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ABSTRACT

USE OF SPATIALLY VARIABLE SUBGRADE MODULUS FOR
IMPROVED ACCURACY IN STRUCTURAL MODELING OF RAFT
FOUNDATIONS

Ozyurt, Gokhan
Doctor of Philosophy, Civil Engineering
Supervisor: Assoc. Prof. Dr. Nabi Kartal Toker

July 2023, 140 pages

While designing the foundations of buildings, soil-foundation interaction must also
be considered, alongside the load distributions, sectional forces, and deformations in
the soil layers due to the structural loads. In routine structural engineering practice,
the Winkler (1867) spring idealization is commonly used to address this requirement.
In the literature, although the simple Winkler method is distinctly asserted as
insufficient in representing the contact pressure distribution beneath the foundation,
in current commercial structural engineering software programs, Winkler models are
frequently used for simulating soil behavior. PLAXIS 2D/3D and SAP2000,
commonly used commercial software in geotechnical and structural analysis
applications, are used to carry out a series of analyses for several cases to examine
the behavior of shallow raft foundations on dry sands under static loading and thus,
obtain more accurate distributions of subgrade modulus. The variables considered in
the analyses are foundation thickness, structure width, soil stiffness, number of
stories, and column positions. Distributions of subgrade modulus that accurately
correspond to the PLAXIS results of bending moment and settlement are obtained

through iterative processes conducted on springs in SAP2000. After all, relations are



proposed to comprehensively account for all parameters that significantly influence
the distributions of subgrade modulus. Additionally, 3-D parametric studies are
conducted to illustrate the extrapolation of findings from two-dimensional
assessments to three-dimensional scenarios. The results indicate that the distribution
of subgrade modulus significantly impacts the analysis of raft foundations. The
findings provide insights into the usage of subgrade modulus and inform the design

and optimization of foundation systems.

Keywords: Subgrade Modulus, Winkler Springs, Dry Sand, Soil-Structure
Interaction, SAP2000 Spring Constant
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0z

KONUMSAL OLARAK DEGISKEN YATAK KATSAYISININ RADYE
TEMELLERIN YAPISAL TASARIMINDA IYILESTIRILMIS
KULLANIMI

Ozyurt, Gokhan
Doktora, Insaat Miihendisligi
Tez Yoneticisi: Dog¢. Dr. Nabi Kartal Toker

Temmuz 2023, 140 sayfa

Bina temelleri tasarlanirken, yiik dagilimlari, kesit kuvvetleri ve yapisal yiikler
nedeniyle zemin tabakalarinda meydana gelen deformasyonlarin yani sira zemin-
temel etkilesimi de dikkate alinmalidir. Rutin yap1 miihendisligi uygulamalarinda,
bu gereksinimi karsilamak i¢in Winkler (1867) yay idealizasyonu yaygin olarak
kullanilmaktadir. Literatiirde, basit Winkler yonteminin temel altindaki temas
basinct dagilimini temsil etmekte yetersiz oldugu agik¢a 6ne siiriilse de mevcut ticari
yap1 mithendisligi yazilim programlarinda, Winkler modelleri hala zemin davranigini
simiile etmek icin siklikla kullanilmaktadir. Geoteknik ve yapisal analiz
uygulamalarinda yaygin olarak kullanilan PLAXIS 2D/3D ve SAP2000 programlari,
kuru kum tizerindeki s1g radye temellerin statik yiikleme altindaki davraniglarini ve
boylelikle temel altindaki yatak katsayisi dagilimini daha dogru bir sekilde elde
etmek i¢in farkli durumlari iceren bir dizi analizi gergeklestirmek {izere
kullanilmistir. Analizlerde dikkate alinan degiskenler, temel kalinlig1, yap1 genisligi,
zemin sertligi, kat sayis1 ve kolon konumlaridir. SAP2000'de yaylar iizerinde
gerceklestirilen iteratif siireglerle, egilme momenti ve oturmanin PLAXIS

sonuglarina tam olarak karsilik geldigi yatak katsayisi dagilimlari elde edilmistir.

vii



Sonugta, yatak katsayis1 dagilimini onemli Olgiide etkileyen tiim parametreleri
kapsayan iliskiler Onerilmistir. Ek olarak, iki boyutlu degerlendirmelerden elde
edilen sonuglarin {i¢ boyutlu senaryolarda nasil sonuglar ortaya koyacagini
gostermek i¢in 3 boyutlu parametrik ¢alismalar da yiriitiilmistiir. Sonuglar, yatak
katsayist dagilimmin radye temellerinin analizini 6nemli Ol¢tide etkiledigini
gostermektedir. Elde edilen bulgular 1s1ginda bu ¢alisma, yatak katsayisinin
kullanimina iligkin yeni Oneriler getirerek sig temel sistemlerinin gilivenli ve

ekonomik olarak tasarlanmasina katki saglamaktadir.

Anahtar Kelimeler: Yatak Katsayist, Winkler Yaylari, Kuru Kum, Zemin-Yapi
Etkilesimi, SAP2000 Yay Sabiti
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CHAPTER 1

INTRODUCTION

A mat foundation, also known as a raft, is a type of shallow foundation consisting of
a relatively thick slab that rests on a large area of soil. It is designed to support and
transfer loads from the structure to the underlying soil. Mat foundations are
commonly used when shallow soil layers have low bearing capacity, as they act as a
single foundation element and distribute the loads from the superstructure over a
larger area. This helps to reduce differential and total settlements and provides a cost-
effective and watertight solution. However, like any shallow foundation, a mat
foundation needs to be evaluated for excessive settlements and bearing capacity
failure. It also requires a structural design to resist the bending and shear forces
caused by differential settlements in the soil. From a structural perspective, the soil-
bearing pressure influences the distribution of internal bending moments and shear
forces within the mat. Therefore, soil-foundation interaction, one of the challenging

problems in civil engineering, has a critical role in foundation analysis and design.

Several methods have been proposed in the literature for analyzing mat foundations,
which can be categorized into two main approaches: the rigid method (1) and the
flexible method (2). In the rigid method, the mat is assumed to behave as an infinitely
rigid plate; hence, the contact pressure has a planar distribution under the mat, as
shown in Figure 1(a). Because the rigid method does not consider this redistribution
of bearing pressure, it does not produce reliable estimates of the shears, moments,
and deformations in the mat. While the rigid mat method is simple to use, experience
has shown that it often overestimates both the mat thickness and the steel

reinforcement (Bowles, 1997).

In the flexible mat method, the foundation is assumed to be non-rigid, and soil

behavior is incorporated into the model, resulting in a non-linear distribution of soil-



bearing pressure underneath the foundation, as shown in Figure 1(b). Flexible
methods produce more accurate foundation deformations and stress values.
Unfortunately, non-rigid analyses are also more challenging to implement because
they require consideration of soil-structure interaction (SSI), and the bearing
pressure distribution is not as simple (Coduto, 2001). Various non-rigid methods are
available for the structural analysis of mat foundations, ranging from the classical
Winkler (1867) approach to elaborate three-dimensional finite element analysis. The
most common method in current design practice is the Winkler spring approach, in
which the soil is represented as independent elastic vertical springs supporting the
mat. Despite being a rather rough idealization of reality and the emergence of more
accurate methods, the Winkler spring approach still constitutes the state of practice
because it can be easily applied in most commercial structural analysis computer

programs.

l I I | I l Loading l Loading

e

Deflected shape Deflected shape

TEHEET ALY Soil pressure SO L AR L
(b)

(a)

Figure 1.1 Soil pressure distribution in the rigid and flexible methods of analysis.
(a) Rigid foundation. (b) Flexible foundation.

Many studies have pointed out the shortcomings of the original basic Winkler spring
approach, which assumes that the modulus of subgrade reaction has the same value
everywhere under the mat, and have proposed alternative methods of various degrees
of complexity (e.g., pseudo-coupled, multiple-parameter). In recent years, the finite
element method is usually employed as a tool to execute the solution of the flexible
raft approach. In this method, the mat is modeled by subdividing the concrete slab

into small rectangular or triangular plate or shell elements. The soil behavior is tried



to be represented simply by springs lumped (Winkler model) at the nodes (in
structural analysis programs) or by half-space medium (continuum model) (in

geotechnical analysis programs).

Ideally, foundation design should account for soil stiffness, mat stiffness, and their
interaction by selecting the appropriate subgrade modulus value. In addition to the
need for correctly evaluating soil-mat interaction, it is also necessary to consider how
the superstructure affects this interaction. Especially in recent decades, computer
power has increased by orders of magnitude. However, this interdisciplinary soil-
mat-superstructure relationship could not be fully and properly integrated into
commercial analysis programs, and yet there is still an unfortunate but widespread
persistence with the Winkler spring concept because of its convenience and
simplicity. The price of this simplicity is high, given the potential for unreliable and
unrealistic results and the enduring problem of assessing an appropriate modulus of

subgrade reaction (Poulos, 2000).

1.1 Research Motivation

The subgrade modulus is a stiffness parameter typically used in defining the support
conditions of mat foundations and can be described as a bridge between geotechnical
and structural engineers if it is necessary to make an analogy. Physically, it is defined
as the contact pressure of the foundation against the soil that causes unit deformation
of the foundation. In practice, the parameter is often recommended by the
geotechnical engineer and used by the structural engineer to analyze the structure.
Unfortunately, as a parameter that spans the geotechnical and structural realms, the
subgrade modulus has been misused and abused in practice to a point where
engineers tend to forget the physical meaning and implications of using the

parameter (Aristorenas & Gomez, 2014).



In the design of structures, it is common to find structural engineers who are
uncertain about the form of subgrade modulus values provided by the geotechnical
engineer and likewise, common to find geotechnical engineers who are uncertain
about how subgrade modulus values are being applied by the structural designers
(French et al., 2006). In addition, some engineers are unclear about using these
values in developing foundation springs in most structural design methods, as
implemented through packaged structural engineering computer software. In light of
this widespread lack of understanding, it is fortunate that most simple designs are

relatively insensitive to the value of the subgrade modulus.

Hence, there is a need to clarify for geotechnical engineers how their subgrade
modulus value recommendations will be utilized in structural design methodologies.
Simultaneously, the study aims to clarify the intent of subgrade modulus
recommendations for structural engineers and present the distribution of spring

coefficient values beneath the mat.

Moreover, the utilization of a constant spring or the pseudo-coupled approach is
widespread in the current landscape of engineering practice. This tendency is rooted
in the convenience of rapid analysis, as such approaches are often encoded into
structural analysis software programs. As a result, the application of a constant spring
or the pseudo-coupled methods has become the go-to approach almost for every
project, enabling swift analyses. However, the potential hazards inherent in these
approaches have motivated the exploration of a more nuanced perspective.
Recognizing the inherent risks associated with such widespread practices and aiming
to offer a sound analytical methodology, this study delves into the subject matter to
shed light on the dangers associated with prevalent practices and to provide a viable

and accurate analysis approach.



1.2 Purpose and Scope

Soil-structure interaction is a very broad subject and cannot practically be covered
by a single study. Therefore, this study is intended to be one of the several that
discusses various aspects of SSI.

The research objectives of this study can be summarized as follows:

e Obtaining more insight into the interaction between shallow raft foundations and
soil.

e Discussing the wide range of SSI applications to illustrate where various
subgrade models have been or might be used.

e Investigating the influence of different parameters on the subgrade modulus and
its impact on foundation stresses and deformations.

e Exploring an optimal approach for geotechnical and structural engineers to
design safe, reliable, and cost-effective foundation structures within a project

framework.

As a result of these objectives, this study aims to identify the spatial distribution of
spring coefficient values under a raft foundation that would help obtain the best
possible accuracy regarding settlement and bending moments with a quick and
straightforward analysis method. In the first step, this is accomplished by performing
a series of 2D finite element analyses using the two common finite element software,
PLAXIS 2D and SAP2000. The PLAXIS models have been expanded to incorporate
the superstructure along with the conventional soil continuum, providing a
comprehensive representation of the problem. This expansion assumes the validity
of the chosen non-linear soil model and linearly elastic structural elements, allowing

for an accurate depiction of the system's behavior.

Distributions of subgrade modulus beneath the mats are determined by making
iterative processes between PLAXIS 2D and SAP2000. The iteration process in the

spring coefficient values in SAP2000 is continued until the same settlement and



bending moment values found in the PLAXIS analyses are obtained. The resulting
spring value distributions beneath the mats are then grouped, evaluated, and relations
for possible spring value distributions for different cases are proposed. Studies are
conducted on non-cohesive soils by changing soil properties, foundation and

structure (building) dimensions, and loading conditions in different combinations.

Furthermore, two three-dimensional analyses are conducted to compare the
performance of the proposed relations for calculating equivalent spring stiffness
values at any point of a rectangular mat foundation with existing approaches. The
results of this study and the proposed relationships can be used in the future as a
basis for developing more rigorous subgrade modulus distributions that consider the

complex soil-foundation-structure interaction behavior.

It is important to note that this study is explicitly focused on dry sands, a vital detail
that refines the scope of this investigation. This strategic focus on dry sands allows
for more targeted and relevant conclusions. This decision to concentrate on dry sands
is driven by a combination of practical relevance, unique geotechnical
characteristics, and the desire to provide specialized insights that can inform
engineering practices in scenarios involving this specific soil type.

In contrast, other soil types, particularly those influenced by factors such as varying
moisture conditions and water levels, introduce a multitude of uncertainties that can
significantly complicate the analysis and design of foundation systems. The
deliberate focus on dry sands in this study provides a controlled and targeted
environment for a systematic investigation into the interaction between foundations

and this specific soil type.



