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ABSTRACT

DICHOTOMY THEOREMS AND FRUCHT THEOREM IN DESCRIPTIVE
GRAPH COMBINATORICS

Bilge, Onur

M.S., Department of Mathematics

Supervisor: Assist. Prof. Dr. Burak Kaya

August 2023, 40 pages

Descriptive graph combinatorics studies graph-theoretic concepts under definable

constraints. The systematic study of the field was started by Kechris, Solecki and

Todorčević and the field has been mainly focused on Borel chromatic numbers and

Borel matchings.

One of the major investigations in the field has been about finding conditions for

a definable graph to have a specific Borel chromatic number. The G0 dichotomy

theorem is one such theorem for graphs with uncountable Borel chromatic numbers.

After the first proof of this dichotomy theorem, a classical proof was found by Ben

Miller. Later, Carroy, Miller, Schrittesser and Vidnyánszky used this technique to

prove the L0 dichotomy theorem, an analogue of the G0 dichotomy theorem for Borel

chromatic number at least three. In the first part of this thesis, we provide a survey of

these results.

In the second part, we will be concerned with definable automorphism groups of de-

finable graphs. In classical graph theory, one of the most prominent theorems in the

study of automorphism groups of graphs is Frucht theorem that states that any group

v



can be realized as the automorphism group of a graph. We will prove that Frucht theo-

rem generalizes to both topological and Borel measurable setting. More specifically,

we shall show that every standard Borel group (respectively, Polish group) can be

realized as the Borel (respectively, homeomorphic) automorphism group of a Borel

graph on a standard Borel (respectively, Polish) space.

Keywords: Borel chromatic number, dichotomy, Borel graph automorphism, Frucht’s

theorem
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ÖZ

BETİMSEL ÇİZGİ KOMBİNATORİĞİNDE DİKOTOMİ TEOREMLERİ VE
FRUCHT TEOREMİ

Bilge, Onur

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Burak Kaya

Ağustos 2023 , 40 sayfa

Betimsel çizge kombinatoriği, çizge teorisi kavramlarını tanımlanabilir kısıtlamalar

altında inceler. Alanın sistematik çalışması Kechris, Solecki ve Todorčević tarafından

başlatılmıştır ve bu alan, genellikle Borel kromatik sayılarına ve Borel eşleşmelerine

odaklanmıştır.

Alandaki en büyük araştırmalardan birisi, tanımlanabilir bir çizgenin belirli bir Borel

kromatik numarasına sahip olması için çeşitli koşulların bulunmasıyla ilgilidir. G0

dikotomi teoremi, sayılamayan Borel kromatik sayısına ait çizgeler için bu konuda bir

teoremdir. Bu dikotomi teoreminin ilk ispatından sonra, Ben Miller tarafından klasik

yaklaşımla yeni bir kanıt bulunmuştur. Daha sonra, Carroy, Miller, Schrittesser ve

Vidnyánszky bu tekniği kullanarak G0 dikotomi teoreminin en az üç Borel kromatik

sayısı için benzeri olan L0 dikotomi teoremini kanıtladı. Bu tezin ilk bölümünde, bu

sonuçların bir özetini sunacağız.

Bu tezin ikinci bölümünde, tanımlanabilir çizgelerin tanımlanabilir otomorfizm grup-

ları ile ilgileneceğiz. Klasik çizge teorisinde, çizgelerin otomorfizm grupları ile ilgili
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en öne çıkan teoremlerden birisi, her grubun bir çizgenin otomorfizm grubu oldu-

ğunu ifade eden Frucht teoremidir. Frucht teoreminin topolojik ve Borel ölçülebilir

çevrede genelleştirmelerini kanıtlayacağız. Özellikle, her standard Borel grubun (sı-

rasıyla, Polish grup) bir standard Borel (sırasıyla, Polish) uzay üzerindeki Borel çiz-

genin Borel (sırasıyla, homeomorfik) otomorfizm grubu olduğunu kanıtlayacağız.

Anahtar Kelimeler: Borel kromatik sayısı, dikotomi, Borel çizge otomorfizmi, Frucht

teoremi
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CHAPTER 1

INTRODUCTION

1.1 Descriptive Graph Combinatorics and Preliminaries

Descriptive graph combinatorics is a recently developed field of mathematics that lies

in the intersection of descriptive set theory and graph theory.

Descriptive set theory is the study of Polish spaces i.e., separable completely metriz-

able topological space, and their “definable" subsets such as Borel, analytic etc. sets.

Recall that a subset of a Polish space is Borel if it is in the smallest σ-algebra gen-

erated by open sets; and a subset of a Polish space is called analytic if it is the con-

tinuous image of a Borel subset of another Polish space. For a general review of

descriptive set theory, we refer the reader to [10] and [17].

The main purpose in descriptive graph combinatorics is to investigate how the behav-

ior of graphs changes under definable constraints, i.e., how classical results in graph

theory extend if one requires various graph-theoretic objects such as edge relations,

colorings, matchings to be Borel, analytic etc. This was first systematically studied

in [9], although one may find some isolated prior results on this theme. For a general

review of the field that collects almost all current results, we refer the reader to [11].

In [9], it was shown that several fundamental results in classical graph theory cannot

be extended to Borel measurable setting. This is mainly due to the fact that, when

dealing with uncountable graphs, one has to use the axiom of choice to obtain certain

colorings and matchings. Before proceeding further, we shall provide some prelimi-

nary definitions.
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1.2 Preliminaries

Let us first recall some basic definitions from classical graph theory in the abstract

setting. We suggest the reader [5] for further background in graph theory.

A graph G is a pair (X,G) where X is a set and G is an irreflexive, symmetric

relation defined on X×X . Here we call X the vertex set of the graph and G the edge

relation of the graph. We call two vertices x, y ∈ X adjacent if (x, y) ∈ G and we

call an edge (x, y) ∈ G is incident to a vertex z ∈ X if either x = z or y = z.

Fix a graph G = (X,G). Let n ∈ N+. A path of length n in G is a sequence

(x0, x1, . . . , xn) of vertices in X such that (xi, xi+1) ∈ G for all 0 ≤ i < n. A

path (x0, x1, . . . , xn) is called simple if xi ̸= xj for all 0 ≤ i ̸= j ≤ n. A path

(x0, x1, . . . , xn) is called a cycle if x0 = xn; and such a cycle is called simple if the

path (x0, x1, . . . , xn−1) is simple. The graph G is called acyclic if there are no simple

cycles of length n ≥ 3.

Consider the equivalence relation EG given by xEGy if and only if there is a path

from x to y in G. The equivalence classes of this equivalence relation are called the

connected components of G. The graph G is called connected if there is only one

connected component.

The degree of a vertex is the number of vertices adjacent to it. ∆(G) denotes the

least upper bound of degrees of vertices. A graph G is called to be bounded degree if

∆(G) ≤ n for some n ∈ N, it is called locally finite if each degree is finite and it is

called locally countable if ∆(G) ≤ ℵ0.

An independent set A in a graph G = (X,G) is a subset of X such that no two

vertices in A are adjacent. A Y -coloring of a graph G = (X,G) is defined to be a

function c : X → Y such that (x, y) ∈ G =⇒ c(x) ̸= c(y). Hence, c is a coloring

of X such that for all y ∈ Y , c−1(y) is an independent set in G. The chromatic

number of G, denoted by χ(G), is the smallest cardinality of a set Y such that there

is a Y -coloring c : X → Y .

We define the line graph of G, denoted by L(G) = (X̆, Ğ), as follows:
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• X̆ is the set of edges of G seen as two element subsets of X . Notice that the

pairs (x, y) and (y, x) represent the same edge, so {x, y} represents a single

vertex in X̆ .

• Two vertices in X̆ are adjacent if and only if their corresponding edges in G are

incident to a common vertex in X .

An edge coloring of G is a coloring of L(G). By the edge chromatic number of G,

denoted by χ′(G), we mean the chromatic number of L(G).

Given two graphs G = (X,G) and H = (Y,H), a homomorphism from G into H

is a function f : X → Y such that if (x1, x2) ∈ G, then (f(x1), f(x2)) ∈ H . So, a

graph homomorphism is a function between two graphs that preserves the adjacency

relationships. An automorphism of G is a homomorphism from G into G which is a

bijective map whose inverse is also a homomorphism.

The set of all automorphisms of the graph G forms a group under composition of

functions. This group is called the automorphism group of G and is denoted by

Aut(G).

Let us now provide the Borel measurable counterparts of these notions on a standard

Borel space.

Recall that a standard Borel space is defined as a measurable space (X,B) such that

B is the Borel σ-algebra of some Polish topology on X . A Borel graph (respectively,

analytic) on a standard Borel space (X,B) is a graph G = (X,G) where the edge

relation G ⊆ X ×X is a Borel (analytic) subset of the product measurable space.

For the remaining definitions, assume that X and Y are standard Borel spaces. A

coloring c : X → Y is called a Borel n-coloring if |Y | = n and c is a Borel map. The

Borel chromatic number of G, denoted by χB(G), is defined as

χB(G) = min{|Y | : there exists a Borel coloring c : X → Y }.

Observe that by Borel isomorphism theorem in [17, Theorem 3.3.13], if |Y | is un-

countable, then |Y | = 2ℵ0 . So, the possible values for Borel chromatic number are in

{1, 2, 3, . . . ,ℵ0, 2
ℵ0}.
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Recall that, given a topological spaceX , the Effros Borel space ofX is the measurable

space defined on the set F (X) of closed subsets of X endowed with the σ-algebra

generated by the collection

{F ∈ F (X) : F ∩ U ̸= ∅}

where U ranges over all open subsets of X . The Effros Borel space is a standard

Borel space whenever X is Polish [10, Theorem 12.6].

