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ABSTRACT 

 

EXPLOSIVE PERCOLATION BASED ACTIVE SLAM EXPLORATION 
VIA LIDAR IN UNSTRUCTURED MAP 

 
 
 

Yıldız, Doğan 
Doctor of Philosophy, Electrical and Electronic Engineering 

Supervisor : Prof. Dr. Aydan Müşerref Erkmen 
 

August 2023, 119 pages 

 

This thesis proposes a novel exploration technique for simultaneous localization and 

mapping (SLAM) in highly unstructured disaster regions for search and rescue 

(SAR) operations. As is known to all, disaster regions are very dangerous 

environments for humans to navigate and search for victims. For this reason, robotics 

applications in SAR operations gain considerable attention for the last decade. In a 

disaster region searching for survivors with robots needs finding a safe continuous 

path to reach the victim's location, and extracting the map of the unstructured area to 

be shared with SAR teams. However, the highly complex structure of rubbles, the 

GPS-denied region, and the unpredictable nature of the environment make the 

process difficult for such applications. Also, the unstable characteristic of debris 

causes the collapse of certain areas of the disaster region, and this brings unwanted 

dead-end occurrences making the search operation even harder than before. 

Unfortunately, even if the distinct progress of SLAM applications in the robotic field, 

these problems still preserve their effectiveness and they are waiting to be answered. 

In our proposed method we address these problems and offer an efficient and robust 

solution with explosive percolation-based exploration technique combined with the 

active SLAM approach for unstructured environments. 
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The active SLAM approaches mainly focus on the minimization of the total entropy 

of localization and mapping of the environment. However, in our method, we need 

to consider not only the entropy values but our main goal of finding the survivors’ 

location for active exploration. Moreover, during the search finding a continuous 

path by mapping the disaster environment is affected severely by successive dead-

ends. To tackle this problem, we offer a fluid behavior-based approach Explosive 

Percolation (EP). With the power of this method, the robot can navigate within a 

complex unstructured environment without being trapped by dead-ends.  

The main contributions of the thesis to literature can be listed as; finding a novel 

path-search algorithm based on Explosive Percolation and combining this method 

with the SLAM approach to obtain a continuous path in a disaster area without being 

interrupted by dead-ends. 

 

Keywords: Explosive Percolation, SLAM, Localization, Mapping, Search and 

Rescue 
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ÖZ 

 

AYRILMIŞ PERKÜLASYON TEORİSİ TABANLI AKTİF ANLIK 
KONUMLAMA VE HARİTALAMA YOLUYLA IŞIK TESPİTİ VE 

UZAKLIK TAYİNİ SENSÖRÜ KULLANILARAK YAPISAL OLMAYAN 
ALANLARIN KEŞFİ 

 
 
 

Yıldız, Doğan 
Doktora, Elektrik ve Elektronik Mühendisliği 

Tez Yöneticisi: Prof. Dr. Aydan Müşerref Erkmen 
 
 

 

Ağustos 2023, 119 sayfa 

 

Bu tez, arama ve kurtarma operasyonları için oldukça yapılandırılmamış afet 

bölgelerinde anlık konumlama ve haritalama için yeni bir keşif tekniği önermektedir. 

Bilindiği üzere afet bölgeleri, insanların gezinmesi ve kurban araması için oldukça 

tehlikeli ortamlardır. Bu nedenle, SAR operasyonlarında robotik uygulamalar son on 

yılda büyük ilgi görmektedir. Bir afet bölgesinde hayatta kalanları robotlarla aramak, 

kurbanın konumuna ulaşmak için güvenli ve kesintisiz bir yol bulmayı ve arama ve 

kurtarma ekipleriyle paylaşılacak şekilde yapılandırılmamış alanın haritasını 

çıkarmayı gerektirir. Bununla birlikte, molozların oldukça karmaşık yapısı, global 

konumlamanın kullanılamaz olduğu bölge ve ortamın öngörülemez doğası, bu tür 

uygulamalar için süreci zorlaştırmaktadır. Ayrıca enkazın dengesiz olması, afet 

bölgesinin belirli bölgelerinin çökmesine neden olmakta, bu da istenmeyen 

çıkmazları beraberinde getirmekte ve arama çalışmalarını eskisinden daha da 

zorlaştırmaktadır. Ne yazık ki robotik alanda anlık konumlama ve haritalama 

uygulamalarının belirgin bir şekilde ilerlemesine rağmen bu problemler hala 

etkinliğini korumakta ve cevaplanmayı beklemektedir. Önerilen yöntemimizde, bu 
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sorunları ele alıyoruz ve yapılandırılmamış ortamlar için aktif anlık konumlama ve 

haritalama yaklaşımıyla birleştirilmiş patlayıcı süzülmeye dayalı keşif tekniği ile 

verimli ve sağlam bir çözüm sunuyoruz. 

Aktif anlık konumlama ve haritalama yaklaşımları temel olarak, yerelleştirme ve 

çevrenin haritalanmasının toplam entropisinin en aza indirilmesine odaklanır. 

Bununla birlikte, yöntemimizde, yalnızca entropi değerlerini değil, aynı zamanda 

hayatta kalanların aktif keşif için konumlarını bulma ana hedefimizi de dikkate 

almamız gerekiyor. Ayrıca, arama sırasında afet ortamını haritalandırarak sürekli bir 

yol bulma, birbirini izleyen çıkmazlardan ciddi şekilde etkilenir. Bu sorunun 

üstesinden gelmek için, akıcı davranışa dayalı bir yaklaşım ayrılmış perkülasyon 

sunuyoruz. Bu yöntemin gücü ile robot, çıkmaz yollara hapsolmadan karmaşık, 

yapılandırılmamış bir ortamda gezinebilir. 

Tezin literatüre katkıları başlıca şu şekilde sıralanabilir; ayrılmış perkülasyon dayalı 

yeni bir yol arama algoritması bulmak ve bu yöntemi anlık konumlama ve haritalama 

yoluyla yaklaşımıyla birleştirerek bir afet bölgesinde kesintiye uğramadan sürekli bir 

yol elde etmek. 

Anahtar Kelimeler: Ayrık Perkülasyon, Anlık Konumlama ve Haritalama, 

Konumlama, Haritalama, Arama ve Kurtarma 
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1 

CHAPTER 1  

1 INTRODUCTION 

1.1 Motivation 

The inclusion of robotic applications in our daily activities increases day by day 

with the development of complex mechanical manipulation mechanisms, powerful 

sensor types, control allocation methods, and artificial intelligence algorithms. The 

noticeable application of robots can be observed in search and rescue (SAR) 

operations in disaster regions. Disaster regions can be a result of natural (e.g. 

earthquakes, landslides, hurricanes, avalanches, and floods) or manmade disasters 

(bombing, nuclear disasters, fires). The common points of disaster regions are 

including complex, sharp, and unpredictable rubbles, very small voids to navigate, 

and hazardous environments for humans such as possible poisonous gases. In those 

areas, highly hostile to humans, SAR operations executed by robots should be fast 

enough to reach victims in time and carefully handled to avoid any risk of causing 

additional damage or collapse in the disaster area. Under these circumstances, the 

usage of autonomy in robots for those areas is gaining more importance than 

before. People in SAR operations can be assisted by robots to reach deeper regions 

of debris with small confined areas and generate a map of the environment to 

detect critical parts of the debris to handle the situation carefully without 

endangering themselves and the survivors. 

In the last decade, the advancements in SAR robotics have increased with the 

development of hardware and software technologies. Different types of unmanned 

ground vehicles (UGV) and unmanned air vehicles (UAV) are utilized for the vast 

majority of tasks such as; exploration, surveillance, reconnaissance, and inspection 

in SAR operations [2-11]. Despite the advances in the area of applications, there 

are still considerable challenges to overcome for further developments. Especially 
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in highly unstructured environments, robots need to navigate in harsh and 

challenging fields without global knowledge of the terrain and complex structure of 

obstacles, and dead-end occurrences with possible collapsing of some part of the 

debris. Also finding a safe and continuous path with the adaptation of map 

changing, uncertainty in measurement in harsh environments, uncertainty and fault 

case scenarios in the robot actuator mechanism can be added to the previously 

listed challenges. 

The utilization of robots in SAR operations still needs meticulous attention to cope 

with these problems and to present more robust and trustworthy solutions for future 

practices. By considering the listed challenges, we propose the Explosive 

Percolation-based SLAM approach for SAR operations in challenging 

environments. Today robotics SAR solutions consider large and relatively 

structured environments to be searched such as caves, mines, etc. However, when 

we considered highly unstructured and hard-to-reach environments like the debris 

in an earthquake, there are limited research on that area and the existing ones 

hardly answer the needs within this perspective. 

1.2 Problem Statement 

The main structure of the problem is built on navigation in a highly unstructured 

field of a disaster region. The voids among the rubbles can be very narrow and the 

rubbles consist of irregular shapes, which makes environmental recognition hard 

for mapping and localization. Besides these problems, the structure of the debris is 

fragile and the structure can change under collapsing debris. This causes the 

occurrences of successive trapped regions and dead-ends. It is expected from a 

SAR robot to find a continuous and safe path to the victim's location and map the 

shape-changing environment adaptively.  

The map of the inner structure of the environment cannot be known prior. 

Therefore the initial position of the robot is not known globally by the robot. This 
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brings an initial uncertainty for the localization of the robot and the mapping of the 

region for exploration purposes. The uncertainty of the sensors and the robot's 

inner actuation system should be considered as well during a search. These 

uncertainties will highly likely affect the performance of the robot’s search in SAR 

operations.  

The main purpose of exploration is to find the victim’s vital signal in a limited 

time. Thus, the selection of a target direction that brings in more knowledge to find 

the location of a victim gains importance for SAR operations. Thus, another 

important problem during exploration is the selection of the proper search direction 

within the debris for a guided exploration toward possible victims. 

1.3 Objectives and Goals 

The main objective of this thesis is to enhance SLAM methods with explosive 

percolation in order to reach the unknown and unstructured regions under the 

rubbles of the disaster area toward the victim’s vital signs by deciding a possible 

path utilizing rubble voids within them.  

To be able to reach this aim, we can list our goals as, 

1) The localization of the robot needs to be sustained without the initial information 

about the highly unstructured territory. The robot should be capable of initiating the 

SAR process with unknown initial position states.  

2) We select our target points during searching to lead us to the unknown territory 

of the disaster area. This target point selection should serve to find the vital signal 

location by exploring the farthest distance in the area. We need to cover disaster 

regions as far as possible to increase the chance of detecting vital signs. 

3) A safe path without obstacles avoiding dead-ends needs to be determined in 

reaching the victim's location. This path needs to be optimally modified if the 

environment changes during collapse while SAR operations are undergoing. Since 
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the disaster regions especially after earthquakes include fragile structures that can 

collapse and change the internal structure in debris, the SAR robot should be 

capable of avoiding dead-ends and traps and adapting itself the shape-changing 

environments. 

4) The map of the environment needs to be extracted alongside the victim search to 

assist SAR teams and also visualize safe paths under debris. The SAR team can 

initialize the rescue mission by analyzing this safe path and reach the victim's 

location without endangering themselves and the victim. 

1.4 Methodology 

The search and rescue operations consist of two phases as it is understood by name. 

The search refers to finding the victim’s location and the rescue is about the 

activities related to extracting the victim safely. In our thesis, we focus on the 

search part and annunciation of the victim's location to SAR teams with a safe path 

and mapping of the exploration part of the debris. 

In localization and mapping algorithms, there are different Bayesian approaches 

such as Kalman Filter, Extended Kalman Filter, Unscented Kalman Filter, etc. 

However, to overcome the linearization error and adapt to the nonlinear effects of 

the robot motion and sensor measurements, and multi-modal noise characteristics 

apart from the Gaussian Filters, we choose the Particle Filter (PF) method because 

of its ease of implementation and applicability in real-time problems. In this sense, 

the FastSLAM 2.0 algorithm is one of the methods that include a particle filter 

approach. Therefore, in our approach, the localization and mapping of the debris by 

the SAR robot are sustained with FastSLAM 2.0 algorithm 

The features in debris can be very complex shapes to express them in mapping. 

Therefore, the representation of obstacles and indentations is achieved with the 

occupancy grid map. The reasons to choose the occupancy grid map are in two 

ways. The first reason is that the representation of complex shapes can be achieved 
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with grid cells' occupancy value. In this way, a large and complex area map can be 

scaled down to a simple scale according to grid size to increase computational 

performance. The second reason is that the Explosive Percolation method needs to 

occupancy probability of the obstacles in the penetration region. Similarly, each 

cell in the occupancy grid map includes a probability value representing the 

occupancy probability. In this sense, the occupancy grid map method is ideally 

suited for this approach. The occupancy probabilities can be assigned with different 

measurement sensors such as cameras, sonar range sensors, or LIDAR. If we 

consider the search region with low light conditions it will be not suitable for the 

camera. Also, the sonar sensors have limited sensor range and can give faulty 

readings in case of absorption of sound waves. Thus, the LIDAR sensor can sustain 

our needs in such a harsh environment to measure the occupancy values of grids 

within the extracted map. 

The main contribution of this thesis is utilizing Explosive Percolation (EP) to 

obtain a novel continuous path finding within rubbles and avoid successive dead-

ends encountered during the search. Fundamentally, the percolation theory deals 

with the connection of components in large clusters in statistical mechanics. For 

example, consider a square lattice and try to occupy this lattice with random cells 

with occupation probability 𝑝𝑝. When this occupation probability is below the 

threshold probability 𝑝𝑝𝑑𝑑, there will be no large cluster to walk from one side of the 

lattice to the other side. However, when this value is greater than 𝑝𝑝𝑑𝑑, we can find a 

path that connects two ends. By utilizing this principle, to extract our obstacle-free 

path into unknown regions in our occupancy grid map, the explosive percolation 

method is used to obtain a percolation path that connects the robot location to the 

unknown target location. The details of EP can be found in Chapter 3.2. 

After we obtain a percolation path within the voids in debris, the path should be 

revised to be followed by the robot. With path pruning and smoothing algorithms, 

it is aimed to obtain a more suitable path for the robot. For the path control 

algorithm, we take the advantage of Serret-Frenet frame on the path curve.  
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1.5 Main Contribution of Thesis 

The main contribution of the thesis can be listed as follows: 

• A novel path-search algorithm is developed for the navigation of robots 

in a highly unstructured, complex environment. Although our approach 

can be combined with any SLAM algorithm, we bring together the 

FastSLAM and Explosive Percolation to find a continuous path into an 

unknown region of the debris. Therefore, this study is the first 

implementation endeavor to reveal the power of EP in the robotic field. 

• In literature, avoiding successive dead-ends and continuing the search 

within rubbles still preserve its importance. EP method sustains 

avoiding obstacles and dead-ends by treating the robot like a fluid 

particle finding its way among the porous media. An obstacle-free path 

can be achieved by utilizing the voids of the debris without extra effort. 

• Most of the active SLAM approaches in the literature focus on 

decreasing the entropy in localization and mapping information. To 

procure this objective, the existing studies consider the coverage of the 

maximum area. However, in addition to minimization of localization 

and mapping entropy, in SAR operations the crucial point is the 

exploration of the debris to find the victim’s location. In our approach, 

this criteria comes first instead of covering the maximum area objective.  

1.6 Outline of Thesis 

The remainder of this thesis is organized as follows. 

In Chapter 2, we provide the related work about SAR robot applications in 

literature, SLAM methods for exploration and exploitation, and percolation theory 

application areas in literature. 
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In Chapter 3, The mathematical background of FastSLAM 2.0 is presented in 

detail. After that, percolation theory basics and explosive percolation are shared. 

In Chapter 4, our proposed explosive percolation-based SLAM approach for SAR 

operations is given in detail with the enhancement of the FastSLAM 2.0 algorithm, 

frontier target selections, explosive percolation path generation algorithms, path 

pruning, and smoothing algorithms, and path following control structure.  

In Chapter 5, we present the experiments and discussion of the proposed method 

with different scenarios. For the experiments, we prepare a simulation 

environment. At the final of this chapter, we share the sensitivity analysis of our 

approach for different simulation parameters and comparison results of proposed 

method with the widely used entropy-based SLAM method and mostly used 

pathfinding algortihms. 

In Chapter 6, the conclusion and future work are given with a summary and 

planned future adaptation of the algorithm.  
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CHAPTER 2  

2 LITERATURE REVIEW 

Historically, SAR robot utilization was proposed with the tragic loss of serious 

events. In 1995, early publications about the use of robots in the Hanshin-Awaji 

earthquake in Kobe were presented. After 2005, wide usage of SAR robots was 

observed in a terrorist attack on the World Trade Center, and the natural disasters 

of Katrina, Rita, and Wilma [1]. As of today, the abilities of SAR robots have been 

extended to diverse platforms. Ground robots have been observed for underground 

operations [2], aerial platforms for surveillance and searching [3], and water-based 

platforms for search and rescue on/under the sea [4].  

In the modern world, with the developing sensor types and actuation mechanisms, 

the expected tasks to be accomplished by robots can be; surveillance, 

reconnaissance, an inspection of the structure, removal of rubbles, mapping, 

searching for victims, or a combination of them. Another critical aspect of the 

robotic SAR missions is the size and shape of the robot. This feature directly 

affects the success of the mission. There are various sizes and shapes of robots 

existing in the literature. For example, bio-inspired snake-like robots [5], shape-

change drones [6], tracked and/or wheel-type robots with/without a robotic arm to 

grasp [7], walking robots [8], and micro-scale robots [9]. In Figure 2.1, some of 

these robot types are shared to form an estimate. 



 
 

10 

(a) (b) 

 
(c) 

Figure 2.1. (a) Carnegie Mellon University snake robot used for Mexico quake 

survivors[10]. (b) Darpa SubT challenges the Cerberus team robot [8]. (c) Micro 

rescue robot for searching disaster victims [9]. 

Recent studies propose the collaboration of a multi-robot system to eliminate faults 

and errors during search and rescue. Perception of disaster regions with 

heterogeneous multi-robot systems shows significant improvements in SAR 

operations[11]. 

In this chapter, we present the developments in SAR robotic fields and compare them 

with our approach to indicate the gaps in literature and how we address them. Firstly, 

we take a look at the SAR robotic publications in the literature. Later on, SLAM 

approaches that have been used in SAR are investigated. Finally, to give insight into 

the percolation theory, the application areas and studies on percolation are shared. 
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2.1 SAR Robots in Literature 

Early designs of SAR robots reach out to the COMETS project [12]. In this project, 

multi-UAV systems were utilized collaboratively with heterogeneous UAVs. The 

robot team used this architecture for fire detection and monitoring with terrain 

mapping. ICARUS is a European project to search for victims in a crisis scenario 

[7]. With two main UGVs, it was aimed to enter small enclosures, detecting human 

survivors. The high-level instructions come from the base station, therefore, this 

project is semi-autonomous in that manner. As part of TRADR projects, the 

researchers focus on the human-robot team effort in disaster response [13], [14]. As 

in these early research, the studies do not deal with the SAR in a highly complex 

and unstructured environment. They find their search path based on relatively large 

disaster regions, not a confined irregular small-scale debris. Also, they are semi-

autonomous and they need a person to supervise the robot search. 

In recent years, a major competition in the field of search and rescue robotics has 

been presented under Darpa Subterranean (SubT) Challenge. This competition 

especially covers the usage of underground UGVs for ground operations [15]. 

Team CERBERUS is one of the competitors who won the DARPA challenge [8]. 

The main approach of the CERBERUS is multi-modal and multi-robot mapping 

which is centralized with a server. They used LIDAR, IMU, vision, and encoder 

sensors. The local map of the competition area is extracted from each walking, 

flying, and roving robot. Then, the submaps are integrated to obtain a globally 

consistent map of the area. The major performance problem of the CERBERUS is 

the fine-tuning of SLAM and sensor parameters. They need to be hand-tuned and 

differ among the robot platforms. Another competitor is Team CoSTAR. They used 

different sensor types LIDAR, visual-inertial, and encoders in their multi-sensor 

front-end and back-end structure. The system consists of three interfaces: 1) 

Single-robot front-end interface for local robot trajectory and perception. 2) Multi-

robot front-end interface for the base station to receive each robot’s trajectory and 

map knowledge. 3) Multi-robot back-end interface for calculating optimal 
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trajectory to continue mapping [16]. One of the significant problems of the team is 

finding a suitable set of parameters for front and back-end sections. The other 

teams in this competition are Team CSIRO, Team CTU-CRAS-Norlab, and Team 

MARBLE. Detailed information about the projects can be found in reference [15]. 

The SAR robots used in this project mainly focus on autonomous mapping in a 

mine. They compare their mapping and localization performances to cover search 

regions. Again the mapping environment in these projects is large indoor areas. 

They do not address finding victims in highly unstructured confined places and a 

safe path to reach the victim's location. When we compare the pathfinding and 

mapping in a large and structured environment versus in an irregular complex 

space with a shape-changing environment because of collapsing debris, we can 

observe that the studied projects cover the SAR in robotics only at a certain level in 

a specified environment. 

In below Table 2.1, important SAR projects with their description can be found in 

time sequence. The detailed version can be found in reference [11]. 

Table 2.1 International SAR projects with their description and usage area. 

Projects Year Description Usage Area 

COMETS 2002-

2005 

Real-time control of multiple 

UAVs. 

Forest Fire 

PeLoTe 2002-

2005 

Human-robot team for SAR. Firefighting 

MEXT.DDT 2002-

2007 

Rubble robots for earthquakes Earthquake 

Guardians 2006-

2010 

Swarm robots for urban ground. Firefighting 

NIFTi 2010-

2013 

Human-robot coop. in dynamic 

envr. for SAR. 

Urban disaster 

Darius 2012-

2015 

Unmanned systems for SAR. Forest, urban, 

maritime 
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Table 2.1 (Continued) 

ICARUS 2012-

2016 

Assist for human SAR 

operations. 

SAR integration 

TRADR 2013-

2017 

Long-term human-robot 

teaming 

Industrial envr. 

Centauro 2015-

2018 

SAR with telepresence Harsh envr. 

AutoSOS 2020-

2022 

Multi-UAV for maritime SAR Maritime 

In summary, although the success of the given studies, none of them addresses the 

navigation within rubbles considered highly unstructured and irregular shapes. The 

search areas for the given studies consider mines, underground tunnels, forest fires, 

and marine-type search and rescue missions which can be considered relatively 

well-structured environments. In our approach, we aim to fill that gap in the 

literature with a novel path-finding approach by utilizing explosive percolation. 

2.2 SLAM Methods in Literature 

Simultaneous localization and mapping (SLAM) include the estimation of robot 

states with the construction of the environment model with the help of onboard 

sensors. The states of the robot can be counted as the position and orientation 

parameters (localization) and the mapping procedure consists of the representation 

of landmarks and obstacles within the operating environment. Even if the published 

resourceful research in the SLAM field area, there are still open problems waiting 

to be answered in terms of the robustness, and resilience of the algorithms for a 

variety of scenarios in a real-world application. 

In the survey of Durrant et al. The foundation of the SLAM problem was laid in 

1986 at the IEEE Robotics and Automation Conference [17]. Thrun et al. [18] 

achieved the usage of the Kalman Filter in SLAM and approach the problem with 
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probabilistic localization and mapping methods. In Thrun’s book, we encounter 

different probabilistic estimation techniques. Firstly Kalman Filter is used for the 

estimation of robot states and landmark position estimation based on linear system 

dynamics. The Gaussian noise assumption is also accepted in robot motion and 

measurements. However, in the real world, we can encounter non-linearities and 

multi-modal errors which does not show Gaussian characteristics. Therefore, 

Extended Kalman Filter (EKF) is a widely excepted method in SLAM problems to 

handle nonlinearities by linearizing them. In this way, we can continue to use the 

Gaussian noise assumption. Also, EKF-SLAM is considered an online-SLAM 

approach, in other words, the posterior estimations are calculated by using 

momentary pose values. Another SLAM method is GraphSLAM. GarphSLAM 

from a sparse graph including nonlinear constraints of measurement and motion 

model. By optimizing these constraints, the maximum likelihoods of robot and 

landmark states are obtained. The drawback of this method is solving offline-

SLAM problems. It needs the history of poses of robots and feature states on the 

map. In return, GraphSLAM produces more accurate maps than EKF-SLAM. 

Apart from the Gaussian assumption, nonparametric filters are encountered 

commonly in estimation problems. Instead of using a functional form, 

nonparametric filters utilize random samples selected from posterior functions. 

Thus, they have a finite size value. The famous one of these filters is the Particle 

filter. The application of particle filters into SLAM problems appears as 

FastSLAM. The advantages of FastSLAM are maintaining the posterior estimation 

over each particle not most likely one as in previous ones, solving non-linear robot 

motion models instead of using linear functions, and implementing an online 

SLAM algorithm [19]. 

In the last decade, by taking the previous SLAM methods as a reference, with 

advancing sensor types fusion we have witnessed the emergence of various 2D/3D 

SLAM types. These types can be divided into two parts: 1) LIDAR SLAM. 2) 

Visual SLAM. In Table 2.2, we present some of the lidar and visual-based methods 

[20],[21]. 
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Table 2.2 LIDAR and Vision-based SLAM algorithms in the literature. 