1.3 Outline

After this introduction of Chapter 1, in Chapter 2, information in the existing
literature, methods used for foundation design, and approaches used to simulate soil
behavior are reviewed. In Chapter 3, detailed information about PLAXIS 2D and
SAP2000 analyses performed within the scope of this thesis study is presented. In
addition, the evaluations of the variables considered and applied in the analyses are
explained individually. In the fourth chapter, explanations are made about the
inferences reached as a result of these analyses and the methods of their use. How
the methodology proposed for 2D analyses produce results in 3-dimensional
problems are presented with examples in Chapter 5. These examples also include the
methods used in current commercial structural analysis software and comparatively
present the results. In Chapter 6, comments and conclusions are presented as the final
stage. Additionally, recommendations and solutions to various issues about
designing foundations are presented to help geotechnical and structural engineers

avoid frequent problems.






CHAPTER 2

LITERATURE REVIEW

Mat foundation, or radier, as it is called in the Turkish engineering community with
its French name, is a large, composite shallow foundation that interacts with the
ground like a slab it sits on or in. It is a heavily steel-reinforced flat concrete slab
that bears the moments and shear forces of the individual columns and walls and
transfers the upper loads to the underlying soil. A raft foundation may be used where
the sub-soil has a low bearing capacity and/or the column loads are so large that
conventional spread footings cover more than 50 percent of the area. The resulting
mat load per unit area is small in magnitude and is distributed over the entire area,

tending to reduce the differential settlement.

The general approach to designing an adequate foundation structure is to create a
model that accurately represents reality. Extensive research has been conducted and
published over the past decades. Different analysis methods have been developed to
design raft foundations, ranging from conventional manual calculation methods to
most modern computer-based methods. These methods can broadly be categorized

into two main groups: the rigid method and the non-rigid methods.

2.1  Rigid Method

The simplest approach to the structural design of foundations is the rigid method
(also known as the conventional method) (Teng, 1962). This method assumes that
the foundation is much more rigid than the underlying soils, meaning that any
distortions in the foundation are too small to significantly affect the distribution of
bearing pressure. Consequently, the magnitude and distribution of bearing pressure
depend solely on the applied loads and the weight of the foundation. The bearing



pressure is either uniform across the bottom of the foundation (if the normal load
acts through the centroid and no moment load is present) or varies linearly across the

foundation (if eccentric or moment loads are present) (Figure 2.1).

Loads

Mat

=<\

Geometric Centroid

Assumed Linear Soil
Reaction Pressure

Figure 2.1 Assumed subgrade reaction in the rigid body method

Equation 2.1 provides the subgrade reaction pressure at any location along the mat's
base. The mat is divided into strips after determining the response pressure, and the

shear forces and bending moments are calculated for each strip using the

fundamentals of statics.

My, M x,
ryl }' i (21)

H+
H
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where:

oi IS the reaction pressure,

Fv is the total vertical loads on the mat,

x and y are the length and width of the mat, respectively,

My and My are the moments about the x and y axes, respectively, induced by the

resultant load eccentricities,
Ix and |y are the moments of inertia about the x and y axes, respectively, and
xi and y; are the distances to a point ().

This simple distribution makes it easy to compute the flexural stresses and
deflections (differential settlements) in the foundation. While this type of analysis is
appropriate for pad footings, it is not convenient for mat foundations because in mat
foundations width-to-thickness ratio is high, and the stiffness assumption considered
in footings is no longer valid. The portions under the columns or the load-bearing
walls settle more with respect to the unloaded sections, meaning higher bearing
pressure values are observed under heavily loaded areas. Since the rigid method does
not account for this redistribution of bearing pressure, it does not reliably estimate
moments, shear forces, and settlements in the raft.

2.2  Non-Rigid Method

In order to overcome the inaccuracies of the rigid method, analysis that considers
deformations in the foundation and their influence on the bearing pressure
distribution is used. These are called non-rigid methods and produce more accurate
values of foundation deformations and stresses. Unfortunately, non-rigid analyses
are also more challenging to implement because they require consideration of soil-
structure interaction (SSI), and the bearing pressure distribution is not as simple
(Coduto, 2001).

11



2.2.1 Subgrade Modulus & Basic Winkler Model

Because non-rigid methods consider the effects of local deformations on the
distribution of bearing pressure, it is necessary to define the relationship between
settlement and bearing pressure. This is usually done by using the subgrade modulus,

ks (also known as the coefficient of subgrade reaction):

(2.2)

where ¢ is the foundation pressure exerted on the soil, and ¢ is the resulting

settlement.

It is simply the ratio of the applied vertical normal stress (subgrade reaction) to
subgrade settlement at a point. In its basic form, this hypothesis assumes that the
settlement, &i, at an arbitrary point i on the subgrade surface is caused only by the
applied vertical normal stress (subgrade reaction) at that point, oi. This parameter is
often referred to as the 'soil spring constant' or a similar term because one physical
interpretation of the abstract behavior defined by Equation 2.2 is a spring (not
necessarily linear or elastic but usually assumed so) oriented perpendicularly to the

subgrade surface.

By positioning these perpendicularly oriented springs under the foundation, the
interaction between the foundation and the underlying ground can be represented as
a 'bed of springs,' each with a stiffness of ks per unit area. The sum of these spring
forces must equal the applied structural loads plus the mat's weight. The earliest use
of these 'springs' to represent the interaction between soil and foundations has been
attributed to Winkler (1867), so the analytical model is sometimes called a Winkler
foundation or the Winkler method (Coduto et al., 2016). The Winkler spring method
assumes that the mat foundation sits on vertical, discrete, and linearly elastic springs,

acting independently from the others, representing the deformable soil (Figure 2.2).

12



This representation has the desired effect of increasing the bearing pressure beneath
the columns, and this is a significant improvement over the rigid method. However,
it is still only a coarse representation of the true interaction between foundation and
soil (Hain & Lee, 1974; Horvath, 1983) and suffers from many problems, including

the following:

1. The load-settlement behavior of soil is non-linear, so the ks value must
represent some equivalent linear function, as shown in Figure 2.3.

2. A uniformly loaded foundation underlain by perfectly uniform array of springs
will settle uniformly into the soil (i.e., there will be no differential settlement),
and all of the 'springs' will be equally compressed. In reality, the settlement of
different parts of the mat foundation would be variable.

3. Primarily because of items 1 and 2, there is no single value of ks for the entire

area that genuinely represents the interaction between soil and a foundation.

The primary source of these problems is using single value and independent springs
in the Winkler model. In reality, a load at one point on the foundation induces
settlement both at that point and in the adjacent parts of the foundation, which is why
a uniformly loaded foundation exhibits a concave-shaped settlement, not the uniform
settlement as predicted by Winkler (Coduto, 2001).

13
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Figure 2.2 Computational model of the Winkler spring analysis approach
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Figure 2.3 The non-linear 6-6 relationship and idealized ks linear function

The coefficient of subgrade reaction has traditionally been determined from plate
loading tests at the site and is affected by factors such as size, shape, and embedded
depth of the plate. Terzaghi (1955) proposed that ks for footings of width B could be

obtained from plate load test data using the following equations:
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For footings on clay;

Bl
ks=k1? (23)
For footings on sand;
B+ B, \2
k =k 2.4
s | 2B ( )

where:
ks is the desired value of modulus of subgrade reaction for full-size foundation,
ky is the value obtained from a plate-load test,

B1 is the side dimension of the square base used in the load test.

In most cases, B1=0.3 m, but whatever B; dimension was used should be input. Also,

Equation 2.4 is not calibrated beyond B/B1 >3.

Since plate load testing is time-consuming and expensive, it is generally not widely
used in practice. Only in large projects may building a test section and performing
tests be considered feasible. It should also be noted that the applicability of plate load
tests is highly controversial since a loaded plate has a limited impact depth and would
not induce stresses in the deeper soil layers as a shallow mat foundation would. Also,
since the size of the test plate is smaller than the actual foundation, the consequences

of the scale effect are debatable.

Many attempts have also been made to derive the singular coefficient of subgrade
reaction from empirical correlations besides the plate load test. Scott (1981)
suggested a proper correlation for sandy soils between the subgrade reaction

coefficient (k) and the corrected SPT number (N1)eo, which is:

ki =1.8(N,) “ (MN/m?) (2.5)
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Bowles (1996) suggested another correlation to approximate ks using ultimate

bearing capacity qui. The equation can be expressed as:

k,=40¢,, (KN/m?) (2.6)

where quit is furnished in kPa. This equation is based on the ultimate soil pressure
causing a settlement of AH=0.0254 m, and Ks is quit / AH. Table 2.1 may be used as
a guide and for comparing approximate equations.

Table 2.1 Range of modulus of subgrade reaction (Bowles, 1996)

Type of Soil k, (KN/m®)
Loose sand 4,800-16,000
Medium dense sand 9,600-80,000
Dense sand 64,000-128,000
Clayey medium dense sand 32,000-80,000
Silty medium dense sand 24,000-48,000
Clayey soil:

q, <200 N/mm?* 12,000-24,000

200 < g, <400 N/mm* 24,000—48,000
g, > 800 N/mm?* > 48,000

2.2.2 Coupled Method

The coupled method, using additional cross springs, can be described as the next step
from the Winkler analysis. (Figure 2.4). Unlike the Winkler method, where vertical
springs move independently, the coupled method considers the interdependence of
these springs. In principle, this approach is more accurate than the Winkler method,
but it is not clear how to select the ks values for the coupling springs (Coduto et al.,
2016). In practice, the coupled method is not used in widespread software
applications, and developing custom structural analysis software may be necessary

to perform this method effectively.

16
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Figure 2.4 Modeling of soil-structure interaction using coupled springs

2.2.3 Pseudo-Coupled Method

The pseudo-coupled method, introduced by Bowles (1986), Liao (1991), Horvath
(1993), and ACI Committee 336, aims to address the lack of coupling in the Winkler
method while avoiding the complexities of the fully coupled method. This method
uses 'springs' that act independently but have different ks values depending on their
location on the foundation (Figure 2.5). In reality, while nothing fundamentally new,
the pseudo-coupled concept can be described as a repackaged version of the single-
parameter Winkler Hypothesis. In essence, in the pseudo-coupled concept, Winkler's
subsoil reaction coefficient is allowed to vary below the foundation element. Thus,
as a subgrade model, it attempts to mimic the actual variable subsoil reaction that
develops under the foundation, as outlined in Section 2.2.1.

The generic variations suggested to date developed with mat foundations assume an
increase in ks values near the edges of the foundation element. This method requires
that the mat plan be divided into three or more concentric zones. The innermost
(center) zone should be approximately one-half the mat's width and length. Then, ks
values shall be assigned to each zone using softer springs in the innermost zone and
transitioning to the outermost (exterior). Typically, the ks in the outermost zone is
nearly twice as large as in the innermost zone. The products of each zone's area and
its ks should equal the sum of the product of the mat area and the average modulus

of subgrade reaction, ks, av, provided by the geotechnical consultant.

17



S0m

375m
25m
Y, W
yotiak 1/_,3 L I5m 225m |[30m
(k) ,
ZoneB (k).=1.5(k
one ( &%)B l 3 (1&\)_\
Zone ( (ks)(- = 2 (1—5 )‘.\

Figure 2.5 Division of mat into zones with the different modulus of subgrade

reaction values for pseudo-coupled analysis

American Concrete Institute (ACI, 1993) found that the pseudo-coupled method
produced computed moments 18 to 25 percent higher than those determined from
the simple Winkler method, indicating how non-conservative Winkler can be. Most
commercial foundation design software uses the Winkler method to represent the
soil-structure interaction, and these software packages usually can accommodate the

pseudo-coupled method.

While the pseudo-coupled concept appears to be the long-sought improvement to the
traditional use of Winkler's Hypothesis with a constant Winkler coefficient of
subgrade reaction, the actual improvement in a given problem is subject to
significant variability that can be difficult to assess (Horvath, 1995). Despite the
allure of potential improvement, utility of the pseudo-coupled method as an
improved subgrade model is questionable because each application is a unique
combination of geotechnical components and structural elements. For example, it
cannot be expected to be the same distribution of subgrade reactions in two
applications with different soil properties or dissimilar structural element layouts but

mats with the same dimensions.
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2.2.4 Multiple-Parameter Methods

The multiple-parameter methods offer an alternative approach to modeling soil
behavior. In these subgrade model methods, Winkler's vertically and independently
acting linear springs are replaced with springs and other mechanical elements. These
additional interacting elements couple the independent springs and try to include
load transfer in the transverse direction. The interaction elements can be pre-
tensioned membranes, flexural elements, springs, and shear layers. Presented next
are enhanced renditions of Winkler's original model that focused on introducing

additional parameters to aid in modeling the coupling effect among soil springs.

Filonenko-Borodich (1940) model tries to provide the interaction between the
springs by adding a new, thin elastic layer with tension force T (pretensioned) on
the surface of the springs of the Winkler model. This thin, flexible layer simulates
the coupling effect of individual springs without extensively complicating the
mathematical formulation and the corresponding analytical solutions. The basic view
of the model and its deformation characteristics under various load conditions are
shown in Figure 2.6. The governing equations of this model with two distinct
expressions for strip foundations and rectangular/circular footings are presented

below;

Strip foundations:

d2

p=kw-T (2.7)

dx

Rectangular or circular footings:

p=kw—TV 2w (2.8)
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where V2= Laplace operator = d?/dx? + d?/dy? and (T) is the tensile force.
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Figure 2.6 Surface displacement profiles of Filonenko-Borodich model (1940): (a)
basic model, (b) concentrated load, (c) rigid load, and (d) uniform flexible load

Another improved ground behavior approach of Winkler's original model that tries
to achieve deformation continuity among soil springs is proposed by Pasternak
(1954). This subgrade model assumes the existence of shear interaction between the
spring elements by connecting them to a thin layer of incompressible vertical
elements with a defined thickness that undergo transverse shear deformations only.
The pressure-deflection equation is expressed as follows;

dw

dx?

p=kw-G (2.9)
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where G is the shear layer constant.