Observe that, for a line graph L(G) = (X̆, Ğ) of a Borel graph G, the set X̆ can be

endowed with a standard Borel structure induced from the Effros Borel space of X .

We define a Borel edge coloring of G to be a Borel coloring of L(G) and the Borel

edge chromatic number of G to be the Borel chromatic number of L(G), denoted by

χ′
B(G).

The group of automorphisms of G consisting of all automorphisms that are Borel

functions will be denoted by AutB(G). In the case that G is a Borel graph on a

Polish space (X, τ), the group of automorphisms of G consisting of automorphisms

that are homeomorphisms only, will be denoted by Auth(G).

1.3 Borel vs Non-Borel

It is an interesting phenomenon that, while some results in classical graph theory

still hold when definable constraints are applied, some results do not generalize and

indeed fail drastically. If analyzed, one sees that this is mostly due to uses of the axiom

of choice and the ineligibility to choose a Borel transversal for a Borel equivalence

relation.

We will now exemplify this phenomenon using one of the most simple folklore results

regarding chromatic numbers.

PROPOSITION 1. A graph G = (X,G) is 2-colorable if and only if it has no odd

cycles.

Proof. Assume that G is 2-colorable with a coloring function c, using colors 0 and

1 and assume that G has an odd cycle x1, x2, . . . , x2m+1, x1. Assume without loss
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of generality that c(x1) = 0. Then, we must have c(xk) = 0 for every odd k and

c(xl) = 1 for every even l. Hence, c(x1) = x(x2m+1) which is a contradiction as

these two vertices are adjacent. So, if there is a 2-coloring, then there cannot be any

odd cycle.

Now, assume that the graph does not contain any odd cycle. Suppose initially that G

is connected. Pick a vertex x ∈ G. Let A denote the set of vertices in X such that the

shortest path from every vertex to x is of odd length. Let B denote the set of vertices

in X such that the shortest path from every vertex to x is of even length. The shortest

path is either even or odd so A ∩ B = ∅ and also note that x ∈ B. Assume that there

are two vertices a0, a1 ∈ A such that (a0, a1) ∈ G. Then, combining the two shortest

path from these two vertices to x, we obtain a path as follows: (x, . . . , a0, a1, . . . , x)

which is of odd length. Every graph that contains a closed path also contains an odd

cycle. But then, G has odd cycle which is a contradiction. So, there are no adjacent

vertices in A. By a similar argument there are no adjacent vertices in B. Hence, A

and B are independent sets and there is a 2-coloring.

If the graph is disconnected i.e., there are more than one connected component, one

can pick a vertex from each connected component and use the same method to find a

2-coloring on each connected component to find a 2-coloring of the graph.

Note that in the case that there are uncountable many connected components, one has

to use the axiom of choice to pick a vertex from each connected component to use

this proof.

One can ask whether, if a Borel graph has no odd cycles, it has Borel chromatic num-

ber 2. In general, this turns out to be not the case. Consider the following example.

EXAMPLE 2 ([9]). Let G = (X,G) where X = R and the edge relation G is defined

by (x, y) ∈ G if and only if |x− y| = 3k for some k ∈ Z.

This edge relation of this graph on R can be defined as follows:

G =
⋃
n∈Z

{(x, y) : x, y ∈ R, |x− y| = 3n}

which is a countable union of closed sets. Hence, G is a Borel (indeed, a Fσ) subset

of R× R.
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This graph contains no odd cycles. To show this, let x0, x1, . . . , xn be a cycle of

length n. For each i = 1, 2, . . . , n, xi = xi−1 + δi3
ki where δi = −1, 1 and ki ∈ Z.

This sequence of vertices construct a cycle so we have the sum
∑
i

δi3
ki = 0. For a

sufficiently large N , we have
∑
i

δi3
ki+N = 0 and this sum is a sum of odd integers.

Hence, there must be even number of terms which implies that the cycle has to be

even.

PROPOSITION 3 ([9]). χ(G) = 2 and χB(G) = 2ℵ0 .

Proof. Since the graph does not contain any odd cycles, by 1, χ(G) = 2.

Now, assume that the Borel chromatic number of G is countable and c : R → N is a

Borel coloring. Then, R = A1∪A2∪ . . . where Ai = c−1(i) and for some k ∈ N, Ak

must have positive Lebesgue measure. A theorem of Steinhaus [18, Théorème VII]

states that if A ⊆ R is of positive measure, then A − A = {a1 − a2 : a1, a2 ∈ A}
contains an open interval (−ϵ, ϵ) around 0. We can find N ∈ Z such that 0 < 1

3N
< ϵ.

This implies that there exists x, y ∈ Ak such that 1
3N

= x− y so (x, y) ∈ G which is

a contradiction as Ak needed to be independent.

Having seen that a classical result that does not generalize to Borel setting, let us now

provide an example that does generalize to Borel setting. Consider the following fact.

PROPOSITION 4. Let G = (X,G) be a locally countable graph, then χ′(G) ≤ ℵ0.

Proof. In a locally countable graph, every connected component has countable many

vertices and thus, countably many edges. Since there are countable many edges in

each connected component, giving each edge in a connected component a unique

color, we can obtain an ℵ0-edge coloring.

This theorem still holds with Borel constraints which is proved in a non-trivial way:

PROPOSITION 5 ([9, Proposition 4.10]). Let G = (X,G) be a locally countable

Borel graph on a standard Borel space X . Then, χ′
B(G) ≤ ℵ0.

Proof. Consider the connectedness relationEG. Observe that each connected compo-

nent is countable and consequently, the relation EG is a countable Borel equivalence
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relation. By [17, Proposition 5.8.13], also known as the Feldman-Moore Theorem,

there exists a countable group G and a Borel action of G on X such that EG is the

orbit equivalence relation of this Borel action. Moreover, the proof of this theorem

reveals that one can choose a sequence {gn}n∈N ⊆ G of involutions such that

xEGy if and only if there exists n ∈ N with gn · x = y

Define c : X̆ → N to be the coloring of L(G) given by

c({x, y}) = min{n ∈ N : gn · x = y}

Then one can check that c : L(G) → N is a Borel coloring. Consequently, we have a

Borel ℵ0-edge coloring of G.

1.4 Borel Chromatic Numbers

The Borel chromatic number of a graph is one of the most studied concepts in de-

scriptive graph combinatorics. The article [9] is mainly about Borel chromatic num-

bers and provides numerous results: Interesting examples of Borel graphs for which

chromatic number is strictly smaller than Borel chromatic number, Borel graphs gen-

erated by Borel functions and their Borel chromatic numbers, some results on Borel

edge chromatic number and the G0 dichotomy.

Since then, the theory has been expanded greatly. Many concepts in classical graph

theory such as Hedetniemi’s Conjecture, Vizing’s Theorem and Brook’s Theorem

have been studied under definable constraints, where some of the theorems hold in

the Borel setting and some of them do not.

For example, it was found in [9, Theorem 5.1] that if a Borel graph is generated by

a single function (meaning that two vertices are adjacent if the function takes one of

these vertices to the other), then possible values for its Borel chromatic number are

{1, 2, 3,ℵ0}. It was an open problem in the same article that given a Borel graph

generated by n Borel functions, is 2n + 1 an upper bound for its Borel chromatic

number? In his dissertation, with theorem [14, Theorem 2.1], Palamourdas answered
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the question by proving that if G is a Borel graph generated by k many commuting

Borel functions, then χB(G) ≤ 2k + 1 or χB(G) = ℵ0.

Another example comes from a well-known conjecture in classical graph theory. The

product of two graphs G = (X,G) and H = (Y,H) is the graph G × H with the

vertex set X × Y and ((x0, y0), (x1, y1)) ∈ G × H if and only if (x0, x1) ∈ G and

(y0, y1) ∈ H . In classical graph theory, Hedetniemi’s conjecture is a well-known

conjecture that states if G and H are two finite graphs, then

χ(G×H) = min{χ(G), χ(H)}.

Let C(k) be the statement that for finite graphs G and H,

χ(G), χ(H) ≥ k =⇒ χ(G×H) ≥ k,

then Hedetniemi’s conjecture is equivalent to the statement C(k) holds for all k ≥ 2.

Hedetniemi’s conjecture was recently disproven in [16]. Thus C(k) does not hold for

sufficiently large k.

The Borel version of Hedetniemi’s conjecture is presented in [11, Problem 4.23]. For

any k ∈ {1, 2, 3, . . . ,ℵ0, 2
ℵ0}, CB(k) is defined to be the statement: For any analytic

graphs G and H we have

χB(G), χB(H) ≥ k =⇒ χB(G×H) ≥ k.

Using G0 dichotomy theorem (which will be presented in detail later), it is obvious to

see that CB(2ℵ0) holds. It was also proven in [11, Proposition 4.25] that CB(3) holds

as well. However, it is not even known whether CB(4) or CB(5) holds.

A lot of work has been done on necessary and sufficient conditions for a graph to

have different chromatic number and Borel chromatic number. In some cases, the

reason for the graph to have this type of difference has been discovered as the graph

to contain a specific graph in terms of continuous homomorphism.