LIDAR SLAM VISUAL SLAM 

LIO-SLAM (3D LIDAR) 

HDL Graph SLAM (3D Lidar) 

LOAM (3D Lidar) 

LEGO-LOAM (3D Lidar) 

HECTOR-SLAM (2D Lidar) 

Gmapping (2D Lidar) 

SVO-SLAM (Monocular) 

ORB-SLAM (Monocular/Stereo) 

PTAM (Monocular) 

LSD-SLAM (Monocular) 

DSO-SLAM (Monocular) 

RTAB (Stereo) 

The examples of some research on mentioned SLAM approaches can be shared as 

follows:  Chen et al. [22] use the LOAM method for indoor mapping and they 

compare the results with LEGO-LOAM and LIO-SLAM. They present the results 

by using ROS and Gazebo in a simulation environment with a turtle bot. Lim et al. 

[23] suggest a new visual SLAM method with a monocular camera and they 

evaluate the results with the KITTI database. As for the search and rescue 

operations, Tardioli et al. [24] purposes the usage of semantic feature recognition 

with EKF to navigate within tunnels for underground operations. Petrlík et al. [25] 

show a 2D occupancy grid Hector SLAM approach in the aerial platform for SAR 

operations within a constrained workspace. 

So far we present the SLAM algorithms as a passive estimation problem of robot 

and landmarks states. To improve the mapping and localization results, active 

SLAM is used to control robot motion. Two concepts come forward in this 

discussion; exploitation, and exploration. By exploration, we aim to discover 

unknown areas in a searching area and we use exploitation to diminish the 

uncertainty in localization error by revisiting the previously discovered areas. 

Therefore, active SLAM searches for a balance between exploration and 

exploitation [26]. Entropy reduction for both map and pose estimation error is a 

proposed method for autonomous SLAM in research [27]. Blanco et al. [28] 

propose an expected map (EM) and mean information approach [MI] to optimize 



 
 

16 

pose and map uncertainties. Carlone et al. [29] consider the Kullback-Liebler 

divergence for the posterior approximation. This metric allows the robot to make 

decisions between exploration and exploitation. 

In our study, we choose the FastSLAM algorithm because of its ease of 

implementation, and real-time applicability. Furthermore, besides the consideration 

of map (exploration) and localization uncertainty value (exploitation), we take into 

account the search for a survival location. Therefore, survivor location is another 

parameter for the exploration and exploitation strategies of the robot to head in the 

direction of the victim’s location prioritizing vital signs in exploration. 

2.3 Percolation Theory Applications in Literature 

Percolation theory has been a popular studied area in physics to explain the onset 

of large connectivity within networks, clusters, and porous media. To understand 

the process of percolation institutively, let us give an example of an infinite-size 

square grid of points. Consider we connect the neighbor points with a line in 

random order. We represent this randomness value with 𝑝𝑝 which is occupation 

probability. As we increase the 𝑝𝑝 value more connections occur in the lattice and 

after a certain value of 𝑝𝑝 ≥ 𝑝𝑝𝑑𝑑 where 𝑝𝑝𝑑𝑑 is percolation threshold, the largest cluster 

in the lattice will be obtained that connects two ends of the lattice [30]. The 

illustration is given in Figure 2.2. 

Percolation theory has found a broad application area for various problems: 

networks [31], magnetic models [32], conducting materials [33], and forest fire 

[34], epidemic disease spread [35], etc. 
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Figure 2.2. Percolation model in the square lattice with occupation probabilities 

𝑝𝑝 = 0.1,𝑝𝑝 = 0.3, and 𝑝𝑝 = 0.6. For this type square lattice 𝑝𝑝𝑑𝑑 = 0.5 [36]. 

Recent research reveals that another important phenomenon in percolation could be 

its order. In other words, the emergence of large clusters in percolation models 

shows continuous transitions which are also called second-order transitions. 

Achlioptas et al. [37] show that by changing the random selection rule in the classic 

Erdös-Rényi (ER) model, the percolation show discontinuous transition which is 

known as first-order characteristics. This abrupt transition in the occurrence of a 

large cluster is called Explosive Percolation (EP). In real-world examples, we 

encounter the EP process in network structure, and disordered media (i.e. flow in 

porous media, thermal conductivity, polymerization) [38]. Rozenfeld et al. [39] 

present the evolutionary human protein network process which is initialized with 

disconnected proteins and added sequentially afterward to lead large isolated 

components of connected nodes between them. Cho et al. [40] consider the 

Brownian motion of clusters in diffusion-limited cluster aggregation work. They 

show that the largest cluster Brownian motion prevents growth and leads to the 

emergence of giant clusters discontinuously.  

Percolation theory is rather new to robotic applications in SLAM, and there are 

only a limited number of studies that demonstrate the applicability of basic 

percolation methods. Topal et al. [41] propose a percolation-enhanced multi-robot 

exploration of the unstructured environment. Actually, this study does not directly 

apply percolation theory to guide the robot but uses a method inspired by 
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percolation theory and the demonstration is realized in a relatively structured 

environment. Karahan et al. [42] show firstly invasion percolation theory and 

entropy-based SLAM algorithm for robot exploration. Invasion percolation is the 

main exploration guidance module for predicting upcoming voids from the 

frontiers of explored parts of the structure. The one problem in this study is the 

assumption of obstacle continuity which is not always the situation. Moreover, 

finding a path within voids based on invasion percolation uses three matrices with 

the size of the occupancy grid map. This brings a considerable computational 

burden to the SLAM approach although presented in a simple structured 

environment. 

As we mentioned in the introduction, we propose here an explosive percolation-

based FastSLAM algorithm to eliminate the previous research gaps in finding a 

safe path and mapping in highly unstructured disaster regions such as earthquakes 

and collapsing of structures. And we present a solution by testing it with a different 

SAR algorithm and at different maps and initial state conditions without giving 

priory information about the search region to guide a robot within a complex 

shape-changing environment due to collapsing of debris for SAR operation. 
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CHAPTER 3  

3 MATHEMATICAL BACKGROUND 

In this chapter, we provide the mathematical background used in our explosive 

percolation-based SLAM approach. Firstly we introduce the FastSLAM 2.0 

algorithm basics and its inner algorithms which are motion and perception models, 

occupancy grid map, and particle filter. Secondly, we present the percolation theory 

mathematical overview and explosive percolation formulation that we used in our 

approach. 

3.1 FastSLAM 2.0 

FastSLAM divides the SLAM problem into two parts. The first is robot localization 

and the second one is landmark estimation conditioned on the robot’s states. This 

approach comes from the conditional independence of the SLAM problem [43]. 

This observation makes valid the use of Rao-Blackwellized particle filters in 

FastSLAM. Therefore, FastSLAM uses low-dimensional EKFs to estimate map 

features that are conditionally independent.  

The advantages of the FastSLAM algorithm [18]: 

• FastSLAM algorithm is computationally advantageous over only EKF-

based SLAM.  

• FastSLAM maintains the posterior estimation for each particle not for 

the most likely one. Therefore, this makes FastSLAM most robust 

compared to other algorithms. 

• Non-linear motion models can be adapted to particle filters. In that 

sense, FastSLAM does not need linear approximation for non-linear 

models. 
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• FastSLAM solves the online-SLAM problem and uses particle filters to 

estimate one pose at a time. 

In the following subsections, we analyze the important aspects of the FastSLAM 

2.0 algorithm. 

3.1.1 Motion and Perception Model 

In probabilistic estimation problems, the motion model consists of the state 

transition probability 𝑝𝑝(𝑥𝑥𝑑𝑑|  𝑢𝑢𝑑𝑑, 𝑥𝑥𝑑𝑑−1). This model sustains us in the prediction of 

the next step in motion. Another important feature is the measurement (perception) 

model 𝑝𝑝(𝑧𝑧𝑑𝑑|  𝑥𝑥𝑑𝑑) which is useful in the calculation of the posterior section (i.e. 

measurement update step). We will begin firstly with motion models, then describe 

the measurement model that we used in our approach. 

We describe the motion of the robot in 2D space with its 3-pose variable (𝑥𝑥,𝑦𝑦,𝜃𝜃). 

The illustration of the robot’s states is given in Figure 3.1. 

 
Figure 3.1. The schematic of kinematic motion parameters of the robot in 2D. 

The probabilistic kinematics of the motion model can be expressed with different 

approaches. These are velocity and odometry models. Moreover, these methods can 

be subdivided into closed-form calculation and sampling calculation. We mention 

here velocity models with sampling calculation which is used in our approach. The 

details about these methods can be found in reference [18].  

𝑥𝑥 

𝑦𝑦 

𝜃𝜃 

𝑂𝑂 
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The velocity motion model uses the two velocities as a control parameter for robot 

states. These are translational and rotational velocity values 𝑣𝑣𝑑𝑑 ,𝜔𝜔𝑑𝑑. The positive 

directions for the inputs: counterclockwise for rotation is positive and forward 

motion is positive for translation. 

Algorithm 1: Sample Velocity Motion Model (𝑢𝑢𝑑𝑑, 𝑥𝑥𝑑𝑑−1) 

1: 𝑣𝑣� = 𝑣𝑣 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠(𝛼𝛼1𝑣𝑣2 + 𝛼𝛼2𝜔𝜔2)  

2: 𝜔𝜔� = 𝜔𝜔 +  𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠(𝛼𝛼3𝑣𝑣2 + 𝛼𝛼4𝜔𝜔2)  

3: 𝛾𝛾� =  𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠(𝛼𝛼5𝑣𝑣2 + 𝛼𝛼6𝜔𝜔2)  

4: 𝑥𝑥′ = 𝑥𝑥 − 𝑣𝑣�
𝜔𝜔�

sin(𝜃𝜃) +  𝑣𝑣�
𝜔𝜔�

sin(𝜃𝜃 + 𝜔𝜔 �Δ𝑡𝑡)   

5: 𝑦𝑦′ = 𝑦𝑦 + 𝑣𝑣�
𝜔𝜔�

cos(𝜃𝜃) −  𝑣𝑣�
𝜔𝜔�

cos(𝜃𝜃 + 𝜔𝜔 �Δ𝑡𝑡)  

6: 𝜃𝜃′ = 𝜃𝜃 + 𝜔𝜔� Δ𝑡𝑡 + 𝛾𝛾� Δ𝑡𝑡  

7: 𝑅𝑅𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑅𝑅 𝑥𝑥𝑑𝑑 = (𝑥𝑥′,𝑦𝑦′,𝜃𝜃′)  

 

Algorithm 2: Sample Normal Distribution(𝑏𝑏2) 

1: 𝑅𝑅𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑅𝑅 1
2

 ∑ 𝑟𝑟𝑠𝑠𝑅𝑅𝑟𝑟(−𝑏𝑏, 𝑏𝑏)12
𝑑𝑑=1   

 

In Algorithm 1, instead of using the conditional probability function of motion 

model 𝑝𝑝(𝑥𝑥𝑑𝑑|  𝑢𝑢𝑑𝑑, 𝑥𝑥𝑑𝑑−1), we sample from the motion model to generate the model of 

density function for fixed control input 𝑢𝑢𝑑𝑑 and 𝑥𝑥𝑑𝑑−1. The variables 𝛼𝛼1 to 𝛼𝛼6 are the 

noise parameters to perturb the input parameters. To generate the samples we 

utilize 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠(𝑏𝑏2) given in Algorithm 2 with zero mean and variance 𝑏𝑏2. 

Function rand represents the pseudo-random generator with uniform distribution. 

Note that we need to perturb the final orientation with 𝛾𝛾�. The reason is to eliminate 

the degeneracy in the calculation of the posterior distribution which has pose states 

represented in three-dimensional  

Next to the motion model, the measurement model covers the description of the 

environment with sensor measurements in probabilistic robotics. Different types of 
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sensors (e.g. sonar, LIDAR, visual) are used nowadays in robotics to generate the 

physical world model. In robot perception, probabilistically we represent the 

measurements with noise parameters with a conditional density function 

𝑝𝑝(𝑧𝑧𝑑𝑑|𝑥𝑥𝑑𝑑,𝑠𝑠) where 𝑧𝑧𝑑𝑑 is the measurement at time 𝑡𝑡 𝑠𝑠 is the map of the 

environment. A map can be thought of as a list of objects in the environment 𝑠𝑠 =

{𝑠𝑠1,𝑠𝑠2, … ,𝑠𝑠𝑁𝑁}. Maps are represented in two ways; featured-based and location-

based. In our case, we choose to represent map features with the feature-based 

method based on the LIDAR beam model. 

The feature-based method calculates the feature properties extracted from 

measurements 𝑧𝑧𝑑𝑑. An advantage of this model is the reduction in computational 

complexity. By using feature extraction algorithms, we can detect landmarks as 

map features from sensor measurements. As a note, in our study, these sensor 

measurements come from the LIDAR beam model. Map features can be edges, 

corners, and object-distinct properties calculated based on measurements. Let us 

assume we have a function 𝑓𝑓(𝑧𝑧𝑑𝑑) which takes measurements as input and gives 

landmark coordinates and signature in the form of (𝑟𝑟𝑑𝑑𝑑𝑑,𝜙𝜙𝑑𝑑𝑑𝑑, 𝑠𝑠𝑑𝑑𝑑𝑑) in the robot’s local 

coordinate frame. 𝑟𝑟𝑑𝑑𝑑𝑑 represents the range of landmark 𝑅𝑅, 𝜙𝜙𝑑𝑑𝑑𝑑 represents bearing of 

landmark 𝑅𝑅, and  𝑠𝑠𝑑𝑑𝑑𝑑 is the signature of the landmark which can be a numerical 

value, RGB value, height and color values, or a vector symbolizing that landmark.  

The feature-based sensor model can be represented as follows: let's assume the map 

feature location in the global coordinate frame is represented as 𝑠𝑠𝑑𝑑,𝑥𝑥 and 𝑠𝑠𝑑𝑑,𝑦𝑦. We 

need to add noise values to our sensor model, so we choose zero-mean Gaussian 

noise on feature range, bearing, and signature parameters which are symbolized as 

𝜖𝜖𝜎𝜎𝑟𝑟2 , 𝜖𝜖𝜎𝜎𝜙𝜙2 , 𝜖𝜖𝜎𝜎𝑠𝑠2  respectively. See Equation 3.1 for the details. 

�
𝑟𝑟𝑑𝑑𝑑𝑑

𝜙𝜙𝑑𝑑𝑑𝑑

𝑠𝑠𝑑𝑑𝑑𝑑
� =  

⎣
⎢
⎢
⎡ ��𝑠𝑠𝑑𝑑,𝑥𝑥 − 𝑥𝑥�

2
+ �𝑠𝑠𝑑𝑑,𝑦𝑦 − 𝑦𝑦�

2
   

𝑠𝑠𝑡𝑡𝑠𝑠𝑅𝑅2�𝑠𝑠𝑑𝑑,𝑦𝑦 − 𝑦𝑦,𝑠𝑠𝑑𝑑,𝑥𝑥 − 𝑥𝑥� − 𝜃𝜃
𝑠𝑠𝑑𝑑 ⎦

⎥
⎥
⎤

+ �
𝜖𝜖𝜎𝜎𝑟𝑟2
𝜖𝜖𝜎𝜎𝜙𝜙2
𝜖𝜖𝜎𝜎𝑠𝑠2

�  3.1 
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3.1.2 Occupancy Grid Map 

The occupancy grid maps include fine-grained grid cells that constitute a 2D 

representation of 3D space. To illustrate the occupancy grid cells, let’s choose 𝒎𝒎𝑑𝑑 

to demonstrate the grid cell. Then the map can be expressed as 𝑠𝑠 = {𝒎𝒎𝑑𝑑}.  

Each 𝒎𝒎𝑑𝑑 includes a binary value that shows whether the cell is occupied or not. For 

occupied cells 𝒎𝒎𝑑𝑑 = 1 and for empty cells this value equals to 𝒎𝒎𝑑𝑑 = 0. If we don't 

have the information for an initial value of the cell, we choose 𝒎𝒎𝑑𝑑 = 0.5 for that 

cell. This implies that the information about that cell is minimum and the entropy 

value is at its maximum value. With this representation, we aim to estimate 

𝑝𝑝(𝒎𝒎𝑑𝑑|  𝑧𝑧1:𝑑𝑑, 𝑥𝑥1:𝑑𝑑) for all grid cell 𝒎𝒎𝑑𝑑. Therefore, the estimation of the occupancy 

grid map turns into a binary Bayesian filter Algorithm [18]. The Algorithm can be 

seen in Algorithm 3. 

Algorithm 3: Occupancy Grid mapping �𝑠𝑠𝑑𝑑−1,𝑑𝑑, 𝑥𝑥𝑑𝑑, 𝑧𝑧𝑑𝑑� 

1: 𝑓𝑓𝑓𝑓𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒎𝒎𝑑𝑑  

2:  𝑖𝑖𝑓𝑓 𝒎𝒎𝑑𝑑 𝑖𝑖𝑠𝑠 𝑖𝑖𝑅𝑅 𝑡𝑡ℎ𝑠𝑠 𝑓𝑓𝑖𝑖𝑠𝑠𝑠𝑠𝑟𝑟 𝑓𝑓𝑓𝑓 𝑧𝑧𝑑𝑑  

3:   𝑠𝑠𝑑𝑑,𝑑𝑑 = 𝑠𝑠𝑑𝑑−1,𝑑𝑑 + 𝐼𝐼𝑅𝑅𝑣𝑣𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠 𝑆𝑆𝑠𝑠𝑅𝑅𝑠𝑠𝑓𝑓𝑟𝑟 𝑀𝑀𝑓𝑓𝑟𝑟𝑠𝑠𝑠𝑠(𝒎𝒎𝑑𝑑, 𝑥𝑥𝑑𝑑, 𝑧𝑧𝑑𝑑) − 𝑠𝑠0  

4:  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

5:   𝑠𝑠𝑑𝑑,𝑑𝑑 = 𝑠𝑠𝑑𝑑−1,𝑑𝑑  

6:  𝑠𝑠𝑅𝑅𝑟𝑟𝑖𝑖𝑓𝑓  

7: 𝑠𝑠𝑅𝑅𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟  

8 𝑅𝑅𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑅𝑅 �𝑠𝑠𝑑𝑑,𝑑𝑑�  

 

Because we don't have information about each cell's initial state, the initial value of 

the grid cell 𝑠𝑠0 can be taken as 0.5. As for the measurement model, we use the 

LIDAR beam model. The inverse Sensor Model function uses this basis to assign 

occupied, free, or out-of-range decisions to cells. The inverse Sensor Model 

algorithm is given in Algorithm 4. 
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Algorithm 4: Inverse Sensor Model(𝒎𝒎𝑑𝑑, 𝑥𝑥𝑑𝑑 , 𝑧𝑧𝑑𝑑) 

1: 𝑟𝑟 = �(𝑥𝑥𝑑𝑑 − 𝑥𝑥)2 + (𝑦𝑦𝑑𝑑 − 𝑦𝑦)2  

2: 𝜙𝜙 = 𝑠𝑠𝑡𝑡𝑠𝑠𝑅𝑅2(𝑦𝑦𝑑𝑑 − 𝑦𝑦, 𝑥𝑥𝑑𝑑 − 𝑥𝑥) − 𝜃𝜃 

3: 𝑘𝑘 = 𝑠𝑠𝑟𝑟𝑎𝑎𝑠𝑠𝑖𝑖𝑅𝑅𝑗𝑗�𝜙𝜙 − 𝜃𝜃𝑗𝑗,𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟�  

4: 𝑖𝑖𝑓𝑓 𝑟𝑟 > min �𝑧𝑧𝑚𝑚𝑟𝑟𝑥𝑥 , 𝑧𝑧𝑑𝑑𝑘𝑘 + 𝛼𝛼
2
� �𝜙𝜙 −  𝜃𝜃𝑘𝑘,𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟� > 𝛽𝛽

2
 

5:  𝑅𝑅𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑅𝑅 𝑠𝑠0  

6: 𝑖𝑖𝑓𝑓 𝑧𝑧𝑑𝑑𝑘𝑘 < 𝑧𝑧𝑚𝑚𝑟𝑟𝑥𝑥  𝑠𝑠𝑅𝑅𝑟𝑟 �𝑟𝑟 − 𝑧𝑧𝑑𝑑𝑘𝑘� < 𝛼𝛼
2

  

7:  𝑅𝑅𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑅𝑅 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑  

8 𝑖𝑖𝑓𝑓 𝑟𝑟 < 𝑧𝑧𝑑𝑑𝑘𝑘  

9  𝑅𝑅𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑅𝑅 𝑠𝑠𝑓𝑓𝑟𝑟𝑑𝑑𝑑𝑑  

10 𝑠𝑠𝑅𝑅𝑟𝑟𝑖𝑖𝑓𝑓  

 

In this algorithm, the robot state is (𝑥𝑥,𝑦𝑦, 𝜃𝜃), 𝑥𝑥𝑑𝑑 and 𝑦𝑦𝑑𝑑 is the center of gravity 

coordinate of the cell 𝒎𝒎𝑑𝑑. 𝑘𝑘 index is the closest beam index value to the cell 𝒎𝒎𝑑𝑑. 𝛽𝛽 

is the width of the sensor beam and 𝑧𝑧𝑚𝑚𝑟𝑟𝑥𝑥 the measured range of the sensor. If the 

cell 𝒎𝒎𝑑𝑑 is outside the range of the cell, in line 5 of the algorithm the cell value 

returns as it is. If it is in the measurement range of the sensor beam 𝑧𝑧𝑑𝑑𝑘𝑘 and between 
𝛼𝛼
2
 range of the 𝑟𝑟, then 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 is returned. Otherwise, the function returns 𝑠𝑠𝑓𝑓𝑟𝑟𝑑𝑑𝑑𝑑.  

3.1.3 Particle Filter 

The particle filter is a nonparametric version of the Bayes Filter. In this approach, 

the posterior function is represented with a finite number of samples. The posterior 

function is denoted with 𝑏𝑏𝑠𝑠𝑠𝑠(𝑥𝑥_𝑡𝑡 ) = 𝑝𝑝(𝑥𝑥𝑑𝑑|𝑧𝑧1:𝑑𝑑,𝑢𝑢1:𝑑𝑑)) in which the posterior 

probability is conditioned on past measurements and controls up to time 𝑡𝑡.The 

advantage of the particle filter is the modeling of nonlinear functions of random 

variables. The representation of the particle filter is  
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𝜒𝜒𝑑𝑑 = 𝑥𝑥𝑑𝑑
[1], 𝑥𝑥𝑑𝑑

[2], … , 𝑥𝑥𝑑𝑑
[𝑀𝑀]. 3.2 

 

A particle represents the one instantiation of state 𝑥𝑥 at time t. 𝑀𝑀 is the total number 

of the particle set. The particle filter algorithm is shared in Algorithm 5 [18].  

Algorithm 5: Particle Filter (𝜒𝜒𝑑𝑑−1,𝑢𝑢𝑑𝑑, 𝑧𝑧𝑑𝑑) 

1: 𝜒𝜒𝑑𝑑� = 𝜒𝜒𝑑𝑑 = ∅  

2: 𝑓𝑓𝑓𝑓𝑟𝑟 𝑠𝑠 = 1 𝑡𝑡𝑓𝑓 𝑀𝑀  

3:  𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠 𝑥𝑥𝑑𝑑
[𝑚𝑚] ~ 𝑝𝑝(𝑥𝑥𝑑𝑑|𝑢𝑢𝑑𝑑, 𝑥𝑥𝑑𝑑−1

[𝑚𝑚]  )  

4:  𝑤𝑤𝑑𝑑
[𝑚𝑚]  = 𝑝𝑝(𝑧𝑧𝑑𝑑|  𝑥𝑥𝑑𝑑

[𝑚𝑚] )  

5:  𝜒𝜒𝑑𝑑� =  𝜒𝜒𝑑𝑑� +  �𝑥𝑥𝑑𝑑
[𝑚𝑚],𝑤𝑤𝑑𝑑

[𝑚𝑚]�  

6: 𝑠𝑠𝑅𝑅𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟  

7: 𝑓𝑓𝑓𝑓𝑟𝑟 𝑠𝑠 = 1 𝑡𝑡𝑓𝑓 𝑀𝑀  

8  𝑟𝑟𝑟𝑟𝑠𝑠𝑤𝑤 𝑖𝑖 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑝𝑝𝑟𝑟𝑓𝑓𝑏𝑏𝑠𝑠𝑏𝑏𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦 ∝ 𝑤𝑤𝑑𝑑
[𝑑𝑑]   

9  𝑠𝑠𝑟𝑟𝑟𝑟 𝑥𝑥𝑑𝑑
[𝑑𝑑] 𝑡𝑡𝑓𝑓 𝜒𝜒𝑑𝑑    

10 𝑠𝑠𝑅𝑅𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟  

11 𝑅𝑅𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑅𝑅 𝜒𝜒𝑑𝑑   

 

In algorithm 𝑤𝑤𝑑𝑑
[𝑚𝑚] is called the importance factor. The importance factor is used to 

weigh the state prediction 𝑥𝑥𝑑𝑑
[𝑚𝑚] with the measurement. In other words, it is the 

weight of the particle 𝑠𝑠. Another important aspect of the particle filter is 

resampling or importance sampling between lines 7 and 10. However, the 

resampling process in particle filters comes with variance problems. The sampling 

variance increases with the repititive sampling process. In other words, the 

diversity will be diminished by sampling over and over again with a finite size of 

𝑀𝑀 particles. To avoid this problem one of the proposed methods is low-variance 

sampling. This algorithm selects the particles with a random number, but still, 

preserves the importance weight factor. The algorithm is given in Algorithm 6. The 
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advantage of a low variance sampler is offering a more systematic approach 

concerning random sampling.  