As a generalization of the Pasternak concept, Kerr (1964) proposed a higher-order
(three-parameter) foundation model by incorporating another Winkler medium over
the shear layer of the Pasternak model endowed above. This model consists of two
layers of elastic springs interconnected by an elastic shear layer (Figure 2.7). The
differential equation governing the response of this model is as follows:

ky ky

k
(1+—2]ﬂ=£V2p+k2w—GV 2 (2.10)

where ki and k> are the axial springs constants in the first and second layers,

respectively, and w is the deflection of the first layer only.

Foundation

First Layer ki  ShearLayer with
é Shear Modulus G

Second Layer k; /— Rigid Layer

Figure 2.7 Visualization of Kerr model (1964)

It can be seen that adding a mechanical element in a kind of building-block approach
results in a higher-order model, as reflected in the Kerr model. Table 2.2 summarizes
the composition of several other subgrade models, including those mentioned above,

in the order of their increasing mathematical complexity.
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Table 2.2 Compiling of multi-parameter models

Subgrade model Physical elements used to visualize model
Winkler's Hypothesis (1867) springs
Filonenko-Borodich (1940) pretensioned membrane + springs
Pasternak's Hypothesis (1954) shear layer + springs
Kerr model (1964) springs + shear layer + springs
Hetenyi (1946) springs + plate + springs
Rhines (1969) springs + plate + shear layer + springs

The main disadvantage of multiple parameter models lies in their applicability in real
design cases. Depending on the particular model used, there is a need to determine
the two or more model coefficients (shear layers, deformed, pre-tensioned
membranes, beams/plates), which turns out to be a significant problem. As to be in
coupled-method, this time, it is not clear to accurately determine the characteristic
and mechanical properties of additional elements. Also, these methods have yet to
be incorporated into readily-available software packages, limiting their utilization in

routine engineering projects.

2.3 Finite Element Method (FEM)

The finite element method (FEM) subdivides a domain or complex space into several
small, countable, and finite pieces whose behavior can be described with
comparatively simple equations. The accuracy of the element behavior
approximations determines how closely the resulting simulated behavior resembles
the actual continuum. While the method was initially developed for engineering
analysis to model and analyze complex systems in mechanical and aerospace
engineering, typical areas of interest covered by this method include analyses for

civil engineering.
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All the methods discussed so far aim to model and analyze three-dimensional soil
using a series of one-dimensional springs and additional elements. This is done to
simplify the issue sufficiently for structural analysis. FEM has the potential to
eliminate the need for oversimplification and provide an accurate representation of
the soil, foundation, and structure system, encompassing all components of a
mechanical problem. In the sense of soil-foundation analysis, the method divides the
soil and foundation into a network of rectangular or triangular small elements, each
connected to adjacent segments in a certain way. All these elements in this network
have defined engineering properties. Structural and gravitational loads are then
applied, and the elements are stressed and deformed accordingly. Instead of solving
the entire body in one equation, FEM allows us to create equations for each element
and then combine them to come up with the solution for the whole body. In general,
the solution to structural problems refers to determining the displacement at each
node in the element and the stress within each element throughout the structure that

experiences the applied loads.

In principle, this method accurately represents the soil and foundation and should
facilitate an accurate and economical design. However, FEM software mainly
focuses on one type of analysis (e.g., structural or geotechnical). And it is unable to
accommodate a detailed and realistic analysis of the 'other' half of the problem, with

the exception of a few custom-made research-grade programs.

In structural FEM software, the foundation and the superstructure are divided into
hundreds or perhaps thousands of elements; each has certain defined dimensions,
specified stiffnesses and strength, and is connected to the adjacent element in a
specified way. Even so, the foundation is still supported by 'springs," which do not
fully reflect the behavior of the soil. From the geotechnical side, the soil can be
modeled by the most superior soil mechanics models that best describe soil behavior;
the foundation can be modeled by realistic element properties, but this time the
stiffness of the superstructure and structural loading conditions are outside the

estimation.
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Principally, for more accurate models and, thus, more economical designs, the finite
element analysis should be extended to include the underlying soil, the mat, and the
superstructure in a single three-dimensional finite element model. Nevertheless,
these extended finite element analyses are rarely performed in practice, which
appears to be this method's most substantial disadvantage. A traditional design
scenario in which finite element analysis methods of geotechnical and structural

areas are jointly assigned is explained below.

2.3.1 Soil-Structure Interaction (SSI) Modeling

The typical scenario where a mat supports a superstructure is conceptually
represented in Figure 2.8 to highlight key concepts of mat foundation behavior. Note
that the subgrade, mat, and superstructure are the problem's three main components.
A mat-supported structure represents a circumstance where SSl is significant. In such
a case, the load-displacement behavior of any one component (mat, subgrade, or
superstructure) is physically connected to and thus dependent upon the behavior of

the other two via equilibrium and compatibility.

superstructure
(building)
77
foundation Ievel\ r( mat TN
S /h’ X
subgrade y
z

Figure 2.8 Typical Mat Foundation Problem
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Therefore, to maximize the accuracy of the results, analyzing a single problem for
the mat-subgrade-superstructure system is ideal, as depicted in Figure 2.8. Although
the structural and geotechnical components can be found in various commercial and
research forms, no such software that model and analyze the system as a whole is in

widespread use.

Even with the current wide availability of digital computers in routine civil
engineering practice, the traditional approach is to decompose a mat foundation
problem into two separate analytical components. The superstructure and mat are
integrated into a single model (megastructure) in the 'structural’ analytical
component, as described in Figure 2.9. This captures the ideal behavior of the
structural components. Analysis of the megastructure can be accomplished easily,
even in three dimensions if desired, with the structural analysis computer software
that is commercially available and currently used routinely worldwide (Horvath,
2002). Nevertheless, the primary shortcoming of the structural component is the

subgrade reaction, p(x,y).

megastructure
T T 1T p(x.y)
foundationlevel [ | | | | P*Y)
. w(x.y)
N i
\\\ //

Figure 2.9 'Structural’ component analysis
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The 'geotechnical’ component is to model the subgrade in one rigorous analysis. The
problem is that computer software that can evaluate a three-dimensional continuum
representing the subsurface beneath a foundation is not widely available in routine
practice (only two-dimensional software is). Another drawback of the 'geotechnical’

component is the lack of ability to model the superstructure interaction effects.

Consequently, the key item between the two analytical components is the subgrade
reaction, p(x,y). For this reason, it is vital to determine the amount and distribution
of the sub-reaction correctly. Even though the 'ideal’ solution delineated in Figure
2.10 will undoubtedly become a reality in the future, it will be many years before it

is practical for everyday practice.

Below, some basic information is given about the two well-known finite element
programs, SAP2000 and PLAXIS 2D/3D, used in this study as the structural and
geotechnical components, respectively.

megastructure

/N /AN
/

N e

Figure 2.10 Problem Components: 'Ideal’ Analysis
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2.3.2 SAP2000

SAP2000 (Structural Analysis Program) is a general-purpose civil-engineering
software ideal for analyzing and designing any type of structural system, developed
by Computers and Structures, Inc., based in Berkeley, California. It enables to model,
analyze, design, and optimize the basic and advanced structural systems ranging

from 2D to 3D, from simple geometry to complex.

It offers different analysis options: linear, non-linear, static, and dynamic analysis.
The design codes are integrated into this software, and this feature can automatically
calculate wind, bridge, and seismic loads. It also offers comprehensive automatic

code checks for international steel and concrete design standards (CSI, 2014).

2.3.3 PLAXIS 2D/3D

PLAXIS 2D/3D program is a two/three-dimensional finite element program used to
make stability and deformation analyses for geotechnical applications. The PLAXIS
2D program can model plane strain or axisymmetric problems. The plane strain
model can be utilized with a uniform cross-section, and the assumption that stresses
in the z-direction (i.e., perpendicular to the cross-section) are zero. An axisymmetric
model is used when stress and strain are considered identical in all radial directions

for circular structures (Figure 2.11).

In PLAXIS 2D, there are two different triangle elements that can be employed to
simulate soil layers and structures: 6-node and 15-node. As shown in Figure 2.12(a),
the 15-node element provides fourth-order interpolation for displacement, and the
numerical integration uses twelve Gauss points (stress points). A second-order
interpolation for displacement is provided by the 6-node element, as shown in Figure
2.12(b), and the numerical integration uses three Gauss points. Compared to a 6-
node element, a 15-node element produces more accurate findings but uses more

memory and slows down calculating performance. In PLAXIS 3D, 10-node
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tetrahedral elements are used to simulate the soil volume (Figure 2.12(c)), and 6-

node triangular elements are used for area and surfaces.

(a) (b)

Figure 2.11 Example of PLAXIS 2D problems: a) plane strain, and b)
axisymmetric (PLAXIS, 2011)
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Figure 2.12 (a) 15-node and 12-stress point soil element in PLAXIS 2D, (b) 6-node
and 3-stress point soil element in PLAXIS 2D, (c) Typical 3D soil element (10-
node tetrahedron with 4 stress points) in PLAXIS 3D

Following the creation of the geometry model, a constitutive model must be selected,

and material parameters must be assigned to the respective geometry clusters or

layers.
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234 Common Material Models

In PLAXIS 2D/3D, there are eight different material models available. Below their
brief descriptions are provided.

* Linear elastic model uses Hook's law of isotropic linear elasticity to model stiff

structures in the soil.

» Mohr-Coulomb model: This linearly elastic-perfectly plastic model is generally
used as a first approximation of soil behavior. The model predicts either a constant
average stiffness for each soil layer or a stiffness that increases linearly with depth.
Due to this constant stiffness, it offers a first estimate of deformations, and

computations tend to be relatively fast.

* Hardening Soil model: The Hardening Soil model is an advanced model for the
simulation of soil behavior. As for the Mohr-Coulomb model, limiting states of stress
are described by means of the friction angle, ¢, the cohesion, ¢, and the dilatancy
angle, y. However, soil stiffness is described much more accurately using three
different input stiffnesses: the triaxial loading stiffness, Eso, the triaxial unloading
stiffness, Eur, and the oedometer loading stiffness, Eoed. AS average values for various
soil types, Eur = 3Es0 and Eoed = Eso are suggested as default settings. In contrast to
the Mohr-Coulomb model, the Hardening Soil model also accounts for the stress-
dependency of stiffness moduli. This means that all stiffnesses increase with
pressure. This second-order model involves compression hardening, which is
suitable for simulating the behavior of sands, gravels, and over-consolidated clays
(Gouw, 2001).

» Hardening Soil model with small-strain stiffness: The Hardening Soil model with
small-strain stiffness is a modification of the above Hardening Soil model that
accounts for the increased stiffness of soils at small strains. Most soils exhibit a
higher stiffness at low strain levels than at engineering strain levels, and this stiffness

varies non-linearly with strain.
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* Soft Soil model: This model is a Cam-Clay type model that can be used to simulate
the behavior of soft soils such as normally consolidated clays and peat. This model

assumes that the soil is isotropic, elastoplastic and is not affected by creep.

* Soft Soil creep model: This is a second-order model formulated in the framework
of viscoplasticity. The model can be used to simulate the time-dependent behavior
of soft soils, such as normally consolidated clays and peat.

« Joined Rock model: The Joined Rock model is an anisotropic elastic-plastic model
specially meant to simulate the behavior of rock layers involving stratification and
particular fault directions.

« Modified Cam-Clay model: This model assumes a logarithmic relationship
between the volumetric strain and the mean effective stress and can be used to
simulate the behavior of normally consolidated soft soils.

235 Choice of the Constitutive Model

The choice of a suitable constitutive model is a pivotal aspect in the analysis of soil-
structure interaction for foundation design, with significant implications for the
accuracy of results. The chosen model must accurately represent the mechanical
behavior of the soil under the specific loading and boundary conditions relevant to
the problem at hand. In this study, the Hardening Soil Model was selected as the
most appropriate choice for analyzing raft foundations on non-cohesive soils without

any water level.

Several factors guided the selection of the hardening soil model, aligning with the
research objectives and scope. This non-linear soil model offers a balanced
representation of soil behavior, encompassing both elastic and plastic deformations,
which is vital for realistically portraying soil deformation in the context of shallow
raft foundations. Soil behavior for a given stress level is considered to be truly elastic
in the range of small strains. In this strain range, the soil may exhibit a non-linear

stress-strain relationship; however, its stiffness is nearly fully recoverable during
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unloading conditions. Beyond the pre-failure non-linearities of soil behavior, where
foundations are assessed against serviceability limit and ultimate limit state analyses,
a notable variation of stiffness is observed starting from very small shear strains.
This phenomenon cannot be replicated by models such as the linear-elastic Mohr-
Coulomb model (Obrzud & Truty, 2020).

