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ABSTRACT

IMPROVEMENT OF ELECTROCARDIOGRAPHIC IMAGING
RECONSTRUCTIONS: A PHYSICS-GUIDED AI APPROACH AND AN
EFFICIENT METHOD FOR TRAINING DATA REDUCTION

Ugurlu, Kutay
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Yesim Serinagaoglu Dogrusoz

August 2023, 132 pages

Non-invasive Electrocardiographic imaging (ECGI) holds promise as a tool that em-
ploys distant measurements of body surface potential (BSP) to reconstruct potential
distributions on the heart’s surface. Due to the nature of the human thorax, the cardiac
potentials get smoothed and attenuated. Thus, estimating the epicardial potentials

from the BSPs is an ill-posed problem. Hence, regularization is needed.

Novel regularization techniques require training data to estimate prior distribution
and the common approach is using the whole dataset. The first study in this the-
sis shows that it is possible to achieve comparable performance to that of all dataset
by carefully selecting a small subset of data in the Bayesian Maximum A Posteriori
(MAP) solution of the inverse problem. The study proposes two methods on beat
selection order and training set expansion termination. The point where the condition
number of the covariance stops improving can represent the whole training set’s per-
formance. 26.9% of the dataset resulted in significantly similar metric distributions
(p=0.59). The study showed that condition number provides insight about the suffi-

ciency of the training data.



The second study uses neural networks (NNs) to learn the implicit prior by solv-
ing the problem iteratively with analytical solutions and NN-based denoiser. The
method employs decoupled spatiotemporal NN blocks. This outperforms MAP, re-
sulting in more consistent performance. The localization error of the 17 test beats
in median (IQR) representation was 14.70(16.60) mm for the zero-order-Tikhonov,
17.00(10.54) mm for the MAP using the same data, and 5.80(8.60) mm for the pro-

posed method, resulting in 38.5% improvement.

Keywords: Electrocardiographic imaging, deep learning, neural networks, training

data, Bayesian MAP
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ELEKTROKARDIYOGRAFIK GORUNTULEME GERICATIMLARININ
IYILESTIRILMESI: FiZiK TABANLI YAPAY ZEKA YAKLASIMI VE

EGITIM VERISININ INDIRGENMESI iCIN ETKIN BiR YONTEM

Ugurlu, Kutay
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Bolimii

Tez Yoneticisi: Dog. Dr. Yesim Serinagaoglu Dogrusoz

Agustos 2023 , 132 sayfa

Girisimsiz Elektrokardiyografik goriintiileme (EKGG), viicut yiizey potansiyellerini
(VYP) kullanarak kalp yiizeyindeki potansiyel dagilimlarim1 yeniden olusturan bir
aragtir. Insan toraksmin dogasi geregi, kalp potansiyelleri yumusar ve kiigiiliir. Bu
nedenle, VYPlerden kalp potansiyellerin kestirimi kotii konumlanmais bir problemdir.
Bu nedenle, klinik olarak anlamli kalp sinyalleri olusturmak icin diizenlilestirilme ge-

rekir.

Yeni diizenlilestirme teknikleri, onsel dagilimin kestirimi i¢in egitim verisine ihti-
ya¢ duyar ve yaygin yaklasim veri kiimesinin tamamini kullanmaktir. Bu tezdeki ilk
calisma, Bayes Maksimum A Posteriori (MAP) coziimiinde kiigiik bir veri kiime-
siyle, tiim veri kiimesinin performansiyla karsilastirilabilir performans elde etmenin
miimkiin oldugunu gostermektedir. Calisma, egitim verilerinin nasil secilecegi ve veri
eklemenin durdurulacagi zaman hakkinda yontemler 6nermektedir. Kovaryans matri-

sinin kosul sayisinin iyilesmeyi durdurdugu verinin, tiim egitim setinin performansini

vii



yeterince temsil ettigi gosterilmistir. Veri kiimesinin %26.9u, istatistiksel olarak ben-
zer performans metrik dagilimlarina yol agmistir (p=0.59). Calisma, Gauss dagilimli
MAP baglaminda, onerilen metrigin, egitim verisi icerigi hakkinda bilgi sagladigini

gostermistir.