In [9], a graph called G0 is constructed using a dense sequence in 2ℵ0 . The choice

of the sequence is irrelevant as the obtained graph is unique. The importance of this

graph is, there is a dichotomy theorem stating that any analytic graph G either has

countable Borel chromatic number or there is a continuous homomorphism from G0
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into the G. So, the necessary and sufficient condition for an analytic graph to have

uncountable Borel chromatic number is the existence of a continuous homomorphism

from G0 into the graph.

The original proof of the G0 dichotomy theorem includes technical tools from effec-

tive descriptive set theory as stated in [9]. Later, Ben Miller found a classical proof

of this result using classical methods from graph theory and descriptive set theory in

[12] and gave a detailed proof in [13]. His idea can be summarized as follows:

The "nice" parts of the graph under investigation which are Borel ℵ0-
colorable are removed by transfinite recursion iteratively. Along this re-
moval process, one also constructs finite approximations to the graph G0.
When the removal process stops, if the whole space is exhausted, then the
graph is Borel ℵ0-colorable. If not, then one is able to extend these ap-
proximations which allows to construct the necessary homomorphism.

Later on, using the same proof with some tweaks and observations on Borel 2-

colorability, in [2], another graph L0 was found for a similar dichotomy separating

analytic graphs with Borel chromatic number at most 2 and at least 3.

There have been negative results as well. For example, in [9], a problem was asked

whether the shift graph on the Baire space could be used to prove the analogue of the

G0 dichotomy for graphs with infinite Borel chromatic number. Conley and Miller

showed the answer to this question is negative in [3]. This graph does not satisfy the

analogue of the G0 dichotomy, in addition, in [19], it is shown that there is no graph

(not even a countable set of graphs) satisfying such an analogue by proving that there

is no Borel graph of chromatic number at least 4 which would admit a homomorphism

to each graph with infinite Borel chromatic number. This also concludes that there is

no analogue of G0 dichotomy for any n ∈ N where n ≥ 4.

1.5 Borel Automorphism Groups

It is a natural direction in descriptive graph combinatorics to focus on automorphism

groups and other concepts in graph theory related to graph automorphisms.

One of the most famous theorems about graph automorphisms is Frucht’s theorem,

9



which can be found in [6], that states that every finite group can be realized as the

automorphism group of a graph. Later, both DeGroot in [4] and Sabidussi in [15]

proved that this result can be extended to infinite groups as well. However, their

construction on some groups of cardinality 2ℵ0 leads to graphs with vertex set of

cardinality greater than 2ℵ0 . It is natural to question what would be the descriptive set

theory analogue of Frucht’s theorem. We will provide two versions of this theorem,

one being in the Borel setting and the other in the topological setting.

A triple (G, ·,B) is said to be a standard Borel group if (G,B) is a standard Borel

space and (G, ·) is a group for which the multiplication · : G × G → G and the

inversion −1 : G → G operations are Borel maps. A triple (G, ·, τ) is said to be a

Polish group if (G, τ) is a Polish space and (G, ·) is a group for which · : G × G → G
and −1 : G → G are continuous maps.

When Borel constraints are added, one can ask whether, for every standard Borel

group, there exists a Borel graph such that the Borel automorphism group of this graph

is isomorphic to the given group? DeGroot’s and Sabidussi’s construction builds

non-Borel graphs using graphs with vertex sets of cardinality larger than 2ℵ0 . The

construction needs to be modified so that we can code the necessary Borel graph in a

Polish space.

The results in [4] and [15] seem to use Frucht’s original idea in [6] which can be

summarized as follows:

Given a group G with a generating set S, consider the Cayley graph G
with respect to S as a directed labeled graph. Then the group of automor-
phisms of G as a directed labeled graph is isomorphic to G. Match each
label with a connected undirected asymmetric graph. Systematically re-
place each directed labeled edge by the connected undirected asymmetric
graph it is assigned with to obtain an undirected graph. Then the auto-
morphism group of the resulting undirected graph is isomorphic to G.

While this idea does not seem to invoke any non-explicit methods at first glance,

such as the use of the axiom of choice that often results in non-measurable objects, it

remains a non-trivial question to answer whether or not the “systematically replace"

part of this idea can actually be done in a uniform way in Borel setting. Indeed,

the arguments in [4] and [15] do not seem to produce Borel graphs. That said, the
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“forking" idea that will appear in our construction already appeared [4] in a different

form. Nevertheless, the answer turns out to be affirmative as we shall see later.

1.6 Contributions of the Thesis

This thesis can be divided into two parts.

In the first part of the thesis, we will provide a survey of the technique discovered in

[12], which is used in [13] and [2] to prove G0 and L0 dichotomies respectively. One

aspect that will be different from these papers will be that the original proof given in

[2] for the L0 dichotomy uses directed graphs that allows the authors to prove further

results. However, using digraphs, the proof is slightly more complicated. Using

(undirected) graphs instead of directed graphs, as it will be done in this thesis, allows

one to simplify the proof.

In the second part of the thesis, the focus is on automorphism groups of graphs and

the main contribution is to extend Frucht’s theorem to Borel setting. Namely, we shall

prove the following.

THEOREM 6. For every standard Borel group (G, ·,B), there exists a Borel graph

G = (X,G) on a standard Borel space (X, B̂) such that G and AutB(G) are isomor-

phic as abstract groups.

A slight modification of our argument in the proof of Theorem 6 also gives the fol-

lowing variation in the topological setting.

THEOREM 7. For every Polish group (G, τ), there exists a Σ0
2-graph G = (X,G)

on a Polish space (X, τ̂) such that G and Auth(G) are isomorphic. Moreover, this

isomorphism can be taken to be a homeomorphism where Auth(G) ⊆ Homeo(X)

is endowed with the subspace topology induced from the compact-open topology of

Homeo(X).
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1.7 The Outline of the Thesis

In chapter 2, we will first prove the G0 dichotomy following [13] and prove the

L0 dichotomy following [2] with slight modifications. In Chapter 3, we will prove

Theorem 6 and Theorem 7. In Chapter 4, we will conclude the thesis with further

research directions and open questions.

1.8 Remarks on Notation

Throughout the thesis, 2N denotes the Cantor space, i.e., the Polish space consisting

of binary sequences indexed by N, R∗ denotes the symmetrization of a relation R on

a set, i.e., R∗ = R ∪ R−1, ∆X denotes the identity relation on a set X , 2<N denotes

the set of finite binary sequences, 2n denotes the set of binary sequences of length n

and N≥k denotes the set of natural numbers greater than or equal to k. The notation

≤c between two graphs denote that there is a continuous homomorphism from the

former to the latter.

As usual, we consider a sequence (xi)i∈I with index set I over a set X as a function

x : I → X , and hence, as a set consisting of ordered pairs. Consequently, given

two sequences a,b over a set, the subset inclusion a ⊆ b implies that the sequence

b extends the sequence a (meaning that these two sequences meet on every index on

which a is defined), which we shall denote by a ⊑ b. Observe that given a sequence

{an}n∈N of sequences over a setX , each of which extends the previous one, the union⋃
n∈N

an corresponds to the sequence whose index set is the union of the index sets of

an’s which extend all these sequences, that is, the sequence obtained by “gluing" all

these sequence in order. Given two sequences a,b where a is a finite sequence, we

use the notation a⌢ b to denote their concatenation.
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CHAPTER 2

G0 AND L0 DICHOTOMIES

2.1 G0 Dichotomy

Recall that the G0 dichotomy provides a necessary and sufficient condition for an

analytic graph to have uncountable Borel chromatic number. The first proof was

given in [9] using tools from effective descriptive set theory. In this section, we shall

prove the G0 dichotomy theorem following [13] mainly, but also with help from [9].

In order to construct G0, fix a sequence {gn}, where gn ∈ 2n for all n ∈ N and {gn}
sequence is dense, i.e. for each a ∈ 2<N there exists n ∈ N such that a ⊆ gn.

Corresponding to the sequence {gn} will be defined a graph G0 on the vertex set 2N.

Consider G0 = (2N, R0), where the edge relation R0 is defined as follows:

(x, y) ∈ R0 if and only if

• there exists n ∈ N such that gn ⊑ x, y and x(m) = y(m) for all m < n,

• x(n) = 1− y(n) and

• for all k > n, we have x(k) = y(k).

Having defined the graph G0, we can state the G0-dichotomy theorem.

THEOREM 8 ([13, Theorem 2.2.1]). For every analytic graph G = (X,R) on a

Polish space X , exactly one of the following holds:

1. χB(G) ≤ ℵ0

2. G0 ≤c G
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A straightforward Baire category argument shows that G0 has uncountable Borel

chromatic number:

PROPOSITION 9 ([9, Proposition 6.2]). χB(G0) > ℵ0.

Proof. Assume to the contrary that χB(G0) ≤ ℵ0, say, c : G0 → N is a Borel color-

ing. Then there is a countable Borel partition of the vertices of G0 into independent

sets. More precisely, we have

2N =
⋃
i∈N

Ai

where Ai = c−1(i). A countable union of meager sets is meager, so at least one of Ai

must be non-meager, say, Am is non-meager since 2N is non-meager. By Proposition

3.5.6 in [17], Am is comeager in Na where

Na = {b ∈ 2N : a ⊆ b}

for some a ∈ 2<N. Since gn is a dense sequence, there exists gk such that a ⊆ gk.