The transition from these very small strains to engineering strains marks the domain
where the hardening soil model excels. Its notable advantage is the ability to capture
stress-strain behavior in soils under sequential loading, a common scenario for
foundation systems subjected to staged and long-term loads, making it suitable for
studying the long-term performance of foundations—a crucial aspect in practical
engineering applications. Additionally, the hardening soil model is a better fit
compared to models developed for soft soils, as rafts on such soils are less likely to

be designed without ground improvement or foundation piles.

The choice of the hardening soil model is also motivated by its compatibility with
the commonly used finite element software PLAXIS. This ensures consistency
between the modeling approach and the capabilities of the software, enhancing the
reliability and relevance of findings.

Overall, the selection of the hardening soil model aligns with the need for a
comprehensive, realistic, and practically applicable representation of soil behavior
in the context of shallow raft foundations. This choice enables the exploration of
intricate soil-structure interaction and provides valuable insights into the design and

optimization of foundation systems within the scope of this research.

32



CHAPTER 3

METHODOLOGY

In this study, commonly used commercial software programs, PLAXIS 2D/3D and
SAP2000, were employed to investigate the behavior of shallow raft foundations
under static loading and analyze the distribution of subgrade modulus beneath the
foundation. A total of fifty-three analysis sets were conducted with PLAXIS 2D and
SAP2000 across various cases, considering variables such as foundation thickness,
width, soil stiffness, number of floors, building width, and column positions. Each
analysis set begins with a PLAXIS 2D model that simulates the soil and structure
together and is assumed to be the most accurate estimate of the combined behavior.
This is followed by iterations in SAP2000, where the spring constants are varied
until the results (settlement profile and bending moment diagram in the raft) match
those obtained from PLAXIS 2D. It is important to mention that other studies in the
past have also looked into this kind of research, where PLAXIS was employed to
model both the foundation and the building structure. Gragnano et al. (2014) found
an overall very good match, as such highlighting the possibility to use the code
PLAXIS to perform both structural and geotechnical calculations in soil-structure

interaction problems.

The studies first started by analyzing multistory buildings with raft foundations
resting on single-layered non-cohesive soils with PLAXIS 2D software. The
boundary conditions in PLAXIS 2D were defined as 1.5 times the foundation width
from both ends and two times the foundation width below the foundation level. The
purpose of selecting these boundary dimensions, which is commonly employed in
practice, is to strike a balance between capturing significant effects and ensuring

computational efficiency.
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Mat foundations were directly placed on top of the ground as the first stage, and the
columns and slabs of the upper levels were added sequentially, one story at a time to
represent the staged construction. Air is defined as a material with zero strength and
weight for the empty frame spaces formed between the columns and slabs of the
superstructure. The range of parameters considered in the analyses included raft
thickness (0.7-1.50 meters), raft width (20-60 m), soil secant stiffness (Eso™¢") (20-
65 MPa), slab thickness (0.20-0.30 m), number of floors (4-20), column side
dimension (0.40-0.60 m), and center-to-center column spacing (2-10 m). Structural
concrete elements (rafts, columns, and slabs) were modeled as plates with elastic
material type. Input material parameters of structural elements are listed in Appendix
A. The hardening soil model was used in the analyses to model the supporting soil
under the foundations.

19 20 3
14 15 16 17 18 1.5L

Foundation width = LL
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Figure 3.1 Geometry and boundary conditions in PLAXIS 2D models

The models created in PLAXIS 2D were replicated in SAP2000, ensuring they had
the same shape, dimensions, and structural material properties. Frame elements were
used to model all columns and beams. A linear-elastic constitutive law was adopted

for these elements, whose parameters were selected consistently with the assumed
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non-reinforced concrete material. Four-node, thick shell elements were used to
model the raft (plate-bending behavior) behavior in three-dimensional analyses. The
frame elements (columns, slabs) and the shell elements (raft) were connected without
any constraints at the joints. The bottom of the models was supported by the line or
area springs for translation in the direction of gravity. The springs were placed at an
interval of 0.5 m, which balances the computational time against the accuracy of the
results. An example view of the 2-dimensional analyses created in both software is
shown in Figure 3.2.

An iterative process was implemented, adjusting the spring constants in SAP2000
until the settlement and bending moment results converged and aligned with the
corresponding results from the PLAXIS 2D analysis. Convergence was considered
achieved when the settlement and bending moment values of the SAP2000 analyses
were within + 5 percent at all nodes compared to the PLAXIS 2D results. The
outcome of each analysis set is the determination of the distribution of spring
constants (K) that aligns with the results obtained from the continuum analysis, which
is deemed more realistic. The analyses carried out within this study's scope are

detailed below, with the variables grouped within themselves.

(a) (b)

Figure 3.2 An example structural view of the 2-dimensional analysis (a) PLAXIS
2D v-8.6 (b) SAP2000 v-21.1.
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In the calculation and presentation of the spring constants, the tributary area of each
spring node was taken into account. For the two-dimensional analyses, the nodes
located at the edges had half the area compared to the inner nodes of the beam.
Similarly, for the three-dimensional analyses, the nodes at the plate corners had one-
fourth, and those at the edges had half the area. This condition is visually represented

in Figure 2.2.

3.1 Effects of Foundation Thickness

Before conducting the series of 53 analyses mentioned above, to establish the
iteration process and observe the effects of system variables, two preliminary
analyses were performed. In these analyses, the objective was also to explore how
the variation in foundation thickness impacts the soil reaction. Specifically, two raft
foundations with different thicknesses (0.5 m and 2.0 m) were analyzed using
PLAXIS 2D. Both foundations were placed on a 40-meter thick layer of sand,
modeled as hardening soil with a unit weight of 18 kN/m3. The soil properties were
kept the same for both models, and no water level was considered. An interface
strength reduction factor (Rinter) Of 0.67 was assigned between the soil and
foundation. The raft foundations were modeled as elastic beam elements, and

distributed column loads were applied at four locations along the raft. (Figure 3.3).
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Figure 3.3 General appearance of the PLAXIS 2D model for the 'Effects of
Foundation Thickness' case

By analyzing the two different foundation thicknesses and observing the
corresponding soil reactions in the preliminary analyses, valuable insights were
gained regarding the influence of foundation thickness on the behavior of the raft
foundation system. These findings served as a basis for further investigations in the
subsequent series of analyses, allowing for a comprehensive exploration of the
effects of various system variables on the performance of the foundation.

The settlement and bending moment results obtained from the two PLAXIS 2D
analyses are compared. It is observed that the thicker foundation settled uniformly
with a settlement of approximately 6 cm. On the other hand, the thinner foundation
experienced maximum settlements of 4 cm at the center and 2.5 cm at the edges. The
increased settlement in the thicker foundation can be attributed to its higher self-
weight compared to the thinner foundation. It settles uniformly due to its higher
rigidity resulting from the increased thickness. As the raft thickness increases, the
differential settlement decreases, leading to higher foundation bending moments
(Figure 3.4).
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Figure 3.4 Comparison of (a) settlement and (b) bending moment results of 0.5 m
thick and 2.0 m thick rafts

As mentioned above, in order to determine the distribution of soil reaction beneath
the foundation, modeling studies were also conducted in SAP2000, using the same
raft properties and loading conditions. The trial-error method was employed to
determine Winkler's spring coefficients in SAP2000 that closely matched the
settlement and moment results obtained from PLAXIS 2D. Figure 3.5 illustrates the
settlement, bending moment, and shear force results of the 2.0 m thick foundation
obtained from both software programs. It can be observed that the results are almost
perfectly overlapping. Additionally, Figure 3.5 also includes the SAP2000 results
obtained by the constant spring approach. The overlapping settlement and bending
moment results obtained from PLAXIS 2D and SAP2000 using the trial-error
method demonstrate the limitations and discrepancies introduced by the constant
spring approach.

It is worth noting that SAP2000 assigns nodes on each spring defined at 0.5 m
intervals; it has a regular and intermittent node distribution, whereas PLAXIS defines
irregular but frequent nodes. These intermittent nodes are the cause of the

discontinuous results appearing on the diagrams.
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Figure 3.5 Comparison of (a) settlement, (b) bending moment, and (c) shear force
results obtained from PLAXIS 2D and SAP2000 software for the 2.0 m raft
thickness case
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In the case of a 2.0-meter raft thickness, an overall trend of a U shape can be observed
in the distribution of spring constants, with higher values closer to the edges of the
foundation. However, as the rigidity of the foundation decreases (underlying soil
properties unchanged), the spring coefficients concave downwards, especially at the
midsection. (Figure 3.6). Notably, both distributions exhibit a significant and steep

upward increase towards the edges of the foundation.

It should be noted that the term "spring constant” used in the context of this study is
not equivalent to the subgrade modulus. It is essential to clarify to the readers that
the spring constants derived from the analysis represent the subgrade response but
are not the actual subgrade modulus values. In the context of the study, the spring
constants can be considered as a representation of the subgrade modulus, but they
should be scaled appropriately. Specifically, the spring constants at the edges should
be multiplied by 2 to account for the half-tributary area. Additionally, considering
the 0.5-meter spacing of the springs, the spring constants can be doubled to represent
the subgrade modulus in the analysis.

To summarize, the distribution of spring constants (k) was determined through the
analysis using PLAXIS 2D and SAP2000. The calculated spring constants should be
adjusted by doubling the values at the edges to account for the half-tributary area and
by doubling all values considering the 0.5-meter spring spacing. These adjustments

ensure a more accurate representation of the subgrade modulus in the analysis.
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Figure 3.6 Distribution of spring constant values for 0.5 m and 2.0 m thick rafts
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3.2  Effects of Staged Construction

In order to gain insight into the implementation of staged construction modeling and
analyze the interaction between two different finite element software programs,
modeling studies were conducted. Two of these model studies, four-story five-span
and five-story four-span models, are shown in Figure 3.7. In staged construction
models, the raft foundation construction was identified as the first stage, and the
columns and the slabs of the upper levels were added in a sequential manner of one
story at a time to represent the following stages of construction. Consequently, there
are five construction phases for the four-story case and six phases for the five-story

case. In the last phases, roof forces were defined at the top of the column locations.
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Figure 3.7 General model views of the two 'Staged Construction' cases in PLAXIS:

(a) four-story five-span model and (b) five-story four-span model
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A comparative analysis between the results obtained from the staged construction
method and the linear static normal analysis (non-staged) approach reveals notable
differences in settlement values, settlement response, and internal stress distribution
within the raft (refer to Figure 3.8). Specifically, in the staged construction scenario,
a reduction of approximately 5 percent in settlement values is observed, primarily
concentrated at the edges of the foundation. This decrease can be attributed to the
progressive hardening mechanism of the soil during each construction stage. The
gradual settlement process compacts the soil, particularly at the foundation edges,
resulting in reduced settlement but increased bending moments. The interaction
between structural elements during the construction phases may further contribute to
this phenomenon. Moreover, the maximum bending moment values show an

approximate increase of 50 percent and 30 percent for the respective cases.
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Figure 3.8 Settlement and bending moment results of the foundations for the staged

construction method and the linear static normal (non-staged) method
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As stated before, the spring constants were also investigated by trial and error so that
the settlement and moment values of the raft in SAP2000 were the same as those of
PLAXIS 2D. Figure 3.9 shows the spring coefficient distributions obtained for
staged and non-staged construction methods. In the staged construction method, the
spring constants are almost the same in the middle sections and only get higher
values at the foundation edges than those of the linear static (non-staged) method.
These increases are in the order of 10 percent and are mainly concentrated on the
foundation edges with a length of 5 percent of the foundation width.
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Figure 3.9 Distribution of spring constant values for the staged and non-staged
analyses (a) Four-Story, (b) Five-Story
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Precise results obtained not only for the raft but also for other superstructure frame
elements would show that both software solutions are compatible. In this context,
the bending moment values of the slab elements for the five-story case, obtained
from both software, were compared (Figure 3.10). The errors for the results of the
first slab at the end of the second construction stage and the fifth slab at the end of

the sixth stage are at most 5 percent, as was the case in the raft foundation.
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Figure 3.10 Bending moment diagrams of the first-floor slab at the end of the

second stage and the fifth-floor slab at the end of the sixth stage

Consideration of stage construction analysis can offer a more realistic calculation of
reactions and stresses. It also has effects on soil response, and these effects may be
crucial in high-rise buildings with a large number of construction phases. Thus, the

staged construction analysis method is used in this study, and its effects are assessed.

3.3 Effects of Number of Stories

In this section, studies were carried out to see how the soil response beneath the
foundation would change with the increasing number of structure stories. The initial
model had a four-story building with a foundation width of 40 meters and a
foundation thickness of 1 meter. The soil properties under the foundations were
consistently set as Eso®®" = 25000 kN/m? and ¢ = 32° across all three models in this

section. Subsequently, the number of stories was doubled in each successive model,
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with the final model featuring a 16-story structure. For each story, the slab thickness
was 200 mm, and the column height was 3 meters. The SAP2000 view of the 16-

story structure, which corresponds to the final case, is presented in Figure 3.11.
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Figure 3.11 SAP2000 appearance of the 16-Story Structure - Final Case

In order to see the changes occurring in subgrade reactions due to the increasing
number of structure floors, the results obtained from 3 different models are collected
on a graph and examined (Figure 3.12). Upon individual analysis of the results, it is
evident that the distribution of subsoil reactions adheres to the general principle of
higher reactions at the ends and lower reactions at the center. The maximum spring
coefficient value is approximately 1.8 times greater at the ends compared to the
center. The variation in subgrade modulus between these two points exhibits a well-
correlated second-degree parabolic distribution. With an increase in the number of
stories and, consequently, the system's overall weight, there is a slight overall
increase in the distribution of spring coefficients. However, no discernible changes

are observed in the parabolic shapes in the mid-section of the U form.
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In order to better understand the differences between the distributions, the results are
examined on a superimposed graph, and it is observed that almost the same
distribution occurs beneath the foundations (Figure 3.13). This study shows that the
increase in the building's number of stories does not substantially affect the spring

coefficient distribution while the values are affected only slightly.
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Figure 3.12 Representation of spring constant distributions for the 'Increasing

Number of Stories' case

900 Dist. of Spring Constant
g ——4 Slabs
> 800
=
%\ 700 ——28 Slabs
€
3
2 600 ——16 Slabs
(@]
o
(o))
.= 500
o
[92]

400

-20 -15 -10 -5 .0 5 10 15 20
Local Coordinate of Beam (m)

Figure 3.13 Superimposed appearance of spring constant distributions for the

‘Increasing Number of Stories' case

46



3.4  Effects of Foundation (Structure) Width

In order to observe the changes that would be formed in the ground response by the
enlargement of the foundation (& structure), five different models were studied. An
initial analysis was done by a six-story building having a 20-meter width and 0.8 m
thick raft. Modeling continued up to a structure and foundation width of 60 meters
by increasing the width by 10 meters at each step. These 10-meter increments were
done symmetrically by adding new axes of columns. The slab thickness was 200

mm, and the column height was 3 meters in all analyses.