Algorithm 6: Low Variance Sampling (𝜒𝜒𝑑𝑑,𝑤𝑤𝑑𝑑) 

1: 𝜒𝜒𝑑𝑑� = ∅   

2: 𝑟𝑟 = 𝑟𝑟𝑠𝑠𝑅𝑅𝑟𝑟(0,𝑀𝑀−1)  

3: 𝑝𝑝 =  𝑤𝑤𝑑𝑑
[1]  

4: 𝑖𝑖 = 1  

5: 𝑓𝑓𝑓𝑓𝑟𝑟 𝑠𝑠 = 1 𝑡𝑡𝑓𝑓 𝑀𝑀  

6:  𝑈𝑈 = 𝑟𝑟 + (𝑠𝑠− 1)𝑀𝑀−1  

7:  𝑤𝑤ℎ𝑖𝑖𝑠𝑠𝑠𝑠 𝑈𝑈 > 𝑝𝑝  

8   𝑖𝑖 = 𝑖𝑖 + 1  

9   𝑝𝑝 = 𝑝𝑝 + 𝑤𝑤𝑑𝑑
[𝑑𝑑]   

10  𝑠𝑠𝑅𝑅𝑟𝑟𝑤𝑤ℎ𝑖𝑖𝑠𝑠𝑠𝑠  

11    𝑠𝑠𝑟𝑟𝑟𝑟 𝑥𝑥𝑑𝑑
[𝑑𝑑] 𝑡𝑡𝑓𝑓 𝜒𝜒𝑑𝑑�   

12 𝑠𝑠𝑅𝑅𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟  

13 𝑅𝑅𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑅𝑅 𝜒𝜒𝑑𝑑�   

 

3.1.4 FastSLAM 2.0 Algorithm 

The power of the FastSLAM algorithm comes from the factorization of the full 

posterior algorithm 𝑝𝑝(𝑥𝑥1:𝑑𝑑,𝑠𝑠 |  𝑧𝑧1:𝑑𝑑,𝑢𝑢1:𝑑𝑑) which includes robot states and map 

features [18]. 

𝑝𝑝(𝑥𝑥1:𝑑𝑑,𝑠𝑠 | 𝑧𝑧1:𝑑𝑑 ,𝑢𝑢1:𝑑𝑑) =  𝑝𝑝(𝑥𝑥1:𝑑𝑑 | 𝑧𝑧1:𝑑𝑑 ,𝑢𝑢1:𝑑𝑑)�𝑝𝑝(𝑠𝑠𝑑𝑑|𝑥𝑥1:𝑑𝑑, 𝑧𝑧1:𝑑𝑑)
𝑁𝑁

𝑑𝑑=1

 

𝑁𝑁 is the total number of landmarks until time 𝑡𝑡. In each particle, we have 𝑁𝑁 + 1 

probabilities including the robot state. The particles and their composition in 

factorization form are given in below Table 3.1. Each particle consists of robot 
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pose estimation and mean 𝜇𝜇 and covariance Σ of each particle in map 𝑠𝑠 resulting 

from the Kalman filter. 

Table 3.1 Particle in FastSLAM with robot states and feature estimation 

 Robot States Feature 1 Feature 2 ... Feature 𝑵𝑵 

Particle 

𝑘𝑘 = 1 
{𝑥𝑥,𝑦𝑦,𝜃𝜃}1:𝑑𝑑

[1] {𝜇𝜇1,Σ1}[1] {𝜇𝜇2,Σ2}[1] ... {𝜇𝜇𝑁𝑁, Σ𝑁𝑁}[1] 

Particle 

𝑘𝑘 = 2 
{𝑥𝑥,𝑦𝑦,𝜃𝜃}1:𝑑𝑑

[2] {𝜇𝜇1,Σ1}[2] {𝜇𝜇2,Σ2}[2] ... {𝜇𝜇𝑁𝑁, Σ𝑁𝑁}[2] 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

Particle 

𝑘𝑘 = 𝑀𝑀 
{𝑥𝑥,𝑦𝑦,𝜃𝜃}1:𝑑𝑑

[𝑀𝑀] {𝜇𝜇1, Σ1}[𝑀𝑀] {𝜇𝜇2, Σ2}[𝑀𝑀] ... {𝜇𝜇𝑁𝑁 ,Σ𝑁𝑁}[𝑀𝑀] 

 

The implementation of the FastSLAM 2.0 algorithm is given in Algorithm. Note 

that, the algorithm given here considers only a single measurement at a time. 

However, in real life, a robot with SLAM can observe multiple measurements at a 

time. This issue is handled in our algorithm and the details are given in Chapter 4. 

The particle in the tuple form is given in Equation 3.3. In equation 𝑥𝑥𝑑𝑑
[𝑘𝑘] is robot 

pose, 𝑁𝑁𝑑𝑑
[𝑘𝑘] the number of features for particle 𝑘𝑘 at time 𝑡𝑡, 𝜏𝜏𝑑𝑑

[𝑘𝑘] is the probabilistic 

existence of the feature, 𝜇𝜇𝑑𝑑,𝑑𝑑
[𝑘𝑘],Σ𝑑𝑑,𝑑𝑑

[𝑘𝑘] are the mean and covariance of the feature in the 

particle.  

𝑌𝑌𝑑𝑑
[𝑘𝑘] =  �𝑥𝑥𝑑𝑑

[𝑘𝑘],𝑁𝑁𝑑𝑑
[𝑘𝑘], �𝜇𝜇1,𝑑𝑑

[𝑘𝑘],Σ1,𝑑𝑑
[𝑘𝑘], 𝜏𝜏1

[𝑘𝑘]� , … , �𝜇𝜇
𝑁𝑁𝑡𝑡

[𝑘𝑘],𝑑𝑑
[𝑘𝑘] , Σ

𝑁𝑁𝑡𝑡
[𝑘𝑘],𝑑𝑑

[𝑘𝑘] , 𝜏𝜏
𝑁𝑁𝑡𝑡

[𝑘𝑘]
[𝑘𝑘] �� 

3.3 

Algorithm 7: FastSLAM 2.0 (𝑧𝑧𝑑𝑑,𝑢𝑢𝑑𝑑 ,𝑌𝑌𝑑𝑑−1) 

1: 𝑓𝑓𝑓𝑓𝑟𝑟 𝑘𝑘 = 1 𝑡𝑡𝑓𝑓 𝑀𝑀  

2:  
𝑡𝑡𝑠𝑠𝑘𝑘𝑠𝑠 �𝑥𝑥𝑑𝑑−1

[𝑘𝑘] ,𝑁𝑁𝑑𝑑−1
[𝑘𝑘] , �𝜇𝜇1,𝑑𝑑−1

[𝑘𝑘] ,Σ1,𝑑𝑑−1
[𝑘𝑘] , 𝑖𝑖1

[𝑘𝑘]� , … , �𝜇𝜇
𝑁𝑁𝑡𝑡−1

[𝑘𝑘] ,𝑑𝑑−1
[𝑘𝑘] ,Σ

𝑁𝑁𝑡𝑡−1
[𝑘𝑘] ,𝑑𝑑−1

[𝑘𝑘] , 𝑖𝑖
𝑁𝑁𝑡𝑡−1

[𝑘𝑘]
[𝑘𝑘] ��  

3:  𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1 𝑡𝑡𝑓𝑓 𝑁𝑁𝑑𝑑−1
[𝑘𝑘]    
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4:   𝑥𝑥�𝑗𝑗,𝑑𝑑 = 𝑎𝑎 �𝑥𝑥𝑑𝑑−1
[𝑘𝑘] ,𝑢𝑢𝑑𝑑�   (𝑃𝑃𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖𝑓𝑓𝑅𝑅 𝑓𝑓𝑓𝑓 𝑝𝑝𝑓𝑓𝑠𝑠𝑠𝑠)  

5:   𝑧𝑧�̅�𝑗 = ℎ � 𝜇𝜇𝑗𝑗,𝑑𝑑−1
[𝑘𝑘] , 𝑥𝑥�𝑗𝑗,𝑑𝑑 �  (𝑃𝑃𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑝𝑝𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡)  

6:   𝐻𝐻𝑥𝑥,𝑗𝑗 =   ∇𝑥𝑥𝑡𝑡ℎ � 𝜇𝜇𝑗𝑗,𝑑𝑑−1
[𝑘𝑘] , 𝑥𝑥�𝑗𝑗,𝑑𝑑 �  (𝐽𝐽𝑠𝑠𝑝𝑝𝑓𝑓𝑏𝑏𝑖𝑖𝑠𝑠𝑅𝑅 𝑤𝑤𝑟𝑟𝑡𝑡 𝑝𝑝𝑓𝑓𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓 𝑟𝑟𝑓𝑓𝑏𝑏𝑓𝑓𝑡𝑡)  

7:   𝐻𝐻𝑚𝑚,𝑗𝑗 =  ∇𝑚𝑚𝑗𝑗ℎ � 𝜇𝜇𝑗𝑗,𝑑𝑑−1
[𝑘𝑘] , 𝑥𝑥�𝑗𝑗,𝑑𝑑 �  (𝐽𝐽𝑠𝑠𝑝𝑝𝑓𝑓𝑏𝑏𝑖𝑖𝑠𝑠𝑅𝑅 𝑤𝑤𝑟𝑟𝑡𝑡 𝑠𝑠𝑠𝑠𝑝𝑝 𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑠𝑠)  

8   𝑄𝑄𝑗𝑗 = 𝑄𝑄𝑑𝑑 + 𝐻𝐻𝑚𝑚,𝑗𝑗Σ𝑗𝑗,𝑑𝑑−1
[𝑘𝑘] 𝐻𝐻𝑚𝑚,𝑗𝑗

𝑇𝑇  (𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡 𝑖𝑖𝑅𝑅𝑓𝑓𝑓𝑓𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑓𝑓𝑅𝑅)  

9   Σ𝑥𝑥,𝑗𝑗 = �𝐻𝐻𝑥𝑥,𝑗𝑗
𝑇𝑇 𝑄𝑄𝑗𝑗−1𝐻𝐻𝑥𝑥,𝑗𝑗 + 𝑅𝑅𝑑𝑑−1�

−1
 (𝐶𝐶𝑓𝑓𝑣𝑣. 𝑓𝑓𝑓𝑓 𝑝𝑝𝑟𝑟𝑓𝑓𝑝𝑝𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑖𝑖𝑠𝑠𝑡𝑡𝑟𝑟𝑖𝑖𝑏𝑏𝑢𝑢𝑡𝑡𝑖𝑖𝑓𝑓𝑅𝑅)  

10   𝜇𝜇𝑥𝑥𝑡𝑡,𝑗𝑗 =  Σ𝑥𝑥,𝑗𝑗𝐻𝐻𝑥𝑥,𝑗𝑗
𝑇𝑇 𝑄𝑄𝑗𝑗−1 �𝑧𝑧𝑑𝑑 − 𝑧𝑧�̅�𝑗� + 𝑥𝑥�𝑗𝑗,𝑑𝑑 (𝑀𝑀𝑠𝑠𝑠𝑠𝑅𝑅 𝑓𝑓𝑓𝑓 𝑝𝑝𝑟𝑟𝑓𝑓𝑝𝑝𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑖𝑖𝑠𝑠𝑡𝑡. )  

11   𝑥𝑥𝑑𝑑,𝑗𝑗
[𝑘𝑘]~ 𝒩𝒩�𝜇𝜇𝑥𝑥𝑡𝑡,𝑗𝑗 , Σ𝑥𝑥𝑡𝑡,𝑗𝑗�(𝑆𝑆𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠 𝑝𝑝𝑓𝑓𝑠𝑠𝑠𝑠)  

12   �̂�𝑧𝑗𝑗 = ℎ �𝜇𝜇𝑗𝑗,𝑑𝑑−1
[𝑘𝑘] , 𝑥𝑥𝑑𝑑

[𝑘𝑘]�  (𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡 𝑝𝑝𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖𝑓𝑓𝑅𝑅)  

13   𝜋𝜋𝑗𝑗 = �2𝜋𝜋𝑄𝑄𝑗𝑗�
−0.5

exp �−0.5�𝑧𝑧𝑑𝑑 − �̂�𝑧𝑗𝑗�
𝑇𝑇
𝑄𝑄𝑗𝑗−1�𝑧𝑧𝑑𝑑 − �̂�𝑧𝑗𝑗��   

(𝐶𝐶𝑓𝑓𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝𝑓𝑓𝑅𝑅𝑟𝑟𝑠𝑠𝑅𝑅𝑝𝑝𝑠𝑠 𝑠𝑠𝑖𝑖𝑘𝑘𝑠𝑠𝑠𝑠𝑖𝑖ℎ𝑓𝑓𝑓𝑓𝑟𝑟)  

14  𝑠𝑠𝑅𝑅𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟  

15  𝜋𝜋1+𝑁𝑁𝑡𝑡−1[𝑘𝑘] = 𝑝𝑝0 (𝐿𝐿𝑖𝑖𝑘𝑘𝑠𝑠𝑠𝑠𝑖𝑖ℎ𝑓𝑓𝑓𝑓𝑟𝑟 𝑓𝑓𝑓𝑓 𝑅𝑅𝑠𝑠𝑤𝑤 𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑠𝑠)  

16  �̂�𝑝 = 𝑠𝑠𝑟𝑟𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥�𝜋𝜋𝑗𝑗  � (𝑀𝑀𝑠𝑠𝑥𝑥𝑖𝑖𝑠𝑠𝑢𝑢𝑠𝑠 𝐿𝐿𝑖𝑖𝑘𝑘𝑠𝑠𝑠𝑠𝑖𝑖ℎ𝑓𝑓𝑓𝑓𝑟𝑟 𝑝𝑝𝑓𝑓𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝𝑓𝑓𝑅𝑅𝑟𝑟𝑠𝑠𝑅𝑅𝑝𝑝𝑠𝑠)  

17  𝑁𝑁𝑑𝑑
[𝑘𝑘] = max �𝑁𝑁𝑑𝑑−1

[𝑘𝑘] , �̂�𝑝�  (𝑁𝑁𝑠𝑠𝑤𝑤 𝑅𝑅𝑢𝑢𝑠𝑠𝑏𝑏𝑠𝑠𝑟𝑟 𝑓𝑓𝑓𝑓 𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑠𝑠)  

18  𝑓𝑓𝑓𝑓𝑟𝑟 𝑗𝑗 = 1 𝑡𝑡𝑓𝑓 𝑁𝑁𝑑𝑑
[𝑘𝑘] (𝑈𝑈𝑝𝑝𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅 𝐹𝐹𝑖𝑖𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠)  

19   𝑖𝑖𝑓𝑓 𝑗𝑗 = �̂�𝑝 =  1 + 𝑁𝑁𝑑𝑑−1
[𝑘𝑘]  (𝐹𝐹𝑓𝑓𝑟𝑟 𝑅𝑅𝑠𝑠𝑤𝑤 𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑠𝑠)  

20    𝑥𝑥_𝑡𝑡^[𝑘𝑘] ~ 𝑝𝑝(𝑥𝑥_𝑡𝑡 ┤| 𝑥𝑥_(𝑡𝑡 − 1)^[𝑘𝑘] ,𝑢𝑢_𝑡𝑡) (𝑆𝑆𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠 𝑝𝑝𝑓𝑓𝑠𝑠𝑠𝑠)  

21    𝜇𝜇𝑗𝑗,𝑑𝑑
[𝑘𝑘] = ℎ−1 �𝑧𝑧𝑑𝑑, 𝑥𝑥𝑑𝑑

[𝑘𝑘]� (𝑖𝑖𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑧𝑧𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅)  

22    𝐻𝐻𝑚𝑚,𝑗𝑗 =  ∇𝑚𝑚,𝑗𝑗ℎ �𝜇𝜇𝑗𝑗,𝑑𝑑
[𝑘𝑘], 𝑥𝑥𝑑𝑑

[𝑘𝑘]� (𝐽𝐽𝑠𝑠𝑝𝑝𝑓𝑓𝑏𝑏𝑖𝑖𝑠𝑠𝑅𝑅 𝑤𝑤𝑟𝑟𝑡𝑡 𝑠𝑠𝑠𝑠𝑝𝑝 𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑠𝑠)  

23    Σ𝑗𝑗,𝑑𝑑
[𝑘𝑘] = �𝐻𝐻𝑚𝑚,𝑗𝑗

−1 �
𝑇𝑇
𝑄𝑄𝑑𝑑𝐻𝐻𝑚𝑚,𝑗𝑗

−1  (𝐼𝐼𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑧𝑧𝑠𝑠 𝐶𝐶𝑓𝑓𝑣𝑣𝑠𝑠𝑟𝑟𝑖𝑖𝑠𝑠𝑅𝑅𝑝𝑝𝑠𝑠)  

24    𝑖𝑖𝑗𝑗,𝑑𝑑
[𝑘𝑘] = 1 (𝐼𝐼𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑧𝑧𝑠𝑠 𝑝𝑝𝑓𝑓𝑢𝑢𝑅𝑅𝑡𝑡𝑠𝑠𝑟𝑟)  

25    𝑤𝑤[𝑘𝑘] = 𝑝𝑝0 (𝐼𝐼𝑠𝑠𝑝𝑝𝑓𝑓𝑟𝑟𝑡𝑡𝑠𝑠𝑅𝑅𝑝𝑝𝑠𝑠 𝑤𝑤𝑠𝑠𝑖𝑖𝑎𝑎ℎ𝑡𝑡)  

26   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑓𝑓 𝑗𝑗 = �̂�𝑝 < 𝑁𝑁𝑑𝑑−1
[𝑘𝑘]   (𝐹𝐹𝑓𝑓𝑟𝑟 𝑓𝑓𝑏𝑏𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑠𝑠𝑟𝑟 𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑠𝑠)  
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27    𝑥𝑥𝑑𝑑
[𝑘𝑘] = 𝑥𝑥𝑑𝑑,𝑗𝑗

[𝑘𝑘]   

28    𝐾𝐾 = Σ𝑗𝑗,𝑑𝑑−1
[𝑘𝑘] 𝐻𝐻𝑚𝑚,𝑗𝑗

𝑇𝑇 𝑄𝑄𝑗𝑗−1 (𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅 𝑎𝑎𝑠𝑠𝑖𝑖𝑅𝑅)  

29    𝜇𝜇𝑗𝑗,𝑑𝑑
[𝑘𝑘] =  𝜇𝜇𝑗𝑗,𝑑𝑑−1

[𝑘𝑘] + 𝐾𝐾�𝑧𝑧𝑑𝑑 − �̂�𝑧𝑗𝑗� (𝑈𝑈𝑝𝑝𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅)  

30    Σ𝑗𝑗,𝑑𝑑
[𝑘𝑘] = �𝐼𝐼 − 𝐾𝐾 𝐻𝐻𝑚𝑚,𝑗𝑗�Σ𝑗𝑗,𝑑𝑑−1

[𝑘𝑘] (𝑈𝑈𝑝𝑝𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠 𝑝𝑝𝑓𝑓𝑣𝑣𝑠𝑠𝑟𝑟𝑖𝑖𝑠𝑠𝑅𝑅𝑝𝑝𝑠𝑠)  

31    𝑖𝑖𝑗𝑗,𝑑𝑑
[𝑘𝑘] =  𝑖𝑖𝑗𝑗,𝑑𝑑−1

[𝑘𝑘] + 1 (𝐼𝐼𝑅𝑅𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡 𝑝𝑝𝑓𝑓𝑢𝑢𝑅𝑅𝑡𝑡𝑠𝑠𝑟𝑟)  

32    𝐿𝐿 = 𝐻𝐻𝑥𝑥,𝑗𝑗𝑅𝑅𝑑𝑑𝐻𝐻𝑥𝑥,𝑗𝑗
𝑇𝑇  + 𝐻𝐻𝑚𝑚,𝑗𝑗Σ𝑗𝑗,𝑑𝑑−1

[𝑘𝑘] 𝐻𝐻𝑚𝑚,𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑑𝑑  

33    𝑤𝑤[𝑘𝑘] = |2𝜋𝜋𝐿𝐿|−0.5 exp �−0.5 �𝑧𝑧𝑑𝑑 − �̂�𝑧𝑗𝑗�
𝑇𝑇
𝐿𝐿−1�𝑧𝑧𝑑𝑑 − �̂�𝑧𝑗𝑗��   

(𝐼𝐼𝑠𝑠𝑝𝑝𝑓𝑓𝑟𝑟𝑡𝑡𝑠𝑠𝑅𝑅𝑝𝑝𝑠𝑠 𝑤𝑤𝑠𝑠𝑖𝑖𝑎𝑎ℎ𝑡𝑡)  

34   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑡𝑡ℎ𝑠𝑠𝑟𝑟 𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑠𝑠𝑠𝑠)  

35    𝜇𝜇𝑗𝑗,𝑑𝑑
[𝑘𝑘] =  𝜇𝜇𝑗𝑗,𝑑𝑑−1

[𝑘𝑘]  (𝑃𝑃𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑠𝑠 𝑓𝑓𝑠𝑠𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅)  

36    Σ𝑗𝑗,𝑑𝑑
[𝑘𝑘] =  Σ𝑗𝑗,𝑑𝑑−1

[𝑘𝑘] (𝑃𝑃𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑠𝑠 𝑓𝑓𝑠𝑠𝑟𝑟 𝑝𝑝𝑓𝑓𝑣𝑣𝑠𝑠𝑟𝑟𝑖𝑖𝑠𝑠𝑅𝑅𝑝𝑝𝑠𝑠)  

37    𝑖𝑖𝑓𝑓 𝜇𝜇𝑗𝑗,𝑑𝑑−1
[𝑘𝑘]  𝑓𝑓𝑢𝑢𝑡𝑡𝑠𝑠𝑖𝑖𝑟𝑟𝑠𝑠 𝑡𝑡ℎ𝑠𝑠 𝑠𝑠𝑠𝑠𝑅𝑅𝑠𝑠𝑓𝑓𝑟𝑟 𝑟𝑟𝑠𝑠𝑅𝑅𝑎𝑎𝑠𝑠 𝑓𝑓𝑓𝑓 𝑟𝑟𝑓𝑓𝑏𝑏𝑓𝑓𝑡𝑡  

38     𝑖𝑖𝑗𝑗,𝑑𝑑
[𝑘𝑘] =  𝑖𝑖𝑗𝑗,𝑑𝑑−1

[𝑘𝑘]  (𝑁𝑁𝑓𝑓𝑡𝑡 𝑝𝑝ℎ𝑠𝑠𝑅𝑅𝑎𝑎𝑠𝑠 𝑝𝑝𝑓𝑓𝑢𝑢𝑅𝑅𝑡𝑡𝑠𝑠𝑟𝑟)  

39    𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

40     𝑖𝑖𝑗𝑗,𝑑𝑑
[𝑘𝑘] =  𝑖𝑖𝑗𝑗,𝑑𝑑−1

[𝑘𝑘] − 1 (𝐷𝐷𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑓𝑓𝑢𝑢𝑅𝑅𝑡𝑡𝑠𝑠𝑟𝑟)  

41     𝑖𝑖𝑓𝑓 𝑖𝑖𝑗𝑗,𝑑𝑑−1
[𝑘𝑘] < 0  

42      𝑟𝑟𝑖𝑖𝑠𝑠𝑝𝑝𝑠𝑠𝑟𝑟𝑟𝑟 𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑠𝑠 𝑗𝑗  

43     𝑠𝑠𝑅𝑅𝑟𝑟𝑖𝑖𝑓𝑓  

44    𝑠𝑠𝑅𝑅𝑟𝑟𝑖𝑖𝑓𝑓  

45   𝑠𝑠𝑅𝑅𝑟𝑟𝑖𝑖𝑓𝑓  

46  𝑠𝑠𝑅𝑅𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟  

47  
𝑠𝑠𝑟𝑟𝑟𝑟 �𝑥𝑥𝑑𝑑

[𝑘𝑘],𝑁𝑁𝑑𝑑
[𝑘𝑘], �𝜇𝜇1,𝑑𝑑

[𝑘𝑘],Σ1,𝑑𝑑
[𝑘𝑘], 𝜏𝜏1

[𝑘𝑘]� , … , �𝜇𝜇
𝑁𝑁𝑡𝑡

[𝑘𝑘],𝑑𝑑
[𝑘𝑘] , Σ

𝑁𝑁𝑡𝑡
[𝑘𝑘],𝑑𝑑

[𝑘𝑘] , 𝜏𝜏
𝑁𝑁𝑡𝑡

[𝑘𝑘]
[𝑘𝑘] ��  𝑡𝑡𝑓𝑓 𝑌𝑌𝑟𝑟𝑟𝑟𝑥𝑥  

48 𝑠𝑠𝑅𝑅𝑟𝑟𝑓𝑓𝑓𝑓𝑟𝑟  

49 𝑌𝑌𝑑𝑑 =  ∅  

50 𝑟𝑟𝑓𝑓 𝑀𝑀 𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠  
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51  𝑟𝑟𝑟𝑟𝑠𝑠𝑤𝑤 𝑟𝑟𝑠𝑠𝑅𝑅𝑟𝑟𝑓𝑓𝑠𝑠 𝑝𝑝𝑠𝑠𝑟𝑟𝑡𝑡𝑖𝑖𝑝𝑝𝑠𝑠𝑠𝑠 𝑘𝑘 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑝𝑝𝑟𝑟𝑓𝑓𝑝𝑝𝑓𝑓𝑟𝑟𝑡𝑡𝑖𝑖𝑓𝑓𝑅𝑅𝑠𝑠𝑠𝑠 𝑡𝑡𝑓𝑓 𝑤𝑤[𝑘𝑘]  

52  
𝑠𝑠𝑟𝑟𝑟𝑟 �𝑥𝑥𝑑𝑑

[𝑘𝑘],𝑁𝑁𝑑𝑑
[𝑘𝑘], �𝜇𝜇1,𝑑𝑑

[𝑘𝑘],Σ1,𝑑𝑑
[𝑘𝑘], 𝜏𝜏1

[𝑘𝑘]� , … , �𝜇𝜇
𝑁𝑁𝑡𝑡

[𝑘𝑘],𝑑𝑑
[𝑘𝑘] , Σ

𝑁𝑁𝑡𝑡
[𝑘𝑘],𝑑𝑑

[𝑘𝑘] , 𝜏𝜏
𝑁𝑁𝑡𝑡

[𝑘𝑘]
[𝑘𝑘] ��  𝑡𝑡𝑓𝑓 𝑌𝑌𝑑𝑑  

53 𝑠𝑠𝑅𝑅𝑟𝑟𝑟𝑟𝑓𝑓  

54 𝑅𝑅𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑅𝑅 𝑌𝑌𝑑𝑑  

 

In the algorithm, firstly we take the previous time step particles 𝑌𝑌𝑑𝑑−1. Then we 

compare the single measurement with previous ones by calculating pose and 

measurement prediction between lines 4 and 13. The 𝑎𝑎 �𝑥𝑥𝑑𝑑−1
[𝑘𝑘] ,𝑢𝑢𝑑𝑑� and 

ℎ � 𝜇𝜇𝑗𝑗,𝑑𝑑−1
[𝑘𝑘] , 𝑥𝑥�𝑗𝑗,𝑑𝑑 � functions represent the robot motion function and feature-based 

measurement functions respectively. At the end of this cycle, we obtain 

correspondence likelihood 𝜋𝜋𝑗𝑗 of measurement compared to other features in 

particles. In line 16, we calculate the 𝑠𝑠𝑟𝑟𝑎𝑎𝑠𝑠𝑠𝑠𝑥𝑥�𝜋𝜋𝑗𝑗  � to identify whether the 

measurement is a new feature or not. In the rest of the algorithm, we update the 

mean and covariance values of each feature in particle 𝑘𝑘. If the feature is new, we 

attain this feature an initial mean, covariance, and existence values. However, if 

this feature has been observed before, then we update its mean, covariance, and 

existence values. For the last condition, if the feature is not in the sensor 

measurement range, we preserve the related parameter. Otherwise, the feature that 

should be observed in the range is not detected and this means the feature is not 

reliable and we should diminish its existence value. When this value is less than 

zero, we remove the feature from the particle set. 

