameters with a conditional density function

𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡,𝑚𝑚) where 𝑧𝑧𝑡𝑡 is the measurement at time 𝑡𝑡 𝑚𝑚 is the map of the

environment. A map can be thought of as a list of objects in the environment 𝑚𝑚 =

{𝑚𝑚1,𝑚𝑚2, … ,𝑚𝑚𝑁𝑁}. Maps are represented in two ways; featured-based and location-

based. In our case, we choose to represent map features with the feature-based

method based on the LIDAR beam model.

The feature-based method calculates the feature properties extracted from

measurements 𝑧𝑧𝑡𝑡. An advantage of this model is the reduction in computational

complexity. By using feature extraction algorithms, we can detect landmarks as

map features from sensor measurements. As a note, in our study, these sensor

measurements come from the LIDAR beam model. Map features can be edges,

corners, and object-distinct properties calculated based on measurements. Let us

assume we have a function 𝑓𝑓(𝑧𝑧𝑡𝑡) which takes measurements as input and gives

landmark coordinates and signature in the form of (𝑟𝑟𝑡𝑡𝑛𝑛,𝜙𝜙𝑡𝑡𝑛𝑛, 𝑠𝑠𝑡𝑡𝑛𝑛) in the robot’s local

coordinate frame. 𝑟𝑟𝑡𝑡𝑛𝑛 represents the range of landmark 𝑛𝑛, 𝜙𝜙𝑡𝑡𝑛𝑛 represents bearing of

landmark 𝑛𝑛, and 𝑠𝑠𝑡𝑡𝑛𝑛 is the signature of the landmark which can be a numerical

value, RGB value, height and color values, or a vector symbolizing that landmark.

The feature-based sensor model can be represented as follows: let's assume the map

feature location in the global coordinate frame is represented as 𝑚𝑚𝑖𝑖,𝑥𝑥 and 𝑚𝑚𝑖𝑖,𝑦𝑦. We

need to add noise values to our sensor model, so we choose zero-mean Gaussian

noise on feature range, bearing, and signature parameters which are symbolized as

𝜖𝜖𝜎𝜎𝑟𝑟2 , 𝜖𝜖𝜎𝜎𝜙𝜙2 , 𝜖𝜖𝜎𝜎𝑠𝑠2 respectively. See Equation 3.1 for the details.

�
𝑟𝑟𝑡𝑡𝑖𝑖

𝜙𝜙𝑡𝑡𝑖𝑖

𝑠𝑠𝑡𝑡𝑖𝑖
� =

⎣
⎢
⎢
⎡ ��𝑚𝑚𝑖𝑖,𝑥𝑥 − 𝑥𝑥�

2
+ �𝑚𝑚𝑖𝑖,𝑦𝑦 − 𝑦𝑦�

2

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2�𝑚𝑚𝑖𝑖,𝑦𝑦 − 𝑦𝑦,𝑚𝑚𝑖𝑖,𝑥𝑥 − 𝑥𝑥� − 𝜃𝜃
𝑠𝑠𝑖𝑖 ⎦

⎥
⎥
⎤

+ �
𝜖𝜖𝜎𝜎𝑟𝑟2
𝜖𝜖𝜎𝜎𝜙𝜙2
𝜖𝜖𝜎𝜎𝑠𝑠2

� 3.1

23

3.1.2 Occupancy Grid Map

The occupancy grid maps include fine-grained grid cells that constitute a 2D

representation of 3D space. To illustrate the occupancy grid cells, let’s choose 𝒎𝒎𝑖𝑖

to demonstrate the grid cell. Then the map can be expressed as 𝑚𝑚 = {𝒎𝒎𝑖𝑖}.

Each 𝒎𝒎𝑖𝑖 includes a binary value that shows whether the cell is occupied or not. For

occupied cells 𝒎𝒎𝑖𝑖 = 1 and for empty cells this value equals to 𝒎𝒎𝑖𝑖 = 0. If we don't

have the information for an initial value of the cell, we choose 𝒎𝒎𝑖𝑖 = 0.5 for that

cell. This implies that the information about that cell is minimum and the entropy

value is at its maximum value. With this representation, we aim to estimate

𝑝𝑝(𝒎𝒎𝑖𝑖| 𝑧𝑧1:𝑡𝑡, 𝑥𝑥1:𝑡𝑡) for all grid cell 𝒎𝒎𝑖𝑖. Therefore, the estimation of the occupancy

grid map turns into a binary Bayesian filter Algorithm [18]. The Algorithm can be

seen in Algorithm 3.

Algorithm 3: Occupancy Grid mapping �𝑙𝑙𝑡𝑡−1,𝑖𝑖, 𝑥𝑥𝑡𝑡, 𝑧𝑧𝑡𝑡�

1: 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝒎𝒎𝑖𝑖

2: 𝑖𝑖𝑖𝑖 𝒎𝒎𝑖𝑖 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑧𝑧𝑡𝑡

3: 𝑙𝑙𝑡𝑡,𝑖𝑖 = 𝑙𝑙𝑡𝑡−1,𝑖𝑖 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒎𝒎𝑖𝑖, 𝑥𝑥𝑡𝑡, 𝑧𝑧𝑡𝑡) − 𝑙𝑙0

4: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

5: 𝑙𝑙𝑡𝑡,𝑖𝑖 = 𝑙𝑙𝑡𝑡−1,𝑖𝑖

6: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

7: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

8 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝑙𝑙𝑡𝑡,𝑖𝑖�

Because we don't have information about each cell's initial state, the initial value of

the grid cell 𝑙𝑙0 can be taken as 0.5. As for the measurement model, we use the

LIDAR beam model. The inverse Sensor Model function uses this basis to assign

occupied, free, or out-of-range decisions to cells. The inverse Sensor Model

algorithm is given in Algorithm 4.

24

Algorithm 4: Inverse Sensor Model(𝒎𝒎𝑖𝑖, 𝑥𝑥𝑡𝑡 , 𝑧𝑧𝑡𝑡)

1: 𝑟𝑟 = �(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦)2

2: 𝜙𝜙 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑦𝑦𝑖𝑖 − 𝑦𝑦, 𝑥𝑥𝑖𝑖 − 𝑥𝑥) − 𝜃𝜃

3: 𝑘𝑘 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑗𝑗�𝜙𝜙 − 𝜃𝜃𝑗𝑗,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�

4: 𝑖𝑖𝑖𝑖 𝑟𝑟 > min �𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑧𝑧𝑡𝑡𝑘𝑘 + 𝛼𝛼
2
� �𝜙𝜙 − 𝜃𝜃𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� > 𝛽𝛽

2

5: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑙𝑙0

6: 𝑖𝑖𝑖𝑖 𝑧𝑧𝑡𝑡𝑘𝑘 < 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 �𝑟𝑟 − 𝑧𝑧𝑡𝑡𝑘𝑘� < 𝛼𝛼
2

7: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜

8 𝑖𝑖𝑖𝑖 𝑟𝑟 < 𝑧𝑧𝑡𝑡𝑘𝑘

9 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

10 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

In this algorithm, the robot state is (𝑥𝑥,𝑦𝑦, 𝜃𝜃), 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 is the center of gravity

coordinate of the cell 𝒎𝒎𝑖𝑖. 𝑘𝑘 index is the closest beam index value to the cell 𝒎𝒎𝑖𝑖. 𝛽𝛽

is the width of the sensor beam and 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 the measured range of the sensor. If the

cell 𝒎𝒎𝑖𝑖 is outside the range of the cell, in line 5 of the algorithm the cell value

returns as it is. If it is in the measurement range of the sensor beam 𝑧𝑧𝑡𝑡𝑘𝑘 and between
𝛼𝛼
2
 range of the 𝑟𝑟, then 𝑙𝑙𝑜𝑜𝑜𝑜𝑜𝑜 is returned. Otherwise, the function returns 𝑙𝑙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.

3.1.3 Particle Filter

The particle filter is a nonparametric version of the Bayes Filter. In this approach,

the posterior function is represented with a finite number of samples. The posterior

function is denoted with 𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥_𝑡𝑡) = 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡,𝑢𝑢1:𝑡𝑡)) in which the posterior

probability is conditioned on past measurements and controls up to time 𝑡𝑡.The

advantage of the particle filter is the modeling of nonlinear functions of random

variables. The representation of the particle filter is

25

𝜒𝜒𝑡𝑡 = 𝑥𝑥𝑡𝑡
[1], 𝑥𝑥𝑡𝑡

[2], … , 𝑥𝑥𝑡𝑡
[𝑀𝑀]. 3.2

A particle represents the one instantiation of state 𝑥𝑥 at time t. 𝑀𝑀 is the total number

of the particle set. The particle filter algorithm is shared in Algorithm 5 [18].

Algorithm 5: Particle Filter (𝜒𝜒𝑡𝑡−1,𝑢𝑢𝑡𝑡, 𝑧𝑧𝑡𝑡)

1: 𝜒𝜒𝑡𝑡� = 𝜒𝜒𝑡𝑡 = ∅

2: 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 = 1 𝑡𝑡𝑡𝑡 𝑀𝑀

3: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑡𝑡
[𝑚𝑚] ~ 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡, 𝑥𝑥𝑡𝑡−1

[𝑚𝑚])

4: 𝑤𝑤𝑡𝑡
[𝑚𝑚] = 𝑝𝑝(𝑧𝑧𝑡𝑡| 𝑥𝑥𝑡𝑡

[𝑚𝑚])

5: 𝜒𝜒𝑡𝑡� = 𝜒𝜒𝑡𝑡� + �𝑥𝑥𝑡𝑡
[𝑚𝑚],𝑤𝑤𝑡𝑡

[𝑚𝑚]�

6: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

7: 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 = 1 𝑡𝑡𝑡𝑡 𝑀𝑀

8 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∝ 𝑤𝑤𝑡𝑡
[𝑖𝑖]

9 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑡𝑡
[𝑖𝑖] 𝑡𝑡𝑡𝑡 𝜒𝜒𝑡𝑡

10 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

11 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝜒𝜒𝑡𝑡

In algorithm 𝑤𝑤𝑡𝑡
[𝑚𝑚] is called the importance factor. The importance factor is used to

weigh the state prediction 𝑥𝑥𝑡𝑡
[𝑚𝑚] with the measurement. In other words, it is the

weight of the particle 𝑚𝑚. Another important aspect of the particle filter is

resampling or importance sampling between lines 7 and 10. However, the

resampling process in particle filters comes with variance problems. The sampling

variance increases with the repititive sampling process. In other words, the

diversity will be diminished by sampling over and over again with a finite size of

𝑀𝑀 particles. To avoid this problem one of the proposed methods is low-variance

sampling. This algorithm selects the particles with a random number, but still,

preserves the importance weight factor. The algorithm is given in Algorithm 6. The

26

advantage of a low variance sampler is offering a more systematic approach

concerning random sampling.

Algorithm 6: Low Variance Sampling (𝜒𝜒𝑡𝑡,𝑤𝑤𝑡𝑡)

1: 𝜒𝜒𝑡𝑡� = ∅

2: 𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,𝑀𝑀−1)

3: 𝑐𝑐 = 𝑤𝑤𝑡𝑡
[1]

4: 𝑖𝑖 = 1

5: 𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚 = 1 𝑡𝑡𝑡𝑡 𝑀𝑀

6: 𝑈𝑈 = 𝑟𝑟 + (𝑚𝑚− 1)𝑀𝑀−1

7: 𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑈𝑈 > 𝑐𝑐

8 𝑖𝑖 = 𝑖𝑖 + 1

9 𝑐𝑐 = 𝑐𝑐 + 𝑤𝑤𝑡𝑡
[𝑖𝑖]

10 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖

11 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑡𝑡
[𝑖𝑖] 𝑡𝑡𝑡𝑡 𝜒𝜒𝑡𝑡�

12 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

13 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝜒𝜒𝑡𝑡�

3.1.4 FastSLAM 2.0 Algorithm

The power of the FastSLAM algorithm comes from the factorization of the full

posterior algorithm 𝑝𝑝(𝑥𝑥1:𝑡𝑡,𝑚𝑚 | 𝑧𝑧1:𝑡𝑡,𝑢𝑢1:𝑡𝑡) which includes robot states and map

features [18].

𝑝𝑝(𝑥𝑥1:𝑡𝑡,𝑚𝑚 | 𝑧𝑧1:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡) = 𝑝𝑝(𝑥𝑥1:𝑡𝑡 | 𝑧𝑧1:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡)�𝑝𝑝(𝑚𝑚𝑛𝑛|𝑥𝑥1:𝑡𝑡, 𝑧𝑧1:𝑡𝑡)
𝑁𝑁

𝑛𝑛=1

𝑁𝑁 is the total number of landmarks until time 𝑡𝑡. In each particle, we have 𝑁𝑁 + 1

probabilities including the robot state. The particles and their composition in

factorization form are given in below Table 3.1. Each particle consists of robot

27

pose estimation and mean 𝜇𝜇 and covariance Σ of each particle in map 𝑚𝑚 resulting

from the Kalman filter.

Table 3.1 Particle in FastSLAM with robot states and feature estimation

 Robot States Feature 1 Feature 2 ... Feature 𝑵𝑵

Particle

𝑘𝑘 = 1
{𝑥𝑥,𝑦𝑦,𝜃𝜃}1:𝑡𝑡

[1] {𝜇𝜇1,Σ1}[1] {𝜇𝜇2,Σ2}[1] ... {𝜇𝜇𝑁𝑁, Σ𝑁𝑁}[1]

Particle

𝑘𝑘 = 2
{𝑥𝑥,𝑦𝑦,𝜃𝜃}1:𝑡𝑡

[2] {𝜇𝜇1,Σ1}[2] {𝜇𝜇2,Σ2}[2] ... {𝜇𝜇𝑁𝑁, Σ𝑁𝑁}[2]

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

Particle

𝑘𝑘 = 𝑀𝑀
{𝑥𝑥,𝑦𝑦,𝜃𝜃}1:𝑡𝑡

[𝑀𝑀] {𝜇𝜇1, Σ1}[𝑀𝑀] {𝜇𝜇2, Σ2}[𝑀𝑀] ... {𝜇𝜇𝑁𝑁 ,Σ𝑁𝑁}[𝑀𝑀]

The implementation of the FastSLAM 2.0 algorithm is given in Algorithm. Note

that, the algorithm given here considers only a single measurement at a time.

However, in real life, a robot with SLAM can observe multiple measurements at a

time. This issue is handled in our algorithm and the details are given in Chapter 4.

The particle in the tuple form is given in Equation 3.3. In equation 𝑥𝑥𝑡𝑡
[𝑘𝑘] is robot

pose, 𝑁𝑁𝑡𝑡
[𝑘𝑘] the number of features for particle 𝑘𝑘 at time 𝑡𝑡, 𝜏𝜏𝑛𝑛

[𝑘𝑘] is the probabilistic

existence of the feature, 𝜇𝜇𝑛𝑛,𝑡𝑡
[𝑘𝑘],Σ𝑛𝑛,𝑡𝑡

[𝑘𝑘] are the mean and covariance of the feature in the

particle.

𝑌𝑌𝑡𝑡
[𝑘𝑘] = �𝑥𝑥𝑡𝑡

[𝑘𝑘],𝑁𝑁𝑡𝑡
[𝑘𝑘], �𝜇𝜇1,𝑡𝑡

[𝑘𝑘],Σ1,𝑡𝑡
[𝑘𝑘], 𝜏𝜏1

[𝑘𝑘]� , … , �𝜇𝜇
𝑁𝑁𝑡𝑡

[𝑘𝑘],𝑡𝑡
[𝑘𝑘] , Σ

𝑁𝑁𝑡𝑡
[𝑘𝑘],𝑡𝑡

[𝑘𝑘] , 𝜏𝜏
𝑁𝑁𝑡𝑡

[𝑘𝑘]
[𝑘𝑘] ��

3.3

Algorithm 7: FastSLAM 2.0 (𝑧𝑧𝑡𝑡,𝑢𝑢𝑡𝑡 ,𝑌𝑌𝑡𝑡−1)

1: 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 = 1 𝑡𝑡𝑡𝑡 𝑀𝑀

2:
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 �𝑥𝑥𝑡𝑡−1

[𝑘𝑘] ,𝑁𝑁𝑡𝑡−1
[𝑘𝑘] , �𝜇𝜇1,𝑡𝑡−1

[𝑘𝑘] ,Σ1,𝑡𝑡−1
[𝑘𝑘] , 𝑖𝑖1

[𝑘𝑘]� , … , �𝜇𝜇
𝑁𝑁𝑡𝑡−1

[𝑘𝑘] ,𝑡𝑡−1
[𝑘𝑘] ,Σ

𝑁𝑁𝑡𝑡−1
[𝑘𝑘] ,𝑡𝑡−1

[𝑘𝑘] , 𝑖𝑖
𝑁𝑁𝑡𝑡−1

[𝑘𝑘]
[𝑘𝑘] ��

3: 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1 𝑡𝑡𝑡𝑡 𝑁𝑁𝑡𝑡−1
[𝑘𝑘]

28

4: 𝑥𝑥�𝑗𝑗,𝑡𝑡 = 𝑔𝑔 �𝑥𝑥𝑡𝑡−1
[𝑘𝑘] ,𝑢𝑢𝑡𝑡� (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

5: 𝑧𝑧𝑗̅𝑗 = ℎ � 𝜇𝜇𝑗𝑗,𝑡𝑡−1
[𝑘𝑘] , 𝑥𝑥�𝑗𝑗,𝑡𝑡 � (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

6: 𝐻𝐻𝑥𝑥,𝑗𝑗 = ∇𝑥𝑥𝑡𝑡ℎ � 𝜇𝜇𝑗𝑗,𝑡𝑡−1
[𝑘𝑘] , 𝑥𝑥�𝑗𝑗,𝑡𝑡 � (𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

7: 𝐻𝐻𝑚𝑚,𝑗𝑗 = ∇𝑚𝑚𝑗𝑗ℎ � 𝜇𝜇𝑗𝑗,𝑡𝑡−1
[𝑘𝑘] , 𝑥𝑥�𝑗𝑗,𝑡𝑡 � (𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑤𝑤𝑤𝑤𝑤𝑤 𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

8 𝑄𝑄𝑗𝑗 = 𝑄𝑄𝑡𝑡 + 𝐻𝐻𝑚𝑚,𝑗𝑗Σ𝑗𝑗,𝑡𝑡−1
[𝑘𝑘] 𝐻𝐻𝑚𝑚,𝑗𝑗

𝑇𝑇 (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

9 Σ𝑥𝑥,𝑗𝑗 = �𝐻𝐻𝑥𝑥,𝑗𝑗
𝑇𝑇 𝑄𝑄𝑗𝑗−1𝐻𝐻𝑥𝑥,𝑗𝑗 + 𝑅𝑅𝑡𝑡−1�

−1
 (𝐶𝐶𝐶𝐶𝐶𝐶. 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

10 𝜇𝜇𝑥𝑥𝑡𝑡,𝑗𝑗 = Σ𝑥𝑥,𝑗𝑗𝐻𝐻𝑥𝑥,𝑗𝑗
𝑇𝑇 𝑄𝑄𝑗𝑗−1 �𝑧𝑧𝑡𝑡 − 𝑧𝑧𝑗̅𝑗� + 𝑥𝑥�𝑗𝑗,𝑡𝑡 (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.)