Let

f : Ngk⌢0 → Ngk⌢1

be the homeomorphism where

f(gk ⌢ 0⌢ b) = gk ⌢ 1⌢ b

Then Am is comeager in Ngk⌢0 and in Ngk⌢1, which implies that both Am and

f(Am ∩Ngk⌢0) are comeager on Ngk⌢1. Consequently, we have

Am ∩ f(Am ∩Ngk⌢0) ∩Ngk⌢1 ̸= ∅

Now choose c ∈ Am ∩ f(Am ∩Ngk⌢0)∩Ngk⌢1. Then, (c, f−1(c)) ∈ R0 and this is

a contradiction since c and f−1(c) are both in Am so they share the same color.

It follows that (1) and (2) in the statement of Theorem 8 are mutually exclusive. Now,

all there remains to show is that if an analytic graph has uncountable Borel chromatic

number, then there is a continuous homomorphism from G0 into this graph.

Given an analytic graph G = (X,R), by [13, Proposition 1.4.8], there is a continuous

surjection ϕR : NN → R and, by [13, Propositons 1.4.1, 1.4.4 and 1.4.8], there is a
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continuous function ϕX : NN → X such that the image of ϕX consists of the points

which are in at least one projection of R. These two functions ϕR and ϕX will enable

us to encode parts of the G0 inside G.

Before we proceed, let us define the finite approximations to G0 that we shall use to

construct the necessary homomorphism. An n-approximation is a = (ϕa, ψa), where

ϕa : 2n → Nn and ψa :
⊔
m<n

2m → Nn. An m-approximation b = (ϕb, ψb) is said to

be a one-step extension of an n-approximation a = (ϕa, ψa) if

1. m = n+ 1

2. for all a ∈ 2n, for all b ∈ 2m, if a ⊑ b, then ϕa(a) ⊑ ϕb(b)

3. for all a ∈
⋃
n̂<n

2n̂, for all b ∈
⋃

m̂<m

2m̂ such that |b| = |a| + 1, if a ⊑ b, then

ψa(a) ⊑ ψb(b)

An n-configuration is γ = (ϕγ, ψγ), where ϕγ : 2n → NN and ψγ :
⊔
m<n

2m → NN

such that for each m < n and for each s ∈ 2n−(m+1):

(ϕR ◦ ψγ)(s) = ((ϕX ◦ ϕγ(gm ⌢ (0)⌢ s)), (ϕX ◦ ϕγ(gm ⌢ (1)⌢ s)))

An n-configuration γ = (ϕγ, ψγ) is compatible with an n-approximation a = (ϕa, ψa)

if

1. ϕa(a) ⊑ ϕγ(a) for all a ∈ 2n, and

2. ψa(a) ⊑ ψγ(a) for all a ∈
⊔
n̂<n

2n̂.

An n-configuration γ = (ϕγ, ψγ) is compatible with a subset Y ⊆ X if

(ϕX ◦ ϕγ)(2n) ⊆ Y

An n-approximation a = (ϕa, ψa) is called Y -terminal if there is no configuration

which is both compatible with a one step extension of a and Y .

Also, define A(a, Y ) to be

{ϕX ◦ ϕγ(gn)|n-configuration γ is compatible with a and Y }
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which denotes the set of points ϕx ◦ ϕγ(gn), where gn is the element of the dense

sequence used to construct G0 and ϕγ comes from any n-configuration γ that is com-

patible with both a and Y . Observe that the set A(a, Y ) is analytic.

We will recursively define a sequence of analytic subsets (Xα)α<ω1 by throwing away

N-colorable subsets of X . Set the initial element of the sequence to be X0 = X . For

limit stages, set

Xλ =
⋂
α<λ

Xα

whenever λ is a limit ordinal. In order to define the successor stages, we will first

make some observations:

LEMMA 10 ([13, Lemma 2.2.2]). Let Y ⊆ X and a is a Y -terminal n-approximation.

Then, there is a Borel setB(a, Y ) ⊇ A(a, Y ) such thatA(a, Y ) andB(a, Y ) are both

R-independent.

Proof. Assume towards contradiction that A(a, Y ) is not R-independent, that there

exists n-configurations γ0 and γ1 which are compatible with both a and Y with

((ϕX ◦ ϕγ0)(gn), (ϕX ◦ ϕγ1)(gn)) ∈ R. The aim is to show that if we put these

two configurations together by joining them with the edge

((ϕX ◦ ϕγ0)(gn), (ϕX ◦ ϕγ1)(gn)) = ϕR(b)

for some b ∈ NN, we obtain a new configuration of a one step extension of a which

still stays in Y . Let γ be the n+ 1-configuration with

ϕγ(a⌢ 0) = ϕγ0(a) and ϕγ(a⌢ 1) = ϕγ1(a)

for any a ∈ 2n and

ψγ(a⌢ 0) = ψγ0(a) and ψγ(a⌢ 1) = ψγ1(a)

for all a ∈
⋃

0<m<n

2m and ψγ(∅) = b. Then γ is a configuration of G0,n+1 because

it preserves the edge relations as required. There is a unique (n + 1)-approximation

b which is compatible with this configuration and this approximation is a one-step

extension of a which is a contradiction as a was assumed to be Y -terminal. Hence,

A(a, Y ) is R-independent.
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Since A(a, Y ) is R-independent,

π1(R ∩ (X × A(a, Y )) ∩ A(a, Y ) = ∅

Both π1(R∩(X×A(a, Y )) andA(a, Y ) are analytic sets so we can use the separation

theorem [17, Theorem 4.4.1] to get a Borel set Â ⊇ A(a, Y ) such that

Â ∩ π1(R ∩ (X × A(a, Y )) = ∅

Then, we have π2(R ∩ (Â × X)) ∩ A(a, Y ) = ∅ and again both of the sets of this

intersection are analytic so use the separation theorem again to get ˆ̂
A ⊇ A(a, Y ). Set

B(a, Y ) = Â ∩ ˆ̂
A. Then we have that

π2(R ∩ (B(a, Y )×X)) ∩B(a, Y ) ⊆ π2(R ∩ (Â×X)) ∩ ˆ̂
A = ∅

which proves that B(a, Y ) is a Borel R-independent set containing A(a, Y ).

We now know that B(a, Y ) are Borel R-independent sets, so they can be of the same

color. Since there are countable many approximations, the set⋃
a is Xα-terminal

B(a,Xα)

is Borel ℵ0-colorable. Define

Xα+1 = Xα \
⋃

a is Xα-terminal

B(a,Xα)

In order to prove the theorem the following lemma is also required:

LEMMA 11 ([13, Lemma 2.2.3]). Suppose α < ω1 and a is an n-approximation that

is not Xα+1-terminal. Then there exists a one-step extension of a that is not Xα-

terminal.

Proof. Since a is not Xα+1-terminal, there exist an (n + 1)-approximation b and

an (n + 1)-configuration γ compatible with b and Xα+1. It follows that we have

(ϕX ◦ ϕγ)(an+1) ∈ Xα+1. This subsequently implies that B(b,Xα) ∩ Xα+1 ̸= ∅.

Therefore bmust be notXα-terminal since otherwise the previous equality contradicts

the definition of Xα+1.

Since there are countable many approximations, we can set α < ω1 such that Xα-

terminal approximations and Xα+1-terminal approximations are same.
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Proof of Theorem 8. Let a0 be the 0-approximation of the single vertex graph. Then,

A(a0, Y ) = Y for all Y ⊆ X . Suppose that a0 is Xα-terminal. Then

Xα+1 ⊆ Xα \ A(a0, Xα) = ∅

Since countably many Borel ℵ0-colorable subsets of X are removed and we obtained

the empty set after these removals, there exists a Borel ℵ0-coloring of G.

Now, assume that a0 is notXα-terminal. Then we can apply the last lemma iteratively

to get one step extensions an+1 of an for all n ∈ N. Since we chose α so that Xα-

terminal and Xα+1-terminal approximations are the same, each of these one step

extensions is not Xα-terminal. Set

ϕ : 2N → NN such that ϕ(a) =
⋃
n∈N

ϕan(a ↾ n)

and

ψ :
⊔
m∈N

2N → NN such that ψm : 2N → NN is defined as

ψm(a) =
⋃
k>m

ψak(a ↾ (k − (m+ 1))

Observe that the function ϕ is continuous. Since ϕX is also continuous, we have that

f = ϕX ◦ ϕ is continuous. We now must show that f is a graph homomorphism from

G0 to G. It is sufficient to show the stronger condition that

(ϕR ◦ ψm)(a) = ((ϕX ◦ ϕ)(gm ⌢ 0⌢ a), (ϕX ◦ ϕ)(gm ⌢ 1⌢ a))

for any a ∈ 2N and m ∈ N. In order to do this, it is enough to show that for any open

neighborhood U with (ϕR ◦ ψm)(a) ∈ U and any open neighborhood V with

((ϕX ◦ ϕ)(am ⌢ 0⌢ a), (ϕX ◦ ϕ)(am ⌢ 1⌢ a)) ∈ V

we have U ∩ V ̸= ∅. Then there exists k > m and there are basis elements of NN:

Nϕak (gm⌢0⌢b), Nϕak (gm⌢1⌢b) and Nψak,m(b) such that ϕR(Nψak,m(b)) ⊆ U and

ϕX(Nϕak (gm⌢0⌢b))× ϕX(Nϕak (gm⌢1⌢b)) ⊆ V

where b = a ↾ (k− (m+1)). We know that ak is not an Xα-terminal approximation

and thus, there is a configuration γ compatible with ak. Hence, (ϕG ◦ ψ(γ,n))(b) ∈ U
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and ((ϕX ◦ ϕγ)(gm ⌢ 0 ⌢ b), (ϕX ◦ ϕγ)(gm ⌢ 1 ⌢ b)) ∈ V where these two

elements are the same. Thus, U ∩ V ̸= ∅. This completes the proof that f is a graph

homomorphism.