3.2 Percolation Theory and Explosive Percolation Method 

In physics, we have encountered the phase transition of substances and determined 

the properties of the system based on which phase it is in. In percolation theory one 

of the important aspects is the phase transition phenomena and its order. In general, 

the phase transition is called first-order if the system shows discontinuous 
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characteristics during phase change. Otherwise, it is called second-order. To give 

insight into phase order the resemblance comes from thermodynamics; for example 

in thermodynamics, the first-order system shows temperature-fixed phase change 

either energy is absorbed or emitted. In the second-order system, the transition 

occurs in a continuous fashion. The entropy and energy of the system change 

gradually.  

In percolation theory, the order of the system is the ratio of the largest cluster to the 

size of the system. If 𝑁𝑁 is the total nodes in the lattice and 𝐶𝐶 is the largest cluster 

with |𝐶𝐶| nodes, the order 𝑠𝑠 is given by [45] 

𝑠𝑠 =
|𝐶𝐶|
𝑁𝑁

. 
3.4 

 

In literature, there are various percolation types; continuum percolation, site and 

bond percolation, invasion percolation, etc. In classical percolation theory, all these 

percolation types exhibit second-order transition [44]. However, in recent research, 

Achlioptas et [37] al describe a new method during the selection of occupation sites 

in a network that produce the first-order transition and this percolation type is 

called Explosive Percolation (EP). 

In the following subsections, the details and critical exponents of percolation 

theory and explosive percolation theory are shared. 

3.2.1 Percolation Theory Basics 

In classical percolation, the randomly occupying sites (site percolation) and bonds 

(bond percolation) are two basic versions of percolation theory on a lattice. This 

randomness is sustained with the occupation probability 𝑝𝑝. As 𝑝𝑝 increases more 

and more clusters emerge and unite. When 𝑝𝑝 reaches the critical value 𝑝𝑝𝑑𝑑 a giant 

cluster emerges in a way that connects two ends of the cluster. The cluster can be 

an infinite size or a finite size. Currently, we focus on site percolation, however, 
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the same principles can be applied to bond percolation. In Figure 3.2, we depict the 

site percolation process with the critical percolation threshold. 

 

 

Figure 3.2. Site percolation process with the critical percolation threshold 𝑝𝑝𝑑𝑑 

Near the critical threshold value 𝑝𝑝𝑑𝑑, there exists a set of numbers called critical 

exponents that show the behavior of percolation [45]. The first one is the 𝛽𝛽 

exponent which takes its role to show the relation between order number and 

occupation probability. 

𝑠𝑠(𝑝𝑝) ~ (𝑝𝑝 − 𝑝𝑝𝑑𝑑)𝛽𝛽 3.5 

The average size cluster ⟨𝑠𝑠⟩ is defined with 𝛾𝛾 which is shown in Equation 3.6. 

⟨𝑠𝑠⟩(𝑝𝑝) ~ (𝑝𝑝 − 𝑝𝑝𝑑𝑑)−𝛾𝛾 3.6 

The correlation length which is defined as the mean distance between two sites is 

described with 𝜈𝜈. 

𝜉𝜉(𝑝𝑝) ~ |𝑝𝑝 − 𝑝𝑝𝑑𝑑|−𝜈𝜈 3.7 

1 

|𝐶𝐶|
𝑁𝑁

 

𝑝𝑝𝑑𝑑 



 
 

33 

These parameters have a special property that they are only dependent on 

dimension 𝑟𝑟 of the lattice. They are free from the configuration of the lattice.  

In a site percolation with a lattice of dimension 𝑟𝑟, let's take the side length with 𝐿𝐿. 

Then we will have 𝐿𝐿𝑑𝑑 sites in the lattice. The occupancy probability of each site is 

symbolized with 𝑝𝑝. We define 𝑋𝑋𝑑𝑑 to represent if a site is occupied or not. If it is 

occupied 𝑋𝑋𝑑𝑑 = 1, otherwise 𝑋𝑋𝑑𝑑 = 0. The total number of occupied cells is then 

∑ 𝑋𝑋𝑑𝑑𝑑𝑑 . From occupation probability, this should be expected to equal 𝐿𝐿𝑑𝑑𝑝𝑝. The 

cluster with size 𝑠𝑠 can be defined as having 𝑠𝑠 occupied cells in the lattice. If the 

total number of clusters with size 𝑠𝑠 is represented with 𝑁𝑁𝑟𝑟, we can define the 

probability of any given site as a part of a cluster with size 𝑠𝑠: 

𝑅𝑅𝑟𝑟 =
𝑁𝑁𝑆𝑆
𝐿𝐿𝑑𝑑

 3.8 

�𝑠𝑠𝑅𝑅𝑟𝑟
𝑟𝑟

 3.9 

𝑠𝑠𝑅𝑅𝑟𝑟
∑ 𝑠𝑠′𝑅𝑅𝑟𝑟′𝑟𝑟′

 3.10 

Also, the average cluster size can be computed with the following equation: 

⟨𝑠𝑠⟩ =  �𝑠𝑠
𝑟𝑟

𝑠𝑠𝑅𝑅𝑟𝑟
∑ 𝑠𝑠′𝑅𝑅𝑟𝑟′𝑟𝑟′

 3.11 

3.2.2 Explosive Percolation 

In the year 2000, Dimitris Achlioptas proposed a method for the evaluation of a 

large cluster in percolation. The aim is to control cluster size |𝐶𝐶| on the onset of 

percolation in a way that it is delayed until the emergence. This process called as 

Achlioptas process. The first application and test of the Achlioptas process were 

conducted by Tom Bohman and Alan Frieze. This study shows the delay of the 

giant cluster on the Bohman-Frieze model. The algorithm is based on the selection 

of edges that connects two isolated nodes in a cluster. In this way, the percolation 
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threshold delaying was proved. In 2009, Dimitris Achlioptas, Raissa M. D’Souza, 

and Joel Spencer proposed the Product Rule (PR) during the evaluation of the 

selection of edges in a network. The process can be summarized as follow (Figure 

3.3 (a)): 

• Let edge 𝑠𝑠𝑑𝑑 connects two clusters 𝐶𝐶(𝑠𝑠𝑑𝑑1) and 𝐶𝐶(𝑠𝑠𝑑𝑑2) at time 𝑡𝑡 

• Let edge 𝑠𝑠𝑑𝑑′ connects another two clusters 𝐶𝐶(𝑠𝑠𝑑𝑑′1) and 𝐶𝐶(𝑠𝑠𝑑𝑑′2) at time 𝑡𝑡 

• Then 𝑠𝑠𝑑𝑑 is the selected edge if | 𝐶𝐶(𝑠𝑠𝑑𝑑1)||𝐶𝐶(𝑠𝑠𝑑𝑑2)| < | 𝐶𝐶(𝑠𝑠𝑑𝑑1)||𝐶𝐶(𝑠𝑠𝑑𝑑2)|. 

Otherwise 𝑠𝑠𝑑𝑑′ is accepted. 

Algorithm 8: Product Rule(𝑅𝑅) 

1: 𝐴𝐴 =  ∅  

2: 𝑡𝑡 = 1  

3: 𝑊𝑊ℎ𝑖𝑖𝑠𝑠𝑠𝑠 𝑡𝑡 ≤ 𝑅𝑅  

4:  𝑖𝑖𝑓𝑓  | 𝐶𝐶(𝑠𝑠𝑑𝑑1)||𝐶𝐶(𝑠𝑠𝑑𝑑2)| < | 𝐶𝐶(𝑠𝑠𝑑𝑑1)||𝐶𝐶(𝑠𝑠𝑑𝑑2)|.  

5:   𝐴𝐴 = 𝐴𝐴 ∪ {𝑠𝑠𝑑𝑑}  

6:   𝑡𝑡 = 𝑡𝑡 + 1  

7:  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

8   𝐴𝐴 = 𝐴𝐴 ∪ {𝑠𝑠𝑑𝑑′}  

9   𝑡𝑡 = 𝑡𝑡 + 1  

10  𝑠𝑠𝑅𝑅𝑟𝑟𝑖𝑖𝑓𝑓  

11 𝑠𝑠𝑅𝑅𝑟𝑟𝑤𝑤ℎ𝑖𝑖𝑠𝑠𝑠𝑠  

 

The comparison of the product rule (PR), Bohman-Frieze (BF) model, and Erdos-

Rényi (ER) model can be shown in Figure 3.3 (b). Erdos-Rényi (ER) model is the 

random edge selection on a network in classical percolation. The order parameter 

is 0 until 𝑝𝑝𝑑𝑑 = 0.5 for ER the model. In the BF model, it is delayed for a certain 

value 𝑝𝑝𝑑𝑑. In the product rule, we can observe this value is delayed until 𝑝𝑝𝑑𝑑 = 0.88. 
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Moreover, after the critical point, the order parameter reaches discontinuously 

larger order values.  

The debate about the discontinuous behavior of the Achlioptas process is still 

ongoing [45], however, it is obvious that the product selection rule can be used to 

control the emergence of a large cluster in a network. At the critical point, clusters 

are waiting to merge, therefore, after the critical point, the connection of edges 

results in an abrupt global connection. The rules can be varied in selection. In 

basics, there are two rules used in selection: product rule and sum rule. 

 
(a) 

 
(b) 

 

Figure 3.3. (a) The node selection in a network. (b)The comparison of the order 

parameter of ER, PR, and BF methods. 

The explosive percolation proposed by Achlioptas was investigated on a network. 

This situation can be extended to site and bond percolation. In our case, we focus 

on the explosive site percolation due to the correspondence with the occupancy 

grid map. The details of the selection on an occupancy grid map can be found in 

Chapter 4. 
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CHAPTER 4  

4 EXPLOSIVE PERCOLATION-BASED SLAM 

4.1 General 

In our proposed method, a novel active SLAM approach based on explosive 

percolation is presented towards navigation within highly complex unstructured 

environments for SAR operations. In a disaster region, the SAR robot has no initial 

information about the environmental structure. It needs to navigate within debris 

and extract a safe and robust path without being trapped within rubbles and a map 

of the environment to be utilized by SAR teams until reaching the victim's location. 

During search, the SAR robot should avoid dead-ends and obstacles and adapt to 

the dynamic environment by updating its local map in case of debris collapses. 

These are the crucial challenges that robot encounters in SAR mission. With the 

help of the explosive percolation-based active SLAM approach, the SAR robot 

overcomes the problems to reach the victim's location safely. 

The general structure of the proposed approach is given in Figure 4.1. Our 

approach consists of the successive stages to perform the SAR operation in a 

disaster region. 

 
Figure 4.1. An Overview of explosive percolation enhanced FastSLAM. 
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The stages can be considered under two main parts: The first block belongs to the 

FastSLAM 2.0 algorithm which performs iteration of robot states using a motion 

model, measurements of the environment by LIDAR at each robot state, and the 

creation of an occupancy grid map. This block accepts the parameter initialization 

values as input and gives the occupancy grid map and particles of robot and 

obstacle states as output. Also, the particle filter variance control is realized in this 

block to increase the diversity of particles. In the second block, the explosive 

percolation search is performed according to the vital signal found and path-end 

detection criteria. Firstly this block accepts the occupancy grid with particle filter 

states. If the path-end is not detected, the path following control algorithm 

feedbacks motion control input to the robot motion model, and the loop is closed. If 

the path end is detected, the location is checked whether the vital signal is found or 

not. If the vital signal is found the process is succeeded. If it is not, then the frontier 

detection algorithm is utilized on the occupancy map to detect the target point, then 

the explosive percolation path detection is used to generate a percolation path to the 

target point on the occupancy grid map. After path generation and smoothing 

algorithms, the path following control algorithm is run again to sustain control 

input to robot motion mode to close the loop. 

In this section, we present the details of our approach and how we implement the 

explosive percolation to SLAM with the given algorithms in Figure 4.1. The basics 

of FastSLAM 2.0 algorithms with particle filter and percolation are given in 

Chapter 3 separately. Therefore, in this part, we focus on the enhancement of the 

FastSLAM 2.0 algorithm to handle multiple landmarks measurement and the 

implementation of the explosive percolation method to the enhanced version of 

FastSLAM 2.0 algorithm to realize our main goal of exploiting the unexplored 

voids to percolate into the unknown region of the map and to reach the victim as 

soon as possible. In essence, the implementation of explosive percolation comes 

with decision points at the searching stage in block 2. To understand the process, 

let's imagine highly unstructured and complex debris. If a robot does not reach a 

pre-determined target point, it continues to follow the path with the path following 
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control algorithm until reaches that point. However, if the robot succeeds reaching 

in the target point, it checks whether the selected target point is a victim’s location 

or not. If this target point is the victim’s location, then the procedure is stopped, 

and the safe path among rubbles with the map of debris is transmitted to the SAR 

team. Otherwise, the robot selects a new target point within the field of view of 

LIDAR. The unexplored regions with high entropy values are selected as target 

points to explore the region further. In this way, we can reach the outermost 

regions in the searching area and increase the probability of finding a vital signal. 

After frontier target detection on the occupancy grid map, the explosive percolation 

is utilized to obtain a safe and obstacle-free path within the voids of rubbles. 

Because of that, our main objective is to reach the victim as fast as possible, we 

exploit the unexplored voids to percolate into the unknown region of the map. 

However, the extracted path on the occupancy map is highly intended to be 

followed by the robot with the path following control algorithm. Thus, we perform 

path pruning and smoothing processes on the found path. After that, path control 

feeds the control parameters to robot motion to continue the process until the 

victim's vital signal is detected. 

In the rest of this chapter, the mentioned algorithms are discussed in detail with 

example scenarios. 

4.2 Enhancement of FastSLAM 2.0 

The FastSLAM 2.0 algorithm, given in Algorithm 7 in Chapter 3, has limitations to 

be applied for multiple detections of landmark locations. As indicated in Chapter 3, 

this algorithm uses single measurement at a time. However, when LIDAR sweeps a 

certain area within its field of view, multiple landmark points are extracted from 

LIDAR point cloud data. To handle this situation, we have to modify the given 

FastSLAM 2.0 algorithm of [18] towards a methodology that handles multiple 

measurements at a time and updates all particles in the particle filter with each 

landmark measurement. 
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Before going into the enhancement of FastSLAM 2.0 algorithm, as we know from 

Chapter 3, the FastSLAM algorithm uses a particle filter to update robot and 

landmark states. Therefore, each particle should include the robot and landmarks 

states. In that perspective, the particle structure in the SLAM algorithm is 

constructed as in Equation 4.1. 

𝑝𝑝𝑘𝑘 =  ��
𝑥𝑥 𝑁𝑁
𝑦𝑦 0
𝜃𝜃 0

� �
𝜇𝜇𝑥𝑥 Σ11 Σ12 Σ13 𝑖𝑖
𝜇𝜇𝑦𝑦 Σ21 Σ22 Σ23 0
𝜇𝜇𝑟𝑟 Σ31 Σ32 Σ33 0

�

1

⋯ �
𝜇𝜇𝑥𝑥 Σ11 Σ12 Σ13 𝑖𝑖
𝜇𝜇𝑦𝑦 Σ21 Σ22 Σ23 0
𝜇𝜇𝑟𝑟 Σ31 Σ32 Σ33 0

�

𝑁𝑁

�

𝑘𝑘

, 

 

4-1 

where  

• 𝑝𝑝𝑘𝑘 symbolizes the k-th particle. 

• 𝑥𝑥,𝑦𝑦,𝜃𝜃 stand for estimated position and orientation of robot in 2D space at 

the k-th particle. 

• 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦, 𝜇𝜇𝑟𝑟 are estimated position and identification of a landmark. The 

identification means that a numerical value symbolizes the distinctive 

properties of the landmark such as order number, RGB value, and multi-

dimensional vector characterizing the landmark. 

• Σ𝑑𝑑𝑗𝑗 stands for the covariance matrix elements for a landmark. i is the total 

encountered number of the specific landmark. If the encountered number 

diminishes to 0, then this observed landmark is considered a noisy 

parameter or dynamic object. Therefore, a such landmark that has low 

reliability is removed from the particle set. 

• 𝑁𝑁 is the total landmark number in the k-th particle. 

The FastSLAM 2.0 introduced in Chapter 3 is improved according to the given 

pseudo algorithm below. To be able to process the observed multiple landmarks, 

we have to iterate the Kalman Filter update stage of Algorithm 7 in Section 3.1.4 

for each landmark. As shown in Algorithm 9, in lines 4 and 5 we calculate the 

correspondence likelihood and new feature detection as in Algorithm 7. However, 

different from Algorithm 7, notice that in line 3, we iterate the measurement update 
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for each measurement landmark which does not exist in Algorithm 7. Also, 

between lines 11-19, we add else criteria to check the conditions of the landmark. 

These conditions can be such that the landmark is observed before and not in the 

field of view and at that moment the landmark is measured and updated and it 

should not be updated twice. In this way, we avoid repetitive updates of the 

Kalman Filter for the same landmark. If the landmark which is supposed to be 

observed is not detected within the LIDAR cone, the landmark counter is 

diminished in line 16. If this counter is smaller than 0, this means that the landmark 

is not a solid one and should be discarded. The whole process is repeated for each 

landmark to update its Kalman Filter parameters. 

Algorithm 9: Enhanced FastSLAM 2.0 Algorithm(𝑧𝑧𝑑𝑑,𝑢𝑢𝑑𝑑 ,𝑌𝑌𝑑𝑑−1) 

1: 𝐼𝐼𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑧𝑧𝑠𝑠𝑡𝑡𝑖𝑖𝑓𝑓𝑅𝑅 𝑓𝑓𝑓𝑓 𝑃𝑃𝑠𝑠𝑟𝑟𝑡𝑡𝑖𝑖𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 (𝐸𝐸𝐸𝐸𝑢𝑢𝑠𝑠𝑡𝑡𝑖𝑖𝑓𝑓𝑅𝑅 4 − 1)  

2: 𝑓𝑓𝑓𝑓𝑟𝑟 𝑠𝑠𝑠𝑠𝑝𝑝ℎ 𝑝𝑝𝑠𝑠𝑟𝑟𝑡𝑡𝑖𝑖𝑝𝑝𝑠𝑠𝑠𝑠 𝑘𝑘 = 1:𝐾𝐾  

3:  𝑓𝑓𝑓𝑓𝑟𝑟 𝑠𝑠𝑠𝑠𝑝𝑝ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡 𝑠𝑠𝑠𝑠𝑅𝑅𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑘𝑘 𝑠𝑠 = 1:𝑀𝑀  

4:   𝐶𝐶𝑓𝑓𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝𝑓𝑓𝑅𝑅𝑟𝑟𝑠𝑠𝑅𝑅𝑝𝑝𝑠𝑠 𝑠𝑠𝑖𝑖𝑘𝑘𝑠𝑠𝑠𝑠𝑖𝑖ℎ𝑓𝑓𝑓𝑓𝑟𝑟 𝐸𝐸𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑓𝑓𝑅𝑅 (𝐴𝐴𝑠𝑠𝑎𝑎𝑓𝑓𝑟𝑟𝑖𝑖𝑡𝑡ℎ𝑠𝑠 7 𝐿𝐿𝑖𝑖𝑅𝑅𝑠𝑠𝑠𝑠 3 − 14)  

5:   𝐷𝐷𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝𝑡𝑡𝑖𝑖𝑓𝑓𝑅𝑅 𝑓𝑓𝑓𝑓 𝑁𝑁𝑠𝑠𝑤𝑤 𝐹𝐹𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑠𝑠 (𝐴𝐴𝑠𝑠𝑎𝑎𝑓𝑓𝑟𝑟𝑖𝑖𝑡𝑡ℎ𝑠𝑠 7 𝐿𝐿𝑖𝑖𝑅𝑅𝑠𝑠𝑠𝑠 15 − 17)  

6:   𝐼𝐼𝑓𝑓 𝑅𝑅𝑠𝑠𝑤𝑤 𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑠𝑠 𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝𝑡𝑡𝑠𝑠𝑟𝑟   

7:    𝐶𝐶𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠 𝑅𝑅𝑠𝑠𝑤𝑤 𝑠𝑠𝑠𝑠𝑅𝑅𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑘𝑘 𝑖𝑖𝑅𝑅 𝑝𝑝𝑠𝑠𝑟𝑟𝑡𝑡𝑖𝑖𝑝𝑝𝑠𝑠𝑠𝑠 𝑘𝑘 (𝐴𝐴𝑠𝑠𝑎𝑎𝑓𝑓𝑟𝑟𝑖𝑖𝑡𝑡ℎ𝑠𝑠 7 𝐿𝐿𝑖𝑖𝑅𝑅𝑠𝑠𝑠𝑠 20 − 25)   

8   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑓𝑓 𝑓𝑓𝑏𝑏𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑠𝑠𝑟𝑟 𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑠𝑠  

9    𝑈𝑈𝑝𝑝𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅 𝑓𝑓𝑖𝑖𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟 𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑠𝑠 𝑓𝑓𝑠𝑠𝑠𝑠𝑡𝑡𝑢𝑢𝑟𝑟𝑠𝑠 𝑖𝑖𝑅𝑅 𝑝𝑝𝑠𝑠𝑟𝑟𝑡𝑡𝑖𝑖𝑝𝑝𝑠𝑠𝑠𝑠 𝑘𝑘 (𝐴𝐴𝑠𝑠𝑎𝑎𝑓𝑓𝑟𝑟𝑖𝑖𝑡𝑡ℎ𝑠𝑠 7 𝐿𝐿𝑖𝑖𝑅𝑅𝑠𝑠𝑠𝑠 27− 33)  

10   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

11    𝑖𝑖𝑓𝑓 𝑓𝑓𝑏𝑏𝑠𝑠𝑠𝑠𝑟𝑟𝑣𝑣𝑠𝑠𝑟𝑟 𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑘𝑘 𝑠𝑠𝑅𝑅𝑟𝑟 𝑅𝑅𝑓𝑓𝑡𝑡 𝑖𝑖𝑅𝑅 𝑡𝑡ℎ𝑠𝑠 𝑓𝑓𝑖𝑖𝑠𝑠𝑠𝑠𝑟𝑟 𝑓𝑓𝑓𝑓 𝑣𝑣𝑖𝑖𝑠𝑠𝑤𝑤 𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑅𝑅𝑠𝑠𝑓𝑓𝑟𝑟  

12     𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑘𝑘 𝑝𝑝𝑓𝑓𝑢𝑢𝑅𝑅𝑡𝑡𝑠𝑠𝑟𝑟 𝑖𝑖 𝑠𝑠𝑡𝑡𝑠𝑠𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

13    𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑓𝑓 𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑘𝑘 𝑤𝑤𝑖𝑖𝑡𝑡ℎ𝑖𝑖𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑢𝑢𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅𝑡𝑡𝑠𝑠 𝑠𝑠𝑅𝑅𝑟𝑟 𝑢𝑢𝑝𝑝𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟  

14     𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑘𝑘 𝑝𝑝𝑓𝑓𝑢𝑢𝑅𝑅𝑡𝑡𝑠𝑠𝑟𝑟 𝑖𝑖 𝑠𝑠𝑡𝑡𝑠𝑠𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

15    𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

16     𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑘𝑘 𝑝𝑝𝑓𝑓𝑢𝑢𝑅𝑅𝑡𝑡𝑠𝑠𝑟𝑟 𝑖𝑖 = 𝑖𝑖 − 1  

17     𝑖𝑖𝑓𝑓 𝑖𝑖 < 0  

18      𝑟𝑟𝑖𝑖𝑠𝑠𝑝𝑝𝑠𝑠𝑟𝑟𝑟𝑟 𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑘𝑘  
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19     𝑠𝑠𝑅𝑅𝑟𝑟  

20    𝑠𝑠𝑅𝑅𝑟𝑟  

21   𝑠𝑠𝑅𝑅𝑟𝑟  

22  𝑠𝑠𝑅𝑅𝑟𝑟  

23 𝑠𝑠𝑅𝑅𝑟𝑟  

24 𝑅𝑅𝑢𝑢𝑅𝑅 𝑠𝑠𝑓𝑓𝑤𝑤 𝑣𝑣𝑠𝑠𝑟𝑟𝑖𝑖𝑠𝑠𝑅𝑅𝑝𝑝𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠 (𝐴𝐴𝑠𝑠𝑎𝑎𝑓𝑓𝑟𝑟𝑖𝑖𝑡𝑡ℎ𝑠𝑠 6)  

 

To better understand the process, on a simple map the particle structure 

propagation and their update sequence are shared below. In Figure 4.2, the robot's 

location on the simple map and the robot's local occupancy grid map with 

landmark locations is depicted. The landmark locations are indicated with green 

circles. The observed landmarks are determined according to the corner points of 

the obstacles. The details about the determination of landmarks are given in 

subsection 4.3. In this scenario, we observe three distinct landmark locations and in 

Table 4.1 their estimated position values at each particle are given for the initial 

time 𝑡𝑡 = 0. For computational power reasons we select 10 particles constructed as 

in Equation 4-1.  