11 𝑥𝑥𝑡𝑡,𝑗𝑗
[𝑘𝑘]~ 𝒩𝒩�𝜇𝜇𝑥𝑥𝑡𝑡,𝑗𝑗 , Σ𝑥𝑥𝑡𝑡,𝑗𝑗�(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

12 𝑧̂𝑧𝑗𝑗 = ℎ �𝜇𝜇𝑗𝑗,𝑡𝑡−1
[𝑘𝑘] , 𝑥𝑥𝑡𝑡

[𝑘𝑘]� (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

13 𝜋𝜋𝑗𝑗 = �2𝜋𝜋𝑄𝑄𝑗𝑗�
−0.5

exp �−0.5�𝑧𝑧𝑡𝑡 − 𝑧̂𝑧𝑗𝑗�
𝑇𝑇
𝑄𝑄𝑗𝑗−1�𝑧𝑧𝑡𝑡 − 𝑧̂𝑧𝑗𝑗��

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜𝑜𝑜𝑜𝑜)

14 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

15 𝜋𝜋1+𝑁𝑁𝑡𝑡−1[𝑘𝑘] = 𝑝𝑝0 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

16 𝑐̂𝑐 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝜋𝜋𝑗𝑗 � (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

17 𝑁𝑁𝑡𝑡
[𝑘𝑘] = max �𝑁𝑁𝑡𝑡−1

[𝑘𝑘] , 𝑐̂𝑐� (𝑁𝑁𝑁𝑁𝑁𝑁 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

18 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1 𝑡𝑡𝑡𝑡 𝑁𝑁𝑡𝑡
[𝑘𝑘] (𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)

19 𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑐̂𝑐 = 1 + 𝑁𝑁𝑡𝑡−1
[𝑘𝑘] (𝐹𝐹𝐹𝐹𝐹𝐹 𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

20 𝑥𝑥_𝑡𝑡^[𝑘𝑘] ~ 𝑝𝑝(𝑥𝑥_𝑡𝑡 ┤| 𝑥𝑥_(𝑡𝑡 − 1)^[𝑘𝑘] ,𝑢𝑢_𝑡𝑡) (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

21 𝜇𝜇𝑗𝑗,𝑡𝑡
[𝑘𝑘] = ℎ−1 �𝑧𝑧𝑡𝑡, 𝑥𝑥𝑡𝑡

[𝑘𝑘]� (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

22 𝐻𝐻𝑚𝑚,𝑗𝑗 = ∇𝑚𝑚,𝑗𝑗ℎ �𝜇𝜇𝑗𝑗,𝑡𝑡
[𝑘𝑘], 𝑥𝑥𝑡𝑡

[𝑘𝑘]� (𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑤𝑤𝑤𝑤𝑤𝑤 𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

23 Σ𝑗𝑗,𝑡𝑡
[𝑘𝑘] = �𝐻𝐻𝑚𝑚,𝑗𝑗

−1 �
𝑇𝑇
𝑄𝑄𝑡𝑡𝐻𝐻𝑚𝑚,𝑗𝑗

−1 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

24 𝑖𝑖𝑗𝑗,𝑡𝑡
[𝑘𝑘] = 1 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

25 𝑤𝑤[𝑘𝑘] = 𝑝𝑝0 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡)

26 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑐̂𝑐 < 𝑁𝑁𝑡𝑡−1
[𝑘𝑘] (𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

29

27 𝑥𝑥𝑡𝑡
[𝑘𝑘] = 𝑥𝑥𝑡𝑡,𝑗𝑗

[𝑘𝑘]

28 𝐾𝐾 = Σ𝑗𝑗,𝑡𝑡−1
[𝑘𝑘] 𝐻𝐻𝑚𝑚,𝑗𝑗

𝑇𝑇 𝑄𝑄𝑗𝑗−1 (𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)

29 𝜇𝜇𝑗𝑗,𝑡𝑡
[𝑘𝑘] = 𝜇𝜇𝑗𝑗,𝑡𝑡−1

[𝑘𝑘] + 𝐾𝐾�𝑧𝑧𝑡𝑡 − 𝑧̂𝑧𝑗𝑗� (𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

30 Σ𝑗𝑗,𝑡𝑡
[𝑘𝑘] = �𝐼𝐼 − 𝐾𝐾 𝐻𝐻𝑚𝑚,𝑗𝑗�Σ𝑗𝑗,𝑡𝑡−1

[𝑘𝑘] (𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

31 𝑖𝑖𝑗𝑗,𝑡𝑡
[𝑘𝑘] = 𝑖𝑖𝑗𝑗,𝑡𝑡−1

[𝑘𝑘] + 1 (𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

32 𝐿𝐿 = 𝐻𝐻𝑥𝑥,𝑗𝑗𝑅𝑅𝑡𝑡𝐻𝐻𝑥𝑥,𝑗𝑗
𝑇𝑇 + 𝐻𝐻𝑚𝑚,𝑗𝑗Σ𝑗𝑗,𝑡𝑡−1

[𝑘𝑘] 𝐻𝐻𝑚𝑚,𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑡𝑡

33 𝑤𝑤[𝑘𝑘] = |2𝜋𝜋𝜋𝜋|−0.5 exp �−0.5 �𝑧𝑧𝑡𝑡 − 𝑧̂𝑧𝑗𝑗�
𝑇𝑇
𝐿𝐿−1�𝑧𝑧𝑡𝑡 − 𝑧̂𝑧𝑗𝑗��

(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡)

34 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

35 𝜇𝜇𝑗𝑗,𝑡𝑡
[𝑘𝑘] = 𝜇𝜇𝑗𝑗,𝑡𝑡−1

[𝑘𝑘] (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

36 Σ𝑗𝑗,𝑡𝑡
[𝑘𝑘] = Σ𝑗𝑗,𝑡𝑡−1

[𝑘𝑘] (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

37 𝑖𝑖𝑖𝑖 𝜇𝜇𝑗𝑗,𝑡𝑡−1
[𝑘𝑘] 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

38 𝑖𝑖𝑗𝑗,𝑡𝑡
[𝑘𝑘] = 𝑖𝑖𝑗𝑗,𝑡𝑡−1

[𝑘𝑘] (𝑁𝑁𝑁𝑁𝑁𝑁 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

39 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

40 𝑖𝑖𝑗𝑗,𝑡𝑡
[𝑘𝑘] = 𝑖𝑖𝑗𝑗,𝑡𝑡−1

[𝑘𝑘] − 1 (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

41 𝑖𝑖𝑖𝑖 𝑖𝑖𝑗𝑗,𝑡𝑡−1
[𝑘𝑘] < 0

42 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗

43 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

44 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

45 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

46 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

47
𝑎𝑎𝑎𝑎𝑎𝑎 �𝑥𝑥𝑡𝑡

[𝑘𝑘],𝑁𝑁𝑡𝑡
[𝑘𝑘], �𝜇𝜇1,𝑡𝑡

[𝑘𝑘],Σ1,𝑡𝑡
[𝑘𝑘], 𝜏𝜏1

[𝑘𝑘]� , … , �𝜇𝜇
𝑁𝑁𝑡𝑡

[𝑘𝑘],𝑡𝑡
[𝑘𝑘] , Σ

𝑁𝑁𝑡𝑡
[𝑘𝑘],𝑡𝑡

[𝑘𝑘] , 𝜏𝜏
𝑁𝑁𝑡𝑡

[𝑘𝑘]
[𝑘𝑘] �� 𝑡𝑡𝑡𝑡 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎

48 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

49 𝑌𝑌𝑡𝑡 = ∅

50 𝑑𝑑𝑑𝑑 𝑀𝑀 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

30

51 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝑤𝑤[𝑘𝑘]

52
𝑎𝑎𝑎𝑎𝑎𝑎 �𝑥𝑥𝑡𝑡

[𝑘𝑘],𝑁𝑁𝑡𝑡
[𝑘𝑘], �𝜇𝜇1,𝑡𝑡

[𝑘𝑘],Σ1,𝑡𝑡
[𝑘𝑘], 𝜏𝜏1

[𝑘𝑘]� , … , �𝜇𝜇
𝑁𝑁𝑡𝑡

[𝑘𝑘],𝑡𝑡
[𝑘𝑘] , Σ

𝑁𝑁𝑡𝑡
[𝑘𝑘],𝑡𝑡

[𝑘𝑘] , 𝜏𝜏
𝑁𝑁𝑡𝑡

[𝑘𝑘]
[𝑘𝑘] �� 𝑡𝑡𝑡𝑡 𝑌𝑌𝑡𝑡

53 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

54 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑌𝑌𝑡𝑡

In the algorithm, firstly we take the previous time step particles 𝑌𝑌𝑡𝑡−1. Then we

compare the single measurement with previous ones by calculating pose and

measurement prediction between lines 4 and 13. The 𝑔𝑔 �𝑥𝑥𝑡𝑡−1
[𝑘𝑘] ,𝑢𝑢𝑡𝑡� and

ℎ � 𝜇𝜇𝑗𝑗,𝑡𝑡−1
[𝑘𝑘] , 𝑥𝑥�𝑗𝑗,𝑡𝑡 � functions represent the robot motion function and feature-based

measurement functions respectively. At the end of this cycle, we obtain

correspondence likelihood 𝜋𝜋𝑗𝑗 of measurement compared to other features in

particles. In line 16, we calculate the 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝜋𝜋𝑗𝑗 � to identify whether the

measurement is a new feature or not. In the rest of the algorithm, we update the

mean and covariance values of each feature in particle 𝑘𝑘. If the feature is new, we

attain this feature an initial mean, covariance, and existence values. However, if

this feature has been observed before, then we update its mean, covariance, and

existence values. For the last condition, if the feature is not in the sensor

measurement range, we preserve the related parameter. Otherwise, the feature that

should be observed in the range is not detected and this means the feature is not

reliable and we should diminish its existence value. When this value is less than

zero, we remove the feature from the particle set.

3.2 Percolation Theory and Explosive Percolation Method

In physics, we have encountered the phase transition of substances and determined

the properties of the system based on which phase it is in. In percolation theory one

of the important aspects is the phase transition phenomena and its order. In general,

the phase transition is called first-order if the system shows discontinuous

31

characteristics during phase change. Otherwise, it is called second-order. To give

insight into phase order the resemblance comes from thermodynamics; for example

in thermodynamics, the first-order system shows temperature-fixed phase change

either energy is absorbed or emitted. In the second-order system, the transition

occurs in a continuous fashion. The entropy and energy of the system change

gradually.

In percolation theory, the order of the system is the ratio of the largest cluster to the

size of the system. If 𝑁𝑁 is the total nodes in the lattice and 𝐶𝐶 is the largest cluster

with |𝐶𝐶| nodes, the order 𝑚𝑚 is given by [45]

𝑚𝑚 =
|𝐶𝐶|
𝑁𝑁

.
3.4

In literature, there are various percolation types; continuum percolation, site and

bond percolation, invasion percolation, etc. In classical percolation theory, all these

percolation types exhibit second-order transition [44]. However, in recent research,

Achlioptas et [37] al describe a new method during the selection of occupation sites

in a network that produce the first-order transition and this percolation type is

called Explosive Percolation (EP).

In the following subsections, the details and critical exponents of percolation

theory and explosive percolation theory are shared.

3.2.1 Percolation Theory Basics

In classical percolation, the randomly occupying sites (site percolation) and bonds

(bond percolation) are two basic versions of percolation theory on a lattice. This

randomness is sustained with the occupation probability 𝑝𝑝. As 𝑝𝑝 increases more

and more clusters emerge and unite. When 𝑝𝑝 reaches the critical value 𝑝𝑝𝑐𝑐 a giant

cluster emerges in a way that connects two ends of the cluster. The cluster can be

an infinite size or a finite size. Currently, we focus on site percolation, however,

32

the same principles can be applied to bond percolation. In Figure 3.2, we depict the

site percolation process with the critical percolation threshold.

Figure 3.2. Site percolation process with the critical percolation threshold 𝑝𝑝𝑐𝑐

Near the critical threshold value 𝑝𝑝𝑐𝑐, there exists a set of numbers called critical

exponents that show the behavior of percolation [45]. The first one is the 𝛽𝛽

exponent which takes its role to show the relation between order number and

occupation probability.

𝑚𝑚(𝑝𝑝) ~ (𝑝𝑝 − 𝑝𝑝𝑐𝑐)𝛽𝛽 3.5

The average size cluster ⟨𝑠𝑠⟩ is defined with 𝛾𝛾 which is shown in Equation 3.6.

⟨𝑠𝑠⟩(𝑝𝑝) ~ (𝑝𝑝 − 𝑝𝑝𝑐𝑐)−𝛾𝛾 3.6

The correlation length which is defined as the mean distance between two sites is

described with 𝜈𝜈.

𝜉𝜉(𝑝𝑝) ~ |𝑝𝑝 − 𝑝𝑝𝑐𝑐|−𝜈𝜈 3.7

1

|𝐶𝐶|
𝑁𝑁

𝑝𝑝𝑐𝑐

33

These parameters have a special property that they are only dependent on

dimension 𝑑𝑑 of the lattice. They are free from the configuration of the lattice.

In a site percolation with a lattice of dimension 𝑑𝑑, let's take the side length with 𝐿𝐿.

Then we will have 𝐿𝐿𝑑𝑑 sites in the lattice. The occupancy probability of each site is

symbolized with 𝑝𝑝. We define 𝑋𝑋𝑖𝑖 to represent if a site is occupied or not. If it is

occupied 𝑋𝑋𝑖𝑖 = 1, otherwise 𝑋𝑋𝑖𝑖 = 0. The total number of occupied cells is then

∑ 𝑋𝑋𝑖𝑖𝑖𝑖 . From occupation probability, this should be expected to equal 𝐿𝐿𝑑𝑑𝑝𝑝. The

cluster with size 𝑠𝑠 can be defined as having 𝑠𝑠 occupied cells in the lattice. If the

total number of clusters with size 𝑠𝑠 is represented with 𝑁𝑁𝑠𝑠, we can define the

probability of any given site as a part of a cluster with size 𝑠𝑠:

𝑛𝑛𝑠𝑠 =
𝑁𝑁𝑆𝑆
𝐿𝐿𝑑𝑑

 3.8

�𝑠𝑠𝑛𝑛𝑠𝑠
𝑠𝑠

 3.9

𝑠𝑠𝑛𝑛𝑠𝑠
∑ 𝑠𝑠′𝑛𝑛𝑠𝑠′𝑠𝑠′

 3.10

Also, the average cluster size can be computed with the following equation:

⟨𝑠𝑠⟩ = �𝑠𝑠
𝑠𝑠

𝑠𝑠𝑛𝑛𝑠𝑠
∑ 𝑠𝑠′𝑛𝑛𝑠𝑠′𝑠𝑠′

 3.11

3.2.2 Explosive Percolation

In the year 2000, Dimitris Achlioptas proposed a method for the evaluation of a

large cluster in percolation. The aim is to control cluster size |𝐶𝐶| on the onset of

percolation in a way that it is delayed until the emergence. This process called as

Achlioptas process. The first application and test of the Achlioptas process were

conducted by Tom Bohman and Alan Frieze. This study shows the delay of the

giant cluster on the Bohman-Frieze model. The algorithm is based on the selection

of edges that connects two isolated nodes in a cluster. In this way, the percolation

34

threshold delaying was proved. In 2009, Dimitris Achlioptas, Raissa M. D’Souza,

and Joel Spencer proposed the Product Rule (PR) during the evaluation of the

selection of edges in a network. The process can be summarized as follow (Figure

3.3 (a)):

• Let edge 𝑒𝑒𝑡𝑡 connects two clusters 𝐶𝐶(𝑒𝑒𝑡𝑡1) and 𝐶𝐶(𝑒𝑒𝑡𝑡2) at time 𝑡𝑡

• Let edge 𝑒𝑒𝑡𝑡′ connects another two clusters 𝐶𝐶(𝑒𝑒𝑡𝑡′1) and 𝐶𝐶(𝑒𝑒𝑡𝑡′2) at time 𝑡𝑡

• Then 𝑒𝑒𝑡𝑡 is the selected edge if | 𝐶𝐶(𝑒𝑒𝑡𝑡1)||𝐶𝐶(𝑒𝑒𝑡𝑡2)| < | 𝐶𝐶(𝑒𝑒𝑡𝑡1)||𝐶𝐶(𝑒𝑒𝑡𝑡2)|.

Otherwise 𝑒𝑒𝑡𝑡′ is accepted.

Algorithm 8: Product Rule(𝑇𝑇)

1: 𝐴𝐴 = ∅

2: 𝑡𝑡 = 1

3: 𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 𝑇𝑇

4: 𝑖𝑖𝑖𝑖 | 𝐶𝐶(𝑒𝑒𝑡𝑡1)||𝐶𝐶(𝑒𝑒𝑡𝑡2)| < | 𝐶𝐶(𝑒𝑒𝑡𝑡1)||𝐶𝐶(𝑒𝑒𝑡𝑡2)|.

5: 𝐴𝐴 = 𝐴𝐴 ∪ {𝑒𝑒𝑡𝑡}

6: 𝑡𝑡 = 𝑡𝑡 + 1

7: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

8 𝐴𝐴 = 𝐴𝐴 ∪ {𝑒𝑒𝑡𝑡′}

9 𝑡𝑡 = 𝑡𝑡 + 1

10 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

11 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖

The comparison of the product rule (PR), Bohman-Frieze (BF) model, and Erdos-

Rényi (ER) model can be shown in Figure 3.3 (b). Erdos-Rényi (ER) model is the

random edge selection on a network in classical percolation. The order parameter

is 0 until 𝑝𝑝𝑐𝑐 = 0.5 for ER the model. In the BF model, it is delayed for a certain

value 𝑝𝑝𝑐𝑐. In the product rule, we can observe this value is delayed until 𝑝𝑝𝑐𝑐 = 0.88.

35

Moreover, after the critical point, the order parameter reaches discontinuously

larger order values.

The debate about the discontinuous behavior of the Achlioptas process is still

ongoing [45], however, it is obvious that the product selection rule can be used to

control the emergence of a large cluster in a network. At the critical point, clusters

are waiting to merge, therefore, after the critical point, the connection of edges

results in an abrupt global connection. The rules can be varied in selection. In

basics, there are two rules used in selection: product rule and sum rule.

(a)

(b)

Figure 3.3. (a) The node selection in a network. (b)The comparison of the order

parameter of ER, PR, and BF methods.

The explosive percolation proposed by Achlioptas was investigated on a network.

This situation can be extended to site and bond percolation. In our case, we focus

on the explosive site percolation due to the correspondence with the occupancy

grid map. The details of the selection on an occupancy grid map can be found in

Chapter 4.

37

CHAPTER 4

4 EXPLOSIVE PERCOLATION-BASED SLAM

4.1 General

In our proposed method, a novel active SLAM approach based on explosive

percolation is presented towards navigation within highly complex unstructured

environments for SAR operations. In a disaster region, the SAR robot has no initial

information about the environmental structure. It needs to navigate within debris

and extract a safe and robust path without being trapped within rubbles and a map

of the environment to be utilized by SAR teams until reaching the victim's location.

During search, the SAR robot should avoid dead-ends and obstacles and adapt to

the dynamic environment by updating its local map in case of debris collapses.

These are the crucial challenges that robot encounters in SAR mission. With the

help of the explosive percolation-based active SLAM approach, the SAR robot

overcomes the problems to reach the victim's location safely.

The general structure of the proposed approach is given in Figure 4.1. Our

approach consists of the successive stages to perform the SAR operation in a

disaster region.

Figure 4.1. An Overview of explosive percolation enhanced FastSLAM.

Parameter
Initialization

Explosive Percolation Search

Path End
Detection

 Is vital signal
reached?

Frontier Target

Detection and

Vital Signal

Search

Vital signal

is found and

reached.