Ikinci ¢alisma, yapay sinir aglarim (YSA) kullanarak ortiik 6nsel dagilimi 6gren-
meyi amaglar. Bu yontemde, Tikhonov eniyileme ifadesi, analitik ¢oziim ile YSA
temelli giiriiltii azaltma adimlariyla ¢oziiliir. Coziim, uzamsal ve zamansal yonlere
ayrilmis YSA bloklarindan olusur. Bu, MAP ¢oziimiinii geride birakmakta ve perfor-
mans metriklerinin daha yogun dagilmasina yol agmaktadir. Yerseme hatasi, 17 test
verisi ve sifirinct derece Tikhonov ¢6ziimii i¢in ortanca (¢eyrekler aras1 dagilim) sek-
linde, mm cinsinden 14.70 (15.80), ayn1 egitim verisini kullanan MAP ¢6ziimii icin
17.31 (10.54) ve Onerilen ¢oziim icin 10.65 (6.52) olarak hesaplandi ve MAPe kiyasla

atim odagin1 bulmada %38.5 iyilesme sagladi.

Anahtar Kelimeler: Elektrokardiyografik goriintiileme, derin 6grenme, sinir aglari,

egitim verisi, Bayes MAP
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

According to the World Health Organization (WHO), cardiovascular diseases (CVDs)
are the leading cause of mortality [14]. In 2019, the CVDs accounted for the 32% of
all global deaths, adding up to 17.9 millions. Out of 17 million premature deaths, that
are deaths under age of 70, 38% were due to the CVDs. A more recent statistic from
Center for Disease Control and Prevention [15] illustrates that 695,000 people died
in United States from CVDs in 2021. accounting for 20% of all deaths. Moreover, it

shows that one person dies in every 33 seconds from CVDs in US.

Imaging the electrical activity of the heart is a crucial step towards the prognosis,
diagnosis and the treatment. 12-lead electrocardiography is the commonly used tech-
nique in clinics for diagnosis and treatment. It provides 12 measurement derived
from 9 electrodes placed on the surface on the torso. However, it suffers from the at-
tenuation and smoothing, resulting in low sensitivity for the diagnosis of myocardial
infarctions (59%), subendocardial myocardial infarction (55%) and transmural infarc-
tion (63%) [16]. On the other hand, invasive techniques such as catheter electrodes are
used for measurement of the intracardiac electrical activity followed by a surgical op-
eration, such as RF ablation of the arrhythmogenic substrate for the treatment of many
arrhytmias [17]. Although this method provides accurate information, it is a medi-
cal operation that costs more in time and requires the intervention by skilled medical
professionals. Electrocardiographic imaging (ECGI) is a non-invasive imaging tool
that aims to treat such CVDs by solving the inverse problem of electrocardiography

and reconstructing different pattern that shed light onto the electrical behavior of the

1



heart. The aim is to estimate the epicardial potential distribution of the heart from the
measurements taken from torso electrodes and provide relevant information acquired
via post-processing to the physicians before the surgical operation depending on the

type of the disease.

Anterior Posterior

MR or CT Imaging ey ‘_’_%k )\

¥ ‘!/ ~—
—_— =
v Segmentation
Forward
y l—Measurements, Model — A
Numerical
Modelling
Inverse
Problem
Solution
Algorithm

Inverse
Solution

Figure 1.1: The complete workflow of ECGI.

Figure 1.1 summarizes the workflow in ECGI. The electrical measurements on the
torso are recorded via a vest consisting of multiple body surface electrodes. Then, the
thorax is imaged utilizing modalities such as magnetic resonance imaging or com-
puted tomography. From these medical images, the relative position of the heart and
measurement locations are segmented. Following that, the numerical forward model
is computed to express the relationship between the sources and measurements. Fi-
nally, measurements and the forward model are incorporated to estimate the epicardial
potential distribution via the solution algorithm of choice. Any further processing is
dependent on the specific task why the imaging is performed, hence is not demon-

strated in the figure.

There have been various approaches proposed for the solution of the inverse problem
of ECG. These methods include deterministic, statistical estimation and learning-
based techniques. Deterministic techniques mainly exploit the properties of the for-

ward matrix and do not usually require any a priori knowledge, whereas the statistical

2



estimation methods models quantities as realizations drawn from probability density
functions and utilize the a priori knowledge about what is to be reconstructed. Meth-
ods that utilize deep learning recently emerged in the field of ECGI to provide better
accuracy by discovering more complex non-linear relationships. Most of these tech-
niques solve the problem by using an end-to-end approach and the proposed models
learn both the measurement formation process and the prior space in which cardiac
potentials lie. Hence, numerous training data and relatively large models are required
for model to learn the both tasks. To overcome this, simulated training sets are used

to train the models. Then, the models are evaluated on the realistic measured data.