At the beginning of Algorithm 9, each particle structure (Equation 4-1) is 

initialized with 3x2 zero matrix (Line 1). The first column represents the position 

states of the robot and the second column represents the total landmark 𝑁𝑁 which is 

0 initially.  

With the initial measurement of LIDAR, we detect 3 distinct landmark locations 

given in Figure 4.2. In line 2, the 𝑀𝑀 value is equal to 3. 

For the initial landmark point in local coordinates 𝐿𝐿1𝐿𝐿𝑑𝑑𝑑𝑑𝑟𝑟𝐿𝐿 =  [43,67 − 22.04], the 

correspondence likelihood estimation 𝜋𝜋𝑗𝑗 (Algorithm 9 Line 4) is equal to 0, 

because there is no previous measurement that resembles the current landmark. 

Therefore the first landmark is identified as a new landmark (Algorithm 9 Line 5). 
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Line 7 in Algorithm 9 is activated and the new landmark is created for the first 

particle 𝑝𝑝1 (where 𝑘𝑘 = 1). 

𝑝𝑝1 =  ��
0.0047 1
0.0222 0
−0.0047 0

� �
43.6723 0.0001 0.0019 0 1
−22.0473 0.0019 0.0506 0 0

0.9995 0 0 0 0
��
1

 

Because there is no previous observed feature in Line 8, and there is no condition 

to satisfy the criteria as in Lines 11,13 and 15 in else condition in Algorithm 9, 

these are passed in the algorithm for this case. The covariance estimation for 𝐿𝐿1𝐿𝐿𝑑𝑑𝑑𝑑𝑟𝑟𝐿𝐿 

is calculated according to Algorithm 7 between Lines 20-25 in Section 3.1.4. After 

the first landmark detection, 𝑁𝑁 is equal to 1, and for iteration, 𝑠𝑠 is equal to 1 and 𝑘𝑘 

is equal to 1. 

In a similar way, the second landmark 𝐿𝐿2𝐿𝐿𝑑𝑑𝑑𝑑𝑟𝑟𝐿𝐿 =  [14.04 − 1.13] is processed 

between Lines 3-5. The correspondence likelihood estimation 𝜋𝜋𝑗𝑗 (Algorithm 9 Line 

4) is equal to 0 again, because the 𝐿𝐿2𝐿𝐿𝑑𝑑𝑑𝑑𝑟𝑟𝐿𝐿 is not the same landmark with 𝐿𝐿1𝐿𝐿𝑑𝑑𝑑𝑑𝑟𝑟𝐿𝐿 and 

the correspondence likelihood estimation with respect to other observed landmarks 

will give 0 value. If it is observed before, the likelihood estimation will give a 

value close to 1. With the same process as in 𝐿𝐿1𝐿𝐿𝑑𝑑𝑑𝑑𝑟𝑟𝐿𝐿, 𝐿𝐿2𝐿𝐿𝑑𝑑𝑑𝑑𝑟𝑟𝐿𝐿 is added to 𝑝𝑝1 as a new 

landmark.  

𝑝𝑝1 =  ��
0.0047 2
0.0222 0
−0.0047 0

� �
43.6723 0.0001 0.0019 0 1
−22.0473 0.0019 0.0506 0 0

0.9995 0 0 0 0
� �

14.0444 0.0001 0.0002 0 1
1.1354 0.0002 0.0007 0 0
1.0009 0 0 0 0

��
1

 

After the second landmark detection, 𝑁𝑁 is equal to 2, and for iteration, 𝑠𝑠 is equal 

to 2 and 𝑘𝑘 is equal to 1. Finally, the third landmark 𝐿𝐿3𝐿𝐿𝑑𝑑𝑑𝑑𝑟𝑟𝐿𝐿 =  [29.21 22.72] is 

processed between Lines 3-5 and detected a new landmark according to 𝜋𝜋𝑗𝑗 = 0. 

The final structure of 𝑝𝑝1 at time 𝑡𝑡 = 0 is then, 

𝑝𝑝1 = ��
0.0047 3
0.0222 0
−0.0047 0

� �
43.6723 0.0001 0.0019 0 1
−22.0473 0.0019 0.0506 0 0

0.9995 0 0 0 0
� �

14.0444 0.0001 0.0002 0 1
1.1354 0.0002 0.0007 0 0
1.0009 0 0 0 0

� �
29.2167 0.0001 −0.0018 0 1
22.7258 −0.0018 0.0524 0 0
0.9997 0 0 0 0

��
1

 

After the third landmark detection, 𝑁𝑁 is equal to 3, and for iteration, 𝑠𝑠 is equal to 3 

and 𝑘𝑘 is equal to 1. This process is continued until all particle 𝑘𝑘 = 1. .10 is 

processed. After the all particles are calculated according to Algorithm 9, we will 
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obtain a structure like in Table 4.1. The first column consists of the robot's 

estimated initial position states. The other columns include the landmarks' 

estimated positions and covariance matrices with landmark counter. Each particle 

estimates multiple landmark points according to given Algorithm 9 at the initial 

time. 

(a) 
 

(b) 

Figure 4.2. (a) Robot in global map with LIDAR raycasting. (b) Robot local map 

with landmark indicated with green dots. 

Table 4.1 Particle filter propagation with the measurement at initial time 𝑡𝑡 = 0. 

 𝑅𝑅𝑓𝑓𝑏𝑏𝑓𝑓𝑡𝑡 𝑆𝑆𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 1𝑟𝑟𝑑𝑑𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑘𝑘 2𝑑𝑑𝑑𝑑𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑘𝑘 3𝑟𝑟𝑑𝑑𝐿𝐿𝑠𝑠𝑅𝑅𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑘𝑘 

𝑝𝑝1 ��
0.0047 3
0.0222 0
−0.0047 0

� �
43.6723 0.0001 0.0019 0 1
−22.0473 0.0019 0.0506 0 0

0.9995 0 0 0 0
� �

14.0444 0.0001 0.0002 0 1
1.1354 0.0002 0.0007 0 0
1.0009 0 0 0 0

� �
29.2167 0.0001 −0.0018 0 1
22.7258 −0.0018 0.0524 0 0
0.9997 0 0 0 0

��
1

 

𝑝𝑝2  ��
0.0289 3
−0.0390 0
0.2567 0

�   �
43.7968 0.0001 0.0019 0 1
−21.9091 0.0019 0.0497 0 0

0.9995 0 0 0 0
� �

14.0358 0.0001 0.0002 0 1
1.0988 0.0002 0.0007 0 0
 1.0009 0 0 0 0

� �
29.1371 0.0001 −0.0018 0 1
22.7976 −0.0018  0.0530 0 0
0.9997 0 0 0 0

��
2

 

𝑝𝑝3 ��
0.0427 3
−0.0267 0
0.0484 0

� �
43.7308 0.0001 0.0019 0 1
−22.0557 0.0019 0.0504 0 0

0.9995 0 0 0 0
� �

14.0439 0.0001 0.0002 0 1
1.1756 0.0002 0.0007 0 0
1.0009 0 0 0 0

� �
29.2338 0.0001 −0.0018 0 1
22.7039 −0.0018  0.0525 0 0
0.9997 0 0 0 0

��
3

 

𝑝𝑝4 ��
0.0438 3
0.0151 0
−0.1734 0

� �
43.6463 0.0001 0.0020 0 1
−22.1829 0.0020 0.0512 0 0

0.9995 0 0 0 0
� �

13.9964 0.0001 0.0002 0 1
1.0669 0.0002 0.0008 0 0
1.0009 0 0 0 0

� �
29.3227 0.0001 −0.0018 0 1
22.6325 −0.0018  0.0520 0 0
0.9997 0 0 0 0

��
4

 

𝑝𝑝5 ��
0.0166 3
−0.0440 0
−0.1643 0

� �
43.6226 0.0001 0.0020 0 1
−22.2351 0.0020 0.0511 0 0

0.9995 0 0 0 0
� �

14.0132 0.0001 0.0002 0 1
1.0748 0.0002 0.0008 0 0
1.0009 0 0 0 0

� �
29.2918 0.0001 −0.0018 0 1
22.5781 −0.0018 0.0521 0 0
0.9997 0 0 0 0

��
5

 

𝑝𝑝6 ��
0.0446 3
0.0351 0
0.2785 0

�    �
43.8208 0.0001 0.0019 0 1
−21.8184 0.0019 0.0497 0 0

0.9995 0 0 0 0
�  �

13.9904 0.0001 0.0002 0 1
1.1928 0.0002 0.0007 0 0

 1.0009 0 0 0 0
� �

29.1441 0.0001 −0.0018 0 1
22.8827 −0.0018 0.0531 0 0
0.9997 0 0 0 0

��
6

 

𝑝𝑝7 ��
−0.0401 3
0.0077 0
0.1898 0

� �
43.7021 0.0001 0.0019 0 1
−21.9135 0.0019 0.0499 0 0

0.9995 0 0 0 0
� �

14.03363 0.0001 0.0002 0 1
1.0817 0.0002 0.0007 0 0
1.0009 0 0 0 0

� �
29.0947 0.0001 −0.0018 0 1
22.8103 −0.0018 0.0529 0 0
0.9997 0 0 0 0

��
7

 

𝑝𝑝8 ��
−0.0335 3
0.0257 0
0.1510 0

� �
43.6940 0.0001 0.0019 0 1
−21.9251 0.0019 0.0501 0 0

0.9995 0 0 0 0
� �

14.0834 0.0001 0.0002 0 1
1.0383 0.0002 0.0007 0 0
1.0009 0 0 0 0

� �
29.1168 0.0001 −0.0018 0 1
22.8086 −0.0018 0.0528 0 0
0.9997 0 0 0 0

��
8
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Table 4.1 (continued) 

𝑝𝑝9 ��
0.0334 3
0.0244 0
−0.2070 0

� �
43.6228 0.0001 0.0020 0 1
−22.1992 0.0020 0.0513 0 0

0.9995 0 0 0 0
� �

13.9960 0.0001 0.0002 0 1
1.1289 0.0002 0.0008 0 0
1.0009 0 0 0 0

� �
29.3255 0.0001 −0.0018 0 1
22.6247 −0.0018 0.0520 0 0
0.9997 0 0 0 0

��
9

 

𝑝𝑝10 ��
−0.0034 3
0.0210 0
0.0803 0

� �
43.6970 0.0001 0.0019 0 1
−21.9836 0.0019 0.0503 0 0

0.9995 0 0 0 0
� �

14.0697 0.0001 0.0002 0 1
1.0555 0.0002 0.0007 0 0
1.0009 0 0 0 0

� �
29.1750 0.0001  −0.0018 0 1
22.7679 −0.0018 0.0526 0 0
0.9997 0 0 0 0

��
10

 

4.3 Landmark Detection 

Raw sensor measurements should be converted into meaningful features to be used 

in the FastSLAM as landmarks. In the case of LIDAR, raw sensor measurements 

are point cloud data obtained from raycasting. To convert raw sensor 

measurements into features we apply a feature extraction algorithm. 

In the literature, common techniques to extract features are based on identifying 

lines, corners, or specific objects with patterns or appearance. In our study, we 

select sharp corner points as features to identify landmarks. The reason is that in 

SAR operations over disaster regions such as earthquake rubbles, we encounter 

highly indented surfaces and structures. There are no regular surfaces or lines to be 

utilized for landmark positions in such a disaster area. Also, we could have used 

the occupancy grid map points as landmark points during the search, however, 

because the computational burden of observing multiple occupancy grid sites in 

searching increases the size of particle filter structure (Equation 4-1) larger than 

observing the corner points, we prefer using the corner points as landmark points 

which sustains us a distilled version of landmark extraction. Therefore, we convert 

raw sensor measurement to corner features with a feature extraction algorithm and 

then, the found feature locations are fed into 𝑓𝑓(𝑧𝑧𝑑𝑑) given in Equation 3.1 in Chapter 

3 (given below) to represent the feature-based sensor model. 

�
𝑟𝑟𝑑𝑑𝑑𝑑

𝜙𝜙𝑑𝑑𝑑𝑑

𝑠𝑠𝑑𝑑𝑑𝑑
� =  

⎣
⎢
⎢
⎡ ��𝑠𝑠𝑑𝑑,𝑥𝑥 − 𝑥𝑥�

2
+ �𝑠𝑠𝑑𝑑,𝑦𝑦 − 𝑦𝑦�

2
   

𝑠𝑠𝑡𝑡𝑠𝑠𝑅𝑅2�𝑠𝑠𝑑𝑑,𝑦𝑦 − 𝑦𝑦,𝑠𝑠𝑑𝑑,𝑥𝑥 − 𝑥𝑥� − 𝜃𝜃
𝑠𝑠𝑑𝑑 ⎦

⎥
⎥
⎤

+ �
𝜖𝜖𝜎𝜎𝑟𝑟2
𝜖𝜖𝜎𝜎𝜙𝜙2
𝜖𝜖𝜎𝜎𝑠𝑠2

�   
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The feature extraction algorithm detects corner points by using the REE algorithm 

[46]. REE algorithm name comes from the usage of one rectangle and two ellipses 

on a point cloud. REE slides on the boundary of the point cloud shape and detects 

the corner points on the shape. The rectangle 𝑅𝑅 embeds two ellipses 𝐸𝐸1 and 𝐸𝐸2 such 

that 𝑅𝑅 ⊃ 𝐸𝐸1 ⊃ 𝐸𝐸2 as in Figure 4.3 (a). In Figure 4.3 (b), the snapshot of an REE 

structure on an arbitrary point cloud boundary of a shape is depicted. 

 

Figure 4.3. (a) Structure of REE algorithm. (b) Snapshot of the REE shape on an 

irregular boundary. 

The relation between the rectangle and ellipses is given in Equation 4.2. 

𝑅𝑅 = 2𝐴𝐴 × 2𝐵𝐵 

4-2 
𝐸𝐸1 = 𝜋𝜋 ×

3𝐴𝐴
4

× 𝐵𝐵 

𝐸𝐸2 = 𝜋𝜋 ×
3𝐴𝐴
4

×
𝐵𝐵
2

 

𝜃𝜃 = 𝑠𝑠𝑠𝑠𝑓𝑓𝑝𝑝𝑠𝑠 𝑓𝑓𝑓𝑓 𝑝𝑝𝑢𝑢𝑟𝑟𝑣𝑣𝑠𝑠 𝑠𝑠𝑡𝑡 𝑝𝑝𝑓𝑓𝑖𝑖𝑅𝑅𝑡𝑡 𝑝𝑝𝑑𝑑 

The semi-minor and semi-major axis of the Ellipse 𝐸𝐸1 is 3𝐴𝐴
4

 and 𝐵𝐵. For the ellipse 

𝐸𝐸2, these values are 3𝐴𝐴
4

 and 𝐵𝐵
2
 respectively. The slope 𝜃𝜃 at 𝑝𝑝𝑑𝑑 is found by calculating 

the fitted line of 𝑅𝑅 points on both sides of 𝑝𝑝𝑖𝑖. Let 𝑅𝑅𝑅𝑅𝑖𝑖 ,𝑅𝑅𝐸𝐸1,𝑖𝑖 , 𝑅𝑅𝐸𝐸2,𝑖𝑖 represent the 

number of curve points within rectangle and ellipses. For each curve point, we run 

the following algorithm to detect the corner point. 

𝐸𝐸1 

𝐸𝐸2 

2𝐵𝐵 

2𝐴𝐴 

𝑝𝑝𝑑𝑑 

(a) (b) 

Point cloud 

REE 
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Algorithm 10: Corner Feature Detection(𝑝𝑝𝑑𝑑) 

1: 𝑓𝑓𝑓𝑓𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝ℎ 𝑝𝑝𝑓𝑓𝑢𝑢𝑅𝑅𝑡𝑡𝑠𝑠𝑟𝑟 𝑝𝑝𝑓𝑓𝑖𝑖𝑅𝑅𝑡𝑡 𝑝𝑝𝑑𝑑  

2:  𝐶𝐶𝑓𝑓𝑢𝑢𝑅𝑅𝑡𝑡 𝑅𝑅𝑅𝑅𝑖𝑖 ,𝑅𝑅𝐸𝐸1,𝑖𝑖 ,𝑅𝑅𝐸𝐸2,𝑖𝑖  

3: 𝑠𝑠𝑅𝑅𝑟𝑟  

4: 𝐶𝐶𝑠𝑠𝑠𝑠𝑝𝑝𝑢𝑢𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠 𝐺𝐺 = �𝑝𝑝𝑑𝑑:𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑅𝑅𝐸𝐸1,𝑖𝑖�  

5: 𝐶𝐶𝑟𝑟𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠 𝑎𝑎𝑟𝑟𝑓𝑓𝑢𝑢𝑝𝑝𝑠𝑠 𝑓𝑓𝑓𝑓 𝑝𝑝𝑓𝑓𝑖𝑖𝑅𝑅𝑡𝑡 𝐺𝐺  

6: 𝑓𝑓𝑓𝑓𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝ℎ 𝑎𝑎𝑟𝑟𝑓𝑓𝑢𝑢𝑝𝑝 𝐺𝐺𝑘𝑘  

7:  𝐶𝐶𝑓𝑓𝑟𝑟𝑅𝑅𝑠𝑠𝑟𝑟 = min
𝑑𝑑𝐸𝐸2,𝑖𝑖

�𝐺𝐺𝑘𝑘,𝑑𝑑: 𝑅𝑅𝐸𝐸2,𝑖𝑖 < 𝜂𝜂�  

8: 𝑠𝑠𝑅𝑅𝑟𝑟  

 

In Algorithm 10, firstly we count the 𝑅𝑅𝑅𝑅𝑖𝑖 ,𝑅𝑅𝐸𝐸1,𝑖𝑖 ,𝑅𝑅𝐸𝐸2,𝑖𝑖 for each point in the point 

cloud set (Lines 1-3). Then, we collect the points that satisfy 𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑅𝑅𝐸𝐸1,𝑖𝑖 and add 

them to set 𝐺𝐺 (Lines 4-5). For each found group 𝐺𝐺𝑘𝑘, they consist of candidate 

corner points. To obtain the actual corner point, a threshold value 𝜂𝜂 is selected. 

Number of points 𝑅𝑅𝐸𝐸2,𝑖𝑖 in  𝐺𝐺𝑘𝑘 which is lower than 𝜂𝜂 represents the corner point with 

index 𝑖𝑖. The details can be found in reference [46]. 

An example scenario in our methodology is given in Figure 4.4. In the previous 

section, landmark points on the local map are shown on particles of the FastSLAM. 
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(a) 

         

(b) 

Figure 4.4. (a) REE algorithm process on a point cloud data obtained from LIDAR 

scan. (b) In the global map, the corner point detection of the triangular shape after 

we apply REE algorithm. 

We select the landmark point on the tip of the triangular shape to show the 

progress. As shown in Figure 4.4 (a) the REE shape slides on each boundary point 

of the triangular shape from the initial point to the endpoint in the direction of the 

arrow. The rectangle is shown with red, inner ellipses 𝐸𝐸1 and 𝐸𝐸2 is shown with 

green and black dash lines respectively. Beginning from the initial point, for each 
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point Line 2 is applied and we count 𝑅𝑅𝑅𝑅𝑖𝑖 ,𝑅𝑅𝐸𝐸1,𝑖𝑖 , 𝑅𝑅𝐸𝐸2,𝑖𝑖 at each point. After that at line 

4, we calculate the points 𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑅𝑅𝐸𝐸1,𝑖𝑖 and add them to set 𝐺𝐺. As in Figure 4.4 (a), 

within rectangle and ellipse 1 𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑅𝑅𝐸𝐸1,𝑖𝑖 = 13. Finally between lines 6-8, the point 

which belongs to minimum  𝑅𝑅𝐸𝐸2,𝑖𝑖 is selected as the corner point. In Figure 4.4 (b), 

as a result of REE process, the corner point is detected at the coordinates 

[109 41.2] on the global map. After this point is obtained as a landmark, we apply 

Equation 3.1 to represent this point in the feature-based measurement model. 

4.4 Frontier Target Selection and Vital Signal Search 

In the SAR exploration strategy, the idea is to build a map of the unknown territory 

and unveil the search world as much as possible in order to detect vital signals. To 

accomplish this task, we need to drive the robot in a certain direction on the map. 

However, the main question here is: how do we determine this direction? The 

direction can be determined towards the boundary between explored and 

unexplored world. This boundary is where new information about the environment 

can begin to be collected. Thus, we select our target points on the boundary of the 

occupancy map where the explored region is separated from the unexplored part of 

the world. In order to detect such target points on the boundary, we use the frontier-

based exploration strategy [47]. 

To detect the frontier cells on the local occupancy map during the search, we need 

to detect the occupancy of each cell. The initial prior probability of each cell before 

discovery is uniformly distributed and equal to 0.5. This value represents 

maximum entropy and minimum knowledge about the occupancy of the cell. The 

occupied cell probability is 𝑝𝑝(𝑠𝑠𝑑𝑑) > 0.5 where 𝑠𝑠𝑑𝑑 represents the cell 𝑖𝑖 in 

occupancy map 𝑀𝑀. With the increasing value of 𝑝𝑝(𝑠𝑠𝑑𝑑) greater than 0.5, we have 

more confidence in the cell being occupied. If a cell is an open cell or empty one, it 

is represented with 𝑝𝑝(𝑠𝑠𝑑𝑑) < 0.5. In each measurement, if the LIDAR raycasting 

does not detect an obstacle in the cell, 𝑝𝑝(𝑠𝑠𝑑𝑑) gets a lower value than 0.5 and finally 
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takes 0 value which indicates that the cell is empty. We separate the frontier cell by 

selecting open cells adjacent to the unknown cell. To understand the process better, 

we will now analyze Figure 4.5. 

 
Figure 4.5. Frontier-based search method on a occupancy grid map. 

The magenta circle shows us the location of the robot. The occupied cells are 

represented with gray (0.5 < 𝑝𝑝(𝑠𝑠𝑑𝑑) < 1) or black color (𝑝𝑝(𝑠𝑠𝑑𝑑) = 1)  cells 

according to their occupancy probability. The yellow cells are the frontier cells of 

the occupancy map at that instance within the field of the LIDAR sensor. To detect 

target points within the frontier cells, we create clusters by separating them 

according to the location and distance of the occupied cell. In other words, to create 

a cluster we select the nearest neighbor empty cells and add them to the cluster. If 

the distance between two empty cells is greater than 𝜂𝜂𝑑𝑑𝐿𝐿𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟, we announce the 

created cell group as a separate cluster. The lower threshold value causes finer 

clusters, however, if we select a larger threshold, this causes gross-size clusters. It 

must be carefully selected. After we create clusters with the selected threshold 

value, the target points are detected by measuring the largest distance cell to robot 

location among each cluster to obtain maximum information. Three blue cross 
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locations in Figure 4.5 indicate these target locations. Because we need to select 

one of them to continue searching, we select the one that has the largest distance to 

the robot location. Under these conditions, we select the target point at the location 

of [69 63] indicated with the arrow on the occupancy map. The distances of other 

target points are presented in Table 4.2. 

Table 4.2 Target points distance values 

Target points Distance to Robot location 

Target Point 1 (Cluster 1) 93.43 

Target Point 2 (Cluster 2) 37.34 

Target Point 3 (Cluster 3) 90.07 

 

What if we have a vital signal near our search area and we detect this vital signal at 

a distance from the robot location, how will this affect our target selection? To 

answer this question, we need to mention how we represent the vital signal on the 

occupancy map. In our research, we assume that a SAR robot has a vital signal 

detection circle with a determined radius and the vital signal of a victim has a 

certain radius of emission to be detected by the SAR robot. Figure 4.6 depicts the 

situation on the global map. 

 

Figure 4.6. The blue circle represents the robot searching radius. The red circle 

represents the vital signal of the victim emission range. 
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The detection of the vital signal by the robot directly affects the target point 

selection criteria. If the vital signal is in the direct line of sight of the robot, the 

target point is selected as the location of the victim. However, if the robot's vital 

detection circle and the vital signal emission circle of the victim are intersected, the 

closer target point to the vital signal direction is selected as the target point. For 

example, if the intersection of the circles is given as in Figure 4.6, the target point 

will be selected as in Figure 4.7. 