2.2 L0 Dichotomy

Recall that L0 dichotomy theorem is an analogue of G0 dichotomy theorem that gives

a necessary and sufficient condition for analytic graphs to have Borel chromatic num-

ber at least 3. In this section, we shall prove the L0 dichotomy theorem following [2],

but we will modify the arguments for undirected graphs instead of directed graphs to

simplify the proof further.

To define L0-type graphs, let c ∈ (2N + 1)N. For each n ∈ N, let Ln = (Xn, Rn)

denote the graph shaped like a line segment on the vertices Xn = {0, 1, . . . , n} given

by

(a, b) ∈ Rn if and only if |a− b| = 1

for a, b ∈ Xn. Let ln be a sequence of finite sequences such that l0 = c(0) and

ln = 0n ⌢ 1 whenever n > 0. Let Lc,n = (Xc,n, Rc,n), where

Xc,n =
⋃
m≤n

{0, 1, . . . , c(m)} × 2n−m

with edge relations defined recursively as follows:

• Lc,0 = Lc(0)

• Lc,n+1 is the acyclic, connected graph with

(v0 ⌢ 0,v1 ⌢ 0), (v0 ⌢ 1,v1 ⌢ 1) ∈ Rc,n+1

whenever (v0,v1) ∈ Rc,n,

((n), (m)) ∈ Rc,n+1

whenever |n−m| = 1,

((ln, 0), (0)) ∈ Rc,n+1

and

((c(n+ 1)), (ln, 1)) ∈ Rc,n+1
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Hence, each Lc,n+1 is a graph that consists of two copies of Lc,n which are connected

by their endpoints (chosen by ln) by the graph Lc(n+1).

Set Xc = {(n, k, r) ∈ N × N × 2N | k ≤ c(n)}. Now let Lc = (Xc,Rc) and

πc,n : Xc ∩ ({0, . . . , n} × N× 2N) → Xc,n be the projection defined by

πc,n(m, k, r) = (k)⌢ r ↾ (n−m)

for all n ∈ N. Then, define Lc to be the graph where Rc consists of edges of the form

((n0, k0, r0), (n1, k1, r1)), where for all n ≥ max(n0, n1), we have

(πc,n(n0, k0, r0), πc,n(n1, k1, r1)) ∈ Lc,n

Define L0 to be the graph Lc, where c(0) = 1 and c(n) = 2n− 1 for all n > 0.

Now, we can state the L0-dichotomy theorem:

THEOREM 12 ([2, Theorem 1.1]). For every analytic graph G = (X,R) on a Polish

space X , exactly one of the following holds:

1. χB(G) ≤ 2

2. L0 ≤c G

The proof of this theorem consists of two stages. In the first stage, for each sequence

c ∈ (2N + 1)N of odd numbers, a Borel graph Lc is constructed; and the follow-

ing weaker dichotomy is proven. (Note that this theorem is proved for graphs with

Hausdorff vertex sets so it is a more general result).

THEOREM 13 ([2, Theorem 3.1]). Let G = (X,R) be an analytic graph on a Haus-

dorff space X . Then, exactly one of the following holds:

1. χB(G) ≤ 2

2. There exists sequence c ∈ (2N+1)N such that there is a continuous homomor-

phism from Lc into G.

In the second stage, it is proven that these continuum many Borel graphs, which are

called L0-type graphs, contains a homomorphic copy of the graph L0 that is a special

example of these graphs.
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The method that will be used in the proof of the first stage of this theorem is a slight

modification of the proof of G0 dichotomy. However, some extra lemmas on Borel

2-colorability of graphs will be required. Since the methods in the second stage of the

proof are not relevant to the approximation techniques used in the G0 dichotomy and

requires different definitions, we chose not to include this construction in this thesis.

Therefore, we will provide only the proof of the weaker dichotomy stated above. The

omitted second stage can be found in [2].

A simple Baire category argument proves that Lc = 3.

PROPOSITION 14. χB(Lc) = 3.

Proof. First, the Borel chromatic number of a locally finite Borel graph cannot exceed

the degree of the graph plus one, as proven in Proposition 4.6 in [9]. Hence we have

χB(Lc) ≤ 3.

The proof that χB(Lc) = 3 will resemble that of Proposition 9. Assume to the con-

trary that χB(Lc) ≤ 2. Then there exists a Borel coloring c : Xc → {0, 1} and con-

sequently, a Borel partition Xc = A0 ∪A1 into independent sets, where A0 = c−1(0)

and A1 = c−1(1). As before, one of these subsets has to be non-meager. Without

loss of generality assume that A0 is not meager. By Proposition 3.5.6 in [17], A0 is

co-meager in some open subset [(n, k, t)] = {(n, k, r) ∈ Xc : t ⊑ r}. Then A0 is

also co-meager in [(n, k, t⌢ (0))]. The function

f : [(n, k, t⌢ (0))] → [(n, k, t⌢ (1))]

given by f((n, k, t ⌢ (0))) = (n, k, t ⌢ (1)) is a homeomorphism. A0 is co-

meager in [(n, k, t⌢ (1))] as well and f(A0 ∩ [(n, k, t⌢ (0))]) is also co-meager in

[(n, k, t⌢ (1))]. Then,

f(A0 ∩ [(n, k, t⌢ (0))]) ∩ [(n, k, t⌢ (1))] ∩ A0 ̸= ∅

Hence, there exists an element (n, k, t⌢ (1)⌢ r) of this intersection such that

c((n, k, t⌢ (0)⌢ r)) = c((n, k, t⌢ (1)⌢ r)) = 0

However, we now obtain that the distance between the vertices (n, k, t ⌢ (0) ⌢ r)

and (n, k, t⌢ (1)⌢ r) is odd and the graph is acyclic so they cannot share the same

color which is a contradiction.
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Since G is analytic there is a continuous surjection ϕR : NN → R and a continuous

function ϕX : NN → X such that ϕX(NN) is the union of two projections of R to X .

We will define a decreasing sequence (Xα)α<ω1 of analytic subsets of X by throwing

away G-invariant sets that are Borel 2-colorable. Let X0 = ϕX(NN), Xλ =
⋂
α<λ

Xα

when λ is a limit ordinal. To define the successor stage, we need the definitions:

A (c, n)-approximation a is a pair of functions (ϕa, ψa) where n ∈ N, c ∈ (2N+1)n,

ϕa : Xc,n → Nn and ψa : Lc,n → Nn. A (c′, n + 1)-approximation a′ is called a

one-step extension of a (c, n)-approximation a if:

1. c ⊏ c′

2. For all x ∈ dom(π,c, n, n+ 1), we have ϕa ◦ πc,n,n+1(x) ⊏ ϕa
′
(x), where

πc,n,n+1 : Xc,n+1 → Xc,n is a projection

3. ∀x, y ∈ dom(πc,n,n+1), (x, y) ∈ Lc,n+1 we have

ψa(πc,n,n+1(x), πc,n,n+1(y)) ⊏ ψa
′
(x, y)

A (c, n)-configuration γ is a pair of functions (ϕγ, ψγ) where n ∈ N, c ∈ (2N+ 1)n,

ϕγ : Xc,n → NN, ψγ : Lc,n → NN and ∀(x, y) ∈ Lc,n we have

(ϕR ◦ ψγ)(x, y) = (ϕX ◦ ϕγ(x), ϕX ◦ ϕγ(y))

A (c, n)-configuration γ is compatible with a (c, n)-approximation a if

1. ∀x ∈ Xc,n, ϕa(x) ⊏ ϕγ(x)

2. ∀(x, y) ∈ Lc,n, ψγ(x, y) ⊏ ψγ(x, y)

A (c, n)-configuration γ is compatible with a set Y ⊆ X if ϕX ◦ϕγ(Xc,n) ⊆ [Y ]ER
. A

(c, n)-approximation a is Y -terminal if there is no configuration which is compatible

with both Y and a one-step extension of a. Also, define

A(a, Y ) = {ϕX ◦ ϕγ(sn)|(c, n)-configuration γ is compatible with a and Y }

CLAIM 15 ([2, Claim 3.3]). Assume that A ⊆ X is analytic such that for every

x, y ∈ A, every R-walk from x to y has even length. Then there exists an R-invariant

Borel set B ⊇ [A]ER
such that G ↾ B has a Borel 2-coloring.
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Proof. Define A0 ⊆ [A]ER
such that x ∈ A0 if and only if there is a walk of even

length from x to some y ∈ A. Similarly, define A1 ⊆ [A]ER
such that x ∈ A1 if and

only if there is a walk of odd length from x to some y ∈ A. A0 and A1 are analytic

subsets. For each x ∈ [A]ER
, either there is a walk of even length or there is a walk

of odd length, from x to some y ∈ A, because every walk connecting two vertices in

A has even length. Hence, A0 ∪ A1 = [A]ER
and A0 ∩ A1 = ∅. Using separation

theorem for analytic sets, there are Borel sets B1, B2 such that A0 ⊆ B0 and A1 ⊆ B1

and B0 ∩B1 = ∅. Let c(x) = 0 if x ∈ B0 and c(x) = 1 if x ∈ B1. Define

C = {x ∈ X|c is a 2-coloring of G ↾ [x]ER
}

Then, since c is a 2-coloring on A0∪A1, we have two analytic R-invariant sets X \C
and A0 ∪ A1 such that (X \ C) ∩ (A0 ∪ A1) = ∅. Then, by [7, Lemma 5.1], there is

an R-invariant Borel set B ⊇ A0 ∪A1 and B ∩ (X \C) = ∅. Hence, c ↾ B is a Borel

2-coloring of G ↾ B.