1.2 Contributions and Novelties

The solution methods that require a priori knowledge, or training data as its practical
counterpart, are widely utilized in ECGI. However, none of the studies has proposed
systematic approaches for the performance assessment of the training data prior to
reconstruction. Furthermore, the hybrid techniques that combine the system physics
and machine learning methods are underinvestigated in the field of ECGI. To tackle

these problems, this thesis has the following contributions:

e Evidence and covariance condition number as a priori metrics to assess the
training data generalization are evaluated in the context of Bayesian MAP based

statistical estimation with Gaussian priors.

e The ECGI inverse problem is formulated with Half Quadratic Splitting method
and the solution iterations are unrolled to blocks that correspond to solution that
require system physics and learning. For the utilization of rectangular kernels
in the irregular grids of heart and torso geometries, a method to minimize the

neighborhood distance in Euclidean grid is proposed.

1.3 The Outline of the Thesis

The thesis starts with the introduction of both physical and mathematical background

on the forward and inverse problem of electrocardiography. Furthermore, the problem



statement is given. Following that, the mutual experimental setup for the developed
methods are explained beforehand to make the information flow clearer for the reader.
The studies are collected under 2 chapters. In Chapter 4, an efficient data reduction
technique is proposed for forming a training data from which the prior model pa-
rameters of the Bayesian MAP formulated inverse problem with Gaussian priors are
estimated. In Chapter 5, a physics-based Al-assisted solution in Euclidean grids is
proposed for the inverse problem of electrocardiography. The findings and the re-

garding discussion of these studies are presented in their own respective chapters.



CHAPTER 2

LITERATURE AND BACKGROUND

This chapter introduces the background on the electrophysiology and anatomy of the
heart. The motion patterns of the different regions of the heart are explained with the
corresponding electrical activity that is observed in the electrocardiogram waveform.
Furthermore, the representation of the heart voltage data is presented, followed by the

mathematical foundation of the inverse problem of ECG.

2.1 Cardiac Anatomy

To solve the inverse problem of ECGI, the basic anatomy and the related working
mechanisms of the heart should be understood first. The heart, one of the most vital
organs in the human body, is responsible for circulating blood and supplying oxygen
and nutrients to all tissues. Understanding the anatomy of the heart is essential for
interpreting electrocardiograms (ECGs), which provide valuable insights into cardiac

health and help diagnose various heart conditions.

The mammal heart is enclosed in pericardium, a fibroserous sac as in Figure 2.1.
The epicardium, also known as visceral pericardium, exists beneath it and covers the
surface of the heart. The myocardium is the heart muscle located in the middle layer
of the heart walls that is responsible for the contractile function of the pump. The
endocardium is the innermost wall of the heart . The Purkinje fibers, which are the
structures responsible from propagation the electrical activity to the inner parts of
the ventricles, are located at the subendocardium, which forms the boundary between

myocardium and endocardium. [18-21].
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Figure 2.1: Layers of the heart wall (Adapted from [1]).

The heart consists of four chambers: two atria and two ventricles (Figure 2.2). The
atria, also known as the upper chambers, are responsible for receiving blood. The
right atrium receives deoxygenated blood from the body through the superior and
inferior vena cava, while the left atrium receives oxygenated blood from the lungs via

the pulmonary veins. When the atria contract, the blood is pumped into the ventricles.

Located below the atria, the ventricles are the lower chambers of the heart and work as
the main pumping chambers. The right ventricle receives deoxygenated blood from
the right atrium and pumps it through the pulmonary artery to the lungs for blood to
be oxygenated. The left ventricle, on the other hand, receives oxygenated blood from
the left atrium and propels it into the systemic circulation through the aorta, which is
the largest artery in the body. The ventricles have thicker muscular walls than the atria

because they need to generate sufficient force to propel blood throughout the body.

To ensure the restricted one-way flow of the blood in the circulation, there are valves
strategically positioned between the chambers and major blood vessels. The atri-
oventricular (AV) valves, including the tricuspid valve on the right side and the mitral
valve on the left side, separate the atria from the ventricles. The opening of these
valves during the relaxation (diastole) enables blood flow from atria into the ventri-
cles. The closing during the ventricular contraction (systole) of them, on the other

hand, prevents blood from flowing backward into the atria.
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Figure 2.2: Human heart cross section [2].