PLAXIS 2D views of the first and second cases are provided in Figure 3.14,
showcasing the general appearance of these models. The analyses were conducted
using the dead load and staged construction method without any additional loads
applied to the structures. The soil used in these five models can be defined as loose

sand, and its properties were; Eso?*f = 20000 kN/m? and ¢ = 31° in all the models.

The settlement and bending moment results of the rafts obtained from PLAXIS 2D
and SAP2000 software are shown in Figure 3.15. As always, a 5 percent error limit
was not exceeded in both the settlement or bending moment results for any of the
nodes on the rafts.
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Figure 3.14 General appearance of the first and second PLAXIS 2D models used
for the 'Increasing Foundation (Structure) Width' case
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Figure 3.15 Settlement and bending moment results of the foundations for the

‘Increasing Foundation (Structure) Width' case
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The spring constant variation profile along the width of the raft for the first model
(20-meter width) exhibits a typical U shape, with softer middle section springs and
significantly stiffer edges. The spring constant at its maximum value was
approximately 1.7 times higher than at the midpoint. Figure 3.16 displays the results
for the first model and the other four expanding foundation (structure) models. As
the superstructure expanded, the middle part of the U shape elongated, and even in
the results of the last two models, the concave-up part that forms the center of the U
shape started to bend slightly downwards. The increase in constants was more
gradual towards the edges. In the third model (40-meter width), the ratio between the
maximum spring constant and the midpoint was around 1.8, while for the last two

models, it was approximately 1.9.
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Figure 3.16 Representation of spring constant distributions for the 'Increasing

Structure Width' case on a single graph
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3.5 Effects of Soil Stiffness

In this part of the study, modeling analyses were carried out by changing the soil
parameters while other variables remained constant. The first analysis in this section
involved a 10-story building with a foundation thickness of 1 meter and a width of
40 meters, placed on a sand layer with soil properties of Eso?f = 20000 kN/m? and ¢
= 31° (Figure 3.17). Incremental changes of 5000 kN/m? and 1° were applied to the
triaxial loading stiffness (Eso™®") and the angle of shearing resistance (¢) from the

base scenario.

Only in the last analysis, instead of the 5000 kN / m? stiffness increment mentioned
above, an increase of 10000 kN / m? was made for the triaxial loading stiffness
(Eso™"), and the analysis was made with soil parameters of EsoR¢" = 65000 kN / m?
and ¢ = 38°. In this section, a total of 9 analyses were conducted. The results obtained

by the iteration process are collected in Figure 3.18.
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Figure 3.17 General appearance of the first PLAXIS 2D model used for the
‘Increasing Soil Stiffness' case

51



Dist. of Spring Constant ~——E=20000 0=31
—— E=25000 ©¥=32

E=30000 ©¥=33

E=35000 ©0=34

——E=40000 0=35
1800 —— E=45000 0=36
—— E=50000 ©=36
—— E=55000 0=37
—— E=65000 ©=38
1300
800 L

-20 -15 -10

Spring Constant (U3) (kN/m)

-5 0 5 10
Local Coordinate of Beam (m)

Figure 3.18 Representation of spring constant distributions for the 'Increasing Soil

Stiffness' case on a single graph

Upon initial observation, it is apparent that the linear increase in soil parameters leads
to an upward trend in the spring constant distributions. The increase in soil stiffness
particularly causes a more pronounced rise in spring constants at the edges. The ratio
between the maximum spring coefficient value and the midpoint value is
approximately 1.9 for the loose sand models, 2.0 for the medium sand models, and

2.1 for the dense sand models.

On a 40-meter foundation, these sudden increases in spring constants begin around
2-3 meters before reaching the foundation edges. When the results are superimposed
on a graph (Figure 3.19), it can be observed that as soil stiffness increases, the middle
part of the spring constant distribution exhibits a more pronounced concave upward
shape toward the edges. It is important to note that the interpretation of the results
on the superimposed graph should not be taken in a strictly proportional or
quantitative manner, as the vertical positioning of the results on the graph may distort
the actual changes. Nevertheless, the superimposed graph provides an exaggerated

visualization of the changes that occur with increasing soil stiffness.
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Figure 3.19 Superimposed view of spring constant distributions of the 'Increasing

Soil Stiffness' case

3.6  Effects of Relative Stiffness of the Soil-Raft System

This section aims to investigate the influences of relative stiffness changes in the
soil-raft system on the distribution of spring constants beneath the rafts. In this
context, three interaction analyses were performed. On 20-meter-wide foundations,
0.5-meter-wide distributed loads were assigned to simulate column loads at four
locations (Figure 3.20). By changing the foundation rigidity and soil stiffness at the
same rate, the effects of the rigidity changes in the soil-raft system have been
investigated.

The analyses began with a 1-meter-thick raft foundation, and subsequent analyses
were carried out with foundation thicknesses of 1.3 meters and 1.5 meters while
maintaining the same boundary and loading conditions. The increase in raft thickness
led to approximately 2.2 times and 3.375 times increases in the foundation's flexural
rigidity (EI) for the cases of 1 meter to 1.3 meters and 1 meter to 1.5 meters,
respectively. These progressive increases in flexural rigidity (EI) were also reflected
in the deformation parameters of the underlying soil, resulting in a linear variation
in the stiffness of the soil-raft system.
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Figure 3.20 General view and properties of the models for the 'Relative Stiffness

Changes in Soil-Raft System' case

As a result of changes in foundation thickness and soil parameters, different
settlement values and spring constant distributions were obtained for all three cases.
Figure 3.21 illustrates the settlement and bending moment results obtained from
PLAXIS 2D, as well as the spring constant distributions used to obtain those results
in SAP2000. It can be observed that increasing soil stiffness led to decreases in
settlement values. However, the settlement shape and bending moment results
showed no significant variations. In contrast to Section 3.1, where increasing the
thickness of the raft foundation exhibited significant variations in settlement
characteristics, maximum settlement values, and bending moment results, the current
analysis reveals a different trend. In this case, the gradual increment in both the raft
thickness and soil stiffness appears to balance out these differences. Despite the self-
weight, acting as a distributed load due to the increase in foundation thickness,
settlement and moment values in the foundation were mitigated. The increased soil
stiffness resulted in higher spring constants and the general shape of the spring
constant distributions remained in the U form. Sharp increases in spring constants
were observed in the last 2.5-3.0 meters near the edges. Proportional evaluations of
the maximum values and values at the midpoints yielded approximately 1.5 for all

three distributions.
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Figure 3.21 Settlement, bending moment, and the linked spring constant
distribution results for the 'Stiffness Changes in Soil-Raft System' case
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In order to figure out to what extent the gradual increment in the soil-raft system
affects the increase of spring constants at the edges, a scale value at the rate of
increment in the rigidity of the foundation was applied to the superimposed
appearance of coefficient distributions (Figure 3.22). In more detail, the spring
constants of the second case have been divided by 2.2 because of the approximately
2.2-fold increase in rigidity between the first and second cases, and the spring
constants of the third case have been divided by 3.375 because of the approximately
3.375-fold increase in rigidity between the first and third cases. Upon examining the
scaled superimposed appearance of the coefficient distributions, it can be observed
that linear increases in the stiffness of the soil-raft system have an almost linear effect

on the distribution of spring constants.
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Figure 3.22 Scaled appearance of superimposed spring constant distributions of

'Relative Stiffness Changes in Soil-Raft System' case
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3.7  Replacement of Superstructure with a Thicker Foundation

This part of the study tried to examine the changes that would occur in spring
constant distributions in the case of expressing the rigidity of the superstructure
system with a single thicker foundation. In this context, 2 cases were analyzed: a
five-story four-span model and a four-story five-span model. First, linear static (non-
staged) analyses were performed for both cases, and the spring constant distributions
beneath the rafts and the forces acting on the frame elements were determined. Then,
the flexural rigidity of the superstructure system was simply calculated, and the
thickness of the new single raft foundation, with an equivalent flexural rigidity to the
system, was determined. The weight difference between the two models was
calculated, and the calculated difference has been applied to the column positions in
the ratio of loads acting on the frame elements in the previous models.

Obtained new system was analyzed, and spring constant distributions were
determined and compared. The general appearances of PLAXIS 2D models are
shown in Figure 3.23, and the detailed calculations for the new single raft

foundations are presented in Appendix B.

57



35 kN/m
35 kN/m 35 kN/m
25 kN/m > ; ) 25 kN/m

302 kN/m
% 7 0 ) % 360 k\/m 360 kN/m
260 kN/m 260 kN/m

AN

50 kN/m 50 kN/m

A A

25 kN/m 25 KN/m

Mkt RaAE

28 29 30 31 32 33

255 kKN/m 255 KN/m
213 kN/m " A 213 kN/m

16 17 18 19 20 21 A
II() k\/m 110 kN/m
6 7 9 11 13 15 ;L

4 8 10 12 14 5

22 23 24 25 26 27

Figure 3.23 General appearance of the five-story four-span and four-story five-span

superstructure models, as well as their replacement with thicker foundations

When the results are examined, it is seen that the spring constant distributions found
by modeling the frame system are not very different from the results of the thickened
raft model that replaces the frame system. In the condition of replacement of the
structure and its' foundation with a single thicker foundation, the distribution results
were almost the same in the middle parts of the foundations. Only slight decreases
of about 5 percent are observed at the edges (Figure 3.24). Since there is no
significant difference between the models in terms of total weight, the general
averages of total spring resistances are too close to each other. In both cases,
distributions are generally in a U form. While simulating the entire structure with a
single thicker foundation neglects the interaction between the frame elements, it is
worth noting that this simplification has only a slight impact on the spring constants
at the edges of the foundation. This finding can be valuable in simplifying complex
models without significantly compromising the accuracy of the spring constant

distributions.
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Figure 3.24 Distribution of spring constant values for the 'Superstructure Rigidity

Reflected by a Single Thicker Foundation' case

3.8 The Case of Structure Width Less Than Foundation Width

Construction models with wider foundations than the superstructure, which are
commonly employed in residential and office projects, are the focus of this part.
Unlike previous modeling studies where the foundation and superstructure widths
were equal, this section investigates cases where the raft widths are greater than the

superstructure widths.

The modeling analyses started with a 30-meter-wide structure comprising 20 stories,
placed on a 60-meter-wide foundation with a thickness of 1.20 meters (the

foundation was wider than the structure by 15 meters on both sides). Subsequently,
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in the following analyses, all model variables, such as soil properties, structure width,
number of stories, and foundation thickness, remained constant except for the
foundation width. The foundation width was 45 meters in the second analysis, 39
meters in the third analysis, 37 meters in the fourth, 34 meters in the fifth, and 30
meters in the sixth. As a seventh and final step, 4-story additional structural parts
have been added to the raft edges that are wider than the superstructure at the right
and left sides of the first model. Figure 3.25 provides a visual representation of this

section's first, second, fourth, and seventh models.
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Figure 3.25 General view of the first, second, fourth, and seventh models for the

'Structure Width Less Than Foundation Width' case
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In Figure 3.26, the foundation settlement and spring coefficient distributions,
obtained from all the analyses of this case, are given. It can be seen that the amount
of differential settlement formed in the foundations decreases as the widths of the
foundations approach the widths of the buildings. The maximum total average
settlement is seen on the 'Om' model, which has the smallest raft width. As the raft
width decreases, the settlement profile transforms from a U shape to a straight form.
In the distribution of spring coefficients, the situation is the opposite. As can be
recalled, the previous models, in the case of foundation width and building width
being the same, resulted in the spring constant distribution being the usual U shape.
However, here, as the settlement profile transforms from the U to a straight shape,
the spring coefficients advance from the straight to the U shape. If the width of the
foundation is much larger than the width of the building, it may even happen that the
spring coefficients are less at the edges of the foundation and more at the middle of
the foundation. Of course, the fact that the foundation width is 15 meters larger than
the building width from the right and left sides express an exaggerated situation.
Because it is not common for a 1.2-meter-thick foundation that is much larger than
the width of the building without supporting any structure. However, this situation

reveals that the spring constant distributions may not only be in the U shape.