 

Figure 4.7. Target point selection in case of vital signal detection by the robot. 

4.5 Exploration Path Generation with Explosive Percolation 

The idea behind using percolation theory on SLAM is based on the applicability of 

percolation theory to irregular and highly complex environments. However, the 

application of percolation theory to SLAM needs prior occupational probability of 

each cell within the environment, and this probability value should be higher than 

the percolation probability 𝑝𝑝𝑑𝑑 in order to enable penetration of the selected region. 

In the SLAM approach, this situation is not possible, because we obtain the 

occupancy probability of each cell during the search. In other words, the 
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occupation probabilities of cells are determined during the process. Explosive 

percolation theory eliminates this problem for the two reasons that follow. 

Explosive percolation theory provides two major advantages in penetrating 

unknown highly irregular regions in a disaster area. 

1) We do not need any prior occupancy value of cells within the search region. 

As we know that during the SLAM process, we determine the occupation 

probability of a cell. There will be no prior information about the 

occupation of a cell until observed by LIDAR. Therefore we can adopt this 

approach to the unknown territory through active search. Explosive 

percolation does not need any prior information about the occupational 

probability of a cell. 

2) We can control the percolation threshold value to create a cluster among the 

voids of the occupancy grid map to acquire a path that connects two ends of 

the searching region. The threshold control sustains us on how fast or slow 

we connect two target points in a map. The details on how to control the 

threshold are given below. 

The general description and algorithm of the explosive percolation are given in 

Section 3.2.2. In explosive percolation, the creation of large clusters is tried to be 

delayed at the emergence of percolation clusters by changing the selection rule of 

cells in a lattice (or nodes if it is a network). The delay of the process is selected in 

explosive percolation research to observe how smaller clusters connect to create a 

giant cluster abruptly. These selection rules can be summation or product rules 

according to selection. In our situation, we apply the procedure reversely compared 

to Algorithm 8, since we aim to attain the percolation cluster as fast as possible by 

creating larger clusters within voids of the occupancy grid map. For the selection 

rule, we utilize the summation rule, however, the product rule can also be selected. 

Consider 𝐶𝐶 to be the cluster and |𝐶𝐶| is the size of it. Let's select different sizes of 

clusters as 𝐶𝐶𝑟𝑟,𝐶𝐶𝑏𝑏 ,𝐶𝐶𝑑𝑑,𝐶𝐶𝑑𝑑 with their sizes |𝐶𝐶𝑟𝑟|, |𝐶𝐶𝑏𝑏|, |𝐶𝐶𝑑𝑑|, |𝐶𝐶𝑑𝑑|. Assume that 𝑠𝑠1 

connects the cluster |𝐶𝐶𝑟𝑟|, |𝐶𝐶𝑏𝑏| and 𝑠𝑠2 connects the clusters |𝐶𝐶𝑑𝑑|, |𝐶𝐶𝑑𝑑|. If |𝐶𝐶𝑟𝑟| +
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|𝐶𝐶𝑏𝑏| ≥ |𝐶𝐶𝑑𝑑| + |𝐶𝐶𝑑𝑑| then we select 𝑠𝑠1 to create a larger cluster, otherwise, we select 

𝑠𝑠2. 

𝑠𝑠𝑟𝑟𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �𝑠𝑠1, |𝐶𝐶𝑟𝑟| + |𝐶𝐶𝑏𝑏| > |𝐶𝐶𝑑𝑑| + |𝐶𝐶𝑑𝑑|
𝑠𝑠2, 𝑓𝑓𝑡𝑡ℎ𝑠𝑠𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠  4-3 

 

Algorithm 11: Explosive Percolation-Based Exploration in SLAM (𝑠𝑠𝑘𝑘,𝑃𝑃𝑅𝑅 ,𝑃𝑃𝑇𝑇) 

1: 𝑓𝑓𝑓𝑓𝑢𝑢𝑅𝑅𝑟𝑟𝑝𝑝𝑠𝑠𝑡𝑡ℎ ← 0  

2: 𝑤𝑤ℎ𝑖𝑖𝑠𝑠𝑠𝑠 (𝑓𝑓𝑓𝑓𝑢𝑢𝑅𝑅𝑟𝑟𝑝𝑝𝑠𝑠𝑡𝑡ℎ = 0)  

3:  𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑡𝑡 𝑟𝑟𝑠𝑠𝑅𝑅𝑟𝑟𝑓𝑓𝑠𝑠 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠1, 𝑠𝑠2 𝜖𝜖 𝑠𝑠𝑘𝑘  

4:  𝑖𝑖𝑓𝑓 𝑠𝑠1, 𝑠𝑠2 𝑠𝑠𝑟𝑟𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑡𝑡𝑠𝑠𝑟𝑟 𝑏𝑏𝑠𝑠𝑓𝑓𝑓𝑓𝑟𝑟𝑠𝑠   

5:   𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑡𝑡 𝑅𝑅𝑠𝑠𝑤𝑤 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠1, 𝑠𝑠2 𝜖𝜖 𝑠𝑠𝑘𝑘   

6:  𝑠𝑠𝑅𝑅𝑟𝑟 𝑖𝑖𝑓𝑓  

7:  𝑖𝑖𝑅𝑅𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 𝑠𝑠1 𝑖𝑖𝑅𝑅𝑡𝑡𝑓𝑓 𝑡𝑡ℎ𝑠𝑠 𝑠𝑠𝑠𝑠𝑝𝑝 𝑠𝑠𝑘𝑘 𝑠𝑠𝑅𝑅𝑟𝑟 𝑝𝑝𝑓𝑓𝑠𝑠𝑝𝑝𝑢𝑢𝑡𝑡𝑠𝑠 |𝐶𝐶1|  

8:  𝑖𝑖𝑅𝑅𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡 𝑠𝑠2 𝑖𝑖𝑅𝑅𝑡𝑡𝑓𝑓 𝑡𝑡ℎ𝑠𝑠 𝑠𝑠𝑠𝑠𝑝𝑝 𝑠𝑠𝑘𝑘 𝑠𝑠𝑅𝑅𝑟𝑟 𝑝𝑝𝑓𝑓𝑠𝑠𝑝𝑝𝑢𝑢𝑡𝑡𝑠𝑠 |𝐶𝐶2|  

9:  𝑖𝑖𝑓𝑓 |𝐶𝐶1| ≥ |𝐶𝐶2|  

10:   𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑡𝑡 𝑠𝑠1  

11:  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

12:   𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑡𝑡 𝑠𝑠2  

13:  𝑠𝑠𝑅𝑅𝑟𝑟 𝑖𝑖𝑓𝑓  

14:  𝐷𝐷𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠𝑖𝑖𝑅𝑅𝑠𝑠 𝑡𝑡ℎ𝑠𝑠 𝑝𝑝𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 𝑝𝑝𝑠𝑠𝑢𝑢𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟 𝑡𝑡𝑓𝑓 𝑃𝑃𝑅𝑅 𝑠𝑠𝑅𝑅𝑟𝑟 𝑃𝑃𝑇𝑇   
15:  𝑖𝑖𝑓𝑓 𝑝𝑝𝑠𝑠𝑢𝑢𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟𝑠𝑠 𝑠𝑠𝑟𝑟𝑠𝑠 𝑡𝑡ℎ𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑟𝑟𝑠𝑠𝑅𝑅𝑡𝑡𝑖𝑖𝑡𝑡𝑦𝑦   

16:   𝑓𝑓𝑓𝑓𝑢𝑢𝑅𝑅𝑟𝑟𝑝𝑝𝑠𝑠𝑡𝑡ℎ ← 1  

17:  𝑠𝑠𝑅𝑅𝑟𝑟𝑖𝑖𝑓𝑓  

18: 𝑠𝑠𝑅𝑅𝑟𝑟𝑤𝑤ℎ𝑖𝑖𝑠𝑠𝑠𝑠  

 

The algorithm of explosive percolation on the occupancy map is given in 

Algorithm 11. In the algorithm, 𝑠𝑠𝑘𝑘 represents the occupancy grid map at that 

instant, 𝑃𝑃𝑅𝑅 is the robot's location on the local map, 𝑃𝑃𝑇𝑇 is the target location on the 

local map. When the same cluster identity is caught around the robot and target 
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location, we can say that we found a percolation cluster that connects these two 

points on the occupancy grid map. 

Let’s assume that we select our target point as indicated in Figure 4.5. If we run the 

explosive percolation algorithm on this occupancy grid map of the robot, we will 

observe the progress as in Figure 4.8. 

(a) (b) 
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(d) 
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Figure 4.8. (a) Explosive percolation initial cluster emergence. (b) Clusters begin to 

merge with respect to the neighbor cell cluster index. (c) Cluster approximate to the 

emergence of percolation cluster. (d) Percolation cluster connecting the robot and 

target locations is found. Here the red cluster is our percolation cluster. (e) The 

percolation path is found in the percolation cluster. 

Let’s compare Algorithm 11 with Figure 4.8 step by step. Initially, all map is free 

from clusters. Therefore the initial run of Algorithm 11 with a random selection of 

cells only creates single-cell clusters. By iterating the algorithms, we will obtain 

small-size clusters as in Figure 4.8 (a). As we notice, we obtain larger clusters 

having 2 or more cells in this stage. Lines between 3-6 sustain the selection of 2 

new random cells that are not selected before. After the selection of random cells, 

firstly at line 7, we insert 𝑠𝑠1 cell into to map and compute the 𝐶𝐶1 cluster size |𝐶𝐶1| 

where 𝑠𝑠1 belongs to. We repeat a similar process for 𝑠𝑠2 at line 8. Then, between 

lines 9-13, we compare the cluster sizes and select the greater 1. This selection 

causes the creation of larger clusters as in Figure 4.8 (b) and (c). Finally, between 

lines 14-17, we check the condition of whether the same cluster cells connect the 

target points or not. If they are connected, we make 𝑓𝑓𝑓𝑓𝑢𝑢𝑅𝑅𝑟𝑟𝑝𝑝𝑠𝑠𝑡𝑡ℎ value 1 and end 

the algorithm. Figure 4.8 (d) indicates the final case in which the red cluster 

connects two target points. 

We observe the emergence of smaller cells at the beginning of the process. By 

selecting the voids in the occupancy map, we percolate further and create larger 

clusters. In Figure 4.8 (b) the clusters are merged within the neighbor cell 

according to the summation rule. The cells are numbered and colored if they share 

the same cluster. The merging is sustained with the 4-neighborhood of a cell. When 

we detect a percolation cluster that connects the robot and target locations, we stop 

the process.  

At this stage, we have a candidate cluster to find the percolation path. Without any 

cluster, it is expected that the voids within the map include all paths that connect 

target points. The percolation cluster is the certain part of the map that connects 
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these two points. Therefore, the cluster should be valid and represent the current 

observed map by LIDAR to find the percolation path. This validity of the 

percolation cluster can be checked by measuring the coverage of the percolation 

cluster. The best way to measure coverage is the calculation of the dimension of the 

cluster and comparing it with the map dimension. Because the map and cluster do 

not have a regular shape, the fractional order dimension method can be utilized to 

overcome this problem. The validity of the percolation cluster can be shown with 

its convergence of fractional dimensions to occupancy grid lattice fractional 

dimension. In Figure 4.9, we can deduce that the cluster fractional dimension 

converges the dimension of the lattice as expected. 

 

Figure 4.9. Fractional dimension convergence of the largest cluster to lattice 

dimension during explosive percolation process. 

The fractal dimension is calculated according to the radius of the gyration 𝑅𝑅𝑟𝑟 of the 

largest cluster until the emergence of the percolation cluster. It is assumed that the 

size of a cluster is proportional to the fractal dimension with 𝑁𝑁 ∝ 𝑅𝑅𝑟𝑟𝐷𝐷where 𝑁𝑁 is the 

size of a cluster and 𝐷𝐷 is the fractal dimension [48]. Therefore the dimension 𝐷𝐷 

will be equal to 𝐷𝐷 = log (𝑁𝑁)
log (𝑅𝑅𝑠𝑠)

. 
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Percolation path connects the robot and target point location on map. After finding 

the percolation cluster, we can now search for the percolation path. The important 

point is that instead of searching the percolation path on the occupancy grid map, 

we search it in the percolation cluster which has fewer void cells. To obtain the 

optimum path, we should utilize a cost function. The cost function is obtained by 

selecting a cell that has a minimum Euler distance to the target location. We begin 

the selection within the 4-neighborhood of robot location. Then, we select the cell 

𝑘𝑘 that has a minimum 𝐽𝐽𝑘𝑘 for the next iteration until we reach the target location. 

The percolation path at the end of the process is shown in Figure 4.8 (e). The green 

cells indicate the percolation path to reach the target location from the robot 

position. The crucial point here is that the explosive percolation path is found 

within the voids of the occupancy map. Therefore the obstacles and other objects 

that are represented with occupied cells in the occupancy map are naturally avoided 

by our approach and we can obtain a safe and obstacle-free passage toward the 

target location.  

4.6 Path Pruning and Smoothing Algorithms 

The path found in explosive percolation is comprised of grid cells that have too 

many indentations and sharp turns, making the path hard to follow for the SAR 

robot. Because of such inconvenience and hard-to-follow path patterns, we should 

find a much simpler and easy-to-follow path scheme. To achieve this path pruning 

and smoothing algorithms have been utilized. 

Firstly, the pruning algorithm runs on the percolation path. If there is no blockage 

between connected ordered cells in the percolation path, those points are 

symbolized with a line with initial and end points only. Otherwise, the inflection 

point is found if there exists any occupied region that blocks the connected cells. In 

Figure 4.10, this situation is shown in an example percolation map. The star points 

𝐽𝐽𝑘𝑘 = min
𝑘𝑘
�(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑇𝑇)2 + ((𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑇𝑇)2 )       𝑘𝑘 = 1,2,3,4 4-4 
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symbolize inflection points. If the inflection point is not inserted, the line connects 

the successive path cells intersects with the gray occupied cells. This will cause the 

situation in which the robot encounters an obstacle during the path following. We 

notice that connected lines do not intersect with occupied cells shown by gray. 

   

Figure 4.10. Path pruning strategy. Points with yellow stars symbolize inflection 

points. 

Secondly, inflection points found in the pruning stage should be handled to have 

smooth turns for the robot to make the turn-in easy and with less effort. The Bezier 

Curve algorithm has been used to smooth the inflection points [49]. Generally, 𝑅𝑅 

degree Bezier curve is defined as: 

𝑃𝑃[𝑑𝑑0,𝑑𝑑1](𝑡𝑡) = �𝐵𝐵𝑑𝑑𝑑𝑑(𝑡𝑡)𝑃𝑃𝑑𝑑 ,   𝑡𝑡 ∈ [0,1].
𝑑𝑑

𝑑𝑑=0

 
4-5 

 

Where 𝑡𝑡 is the positional parameter and 𝑃𝑃𝑑𝑑 is control points with 𝑃𝑃𝑑𝑑𝑜𝑜 = 𝑃𝑃0 and 

𝑃𝑃(𝑡𝑡1) = 𝑃𝑃𝑑𝑑 and 𝐵𝐵𝑑𝑑𝑑𝑑(𝑡𝑡) is Bernstein polynomial given by 

𝐵𝐵𝑑𝑑𝑑𝑑(𝑡𝑡) = �𝑅𝑅𝑖𝑖 � 𝑡𝑡
𝑑𝑑(1 − 𝑡𝑡)𝑚𝑚−𝑑𝑑,    𝑖𝑖 = 0,1,2, … ,𝑅𝑅 4-6 
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To apply the Bezier curve method to a pruning path, we extract each corner point. 

Then as in Figure 4.11, we apply the Bezier curve within 𝐿𝐿 distance of an inflection 

point 𝑃𝑃𝑚𝑚 on the path. We select an increment 𝑟𝑟 value to divide 𝐿𝐿 distance equally 

on each side of the inflection point. Then found control points 

{𝑃𝑃𝑚𝑚−𝑑𝑑, … ,𝑃𝑃𝑚𝑚−1,𝑃𝑃𝑚𝑚,𝑃𝑃𝑚𝑚+1, … ,𝑃𝑃𝑚𝑚+𝑑𝑑} are processed by utilizing Equation 4.5. 

 

Figure 4.11. Smoothing of a corner point with Bezier Curve. 

If we apply the Bezier curve method to inflection points in Figure 4.10, we obtain 

the following smooth path to be followed by the robot. In Figure 4.10, the dash 

green line indicates the pruned percolation path and yellow stars are the inflection 

points. By applying Bezier curve method, we obtain the dash dot cyan line as 

indicated in zoomed figure in Figure 4.10. As we noticed the inflection points are 

smoothed with the proposed method. In this way, the robot can make its manuever 

without deviation from following path at inflection points. 
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Figure 4.12. Smooth path creation with Bezier Curve. 

Let’s apply the pruning and smoothing strategy to Figure 4.8 (e). Because there is 

no detected intersection with the occupied cell in the pruning method as in Figure 

4.10, we obtain a direct line that connects the robot location to the target location 

on the percolation path. 

 

Figure 4.13. Pruning and smoothing strategy on example scenario in Figure 4.8 (e). 

Because there is no inflection point, the target and robot location are connected 

with a line on the percolation path. 
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4.7 Path Following Control Algorithm 

After path generation and smoothing, the remaining question is how does the SAR 

robot follow the path successfully? In our strategy, we construct our path control 

algorithm based on Serret-Frenet formulas [50]. In this method, the robot follows a 

virtual target which is the orthogonal projection of the robot image on the found path. 

The process is detailed in Figure 4.14. The path 𝑃𝑃 is defined with 𝜅𝜅(𝑠𝑠) where 𝑠𝑠 is 

the curvilinear distance from the beginning of the path and 𝜅𝜅(𝑠𝑠) is the curvature of 

the path. The desired orientation on the path is represented with 𝜃𝜃𝑟𝑟 =  ±𝜅𝜅(𝑠𝑠)𝑠𝑠 

(Positive for the counter-clockwise direction of Serret-Frenet frame). 

 
Figure 4.14. The Serret-Frenet frame with the orthogonal projection of the robot 𝑀𝑀 

on the path 𝑃𝑃 

The point 𝑀𝑀′ is the orthogonal projection of the robot 𝑀𝑀 on the path. 𝑠𝑠 is the 

orthogonal distance between 𝑀𝑀 and 𝑀𝑀′. The relationship between the translational 

distances 𝐸𝐸1, 𝑟𝑟1 and 𝑝𝑝1 can be calculated with the following transformation: 

𝒒𝒒𝟏𝟏 = 𝑹𝑹𝜽𝜽𝒓𝒓𝒓𝒓𝟏𝟏 + 𝒑𝒑𝟏𝟏 4-7 

𝑹𝑹𝜽𝜽𝒓𝒓 =  �
cos(𝜃𝜃𝑟𝑟) − sin(𝜃𝜃𝑟𝑟) 0
sin(𝜃𝜃𝑟𝑟) cos(𝜃𝜃𝑟𝑟) 0

0 0 1
� 

4-8 
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Differentiating Equation 4-7, we obtain the following relation, 

𝒓𝒓�̇�𝟏 = 𝑹𝑹𝜽𝜽𝒓𝒓𝒒𝒒�̇�𝟏 − 𝑹𝑹𝜽𝜽𝒓𝒓
𝑻𝑻 �̇�𝑹𝜽𝜽𝒓𝒓𝒓𝒓𝟏𝟏 − 𝑹𝑹𝜽𝜽𝒓𝒓

𝑻𝑻 �̇�𝒑𝟏𝟏 4-9 

Where we use the relationships, 

𝒓𝒓𝟏𝟏 =  [0 𝑠𝑠 0]𝑇𝑇 4-10 

𝒒𝒒𝟏𝟏 =  [𝑥𝑥 𝑦𝑦 0]𝑇𝑇 4-11 

𝒗𝒗𝑩𝑩 =  𝑹𝑹𝜽𝜽𝒓𝒓
𝑻𝑻�̇�𝒑𝟏𝟏  = [�̇�𝑠 0 0]𝑇𝑇  4-12 

�̇�𝑹𝜽𝜽𝒓𝒓 =  𝑹𝑹𝜽𝜽𝒓𝒓  𝑝𝑝𝑝𝑝𝑠𝑠([0 0 𝜃𝜃�̇�𝑟]𝑇𝑇) 

𝑝𝑝𝑝𝑝𝑠𝑠([0 0 𝜃𝜃�̇�𝑟]𝑇𝑇) =  �
0 −𝜃𝜃�̇�𝑟 0
𝜃𝜃�̇�𝑟 0 0
0 0 0

�  (𝐶𝐶𝑟𝑟𝑓𝑓𝑠𝑠𝑠𝑠 𝑃𝑃𝑟𝑟𝑓𝑓𝑟𝑟𝑢𝑢𝑝𝑝𝑡𝑡 𝑀𝑀𝑠𝑠𝑡𝑡𝑟𝑟𝑖𝑖𝑥𝑥) 
4-13 

Now if we rewrite Equation 4.9, we obtain the following relation, 

�
0
𝑠𝑠̇
0
� =  �

cos(𝜃𝜃𝑟𝑟) sin(𝜃𝜃𝑟𝑟) 0
− sin(𝜃𝜃𝑟𝑟) cos(𝜃𝜃𝑟𝑟) 0

0 0 1
� �
�̇�𝑥
�̇�𝑦
0
� − �

0 −𝜃𝜃�̇�𝑟 0
𝜃𝜃�̇�𝑟 0 0
0 0 0

� �
0
𝑠𝑠
0
� − �

�̇�𝑠
0
0
� 

4-14 

Finally, we can find the relation 𝑠𝑠 ̇and �̇�𝑠, 

𝑠𝑠̇ = [− sin(𝜃𝜃𝑟𝑟) cos(𝜃𝜃𝑟𝑟)] ��̇�𝑥�̇�𝑦� 
4-15 

�̇�𝑠 =
[cos(𝜃𝜃𝑟𝑟) sin(𝜃𝜃𝑟𝑟)]

1 ∓ 𝜅𝜅(𝑠𝑠)𝑠𝑠
��̇�𝑥�̇�𝑦� 

4-16 

𝜃𝜃� = 𝜃𝜃 − 𝜃𝜃𝑟𝑟

𝑑𝑑
𝑑𝑑𝑑𝑑→ 𝜃𝜃�̇ = �̇�𝜃 ∓ 𝜅𝜅(𝑠𝑠)�̇�𝑠 

4-17 

We can also use the relations �̇�𝑥 = 𝑣𝑣 cos(𝜃𝜃) , �̇�𝑦 = 𝑣𝑣 sin(𝜃𝜃) , �̇�𝜃 = 𝜔𝜔 and collect the 

system of the equation as 

𝑠𝑠̇ = 𝑣𝑣 sin�𝜃𝜃��

�̇�𝑠 =
𝑣𝑣 cos�𝜃𝜃��
1 ∓ 𝜅𝜅(𝑠𝑠)𝑠𝑠

𝜃𝜃�̇ = 𝜔𝜔 ∓
𝜅𝜅(𝑠𝑠)𝑣𝑣 cos�𝜃𝜃��

1 ∓ 𝜅𝜅(𝑠𝑠)𝑠𝑠 ⎭
⎪
⎬

⎪
⎫

 4-18 
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We aim to follow a desired path and construct a control algorithm such that path-

following errors converge to zero. Let’s assume that the direction of a movement 

along the desired curve is counter-clockwise. Therefore, by taking the “-” sign in the 

counter-clockwise direction, we can write Equation 4.18 as  𝑠𝑠̇ = 𝑣𝑣 sin�𝜃𝜃��, and 𝜃𝜃�̇ =

𝑢𝑢 =  𝜔𝜔 − 𝜅𝜅(𝑟𝑟)𝑣𝑣 cos�𝜃𝜃��
1−𝜅𝜅(𝑟𝑟)𝐿𝐿

. 

Samson control algorithm suggests that to minimize path errors control inputs can 

be considered as follows,  

𝑣𝑣 = 𝑝𝑝𝑓𝑓𝑅𝑅𝑠𝑠𝑡𝑡𝑠𝑠𝑅𝑅𝑡𝑡

𝑢𝑢 = −𝑘𝑘2 𝑠𝑠 𝑣𝑣
sin�𝜃𝜃��
𝜃𝜃�

− 𝑘𝑘3𝜃𝜃�
� 4-19 

Where 𝑘𝑘2,𝑘𝑘3 > 0. As we notice the closed loop function is proportional to 

orthogonal distance 𝑠𝑠 with 𝑘𝑘2 gain, and orientation angle error 𝜃𝜃� with 𝑘𝑘3 gain. These 

terms feedback to robot motion until the orthogonal direction and orientation errors 

converge to zero. The closed-loop system with the gain 𝑘𝑘2 and 𝑘𝑘3 is asymptotically 

stable according to the following Lyapunov function. 