LEMMA 16 ([2, Lemma 3.2]). Assume that Y ⊆ X is an analytic subset and a

is a Y -terminal (c, n)-approximation. Then, there exists an R-invariant Borel set

B(a, Y ) ⊇ [A(a, Y )]ER
so that G ↾ B(a, Y ) has a Borel 2-coloring ca,Y .

Proof. By its definition A(a, Y ) is analytic. If for every x, y ∈ A(a, Y ), every R-

walk from x to y has even length and the assumptions in the previous claim hold.

Assume that between two vertices in A(a, Y ), there is an R-walk of odd length t+2.

Our aim is to show a is not Y -terminal. So, we have two vertices z0, zt+2 ∈ A(a, Y )

with an R-walk of odd distance t + 2 ≥ 3 between them and there are two (c, n)-

configurations γ0, γ1 compatible with both a and Y such that z0 = ϕX ◦ ϕγ0(ln) and

zt+2 = ϕX ◦ ϕγ1(ln). Then we have these configurations and a path between z0 and

zt+2: (z0, z1, . . . , zt+2) of length t+2, where t is odd. Choose r0, r1, ..., rt+2 ∈ NN and

e0, e1, . . . , et+1 ∈ NN such that r0 = ϕγ0(ln), rt+2 = ϕγ1(ln), ∀i ≤ t+2, ϕX(ri) = xi

and ∀j < t+2, ϕR(ei) = (xi, xi+1). Now, define a new (c⌢ (t), n+1)-configuration

γ as: γ = (ϕγ, ψγ) where ϕγ : Xc⌢(t),n+1 → NN, ψγ : Lc⌢(t),n+1 → NN and

ϕγ :

ϕ
γ(x ⌢ (i)) = ϕγi(x) x ∈ Xc,n, i < 2

ϕγ((i)) = ri+1 i ≤ m
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and

ψγ :



ψγ(x ⌢ (i), y ⌢ (j)) = ψγi(x, y) (x, y) ∈ Lc,n, i < 2

ψγ((sn ⌢ (0), (0))) = e0

ψγ(((t), sn ⌢ (1))) = et+1

ψγ((i, i+ 1)) = ei+1 i ≤ t− 1

Then, γ is a (c ⌢ (t), n + 1)-configuration and is compatible with both Y and the

unique (c⌢ (t), n+ 1)-approximation a′ that is a one-step extension of a which is a

contradiction as a was supposed to be Y -terminal.

Hence, if a is Y -terminal then everyR-walk between the vertices in A(a, Y ) has even

length. Then, by the claim, there is a Borel R-invariant set B(a, Y ) ⊇ [A(a, Y )]ER

that has a Borel 2-coloring on it.

Now, define the successor stage:

Xα+1 = Xα \
⋃

α is Xα-terminal
B(a,Xα)

There are countable many approximations and X0 is an analytic set. Hence, Xα is

analytic ∀α < ω1. Also, since each B(a,Xα) is R-invariant, each Xα is also R-

invariant.

LEMMA 17 ([2, Lemma 3.6]). Assume that α < ω1 and a is a (c, n)-approximation

that is not Xα+1-terminal. Then a has a one-step extension that is not Xα-terminal.

Proof. We know that a is not Xα+1-terminal. Hence, it has a one-step extension

(c′, n+1)-approximation a′ and a (c′, n+1)-configuration γ such that γ is compatible

with both a′ and Xα+1. We also know that (ϕX ◦ ϕγ)(Xc,n+1) ̸= ∅ and since Xα+1 is

R-invariant, [Xα+1]ER
= Xα+1 so

∅ ≠ (ϕX ◦ ϕγ)(Xc′,n+1) ⊆ Xα+1

If a′ is Xα-terminal, then [ϕX ◦ ϕγ(Xc′,n+1)]ER
⊆ [A(a′, Xα)]ER

⊆ B(a′, Xα). This

implies that Xα+1 ∩B(a′, Xα) ̸= ∅. However,

Xα+1 = Xα \
⋃

α is Xα-terminal

B(a,Xα)
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which provides a contradiction asB(a′, Xα) should’ve been extracted fromXα when

obtaining Xα+1. Hence, a′ is not Xα-terminal.

Since there are countably many approximations, we can set α < ω1 such that Xα-

terminal approximations and Xα+1-terminal approximations are same. From now on,

we fix such an α.

LEMMA 18 ([2, Lemma 3.7]). If every approximation is Xα+1-terminal, then G has

a Borel 2-coloring.

Proof. Assume that for some x, y ∈ Xα+1, (x, y) ∈ R. Then, there is a ((1), 1)-

configuration γ that is compatible with {x, y} and a unique ((1), 1)-approximation a

such that γ is compatible with a. We know that a is Xα+1-terminal so that we have

x, y ∈ [A(a,Xα+1)]ER
but since we fixed α above, a is Xα-terminal as well which

further implies that x, y ∈ [A(a,Xα)]ER
⊆ B(a,Xα). However,

Xα+1 ∩B(a,Xα) = ∅

which provides a contradiction. Hence, Xα+1 is R-independent. It is also R-invariant

and since X0 consists of projections of R, we have that Xα+1 = ∅. Now we can

define e : {(a, β)|a is Xβ-terminal, β ≤ α} → N to be any injection. Let ca,Xβ be

the Borel 2-coloring on B(a,Xβ) given be previous lemma, for (a, β) ∈ dom(e). If

x ∈ X , let

c(x) =


ca,Xβ(x) e(a, β) is minimal such that x ∈ B(a,Xβ)

0 x /∈
⋃

(a,β)∈dom(e)

B(a,Xβ)

It is a Borel map and a 2-coloring as each B(a,Xβ) is R-invariant.

We are ready to prove the theorem of the first stage.

Proof of Theorem 13. Assume that χB(G) > 2. By the previous lemma, there ex-

ists an approximation that is not Xα+1-terminal. One can find a (0)-approximation

a0 that is not Xα+1-terminal. Applying the lemma recursively, there is a one-step

extension (can+1 , n + 1)-approximation an+1 of (cn, n)-approximation an that is not
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Xα-terminal. Let c =
⋃
n∈N

cn. Define ϕ : Xc → NN by letting

ϕ(m, k, r) =
⋃
n≥m

ϕan(πc,n(m, k, r))

and ψ : Lc → NN by

ψ(((m0, k0, r0), (m1, k1, r1))) =
⋃

n≥m0,m1

ψan((πc,n(m0, k0, r0), πc,n(m1, k1, r1)))

.

Aim is to show that ϕX ◦ ϕ is a continuous homomorphism from Lc to G. To prove

that it is a homomorphism, let (x0, x1) ∈ Lc, x0 = (n0, k0, r0), x1 = (n1, k1, r1). If

we show that (ϕR ◦ ψ)(x0, x1) = ((ϕX ◦ ϕ)(x0), (ϕX ◦ ϕ)(x1)) we are done. In order

to show this it is enough to show that for any U, V open subsets containing the former

and the latter respectively, U ∩ V ̸= ∅ (because X is Hausdorff). Using the definition

of Lc, (πc,n(x0)), (πc,n(x1)) ∈ Lc,n for all n ≥ max(n0, n1). Since ϕ, ψ, ϕR, ϕX are

all continuous, there exists n ≥ max(n0, n1) with

ϕR([ψ
an((πc,n(x0), πc,n(x1)))]) ⊆ U

ϕX([ψ
an ◦ πc,n(x0)× ϕX([ψ

an ◦ πc,n(x1))]) ⊆ V

Let γ be a configuration compatible with an. By the definition of configuration we

have

(ϕR ◦ ψγ)((πc,n(x0), πc,n(x, 1))) = ((ϕX ◦ ϕγ)(πc,n(x0)), (ϕX ◦ ϕγ)(πc,n(x1)))

and since γ and an are compatible,

((ϕX ◦ ϕγ)(πc,n(x0)), (ϕX ◦ ϕγ)(πc,n(x1))) ∈
ϕX([ψ

an ◦ πc,n(x0)× ϕX([ψ
an ◦ πc,n(x1))]) ⊆ V

and

(ϕR ◦ ψγ)((πc,n(x0), πc,n(x, 1))) ∈ ϕR([ψ
an((πc,n(x0), πc,n(x1)))]) ⊆ U

so that U ∩ V ̸= ∅. Therefore ϕX ◦ ϕ is a homomorphism.
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CHAPTER 3

BOREL AUTOMORPHISM GROUPS

3.1 Constructing the Graph

Recall that given a standard Borel group, we are trying to use Frucht’s original idea

in [6] to construct a Borel graph whose Borel automorphism group is isomorphic to

the given group. First, let us show the construction of the graph. Let (G, ·,B) be a

standard Borel group.