When additional 4-story structural parts are added to the sides of the high-rise
building, the spring constant distributions demonstrate an attempt to return to their
classical distribution form. The analyses for this case show that the effects of loading
conditions or positions are significant on the spring constant distributions. Actually,
this reveals that the Pseudo-Coupled method, described in section 2.2.3, may lead to
inaccurate results because it assumes that the spring constants are always higher at
the foundation edges, regardless of the superstructure loading conditions. However,
the findings from these analyses show that the foundation's loading conditions
influence the spring constant distributions, and it is necessary to consider the specific
loading conditions when determining the spring constant distributions rather than

relying solely on a generalized approach.
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Figure 3.26 Superimposed appearance of settlement and spring constant
distributions of the models for the 'Structure Width Less Than Foundation Width'

case

3.9  Effects of Column (Loading) Positions

After examining the effects of superstructure loading positions on the spring
coefficients, further investigations were conducted to analyze the impact of column
positions. For this purpose, two cases involving 6-story structures were modeled with
a raft thickness of 0.9 meters and a length of 21 meters. The soil parameters,
including EsoRé" = 35000 kN/m? and ¢ = 33°, were identical for both models. The
only difference between the two models was the distance between the two interior

columns, which was 5 meters instead of 9 meters in the latter (Figure 3.27).
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Figure 3.27 General appearance of the two PLAXIS 2D models used for the

'‘Column (Loading) Positions' case

When the settlement and bending moment results obtained from the two models are
examined, it is observed that both foundations are settled equally in terms of the total
average settlement. However, at the mid-section of the foundations, dissimilar
settlement curves and, depending on the column positions, different maximum
moment locations and values are observed (Figure 3.28). Figure 3.28 also provides
a clear visualization of how this difference in column spans influences the

distribution of spring constants.
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Figure 3.28 Settlement, bending moment diagrams, and variation of spring constant

distributions according to column positions

In the centrally loaded case, the spring constants at the foundation edges were stiffer,
despite the edge-to-center ratio being approximately 1.80 for both cases. The spring
constants in the mid-part exhibited a more pronounced upward curvature when the
column loads were located away from the foundation's center (peripherally loaded
case) compared to when they were positioned closer to the center (centrally loaded
case). This observation also explains the results observed in cases where the structure
is narrower than the foundation width. In such situations, an inverted U-shape pattern
emerges due to the structural loads predominantly being concentrated near the
foundation's center. As the structural loads shift towards the edges, an upward
curvature in the spring constant profile is initiated from the center. It is worth noting
that the loading position is a critical factor in estimating and formulating spring
coefficient distributions.
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Based on these observations, the column positions of all 53 models were evaluated.
Since all models were symmetrical with respect to the midpoint of the foundations,
the resultant force positions of column loads acting on one-half of the foundation
were calculated. The ratio of this resultant's distance from the foundation edge to the
foundation width, referred to as the Load Concentration Ratio (LCR), was utilized
to quantify the concentration of structural forces on the raft foundations (Figure

3.29). LCR can be calculated using the equation:

LCR= (3.2)

Wi2

where Ry represents the resultant force's distance from the foundation edge, and W is
the foundation width. This ratio indicates the concentration of resultant structural
forces on the raft foundations. The LCR values calculated for all the models within
the scope of this study are listed in Appendix C. When analyzing the distributions of
spring coefficients, grouping the similarly distributed structural loads that
concentrate on specific parts of the foundation and interpreting these groups is more

accurate.
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CHAPTER 4

RELATIONSHIP BETWEEN SPRING CONSTANTS AND PROBLEM
VARIABLES

As noted in the previous chapter, besides the minor effects of the number of stories,
other variables, such as soil stiffness, foundation thickness, and loading positions,
strongly influence the subgrade modulus distribution. These effects are case-specific
and vary depending on the conditions. Understanding and predicting these spring

constant distributions are crucial and form one of the main objectives of this study.

4.1  Correlating the Subgrade Modulus Distribution to Problem Parameters

Drawing from this knowledge and experience, a study has been initiated to establish
a simple relationship and predict spring coefficient distributions by considering
relevant variables. The emphasis on a 'simple relationship' stems from the intention
to promote the practical use of assessments and results in routine engineering
practice. While the existing literature may present complex findings and methods,

they are often not utilized in routine projects and commercial software.

Generally, an increase in soil and structure stiffness leads to higher spring constants
at the edges of the foundation. Moreover, when the superstructure loads are
concentrated towards the center of the foundation, the spring constant distributions
transform from a concave-up form to a concave-down shape in the middle of the
foundation. In general, the distribution of spring constants follows a second-degree
parabolic shape in the middle of the foundation, with abrupt variations at the edges.
Thus, by taking the symmetric foundation's midpoint as a reference and dividing the
distribution on the right side of the foundation into two segments, the spring

coefficient distribution can be represented by the following relationship:
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k(x) =k +ax?, if x<x, (4.1a)

k(x) =k,+ax, *+ c(x—xl) i x>x, (4.1b)

where ko represents the initial value at the centerline, x denotes the absolute distance
of a point on the foundation from the foundation's center, x1 is the reference distance
that determines the transition point between the two equations, and a and c¢ are
coefficients that control the variation and magnitude of the spring coefficient in their

respective regions (Figure 4.1).
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Figure 4.1 Functional representation of the distribution of spring constants

The three parameters, the coefficient 'a," transition point X1, and coefficient 'c,' have
been calculated for all 53 models studied thus far using an Excel solver and the least
square method to derive the best-fit coefficient distributions. Scatter plots have also
been prepared to seek correlations between these parameters and the 'relative rigidity’
abscissa, which encompasses both soil stiffness and structural rigidity, the two main
contributors to the distribution of spring coefficients. The purpose of these scatter

plots is to identify any correlations through the use of best-fit lines. The complete set
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of obtained results is graphically presented in Appendix D, including snapshots of
the analyses. In these graphs, the blue line represents the spring coefficient
distributions obtained through iterations, while the brown line depicts the best-fit
distributions obtained from MS Excel. Additionally, the display in Appendix D
includes the spring constant distributions obtained from the proposed relations,
which will be discussed in detail below. These distributions are represented by black

lines.

Based on the results, this relationship form effectively represents the distribution of
spring constants. The highest deviations occur near the edges of the foundation,
where sudden changes in spring constants are observed. However, the relationship
form provides a good fit outside of those areas. While it is possible to achieve better
results with higher-order relationships, it is important to emphasize that the primary
objective of the study is to enhance current common practices by maintaining

simplicity and convenience.

MS Excel Solver calculated the best-fit distribution for these 53 analyses and
computed the terms that form the proposed Equation 4.1. Therefore, the results for
the 'ko', 'a’, 'xi," and 'c' are present for each analysis. By understanding how these
coefficients behave in response to variations in certain factors, such as changes in
soil stiffness, foundation thickness, or building loading conditions, the expected
values of the spring constants beneath the foundation can be determined based on
some preliminary project information. This can provide valuable insights for design
and analysis purposes, allowing for more accurate modeling and assessment of soil-

structure interaction.

In this context, three scatter plots were created to visualize the correlations for the
coefficient 'a," the transition point 'x1," and the 'kKedge/kxi' ratio under different
conditions. As mentioned in Chapter 3, the system's rigidity is one of the most
significant factors that influence the distribution of spring constants beneath the
foundation. Therefore, in the scatter plots for the coefficient 'a" and the 'Kedge/Kx1'

ratio, the x-axes are labeled as 'relative rigidity (RR)," which combines both soil
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stiffness and structural rigidity. The choice to create a scatter plot for the 'Kedge/kx1'
ratio instead of 'c' is due to the observed limitations in establishing a well-defined
relationship between 'c' and the RR. However, the 'Kedge/Kx1' ratio exhibited a stronger
correlation with RR, making it a more suitable parameter for assessing the spring
constant distribution. The position of 'Keqge' is specifically chosen to be located at the
node just before the foundation edge. In the models, where the spring node spacing
is consistently set as 0.5 m, this corresponds to a distance of 0.5 m from the
foundation edge. This choice also allows for the effective elimination of potential
boundary effects associated with the direct interaction between the foundation edge

and the surrounding soil.

The usual form of a rigidity measure contains the variables that are related to the
stiffness of the mat in the numerator and the same for the soil in the denominator.
Equation (4.2), which is both in the German standard (DIN 4018) and Egyptian code
(ECP 196-1995), presents a relative rigidity ratio based on a strip having a unit width
by comparing soil modulus with data such as foundation width, foundation thickness,

and modulus of foundation material.
E
o d\3
b= () @2)

where Ep, is the young modulus of foundation material, Es is the young modulus of
soil, d is the foundation thickness, and W is the foundation width. kst > 2 indicates a
very rigid foundation, kst < 0.005 indicates a flexible foundation, and 0.005 < kst < 2

indicates a semi-rigid foundation according to Egyptian code.

Instead of solely assessing the rigidity between the soil and the raft foundation,
relative rigidity (RR), which considers the combined rigidity of the entire
superstructure, including the slabs on each floor, is employed. The flexural rigidity

of the slabs is calculated based on the number of stories and is subsequently
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incorporated into the existing flexural rigidity (EI) of the raft foundation. This results
in the development of a thicker raft foundation with an equivalent flexural rigidity.
The flexural rigidity of the new thicker raft foundation is then compared with the
rigidity of the underlying soil, enabling the determination of the relative rigidity
(RR). By accounting for the contribution of the slabs, this comprehensive approach
offers a more accurate representation of the overall system rigidity, enhancing the
analysis and design considerations for soil-structure interaction. It is essential to
acknowledge that the neglect of column effects in the analyses is a simplification
made for the study, as the inclusion of column effects is highly case-specific and

would require additional investigation tailored to specific project conditions.

In order to accurately present the relationships between the spring coefficient
distribution and the relative rigidity, it is also crucial to consider the loading positions
of the superstructure. In presenting the associations between the coefficients and the
proposed rigidity factor, the loading positions of the superstructure mentioned in
Section 3.9 were also considered. To ensure accuracy, extreme cases where the
resultant load from half of the superstructure is located in the middle of the
foundation or very close to the foundation edges were excluded. The remaining 46
model results were used to create scatter plots, where the data were categorized based
on LCR into three distinct groups representing different resultant positions of the
superstructure forces. This categorization provides an understanding of how the

varying loading positions influence the spring coefficient distribution.

According to Figure 4.2, the curvature parameter 'a’ exhibits a range of values from
-2 to +4. It ascends with increasing relative rigidity, indicating greater upward

concavity in the middle portion of the distribution.
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Figure 4.2 Scatter plot of calculated and grouped coefficient 'a’ values versus

relative rigidity

The investigation resulted in the derivation of distinct equations for different LCR
groups, further substantiating the relationship between 'a’ and the relative rigidity
factor. The equations for each group are as follows:

For 0.45 <LCR <0.55;

a=42.2( RR) + 0.07 (4.38)
For 0.55 <LCR <0.65;

a=56.6( RR) — 0.51 (4.3b)
For 0.65 <LCR <0.75;

a=123.5(RR) —3.10 (4.3c)

Moreover, when the 'x:" values, which represent the threshold point where the
guadratic function changes its form, are plotted against the foundation widths, a clear
linear relationship is observed (Figure 4.3). Specifically, the sudden increase in
spring coefficients begins at a point located approximately 85-95 percent of the half-
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width of the foundation away from the middle. The linear correlation between 'x1'

and the half foundation widths is represented by the Equation:

W
X, =0.96(7)— 0.80 (4.4)
30.00
x, = 0.96(W/2) - 0.80 2
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Figure 4.3 Scatter plot of quadratic function length versus foundation width

The parameter 'c' represents the slope of the linear portion of the function, which
corresponds to the region with significant variations. In line with this, the ratios of
'kedge/kx1' that correlate with RR are aggregated on a plot. By grouping LCR, similar
to the approach taken in the 'a' and relative rigidity plot, linear best-fit lines can be
determined (Figure 4.4). The scatter plot reveals that the 'Kedge/kx1' ratio mostly ranges
from 1.3 to 1.9 for models with low relative rigidity, and it becomes limited between
1.4 and 1.6 at higher relative rigidity values. The equations corresponding to each

group in the scatter plot are as follows:
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Figure 4.4 Scatter plot of the ratio of spring coefficient values at the points; end of

quadratic function and edge of the foundation versus relative rigidity

The transformation from the 'Kedge/kx1' ratio to the parameter 'c' can be achieved

through Equation (4.6), which can be expressed as follows:

k . —k(x
o= edge ( 1) (46)

xedge -t 1
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where k(x1) represents the spring constant at the transition point, and Keqge represents
the spring constant at the edge of the foundation at the node just before the edge of

the foundation.

4.2  Proposed Methodology

The proposed approach begins with the assessment of the stiffness attributes of the
superstructure. This involves the calculation of the stiffness for each individual floor,
which is then multiplied by the total number of floors in the building.
Simultaneously, the stiffness attributed to the mat foundation is added to this
cumulative value. Consequently, the flexural rigidity specific to the superstructure is
ascertained. Notably, these computations are executed separately for both orthogonal
directions, x and y. To elaborate, the flexural rigidity is determined by considering
the length of the foundation or slab in the corresponding x or y direction.

Subsequently, the resultant flexural rigidity is compared to the soil stiffness, as
specified in Equation 4.2, leading to the derivation of relative rigidity values for both
the x and y directions. This is followed by detecting the loading force positions of
the superstructure. Based on the column locations, the region on the foundation
where the superstructure load is concentrated is determined again for both directions

as mentioned in Section 3.9.