The semilunar valves (the pulmonary valve and the aortic valve) are positioned at the
exits of the ventricles. The pulmonary valve guards the entrance to the pulmonary
artery, ensuring the one-way blood flow from the right ventricle to the lungs, whereas
the aortic valve prevents blood flowing to the body from returning to the left ventricle

by blocking the entrance to the aorta and exit of the left ventricle.

The major blood vessels associated with the heart include the superior and inferior
vena cava, which deliver deoxygenated blood to the right atrium from the upper and
lower parts of the body, respectively. The pulmonary artery carries deoxygenated
blood from the right ventricle to the lungs for oxygenation, while the pulmonary
veins bring oxygenated blood from the lungs to the left atrium. Finally, the aorta,
the largest artery in the body, receives oxygenated blood from the left ventricle and

distributes it to rest of the body, including all the tissues and organs.

2.2 Cardiac Electrophysiology

The harmony of the periodic pumping motion of the heart is explained in Section 2.1.
This motion is driven by the proper conduction of the activation potentials on the

cardiac surface. Therefore, it is crucial to comprehend the electrophysiology of the
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heart.

The cardiac cells are among the electrically active cells in the human body that can
generate electrical response if they experience proper stimulus. To characterize this
electrical activity, the transmembrane potentials can be defined with respect to the

extracellular potentials.

Vmembrane - Vintracel]ular - Vextrace]lular (21)

The brief changes in transmembrane potentials are called action potentials, and they
are generated by a mechanism modelled by nonlinear differential equations of ion
channel concentrations and ion currents resulting from the concentration difference.
Since, the voltage change from the resting state (A1) is the main driving force for ion
movement across the membrane, the channel current is modelled by its conductance
following Ohm’s Law (I = AV/R = AVg). In 1952, Hodgkin and Huxley pro-
posed a model to explain the action potential generation in a squid’s giant nerve [22].
In 1977, Beeler and Reuter proposed the first model that explains the mammalian
ventricle activity [23]. In 1991, Luo and Rudy, improved the accuracy of the Beeler-
Reuter model by increasing the number of ionic current variables [24]. With the
addition of the calcium ion channels, the model they proposed later in 1994, involved
modelling of 15 ionic currents, and it was later improved by Faber and Rudy [25,26].
The Eikonal model [27] is one of the simplest models used [27,28]. The model only
explains the depolarization phase of the wavefront by relating the local speed, con-
ductivity ratio between longitudinal and transverse directions. FitzHugh and Nagumo
modeled excitation and recovery variables using a cubic polynomial [29]. In 1996,
Aliev and Panfilov developed a model based on FitzHugh-Nagumo model that ex-

plains the cardiac action potentials with two variables [30].

Figure 2.3 shows the phases of the action potentials in electrically active cardiac cells,
namely atrial and ventricular myocytes. The inward currents and sodium-calcium
exchanger (NCX)' are illustrated in yellow boxes, whereas the outward currents are
illustrated in gray boxes. Most of the contributions coming from the currents depicted

in the gray boxes are neglected in most of the action potential generation models. The

1 This source is electrogenic and may create inward and outward current [3].
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Figure 2.3: Cardiac Action Potential [3].

phases can be summarized as follows:

The generation mechanism of action potentials explains the single-cell level electri-
cal activity. To explain the cardiac electrophysiology in a physiological level, the

propagation of action potentials on the cardiac surface should be examined. The

Phase 0 (Upstroke): In this rapid depolarization phase, gn,+ increases and gg+

conductance decreases, resulting in an inflow of Na* ions.

Phase 1 (Early repolarization): In the initial or early repolarization phase, the

trend reverses and there is a decrease in the gn,+ and increase in the gg-.

Phase 2 (Plateau) : Unlike the most of the electrically active cells in the human
body, there is a plateau phase in the cardiac cell action potential cycle. This is

due to the increase in the gc,+ during this phase.

Phase 3 (Final repolarization): In the repolarization phase, gc,+ decreases

and gg+ increases, causing the outflow of K* ions.

Phase 4 (Resting): Due to the increase in gg+ along with the decrease in gc,++

and gn,+, the cell reaches to resting potential.
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generic EGM waveform measured on torso is a superposition of propagated, thus

time-delayed, action potentials as in Figure 2.4.
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Figure 2.4: Transmembrane potentials for different types of heart cells and the corre-

sponding ECG signal for one cycle [4].