For each a ∈ 2N, consider the graph Ga = (N≥2, R
∗
a) where the edge relation is the

symmetrization of the relation Ra = Ainitial ∪ Afork ∪ Anofork with

Ainitial = {(2, 3), (3, 4)}

Afork =

{
(n, n+ 1), (n, n+ 2) : n ∈ 2N≥2, a

(
n− 4

2

)
= 1

}
Anofork =

{
(n, n+ 1), (n+ 1, n+ 2) : n ∈ 2N≥2, a

(
n− 4

2

)
= 0

}

The placement of edges in Ga can be described as an iterative process as follows.

Regardless of a, we first put an edge between 2 and 3, and, 3 and 4. For each even

integer n ≥ 4, depending on whether a
(
n−4
2

)
is zero or one, we either create a fork

at n using the next two vertices with odd vertex having degree one, or add an edge

between successive vertices for the next two vertices. The following figure is an

example:
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2 3 4

5

6 7 8

9

10

11

12 13 14

Figure 3.1: A diagrammatic representation of Ga with a = (1, 0, 1, 1, 0, . . . )

We shall now argue that any such graph Ga is asymmetric, i.e., it has no non-trivial

automorphisms. Let a ∈ 2N and φ ∈ Aut (Ga). Observe that 2 is the only vertex

of degree one that is adjacent to a vertex of degree two. Hence φ fixes 2 which

immediately implies that 3 and 4 are fixed under φ as well. Let n ≥ 4 be an even

integer. Suppose that φ fixes all vertices 2 ≤ k ≤ n. Then there are two possibilities:

• If a
(
n−4
2

)
= 1, then n + 1 is a vertex of degree one and n + 2 is a vertex of

degree at least two, in which case φ fixes both.

• If a
(
n−4
2

)
= 0, then φ clearly fixes n+ 1 because n is fixed by φ and the other

neighbors of n have already been fixed. But subsequently, φ must fix n + 2 as

well by a similar argument.

Therefore φ fixes all the vertices 2 ≤ k ≤ n + 2. By induction, φ fixes all vertices

in Ga. A similar inductive argument shows that Ga and Gb are not isomorphic

whenever a and b are distinct elements of 2N.

Next will be constructed the main graph associated to an uncountable standard Borel

group. Fix an uncountable standard Borel group (G, ·,B). In order to implement

Frucht’s idea, we first need to find an appropriate Cayley graph for (G, ·,B). An

obvious choice for a generating set is the Borel set S = G \ {1G}. Suppose that we

constructed the Cayley graph associated to this generating set. In this graph, there is

a labeled directed edge from the first component to the second components of each

element of (G × G) \ ∆G . We would like to replace each of these directed labeled

edges by an appropriate asymmetric connected countable graph that we have already

constructed. Consequently, for each element of (G×G)\∆G , we need to add countably

many “new" vertices to “old" vertices. Therefore, it is natural to consider

X = G × G × N
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as the vertex set of the main (undirected) graph to be constructed. In this vertex set,

• the vertices of the form (x, x, 0) where x ∈ G are supposed to represent the

“old" vertices that are the group elements,

• the vertices of the form (x, y, k) where x, y ∈ G with x ̸= y and k ∈ N are the

“new" vertices that are added after replacing the directed labeled edges, and

• the vertices of the form (x, x, k) where x ∈ G and k ̸= 0 are “irrelevant"

elements that will essentially serve no purpose. We could simply have taken

these elements out of the vertex set, however, there is no harm in keeping them

around. In order for these vertices to not create any additional symmetries, we

will stick an infinite line formed by them to (x, x, 0).

We shall next construct the main graph on the vertex set X . Recall that each directed

labeled edge in the Cayley graph of G with respect to S, which corresponds to an

element of S, is to be replaced by one of the continuum-many asymmetric graphs

that we initially constructed. This supply of asymmetric graphs were parametrized by

2N. Consequently, it suffices to parametrize G by 2N. Since (G,B) is an uncountable

standard Borel space, it follows from the Borel isomorphism theorem that there exists

a Borel isomorphism Ψ : G → 2N.

Before we proceed, we would like to take a moment to let the reader know in advance

that we will later require Ψ : G → 2N to have other additional properties in the

proof of Theorem 7. Indeed, as we shall see later, the Borel complexity of our graph,

i.e., where it resides in the Borel hierarchy of the Polish space (X × X, τ × τ), is

completely determined by the Borel complexity of inverse images of the clopen basis

elements of 2N under Ψ.

Consider the relation G = Girrelevant ∪Gblockbase ∪Gfork ∪Gnofork where
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Gblockbase =

{(
(x, x, 0), (x, y, 0)

)
,

(
(x, y, 0), (x, y, 1)

)
,

(
(x, y, 0), (x, y, 2)

)
,(

(x, y, 2), (x, y, 3)

)
,

(
(x, y, 3), (x, y, 4)

)
,

(
(x, y, 2), (y, y, 0)

)
:

x, y ∈ G, x ̸= y

}

Gforks =

{(
(x, y, n), (x, y, n+ 1)

)
,

(
(x, y, n), (x, y, n+ 2)

)
:

x, y ∈ G, x ̸= y, n ∈ 2N≥2, Ψ
(
x−1y

)(n− 4

2

)
= 1

}

Gnoforks =

{(
(x, y, n), (x, y, n+ 1)

)
,

(
(x, y, n+ 1), (x, y, n+ 2)

)
:

x, y ∈ G, x ̸= y, n ∈ 2N≥2, Ψ
(
x−1y

)(n− 4

2

)
= 0

}

Girrelevant =

{(
(x, x, n), (x, x, n+ 1)

)
: x ∈ G, n ∈ N

}

An illustration of the edges in G∗ for a pair of group elements x and y is given in

Figure 3.2 as an undirected graph, where we assume for illustrative purposes that

Ψ(x−1y) = (1, 0, 1, 1, 0, . . . ) and Ψ(y−1x) = (1, 1, 1, 1, 0, . . . ).

It is a routine verification to check that G is a Borel subset of X ×X . Here we will

only show that Gforks is indeed Borel as a guiding example. Let n ∈ 2N≥2. Then the

set

O =

{
a ∈ 2N : a

(
n− 4

2

)
= 1

}
is a clopen subset of 2N = {0, 1}N. Consider the map from f : G × G → 2N given

by f(x, y) = Ψ (x−1y). Since (G, ·,B) is a standard Borel group, f is a Borel map

and hence B = f−1(O) is a Borel subset of G × G. Set A = B \ ∆G . It follows

that A× {n}, A× {n+ 1} and A× {n+ 2} are Borel subsets of X and hence, their

pairwise cartesian products are Borel subsets of X ×X . Observe that the relation

D =

{(
(x, y, i), (x, y, j)

)
: x, y ∈ G, i, j ∈ N

}
30



(x,x,0)

(x,y,0) (x,y,2)

(x,y,1)

(y,x,1)

(y,x,0)(y,x,2)

(y,y,0)

(x,y,3)

(x,y,4) (x,y,5)

(x,y,6)

(x,y,7)

(x,y,8) (x,y,9)

(x,y,10) (x,y,11)

(x,y,12)

(x,y,13)

(x,y,14)

(y,x,3)

(y,x,4)

(y,x,6)(y,x,7)

(y,x,5)

(y,x,8)(y,x,9)

(y,x,10)(y,x,11)

(y,x,12)

(y,x,13)

(y,x,14)

(y,y,1)

(y,y,2)

(y,y,3)

(y,y,4)

(x,x,1)

(x,x,2)

(x,x,3)

(x,x,4)

Figure 3.2: A representation of edges in G∗ for a pair of group elements x and y
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is a Borel subset of X × X . Indeed, this is a closed subset of X × X once it is

endowed with the product topology arising from the discrete topology on N and any

topology turning G into a Polish space compatible with its Borel structure. But then

Gforks = D ∩
⋃

n∈2N≥2

(
(A× {n})× (A× {n+ 1})

)
∪
(
(A× {n})× (A× {n+ 2})

)
is a Borel subset of X × X . That Gnoforks, Gblockbase and Girrelevant are Borel can be

shown by similar arguments with appropriate modifications. Thus G = (X,G∗) is a

Borel graph.

3.2 Proof of Theorem 6

Let (G, ·,B) be a standard Borel group. Suppose for the moment that G is uncount-

able. Set G = (X,G∗) to be the Borel graph constructed in Section 2 associated to

(G, ·,B). We wish to show that G and AutB(G) are isomorphic. For each g ∈ G,

consider the map φg : X → X given by

φg(x, y, k) = (gx, gy, k)

for all x, y ∈ G and k ∈ N. Clearly φg is a bijective map. Observe that left-

multiplying the first two components of each element of G by g leaves the sets

Girrelevant, Gblockbase, Gfork and Gnofork invariant. To see that Gfork and Gnofork are in-

variant under φg, observe that x−1y = (gx)−1(gy). Thus φg is an automorphism.

Since the group multiplication is Borel, so is φg. It follows that φg ∈ AutB(G).

Define the map Φ : G → AutB(G) by Φ(g) = φg for all g ∈ G. Then clearly Φ is

injective and moreover, we have

Φ(gh) = φgh = φg ◦ φh = Φ(g) ◦ Φ(h)

Thus Φ is a group embedding. It remains to show that Φ is surjective.