Explosive

Percolation on

Occupancy

Map
 Path Generation

and Smoothing

Path

Following

Control

FastSLAM 2.0

FastSLAM
Algorithm with
Occupancy Grid

Map and Low
Variance Sampler Robot Motion

Model

LIDAR

Measurement

Model

Yes

No

Yes

No

Control Inputs to Motion Model

2

1

0

38

The stages can be considered under two main parts: The first block belongs to the

FastSLAM 2.0 algorithm which performs iteration of robot states using a motion

model, measurements of the environment by LIDAR at each robot state, and the

creation of an occupancy grid map. This block accepts the parameter initialization

values as input and gives the occupancy grid map and particles of robot and

obstacle states as output. Also, the particle filter variance control is realized in this

block to increase the diversity of particles. In the second block, the explosive

percolation search is performed according to the vital signal found and path-end

detection criteria. Firstly this block accepts the occupancy grid with particle filter

states. If the path-end is not detected, the path following control algorithm

feedbacks motion control input to the robot motion model, and the loop is closed. If

the path end is detected, the location is checked whether the vital signal is found or

not. If the vital signal is found the process is succeeded. If it is not, then the frontier

detection algorithm is utilized on the occupancy map to detect the target point, then

the explosive percolation path detection is used to generate a percolation path to the

target point on the occupancy grid map. After path generation and smoothing

algorithms, the path following control algorithm is run again to sustain control

input to robot motion mode to close the loop.

In this section, we present the details of our approach and how we implement the

explosive percolation to SLAM with the given algorithms in Figure 4.1. The basics

of FastSLAM 2.0 algorithms with particle filter and percolation are given in

Chapter 3 separately. Therefore, in this part, we focus on the enhancement of the

FastSLAM 2.0 algorithm to handle multiple landmarks measurement and the

implementation of the explosive percolation method to the enhanced version of

FastSLAM 2.0 algorithm to realize our main goal of exploiting the unexplored

voids to percolate into the unknown region of the map and to reach the victim as

soon as possible. In essence, the implementation of explosive percolation comes

with decision points at the searching stage in block 2. To understand the process,

let's imagine highly unstructured and complex debris. If a robot does not reach a

pre-determined target point, it continues to follow the path with the path following

39

control algorithm until reaches that point. However, if the robot succeeds reaching

in the target point, it checks whether the selected target point is a victim’s location

or not. If this target point is the victim’s location, then the procedure is stopped,

and the safe path among rubbles with the map of debris is transmitted to the SAR

team. Otherwise, the robot selects a new target point within the field of view of

LIDAR. The unexplored regions with high entropy values are selected as target

points to explore the region further. In this way, we can reach the outermost

regions in the searching area and increase the probability of finding a vital signal.

After frontier target detection on the occupancy grid map, the explosive percolation

is utilized to obtain a safe and obstacle-free path within the voids of rubbles.

Because of that, our main objective is to reach the victim as fast as possible, we

exploit the unexplored voids to percolate into the unknown region of the map.

However, the extracted path on the occupancy map is highly intended to be

followed by the robot with the path following control algorithm. Thus, we perform

path pruning and smoothing processes on the found path. After that, path control

feeds the control parameters to robot motion to continue the process until the

victim's vital signal is detected.

In the rest of this chapter, the mentioned algorithms are discussed in detail with

example scenarios.

4.2 Enhancement of FastSLAM 2.0

The FastSLAM 2.0 algorithm, given in Algorithm 7 in Chapter 3, has limitations to

be applied for multiple detections of landmark locations. As indicated in Chapter 3,

this algorithm uses single measurement at a time. However, when LIDAR sweeps a

certain area within its field of view, multiple landmark points are extracted from

LIDAR point cloud data. To handle this situation, we have to modify the given

FastSLAM 2.0 algorithm of [18] towards a methodology that handles multiple

measurements at a time and updates all particles in the particle filter with each

landmark measurement.

40

Before going into the enhancement of FastSLAM 2.0 algorithm, as we know from

Chapter 3, the FastSLAM algorithm uses a particle filter to update robot and

landmark states. Therefore, each particle should include the robot and landmarks

states. In that perspective, the particle structure in the SLAM algorithm is

constructed as in Equation 4.1.

𝑝𝑝𝑘𝑘 = ��
𝑥𝑥 𝑁𝑁
𝑦𝑦 0
𝜃𝜃 0

� �
𝜇𝜇𝑥𝑥 Σ11 Σ12 Σ13 𝑖𝑖
𝜇𝜇𝑦𝑦 Σ21 Σ22 Σ23 0
𝜇𝜇𝑠𝑠 Σ31 Σ32 Σ33 0

�

1

⋯ �
𝜇𝜇𝑥𝑥 Σ11 Σ12 Σ13 𝑖𝑖
𝜇𝜇𝑦𝑦 Σ21 Σ22 Σ23 0
𝜇𝜇𝑠𝑠 Σ31 Σ32 Σ33 0

�

𝑁𝑁

�

𝑘𝑘

,

4-1

where

• 𝑝𝑝𝑘𝑘 symbolizes the k-th particle.

• 𝑥𝑥,𝑦𝑦,𝜃𝜃 stand for estimated position and orientation of robot in 2D space at

the k-th particle.

• 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦, 𝜇𝜇𝑠𝑠 are estimated position and identification of a landmark. The

identification means that a numerical value symbolizes the distinctive

properties of the landmark such as order number, RGB value, and multi-

dimensional vector characterizing the landmark.

• Σ𝑖𝑖𝑖𝑖 stands for the covariance matrix elements for a landmark. i is the total

encountered number of the specific landmark. If the encountered number

diminishes to 0, then this observed landmark is considered a noisy

parameter or dynamic object. Therefore, a such landmark that has low

reliability is removed from the particle set.

• 𝑁𝑁 is the total landmark number in the k-th particle.

The FastSLAM 2.0 introduced in Chapter 3 is improved according to the given

pseudo algorithm below. To be able to process the observed multiple landmarks,

we have to iterate the Kalman Filter update stage of Algorithm 7 in Section 3.1.4

for each landmark. As shown in Algorithm 9, in lines 4 and 5 we calculate the

correspondence likelihood and new feature detection as in Algorithm 7. However,

different from Algorithm 7, notice that in line 3, we iterate the measurement update

41

for each measurement landmark which does not exist in Algorithm 7. Also,

between lines 11-19, we add else criteria to check the conditions of the landmark.

These conditions can be such that the landmark is observed before and not in the

field of view and at that moment the landmark is measured and updated and it

should not be updated twice. In this way, we avoid repetitive updates of the

Kalman Filter for the same landmark. If the landmark which is supposed to be

observed is not detected within the LIDAR cone, the landmark counter is

diminished in line 16. If this counter is smaller than 0, this means that the landmark

is not a solid one and should be discarded. The whole process is repeated for each

landmark to update its Kalman Filter parameters.

Algorithm 9: Enhanced FastSLAM 2.0 Algorithm(𝑧𝑧𝑡𝑡,𝑢𝑢𝑡𝑡 ,𝑌𝑌𝑡𝑡−1)

1: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 4 − 1)

2: 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘 = 1:𝐾𝐾

3: 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚 = 1:𝑀𝑀

4: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚 7 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 3 − 14)

5: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑁𝑁 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚 7 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 15 − 17)

6: 𝐼𝐼𝐼𝐼 𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

7: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛𝑛𝑛𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚 7 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 20 − 25)

8 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

9 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚 7 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 27− 33)

10 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

11 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

12 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

13 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

14 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

15 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

16 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 = 𝑖𝑖 − 1

17 𝑖𝑖𝑖𝑖 𝑖𝑖 < 0

18 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

42

19 𝑒𝑒𝑒𝑒𝑒𝑒

20 𝑒𝑒𝑒𝑒𝑒𝑒

21 𝑒𝑒𝑒𝑒𝑒𝑒

22 𝑒𝑒𝑒𝑒𝑒𝑒

23 𝑒𝑒𝑒𝑒𝑒𝑒

24 𝑅𝑅𝑅𝑅𝑅𝑅 𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚 6)

To better understand the process, on a simple map the particle structure

propagation and their update sequence are shared below. In Figure 4.2, the robot's

location on the simple map and the robot's local occupancy grid map with

landmark locations is depicted. The landmark locations are indicated with green

circles. The observed landmarks are determined according to the corner points of

the obstacles. The details about the determination of landmarks are given in

subsection 4.3. In this scenario, we observe three distinct landmark locations and in

Table 4.1 their estimated position values at each particle are given for the initial

time 𝑡𝑡 = 0. For computational power reasons we select 10 particles constructed as

in Equation 4-1.

At the beginning of Algorithm 9, each particle structure (Equation 4-1) is

initialized with 3x2 zero matrix (Line 1). The first column represents the position

states of the robot and the second column represents the total landmark 𝑁𝑁 which is

0 initially.

With the initial measurement of LIDAR, we detect 3 distinct landmark locations

given in Figure 4.2. In line 2, the 𝑀𝑀 value is equal to 3.

For the initial landmark point in local coordinates 𝐿𝐿1𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = [43,67 − 22.04], the

correspondence likelihood estimation 𝜋𝜋𝑗𝑗 (Algorithm 9 Line 4) is equal to 0,

because there is no previous measurement that resembles the current landmark.

Therefore the first landmark is identified as a new landmark (Algorithm 9 Line 5).

43

Line 7 in Algorithm 9 is activated and the new landmark is created for the first

particle 𝑝𝑝1 (where 𝑘𝑘 = 1).

𝑝𝑝1 = ��
0.0047 1
0.0222 0
−0.0047 0

� �
43.6723 0.0001 0.0019 0 1
−22.0473 0.0019 0.0506 0 0

0.9995 0 0 0 0
��
1

Because there is no previous observed feature in Line 8, and there is no condition

to satisfy the criteria as in Lines 11,13 and 15 in else condition in Algorithm 9,

these are passed in the algorithm for this case. The covariance estimation for 𝐿𝐿1𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

is calculated according to Algorithm 7 between Lines 20-25 in Section 3.1.4. After

the first landmark detection, 𝑁𝑁 is equal to 1, and for iteration, 𝑚𝑚 is equal to 1 and 𝑘𝑘

is equal to 1.

In a similar way, the second landmark 𝐿𝐿2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = [14.04 − 1.13] is processed

between Lines 3-5. The correspondence likelihood estimation 𝜋𝜋𝑗𝑗 (Algorithm 9 Line

4) is equal to 0 again, because the 𝐿𝐿2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is not the same landmark with 𝐿𝐿1𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 and

the correspondence likelihood estimation with respect to other observed landmarks

will give 0 value. If it is observed before, the likelihood estimation will give a

value close to 1. With the same process as in 𝐿𝐿1𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝐿𝐿2𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎 is added to 𝑝𝑝1 as a new

landmark.

𝑝𝑝1 = ��
0.0047 2
0.0222 0
−0.0047 0

� �
43.6723 0.0001 0.0019 0 1
−22.0473 0.0019 0.0506 0 0

0.9995 0 0 0 0
� �

14.0444 0.0001 0.0002 0 1
1.1354 0.0002 0.0007 0 0
1.0009 0 0 0 0

��
1

After the second landmark detection, 𝑁𝑁 is equal to 2, and for iteration, 𝑚𝑚 is equal

to 2 and 𝑘𝑘 is equal to 1. Finally, the third landmark 𝐿𝐿3𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = [29.21 22.72] is

processed between Lines 3-5 and detected a new landmark according to 𝜋𝜋𝑗𝑗 = 0.

The final structure of 𝑝𝑝1 at time 𝑡𝑡 = 0 is then,

𝑝𝑝1 = ��
0.0047 3
0.0222 0
−0.0047 0

� �
43.6723 0.0001 0.0019 0 1
−22.0473 0.0019 0.0506 0 0

0.9995 0 0 0 0
� �

14.0444 0.0001 0.0002 0 1
1.1354 0.0002 0.0007 0 0
1.0009 0 0 0 0

� �
29.2167 0.0001 −0.0018 0 1
22.7258 −0.0018 0.0524 0 0
0.9997 0 0 0 0

��
1

After the third landmark detection, 𝑁𝑁 is equal to 3, and for iteration, 𝑚𝑚 is equal to 3

and 𝑘𝑘 is equal to 1. This process is continued until all particle 𝑘𝑘 = 1. .10 is

processed. After the all particles are calculated according to Algorithm 9, we will

44

obtain a structure like in Table 4.1. The first column consists of the robot's

estimated initial position states. The other columns include the landmarks'

estimated positions and covariance matrices with landmark counter. Each particle

estimates multiple landmark points according to given Algorithm 9 at the initial

time.

(a)

(b)

Figure 4.2. (a) Robot in global map with LIDAR raycasting. (b) Robot local map

with landmark indicated with green dots.

Table 4.1 Particle filter propagation with the measurement at initial time 𝑡𝑡 = 0.

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 1𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 2𝑛𝑛𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 3𝑟𝑟𝑟𝑟𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑟𝑟𝑘𝑘

𝑝𝑝1 ��
0.0047 3
0.0222 0
−0.0047 0

� �
43.6723 0.0001 0.0019 0 1
−22.0473 0.0019 0.0506 0 0

0.9995 0 0 0 0
� �

14.0444 0.0001 0.0002 0 1
1.1354 0.0002 0.0007 0 0
1.0009 0 0 0 0

� �
29.2167 0.0001 −0.0018 0 1
22.7258 −0.0018 0.0524 0 0
0.9997 0 0 0 0

��
1

𝑝𝑝2 ��
0.0289 3
−0.0390 0
0.2567 0

� �
43.7968 0.0001 0.0019 0 1
−21.9091 0.0019 0.0497 0 0

0.9995 0 0 0 0
� �

14.0358 0.0001 0.0002 0 1
1.0988 0.0002 0.0007 0 0
 1.0009 0 0 0 0

� �
29.1371 0.0001 −0.0018 0 1
22.7976 −0.0018 0.0530 0 0
0.9997 0 0 0 0

��
2

𝑝𝑝3 ��
0.0427 3
−0.0267 0
0.0484 0

� �
43.7308 0.0001 0.0019 0 1
−22.0557 0.0019 0.0504 0 0

0.9995 0 0 0 0
� �

14.0439 0.0001 0.0002 0 1
1.1756 0.0002 0.0007 0 0
1.0009 0 0 0 0

� �
29.2338 0.0001 −0.0018 0 1
22.7039 −0.0018 0.0525 0 0
0.9997 0 0 0 0

��
3

𝑝𝑝4 ��
0.0438 3
0.0151 0
−0.1734 0

� �
43.6463 0.0001 0.0020 0 1
−22.1829 0.0020 0.0512 0 0

0.9995 0 0 0 0
� �

13.9964 0.0001 0.0002 0 1
1.0669 0.0002 0.0008 0 0
1.0009 0 0 0 0

� �
29.3227 0.0001 −0.0018 0 1
22.6325 −0.0018 0.0520 0 0
0.9997 0 0 0 0

��
4

𝑝𝑝5 ��
0.0166 3
−0.0440 0
−0.1643 0

� �
43.6226 0.0001 0.0020 0 1
−22.2351 0.0020 0.0511 0 0

0.9995 0 0 0 0
� �

14.0132 0.0001 0.0002 0 1
1.0748 0.0002 0.0008 0 0
1.0009 0 0 0 0

� �
29.2918 0.0001 −0.0018 0 1
22.5781 −0.0018 0.0521 0 0
0.9997 0 0 0 0

��
5

𝑝𝑝6 ��
0.0446 3
0.0351 0
0.2785 0

� �
43.8208 0.0001 0.0019 0 1
−21.8184 0.0019 0.0497 0 0

0.9995 0 0 0 0
� �

13.9904 0.0001 0.0002 0 1
1.1928 0.0002 0.0007 0 0

 1.0009 0 0 0 0
� �

29.1441 0.0001 −0.0018 0 1
22.8827 −0.0018 0.0531 0 0
0.9997 0 0 0 0

��
6

𝑝𝑝7 ��
−0.0401 3
0.0077 0
0.1898 0

� �
43.7021 0.0001 0.0019 0 1
−21.9135 0.0019 0.0499 0 0

0.9995 0 0 0 0
� �

14.03363 0.0001 0.0002 0 1
1.0817 0.0002 0.0007 0 0
1.0009 0 0 0 0

� �
29.0947 0.0001 −0.0018 0 1
22.8103 −0.0018 0.0529 0 0
0.9997 0 0 0 0

��
7

𝑝𝑝8 ��
−0.0335 3
0.0257 0
0.1510 0

� �
43.6940 0.0001 0.0019 0 1
−21.9251 0.0019 0.0501 0 0

0.9995 0 0 0 0
� �

14.0834 0.0001 0.0002 0 1
1.0383 0.0002 0.0007 0 0
1.0009 0 0 0 0

� �
29.1168 0.0001 −0.0018 0 1
22.8086 −0.0018 0.0528 0 0
0.9997 0 0 0 0

��
8

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

1𝑠𝑠𝑠𝑠 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

2𝑛𝑛𝑛𝑛 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

3𝑟𝑟𝑟𝑟 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

Local x

Lo
ca

l y

G
lo

ba
l y

Global x

45

Table 4.1 (continued)

𝑝𝑝9 ��
0.0334 3
0.0244 0
−0.2070 0

� �
43.6228 0.0001 0.0020 0 1
−22.1992 0.0020 0.0513 0 0

0.9995 0 0 0 0
� �

13.9960 0.0001 0.0002 0 1
1.1289 0.0002 0.0008 0 0
1.0009 0 0 0 0

� �
29.3255 0.0001 −0.0018 0 1
22.6247 −0.0018 0.0520 0 0
0.9997 0 0 0 0

��
9

𝑝𝑝10 ��
−0.0034 3
0.0210 0
0.0803 0

� �
43.6970 0.0001 0.0019 0 1
−21.9836 0.0019 0.0503 0 0

0.9995 0 0 0 0
� �

14.0697 0.0001 0.0002 0 1
1.0555 0.0002 0.0007 0 0
1.0009 0 0 0 0

� �
29.1750 0.0001 −0.0018 0 1
22.7679 −0.0018 0.0526 0 0
0.9997 0 0 0 0

��
10

4.3 Landmark Detection

Raw sensor measurements should be converted into meaningful features to be used

in the FastSLAM as landmarks. In the case of LIDAR, raw sensor measurements

are point cloud data obtained from raycasting. To convert raw sensor

measurements into features we apply a feature extraction algorithm.

In the literature, common techniques to extract features are based on identifying

lines, corners, or specific objects with patterns or appearance. In our study, we

select sharp corner points as features to identify landmarks. The reason is that in

SAR operations over disaster regions such as earthquake rubbles, we encounter

highly indented surfaces and structures. There are no regular surfaces or lines to be

utilized for landmark positions in such a disaster area. Also, we could have used

the occupancy grid map points as landmark points during the search, however,

because the computational burden of observing multiple occupancy grid sites in

searching increases the size of particle filter structure (Equation 4-1) larger than

observing the corner points, we prefer using the corner points as landmark points

which sustains us a distilled version of landmark extraction. Therefore, we convert

raw sensor measurement to corner features with a feature extraction algorithm and

then, the found feature locations are fed into 𝑓𝑓(𝑧𝑧𝑡𝑡) given in Equation 3.1 in Chapter

3 (given below) to represent the feature-based sensor model.