The electrical signal propagation on the heart surface can be explained by these steps:

e Sinoatrial (SA) or sinus node consists of the pacemaker cells that generate the
pulses which initiate the heart beat cycles. These cells differentiate from other
cardiac cells in their automaticity and the ability to generate rhythmic action

potentials.

e From the SA node, the action potentials spread quickly through specialized
conducting pathways known as internodal pathways. These pathways help dis-
tribute the electrical signal throughout the atria, leading to their contraction.
This phase is the main component that contributes to the P wave segment of the

electrogram (EGM) wave pattern.

e When the signals reach to the Atrioventricular (AV) node, it briefly delays the

conduction of the action potential to ventricles to allow for the completion of

10



atrial contraction before ventricular contraction begins.

After the AV node, the electrical waves propagates through left and right ventri-

cles via Bundle of His and the left and right extensions of it into the ventricles.

Further into the ventricles, the bundles branch further into smaller networks of

Purkinje fibers to conduct the propagation to the muscle cells.

As the waves reach to the ventricular cells, their depolarization is triggered,
resulting in a contraction. The simultaneous contraction of ventricles and the

relaxation of the atria results in the QRS segment of the ECG waveform.

The prolonged repolarization of ventricular myocytes results in ventricular re-

laxation and the formation of the T-wave in the EGM waveform.

2.3 Measuring the Electrical Activity of the Heart

In this section, the methods of measuring the electrical activity of the heart are intro-

duced.

2.3.1 Standard 12-Lead Electrocardiography

12-Lead ECG is a widely used technique that is adopted by the clinicians. It is non-
invasive and provides output electrograms with which the clinicians are familiar. The
12 measurements are actually derived from 9 electrodes, as it is observed in Fig-

ure 2.5.

However, the limitations of this approach are undisputed. The events happening in
the anterior region of the heart can be detected due to the proximity of the electrodes
on the chest wall, but the events happening in the other regions, for example ST
segment deflection during ischemia, may be underestimated if the activity is weak or
nonexistent on the sampled regions of the torso. There is also a probability that the
simultaneously superposed events may partially cancel each other and the ECG may
not sufficiently represent the extent of ongoing events [31]. Furthermore, the ECG

is not always the sole indicator of the disease. For instance, only half of the patients
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Figure 2.5: 12-lead electrocardiography lead placement [5].

with acute myocardial infraction present with ST segment elevation [32]. Yanowitz
et al. showed that the areas of maximal ST change were in the torso areas that are
not sufficiently sampled by conventional 12-Lead ECG and they concluded that using
BSPM provided more quantitative and qualitative assessment for the characterizing

the ischemic response to the exercise [33].

2.3.2 Body Surface Potential Mapping

BSPM is a non-invasive and a real-time method that samples the electrical activity
more extensively on the thoracic surface than the 12-Lead ECG. There are numerous
reviews that are focused on the historical utilization of the BSP mapping systems
[34-36]. It provides wider coverage using higher number of densely located surface

electrodes as in Figure 2.6 from [6].

Early experiments validated the usage of them on dogs [37,38]. Later studies con-
firmed the usage of the BSPM method on humans. McMechan et al. detected my-

ocardial infarctions using a multiple logistic regression technique using recording
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Figure 2.6: Body surface potential mapping vest [6] (A) Anterior and posterior view
of the vest (B) Surface distribution of the leads (Darker dots represent standard V1-
V6 derivations) (C) Anterior and posterior view of the selected subset of the elec-
trodes (D) Surface distribution of the selected subset of the electrodes. Note that
some BSPM leads are discarded for recording due to the relevancy of the information

they provide in this study. This is not necessarily the case for every recording.

from 90 healthy subjects and 69 patients [39]. Cai et al. augmented the BSPM with
EEG amplifiers and validated the design on one subject [40].

The discretization of the voltage distribution on the surface, i.e., determining the loca-
tions of the measurement electrodes, is another important topic in the forward prob-
lem context. Barr ef al. were among the earliest researchers that worked on the
problem [41]. They proposed a 3-step algorithm to quantify the contribution of the

leads:

1. Using principal component analysis on the data from 45 subjects to find the

coefficients relating the mathematical generators to surface points.