Let f ∈ Aut(G) be an arbitrary automorphism. Observe that the set of vertices which

has one neighbor of infinite degree and another neighbor of degree one is precisely

{(x, y, 0) : x, y ∈ G, x ̸= y}

Therefore, being an automorphism, f permutes this set. Let x, y ∈ G be distinct and

set (x′, y′, 0) = f(x, y, 0). Note that the only neighbors of (x, y, 0) and (x′, y′, 0)
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• of degree one is (x, y, 1) and (x′, y′, 1) respectively,

• of degree three is (x, y, 2) and (x′, y′, 2) respectively,

• of uncountable degree is (x, x, 0) and (x′, x′, 0) respectively.

Thus f(x, y, 1) = (x′, y′, 1), f(x, y, 2) = (x′, y′, 2) and f(x, x, 0) = (x′, x′, 0).

By a similar argument, since we already obtained f(x, y, 2) = (x′, y′, 2), we must

also have that f(y, y, 0) = (y′, y′, 0). We would like to point out that the equalities

f(x, x, 0) = (x′, x′, 0) and f(y, y, 0) = (y′, y′, 0) together show that x′ only depends

on x and y′ only depends on y.

Recall that the graph GΨ(x−1y) =
(
N≥2, R

∗
Ψ(x−1y)

)
constructed at the very beginning

has no non-trivial automorphisms. Consequently, an inductive argument as was done

in Section 2 shows that f(x, y, n) = (x′, y′, n) for all n ≥ 2.

This last conclusion immediately implies that Ψ(x−1y) = Ψ(x′−1y′). Since Ψ is

injective, we have x−1y = x′−1y′ and hence x′x−1 = y′y−1.

Set g = x′x−1 ∈ G. Then we have gx = x′ and gy = y′. Therefore

f(x, y, n) = (x′, y′, n) = φg(x, y, n)

for all n ∈ N. Recall that x′ depends only on x and y′ depends only on y. Conse-

quently, if we used another z ∈ G instead of x or y, we still would have found the same

group element g because in this case we would have g = x′x−1 = y′y−1 = z′z−1.

Therefore, we indeed have

f(x, y, n) = (x′, y′, n) = φg(x, y, n)

not only for the previously fixed x, y but for all distinct x, y ∈ G and n ∈ N. Hence

f agrees with φg on X \ (∆G × N). It also follows from f(x, x, 0) = (x′, x′, 0) =

(gx, gx, 0) via an inductive argument that f(x, x, n) = (gx, gx, n) for all n ∈ N.

Thus f is identically φg on X . Hence Φ is an isomorphism and we indeed have

Aut(G) = AutB(G).

Finally, suppose that G is a countable standard Borel group. In this case, we choose

Ψ to be any (necessarily Borel) bijection from G to any (necessarily Borel) subset
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of 2N with cardinality |G| and implement the same construction. The exact same

argument proving Aut(G) = AutB(G) in the uncountable case still goes through in

the countable case, with appropriate modifications in the extreme case |G| = 1.

3.3 Proof of Theorem 7

Let (G, τ) be a Polish group. It is well-known [10, Theorem 4.14] that there exists a

continuous injection γ : G → [0, 1]N. Consider the map ξ : [0, 1]N → 2N×N given by

ξ (x) (i, j) = 1 if and only if the i-th digit of the binary expansion of xj is equal to

1, where the binary expansions of dyadic rationals are taken to end in infinitely many

repating 1’s. It is straightforward to check that ξ is a Σ0
2-map, i.e., the inverse images

of open sets are Σ0
2. Fix a homeomorphism ζ : 2N×N → 2N and set Ψ̂ = ζ ◦ ξ ◦ γ.

We now carry out the same construction of G = (X,G∗) in Section 2 but we use the

Σ0
2-injection Ψ̂ : G → 2N instead of the Borel bijection Ψ : G → 2N. Then the set

A in the construction is Σ0
2. It follows that Gforks and Gnoforks are Σ0

2. It is also easily

seen that Gblockbase and Girrelevant are ∆0
2 and closed respectively. Therefore G∗ is a

Σ0
2-subset of X ×X .

We next execute the proof of Theorem 6 as it is. Observe that the automorphisms φg :

X → X constructed in the proof are homeomorphisms. Moreover, Ψ̂ being injective

suffices for the argument to go through. Thus we obtain that Aut(G) = Auth(G) and

that Φ : G → Auth(G) is an isomorphism.

We shall next prove that Φ is indeed a homeomorphism whenever the group Auth(G) ⊆
Homeo(X) is endowed with the subspace topology induced from the compact-open

topology of Homeo(X). Let {Oα}α∈I be the usual basis for the product topology of

X . Recall that the collection

{{f ∈ C(X,X) : f [K] ⊆ Oα} : K ⊆ X is compact, α ∈ I}

is a subbase for the compact-open topology of C(X,X). Let U ⊆ G be open. Then

Φ(U) = {φg ∈ Auth(G) : φg(1G, 1G, 1) ∈ U × U × {1}}

Since the set {(1G, 1G, 1)} is compact and U ×U ×{1} is open in X , the set Φ(U) is

open in the subspace topology of Auth(G). Hence Φ−1 is continuous.
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Let VK,O ⊆ X be a subbasis element of the subspace topology of Auth(G) where

K ⊆ X is compact, U1 × U2 × U3 = O ⊆ X is a basis element with U1, U2 ⊆ G and

U3 ⊆ N open; and

VK,O = {φ ∈ Auth(G) : φ[K] ⊆ O}

We wish to show that Φ−1[VK,0] = {g ∈ G : φg[K] ⊆ U1×U2×U3} is open. Observe

that if π3[K] ⊈ U3, then VK,O = ∅. So suppose that π3[K] ⊆ U3. Then we have

Φ−1[VK,0] = {g ∈ G : gπ1[K] ⊆ U1} ∩ {g ∈ G : gπ2[K] ⊆ U2}

We claim that both sets on the right hand side are open. To see this, let g ∈ G
be such that gπi[K] ⊆ Ui. For each k ∈ πi[K], since the multiplication on G is

continuous and gk ∈ Ui, we can choose an open basis element (g, k) ∈ Vk ×Wk of

G × G such that Vk ·Wk ⊆ Ui. Since {Wk}k∈K is an open cover of the compact set

πi[K], there exists a finite subcover {Wkj}nj=1. Set V =
⋂n
j=1 Vkj . Then g ∈ V and

V · πi[K] ⊆ Ui. Thus {g ∈ G : gπi[K] ⊆ Ui} is open. Hence Φ is continuous and so,

is a homeomorphism.

35



36



CHAPTER 4

CONCLUSIONS

In the first part of the thesis, we surveyed the technique found by Ben Miller to prove

the G0 dichotomy, using only classical methods. We also provided a proof of L0

dichotomy on undirected graphs using the same technique.

In the second part of the thesis, we provided a complete generalization of Frucht’s

theorem to Borel measurable and topological settings. However, due to the natural

limitations of our coding technique, in topological setting, we were not able to obtain

minimal complexity in Theorem 7. Therefore, we pose the following question.

Question. Is it true that for every Polish group (G, ·, τ) there exists a closed or open

graph G = (X,G) on a Polish space (X, τ̂) such that G and Auth(G) are isomorphic

as abstract or topological groups?

We strongly suspect that the answer is affirmative. Such a result may be obtained via

a construction similar to ours that uses a continuous injection Ψ : G → [0, 1]N which

we know exists for arbitrary second-countable metrizable spaces G [17, Theorem

2.1.32]. However, this would require one to construct continuum-many acyclic Borel

graphs that code each element of the Hilbert cube [0, 1]N in such a way that each edge

corresponds to an open or closed condition in [0, 1]N. It is not clear to us how this can

be done.

Observe that, due to the nature of the construction, the graphs that we obtained

automatically ended up satisfying Aut(G) = AutB(G). However, it is trivial to

observe via counting arguments that it is possible to have Borel graphs G such
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that |AutB(G)| ≤ 2ℵ0 < 22
ℵ0 ≤ |Aut(G)|, for example, consider the complete

graph KR. The next obvious question would be to ask whether it is possible to

have |AutB(G)| ≤ ℵ0 < 2ℵ0 ≤ |Aut(G)| for a Borel graph. Having corresponded

with Andrew Marks, we learned that this question also has an affirmative answer.

Here we briefly sketch his argument: Given a countable language L, for any L-

structure M whose universe is a Polish space and whose functions and relations

are Borel maps, one can construct a Borel graph GM on a Polish space such that

AutB(M) ∼= AutB(GM) and Aut(M) ∼= Aut(GM). This can be achieved by ap-

propriately modifying the argument which shows that arbitrary structures may be

interpreted as graphs, e.g. see [8, Theorem 5.5.1]. Consequently, it suffices to find

M such that |AutB(M)| ≤ ℵ0 < 2ℵ0 ≤ |Aut(M)|.

An example of such a structure would be (R,+, 1). Since any Borel measurable group

automorphism of the Polish group (R,+) is automatically continuous [10, Theorem

9.10] and any continuous automorphism of (R,+) is precisely of the form x 7→ rx,

we have that |AutB(R,+, 1)| = 1. On the other hand, since any permutation of a

Q-basis of R would induce a group automorphism and dimQ(R) = 2ℵ0 , we have

|Aut(R,+, 1)| = 22
ℵ0 .

Having seen that the Borel and full automorphism groups of a Borel graph can be

separated in cardinality, the following question seems to be the next step in our initial

investigation.

Question. Given two standard Borel groups H ≤ G, does there necessarily exist a

Borel graph G such that AutB(G) ∼= H and Aut(G) ∼= G, where the former isomor-

phism is the restriction of the latter?
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