�
𝑟𝑟𝑡𝑡𝑖𝑖

𝜙𝜙𝑡𝑡𝑖𝑖

𝑠𝑠𝑡𝑡𝑖𝑖
� =

⎣
⎢
⎢
⎡ ��𝑚𝑚𝑖𝑖,𝑥𝑥 − 𝑥𝑥�

2
+ �𝑚𝑚𝑖𝑖,𝑦𝑦 − 𝑦𝑦�

2

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2�𝑚𝑚𝑖𝑖,𝑦𝑦 − 𝑦𝑦,𝑚𝑚𝑖𝑖,𝑥𝑥 − 𝑥𝑥� − 𝜃𝜃
𝑠𝑠𝑖𝑖 ⎦

⎥
⎥
⎤

+ �
𝜖𝜖𝜎𝜎𝑟𝑟2
𝜖𝜖𝜎𝜎𝜙𝜙2
𝜖𝜖𝜎𝜎𝑠𝑠2

�

46

The feature extraction algorithm detects corner points by using the REE algorithm

[46]. REE algorithm name comes from the usage of one rectangle and two ellipses

on a point cloud. REE slides on the boundary of the point cloud shape and detects

the corner points on the shape. The rectangle 𝑅𝑅 embeds two ellipses 𝐸𝐸1 and 𝐸𝐸2 such

that 𝑅𝑅 ⊃ 𝐸𝐸1 ⊃ 𝐸𝐸2 as in Figure 4.3 (a). In Figure 4.3 (b), the snapshot of an REE

structure on an arbitrary point cloud boundary of a shape is depicted.

Figure 4.3. (a) Structure of REE algorithm. (b) Snapshot of the REE shape on an

irregular boundary.

The relation between the rectangle and ellipses is given in Equation 4.2.

𝑅𝑅 = 2𝐴𝐴 × 2𝐵𝐵

4-2
𝐸𝐸1 = 𝜋𝜋 ×

3𝐴𝐴
4

× 𝐵𝐵

𝐸𝐸2 = 𝜋𝜋 ×
3𝐴𝐴
4

×
𝐵𝐵
2

𝜃𝜃 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑖𝑖

The semi-minor and semi-major axis of the Ellipse 𝐸𝐸1 is 3𝐴𝐴
4

 and 𝐵𝐵. For the ellipse

𝐸𝐸2, these values are 3𝐴𝐴
4

 and 𝐵𝐵
2
 respectively. The slope 𝜃𝜃 at 𝑝𝑝𝑖𝑖 is found by calculating

the fitted line of 𝑛𝑛 points on both sides of 𝑝𝑝𝑝𝑝. Let 𝑛𝑛𝑅𝑅𝑖𝑖 ,𝑛𝑛𝐸𝐸1,𝑖𝑖 , 𝑛𝑛𝐸𝐸2,𝑖𝑖 represent the

number of curve points within rectangle and ellipses. For each curve point, we run

the following algorithm to detect the corner point.

𝐸𝐸1

𝐸𝐸2

2𝐵𝐵

2𝐴𝐴

𝑝𝑝𝑖𝑖

(a) (b)

Point cloud

REE

47

Algorithm 10: Corner Feature Detection(𝑝𝑝𝑖𝑖)

1: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑖𝑖

2: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛𝑅𝑅𝑖𝑖 ,𝑛𝑛𝐸𝐸1,𝑖𝑖 ,𝑛𝑛𝐸𝐸2,𝑖𝑖

3: 𝑒𝑒𝑒𝑒𝑒𝑒

4: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐺𝐺 = �𝑝𝑝𝑖𝑖:𝑛𝑛𝑅𝑅𝑖𝑖 = 𝑛𝑛𝐸𝐸1,𝑖𝑖�

5: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐺𝐺

6: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐺𝐺𝑘𝑘

7: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = min
𝑛𝑛𝐸𝐸2,𝑖𝑖

�𝐺𝐺𝑘𝑘,𝑖𝑖: 𝑛𝑛𝐸𝐸2,𝑖𝑖 < 𝜂𝜂�

8: 𝑒𝑒𝑒𝑒𝑒𝑒

In Algorithm 10, firstly we count the 𝑛𝑛𝑅𝑅𝑖𝑖 ,𝑛𝑛𝐸𝐸1,𝑖𝑖 ,𝑛𝑛𝐸𝐸2,𝑖𝑖 for each point in the point

cloud set (Lines 1-3). Then, we collect the points that satisfy 𝑛𝑛𝑅𝑅𝑖𝑖 = 𝑛𝑛𝐸𝐸1,𝑖𝑖 and add

them to set 𝐺𝐺 (Lines 4-5). For each found group 𝐺𝐺𝑘𝑘, they consist of candidate

corner points. To obtain the actual corner point, a threshold value 𝜂𝜂 is selected.

Number of points 𝑛𝑛𝐸𝐸2,𝑖𝑖 in 𝐺𝐺𝑘𝑘 which is lower than 𝜂𝜂 represents the corner point with

index 𝑖𝑖. The details can be found in reference [46].

An example scenario in our methodology is given in Figure 4.4. In the previous

section, landmark points on the local map are shown on particles of the FastSLAM.

 100 105 110 115 120 125 130
25

30

35

40

45

50

initial

end

Global x

G
lo

ba
l y

48

(a)

(b)

Figure 4.4. (a) REE algorithm process on a point cloud data obtained from LIDAR

scan. (b) In the global map, the corner point detection of the triangular shape after

we apply REE algorithm.

We select the landmark point on the tip of the triangular shape to show the

progress. As shown in Figure 4.4 (a) the REE shape slides on each boundary point

of the triangular shape from the initial point to the endpoint in the direction of the

arrow. The rectangle is shown with red, inner ellipses 𝐸𝐸1 and 𝐸𝐸2 is shown with

green and black dash lines respectively. Beginning from the initial point, for each

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

110 115 120 125

30

35

40

45

50

55

100 105 110 115 120 125 130
25

30

35

40

45

50

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

Global x

Global x Global x

G
lo

ba
l y

G

lo
ba

l y

49

point Line 2 is applied and we count 𝑛𝑛𝑅𝑅𝑖𝑖 ,𝑛𝑛𝐸𝐸1,𝑖𝑖 , 𝑛𝑛𝐸𝐸2,𝑖𝑖 at each point. After that at line

4, we calculate the points 𝑛𝑛𝑅𝑅𝑖𝑖 = 𝑛𝑛𝐸𝐸1,𝑖𝑖 and add them to set 𝐺𝐺. As in Figure 4.4 (a),

within rectangle and ellipse 1 𝑛𝑛𝑅𝑅𝑖𝑖 = 𝑛𝑛𝐸𝐸1,𝑖𝑖 = 13. Finally between lines 6-8, the point

which belongs to minimum 𝑛𝑛𝐸𝐸2,𝑖𝑖 is selected as the corner point. In Figure 4.4 (b),

as a result of REE process, the corner point is detected at the coordinates

[109 41.2] on the global map. After this point is obtained as a landmark, we apply

Equation 3.1 to represent this point in the feature-based measurement model.

4.4 Frontier Target Selection and Vital Signal Search

In the SAR exploration strategy, the idea is to build a map of the unknown territory

and unveil the search world as much as possible in order to detect vital signals. To

accomplish this task, we need to drive the robot in a certain direction on the map.

However, the main question here is: how do we determine this direction? The

direction can be determined towards the boundary between explored and

unexplored world. This boundary is where new information about the environment

can begin to be collected. Thus, we select our target points on the boundary of the

occupancy map where the explored region is separated from the unexplored part of

the world. In order to detect such target points on the boundary, we use the frontier-

based exploration strategy [47].

To detect the frontier cells on the local occupancy map during the search, we need

to detect the occupancy of each cell. The initial prior probability of each cell before

discovery is uniformly distributed and equal to 0.5. This value represents

maximum entropy and minimum knowledge about the occupancy of the cell. The

occupied cell probability is 𝑝𝑝(𝑚𝑚𝑖𝑖) > 0.5 where 𝑚𝑚𝑖𝑖 represents the cell 𝑖𝑖 in

occupancy map 𝑀𝑀. With the increasing value of 𝑝𝑝(𝑚𝑚𝑖𝑖) greater than 0.5, we have

more confidence in the cell being occupied. If a cell is an open cell or empty one, it

is represented with 𝑝𝑝(𝑚𝑚𝑖𝑖) < 0.5. In each measurement, if the LIDAR raycasting

does not detect an obstacle in the cell, 𝑝𝑝(𝑚𝑚𝑖𝑖) gets a lower value than 0.5 and finally

50

takes 0 value which indicates that the cell is empty. We separate the frontier cell by

selecting open cells adjacent to the unknown cell. To understand the process better,

we will now analyze Figure 4.5.

Figure 4.5. Frontier-based search method on a occupancy grid map.

The magenta circle shows us the location of the robot. The occupied cells are

represented with gray (0.5 < 𝑝𝑝(𝑚𝑚𝑖𝑖) < 1) or black color (𝑝𝑝(𝑚𝑚𝑖𝑖) = 1) cells

according to their occupancy probability. The yellow cells are the frontier cells of

the occupancy map at that instance within the field of the LIDAR sensor. To detect

target points within the frontier cells, we create clusters by separating them

according to the location and distance of the occupied cell. In other words, to create

a cluster we select the nearest neighbor empty cells and add them to the cluster. If

the distance between two empty cells is greater than 𝜂𝜂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, we announce the

created cell group as a separate cluster. The lower threshold value causes finer

clusters, however, if we select a larger threshold, this causes gross-size clusters. It

must be carefully selected. After we create clusters with the selected threshold

value, the target points are detected by measuring the largest distance cell to robot

location among each cluster to obtain maximum information. Three blue cross

Cluster 1

Cluster 2

Cluster 3

Lo
ca

l y

Local x

51

locations in Figure 4.5 indicate these target locations. Because we need to select

one of them to continue searching, we select the one that has the largest distance to

the robot location. Under these conditions, we select the target point at the location

of [69 63] indicated with the arrow on the occupancy map. The distances of other

target points are presented in Table 4.2.

Table 4.2 Target points distance values

Target points Distance to Robot location

Target Point 1 (Cluster 1) 93.43

Target Point 2 (Cluster 2) 37.34

Target Point 3 (Cluster 3) 90.07

What if we have a vital signal near our search area and we detect this vital signal at

a distance from the robot location, how will this affect our target selection? To

answer this question, we need to mention how we represent the vital signal on the

occupancy map. In our research, we assume that a SAR robot has a vital signal

detection circle with a determined radius and the vital signal of a victim has a

certain radius of emission to be detected by the SAR robot. Figure 4.6 depicts the

situation on the global map.

Figure 4.6. The blue circle represents the robot searching radius. The red circle

represents the vital signal of the victim emission range.

Global x

G
lo

ba
l y

52

The detection of the vital signal by the robot directly affects the target point

selection criteria. If the vital signal is in the direct line of sight of the robot, the

target point is selected as the location of the victim. However, if the robot's vital

detection circle and the vital signal emission circle of the victim are intersected, the

closer target point to the vital signal direction is selected as the target point. For

example, if the intersection of the circles is given as in Figure 4.6, the target point

will be selected as in Figure 4.7.

Figure 4.7. Target point selection in case of vital signal detection by the robot.

4.5 Exploration Path Generation with Explosive Percolation

The idea behind using percolation theory on SLAM is based on the applicability of

percolation theory to irregular and highly complex environments. However, the

application of percolation theory to SLAM needs prior occupational probability of

each cell within the environment, and this probability value should be higher than

the percolation probability 𝑝𝑝𝑐𝑐 in order to enable penetration of the selected region.

In the SLAM approach, this situation is not possible, because we obtain the

occupancy probability of each cell during the search. In other words, the

Closer target
point to victim
vital signal

Lo
ca

l y

Local x

53

occupation probabilities of cells are determined during the process. Explosive

percolation theory eliminates this problem for the two reasons that follow.

Explosive percolation theory provides two major advantages in penetrating

unknown highly irregular regions in a disaster area.

1) We do not need any prior occupancy value of cells within the search region.

As we know that during the SLAM process, we determine the occupation

probability of a cell. There will be no prior information about the

occupation of a cell until observed by LIDAR. Therefore we can adopt this

approach to the unknown territory through active search. Explosive

percolation does not need any prior information about the occupational

probability of a cell.

2) We can control the percolation threshold value to create a cluster among the

voids of the occupancy grid map to acquire a path that connects two ends of

the searching region. The threshold control sustains us on how fast or slow

we connect two target points in a map. The details on how to control the

threshold are given below.

The general description and algorithm of the explosive percolation are given in

Section 3.2.2. In explosive percolation, the creation of large clusters is tried to be

delayed at the emergence of percolation clusters by changing the selection rule of

cells in a lattice (or nodes if it is a network). The delay of the process is selected in

explosive percolation research to observe how smaller clusters connect to create a

giant cluster abruptly. These selection rules can be summation or product rules

according to selection. In our situation, we apply the procedure reversely compared

to Algorithm 8, since we aim to attain the percolation cluster as fast as possible by

creating larger clusters within voids of the occupancy grid map. For the selection

rule, we utilize the summation rule, however, the product rule can also be selected.

Consider 𝐶𝐶 to be the cluster and |𝐶𝐶| is the size of it. Let's select different sizes of

clusters as 𝐶𝐶𝑎𝑎,𝐶𝐶𝑏𝑏 ,𝐶𝐶𝑐𝑐,𝐶𝐶𝑑𝑑 with their sizes |𝐶𝐶𝑎𝑎|, |𝐶𝐶𝑏𝑏|, |𝐶𝐶𝑐𝑐|, |𝐶𝐶𝑑𝑑|. Assume that 𝑠𝑠1

connects the cluster |𝐶𝐶𝑎𝑎|, |𝐶𝐶𝑏𝑏| and 𝑠𝑠2 connects the clusters |𝐶𝐶𝑐𝑐|, |𝐶𝐶𝑑𝑑|. If |𝐶𝐶𝑎𝑎| +

54

|𝐶𝐶𝑏𝑏| ≥ |𝐶𝐶𝑐𝑐| + |𝐶𝐶𝑑𝑑| then we select 𝑠𝑠1 to create a larger cluster, otherwise, we select

𝑠𝑠2.

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �𝑠𝑠1, |𝐶𝐶𝑎𝑎| + |𝐶𝐶𝑏𝑏| > |𝐶𝐶𝑐𝑐| + |𝐶𝐶𝑑𝑑|
𝑠𝑠2, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 4-3

Algorithm 11: Explosive Percolation-Based Exploration in SLAM (𝑚𝑚𝑘𝑘,𝑃𝑃𝑅𝑅 ,𝑃𝑃𝑇𝑇)

1: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ ← 0

2: 𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ = 0)

3: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠1, 𝑠𝑠2 𝜖𝜖 𝑚𝑚𝑘𝑘

4: 𝑖𝑖𝑖𝑖 𝑠𝑠1, 𝑠𝑠2 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

5: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠1, 𝑠𝑠2 𝜖𝜖 𝑚𝑚𝑘𝑘

6: 𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖

7: 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠1 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 |𝐶𝐶1|

8: 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠2 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 |𝐶𝐶2|

9: 𝑖𝑖𝑖𝑖 |𝐶𝐶1| ≥ |𝐶𝐶2|

10: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠1

11: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

12: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠2

13: 𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖

14: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑃𝑃𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑇𝑇
15: 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

16: 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ ← 1

17: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

18: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖

The algorithm of explosive percolation on the occupancy map is given in

Algorithm 11. In the algorithm, 𝑚𝑚𝑘𝑘 represents the occupancy grid map at that

instant, 𝑃𝑃𝑅𝑅 is the robot's location on the local map, 𝑃𝑃𝑇𝑇 is the target location on the

local map. When the same cluster identity is caught around the robot and target

55

location, we can say that we found a percolation cluster that connects these two

points on the occupancy grid map.

Let’s assume that we select our target point as indicated in Figure 4.5. If we run the

explosive percolation algorithm on this occupancy grid map of the robot, we will

observe the progress as in Figure 4.8.

(a) (b)

(c)

(d)

(e)

Local x Local x

Local x Local x

Local x

Lo
ca

l y

Lo
ca

l y

Lo
ca

l y

56

Figure 4.8. (a) Explosive percolation initial cluster emergence. (b) Clusters begin to

merge with respect to the neighbor cell cluster index. (c) Cluster approximate to the

emergence of percolation cluster. (d) Percolation cluster connecting the robot and

target locations is found. Here the red cluster is our percolation cluster. (e) The

percolation path is found in the percolation cluster.

Let’s compare Algorithm 11 with Figure 4.8 step by step. Initially, all map is free

from clusters. Therefore the initial run of Algorithm 11 with a random selection of

cells only creates single-cell clusters. By iterating the algorithms, we will obtain

small-size clusters as in Figure 4.8 (a). As we notice, we obtain larger clusters

having 2 or more cells in this stage. Lines between 3-6 sustain the selection of 2

new random cells that are not selected before. After the selection of random cells,

firstly at line 7, we insert 𝑠𝑠1 cell into to map and compute the 𝐶𝐶1 cluster size |𝐶𝐶1|

where 𝑠𝑠1 belongs to. We repeat a similar process for 𝑠𝑠2 at line 8. Then, between

lines 9-13, we compare the cluster sizes and select the greater 1. This selection

causes the creation of larger clusters as in Figure 4.8 (b) and (c). Finally, between

lines 14-17, we check the condition of whether the same cluster cells connect the

target points or not. If they are connected, we make 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ value 1 and end

the algorithm. Figure 4.8 (d) indicates the final case in which the red cluster

connects two target points.

We observe the emergence of smaller cells at the beginning of the process. By

selecting the voids in the occupancy map, we percolate further and create larger

clusters. In Figure 4.8 (b) the clusters are merged within the neighbor cell

according to the summation rule. The cells are numbered and colored if they share

the same cluster. The merging is sustained with the 4-neighborhood of a cell. When

we detect a percolation cluster that connects the robot and target locations, we stop

the process.

At this stage, we have a candidate cluster to find the percolation path. Without any

cluster, it is expected that the voids within the map include all paths that connect

target points. The percolation cluster is the certain part of the map that connects

57

these two points. Therefore, the cluster should be valid and represent the current

observed map by LIDAR to find the percolation path. This validity of the

percolation cluster can be checked by measuring the coverage of the percolation

cluster. The best way to measure coverage is the calculation of the dimension of the

cluster and comparing it with the map dimension. Because the map and cluster do

not have a regular shape, the fractional order dimension method can be utilized to

overcome this problem. The validity of the percolation cluster can be shown with

its convergence of fractional dimensions to occupancy grid lattice fractional

dimension. In Figure 4.9, we can deduce that the cluster fractional dimension

converges the dimension of the lattice as expected.

Figure 4.9. Fractional dimension convergence of the largest cluster to lattice

dimension during explosive percolation process.

The fractal dimension is calculated according to the radius of the gyration 𝑅𝑅𝑠𝑠 of the

largest cluster until the emergence of the percolation cluster. It is assumed that the

size of a cluster is proportional to the fractal dimension with 𝑁𝑁 ∝ 𝑅𝑅𝑠𝑠𝐷𝐷where 𝑁𝑁 is the

size of a cluster and 𝐷𝐷 is the fractal dimension [48]. Therefore the dimension 𝐷𝐷

will be equal to 𝐷𝐷 = log (𝑁𝑁)
log (𝑅𝑅𝑠𝑠)

.

58

Percolation path connects the robot and target point location on map. After finding

the percolation cluster, we can now search for the percolation path. The important

point is that instead of searching the percolation path on the occupancy grid map,

we search it in the percolation cluster which has fewer void cells. To obtain the

optimum path, we should utilize a cost function. The cost function is obtained by

selecting a cell that has a minimum Euler distance to the target location. We begin

the selection within the 4-neighborhood of robot location. Then, we select the cell

𝑘𝑘 that has a minimum 𝐽𝐽𝑘𝑘 for the next iteration until we reach the target location.