2. Taking data from a subset of points and representing it using these mathematical

generators.
3. Selecting the surface points that should be in the subset.
The last step in the outline of the procedure was considering the extensions to the new
subjects, in other words, generalization. They found that for consistent accuracy, a
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minimum of 24 properly placed leads are required. At this accuracy, the difference
between the generated and measured potentials are found to be comparable to the
differences in the successive measurements from the same subject. Later, Lux et al.
confirmed these findings and concluded that 30 leads are required to present the maps
to an accuracy of 32 uV [42]. Recently, Parreira et al. conducted a study to illustrate
the number of required leads to assess the accuracy of ECGI, rather than the lead
configuration [43]. They found that the reduction of the number of the leads was
associated with the lower agreement rate in the detection of premature ventricular
contractions (PVC) and premature atrial contractions (PAC). It was also resulted in

reduction of spatial resolution.

Once the measurements are acquired, there are three primary methods of processing

and interpreting the BSPMs [44]:

1. Signal-based approaches: This approach solely exploits the time and fre-
quency domain characteristics of the ECG signals, including deviations in the
ST-segment or peak values of QRS and T wave as well as the morphological
features such as P, QRS, or T-wave shapes, duration and symmetry. There is
no explicit attention given to the spatial correlation coming from the electrode

placements.

2. Mapping approaches: The body surface potential mappings that show the
voltage values in isopotential-contours-seperated colored regions are plotted
using scientific visualization techniques. In other words, the voltage distribu-
tion is plotted on the epicardial surface, where the intensities are visualized with
colors. The lines having the same potential are detected and the region between
them is visualized with the same color. The plotted values can also be specific
amplitudes and features derived from raw ECG signal such as integral values
taken in duration like QRS complex, ST segment, or T wave. In addition, it is
possible to observe how these maps of the selected feature evolve through time
interactively. However, clinicians have usually training and expertise in ana-
lyzing the classical 12 Lead electrocardiography and there is very little training

available on how to interpret the information that BSPM yields.
3. Reconstruction approaches: Similar to X-ray CT, which takes multiple mea-
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surements to reconstruct the distribution of X-ray absorption coefficients within
an image, ECGI takes the raw BSPM measurements, and combines them with
the knowledge of torso anatomy, electrode locations and tissue conductivity
within the thorax to reconstruct the bioelectrical source distribution in the heart.
The reconstruction methods are based on the physical laws such as Laplace’s

and Poisson’s equation [45,46].

2.3.3 Invasive Epicardial Mapping

There are invasive tools that aim to measure the electrical activity by direct contact
to the heart surface and perform the ablation, the process of intentionally creating
lesions or scars to deteriorate the conductivity map, such as CARTO mapping [47].
These systems require medical procedures to record the electrical activity by directly
contacting the heart tissue. On the other hand, they are much more reliable than the

reconstruction techniques in terms of measurement accuracy.
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Figure 2.7: ECGI vs CARTO: Both the spatial distributions (left) and EGMs on the
right show that the invasive mapping are able to localize the origin of the propagation

and capture the sharp transitions better than ECGI, as expected [7].
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ECGI efforts emerged to provide better imaging resolution than the current clinically
available non-invasive techniques without requiring any medical intervention to the
body, catching a trade-off between the invasive mapping approaches and the 12-Lead

ECG.

2.4 Equivalent Cardiac Source Representations

The source vector explained in the previous section cannot be determined uniquely if
the active region is not accessible, since the electric field caused by any source can
be replaced by a single or double layer on a closed surface that entirely encloses the
sources [48]. Hence, most of the studies utilized an equivalent cardiac generator in
the problem formulation. Early studies used multipole [49] and multiple dipole [50]
as equivalent point sources. Multipole approach considers multiple multipole sources
at a fixed location, whereas the multiple dipole approach provides location flexibility

for the dipoles.

Several studies attempted to reconstruct surface voltage, namely epicardial potentials.
The most significant advantage of this approach is that, although the inverted epicar-
dial potential distribution is an ’equivalent” source, this distribution will be the same
as the actual (in situ) distribution on the epicardial surface, since this formulation
guarantees mathematically unique solution [48]. According to [51], computing the

epicardial potentials as the form of solution has two advantages:

e No source specification is required. This prevents restrictive assumptions on
the nature of the heart generator from affecting the proceeding of the theoretical
development. Hence, only variables with physiological significance end up in

the formulation.

e One of the most significant inhomogeneities, the intracavity blood mass, is im-
plicitly included in the formulation. As a result, the homogenous torso assump-

tion is not as restrictive as in other methods.