The identification of relative rigidity and Load Concentration Ratio (LCR) values
enables the application of the equation series expounded in Equations 4.3, 4.4, and
4.5. Specifically, the starting ko value is entered such that the average of the resultant
spring constant distribution aligns with the subgrade modulus value presented by the
geotechnical consultant. Subsequently, the computed values are incorporated into
the partial functions presented as Equations 4.1a and 4.1b. This incorporation
facilitates the determination of spring coefficients for the x and y directions at every
point on the foundation.
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In the context of three-dimensional analysis, the spring constants for each individual
node are determined by averaging the values previously obtained for the x and y
directions. These resultant values are divided by 4 for the foundation corners,
accounting for the tributary area condition, and by 2 for the foundation edges.

4.3  Validation and Comparative Analysis of Proposed Approach

In order to test the effectiveness of the scatter plots and the corresponding
relationships, two 2-dimensional validation analyses were conducted. In the first
analysis, the coefficient 'a’ and the 'Kedge/Kx1' ratio were selected to be relatively far
from the linear regressions defined for their group. This selection allows for
evaluations to be made regarding the results that would be obtained for a poor

scenario.

For the first case, analysis number 49 was selected. This analysis model has a relative
rigidity ratio of 0.029 and a load concentration ratio of 0.51. For this analysis, the
calculated coefficient 'a," the 'x1' value, and the 'Kedge/kx1' ratio by MS Excel Solver
were -1.40, 13.4, and 2.21, respectively. These values can be observed in Figures
4.2, 4.3, and 4.4. The results obtained from calculating these values using scatter
plots and relationships are as follows: 1.30, 13.6, and 1.72, respectively. These
values can be seen in Appendix C. The settlement and bending moment results from
proposed relations based on these values were compared with those found through
the iteration process, the constant spring coefficient approach, and the pseudo-
coupled method. The results of iterations that match the continuum serve as the
benchmark of reality. Figure 4.5 illustrates the spring constant distributions obtained
from the FE continuum through the iteration process, the spring coefficients obtained
using relationships, the constant spring coefficients, and the pseudo-coupled
approach springs. It also includes the settlement and bending moment results from

the analyses conducted using the four different approaches mentioned above.
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The proposed relation yields settlement results that closely resemble the response of
the system. The constant spring coefficient approach also provides similar results,
while the results from the pseudo-coupled method differ from these two approaches.
Regarding bending moment results, the relationship-based approach yields outcomes
close to those obtained through spring constants matching the FE continuum. The
difference in the maximum moment values at the center of the foundation is similar
to the difference obtained with the constant spring approach. However, in other
locations along the foundation, the moment values obtained with the relationship-
based approach are very close to the spring constants obtained through the iteration

to match the continuum results.

On the other hand, the bending moment results obtained from the pseudo-coupled
approach show notable discrepancies compared to the continuum values, similar to
the findings observed in the settlement results. This difference actually highlights the
potential drawbacks of the pseudo-coupled approach. The ratio between the edge and
innermost zones is approximately 2 in the proposed and pseudo-coupled methods.
However, in the pseudo-coupled method, the point at which this 2-fold increase start
is different. While in the proposed approach, it occurs at around 90 percent of the
foundation half-length, in the pseudo-coupled method, it starts earlier at around 75
percent. Additionally, in the pseudo-coupled method, the ratio between the
intermediate and center zones is 1.5. However, if the spring coefficients in the
intermediate part exhibit a concave-downward pattern, indicating a negative
coefficient 'a’ in our terms, the pseudo-coupled method may yield inaccurate results,
as observed.
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Figure 4.5 Spring constant distribution of different approaches and the

corresponding settlement and bending moment results (Analysis No: 49)
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For the second two-dimensional trial analysis, analysis number 40 was selected,
which had a relative rigidity ratio of 0.019 and an LCR of 0.46. The calculated
coefficient 'a," 'xi' value, and 'kedge/kx1' ratio using MS Excel Solver were 2.82, 13.7,
and 1.55, respectively. The results from scatter plots and relationships were 0.89,

13.6, and 1.74, respectively.

Figure 4.6 illustrates the spring coefficient distributions obtained through the FE
continuum-based iteration process, proposed relationships, constant spring
coefficient, and the pseudo-coupled approach springs. It also presents the settlement

and bending moment results obtained from SAP2000 analyses.

The proposed relationships yield settlement results that closely resemble PLAXIS
2D results and exhibit accurate behavior. Regarding bending moment, the proposed
approach outperforms both the constant spring and pseudo-coupled methods,
providing more accurate and consistent results at almost every point along the
foundation. These two trial analyses demonstrate that relationship-based spring

constant distributions yield more accurate results than commonly used approaches.

The utilization of scatter plots and proposed equations presents a practical approach
for civil engineers, particularly those involved in structural design. By gaining a
comprehensive understanding of the system's characteristics, including foundation
dimensions, column locations, and soil properties, engineers can effectively
anticipate the subsoil reaction beneath a beam. This methodology allows engineers
to accurately predict subsoil reactions, facilitating more efficient foundation design

without modeling both soil and structure in a single complex finite element analysis.
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corresponding settlement and bending moment results (Analysis No: 40)
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CHAPTER 5

EXPLORING 3-D TRIALS: EXAMPLE ANALYSES

Based on the studies conducted in 2D analyses, which have revealed the direct
dependence of spring constant distribution on system stiffness and loading
conditions, it was essential to assess the applicability of these findings in a 3D
context. In order to achieve this, two trials of 3D analysis were conducted using both
PLAXIS 3D and SAP2000 software. These trials aimed to investigate whether the
insights obtained from the 2D analyses could be successfully extended to the 3D
analysis domain and provide valuable insights for understanding the behavior of

spring coefficients in three dimensions.

While creating three-dimensional models, two-dimensional analyses conducted
within the scope of the study were utilized, incorporating known dimensions and
results. The 3D problems were divided into two 2D models, each representing a
cross-section in orthogonal directions. These models shared the same soil
parameters, equivalent foundation thicknesses, and other properties, except for the
foundation widths. The general view of the initial 3D analysis is presented in Figure
5.1. Itis a combination of 2D models with model numbers 14 and 52. The foundation
has a thickness of 1 meter, with a long side of 40 meters and a short side of 26 meters.
The properties of the corresponding two-dimensional models can be found in
Appendix C. As a result, a foundation for a structure covering an area of 1040 m?

and supported by 4293 nodes, with a mesh spacing of 0.5 m x 0.5 m, is obtained.

The iteration process employed in the 2D analyses to calculate the distribution of
spring constants cannot be directly extended to 3D analyses due to the impracticality
of iteratively determining a foundation support system consisting of thousands of
spring nodes. Therefore, the findings obtained from the 2D analyses are being

evaluated and tested in the 3D models.
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Figure 5.1 General view of the first trial 3D analysis

While determining the spring support system for the 3D analysis, scatter plots and
proposed relations derived from the 2D analyses were utilized. In this process, the
relationships obtained from the 2D analyses were input into an Excel spreadsheet.
The Excel spreadsheet has a dedicated data entry page where various parameters
related to the raft, such as the widths in both directions, thickness, slab thicknesses,
number of stories, soil and concrete stiffness values, and LCR values in both
directions, are entered. The expected spring constant distribution under the 3D
foundation for each node with known coordinates could be obtained by inputting
essential data related to the soil and superstructure on the input page. These spring
joint assignments, presented in a list format, can easily be inserted into the SAP2000
program through a simple copy-paste operation. Several screenshots of the Excel
file, which is being provided along with this thesis study, are included in Appendix

E for reference.
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The spring constants in the x and y directions, which share the same local
coordinates, are averaged while determining the spring support beneath a foundation
node. These average values are divided by two at the foundation edges and four at
the foundation corners. Thus, a distribution map was generated (Figure 5.2) to depict

the spring system beneath the foundation, considering the tributary area of each node.

The results obtained from both software were plotted on a graph with similar contour
shading levels, allowing for an easy comparison through the same color-coding of
contours. Additionally, the settlement and element force results obtained from
SAP2000 and PLAXIS 3D could be easily transferred to Excel, enabling visual and
numerical comparisons for verification purposes. This seamless integration of data
between Excel and the analysis software greatly facilitated the process of visual and

quantitative analysis, enhancing overall convenience and efficiency.

Spring Coefficient Distribution
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@500-600

400-500

@ 300-400

@200-300
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40 m100-200

Figure 5.2 Spring coefficient distribution calculated for the first trial 3D analysis

The comparison includes the results obtained from SAP2000 using the proposed
approach within the scope of this study, as well as the results obtained from the
conventional constant spring coefficient distribution approach. The purpose of this
comparison was to assess the effectiveness of the proposed approach in contrast to

the conventional constant spring coefficient approach.
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Figure 5.3 illustrates the overall findings, highlighting the limitations of the
conventional constant spring coefficient approach in accurately predicting settlement
response. Under this approach, the individual uncoupled springs settle independently
under a relatively evenly distributed structural load, resulting in a settlement profile
that significantly underestimates the actual curvature of the foundation. In contrast,
the proposed approach yields settlement characteristics and values that closely align
with those obtained from PLAXIS 3D. The settlement response predicted by the
proposed approach demonstrates similar trends and magnitudes, indicating a

significant improvement over the conventional method.

In the bending moment results of the x-direction (long side), the proposed approach
demonstrates improved accuracy in capturing moments, particularly in the middle of
the foundation, as well as accurately identifying the high moment values formed at
the column points (Figure 5.4). The maximum moment value at column positions is
623 kN-m/m in PLAXIS 3D, 492 kN-m/m in the proposed approach solution, and
438 KN-m/m in the constant spring approach. This represents an enhancement of

approximately 12.3 percent achieved by the proposed approach.

For the bending moment results of the y-direction (short side), the proposed approach
is better than the constant spring coefficient approach because it captures the
settlement response as accurately as possible (Figure 5.5). The average moments
formed in the raft in the y-direction are observed to be 163 kN-m/m in PLAXIS 3D,
152 kN-m/m in the proposed approach solution, and 71 kN-m/m in the constant
spring approach. This indicates a significant improvement achieved by the proposed
approach, with an approximately 114.1% increase in average moments compared to

the constant spring approach.
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Figure 5.3 Settlement results of the first trial 3D analysis; (a) PLAXIS 3D, (b)

Proposed approach, (c) Constant spring approach
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Figure 5.4 First 3-D analysis bending moment results; comparison in x-direction:
(a) PLAXIS 3D, (b) Proposed approach, (c) Constant spring approach
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Figure 5.5 First 3-D analysis bending moment results; comparison in y-direction:
(a) PLAXIS 3D, (b) Proposed approach, (c) Constant spring approach
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It is important to note that an inaccurate settlement response can directly impact the
forces developed in the foundation, leading to improper distribution. While the
proposed approach showcases improved performance in capturing the settlement
characteristics, it is worth mentioning that deviations from the maximum moment
value obtained from PLAXIS 3D can occur, particularly for columns located at the
edges where boundary effects come into play. These discrepancies indicate that the
moment values may deviate to some extent under such specific conditions. In the y-
direction, for example, the maximum moment value in PLAXIS 3D is 856 kN-m/m,
while in the proposed approach, it is 1039 kN-m/m, and in the constant spring
approach, it is 890 KN-m/m. It is important to note that these deviations are due to
point load application at column locations and, therefore, unrealistic, as the actual
moment to be used in structural design would be at the edge/face of the column, not
the center. Hence the sharp peaks are not good indicators in evaluating the proposed

approach's overall performance.

Table 5.1 provides a comprehensive comparison of the settlement and moment
results obtained from the first trial 3D analysis. The table showcases the values
obtained using three approaches: PLAXIS 3D, the proposed approach based on
Equation (4.1), and the constant spring approach. The average and maximum
settlement values, as well as the average and maximum moments in the x-direction

and y-direction, are provided for each approach.
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Table 5.1 Comparison of settlement and moment results of the first trial 3D

(KN-m/m) in y-direction

analysis
Proposed Constant
PLAXIS 3D
Approach Spring
Average Settlement (m) -0.0494 -0.0506 -0.0485
Maximum Settlement (m) -0.0561 -0.0554 -0.0509
Minimum Settlement (m) -0.0387 -0.0440 -0.0455
Average Moment
42.75 -3.60 -31.97
(KN-m/m) in x-direction
Maximum Moment
623.50 492.30 437.58
(KN-m/m) in x-direction
Average Moment
163.40 151.65 70.80
(KN-m/m) in y-direction
Maximum Moment
855.63 1038.76 889.69

For the second trial of 3D analysis, two 2D models were selected: model 53 and
model 32. These models were combined to represent a foundation with dimensions
of 30 meters (long side) and 24 meters (short side), with a uniform thickness of 0.9
meters. The foundation covers an area of 720 m? and is supported by 2989 nodes,
with a mesh spacing of 0.5 meters in both the x and y directions. The general view
of the second 3D analysis is presented below in Figure 5.6, while Figure 5.7
illustrates the three-dimensional spring coefficient distribution obtained using the

proposed scatter plots and equations, taking into account the tributary area

phenomenon for a comprehensive analysis.

89




40 41

44 45 24 25 26 27

28 29

32 33 24 25 26 27

22 23

Figure 5.6 General view of the second trial 3D analysis
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Figure 5.7 Spring coefficient distribution calculated for the second trial 3D analysis
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Figure 5.8 visually presents the settlement results, displaying the settlement profiles
obtained from each approach. At first glance, the contour lines for the proposed
approach and the constant spring approach closely resemble the settlement response
observed in PLAXIS 3D. However, upon closer examination, it becomes apparent
that the proposed approach provides a more accurate representation of the settlement

curvature, particularly in the y-direction.