The percolation path at the end of the process is shown in Figure 4.8 (e). The green

cells indicate the percolation path to reach the target location from the robot

position. The crucial point here is that the explosive percolation path is found

within the voids of the occupancy map. Therefore the obstacles and other objects

that are represented with occupied cells in the occupancy map are naturally avoided

by our approach and we can obtain a safe and obstacle-free passage toward the

target location.

4.6 Path Pruning and Smoothing Algorithms

The path found in explosive percolation is comprised of grid cells that have too

many indentations and sharp turns, making the path hard to follow for the SAR

robot. Because of such inconvenience and hard-to-follow path patterns, we should

find a much simpler and easy-to-follow path scheme. To achieve this path pruning

and smoothing algorithms have been utilized.

Firstly, the pruning algorithm runs on the percolation path. If there is no blockage

between connected ordered cells in the percolation path, those points are

symbolized with a line with initial and end points only. Otherwise, the inflection

point is found if there exists any occupied region that blocks the connected cells. In

Figure 4.10, this situation is shown in an example percolation map. The star points

𝐽𝐽𝑘𝑘 = min
𝑘𝑘
�(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑇𝑇)2 + ((𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑇𝑇)2) 𝑘𝑘 = 1,2,3,4 4-4

59

symbolize inflection points. If the inflection point is not inserted, the line connects

the successive path cells intersects with the gray occupied cells. This will cause the

situation in which the robot encounters an obstacle during the path following. We

notice that connected lines do not intersect with occupied cells shown by gray.

Figure 4.10. Path pruning strategy. Points with yellow stars symbolize inflection

points.

Secondly, inflection points found in the pruning stage should be handled to have

smooth turns for the robot to make the turn-in easy and with less effort. The Bezier

Curve algorithm has been used to smooth the inflection points [49]. Generally, 𝑛𝑛

degree Bezier curve is defined as:

𝑃𝑃[𝑡𝑡0,𝑡𝑡1](𝑡𝑡) = �𝐵𝐵𝑖𝑖𝑛𝑛(𝑡𝑡)𝑃𝑃𝑖𝑖 , 𝑡𝑡 ∈ [0,1].
𝑛𝑛

𝑖𝑖=0

4-5

Where 𝑡𝑡 is the positional parameter and 𝑃𝑃𝑖𝑖 is control points with 𝑃𝑃𝑡𝑡𝑜𝑜 = 𝑃𝑃0 and

𝑃𝑃(𝑡𝑡1) = 𝑃𝑃𝑛𝑛 and 𝐵𝐵𝑖𝑖𝑛𝑛(𝑡𝑡) is Bernstein polynomial given by

𝐵𝐵𝑖𝑖𝑛𝑛(𝑡𝑡) = �𝑛𝑛𝑖𝑖 � 𝑡𝑡
𝑖𝑖(1 − 𝑡𝑡)𝑚𝑚−𝑖𝑖, 𝑖𝑖 = 0,1,2, … ,𝑛𝑛 4-6

Pruned Path
Inflection Point

Lo
ca

l y

Local x

60

To apply the Bezier curve method to a pruning path, we extract each corner point.

Then as in Figure 4.11, we apply the Bezier curve within 𝐿𝐿 distance of an inflection

point 𝑃𝑃𝑚𝑚 on the path. We select an increment 𝑑𝑑 value to divide 𝐿𝐿 distance equally

on each side of the inflection point. Then found control points

{𝑃𝑃𝑚𝑚−𝑖𝑖, … ,𝑃𝑃𝑚𝑚−1,𝑃𝑃𝑚𝑚,𝑃𝑃𝑚𝑚+1, … ,𝑃𝑃𝑚𝑚+𝑖𝑖} are processed by utilizing Equation 4.5.

Figure 4.11. Smoothing of a corner point with Bezier Curve.

If we apply the Bezier curve method to inflection points in Figure 4.10, we obtain

the following smooth path to be followed by the robot. In Figure 4.10, the dash

green line indicates the pruned percolation path and yellow stars are the inflection

points. By applying Bezier curve method, we obtain the dash dot cyan line as

indicated in zoomed figure in Figure 4.10. As we noticed the inflection points are

smoothed with the proposed method. In this way, the robot can make its manuever

without deviation from following path at inflection points.

𝑃𝑃𝑚𝑚
𝑃𝑃𝑚𝑚+1

𝑃𝑃𝑚𝑚+2

𝑃𝑃𝑚𝑚−1

𝑃𝑃𝑚𝑚−2

𝑃𝑃𝑚𝑚+𝑖𝑖

𝑃𝑃𝑚𝑚−𝑖𝑖

Occupied Cells

𝐿𝐿

𝐿𝐿

61

Figure 4.12. Smooth path creation with Bezier Curve.

Let’s apply the pruning and smoothing strategy to Figure 4.8 (e). Because there is

no detected intersection with the occupied cell in the pruning method as in Figure

4.10, we obtain a direct line that connects the robot location to the target location

on the percolation path.

Figure 4.13. Pruning and smoothing strategy on example scenario in Figure 4.8 (e).

Because there is no inflection point, the target and robot location are connected

with a line on the percolation path.

Lo
ca

l y

Local x

Local x

Lo
ca

l y

62

4.7 Path Following Control Algorithm

After path generation and smoothing, the remaining question is how does the SAR

robot follow the path successfully? In our strategy, we construct our path control

algorithm based on Serret-Frenet formulas [50]. In this method, the robot follows a

virtual target which is the orthogonal projection of the robot image on the found path.

The process is detailed in Figure 4.14. The path 𝑃𝑃 is defined with 𝜅𝜅(𝑠𝑠) where 𝑠𝑠 is

the curvilinear distance from the beginning of the path and 𝜅𝜅(𝑠𝑠) is the curvature of

the path. The desired orientation on the path is represented with 𝜃𝜃𝑟𝑟 = ±𝜅𝜅(𝑠𝑠)𝑠𝑠

(Positive for the counter-clockwise direction of Serret-Frenet frame).

Figure 4.14. The Serret-Frenet frame with the orthogonal projection of the robot 𝑀𝑀

on the path 𝑃𝑃

The point 𝑀𝑀′ is the orthogonal projection of the robot 𝑀𝑀 on the path. 𝑙𝑙 is the

orthogonal distance between 𝑀𝑀 and 𝑀𝑀′. The relationship between the translational

distances 𝑞𝑞1, 𝑟𝑟1 and 𝑝𝑝1 can be calculated with the following transformation:

𝒒𝒒𝟏𝟏 = 𝑹𝑹𝜽𝜽𝒓𝒓𝒓𝒓𝟏𝟏 + 𝒑𝒑𝟏𝟏 4-7

𝑹𝑹𝜽𝜽𝒓𝒓 = �
cos(𝜃𝜃𝑟𝑟) − sin(𝜃𝜃𝑟𝑟) 0
sin(𝜃𝜃𝑟𝑟) cos(𝜃𝜃𝑟𝑟) 0

0 0 1
�

4-8

𝑥𝑥𝐿𝐿

𝑦𝑦𝐿𝐿
𝜃𝜃𝑟𝑟

𝑃𝑃
𝜃𝜃

𝑣𝑣

𝜔𝜔

𝑙𝑙 𝑞𝑞1

𝑝𝑝1

𝑟𝑟1
𝑀𝑀

𝑀𝑀′

63

Differentiating Equation 4-7, we obtain the following relation,

𝒓𝒓𝟏̇𝟏 = 𝑹𝑹𝜽𝜽𝒓𝒓𝒒𝒒𝟏̇𝟏 − 𝑹𝑹𝜽𝜽𝒓𝒓
𝑻𝑻 𝑹̇𝑹𝜽𝜽𝒓𝒓𝒓𝒓𝟏𝟏 − 𝑹𝑹𝜽𝜽𝒓𝒓

𝑻𝑻 𝒑̇𝒑𝟏𝟏 4-9

Where we use the relationships,

𝒓𝒓𝟏𝟏 = [0 𝑙𝑙 0]𝑇𝑇 4-10

𝒒𝒒𝟏𝟏 = [𝑥𝑥 𝑦𝑦 0]𝑇𝑇 4-11

𝒗𝒗𝑩𝑩 = 𝑹𝑹𝜽𝜽𝒓𝒓
𝑻𝑻𝒑̇𝒑𝟏𝟏 = [𝑠̇𝑠 0 0]𝑇𝑇 4-12

𝑹̇𝑹𝜽𝜽𝒓𝒓 = 𝑹𝑹𝜽𝜽𝒓𝒓 𝑐𝑐𝑐𝑐𝑐𝑐([0 0 𝜃𝜃𝑟̇𝑟]𝑇𝑇)

𝑐𝑐𝑐𝑐𝑐𝑐([0 0 𝜃𝜃𝑟̇𝑟]𝑇𝑇) = �
0 −𝜃𝜃𝑟̇𝑟 0
𝜃𝜃𝑟̇𝑟 0 0
0 0 0

� (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)
4-13

Now if we rewrite Equation 4.9, we obtain the following relation,

�
0
𝑙𝑙̇
0
� = �

cos(𝜃𝜃𝑟𝑟) sin(𝜃𝜃𝑟𝑟) 0
− sin(𝜃𝜃𝑟𝑟) cos(𝜃𝜃𝑟𝑟) 0

0 0 1
� �
𝑥̇𝑥
𝑦̇𝑦
0
� − �

0 −𝜃𝜃𝑟̇𝑟 0
𝜃𝜃𝑟̇𝑟 0 0
0 0 0

� �
0
𝑙𝑙
0
� − �

𝑠̇𝑠
0
0
�

4-14

Finally, we can find the relation 𝑙𝑙 ̇and 𝑠̇𝑠,

𝑙𝑙̇ = [− sin(𝜃𝜃𝑟𝑟) cos(𝜃𝜃𝑟𝑟)] �𝑥̇𝑥𝑦̇𝑦�
4-15

𝑠̇𝑠 =
[cos(𝜃𝜃𝑟𝑟) sin(𝜃𝜃𝑟𝑟)]

1 ∓ 𝜅𝜅(𝑠𝑠)𝑙𝑙
�𝑥̇𝑥𝑦̇𝑦�

4-16

𝜃𝜃� = 𝜃𝜃 − 𝜃𝜃𝑟𝑟

𝑑𝑑
𝑑𝑑𝑑𝑑→ 𝜃𝜃�̇ = 𝜃̇𝜃 ∓ 𝜅𝜅(𝑠𝑠)𝑠̇𝑠

4-17

We can also use the relations 𝑥̇𝑥 = 𝑣𝑣 cos(𝜃𝜃) , 𝑦̇𝑦 = 𝑣𝑣 sin(𝜃𝜃) , 𝜃̇𝜃 = 𝜔𝜔 and collect the

system of the equation as

𝑙𝑙̇ = 𝑣𝑣 sin�𝜃𝜃��

𝑠̇𝑠 =
𝑣𝑣 cos�𝜃𝜃��
1 ∓ 𝜅𝜅(𝑠𝑠)𝑙𝑙

𝜃𝜃�̇ = 𝜔𝜔 ∓
𝜅𝜅(𝑠𝑠)𝑣𝑣 cos�𝜃𝜃��

1 ∓ 𝜅𝜅(𝑠𝑠)𝑙𝑙 ⎭
⎪
⎬

⎪
⎫

 4-18

64

We aim to follow a desired path and construct a control algorithm such that path-

following errors converge to zero. Let’s assume that the direction of a movement

along the desired curve is counter-clockwise. Therefore, by taking the “-” sign in the

counter-clockwise direction, we can write Equation 4.18 as 𝑙𝑙̇ = 𝑣𝑣 sin�𝜃𝜃��, and 𝜃𝜃�̇ =

𝑢𝑢 = 𝜔𝜔 − 𝜅𝜅(𝑠𝑠)𝑣𝑣 cos�𝜃𝜃��
1−𝜅𝜅(𝑠𝑠)𝑙𝑙

.

Samson control algorithm suggests that to minimize path errors control inputs can

be considered as follows,

𝑣𝑣 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑢𝑢 = −𝑘𝑘2 𝑙𝑙 𝑣𝑣
sin�𝜃𝜃��
𝜃𝜃�

− 𝑘𝑘3𝜃𝜃�
� 4-19

Where 𝑘𝑘2,𝑘𝑘3 > 0. As we notice the closed loop function is proportional to

orthogonal distance 𝑙𝑙 with 𝑘𝑘2 gain, and orientation angle error 𝜃𝜃� with 𝑘𝑘3 gain. These

terms feedback to robot motion until the orthogonal direction and orientation errors

converge to zero. The closed-loop system with the gain 𝑘𝑘2 and 𝑘𝑘3 is asymptotically

stable according to the following Lyapunov function.

𝑉𝑉�𝑙𝑙,𝜃𝜃�� = 𝑘𝑘2
𝑙𝑙2
2

+
𝜃𝜃�2

2

4-20

Proof: Consider the Lyapunov candidate function 𝑉𝑉�𝑙𝑙,𝜃𝜃��. The function 𝑉𝑉�𝑙𝑙, 𝜃𝜃�� is

positive define fıunction for 𝑙𝑙 and 𝜃𝜃� . By taking the time derivative of this function,

𝑉̇𝑉 = 𝑘𝑘2𝑙𝑙𝑙𝑙̇+ 𝜃𝜃�𝜃𝜃�̇

 = 𝑘𝑘2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝜃𝜃��𝑣𝑣 + 𝜃𝜃�𝑢𝑢

 = −𝑘𝑘3𝜃𝜃�2 ≤ 0

Notice that 𝑉̇𝑉 is negative semi-definite and 𝑘𝑘3 > 0. According to LaSalle’s Theorem,

the only condition that satisfies the path following case is 𝑙𝑙 = 0 and 𝜃𝜃� = 0.

Therefore, the origin will be asymptotically stable.

If we apply the control structure given in Equation 4-18 to our explosive percolation

path, the robot will follow the orthogonal projection of itself on the percolation path

65

with the minimization of path errors 𝑙𝑙 and 𝜃𝜃�. The example scenario can be observed

in Figure 4.15.

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

(a) (b)

(c)

(d)

Local x Local x

Local x

Global x

Lo
ca

l y

Lo
ca

l y

G
lo

ba
l y

66

Figure 4.15 (a), (b),(c). Path following process with Samson control algorithm in

the occupancy grid map. The blue line represents the path to be followed. (d)The

path of the robot is shown on the global map with the green line. (e) Probabilistic

distribution of robot states. (f) The following error parameters history.

In Figure 4.15 (a) the path is indicated with a blue line. The robot position estimated

with the particle filter is shown with red dots. Because the robot position estimation

is based on the landmark detection and estimation in the FastSLAM algorithm, in

Figure 4.15 (b) we can observe deviations from the path due to estimation errors in

FastSLAM. However, as we observe more landmarks and the same landmark

locations during the exploration process, these errors are diminished within the

FastSLAM algorithm. The error history is given in Figure 4.15 (f). The red line

represents orthogonal distance history with time and the blue line represents the

orientation angle error history with time. As we can see, the errors are in a trend that

converges to zero. Because of the errors in the particle filter, the robot location states

are calculated within a probabilistic range. Therefore, deviations can occur as shown

in Figure 4.15 (f). This probabilistic distribution of the robot state is indicated in

Figure 4.15 (e) The blue circles represent the probabilistic distribution of the robot's

position and the magenta circle represents the most probable one as a result of the

importance factor assignment of particles in FastSLAM. In Figure 4.15 (d), we show

the path of the robot on the global map. The green line is the path followed by the

0 5 10 15 20 25 30 35 40 45

time

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Path Following Error History

(e) (f)
Local x

Lo
ca

l y

67

robot during exploration. As a result of this simple scenario, we can deduce that the

robot successfully follows the percolation path within the error values shown in

Figure 4.15 (f) until the selected target point.

69

CHAPTER 5

5 EXPERIMENTS

5.1 Simulation Environment

The simulation environmet (Figure 5.1) is created in 2D as a monochrome bitmap.

Each black cells represent the occupied regions in unstructured forms.

Figure 5.1. Global map used in the simulation. The drawings are selected randomly
to represent debris

In Figure 5.1, a planar SAR robot is represented with a circle. We assume that a

LIDAR sensor with a 120° field of view coincides with the robot frame (𝑥𝑥𝑅𝑅 ,𝑦𝑦𝑅𝑅)

indicated with dashed green arrows. The local frame (𝑥𝑥𝐿𝐿 ,𝑦𝑦𝐿𝐿) identifying the basis

of the occupancy grid map has its origin fixed where the robot begins its

exploration. The global map (𝑥𝑥𝐺𝐺 , 𝑦𝑦𝐺𝐺) is used to construct simulation terrain and

indicates us the progress within the view of global coordinates. With the

initialization of the robot motion, all map features, target detection, and path

generation processes take place on the local frame. Lidar sensor readings are

𝑦𝑦𝐺𝐺

𝑥𝑥𝐺𝐺

𝑦𝑦𝑅𝑅

𝑥𝑥𝑅𝑅
𝑥𝑥𝐿𝐿

𝑦𝑦𝐿𝐿

70

represented first in the robot frame and then converted into the local frame to detect

landmarks and occupied cells in the map. The conversion between the frame is

sustained with the following transformation matrices and the transformation

scheme is outlined in Figure 5.2.

Figure 5.2. Axis transformation between global, local, and robot frames

𝑟𝑟𝐺𝐺𝐺𝐺�����⃗ represents the position vector of the local frame with respect to the global

frame. 𝑟𝑟𝐿𝐿𝐿𝐿�����⃗ represents the position vector of the robot frame with respect to the local

frame. The transformation matrix 𝐶𝐶𝐺𝐺𝐺𝐺(𝜓𝜓𝐺𝐺) is the transformation matrix from local

to global frame, given as a rotation matrix,

𝐶𝐶𝐺𝐺𝐺𝐺(𝜓𝜓𝐺𝐺) = �cos(𝜓𝜓𝐺𝐺) − sin(𝜓𝜓𝐺𝐺)
sin(𝜓𝜓𝐺𝐺) cos(𝜓𝜓𝐺𝐺) �

5-1

The transformation matrix 𝐶𝐶𝐿𝐿𝐿𝐿(𝜓𝜓𝐿𝐿) is the rotation matrix from local to global

frame and it is given as,

𝐶𝐶𝐿𝐿𝐿𝐿(𝜓𝜓𝐿𝐿) = �cos(𝜓𝜓𝐿𝐿) − sin(𝜓𝜓𝐿𝐿)
sin(𝜓𝜓𝐿𝐿) cos(𝜓𝜓𝐿𝐿) �

5-2

The parameters used in the simulation are shared in Table 5.1. They are selected

according to the size of the simulation environment which is confined to a 2m x 3m

rectangular 2D space and the robot size is selected relative to this space to move

𝑦𝑦𝐺𝐺

𝑥𝑥𝐺𝐺

𝑦𝑦𝑅𝑅

𝑥𝑥𝐿𝐿

𝑦𝑦𝐿𝐿

𝑥𝑥𝑅𝑅

𝑂𝑂𝐺𝐺

𝑂𝑂𝐿𝐿

𝑂𝑂𝑅𝑅

𝜓𝜓𝐺𝐺

𝜓𝜓𝐿𝐿

𝑟𝑟𝐺𝐺𝐺𝐺�����⃗

𝑟𝑟𝐿𝐿𝐿𝐿�����⃗

71

freely within the debris. By considering the global map scale the lidar range and

resolution are selected as in Table I. Moreover, in the sensitivity analysis provided

in section 5.5, we focus on how the method we propose is affected by changes in

the selected parameter set.