𝑉𝑉�𝑠𝑠,𝜃𝜃�� = 𝑘𝑘2
𝑠𝑠2 
2

+
𝜃𝜃�2

2
  

4-20 

Proof: Consider the Lyapunov candidate function 𝑉𝑉�𝑠𝑠,𝜃𝜃��. The function 𝑉𝑉�𝑠𝑠, 𝜃𝜃�� is 

positive define fıunction for 𝑠𝑠 and 𝜃𝜃� . By taking the time derivative of this function, 

�̇�𝑉 = 𝑘𝑘2𝑠𝑠𝑠𝑠̇+  𝜃𝜃�𝜃𝜃�̇ 

    = 𝑘𝑘2𝑠𝑠𝑠𝑠𝑖𝑖𝑅𝑅�𝜃𝜃��𝑣𝑣 + 𝜃𝜃�𝑢𝑢 

    =  −𝑘𝑘3𝜃𝜃�2 ≤ 0 

Notice that �̇�𝑉 is negative semi-definite and 𝑘𝑘3 > 0. According to LaSalle’s Theorem, 

the only condition that satisfies the path following case is 𝑠𝑠 = 0 and 𝜃𝜃� = 0. 

Therefore, the origin will be asymptotically stable. 

If we apply the control structure given in Equation 4-18 to our explosive percolation 

path, the robot will follow the orthogonal projection of itself on the percolation path 
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with the minimization of path errors 𝑠𝑠 and 𝜃𝜃�. The example scenario can be observed 

in Figure 4.15. 
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Figure 4.15 (a), (b),(c). Path following process with Samson control algorithm in 

the occupancy grid map. The blue line represents the path to be followed. (d)The 

path of the robot is shown on the global map with the green line. (e) Probabilistic 

distribution of robot states. (f) The following error parameters history. 

In Figure 4.15 (a) the path is indicated with a blue line. The robot position estimated 

with the particle filter is shown with red dots. Because the robot position estimation 

is based on the landmark detection and estimation in the FastSLAM algorithm, in 

Figure 4.15 (b) we can observe deviations from the path due to estimation errors in 

FastSLAM. However, as we observe more landmarks and the same landmark 

locations during the exploration process, these errors are diminished within the 

FastSLAM algorithm. The error history is given in Figure 4.15 (f). The red line 

represents orthogonal distance history with time and the blue line represents the 

orientation angle error history with time. As we can see, the errors are in a trend that 

converges to zero. Because of the errors in the particle filter, the robot location states 

are calculated within a probabilistic range. Therefore, deviations can occur as shown 

in Figure 4.15 (f). This probabilistic distribution of the robot state is indicated in 

Figure 4.15 (e)  The blue circles represent the probabilistic distribution of the robot's 

position and the magenta circle represents the most probable one as a result of the 

importance factor assignment of particles in FastSLAM. In Figure 4.15 (d), we show 

the path of the robot on the global map. The green line is the path followed by the 
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robot during exploration. As a result of this simple scenario, we can deduce that the 

robot successfully follows the percolation path within the error values shown in 

Figure 4.15 (f) until the selected target point. 
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CHAPTER 5  

5 EXPERIMENTS 

5.1 Simulation Environment 

The simulation environmet (Figure 5.1) is created in 2D as a monochrome bitmap. 

Each black cells represent the occupied regions in unstructured forms. 

 
Figure 5.1. Global map used in the simulation. The drawings are selected randomly 
to represent debris 

In Figure 5.1, a planar SAR robot is represented with a circle. We assume that a 

LIDAR sensor with a 120° field of view coincides with the robot frame (𝑥𝑥𝑅𝑅 ,𝑦𝑦𝑅𝑅) 

indicated with dashed green arrows. The local frame (𝑥𝑥𝐿𝐿 ,𝑦𝑦𝐿𝐿) identifying the basis 

of the occupancy grid map has its origin fixed where the robot begins its 

exploration. The global map (𝑥𝑥𝐺𝐺 , 𝑦𝑦𝐺𝐺) is used to construct simulation terrain and 

indicates us the progress within the view of global coordinates. With the 

initialization of the robot motion, all map features, target detection, and path 

generation processes take place on the local frame. Lidar sensor readings are 
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represented first in the robot frame and then converted into the local frame to detect 

landmarks and occupied cells in the map. The conversion between the frame is 

sustained with the following transformation matrices and the transformation 

scheme is outlined in Figure 5.2. 

 

Figure 5.2. Axis transformation between global, local, and robot frames 

𝑟𝑟𝐺𝐺𝐿𝐿�����⃗  represents the position vector of the local frame with respect to the global 

frame. 𝑟𝑟𝐿𝐿𝑅𝑅�����⃗  represents the position vector of the robot frame with respect to the local 

frame. The transformation matrix 𝐶𝐶𝐺𝐺𝐿𝐿(𝜓𝜓𝐺𝐺) is the transformation matrix from local 

to global frame, given as a rotation matrix, 

𝐶𝐶𝐺𝐺𝐿𝐿(𝜓𝜓𝐺𝐺) =  �cos(𝜓𝜓𝐺𝐺) − sin(𝜓𝜓𝐺𝐺)
sin(𝜓𝜓𝐺𝐺) cos(𝜓𝜓𝐺𝐺) � 

5-1 

The transformation matrix 𝐶𝐶𝐿𝐿𝑅𝑅(𝜓𝜓𝐿𝐿) is the rotation matrix from local to global 

frame and it is given as, 

𝐶𝐶𝐿𝐿𝑅𝑅(𝜓𝜓𝐿𝐿) =  �cos(𝜓𝜓𝐿𝐿) − sin(𝜓𝜓𝐿𝐿)
sin(𝜓𝜓𝐿𝐿) cos(𝜓𝜓𝐿𝐿) � 

5-2 

The parameters used in the simulation are shared in Table 5.1. They are selected 

according to the size of the simulation environment which is confined to a 2m x 3m 

rectangular 2D space and the robot size is selected relative to this space to move 
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freely within the debris. By considering the global map scale the lidar range and 

resolution are selected as in Table I. Moreover, in the sensitivity analysis provided 

in section 5.5, we focus on how the method we propose is affected by changes in 

the selected parameter set. 

Table 5.1 Simulation Parameter Settings. 

Simulation Parameters 

Parameter Description Value 

𝑟𝑟𝑟𝑟𝑑𝑑𝑏𝑏𝑑𝑑𝑑𝑑 Radius of robot 2.5cm 

Δ𝑡𝑡 Time resolution 0.1sec 

Δ𝑟𝑟𝑔𝑔𝑟𝑟𝑑𝑑𝑑𝑑 Grid resolution 2cm 

Δ𝛽𝛽𝐿𝐿𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 Lidar angular resolution 2.4° 

𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 Lidar Range 100cm 

In this section, on the other hand, we provide the simulation results of the proposed 

explosive percolation-enhanced active SLAM algorithm in highly complex, 

fractional-order unstructured maps. 

Firstly we present the simulation environment and our assumptions and parameters 

during these experiments. In Chapter 4, we demonstrate the applicability of our 

algorithms on a simple map. However, in Chapter 5, we handled a more complex 

simulation environment in order to examine the effectiveness and success rate in the 

performance analysis of our novel approach. 

We illustrate the ability of our methodology based on three different scenarios. The 

first scenario begins the process with a random initial point on the global map and 

tests the performance of the SAR robot with our algorithm against detecting the 

victim's vital sign successfully. The robot doesn’t know the initial position on the 

global map, therefore by constructing the local map, it is expected from the robot to 

extract a safe path to the victim's location. In the second scenario, the same process 

is repeated for a different random initial point on the global map to reveal that the 

methodology shows its success under different locations on the map and it is not 
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based on a specific location on the map. In the final scenario, the success of the robot 

is examined in case of a debris collapse and dead-end occurrence during a search. 

Due to map changes with the collapse, it is expected that the SAR robot performs 

the detection of successive dead-end occurrences and traps, adapts the local map to 

changing environments, and continues the search by detecting different target points 

on the map until the victim location is found. 

In the final part of this chapter, we investigate the sensitivity analysis of our 

algorithm by changing the error parameters of the motion module, frontier target 

selection threshold, dead-end detection threshold, and the selection rule preference 

in explosive percolation and comparison of performance on finding a vital signal of 

entropy-based active SLAM versus explosive percolation based active SLAM 

approach. 

5.2 Explosive Percolation Exploration with Random Initial Position 1 

The first scenario is about finding the location of the victim within debris by 

utilizing the voids among rubbles and extracting a safe obstacle-free path for 

reaching the victim. The robot's initial position is selected as  �̅�𝑝𝑅𝑅𝐺𝐺 = [104 103]𝑇𝑇 in 

global coordinates and the victim’s location is selected as  �̅�𝑝𝑉𝑉𝐺𝐺 = [153 47]𝑇𝑇. (Figure 

5.3) 

With the simulation initialization, at time 𝑡𝑡 = 0, the SAR robot perceives the initial 

peripheral of the environment with the help of LIDAR. By using frontier search, 

the initial target point is determined and the exploration process begins via the 

explosive percolation to extract the obstacle-free path to the target location. In this 

way, the robot penetrates unknown regions of the debris to locate the victim. 

The robot's explosive path to the victim's location on the global map can be seen 

with the green dashed line in Figure 5.3. This path represents our obstacle-free safe 

path to reach victims during search and rescue missions. The green dashes are cells 

obtained from the projection of the local map of the robot onto the global map as 
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zoomed in Figure 5.4. The local map in Figure 5.4 includes the occupied and void 

cells according to their occupancy probability. The green circles are the landmark 

locations and the red points are the possible position states of the robot, outcomes 

of the particle filter in FastSLAM 2.0. The red dashed lines are the raycasting of 

the LIDAR sensor. 

 

Figure 5.3. The explosive path is shown with a green line on the global map and 

the projection of the local map onto the global map is expressed with green cells. 

 

Figure 5.4. The local map of the SAR robot. The occupied cells are represented 

with gray and black according to their occupancy probability. 
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The explosive percolation cluster emergence in each target location and the found 

percolation path are given in Figure 5.5. The red cells are the final percolation 

cluster according to the summation rule of explosive percolation theory. Other 

clusters are shown with different colors and they can not join or create percolation 

cluster during the process because they did not evolve sufficiently during selection 

to create a large cluster to find percolation path. In Figure 5.5 (a), we observe the 

percolation path to the first target point resulting from the frontier target selection. 

The green cells in the figure are the percolation path and by pruning and smoothing 

the percolation path we obtain the desired path shown with cyan color.After 

reaching the first target, the second target is determined with frontier target 

selection algortihm again. The same process is followed as in target 1 and the result 

is given in Figure 5.5 (b). In Figure 5.5 (c), because the victim is within the LIDAR 

line of sight, the SAR robot directly aims at the victim's location as a target and 

percolates in that direction. 
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(c) 

Figure 5.5. Explosive percolation cluster occurrence and path post-process in each 

target detection. (a) First target percolation path. (b) Second target percolation path. 

(c) Target is the victim's location here. The robot directly heads into this location 

after detection. 

The results of the first scenario are evaluated in two parts. Firstly, the success rate 

of the SAR robot in locating the victim utilizing the voids between rubbles is 

evaluated from an arbitrary location on the global map which is not given a priori 

to the robot. Secondly, the explosive percolation theory extracts obstacle-free safe 

paths to target locations and also generates a guide for the robot to explore the 

unknown regions of the map Moreover, instead of searching all voids cells, the 

percolation cluster suffices to obtain a safe path to the target location. This is a 

natural and critical bottom line of performance efficiency of percolation in 

obstacle-free path generation. If we investigate the fractional order of the 

percolation cluster (Figure 5.5 (a)), the fractional dimension at the emergence of 

the percolation cluster convergences to the fractional dimension of the lattice 1.8 

that attests to the suitable compactness in the size of the cluster while finding 

automatically a path connecting the robot to the target within the fractional cluster. 
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Figure 5.6. Clusters fractional dimension propagation until the emergence of 

percolation cluster for Figure 5.5 (a). 

5.3 Explosive Percolation Exploration with Random Initial Position 2 

The same process in the previous section is repeated in this part with a different 

initial position of the robot. The robot's initial position is selected as  �̅�𝑝𝑅𝑅𝐺𝐺 =

[252 149]𝑇𝑇 in global coordinates and the victim’s location is selected as  �̅�𝑝𝑉𝑉𝐺𝐺 =

[240 88]𝑇𝑇 (Figure 5.7). The reason for selecting a different location on the map is 

showing our methodology does not depend on a specific location on the map. It 

performs its intended function in the different locations on map with different 

structure shape. 
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Figure 5.7. The explosive path in experiment 2 is shown with a green line on the 

global map and the projection of the local map onto the global map is expressed 

with green cells. 

In this experiment, we tested the success of our algorithm with different 

unstructured parts of the map different from the first scenario. As expected from 

the algorithm, by utilizing the voids within obstacles, the SAR robot searches the 

area until the detection of the victim's location. The local map of the robot is shared 

in Figure 5.8. The SAR robot follows the percolation path result of explosive 

percolation. The green line indicates this percolation path. As we can observe from 

the figure, the robot extracts the obstacle-free path among occupied cells. At the 

moment the victim is detected, the robot selects this location as the target point and 

turns its heading toward the victim's location. 
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Figure 5.8. The local map of the SAR robot in experiment 2. The occupied cells are 

represented with gray and black according to their occupancy probability. 
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(c) 

 
(d) 

 
(e) 

Figure 5.9. Explosive percolation cluster occurrence and path-finding process in 

each target detection. (a) First target percolation path. (b) Second target percolation 

path. (c) Third target percolation path. (d) Fourth target percolation path (e)Target 

is the victim's location here. The robot directly heads into this location after 

detection. 

The percolation process after the detection of each target point based on the frontier 

target selection algorithm can be observed in Figure 5.9. After the detection of the 

first target point, the robot draws a path to this location with explosive percolation. 

When the percolation path with green cells is found as in Figure 5.9 (a), we need to 

prune and smooth the path to be followed by the robot. The percolation cluster is 

shown with red cells and it is numbered as 1. After reaching the first target point, 

the second target point is detected with a frontier-based algorithm and the 
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percolation path is extracted as in Figure 5.9 (b). The robot follows the path by 

using the path following the control algorithm. This process is repeated for each 

target point in Figure 5.9 (c) and Figure 5.9 (d) until the victim’s location is 

detected. In Figure 5.9 (e), we see that the victim is within the LIDAR sensor 

range, and the SAR robot percolates into this location as the target point. 

During search, we select the target point that has the furthest distance from the 

robot and gives us the maximum information about the environment. When the 

robot's vital signal detection (blue) circle and the victim’s vital signal emission 

(red) circle intersect, the SAR robot then selects the target point which is closer to 

the vital signal location. In this way, the search path is tried to be minimized. The 

described case can be seen in Figure 5.10. In the upper left figure, the intersection 

of two circles is given. At the bottom of the left side, the percolation path is 

indicated. In the right figure, the target points are indicated with a blue cross. The 

selected target point is the closest one among the others with respect to vital signal 

location. 

 

Figure 5.10. Selection of target point as the robot closes to the victim location. 
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Again we analyze the fractional order of the percolation cluster within the 

occupancy map lattice. For example, in Figure 5.9 (a), if we compare the fractional 

order of the occupancy lattice and clusters until the emergence of the percolation 

cluster, we obtain a plot given in Figure 5.11. This shows us the percolation cluster 

dimension convergences to the dimension of the lattice. In this way, we can use the 

percolation cluster as a resemblance of the occupancy map lattice to find a 

percolation path between the robot and target locations. 

 

Figure 5.11. . Clusters fractional dimension propagation until the emergence of 

percolation cluster for Figure 5.9 (a). 

5.4 Map Changing and Encounter Dead-End with Collapsing of Debris 

The last scenario tests the proposed method's capability and performance in the 

case of collapsing debris within the search area. The structures in a certain part of 

the debris can be unstable and may result in the collapsing of rubbles. In that case, 

the environment and the shape of voids among rubbles change. In the worst case, 

the search path can be blocked, and dead-end forms during the exploration of the 
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robot. Then, it is expected from the robot to continue the search and find alternative 

target points in the unknown regions of the disaster area. 

In order to analyze our method under changing environment features, we have 

arranged a simulation scenario. In this scenario, at 𝑡𝑡 = 5 in simulation time, we 

deliberately blocked the percolation path as can be seen in Figure 5.13. Let us look 

at the simulation environment before the collapse, in Figure 5.12, the initial 

condition for robot and victim locations are given in global coordinates. The robot's 

location is �̅�𝑝𝑅𝑅𝐺𝐺 = [120 100]𝑇𝑇 and the victim’s location is �̅�𝑝𝑉𝑉𝐺𝐺 =  [70 135]𝑇𝑇. The 

blue circle is the vital signal sense region of the SAR robot and the red circle is the 

vital signal emission range of the victim. At simulation time 𝑡𝑡 = 5, the collapsing 

debris is inserted into the simulation (Figure 5.13).  

 

Figure 5.12. The initial condition of robot and victim locations on the global map. 
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Figure 5.13. The collapsing of debris at 𝑡𝑡 = 5 on global map. 
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(c) 

 
(d) 

 
(e)  

 
(f) 

Figure 5.14. Dead-end detection process in the local map. 

The detection of a dead-end can be observed in detail in Figure 5.14. In Figure 5.14 

(a), the corridor is open for the robot to reach the selected target. However, when 

the collapse of debris occurs, the map is changed and the reflection of this change 

in the local map can be seen in Figure 5.14 (b). The path shown with cyan is 

blocked by the occupied cells. In such a case robot calculates the intersection of the 

path with the occupied cells in the occupancy map based on LIDAR measurements. 

To verify a dead-end situation, we count this intersection number over time. We 

can see the situation in Figure 5.15. When these intersections with occupied cells 

(blue dashed line) are greater than the value 10 (green dashed line), the dead-end 
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signal (red line) increases. In final, when this signal hits the threshold value 3, the 

dead end is confirmed. After this point, the SAR robot searches for a new target to 

continue its exploration. In Figure 5.14 (c),(d), and (e) we can see this process. In 

Figure 5.14 (c) the robot begins the search for a new exploration region. Because 

the measurements by LIDAR observe the previously discovered occupied regions, 

the search continues as in Figure 5.14 (d) and (e). In Figure 5.14 (f), the robot 

detects new target points within unexplored area through new voids and continues 

to search and rescue mission. 

 

Figure 5.15. Dead-end detection and occupied cell number intersected with the path 

and their time propagation. 

Time 

In
te

rs
ec

tio
n 

N
um

be
r 



 
 

86 

 

Figure 5.16. The explosive path in experiment 3 is shown with a green line on the 

global map and the projection of the local map onto the global map is expressed 

with green cells. 

The whole process is shared in Figure 5.16 until the victim’s vital signal is found. 

The green dashed line is our safe and obstacle-free explosive percolation path to 

reach the victim. The green squares are the projection of the occupancy map onto 

the global map. As we can notice in the figure, the two circles overlap at the 

victim's location and the robot identifies the victim's location within the debris. The 

process from the perspective of the robot on the local map can be examined in 

Figure 5.17. In this map, the green dashed line represents our path on the local 

map. The red points are the distribution of robot positions as a result of particle 

filter estimation in FastSLAM 2.0. The gray and black cells are the occupied cells 

according to their occupancy probabilities in the occupancy grid map. 
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Figure 5.17. The local map of the SAR robot in experiment 3 until the detection of 

the victim's location. 
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(c) 

 
(d) 

 
(e) 

 
(f)  

Figure 5.18. Explosive percolation cluster occurrence and path-finding process in 

each target detection. 

The explosive percolation cluster emergence and path-finding process for each 

selected target point are shared in Figure 5.18. In Figure 5.18 (a), the percolation 

cluster to the first target point is given before the occurrence of the dead-end. After 

the dead-end occurs, the new detected target point can be observed in Figure 5.18 

(b). The selection process of a new target point after dead-end is summarized in 

Figure 5.14. When the robot reaches a target point, the explosive percolation 

process is started again to keep going the exploration until the location of a victim 

is found. As we can see from Figure 5.18 (b), (c), and (e), they connect the robot 

and target points directly without the intervention of occupied cells, therefore, there 

is a line connecting those points. However, in Figure 5.18 (a), (d), and (f) the path 
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is deflected with occupied cells. In this case, the pruning and smoothing algorithms 

provide us a much smoother path for the robot to follow. 

 

Figure 5.19. Clusters fractional dimension propagation until the emergence of 

percolation cluster for Figure 5.18 (a). 

If we compare the fractional order of the occupancy lattice and clusters until the 

emergence of the percolation cluster, we obtain a plot given in Figure 5.11 for the 

percolation cluster in Figure 5.18 (a). This shows us the percolation cluster 

dimension convergence the dimension of the lattice. In this way, we can use the 

percolation cluster as a resemblance of the occupancy map lattice to find a 

percolation path between the robot and target locations. A similar analysis can be 

applied to each percolation cluster, we only give a single cluster as an example to 

indicate the cluster validity to find a percolation path. 
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5.5 Sensitivity Analysis 

In this part, we investigate the sensitivity analysis of our algorithm by changing the 

error parameters of the motion module, dead-end detection threshold, and the 

selection rule preference in explosive percolation. 

5.5.1 Motion Error Parameter Analysis 

In localization and mapping, motion errors affect significantly the performance of 

SLAM due to harsh terrain conditions. This situation frequently causes errors in the 

odometry of the robot during movement. We can demonstrate this effect by 

changing the 𝑅𝑅𝑇𝑇 process covariance matrix in FastSLAM. The susceptibility of 

explosive percolation-based FastSLAM to motion errors on state transition 

𝑝𝑝(𝑥𝑥𝑑𝑑|𝑥𝑥𝑑𝑑−1,𝑢𝑢𝑑𝑑) is investigated in this part. 

For the experiment, the global map in Figure 5.20 is selected. The initial condition 

of the SAR robot is selected as �̅�𝑝𝑅𝑅𝐺𝐺 =  (104,103) and the vital signal location is 

 �̅�𝑝𝑉𝑉𝐺𝐺 =  (170, 75) in global coordinates. The 𝑅𝑅𝑑𝑑 parameter sets are determined as 

given in Table 5.2. 

Table 5.2 Process Covariance Matrix 𝑅𝑅𝑇𝑇 Parameter Set 

 𝑅𝑅𝑑𝑑 = 𝑟𝑟𝑖𝑖𝑠𝑠𝑎𝑎 ��𝜎𝜎𝑥𝑥2 𝜎𝜎𝑦𝑦2 𝜎𝜎𝜃𝜃2�� 

Set 1 [0.9 0.9 0.001] 

Set 2 [0.9 0.9 0.05] 

Set 3  [0.01 0.01 0.05] 

Set 4 [0.1 0.1 0.01] 

Set 5 [0.05 0.05 0.005] 

Set 6 [0.01 0.01 0.001] 
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Figure 5.20. Selected global map to test process noise effects on explosive 

percolation-based SLAM. The robot and vital signal location are given in blue and 

red circles respectively. 
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(c)  

 
(d)  

 
(e)  

 
(f)  

Figure 5.21. Simulation results according to selected process noise values in Table 

5.1 

When we examine the results in detail, the high noise in position and orientation 

gives the worst results as in Figure 5.21 (b) corresponding to set 2 parameters in 

Table 5.2. If we keep the position Gaussian noise level the same and decrease the 

orientation noise value (set1 parameters), we obtain an improved result in Figure 

5.21 (a) and the SAR robot performs a better result in the following path with 

respect to Figure 5.21 (b) 
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In reverse, if we keep the noise level the same for orientation and decrease the 

position noise values (set 3 parameters), the result is obtained as in Figure 5.21 (c). 

We can deduce that the position noise values cause scattered possible position 

values in the particle filter. This will cause a more interwoven occupancy grid map 

which makes it hard to detect obstacles and find a proper path to percolate. In the 

end, the percolation performance diminishes and the obstacle-free path is not 

extracted properly. 

If we decrease the noise level to the given parameters in set 4 and set 5, the 

occupancy map results are more clear and the robot can follow to percolation path 

to reveal further obstacles and unknown regions of the map. The results can be 

investigated in Figure 5.21 (d) and (e). In Figure 5.21 (f), a low noise parameter is 

selected to see the results. As expected, the robot follows the path with minimum 

scattered in the position and orientation in the particle filter as if a deterministic 

dynamical system. The results give a more stable occupancy grid map and position 

states of the robot which is ideally not possible in a disaster search environment. 

5.5.2 Dead-End Detection Threshold Analysis 

One of the important aspects during search within rubbles is detecting dead-ends 

and avoiding them. The collapses during searching can block the percolation path 

and create dead-end forms. When we consider that search and rescue missions are 

time-critical operations and finding the victim's location is the main objective, we 

should not consume search time with dead-ends. 

In our study, the details of dead-end avoidance are mentioned in Chapter 5 with a 

map-changing example scenario. In this part, we analyze the sensitivity of the 

dead-end detection algorithm to dead-end threshold selection. To examine the 

threshold selection importance, we select a dead-end threshold set as, 𝑆𝑆𝐷𝐷𝑑𝑑𝑟𝑟𝑑𝑑𝐸𝐸𝑑𝑑𝑑𝑑 =

{5,10,15,20}. For each selection, we initialize the robot at the global location of 
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�̅�𝑝𝑅𝑅𝐺𝐺 = (104, 103). When the simulation time is at 𝑡𝑡 = 5, we create an artificial 

dead-end as in Section 5.3.  

The results are shared in Figure 5.22. In the first selection of threshold value 

𝑅𝑅𝐷𝐷𝑑𝑑𝑟𝑟𝑑𝑑𝐸𝐸𝑑𝑑𝑑𝑑 = 5, the experiment shows us the SAR robot detects the dead-end 

occurrence first at time 𝑡𝑡 = 8 in Figure 5.22 (b). The occupied cell number on the 

percolation path shown in blue increases after this time and when the increase of 

dead-end signal is detected which is indicated in red, the dead-end occurrence is 

verified at 𝑡𝑡 = 12. Even if the detection of dead-end occurrence is detected in 

advance, the drawback of this selection is that the dead-end detection signal is 

more susceptible to a path crossing with occupied cells. Because of this reason, in 

the early part of the experiment, we can see some picks that cross the threshold 

value in Figure 5.22 (b). This can lead to false inferences for the SAR robot in the 

detection of dead-ends. The robot path after the detection of the dead-end signal is 

shown in Figure 5.22 (a), the new target point is detected, and the SAR robot 

follows the path indicated with cyan color. 