In this thesis, due to the nature of the data being recorded from the surface of the heart

(epicardium), BEM is used to obtain the forward model and the sources are modelled

16



as epicardial potential sources using the approach introduced in [52]. The forward
problem formulation with the selected equivalent source representation is explained

in the next section.

2.5 Forward Problem of ECG

The forward problem of ECG is computing the potential distribution on the thorax,
or the body surface potential mapping (BSPM) given the distribution of the bioelec-
trical sources on the cardiac surface. The procedure can be conducted as 2 steps of

computation:

e Finding the forward model (forward operator) that relates the voltage distribu-

tion on the measurement surface to the distribution of the bioelectrical sources

e Applying the found operator on the given source distribution

The voltage inducing mechanism of sources on the measurement surface is the elec-
tric field and it is highly affected by the conductivity of the media in between [45].
To increase the accuracy of the forward problem, the media that was found to be most
useful are lungs, intraventricular cavities and muscles [53]. In [54], the blood and the
anisotropic skeletal muscles are found to be the most significant inhomogeneity, in
terms of accuracy of producing closer potential amplitudes to the ground-truth data.
Some recent studies have also shown the importance of liver in inhomogeneity mod-
elling of the torso [55,56]. When the inhomogeneous media is expressed in volumes
of different conductivities, the Maxwell’s equations relating the voltages are simpli-
fied under the assumptions that the propagation and inductive effects are negligible in
the volume conductor of human body [57]. The region {2 bounded by closed surfaces
I'r and 'y, which are respectively torso and heart surfaces, is source-free, hence

Laplace’s equation is valid [31].

V-oVe(r) =0, Vr € Q (2.2)

where r represents the three-dimensional spatial coordinates, o is the conductivity
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of the medium 2 and @ is the volume voltage distribution. Eqn. (2.2) is solved by

introducing the Neumann and Dirichlet boundary conditions:

¢ =¢u, Vrel'y (2.3)
(0V$) -n =0, Vr € Ty 2.4)

where ¢y is the source voltage distribution on the heart, n is the outward oriented
surface normal [58]. To obtain an expression that relate the potentials across these
two surfaces, the geometry modelling followed by a numerical solution is required.
Eqn. (2.3) enforces the voltage distribution on epicardial surface whereas Eqn. (2.4)

corresponds to source-free body surface constraint.

2.5.1 Geometric Modelling

To obtain the geometric models of the domain where Eqn. (2.2) is solved, the heart
and torso volumes are required, along with their conductivities. To generate individ-
ual forward models, the common approach is to use segmentation on the magnetic
resonance imaging (MRI) and computerized tomography (CT) images [31]. Some
recent techniques also utilizes CT-MRI image fusion for segmentation [59, 60]. The
need for generating the forward model in every inference case is considered to be one
of the major drawbacks of the ECGI, due to the increased time needed for the com-
plete imaging procedure. The conductivity of the tissues are usually determined ex-
perimentally, although it is also possible by electrical impedance tomography [61,62]

or electrical impedance spectrography measurements [63, 64].

2.5.2 Numerical Solution

The problem stated in Eqn. (2.2) can be solved for any arbitrary shaped volume by
numerical computing, i.e., discretization of the problem [65]. Following the segmen-
tation, the volumes are discretized using either one of surface or volume techniques.
In surface methods, only the interfaces of the regions are discretized and represented

in the numerical model. In volume methods, the whole torso model is represented
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numerically [45]. There are different forward modelling techniques that allows the
reconstruction of the discrete forward problem including Boundary Element Method
(BEM), Finite Element Method (FEM), Finite Difference Method (FDM), Finite Vol-
ume Method (FVM) and Method of Fundamental Solutions (MFES) [66]. In addition,

there are recent approaches that utilize and benefit a combination of them [67].

FDM models the relationship between source and measurements as resistive ele-
ments. FEM, on the other hand, utilizes tetrahedral or hexahedral elements. The
anisotropy, or the varying conductivity in individual regions, can only be incorpo-
rated by the utilization of FEM, since BEM only approximates the potentials on the
boundary surfaces of different conductivity regions [45, 68]. Seger et al. showed that
the FEM matrices needed less memory than BEM matrices, although FEM recon-
structs higher number of unknowns, due to the sparsity of forward matrix generated
by FEM. For the same discretization level at the boundary surfaces, it was shown
that FEM resulted in higher errors [68]. The BEM is considered to be more suitable
and accurate for linear inverse problems with rapidly changing variables, whereas the
FEM is more established particularly for non-linear complex problems [69]. MFS
is a meshless method that estimates the solution as the superposition coefficients of

fundamental solution to Eqn. (2.2).