Table 5.1 Simulation Parameter Settings.

Simulation Parameters

Parameter Description Value

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Radius of robot 2.5cm

Δ𝑡𝑡 Time resolution 0.1sec

Δ𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 Grid resolution 2cm

Δ𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 Lidar angular resolution 2.4°

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 Lidar Range 100cm

In this section, on the other hand, we provide the simulation results of the proposed

explosive percolation-enhanced active SLAM algorithm in highly complex,

fractional-order unstructured maps.

Firstly we present the simulation environment and our assumptions and parameters

during these experiments. In Chapter 4, we demonstrate the applicability of our

algorithms on a simple map. However, in Chapter 5, we handled a more complex

simulation environment in order to examine the effectiveness and success rate in the

performance analysis of our novel approach.

We illustrate the ability of our methodology based on three different scenarios. The

first scenario begins the process with a random initial point on the global map and

tests the performance of the SAR robot with our algorithm against detecting the

victim's vital sign successfully. The robot doesn’t know the initial position on the

global map, therefore by constructing the local map, it is expected from the robot to

extract a safe path to the victim's location. In the second scenario, the same process

is repeated for a different random initial point on the global map to reveal that the

methodology shows its success under different locations on the map and it is not

72

based on a specific location on the map. In the final scenario, the success of the robot

is examined in case of a debris collapse and dead-end occurrence during a search.

Due to map changes with the collapse, it is expected that the SAR robot performs

the detection of successive dead-end occurrences and traps, adapts the local map to

changing environments, and continues the search by detecting different target points

on the map until the victim location is found.

In the final part of this chapter, we investigate the sensitivity analysis of our

algorithm by changing the error parameters of the motion module, frontier target

selection threshold, dead-end detection threshold, and the selection rule preference

in explosive percolation and comparison of performance on finding a vital signal of

entropy-based active SLAM versus explosive percolation based active SLAM

approach.

5.2 Explosive Percolation Exploration with Random Initial Position 1

The first scenario is about finding the location of the victim within debris by

utilizing the voids among rubbles and extracting a safe obstacle-free path for

reaching the victim. The robot's initial position is selected as 𝑝̅𝑝𝑅𝑅𝐺𝐺 = [104 103]𝑇𝑇 in

global coordinates and the victim’s location is selected as 𝑝̅𝑝𝑉𝑉𝐺𝐺 = [153 47]𝑇𝑇. (Figure

5.3)

With the simulation initialization, at time 𝑡𝑡 = 0, the SAR robot perceives the initial

peripheral of the environment with the help of LIDAR. By using frontier search,

the initial target point is determined and the exploration process begins via the

explosive percolation to extract the obstacle-free path to the target location. In this

way, the robot penetrates unknown regions of the debris to locate the victim.

The robot's explosive path to the victim's location on the global map can be seen

with the green dashed line in Figure 5.3. This path represents our obstacle-free safe

path to reach victims during search and rescue missions. The green dashes are cells

obtained from the projection of the local map of the robot onto the global map as

73

zoomed in Figure 5.4. The local map in Figure 5.4 includes the occupied and void

cells according to their occupancy probability. The green circles are the landmark

locations and the red points are the possible position states of the robot, outcomes

of the particle filter in FastSLAM 2.0. The red dashed lines are the raycasting of

the LIDAR sensor.

Figure 5.3. The explosive path is shown with a green line on the global map and

the projection of the local map onto the global map is expressed with green cells.

Figure 5.4. The local map of the SAR robot. The occupied cells are represented

with gray and black according to their occupancy probability.

Initial Position of
the robot

Position of the
victim

 Robot Search Circle
 Victim Vital Sign
 Local Map Projection

 Raycasting LIDAR
 Robot Path
 Landmarks

Global x

G
lo

ba
l y

Local x

Lo
ca

l y

74

The explosive percolation cluster emergence in each target location and the found

percolation path are given in Figure 5.5. The red cells are the final percolation

cluster according to the summation rule of explosive percolation theory. Other

clusters are shown with different colors and they can not join or create percolation

cluster during the process because they did not evolve sufficiently during selection

to create a large cluster to find percolation path. In Figure 5.5 (a), we observe the

percolation path to the first target point resulting from the frontier target selection.

The green cells in the figure are the percolation path and by pruning and smoothing

the percolation path we obtain the desired path shown with cyan color.After

reaching the first target, the second target is determined with frontier target

selection algortihm again. The same process is followed as in target 1 and the result

is given in Figure 5.5 (b). In Figure 5.5 (c), because the victim is within the LIDAR

line of sight, the SAR robot directly aims at the victim's location as a target and

percolates in that direction.

(a)

(b)

Local x Local x

Lo
ca

l y

75

(c)

Figure 5.5. Explosive percolation cluster occurrence and path post-process in each

target detection. (a) First target percolation path. (b) Second target percolation path.

(c) Target is the victim's location here. The robot directly heads into this location

after detection.

The results of the first scenario are evaluated in two parts. Firstly, the success rate

of the SAR robot in locating the victim utilizing the voids between rubbles is

evaluated from an arbitrary location on the global map which is not given a priori

to the robot. Secondly, the explosive percolation theory extracts obstacle-free safe

paths to target locations and also generates a guide for the robot to explore the

unknown regions of the map Moreover, instead of searching all voids cells, the

percolation cluster suffices to obtain a safe path to the target location. This is a

natural and critical bottom line of performance efficiency of percolation in

obstacle-free path generation. If we investigate the fractional order of the

percolation cluster (Figure 5.5 (a)), the fractional dimension at the emergence of

the percolation cluster convergences to the fractional dimension of the lattice 1.8

that attests to the suitable compactness in the size of the cluster while finding

automatically a path connecting the robot to the target within the fractional cluster.

Local x

Lo
ca

l y

76

Figure 5.6. Clusters fractional dimension propagation until the emergence of

percolation cluster for Figure 5.5 (a).

5.3 Explosive Percolation Exploration with Random Initial Position 2

The same process in the previous section is repeated in this part with a different

initial position of the robot. The robot's initial position is selected as 𝑝̅𝑝𝑅𝑅𝐺𝐺 =

[252 149]𝑇𝑇 in global coordinates and the victim’s location is selected as 𝑝̅𝑝𝑉𝑉𝐺𝐺 =

[240 88]𝑇𝑇 (Figure 5.7). The reason for selecting a different location on the map is

showing our methodology does not depend on a specific location on the map. It

performs its intended function in the different locations on map with different

structure shape.

2 4 6 8 10 12 14

Iteration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D
im

en
si

on
 [D

]

Percolation Fractal Dimension

D
cluster

D
lattice

77

Figure 5.7. The explosive path in experiment 2 is shown with a green line on the

global map and the projection of the local map onto the global map is expressed

with green cells.

In this experiment, we tested the success of our algorithm with different

unstructured parts of the map different from the first scenario. As expected from

the algorithm, by utilizing the voids within obstacles, the SAR robot searches the

area until the detection of the victim's location. The local map of the robot is shared

in Figure 5.8. The SAR robot follows the percolation path result of explosive

percolation. The green line indicates this percolation path. As we can observe from

the figure, the robot extracts the obstacle-free path among occupied cells. At the

moment the victim is detected, the robot selects this location as the target point and

turns its heading toward the victim's location.

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

220

Initial Position of
the robot

Position of the
victim

 Robot Search Circle
 Victim Vital Sign
 Local Map Projection

Global x

G
lo

ba
l y

78

Figure 5.8. The local map of the SAR robot in experiment 2. The occupied cells are

represented with gray and black according to their occupancy probability.

(a)

(b)

 Raycasting LIDAR
 Robot Path
 Landmarks

Local x

Lo
ca

l y

Local x Local x

Lo
ca

l y

79

(c)

(d)

(e)

Figure 5.9. Explosive percolation cluster occurrence and path-finding process in

each target detection. (a) First target percolation path. (b) Second target percolation

path. (c) Third target percolation path. (d) Fourth target percolation path (e)Target

is the victim's location here. The robot directly heads into this location after

detection.

The percolation process after the detection of each target point based on the frontier

target selection algorithm can be observed in Figure 5.9. After the detection of the

first target point, the robot draws a path to this location with explosive percolation.

When the percolation path with green cells is found as in Figure 5.9 (a), we need to

prune and smooth the path to be followed by the robot. The percolation cluster is

shown with red cells and it is numbered as 1. After reaching the first target point,

the second target point is detected with a frontier-based algorithm and the

Local x Local x

Local x

Lo
ca

l y

Lo
ca

l y

80

percolation path is extracted as in Figure 5.9 (b). The robot follows the path by

using the path following the control algorithm. This process is repeated for each

target point in Figure 5.9 (c) and Figure 5.9 (d) until the victim’s location is

detected. In Figure 5.9 (e), we see that the victim is within the LIDAR sensor

range, and the SAR robot percolates into this location as the target point.

During search, we select the target point that has the furthest distance from the

robot and gives us the maximum information about the environment. When the

robot's vital signal detection (blue) circle and the victim’s vital signal emission

(red) circle intersect, the SAR robot then selects the target point which is closer to

the vital signal location. In this way, the search path is tried to be minimized. The

described case can be seen in Figure 5.10. In the upper left figure, the intersection

of two circles is given. At the bottom of the left side, the percolation path is

indicated. In the right figure, the target points are indicated with a blue cross. The

selected target point is the closest one among the others with respect to vital signal

location.

Figure 5.10. Selection of target point as the robot closes to the victim location.

Intersection of circles

The selected target
point

Lo
ca

l y

Local x

81

Again we analyze the fractional order of the percolation cluster within the

occupancy map lattice. For example, in Figure 5.9 (a), if we compare the fractional

order of the occupancy lattice and clusters until the emergence of the percolation

cluster, we obtain a plot given in Figure 5.11. This shows us the percolation cluster

dimension convergences to the dimension of the lattice. In this way, we can use the

percolation cluster as a resemblance of the occupancy map lattice to find a

percolation path between the robot and target locations.

Figure 5.11. . Clusters fractional dimension propagation until the emergence of

percolation cluster for Figure 5.9 (a).

5.4 Map Changing and Encounter Dead-End with Collapsing of Debris

The last scenario tests the proposed method's capability and performance in the

case of collapsing debris within the search area. The structures in a certain part of

the debris can be unstable and may result in the collapsing of rubbles. In that case,

the environment and the shape of voids among rubbles change. In the worst case,

the search path can be blocked, and dead-end forms during the exploration of the

1 2 3 4 5 6 7 8 9 10 11 12

Iteration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D
im

en
si

on
 [D

]

Percolation Fractal Dimension

D
cluster

D
lattice

82

robot. Then, it is expected from the robot to continue the search and find alternative

target points in the unknown regions of the disaster area.

In order to analyze our method under changing environment features, we have

arranged a simulation scenario. In this scenario, at 𝑡𝑡 = 5 in simulation time, we

deliberately blocked the percolation path as can be seen in Figure 5.13. Let us look

at the simulation environment before the collapse, in Figure 5.12, the initial

condition for robot and victim locations are given in global coordinates. The robot's

location is 𝑝̅𝑝𝑅𝑅𝐺𝐺 = [120 100]𝑇𝑇 and the victim’s location is 𝑝̅𝑝𝑉𝑉𝐺𝐺 = [70 135]𝑇𝑇. The

blue circle is the vital signal sense region of the SAR robot and the red circle is the

vital signal emission range of the victim. At simulation time 𝑡𝑡 = 5, the collapsing

debris is inserted into the simulation (Figure 5.13).

Figure 5.12. The initial condition of robot and victim locations on the global map.

The corridor is
open

G
lo

ba
l y

Global x

83

Figure 5.13. The collapsing of debris at 𝑡𝑡 = 5 on global map.

(a)

(b)

The corridor is
blocked with

collapse

Local x

Lo
ca

l y

Local x

G
lo

ba
l y

Global x

84

(c)

(d)

(e)

(f)

Figure 5.14. Dead-end detection process in the local map.

The detection of a dead-end can be observed in detail in Figure 5.14. In Figure 5.14

(a), the corridor is open for the robot to reach the selected target. However, when

the collapse of debris occurs, the map is changed and the reflection of this change

in the local map can be seen in Figure 5.14 (b). The path shown with cyan is

blocked by the occupied cells. In such a case robot calculates the intersection of the

path with the occupied cells in the occupancy map based on LIDAR measurements.

To verify a dead-end situation, we count this intersection number over time. We

can see the situation in Figure 5.15. When these intersections with occupied cells

(blue dashed line) are greater than the value 10 (green dashed line), the dead-end

Lo
ca

l y

Local x Local x

Lo
ca

l y

Local x Local x

85

signal (red line) increases. In final, when this signal hits the threshold value 3, the

dead end is confirmed. After this point, the SAR robot searches for a new target to

continue its exploration. In Figure 5.14 (c),(d), and (e) we can see this process. In

Figure 5.14 (c) the robot begins the search for a new exploration region. Because

the measurements by LIDAR observe the previously discovered occupied regions,

the search continues as in Figure 5.14 (d) and (e). In Figure 5.14 (f), the robot

detects new target points within unexplored area through new voids and continues

to search and rescue mission.

Figure 5.15. Dead-end detection and occupied cell number intersected with the path

and their time propagation.

Time

In
te

rs
ec

tio
n

N
um

be
r

86

Figure 5.16. The explosive path in experiment 3 is shown with a green line on the

global map and the projection of the local map onto the global map is expressed

with green cells.

The whole process is shared in Figure 5.16 until the victim’s vital signal is found.

The green dashed line is our safe and obstacle-free explosive percolation path to

reach the victim. The green squares are the projection of the occupancy map onto

the global map. As we can notice in the figure, the two circles overlap at the

victim's location and the robot identifies the victim's location within the debris. The

process from the perspective of the robot on the local map can be examined in

Figure 5.17. In this map, the green dashed line represents our path on the local

map. The red points are the distribution of robot positions as a result of particle

filter estimation in FastSLAM 2.0. The gray and black cells are the occupied cells

according to their occupancy probabilities in the occupancy grid map.

G
lo

ba
l y

Global x

87

Figure 5.17. The local map of the SAR robot in experiment 3 until the detection of

the victim's location.

(a)

(b)

Lo
ca

l y

Local x

Lo
ca

l y

Local x Local x

88

(c)

(d)

(e)

(f)

Figure 5.18. Explosive percolation cluster occurrence and path-finding process in

each target detection.

The explosive percolation cluster emergence and path-finding process for each

selected target point are shared in Figure 5.18. In Figure 5.18 (a), the percolation

cluster to the first target point is given before the occurrence of the dead-end. After

the dead-end occurs, the new detected target point can be observed in Figure 5.18

(b). The selection process of a new target point after dead-end is summarized in

Figure 5.14. When the robot reaches a target point, the explosive percolation

process is started again to keep going the exploration until the location of a victim

is found. As we can see from Figure 5.18 (b), (c), and (e), they connect the robot

and target points directly without the intervention of occupied cells, therefore, there

is a line connecting those points. However, in Figure 5.18 (a), (d), and (f) the path

Lo
ca

l y

Lo
ca

l y

Local x Local x

Local x Local x

89

is deflected with occupied cells. In this case, the pruning and smoothing algorithms

provide us a much smoother path for the robot to follow.

Figure 5.19. Clusters fractional dimension propagation until the emergence of

percolation cluster for Figure 5.18 (a).

If we compare the fractional order of the occupancy lattice and clusters until the

emergence of the percolation cluster, we obtain a plot given in Figure 5.11 for the

percolation cluster in Figure 5.18 (a). This shows us the percolation cluster

dimension convergence the dimension of the lattice. In this way, we can use the

percolation cluster as a resemblance of the occupancy map lattice to find a

percolation path between the robot and target locations. A similar analysis can be

applied to each percolation cluster, we only give a single cluster as an example to

indicate the cluster validity to find a percolation path.

90

5.5 Sensitivity Analysis

In this part, we investigate the sensitivity analysis of our algorithm by changing the

error parameters of the motion module, dead-end detection threshold, and the

selection rule preference in explosive percolation.

5.5.1 Motion Error Parameter Analysis

In localization and mapping, motion errors affect significantly the performance of

SLAM due to harsh terrain conditions. This situation frequently causes errors in the

odometry of the robot during movement. We can demonstrate this effect by

changing the 𝑅𝑅𝑇𝑇 process covariance matrix in FastSLAM. The susceptibility of

explosive percolation-based FastSLAM to motion errors on state transition

𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡) is investigated in this part.

For the experiment, the global map in Figure 5.20 is selected. The initial condition

of the SAR robot is selected as 𝑝̅𝑝𝑅𝑅𝐺𝐺 = (104,103) and the vital signal location is

 𝑝̅𝑝𝑉𝑉𝐺𝐺 = (170, 75) in global coordinates. The 𝑅𝑅𝑡𝑡 parameter sets are determined as

given in Table 5.2.

Table 5.2 Process Covariance Matrix 𝑅𝑅𝑇𝑇 Parameter Set

 𝑅𝑅𝑡𝑡 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ��𝜎𝜎𝑥𝑥2 𝜎𝜎𝑦𝑦2 𝜎𝜎𝜃𝜃2��

Set 1 [0.9 0.9 0.001]

Set 2 [0.9 0.9 0.05]

Set 3 [0.01 0.01 0.05]

Set 4 [0.1 0.1 0.01]

Set 5 [0.05 0.05 0.005]

Set 6 [0.01 0.01 0.001]

91

Figure 5.20. Selected global map to test process noise effects on explosive

percolation-based SLAM. The robot and vital signal location are given in blue and

red circles respectively.

(a)

(b)

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

220

Global x

G
lo

ba
l y

Local x Local x

Lo
ca

l y

92

(c)

(d)

(e)

(f)

Figure 5.21. Simulation results according to selected process noise values in Table

5.1

When we examine the results in detail, the high noise in position and orientation

gives the worst results as in Figure 5.21 (b) corresponding to set 2 parameters in

Table 5.2. If we keep the position Gaussian noise level the same and decrease the

orientation noise value (set1 parameters), we obtain an improved result in Figure

5.21 (a) and the SAR robot performs a better result in the following path with

respect to Figure 5.21 (b)

Local x Local x

Local x Local x

Lo
ca

l y

Lo
ca

l y

93

In reverse, if we keep the noise level the same for orientation and decrease the

position noise values (set 3 parameters), the result is obtained as in Figure 5.21 (c).

We can deduce that the position noise values cause scattered possible position

values in the particle filter. This will cause a more interwoven occupancy grid map

which makes it hard to detect obstacles and find a proper path to percolate. In the

end, the percolation performance diminishes and the obstacle-free path is not

extracted properly.

If we decrease the noise level to the given parameters in set 4 and set 5, the

occupancy map results are more clear and the robot can follow to percolation path

to reveal further obstacles and unknown regions of the map. The results can be

investigated in Figure 5.21 (d) and (e). In Figure 5.21 (f), a low noise parameter is

selected to see the results. As expected, the robot follows the path with minimum

scattered in the position and orientation in the particle filter as if a deterministic

dynamical system. The results give a more stable occupancy grid map and position

states of the robot which is ideally not possible in a disaster search environment.

5.5.2 Dead-End Detection Threshold Analysis

One of the important aspects during search within rubbles is detecting dead-ends

and avoiding them. The collapses during searching can block the percolation path

and create dead-end forms. When we consider that search and rescue missions are

time-critical operations and finding the victim's location is the main objective, we

should not consume search time with dead-ends.