The results show us that the selection of threshold 𝑅𝑅𝐷𝐷𝑑𝑑𝑟𝑟𝑑𝑑𝐸𝐸𝑑𝑑𝑑𝑑 = 10 gives us a better 

result than the previous one when compared to picking up a false path crossing 

with the occupied cells. The first crossing of the path with occupied cells at 𝑡𝑡 = 10. 

We detect the dead-end occurrence at 𝑡𝑡 = 12 after the first threhold passage in 

Figure 5.22 (d). After the dead-end occurrence, the path followed by the robot and 

continuing in search are shown in Figure 5.22 (c). As we can see, we observe the 

dead-end without being too much close to the dead-end, and false inferences are 

minimized with the increasing threshold value. 

For the next selection of dead-end threshold 𝑅𝑅𝐷𝐷𝑑𝑑𝑟𝑟𝑑𝑑𝐸𝐸𝑑𝑑𝑑𝑑 = 15 and 𝑅𝑅𝐷𝐷𝑑𝑑𝑟𝑟𝑑𝑑𝐸𝐸𝑑𝑑𝑑𝑑 = 20, 

the dead-end signal is triggered at 𝑡𝑡 = 16 and 𝑡𝑡 = 21 respectively. As we notice 

that the detection of a dead-end is substantiated at the very late part of the process 

with respect to the previous selections. This causes the exploration of the robot 

even further toward the dead-end location even if it is not necessary to be explored 

further. Therefore, the robot takes a longer path until the detection of dead-end and 
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loses valuable time to explore new regions to detect the vital signal of the victim. 

The results are shared in Figure 5.22 (e) and (f) for 𝑅𝑅𝐷𝐷𝑑𝑑𝑟𝑟𝑑𝑑𝐸𝐸𝑑𝑑𝑑𝑑 = 15 and Figure 5.22 

(g) and (h) for 𝑅𝑅𝐷𝐷𝑑𝑑𝑟𝑟𝑑𝑑𝐸𝐸𝑑𝑑𝑑𝑑 = 20. 
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(e)  

 
(f)  

 
(g)  

 
(h)  

Figure 5.22. Dead-end threshold analysis results with different threshold values. 

5.5.3 Explosive Percolation Selection Rule Analysis 

In order to create clusters in a lattice via explosive percolation, we mainly have two 

selection rules. These are the summation and production rules. In our study, we 

select the summation rule to create a percolation cluster between the robot and 

target locations. However, to see the difference or similarities between the selection 

rule and how the selection affects the creation of a percolation cluster, we create an 

example occupancy map lattice within the field of view of the robot as in Figure 
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5.23. The robot location is indicated with a blue circle and the target is indicated 

with a blue cross. 

For both summation and product rule, the explosive percolation cluster emergence 

is repeated 20 times in Figure 5.23. The results are analyzed according to the 

fractal dimension of the percolation cluster in lattice and percolation probability of 

percolation. In Figure 5.24, we can examine the similarity between product and 

summation rules with respect to the fractal dimension of the percolation cluster. 

The red line shows us the fractal dimension of the lattice as 1.8. The dimension of a 

cluster in each iteration until the creation of the percolation cluster for the 

summation rule is indicated with orange lines. And the blue one is for the product 

rule. Both summation and product rule shows similar performance and reaches the 

almost same fractal dimension at the creation of the percolation cluster. This shows 

us that the percolation path can be found in a similar dimension of clusters using 

either of rules. Otherwise, if one of them had a lower dimensional value at the 

percolation cluster emergence, this would have indicated a much lower dimension 

cluster that would be a candidate to find a percolation path. Therefore we would 

have found a percolation path by searching less dense percolation clusters and this 

would have increased the search performance. However, according to the results, 

the performances are the same for both methods. 

In explosive percolation, the important aspect is advancing or delaying the 

emergence of percolation clusters by utilizing the selection of the largest cluster in 

each other or smaller clusters in each other during the percolation process 

respectively. S we want the creation of the largest percolation cluster as soon as 

possible to speed up the process, we reversibly applied the selection by connecting 

the largest cluster. This methodology in our study is expressed in detail in Section 

4.5. The creation of an explosive cluster in the early part of the iterations means 

that we obtain the percolation probability at an earlier time of the process and this 

increases the speed of finding the percolation cluster. Within this perspective, we 

examine both methods to reveal which method brings the percolation probability in 

the earlier phase of the iteration. In the sense of percolation probability, the results 
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are the same again for both methods. They perform a similar percolation 

probability performance at 0.8 level. The results are shared in Figure 5.25. As we 

indicate before, both methods exhibit similar percolation probability by converging 

the 0.8 value during iteration. 

 

Figure 5.23. Example occupancy grid map lattice to perform summation and 

product rule selection. 

 

Figure 5.24. Fractal dimension comparison for each selection rule until the 

emergence of percolation cluster. 
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Figure 5.25. Percolation probability comparison for each selection rule until the 

emergence of the percolation cluster. 

5.5.4 Robot’s Vital Signal Detection Circle Change Analysis 

We mention that the detection of the vital signal emission signal is presented with a 

blue circle for the SAR robot in Section 4.4. The circle radius directly affects the 

target selection when the robot senses the vital signal of the victim. If this cone is 

smaller, the robot’s target selection near the vital signal can lead to a different 

target and this may cause getting away from the victim's location. Finally, the 

process will take much more time than anticipated. On the contrary, if this 

detection circle is larger with an enhanced sensor system, the target is selected 

according to which one of the targets is closest to the victim's location. Therefore, 

the search can be processed with much less effort and without taking too much 

distance in the search area victim's location can be detected.  

As for the sensor type to detect victim location, in our study, we utilize LIDAR and 

symbolize vital signal detection sensor with a circle which is out of the scope of 

this study. If the victim is in the direct line of sight of the LIDAR cone, the victim's 
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location is attained as the target to penetrate this location. However, which sensor 

type can we utilize for the robot’s detection circle? Apart from the scope of this 

dissertation, the heat detection sensors can be fused with seismic sensors to detect 

the movement under rubbles. Also, an infrared camera can be used with LIDAR to 

locate the victim's location faster. The usage of these sensors can be thought of as 

enlarging the victim's vital signal detection circle in our study. 

To analyze how the size of the detection circle affects percolation path 

performance, we utilize the different sizes of circles and compare percolation path 

performance until reaching the location of the victim location. For the circle radius 

set, we select ℛ𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 = {10,20,40}. We keep the radius of the vital signal 

emission fixed with 𝑟𝑟𝑣𝑣𝑑𝑑𝑑𝑑𝑟𝑟𝐿𝐿 = 15. We select our initial conditions as in Experiment 1 

in Section 5.2 with one difference which is the victim location selected as �̅�𝑝𝑉𝑉𝐺𝐺 =

[209 52]𝑇𝑇 .  

According to the results, in Figure 5.26 (a) 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is selected as 10. Because the 

radius is small size, the vital signal can not be properly detected, the two circle 

does not intersect, and the robot continues to search by getting away from the 

victim. Eventually, the robot will find the victim's location but this will cause too 

much time consuming in disaster regions. In Figure 5.26 (b) and Figure 5.26 (c), 

because the robot senses the victim's signal, it chooses the closest target to the 

victim's location. Two circles get a chance to intersect because of that 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is 

large enough to detect a vital signal in a disaster region. 



 
 

101 

 
(a) 

 
(b) 

 
(c) 

Figure 5.26. Vital signal detection circle of the robot analysis (a) The 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

10 is selected in ℛ𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟. (b) The 𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 20 is selected in ℛ𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟 (c) The 

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 40 is selected in ℛ𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟. 
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5.6 Comparison Entropy-Based Active SLAM with Explosive Percolation-

Based Active SLAM 

We demonstrate the performance of our novel method by comparing it with the 

entropy-based active SLAM method [51] which is the most cited one. Among the 

active SLAM algorithms, the entropy-based method is the highly excepted one. 

The major difference, however, in the literature is that entropy-based SLAM 

method is utilized to extract the map of the searching area and diminish the map 

entropy by exploring the unknown regions. In our case, the active SLAM method is 

aimed to find the target location among the rubbles and extract a safe path to the 

victim location instead of mapping all regions and decreasing the whole map 

entropy. To be able to compare the two methods, we modify the entropy-based 

method in case of finding the victim's location, the process is stopped and 

announce the location of the victim. The target selection in the entropy-based 

method is related to finding maximum map entropy going toward to target 

direction. Therefore, we select the target among frontier cells that has the minimum 

information in other words maximum map entropy. The utility function to measure 

map entropy takes the following form:  

𝑡𝑡∗ ≈ arg max
𝑑𝑑

⎝

⎛ℍ[𝑝𝑝(𝑠𝑠|𝑥𝑥,𝑢𝑢, 𝑧𝑧)]�����������
𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑟𝑟𝑚𝑚

− ℍ[𝑝𝑝(𝑠𝑠𝑑𝑑|𝑥𝑥,𝑢𝑢, 𝑧𝑧)]�����������
𝑚𝑚𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑟𝑟𝑚𝑚 

𝑟𝑟𝑑𝑑 𝑑𝑑𝑟𝑟𝑟𝑟𝑔𝑔𝑑𝑑𝑑𝑑 ⎠

⎞ 

5-3 

ℍ[𝑃𝑃(𝑠𝑠|𝑥𝑥,𝑢𝑢, 𝑧𝑧) =  �−𝑝𝑝�𝑠𝑠𝑑𝑑𝑗𝑗� log �𝑝𝑝�𝑠𝑠𝑑𝑑𝑗𝑗��
𝑑𝑑,𝑗𝑗

− �1 − 𝑝𝑝�𝑠𝑠𝑑𝑑𝑗𝑗�� log �1 −  𝑝𝑝�𝑠𝑠𝑑𝑑𝑗𝑗�� 5-4 

 

Where 𝑡𝑡∗ is the maximum entropy target location, 𝑠𝑠 is the current occupancy grid 

map, and 𝑠𝑠𝑑𝑑 is the predicted map at the target location, 𝑠𝑠𝑑𝑑𝑗𝑗 is the cell occupancy 

probability in the occupancy map 𝑥𝑥 is the robot states, 𝑢𝑢 is the control input, 𝑧𝑧 is 

the measurements. 
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Table 5.3 Initial Conditions for SAR Robot and Target Location on Map. 

 Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 

𝑝𝑝𝑅𝑅𝐺𝐺  𝑥𝑥𝑅𝑅𝐺𝐺 =  30 

𝑦𝑦𝑅𝑅𝐺𝐺 = 201 

𝜃𝜃𝑅𝑅𝐺𝐺 = −60°  

𝑥𝑥𝑅𝑅𝐺𝐺 =  30 

𝑦𝑦𝑅𝑅𝐺𝐺 = 201 

𝜃𝜃𝑅𝑅𝐺𝐺 = −60°  

𝑥𝑥𝑅𝑅𝐺𝐺 = 30  

𝑦𝑦𝑅𝑅𝐺𝐺 =  201 

𝜃𝜃𝑅𝑅𝐺𝐺 =  −60° 

𝑥𝑥𝑅𝑅𝐺𝐺 =  320 

𝑦𝑦𝑅𝑅𝐺𝐺 = 210 

𝜃𝜃𝑅𝑅𝐺𝐺 = −120° 

𝑥𝑥𝑅𝑅𝐺𝐺 = 320 

𝑦𝑦𝑅𝑅𝐺𝐺 = 210 

𝜃𝜃𝑅𝑅𝐺𝐺 = −120° 

𝑝𝑝𝑇𝑇𝐺𝐺  𝑥𝑥𝑇𝑇𝐺𝐺 =  90 

𝑦𝑦𝑇𝑇𝐺𝐺 = 136 

𝑥𝑥𝑇𝑇𝐺𝐺 =  145 

𝑦𝑦𝑇𝑇𝐺𝐺 =  184 

𝑥𝑥𝑇𝑇𝐺𝐺 =  105 

𝑦𝑦𝑇𝑇𝐺𝐺 = 164 

𝑥𝑥𝑇𝑇𝐺𝐺 = 300 

𝑦𝑦𝑇𝑇𝐺𝐺 =  70 

𝑥𝑥𝑇𝑇𝐺𝐺 =  250 

𝑦𝑦𝑇𝑇𝐺𝐺 = 150 

 

To be able to compare the two methods, the map in Chapter 5.1 is utilized and the 5 

different locations of the vital signal together with the robot's initial position state 

is determined as in Table 5.3. For the first three experiments, the robot's initial 

position is kept the same, and for the last 2 experiments, a different robot's initial 

position is selected. The search performance is compared based on search path 

length among rubbles until the location of the victim is found. The results can be 

seen in Figure 5.27. In this figure, the search path for each experiment is 

represented with the blue line for the explosive percolation-based SLAM method 

and the red line for the entropy-based SLAM method. In those experiments, the 

same FastSLAM algorithm, frontier-based target detection, and path-detection 

algorithms are used. As a result, we can say that the performance of vital signal 

detection in explosive percolation search shows a better result in almost all 

experiment cases with respect to the entropy-based method. The reason for that is 

even if the finding victim signal condition is implemented entropy-based method, 

the selection of target criteria is giving priority to diminishing map entropy by 

selecting a target that has the maximum map entropy. As a result of this action, the 

robot follows a different path regime until finding the victim’s location. 

The entropy-based method is susceptible to the same motion error parameter 

because the same FastSLAM algorithm is used. These motion error values also 

affect the occupancy map performance directly. Therefore the selection of high 
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entropy targets is affected by the motion errors significantly by giving priority to 

diminishing map entropy constantly. 

 

Figure 5.27. Search path length comparison until finding of vital signal location on 

the global map. 

5.7 Comparison of Pathfinding Method Performances 

Within the nature of the explosive percolation-based SLAM method, we bind the 

two points in space. In other words, we try to find a safe path between target and 

source points. In the literature, there are different widely known pathfinding 

algorithms. These algorithms are compared to each other in terms of their 

performance characteristics. Therefore, it would be nice to compare our methods 

with some common widely used ones. We have chosen A* (4-direction), A* (8-

direction), rapidly -exploring random trees (RRT) and probabilistic road maps 

(PRM), and genetic algorithm (GA) [52] to compare with explosive percolation 

(EP). For A* algorithms Manhattan, Euler Distance, and Chebyshev heuristic 

functions are selected, however, there was no significant difference observed 

between these functions, therefore Euler Distance is selected as a heuristic 

function.  The algorithms are compared in terms of expansion cells, and path 
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lengths. The maps are selected in 50x50 sizes from simple to complex. The maps 

are given in Figure 5.28. 

 
(1) 

 
(2) 

 
(3) 

Figure 5.28. Map formats to be used in the comparison of pathfinding algorithms 

from simple to complex are presented. 

The initial point on the maps is selected as 𝑥𝑥𝑑𝑑 = 1,𝑦𝑦𝑑𝑑 = 1 and the target point is 

selected as 𝑥𝑥𝑑𝑑 = 50,𝑦𝑦𝑑𝑑 = 40. The performance results of the search algorithms are 

shared in Table 5.4. 

Table 5.4 Pathfinding algorithm comparison for each map given in Figure 5.27. 

Maps Algorithms Expansion Cell Path Lengths Time[sec] 

Map1 A* (4-Direction) 1406 88 0.26 

 A* (8-Direction) 472 70.13 0.16 
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Table 5.4 (continued) 

 RRT N/A 82 0.01 

 PRM N/A 71.95 0.33 

 GA N/A 114 0.03 

 EP 1165 65.83 0.7 

Map2 A* (4-Direction) 1244 88 0.35 

 A* (8-Direction) 541 68.96 0.15 

 RRT N/A 80.02 0.02 

 PRM N/A 75.86 0.2 

 GA N/A 71 0.04 

 EP 956 59.84 0.78 

Map3 A* (4-Direction) 1456 91 0.17 

 A* (8-Direction) 1140 78.40 0.21 

 RRT N/A 96.92 0.07 

 PRM N/A 105.5 0.12 

 GA N/A 96 0.2 

 EP 1206 73.92 0.86 

 

According to Table 5.4, we compare two performance criteria one is expansion cell 

number and the other one is path length. Because the RRT algorithm counts failed 

attempts number during search and PRM uses iterative vertex numbers, GA runs 

with cost function the expansion cell can not be used as performance criteria for 

those. However, A* algorithm expands the cells in the map to find a path. Therefore 

expansion cell number is applicable for this method. As we can see from the results, 

mostly the explosive percolation (EP) method uses fewer cells to find a path with 

respect to A* (4-direction) method. As for the A* (8-direction), it uses less expansion 

cell number and comparatively performs better results than the A* (4-direction) 

method. As we can see from Table 5.4, for map 2 and map 3 EP method and A* (8-

direction) algorithms almost show similar path length results. However, A* (8-

direction) algorithm uses lower cell expansion than the EP method. Moreover, when 
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it comes to comparing path length to reach the target point, the EP method shows 

better results with respect to other algorithms except for A* (8-direction) algorithms. 

To be able to find the proper solution for PRM, RRT, and GA, we had to optimize 

the parameter. When it is compared with EP which adapts itself to all complexity, 

for RRT and PRM we had to increase the node number for PRM and the distance 

threshold value for RRT and number of population and generation size for GA in a 

complex map 3. This will cause the update of these parameters in case of facing 

complex structures during searching with PRM or RRT. 

An important deduction from the results is that when we compare the methods 

according to processing time, the EP method shows slower performance than the 

other ones. The reason for this result can be related to the implementation of the 

code. With proper handling of the memory locations and coding structure, the time 

can be diminished further. 

The reason that explosive percolation shows better results in terms of path length is 

that explosive percolation theory uses lower-dense of clusters to find a percolation 

path into the target location and explosive percolation is a specialized theory, 

especially for unstructured and complex environments as in disaster regions where 

include small size passage between the voids through rubbles, connected irregular 

shape spaces between debris. Moreover, instead of searching all occupancy grid 

maps, explosive percolation focuses on creating the largest cluster that connects the 

robot location to the target location. This sustains the performance of finding the 

shortest path length among other algorithms in unstructured complex searching 

areas. 

When comparing the performances of other algorithms, another important point that 

should be mentioned at which conditions algorithm performs better results. As we 

know from the A* algorithm, it guarantees the shortest path between two points. It 

is true for coarse graphs and the selection of heuristic functions to foresee the lowest 

cost function value for the selection of a site. When the map gets complicated, we 

can see that Explosive percolation gives a lower path length value than the A* 
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algorithm as in the case in Map 3 in Table 5.4. Moreover, the resolution value 

selection of the A* algorithm affects finding the shortest path distance. If we use a 

low-resolution value, it is most likely that we can find a larger distance value instead 

of finding the shortest path. On the other hand, if we select high resolution, this 

means we have to expand more cells and this will cause the high computational time 

to get the shortest distance value.  The reader should keep in mind that distinction. 

For the other algorithms, they used iterative and probabilistic methods, therefore the 

path length value can be changed from one iteration to another. If one user wants to 

apply a pathfinding algorithm with shortest path criteria to a highly structured 

environment EP method and A* method can be used for that purpose, however, if 

the high-resolution value is set, the performance will be diminished for both 

algorithms. On the other hand, PRM and RRT methods can provide a non-optimal 

solution however the computational resources can be used efficiently and the 

processing time is lower concerning other algorithms. When selecting a method, the 

performance selection should be determined carefully. 

In Table 5.4, we keep the same location for the initial and the target location. To 

observe more outcomes to compare the methods’ performance based on path length, 

we have created random 5 locations on each map. Here the initial point is preserved 

with the same location 𝑥𝑥𝑑𝑑 = 1,𝑦𝑦𝑑𝑑 = 1, however, the target location is varied 

randomly. The random locations are shared in Table 5.5. 

Table 5.5 Target locations for each map in Figure 5.27. 

 Map 1 Map 2 Map 3 

Target (x,y) Target (x,y) Target (x,y) 

Location 1 (10,48) (10,40) (20,42) 

Location 2 (40,45) (30,30) (25,30) 

Location 3 (42,21) (35,48) (45,8) 

Location 4 (45,10) (45,13) (2,45) 

Location 5 (50,40) (50,40) (50,40) 
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Based on the locations for each map, the selected path algorithms are compared with 

the explosive percolation method, and the results are shared in Figure 5.29. The 

selected methods are PRM, RRT, GA, A* (4- Direction), A* (8- Direction) and 

Explosive Percolation. The blue dot represents PRM, the orange circle represents 

RRT, the yellow plus represents GA, the purple diamond is for A* (4-Direction), the 

green star is for A* (8-Direction), and finally blue square is for Explosive 

percolation. When we analyze the results, we can observe that in almost all cases the 

Explosive percolation gives better path length results with respect to other methods. 

Except when it is compared with A* (8-Direction), it gives better performance in 

terms of path length at some conditions. In Map-2  at Location 4 and Map-3 at 

Locations 2 and 5, A* (8-Direction) performs a lower path length. For the Location-

3 case in Map-2 and Map-3, PRM and EP show close results. For Location 4 in Map-

2 and Location 2 in Map 3, PRM exhibits lower values for path length. However, for 

the other points, the EP method shows better performance, especially if the target 

location is further from the initial position as in Location -5. These results indicate 

that the EP method presents relatively better performance results for random target 

locations as well. 
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(c) 

Figure 5.29. Path length comparison of path-finding algorithms PRM, RRT, GA, 

A*, and Explosive Percolation for each location is given in Table 5.5 for the maps 

in Figure 5.27 (a) For Map 1 in Figure 5.27 (b) For Map 2 in Figure 5.27 (c) For 

Map 3 in Figure 5.27 
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CHAPTER 6  

6 CONCLUSION AND FUTURE WORK 

In this thesis, a novel explosive percolation-based active SLAM algorithm is 

developed for the unstructured disaster environment to detect victim location within 

debris The SAR robot utilizes the FastSLAM algorithm with the occupancy grid map 

of the environment during searching and detects the target points to be searched with 

the frontier based method. To reach these target points among unstructured and 

highly complex environments explosive percolation is used and by following the 

percolation path which connects the robot's location to the target location unknown 

regions of the map are explored to detect the vital signal of the victim. 

In the presented approach, contrary to active SLAM approaches that aim to map an 

entire search area in the literature, our main aim is to find the location of the victim 

among rubbles by using the voids in the disaster area. The proposed explosive 

percolation search method guides the robot by utilizing the voids among rubbles to 

obtain a safe and obstacle-free path toward to unknown region of a highly complex 

fractional-order disaster environment. 

The disaster regions have the possibility of collapsing of debris, therefore dead-ends 

can occur and environments can change during mapping. In the proposed method, 

with the help of the explosive percolation path, the successive dead-end forms are 

detected and avoided during searching. Therefore an uninterrupted search and rescue 

navigation can be sustained. 

The proposed method is tested within a simulation environment with different 

scenarios in an unstructured map. Also, the performance of the proposed method is 

compared with other active SLAM approaches. Simulation results show us the 

proposed method is more effective and performs better than compared active SLAM 

approach. 
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We can list the main contribution of the thesis as follows, 

• A novel path-search algorithm based on Explosive Percolation theory in the 

FastSLAM algorithm is presented for a highly unstructured environment. 

• An active search algorithm to detect victims’ location in the disaster area is 

developed and tested with Explosive Percolation enhanced FastSLAM even 

under changing environments due to collapses. 

• Achievement of handling successive dead-ends and continued search of new 

areas in a highly complex environment of fractional order by percolating. 

• The first implementation and testing of explosive percolation theory in the 

robotic field literature 

An important conclusion of the proposed method is that based on the simulation 

results with different scenarios and conditions, like the SLAM applications for 

indoor and outdoor usage the exploration of unstructured complex environments in 

disaster regions can be out of a problematic case for further SAR missions with the 

application of our novel method. With the proposed dissertation, we have brought in 

a new solution for confined harsh environment exploration for robotic SAR missions 

which have very limited research on it. Moreover, with the application of explosive 

percolation theory, not only the enhancement of SLAM for harsh conditions is 

sustained but also a new application area of explosive percolation is achieved for 

further engineering problems.  

In this thesis, our novel proposed method is demonstrated within the simulation 

environment. However, to observe the real performance, with real robotic equipment 

and sensors, the algorithm should be tested in a controlled unstructured environment. 

This is envisaged as part of future work. 

In this dissertation, explosive percolation is applied in 2D environments, however, it 

can be extended also to 3D environments. When the nature of a disaster region is 

taken into account, the rubbles create 3D irregular volumes, by dividing this volume 

into voxel grids and applying explosive percolation theory, we can detect our 

percolation path into an unknown space through the empty volume between debris. 



 
 

113 

In this way, we can detect our 3D explosive percolation path through holes and 

cavities that the SAR robot can fit into it. 

Another challenging part is the usage of the proposed algorithm with multi-robot 

architecture. Our methodology is scaleable to multi-robot SLAM and using the 

multi-robot SLAM approach can unveil the true nature of explosive percolation 

theory in an unstructured environment. 

Lastly, 3D map generation and merging of those maps in a multi-robot SLAM 

approach is another challenging research area. In our approach we demonstrate the 

results in a 2D environment, however, a 3D view of the rubbles can sustain more 

detailed information for the search and rescue team in a disaster area. 
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