The results illustrated in Figure 5.9 reveal the improved accuracy of the proposed
approach in capturing moments, particularly in the middle of the foundation, and
accurately identifying the highest moment values formed at the column points. The
proposed approach yields a maximum moment value of 430 kN-m/m at column
positions, which closely approximates the corresponding value of 457 kN-m/m
obtained from PLAXIS 3D. This signifies the effectiveness of the proposed approach
in accurately predicting the moment distribution and achieving a high level of
agreement with the reference PLAXIS 3D results. On the other hand, the constant
spring approach yields a maximum moment value of 401 kN-m/m.

It can be observed that both the proposed approach and the constant spring approach
closely approximate the average moment values in the x-direction obtained from
PLAXIS 3D. The proposed approach exhibits an average moment of 167 KN-m/m,
which is in close proximity to the reference value of 153 kN-m/m obtained from
PLAXIS 3D. Similarly, the constant spring approach shows a comparable average

moment value of 159 kN-m/m.

Analyzing the y-direction moments, Figure 5.10 provides a comprehensive
visualization of the results. It is apparent that the proposed approach excels in
capturing the moment behavior in this direction when compared to the constant
spring approach. The maximum moment value obtained from the proposed approach
is 324 kN-m/m, which closely approximates the corresponding value from PLAXIS
3D (333 kN-m/m). In contrast, the constant spring approach exhibits a maximum
moment value of 210 kN-m/m.
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Additionally, when considering the average moments in the y-direction, the
proposed approach yields an average moment value of 46 KN-m/m, which is again
in close agreement with the PLAXIS 3D result (47 KN-m/m). The constant spring
approach, however, yields an average moment value of -11 kN-m/m, demonstrating
a significant deviation from the accurate results obtained in PLAXIS 3D. This
success of the proposed approach in accurately capturing the moment behavior in the
y-direction can be attributed to its ability to better represent the settlement curvature
response in that direction.

92



PLAXIS 3D Mat Deformations (U,)

15 20 . 0
a) 30

@-0.005-0.000
@-0.010--0.005
@-0.015--0.010
@-0.020--0.015
@-0.025--0.020
©-0.030--0.025
-0.035--0.030
@-0.040--0.035
0-0.045--0.040
@-0.050--0.045

Sap2000 Mat Deformations (U,)

@-0.005-0.000
@-0.010--0.005
@-0.015--0.010
@-0.020--0.015
@-0.025--0.020
©-0.030--0.025
-0.035--0.030
@-0.040--0.035
0-0.045--0.040
@-0.050--0.045

Sap2000 Mat Deformations (U,)

c)

@-0.005-0.000
@-0.010--0.005
@-0.015--0.010
@-0.020--0.015
@-0.025--0.020
©-0.030--0.025
-0.035--0.030
@-0.040--0.035
0-0.045--0.040
@-0.050--0.045

Figure 5.8 Settlement results of the second trial 3D analysis; (a) PLAXIS 3D, (b)

Proposed approach, (c) Constant spring approach
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Figure 5.9 Second 3-D analysis bending moment results; comparison in x-
direction: (a) PLAXIS 3D, (b) Proposed approach, (c) Constant spring approach
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Figure 5.10 Second 3-D analysis bending moment results; comparison in y-
direction: (a) PLAXIS 3D, (b) Proposed approach, (c) Constant spring approach
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Table 5.2 presents a comprehensive compilation of the settlement and moment
analysis results in both the x-direction and y-direction. Presenting the numerical
values in a tabular format facilitates a clear and concise representation of the
performance of each approach. Notably, the proposed approach demonstrates
competitive results, closely aligning with the reference values from PLAXIS 3D and
outperforming the constant spring approach in certain aspects. This highlights the
effectiveness of the proposed approach in accurately predicting settlement and

moment behavior under varying loading conditions.

Table 5.2 Comparison of settlement and moment results of the second trial 3D

analysis
Proposed Constant
PLAXIS 3D
Approach Spring
Average Settlement (m) -0.0360 -0.0359 -0.0358
Maximum Settlement (m) -0.0432 -0.0433 -0.0431
Minimum Settlement (m) -0.0243 -0.0242 -0.0256
Average Moment
152.93 167.27 159.42
(KN-m/m) in x-direction
Maximum Moment
457.49 430.17 400.83
(KN-m/m) in x-direction
Average Moment
47.32 46.42 -11.19
(KN-m/m) in y-direction
Maximum Moment
332.70 324.38 209.61
(KN-m/m) in y-direction

96



CHAPTER 6

CONCLUSION

The application of subgrade modulus values to structural design, while often
relatively simplified in the design literature, is actually a complex process that is
vulnerable to misuse and misunderstanding. The structural design of the foundations
is generally made with rough methods that do not consider the characteristics of the

soil under the foundation and neglect the soil-mat-superstructure interaction.

6.1  Summary of Work

This study aims to investigate the behavior of shallow raft foundations under static
loading by considering the interaction between the soil and the foundation. PLAXIS
2D/3D and SAP2000 software, widely used in geotechnical and structural analysis,
are employed to analyze various cases and derive accurate distributions of the

subgrade modulus.

The methodology involves iterative processes applied to springs in SAP2000 to
determine subgrade modulus distributions aligned with the bending moment and
settlement results obtained from PLAXIS 2D. A set of relations are proposed to
account for the parameters that significantly influence the subgrade modulus
distributions. These relations considered factors such as foundation thickness,
structure width, soil stiffness, number of stories, and column positions, ensuring a
comprehensive analysis of the foundation system. Also, in order to extend the
findings from two-dimensional assessments to three-dimensional scenarios, two

separate 3D parametric studies were conducted.

Overall, this research fills a gap in the existing literature by addressing the

shortcomings of the Winkler method and providing a more accurate representation
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of soil-foundation interaction. The practical implications of the findings empower
structural engineers to make informed decisions when designing shallow raft

foundations.

6.2 Conclusions

The research findings highlight the significant influence of various factors on the
distribution of spring constants in raft foundations. It is evident that multiple
variables, including soil properties, foundation geometry, loading conditions, and
soil-structure interaction, can impact the accurate determination of spring constant
distribution. Considering these variables is crucial to obtain more reliable and
realistic results. Based on the analyses conducted in this study, the following key

conclusions can be drawn:

(1) Differential settlements and bending moments in a raft foundation cannot be
accurately predicted by using a single value of spring constant under the entire

foundation.

(2) The settlement profile of the raft and resulting bending moments are directly

influenced by the spring coefficients defined under the raft.

(3) The constant spring approach or the pseudo-coupled method, which consistently
doubles the spring constants at the edge nodes, may lead to significant errors in raft

foundation design moments on a case-by-case basis.

(4) Soil stiffness, structural rigidity, and loading distribution are the most important

variables affecting the spring coefficient distribution beneath a foundation.

(5) The thickness of the mat and the clear span between columns have a more critical

impact on the raft's response than the number of superstructure floors.

(6) Assigning variable values of subgrade reaction modulus in different parts of a

foundation, based on the proposed methodology, including Equation (4.1) and scatter
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plots, is a convenient method for considering static soil-structure interaction without

relying on a full finite element model of the soil continuum.

The resultant procedure of this study encompasses the assessment of superstructure
stiffness attributes, the calculation of flexural rigidity for both directions, the
determination of relative rigidity, the detection of loading force positions, the
application of equation series, and the integration of computed values into partial
functions to ascertain spring coefficients at every foundation point. The resultant
values for the x and y directions are further averaged for three-dimensional analysis.
Lastly, the initial ko value is fine-tuned to align the average resultant spring constant
distribution with the subgrade modulus value provided by the geotechnical

consultant.

It is important to note that the soil-foundation-structure relationship cannot be
adequately explained using a single linear method or equation. The interplay of
various variables within the system, including soil parameters, superstructure
dimensions, and loading conditions, contributes to significant variations in the
results. Consequently, it is recognized that the findings of this study alone cannot
provide a definitive solution for assigning constant spring coefficients in raft
foundations. However, it is evident that better results can be achieved compared to
the widely employed methods in current practice. Attaining an exact solution
necessitates using sophisticated software capable of modeling both the soil and
building elements within the same system. Nevertheless, this study contributes to the
current understanding of static soil-structure interaction in raft foundations and is
expected to enhance communication and collaboration between geotechnical and

structural engineers.
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6.3 Recommendations for Future Researches

Based on the findings and limitations of this study, several areas for future research
can be identified further to enhance our understanding of soil-structure interaction in
foundation design. Firstly, it is recommended to incorporate the effects of structural
elements such as columns and shear walls into the analysis. While the current study
focused primarily on the behavior of raft foundations, considering the influence of
vertical and lateral structural components can provide a more comprehensive

understanding of the system's response to loads.

Additionally, the use of three-dimensional foundation models can be explored to
capture the complexities of real-world scenarios. In this study, the spring coefficients
in three-dimensional foundations were determined by averaging the values obtained
from two-dimensional analyses. Conducting dedicated three-dimensional analyses
can provide more accurate and detailed insights into the distribution of spring
constants, particularly in terms of side effects and corner effects. These effects,
which were not extensively addressed in this study, can impact the behavior of the

foundation system and should be considered in future research.

While this study is concentrated on dry sands, it is essential to acknowledge that
further investigations may be conducted to explore the behavior of foundations in
other types of soil, especially those influenced by water levels and varying moisture
conditions. These soil types introduce a complex range of unknowns, making the
analysis and design of foundation systems more challenging. The interaction
between soil and water can lead to dynamic changes in soil properties, introducing
uncertainties that require careful consideration in engineering practices. As such,
future researches may encompass a broader spectrum of soil types to develop a

comprehensive understanding of soil-structure interaction across various scenarios.

Furthermore, investigating the behavior of asymmetrical buildings or foundations is
another valuable area for future research. While all of the cases considered in this

study assumed symmetrical arrangements, it is important to acknowledge that real-

100



world variability encountered in practical applications may deviate from this
assumption. Exploring the response of asymmetrical structures can provide valuable
insights into the influence of geometric irregularities on the foundation's
performance and help develop design guidelines for such situations.

In conclusion, this study has shed light on various aspects of soil-structure interaction
in foundation design. However, further research is needed to address the
recommendations mentioned above. By incorporating the effects of structural
elements, utilizing three-dimensional foundation models, considering side and
corner effects, encompassing a broader range of soil types, and studying
asymmetrical buildings or foundations, future studies can advance our understanding
of foundation behavior and contribute to more accurate and efficient design

practices.
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B. Single Thicker Foundation Calculations for Superstructure Replacement

Calculations for single thicker foundation to replace the five-story four-span

superstructure, is presented below;

Raft Thickness: 1.2 meters, Raft Width: 25 meters
Slab Thickness: 0.3 meters, Number of Floors: 5
Column Width: 0.3 meters, Column Height: 2.5 meters

Total Weight of the five-story structure = 1.2 * 25 * 25 KN/m® + 0.3 * 5 * 25 * 25
KN/m3+0.3 * 25 * 2.5 * 25 KN/m® + (25 + 35 + 35 + 35 + 25) = 2311 kN/m

El Raft =25 MPa * 1/12 * 1 * 1.23= 3.6 * 10% kN.m?

El Slab = 25 Mpa * 1/12 * 1 * 0.3% = 56250 kN.m?

For 5 Slabs = 56250 * 5 = 281250 kN.m?

El Total = 3.6 * 10° kN.m? + 281250 kN.m? = 3.881 * 10° kN.m?

Raft Thick. of Thicker Found. = (3.881 * 105 kN.m?/ 25 Mpa * 12 /1)¥*=1.23m
Weight of the thicker foundation = 1.23 * 25 * 25 kN/m® = 769 kN/m

Total, 2311 kN/m - 769 kKN/m = 1542 kN/m load should be applied at column
positions on thicker foundation.
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Calculations for single thicker foundation to replace the four-story five-span

superstructure, is presented below;

Raft Thickness: 0.6 meters, Raft Width: 20 meters
Slab Thickness: 0.3 meters, Number of Floors: 4
Column Width: 0.3 meters, Column Height: 2.5 meters

Total Weight of the five-story structure = 0.6 * 20 * 25 kN/m® + 0.3 * 4 * 20 * 25
KN/m3+0.3 * 24 * 2.5 * 25 KN/m® + (25 + 50 + 50 + 25) = 1500 KN/m

El Raft =25 MPa * 1/12 * 1 * 0.6%= 4.5 * 10° kN.m?

El Slab = 25 Mpa * 1/12 * 1 * 0.3% = 56250 kN.m?

For 4 Slabs = 56250 * 5 = 225000 kN.m?

El Total = 4.5 * 10° KN.m? + 225000 kN.m? = 6.75 * 10° kN.m?

Raft Thick. of Thicker Found. = (4.5 * 10° kN.m?/ 25 Mpa * 12/ 1)*® = 0.69 m
Weight of the thicker foundation = 0.69 * 20 * 25 kN/m® = 344 KN/m

Total, 1500 kN/m - 344 kKN/m = 1556 kN/m load should be applied at column

positions on thicker foundation.
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D. Spring Constant Distribution Results for 53 Analyses - Including Iteration

(Continuum), Excel Solver Findings, and Proposed Relations
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63"\ 800 AU S o S R ——Proposed Relation
-l\—l/ 2 |3 24 |5 26 27
S
g’ 600 16 17 18 |19 20 21
8
g) 400 6 8 10 |12 14 15
é_ 4% 7 s n 13 47 5
200
-15.0 -10.0 10.0 15.0

-5.0 0.0 5.0
Local Coordinate of Beam (m)
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