In our study, the details of dead-end avoidance are mentioned in Chapter 5 with a

map-changing example scenario. In this part, we analyze the sensitivity of the

dead-end detection algorithm to dead-end threshold selection. To examine the

threshold selection importance, we select a dead-end threshold set as, 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =

{5,10,15,20}. For each selection, we initialize the robot at the global location of

94

𝑝̅𝑝𝑅𝑅𝐺𝐺 = (104, 103). When the simulation time is at 𝑡𝑡 = 5, we create an artificial

dead-end as in Section 5.3.

The results are shared in Figure 5.22. In the first selection of threshold value

𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 5, the experiment shows us the SAR robot detects the dead-end

occurrence first at time 𝑡𝑡 = 8 in Figure 5.22 (b). The occupied cell number on the

percolation path shown in blue increases after this time and when the increase of

dead-end signal is detected which is indicated in red, the dead-end occurrence is

verified at 𝑡𝑡 = 12. Even if the detection of dead-end occurrence is detected in

advance, the drawback of this selection is that the dead-end detection signal is

more susceptible to a path crossing with occupied cells. Because of this reason, in

the early part of the experiment, we can see some picks that cross the threshold

value in Figure 5.22 (b). This can lead to false inferences for the SAR robot in the

detection of dead-ends. The robot path after the detection of the dead-end signal is

shown in Figure 5.22 (a), the new target point is detected, and the SAR robot

follows the path indicated with cyan color.

The results show us that the selection of threshold 𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 10 gives us a better

result than the previous one when compared to picking up a false path crossing

with the occupied cells. The first crossing of the path with occupied cells at 𝑡𝑡 = 10.

We detect the dead-end occurrence at 𝑡𝑡 = 12 after the first threhold passage in

Figure 5.22 (d). After the dead-end occurrence, the path followed by the robot and

continuing in search are shown in Figure 5.22 (c). As we can see, we observe the

dead-end without being too much close to the dead-end, and false inferences are

minimized with the increasing threshold value.

For the next selection of dead-end threshold 𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 15 and 𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 20,

the dead-end signal is triggered at 𝑡𝑡 = 16 and 𝑡𝑡 = 21 respectively. As we notice

that the detection of a dead-end is substantiated at the very late part of the process

with respect to the previous selections. This causes the exploration of the robot

even further toward the dead-end location even if it is not necessary to be explored

further. Therefore, the robot takes a longer path until the detection of dead-end and

95

loses valuable time to explore new regions to detect the vital signal of the victim.

The results are shared in Figure 5.22 (e) and (f) for 𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 15 and Figure 5.22

(g) and (h) for 𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 20.

(a)

(b)

(c)

(d)

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

Dead End Detection

Collapse t = 5

Dead End

 Signal

Occupied Cell
 Number

0 5 10 15 20 25 30

ti

0

2

4

6

8

10

12

14

16

18

20
Dead End Detection

 Collapse t = 5

Dead End

 Signal

Occupied Cell
 Number

Lo
ca

l y

Lo
ca

l y

Local x

Local x

N
um

be
r o

f I
nt

er
se

ct
io

n
N

um
be

r o
f I

nt
er

se
ct

io
n

Time

Time

96

(e)

(f)

(g)

(h)

Figure 5.22. Dead-end threshold analysis results with different threshold values.

5.5.3 Explosive Percolation Selection Rule Analysis

In order to create clusters in a lattice via explosive percolation, we mainly have two

selection rules. These are the summation and production rules. In our study, we

select the summation rule to create a percolation cluster between the robot and

target locations. However, to see the difference or similarities between the selection

rule and how the selection affects the creation of a percolation cluster, we create an

example occupancy map lattice within the field of view of the robot as in Figure

0 5 10 15 20 25 30

time

0

2

4

6

8

10

12

14

16

18
Dead End Detection

 Collapse t = 5

Dead End

 Signal

Occupied Cell
 Number

0 5 10 15 20 25 30

ti

0

5

10

15

20

25

30
Dead End Detection

 Collapse t = 5

Dead End

 Signal

Occupied Cell
 Number

Lo
ca

l y

Lo
ca

l y

Local x

Local x

N
um

be
r o

f I
nt

er
se

ct
io

n
N

um
be

r o
f I

nt
er

se
ct

io
n

Time

Time

97

5.23. The robot location is indicated with a blue circle and the target is indicated

with a blue cross.

For both summation and product rule, the explosive percolation cluster emergence

is repeated 20 times in Figure 5.23. The results are analyzed according to the

fractal dimension of the percolation cluster in lattice and percolation probability of

percolation. In Figure 5.24, we can examine the similarity between product and

summation rules with respect to the fractal dimension of the percolation cluster.

The red line shows us the fractal dimension of the lattice as 1.8. The dimension of a

cluster in each iteration until the creation of the percolation cluster for the

summation rule is indicated with orange lines. And the blue one is for the product

rule. Both summation and product rule shows similar performance and reaches the

almost same fractal dimension at the creation of the percolation cluster. This shows

us that the percolation path can be found in a similar dimension of clusters using

either of rules. Otherwise, if one of them had a lower dimensional value at the

percolation cluster emergence, this would have indicated a much lower dimension

cluster that would be a candidate to find a percolation path. Therefore we would

have found a percolation path by searching less dense percolation clusters and this

would have increased the search performance. However, according to the results,

the performances are the same for both methods.

In explosive percolation, the important aspect is advancing or delaying the

emergence of percolation clusters by utilizing the selection of the largest cluster in

each other or smaller clusters in each other during the percolation process

respectively. S we want the creation of the largest percolation cluster as soon as

possible to speed up the process, we reversibly applied the selection by connecting

the largest cluster. This methodology in our study is expressed in detail in Section

4.5. The creation of an explosive cluster in the early part of the iterations means

that we obtain the percolation probability at an earlier time of the process and this

increases the speed of finding the percolation cluster. Within this perspective, we

examine both methods to reveal which method brings the percolation probability in

the earlier phase of the iteration. In the sense of percolation probability, the results

98

are the same again for both methods. They perform a similar percolation

probability performance at 0.8 level. The results are shared in Figure 5.25. As we

indicate before, both methods exhibit similar percolation probability by converging

the 0.8 value during iteration.

Figure 5.23. Example occupancy grid map lattice to perform summation and

product rule selection.

Figure 5.24. Fractal dimension comparison for each selection rule until the

emergence of percolation cluster.

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D
im

en
si

on
 [D

]

Percolation Fractal Dimension

D
cluster

D
LatticeSum

D
LatticeProduct

Local x

Lo
ca

l y

99

Figure 5.25. Percolation probability comparison for each selection rule until the

emergence of the percolation cluster.

5.5.4 Robot’s Vital Signal Detection Circle Change Analysis

We mention that the detection of the vital signal emission signal is presented with a

blue circle for the SAR robot in Section 4.4. The circle radius directly affects the

target selection when the robot senses the vital signal of the victim. If this cone is

smaller, the robot’s target selection near the vital signal can lead to a different

target and this may cause getting away from the victim's location. Finally, the

process will take much more time than anticipated. On the contrary, if this

detection circle is larger with an enhanced sensor system, the target is selected

according to which one of the targets is closest to the victim's location. Therefore,

the search can be processed with much less effort and without taking too much

distance in the search area victim's location can be detected.

As for the sensor type to detect victim location, in our study, we utilize LIDAR and

symbolize vital signal detection sensor with a circle which is out of the scope of

this study. If the victim is in the direct line of sight of the LIDAR cone, the victim's

0 2 4 6 8 10 12 14 16 18 20

Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr
ob

ab
ilit

y

Percolation Probability

D
LatticeSum

D
LatticeProduct

100

location is attained as the target to penetrate this location. However, which sensor

type can we utilize for the robot’s detection circle? Apart from the scope of this

dissertation, the heat detection sensors can be fused with seismic sensors to detect

the movement under rubbles. Also, an infrared camera can be used with LIDAR to

locate the victim's location faster. The usage of these sensors can be thought of as

enlarging the victim's vital signal detection circle in our study.

To analyze how the size of the detection circle affects percolation path

performance, we utilize the different sizes of circles and compare percolation path

performance until reaching the location of the victim location. For the circle radius

set, we select ℛ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = {10,20,40}. We keep the radius of the vital signal

emission fixed with 𝑟𝑟𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 15. We select our initial conditions as in Experiment 1

in Section 5.2 with one difference which is the victim location selected as 𝑝̅𝑝𝑉𝑉𝐺𝐺 =

[209 52]𝑇𝑇 .

According to the results, in Figure 5.26 (a) 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is selected as 10. Because the

radius is small size, the vital signal can not be properly detected, the two circle

does not intersect, and the robot continues to search by getting away from the

victim. Eventually, the robot will find the victim's location but this will cause too

much time consuming in disaster regions. In Figure 5.26 (b) and Figure 5.26 (c),

because the robot senses the victim's signal, it chooses the closest target to the

victim's location. Two circles get a chance to intersect because of that 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is

large enough to detect a vital signal in a disaster region.

101

(a)

(b)

(c)

Figure 5.26. Vital signal detection circle of the robot analysis (a) The 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

10 is selected in ℛ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. (b) The 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 20 is selected in ℛ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (c) The

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 40 is selected in ℛ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

220

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

220

102

5.6 Comparison Entropy-Based Active SLAM with Explosive Percolation-

Based Active SLAM

We demonstrate the performance of our novel method by comparing it with the

entropy-based active SLAM method [51] which is the most cited one. Among the

active SLAM algorithms, the entropy-based method is the highly excepted one.

The major difference, however, in the literature is that entropy-based SLAM

method is utilized to extract the map of the searching area and diminish the map

entropy by exploring the unknown regions. In our case, the active SLAM method is

aimed to find the target location among the rubbles and extract a safe path to the

victim location instead of mapping all regions and decreasing the whole map

entropy. To be able to compare the two methods, we modify the entropy-based

method in case of finding the victim's location, the process is stopped and

announce the location of the victim. The target selection in the entropy-based

method is related to finding maximum map entropy going toward to target

direction. Therefore, we select the target among frontier cells that has the minimum

information in other words maximum map entropy. The utility function to measure

map entropy takes the following form:

𝑡𝑡∗ ≈ arg max
𝑡𝑡

⎝

⎛ℍ[𝑝𝑝(𝑚𝑚|𝑥𝑥,𝑢𝑢, 𝑧𝑧)]�����������
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚

− ℍ[𝑝𝑝(𝑚𝑚𝑡𝑡|𝑥𝑥,𝑢𝑢, 𝑧𝑧)]�����������
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ⎠

⎞

5-3

ℍ[𝑃𝑃(𝑚𝑚|𝑥𝑥,𝑢𝑢, 𝑧𝑧) = �−𝑝𝑝�𝑚𝑚𝑖𝑖𝑖𝑖� log �𝑝𝑝�𝑚𝑚𝑖𝑖𝑖𝑖��
𝑖𝑖,𝑗𝑗

− �1 − 𝑝𝑝�𝑚𝑚𝑖𝑖𝑖𝑖�� log �1 − 𝑝𝑝�𝑚𝑚𝑖𝑖𝑖𝑖�� 5-4

Where 𝑡𝑡∗ is the maximum entropy target location, 𝑚𝑚 is the current occupancy grid

map, and 𝑚𝑚𝑡𝑡 is the predicted map at the target location, 𝑚𝑚𝑖𝑖𝑖𝑖 is the cell occupancy

probability in the occupancy map 𝑥𝑥 is the robot states, 𝑢𝑢 is the control input, 𝑧𝑧 is

the measurements.

103

Table 5.3 Initial Conditions for SAR Robot and Target Location on Map.

 Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

𝑝𝑝𝑅𝑅𝐺𝐺 𝑥𝑥𝑅𝑅𝐺𝐺 = 30

𝑦𝑦𝑅𝑅𝐺𝐺 = 201

𝜃𝜃𝑅𝑅𝐺𝐺 = −60°

𝑥𝑥𝑅𝑅𝐺𝐺 = 30

𝑦𝑦𝑅𝑅𝐺𝐺 = 201

𝜃𝜃𝑅𝑅𝐺𝐺 = −60°

𝑥𝑥𝑅𝑅𝐺𝐺 = 30

𝑦𝑦𝑅𝑅𝐺𝐺 = 201

𝜃𝜃𝑅𝑅𝐺𝐺 = −60°

𝑥𝑥𝑅𝑅𝐺𝐺 = 320

𝑦𝑦𝑅𝑅𝐺𝐺 = 210

𝜃𝜃𝑅𝑅𝐺𝐺 = −120°

𝑥𝑥𝑅𝑅𝐺𝐺 = 320

𝑦𝑦𝑅𝑅𝐺𝐺 = 210

𝜃𝜃𝑅𝑅𝐺𝐺 = −120°

𝑝𝑝𝑇𝑇𝐺𝐺 𝑥𝑥𝑇𝑇𝐺𝐺 = 90

𝑦𝑦𝑇𝑇𝐺𝐺 = 136

𝑥𝑥𝑇𝑇𝐺𝐺 = 145

𝑦𝑦𝑇𝑇𝐺𝐺 = 184

𝑥𝑥𝑇𝑇𝐺𝐺 = 105

𝑦𝑦𝑇𝑇𝐺𝐺 = 164

𝑥𝑥𝑇𝑇𝐺𝐺 = 300

𝑦𝑦𝑇𝑇𝐺𝐺 = 70

𝑥𝑥𝑇𝑇𝐺𝐺 = 250

𝑦𝑦𝑇𝑇𝐺𝐺 = 150

To be able to compare the two methods, the map in Chapter 5.1 is utilized and the 5

different locations of the vital signal together with the robot's initial position state

is determined as in Table 5.3. For the first three experiments, the robot's initial

position is kept the same, and for the last 2 experiments, a different robot's initial

position is selected. The search performance is compared based on search path

length among rubbles until the location of the victim is found. The results can be

seen in Figure 5.27. In this figure, the search path for each experiment is

represented with the blue line for the explosive percolation-based SLAM method

and the red line for the entropy-based SLAM method. In those experiments, the

same FastSLAM algorithm, frontier-based target detection, and path-detection

algorithms are used. As a result, we can say that the performance of vital signal

detection in explosive percolation search shows a better result in almost all

experiment cases with respect to the entropy-based method. The reason for that is

even if the finding victim signal condition is implemented entropy-based method,

the selection of target criteria is giving priority to diminishing map entropy by

selecting a target that has the maximum map entropy. As a result of this action, the

robot follows a different path regime until finding the victim’s location.

The entropy-based method is susceptible to the same motion error parameter

because the same FastSLAM algorithm is used. These motion error values also

affect the occupancy map performance directly. Therefore the selection of high

104

entropy targets is affected by the motion errors significantly by giving priority to

diminishing map entropy constantly.

Figure 5.27. Search path length comparison until finding of vital signal location on

the global map.

5.7 Comparison of Pathfinding Method Performances

Within the nature of the explosive percolation-based SLAM method, we bind the

two points in space. In other words, we try to find a safe path between target and

source points. In the literature, there are different widely known pathfinding

algorithms. These algorithms are compared to each other in terms of their

performance characteristics. Therefore, it would be nice to compare our methods

with some common widely used ones. We have chosen A* (4-direction), A* (8-

direction), rapidly -exploring random trees (RRT) and probabilistic road maps

(PRM), and genetic algorithm (GA) [52] to compare with explosive percolation

(EP). For A* algorithms Manhattan, Euler Distance, and Chebyshev heuristic

functions are selected, however, there was no significant difference observed

between these functions, therefore Euler Distance is selected as a heuristic

function. The algorithms are compared in terms of expansion cells, and path

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
1

2

3

4

5

6

7

Pa
th

 L
en

gt
h

[m
]

Search Path Length Comparison

Entropy-Based SLAM

Explosive Percolation SLAM

105

lengths. The maps are selected in 50x50 sizes from simple to complex. The maps

are given in Figure 5.28.

(1)

(2)

(3)

Figure 5.28. Map formats to be used in the comparison of pathfinding algorithms

from simple to complex are presented.

The initial point on the maps is selected as 𝑥𝑥𝑖𝑖 = 1,𝑦𝑦𝑖𝑖 = 1 and the target point is

selected as 𝑥𝑥𝑡𝑡 = 50,𝑦𝑦𝑡𝑡 = 40. The performance results of the search algorithms are

shared in Table 5.4.

Table 5.4 Pathfinding algorithm comparison for each map given in Figure 5.27.

Maps Algorithms Expansion Cell Path Lengths Time[sec]

Map1 A* (4-Direction) 1406 88 0.26

 A* (8-Direction) 472 70.13 0.16

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

106

Table 5.4 (continued)

 RRT N/A 82 0.01

 PRM N/A 71.95 0.33

 GA N/A 114 0.03

 EP 1165 65.83 0.7

Map2 A* (4-Direction) 1244 88 0.35

 A* (8-Direction) 541 68.96 0.15

 RRT N/A 80.02 0.02

 PRM N/A 75.86 0.2

 GA N/A 71 0.04

 EP 956 59.84 0.78

Map3 A* (4-Direction) 1456 91 0.17

 A* (8-Direction) 1140 78.40 0.21

 RRT N/A 96.92 0.07

 PRM N/A 105.5 0.12

 GA N/A 96 0.2

 EP 1206 73.92 0.86

According to Table 5.4, we compare two performance criteria one is expansion cell

number and the other one is path length. Because the RRT algorithm counts failed

attempts number during search and PRM uses iterative vertex numbers, GA runs

with cost function the expansion cell can not be used as performance criteria for

those. However, A* algorithm expands the cells in the map to find a path. Therefore

expansion cell number is applicable for this method. As we can see from the results,

mostly the explosive percolation (EP) method uses fewer cells to find a path with

respect to A* (4-direction) method. As for the A* (8-direction), it uses less expansion

cell number and comparatively performs better results than the A* (4-direction)

method. As we can see from Table 5.4, for map 2 and map 3 EP method and A* (8-

direction) algorithms almost show similar path length results. However, A* (8-

direction) algorithm uses lower cell expansion than the EP method. Moreover, when

107

it comes to comparing path length to reach the target point, the EP method shows

better results with respect to other algorithms except for A* (8-direction) algorithms.

To be able to find the proper solution for PRM, RRT, and GA, we had to optimize

the parameter. When it is compared with EP which adapts itself to all complexity,

for RRT and PRM we had to increase the node number for PRM and the distance

threshold value for RRT and number of population and generation size for GA in a

complex map 3. This will cause the update of these parameters in case of facing

complex structures during searching with PRM or RRT.

An important deduction from the results is that when we compare the methods

according to processing time, the EP method shows slower performance than the

other ones. The reason for this result can be related to the implementation of the

code. With proper handling of the memory locations and coding structure, the time

can be diminished further.

The reason that explosive percolation shows better results in terms of path length is

that explosive percolation theory uses lower-dense of clusters to find a percolation

path into the target location and explosive percolation is a specialized theory,

especially for unstructured and complex environments as in disaster regions where

include small size passage between the voids through rubbles, connected irregular

shape spaces between debris. Moreover, instead of searching all occupancy grid

maps, explosive percolation focuses on creating the largest cluster that connects the

robot location to the target location. This sustains the performance of finding the

shortest path length among other algorithms in unstructured complex searching

areas.

When comparing the performances of other algorithms, another important point that

should be mentioned at which conditions algorithm performs better results. As we

know from the A* algorithm, it guarantees the shortest path between two points. It

is true for coarse graphs and the selection of heuristic functions to foresee the lowest

cost function value for the selection of a site. When the map gets complicated, we

can see that Explosive percolation gives a lower path length value than the A*

108

algorithm as in the case in Map 3 in Table 5.4. Moreover, the resolution value

selection of the A* algorithm affects finding the shortest path distance. If we use a

low-resolution value, it is most likely that we can find a larger distance value instead

of finding the shortest path. On the other hand, if we select high resolution, this

means we have to expand more cells and this will cause the high computational time

to get the shortest distance value. The reader should keep in mind that distinction.

For the other algorithms, they used iterative and probabilistic methods, therefore the

path length value can be changed from one iteration to another. If one user wants to

apply a pathfinding algorithm with shortest path criteria to a highly structured

environment EP method and A* method can be used for that purpose, however, if

the high-resolution value is set, the performance will be diminished for both

algorithms. On the other hand, PRM and RRT methods can provide a non-optimal

solution however the computational resources can be used efficiently and the

processing time is lower concerning other algorithms. When selecting a method, the

performance selection should be determined carefully.

In Table 5.4, we keep the same location for the initial and the target location. To

observe more outcomes to compare the methods’ performance based on path length,

we have created random 5 locations on each map. Here the initial point is preserved

with the same location 𝑥𝑥𝑖𝑖 = 1,𝑦𝑦𝑖𝑖 = 1, however, the target location is varied

randomly. The random locations are shared in Table 5.5.

Table 5.5 Target locations for each map in Figure 5.27.

 Map 1 Map 2 Map 3

Target (x,y) Target (x,y) Target (x,y)

Location 1 (10,48) (10,40) (20,42)

Location 2 (40,45) (30,30) (25,30)

Location 3 (42,21) (35,48) (45,8)

Location 4 (45,10) (45,13) (2,45)

Location 5 (50,40) (50,40) (50,40)

109

Based on the locations for each map, the selected path algorithms are compared with

the explosive percolation method, and the results are shared in Figure 5.29. The

selected methods are PRM, RRT, GA, A* (4- Direction), A* (8- Direction) and

Explosive Percolation. The blue dot represents PRM, the orange circle represents

RRT, the yellow plus represents GA, the purple diamond is for A* (4-Direction), the

green star is for A* (8-Direction), and finally blue square is for Explosive

percolation. When we analyze the results, we can observe that in almost all cases the

Explosive percolation gives better path length results with respect to other methods.

Except when it is compared with A* (8-Direction), it gives better performance in

terms of path length at some conditions. In Map-2 at Location 4 and Map-3 at

Locations 2 and 5, A* (8-Direction) performs a lower path length. For the Location-

3 case in Map-2 and Map-3, PRM and EP show close results. For Location 4 in Map-

2 and Location 2 in Map 3, PRM exhibits lower values for path length. However, for

the other points, the EP method shows better performance, especially if the target

location is further from the initial position as in Location -5. These results indicate

that the EP method presents relatively better performance results for random target

locations as well.

(a)

(b)

Loc-1 Loc-2 Loc-3 Loc-4 Loc5

50

60

70

80

90

100

110

Map 1 Path Length Comparison

PRM

RRT

GA

A*-4D

A*-8D

EP

Loc-1 Loc-2 Loc-3 Loc-4 Loc5

50

60

70

80

90

100

110

120
Map 2 Path Length Comparison

PRM

RRT

GA

A*-4D

A*-8D

EP

110

(c)

Figure 5.29. Path length comparison of path-finding algorithms PRM, RRT, GA,

A*, and Explosive Percolation for each location is given in Table 5.5 for the maps

in Figure 5.27 (a) For Map 1 in Figure 5.27 (b) For Map 2 in Figure 5.27 (c) For

Map 3 in Figure 5.27

Loc-1 Loc-2 Loc-3 Loc-4 Loc5

50

60

70

80

90

100

110

120
Map 3 Path Length Comparison

PRM

RRT

GA

A*-4D

A*-8D

EP

111

CHAPTER 6

6 CONCLUSION AND FUTURE WORK

In this thesis, a novel explosive percolation-based active SLAM algorithm is

developed for the unstructured disaster environment to detect victim location within

debris The SAR robot utilizes the FastSLAM algorithm with the occupancy grid map

of the environment during searching and detects the target points to be searched with

the frontier based method. To reach these target points among unstructured and

highly complex environments explosive percolation is used and by following the

percolation path which connects the robot's location to the target location unknown

regions of the map are explored to detect the vital signal of the victim.

In the presented approach, contrary to active SLAM approaches that aim to map an

entire search area in the literature, our main aim is to find the location of the victim

among rubbles by using the voids in the disaster area. The proposed explosive

percolation search method guides the robot by utilizing the voids among rubbles to

obtain a safe and obstacle-free path toward to unknown region of a highly complex

fractional-order disaster environment.

The disaster regions have the possibility of collapsing of debris, therefore dead-ends

can occur and environments can change during mapping. In the proposed method,

with the help of the explosive percolation path, the successive dead-end forms are

detected and avoided during searching. Therefore an uninterrupted search and rescue

navigation can be sustained.

The proposed method is tested within a simulation environment with different

scenarios in an unstructured map. Also, the performance of the proposed method is

compared with other active SLAM approaches. Simulation results show us the

proposed method is more effective and performs better than compared active SLAM

approach.

112

We can list the main contribution of the thesis as follows,

• A novel path-search algorithm based on Explosive Percolation theory in the

FastSLAM algorithm is presented for a highly unstructured environment.

• An active search algorithm to detect victims’ location in the disaster area is

developed and tested with Explosive Percolation enhanced FastSLAM even

under changing environments due to collapses.

• Achievement of handling successive dead-ends and continued search of new

areas in a highly complex environment of fractional order by percolating.

• The first implementation and testing of explosive percolation theory in the

robotic field literature

An important conclusion of the proposed method is that based on the simulation

results with different scenarios and conditions, like the SLAM applications for

indoor and outdoor usage the exploration of unstructured complex environments in

disaster regions can be out of a problematic case for further SAR missions with the

application of our novel method. With the proposed dissertation, we have brought in

a new solution for confined harsh environment exploration for robotic SAR missions

which have very limited research on it. Moreover, with the application of explosive

percolation theory, not only the enhancement of SLAM for harsh conditions is

sustained but also a new application area of explosive percolation is achieved for

further engineering problems.

In this thesis, our novel proposed method is demonstrated within the simulation

environment. However, to observe the real performance, with real robotic equipment

and sensors, the algorithm should be tested in a controlled unstructured environment.

This is envisaged as part of future work.

In this dissertation, explosive percolation is applied in 2D environments, however, it

can be extended also to 3D environments. When the nature of a disaster region is

taken into account, the rubbles create 3D irregular volumes, by dividing this volume

into voxel grids and applying explosive percolation theory, we can detect our

percolation path into an unknown space through the empty volume between debris.

113

In this way, we can detect our 3D explosive percolation path through holes and

cavities that the SAR robot can fit into it.

Another challenging part is the usage of the proposed algorithm with multi-robot

architecture. Our methodology is scaleable to multi-robot SLAM and using the

multi-robot SLAM approach can unveil the true nature of explosive percolation

theory in an unstructured environment.

Lastly, 3D map generation and merging of those maps in a multi-robot SLAM

approach is another challenging research area. In our approach we demonstrate the

results in a 2D environment, however, a 3D view of the rubbles can sustain more

detailed information for the search and rescue team in a disaster area.

115

REFERENCES

[1] R. R. Murphy et al., “Search and rescue robotics,” in Springer Handbook of
Robotics, Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1151–
1173.

[2] K. Berns, A. Nezhadfard, M. Tosa, H. Balta, and G. D. Cubber, “Unmanned
ground robots for rescue tasks,” in Search and Rescue Robotics - From
Theory to Practice, InTech, 2017.

[3] H. Surmann et al., “Integration of UAVs in urban search and rescue
missions,” in 2019 IEEE International Symposium on Safety, Security, and
Rescue Robotics (SSRR), 2019.

[4] A. Matos et al., “Unmanned maritime systems for search and rescue,”
in Search and Rescue Robotics - From Theory to Practice, InTech, 2017.

[5] J. Gonzalez-Gomez, J. Gonzalez-Quijano, H. Zhang, and M. Abderrahim,
“Toward the sense of touch in snake modular robots for search and rescue
operations,” Proc. ICRA 2010 Workshop on Modular Robots: State of the
Art, vol. 01, 2010.

[6] D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza, “The
foldable drone: A morphing quadrotor that can squeeze and fly,” IEEE
Robot. Autom. Lett., vol. 4, no. 2, pp. 209–216, 2019.

[7] G. De Cubber et al., “Search and Rescue robots developed by the European
ICARUS project,” 10 2013.

[8] M. Tranzatto et al., “CERBERUS in the DARPA Subterranean
Challenge,” Sci. Robot., vol. 7, no. 66, p. eabp9742, 2022.

[9] D. Misaki and Y. Murakami, “Development of a multi-leg type micro rescue
robot for disaster victim search,” in 2011 IEEE International Conference on
Robotics and Biomimetics, 2011.

[10] M. Hutson, “Searching for survivors of the Mexico earthquake—with snake
robots,” Science, 10 2017.

[11] J. P. Queralta et al., “Collaborative multi-robot search and rescue: Planning,
coordination, perception, and active vision,” IEEE Access, vol. 8, pp.
191617–191643, 2020.

[12] A. Ollero et al., “Multiple eyes in the skies - Architecture and perception
issues in the comets unmanned air vehicles project,” IEEE Robot. Autom.
Mag., vol. 12, no. 2, pp. 46–57, 2005.

[13] M. A. Neerincx, J. van Diggelen, and L. van Breda, “Interaction design
patterns for adaptive human-agent-robot teamwork in high-risk domains,”
in Engineering Psychology and Cognitive Ergonomics, Cham: Springer
International Publishing, 2016, pp. 211–220.

[14] J. de Greeff, T. Mioch, W. van Vught, K. Hindriks, M. A. Neerincx, and I.
Kruijff-Korbayová, “Persistent robot-assisted disaster response,”
in Companion of the 2018 ACM/IEEE International Conference on Human-
Robot Interaction, 2018.

116

[15] K. Ebadi et al., “Present and future of SLAM in extreme underground
environments,” arXiv [cs.RO], 2022.

[16] A. Agha et al., “NeBula: Quest for robotic autonomy in challenging
environments; TEAM CoSTAR at the DARPA Subterranean
Challenge,” arXiv [cs.RO], 2021.

[17] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping:
part I,” IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99–110,
2006.

[18] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. London, England:
MIT Press, 2005.

[19] FastSLAM. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
[20] M. Filipenko and I. Afanasyev, “Comparison of various SLAM systems for

mobile robot in an indoor environment,” in 2018 International Conference on
Intelligent Systems (IS), 2018.

[21] B. Garigipati, N. Strokina, and R. Ghabcheloo, “Evaluation and comparison
of eight popular Lidar and Visual SLAM algorithms,” arXiv [cs.RO], 2022.

[22] T. H. Chan, H. Hesse, and S. G. Ho, “LiDAR-based 3D SLAM for indoor
mapping,” in 2021 7th International Conference on Control, Automation and
Robotics (ICCAR), 2021.

[23] H. Lim, J. Lim, and H. J. Kim, “Real-time 6-DOF monocular visual SLAM
in a large-scale environment,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), 2014.

[24] D. Tardioli et al., “A robotized dumper for debris removal in tunnels under
construction,” in ROBOT 2017: Third Iberian Robotics Conference, Cham:
Springer International Publishing, 2018, pp. 126–139.

[25] M. Petrlik, T. Baca, D. Hert, M. Vrba, T. Krajnik, and M. Saska, “A robust
UAV system for operations in a constrained environment,” IEEE Robot.
Autom. Lett., vol. 5, no. 2, pp. 2169–2176, 2020.

[26] C. Cadena et al., “Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEEE Trans. Robot., vol. 32,
no. 6, pp. 1309–1332, 2016.

[27] B. Ristic and J. L. Palmer, “Autonomous exploration and mapping with RFS
occupancy-grid SLAM,” Entropy (Basel), vol. 20, no. 6, p. 456, 2018.

[28] J.-L. Blanco, J.-A. Fernandez-Madrigal, and J. Gonzalez, “An entropy-based
measurement of certainty in Rao-blackwellized particle filter mapping,”
in 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2006.

[29] L. Carlone, J. Du, M. Kaouk Ng, B. Bona, and M. Indri, “Active SLAM and
exploration with particle filters using Kullback-Leibler divergence,” J. Intell.
Robot. Syst., vol. 75, no. 2, pp. 291–311, 2014.

[30] A. Hunt, R. Ewing, and B. Ghanbarian, Percolation theory for flow in porous
media. Cham, Switzerland: Springer International Publishing, 2014.

117

[31] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Network
robustness and fragility: Percolation on random graphs,” in The Structure and
Dynamics of Networks, Princeton: Princeton University Press, 2011, pp.
510–513.

[32] V. S. Dotsenko, M. Picco, P. Windey, G. Harris, E. Martinec, and E.
Marinari, “Self-avoiding surfaces in the 3d Ising model,” Nuclear Physics B,
vol. 448, no. 3, pp. 577–620, 1995.

[33] C. Grimaldi and I. Balberg, “Tunneling and non-universality in continuum
percolation systems,” arXiv [cond-mat.dis-nn], 2006.

[34] T. Beer and I. G. Enting, “Fire spread and percolation
modelling,” Mathematical and Computer Modelling, vol. 13, no. 11, pp. 77–
96, 1990.

[35] C. A. Browne, D. B. Amchin, J. Schneider, and S. S. Datta, “Infection
percolation: A dynamic network model of disease spreading,” Front. Phys.,
vol. 9, 2021.

[36] B. Ghanbarian, H. Ebrahimian, A. G. Hunt, and M. T. van Genuchten,
“Theoretical bounds for the exponent in the empirical power-law advance-
time curve for surface flow,” Agric. Water Manag., vol. 210, pp. 208–216,
2018.

[37] D. Achlioptas, R. M. D’Souza, and J. Spencer, “Explosive percolation in
random networks,” Science, vol. 323, no. 5920, pp. 1453–1455, 2009.

[38] R. M. D’Souza and J. Nagler, “Explosive Percolation: Novel critical and
supercritical phenomena,” arXiv [cond-mat.dis-nn], 2015.

[39] H. D. Rozenfeld, L. K. Gallos, and H. A. Makse, “Explosive percolation in
the human protein homology network,” Eur. Phys. J. B, vol. 75, no. 3, pp.
305–310, 2010.

[40] Y. S. Cho and B. Kahng, “Discontinuous percolation transitions in real
physical systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 84, no.
5 Pt 1, p. 050102, 2011.

[41] S. Topal, I. Erkmen, and A. M. Erkmen, “Percolation enhanced prioritised
multi-robot exploration of unstructured environments,” Int. J. Reason.-based
Intell. Syst., vol. 2, no. 3/4, p. 217, 2010.

[42] M. Karahan, A. M. Erkmen, and I. Erkmen, “Prioritized mobile robot
exploration based on percolation enhanced entropy based fast SLAM,” J.
Intell. Robot. Syst., vol. 75, no. 3–4, pp. 541–567, 2014.

[43] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A
Factored Solution to the Simultaneous Localization and Mapping Problem,”
11 2002.

[44] N. Bastas, K. Kosmidis, and P. Argyrakis, “Explosive site percolation and
finite-size hysteresis,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 84,
no. 6 Pt 2, p. 066112, 2011.

[45] C. Perot, “Phase Transition Continuity Dependence on Edge Evaluation and
Acceptance,” Universität Leipzig, 2019.

118

[46] M. Sarfraz and Z. N. K. Swati, “Mining corner points on the generic
shapes,” Open J. Appl. Sci., vol. 03, no. 01, pp. 10–15, 2013.

[47] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proceedings 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation CIRA’97. “Towards New
Computational Principles for Robotics and Automation,” 2002.

[48] D. Stauffer and A. Aharony, Introduction to percolation theory: Second
edition. Philadelphia, PA: Taylor & Francis, 2018.

[49] Z. Duraklı and V. Nabiyev, “A new approach based on Bezier curves to solve
path planning problems for mobile robots,” J. Comput. Sci., vol. 58, no.
101540, p. 101540, 2022.

[50] J. Płaskonka, “Different kinematic path following controllers for a wheeled
mobile robot of (2,0) type,” J. Intell. Robot. Syst., vol. 77, no. 3–4, pp. 481–
498, 2015.

[51] H. Carrillo, P. Dames, V. Kumar, and J. A. Castellanos, “Autonomous
robotic exploration using occupancy grid maps and graph SLAM based on
Shannon and Rényi Entropy,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA), 2015.

[52] R. Kala, “Code for Robot Path Planning using Probabilistic Roadmap,”
Indian Institute of Information Technology, Allahabad, Jun. 2014.

119

APPENDICES

CURRICULUM VITAE

Surname, Name: Yıldız, Doğan

EDUCATION

Degree Institution Year of
Graduation

PhD METU Electrical and Electronics
Engineering

2023

MS METU Mechanical Engineering 2016
BS METU Mechanical Engineering 2013
High School Hasan Ali Yücel Anatolian High School,

Ankara
2008

FOREIGN LANGUAGES

Advanced English, Intermediate German

PROFESSIONAL EXPERIENCE

Year Place Position
2013-2019 Turkish Aerospace Flight Mechanics and Control Design

Engineer
2019-2020 Havelsan Expert Control and Modelling Design

Engineer
2020-2023 TR Airworthiness -

TAI
Expert Certification Engineer

2023- Wingcopter Senior Flight Control Software Engineer

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Motivation
	1.2 Problem Statement
	1.3 Objectives and Goals
	1.4 Methodology
	1.5 Main Contribution of Thesis
	1.6 Outline of Thesis

	2 LITERATURE REVIEW
	2.1 SAR Robots in Literature
	2.2 SLAM Methods in Literature
	2.3 Percolation Theory Applications in Literature

	3 MATHEMATICAL BACKGROUND
	3.1 FastSLAM 2.0
	3.1.1 Motion and Perception Model
	3.1.2 Occupancy Grid Map
	3.1.3 Particle Filter
	3.1.4 FastSLAM 2.0 Algorithm

	3.2 Percolation Theory and Explosive Percolation Method
	3.2.1 Percolation Theory Basics
	3.2.2 Explosive Percolation

	4 EXPLOSIVE PERCOLATION-BASED SLAM
	4.1 General
	4.2 Enhancement of FastSLAM 2.0
	4.3 Landmark Detection
	4.4 Frontier Target Selection and Vital Signal Search
	4.5 Exploration Path Generation with Explosive Percolation
	4.6 Path Pruning and Smoothing Algorithms
	4.7 Path Following Control Algorithm

	5 EXPERIMENTS
	5.1 Simulation Environment
	5.2 Explosive Percolation Exploration with Random Initial Position 1
	5.3 Explosive Percolation Exploration with Random Initial Position 2
	5.4 Map Changing and Encounter Dead-End with Collapsing of Debris
	5.5 Sensitivity Analysis
	5.5.1 Motion Error Parameter Analysis
	5.5.2 Dead-End Detection Threshold Analysis
	5.5.3 Explosive Percolation Selection Rule Analysis
	5.5.4 Robot’s Vital Signal Detection Circle Change Analysis

	5.6 Comparison Entropy-Based Active SLAM with Explosive Percolation-Based Active SLAM
	5.7 Comparison of Pathfinding Method Performances

	6 CONCLUSION AND FUTURE WORK
	REFERENCES
	CURRICULUM VITAE