For the FEM and the BEM, solution vector and measurement vector represents the
source coefficients and BSP recordings respectively. For the MFS, solution vector is
a vector of weighting coefficients that allows the reconstruction of the source distribu-
tion and measurement vector represents the concatenation of BSPs and a zero vector
that represents the non-flux boundary condition [67]. In this thesis, BEM is used to

generate the forward model due to the reasons mentioned above.

The computation of forward problem has been described in this section. To perform
the imaging task, the inverse problem of ECG should be solved to obtain the electrical

potential distribution non-invasively.
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2.6 Inverse Problem of ECG

The inverse problem of ECG is estimating or reconstructing the source distribution
of the heart using a set of remote measurements recorded from the body surface.
With the linear relationship between heart and body potentials, the problem can be

represented in a matrix-vector equation form after discretization [45].

2.6.1 Data representation

yk:Axk—i—nk,k:l,Q,S,...,T (25)

Here, y; represents the torso measurements for M torso electrodes at the time in-
stance k, Ap/xn is the BEM-generated forward model and x; is the epicardial dis-
tribution or cardiac voltage at N discretized source location at the time instance k.
Considering that the beats are represented as a sequence of vectors that correspond
to instantaneous voltages on the heart nodes, they can also be represented as a matrix

whose columns stack the different time instances:

Y=AX+N (2.6)

where Y = [ylyg R A .yT], X = [x1x2 .. .xk...xT] and T is the number of

time instances the beat is sampled during recording.

2.6.2 Ill-posed Nature of the Inverse Problem of ECG

It has been known that the potentials recorded on the body surface are attenuated
and smoothed due to the volume conductor properties of the body. As a result, the
measurements carry less spatio-temporally detailed information than the correspond-
ing EGMs. [70]. This implies that, regardless of the number of the measurements
and sources, multiple EGM distributions can result in the same measurement, due to
low-pass behavior of the human thorax. This causes inverse ECG problem to have an
ill-posed nature [70-73]. In other words, even a small perturbation in the measure-

ments can lead to unbounded errors in the estimated solution [45].
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Figure 2.8: Epicardial potential matrix X: The rows represent the EGMs vs time
and the columns represent the spatial distribution of epicardial signals for a single
time instance (The edge colors are interpolated in the spatial distribution for better

visualization.).

The forward models condition number is known to be a measure of the problem’s
ill-posedness [74]. The closer the condition number of the forward model is to 1,
the more well-conditioned the matrix is, hence the more well-posed the problem is.
It is crucial to point out that, apart from the nature of the problem, there are some
error sources contributing to the ill-posedness of the problem, including geometric
segmentation and registration error [71, 75], signal noise, conductivity uncertainty

and choice of source model [75].
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2.7 Solution Approaches to the Inverse Problem of ECGI

Several deterministic [76-78] and stochastic [79] estimation frameworks are avail-
able for the solution of the inverse problem with regularization. Deterministic meth-
ods utilize an optimization approach mostly exploiting the matrix properties, whereas
statistical estimation techniques impose statistical constraints on the solution. The de-
terministic solution methods include truncated singular value decomposition (TSVD),
total truncated least squares (TTLS), the least-squares QR factorization method and
GMRes [72, 80—-83]. In this section, the most common approaches to solving the
inverse problem are covered under two main categories: physics-based traditional

methods and learning-based methods.

2.7.1 Physics-based Traditional Methods

Due to the ill-posed nature of the problem, using regular linear-algebra techniques
such as minimum-norm or least-squares solution result in poor estimations of the
solution due to noise amplification. Hence, confining the solution to space of the

solution, i.e. regularization, is needed to estimate meaningful solutions.

2.7.1.1 Regularization

The linear problem in Eqn. (2.5) is usually an under-determined problem where the
number of measurements electrodes are lower than the number of source locations.
Hence, the problem does not possess a unique solution. In the context of an ill-posed
problem, minimizing the error between the measurements and the forward-model-
operated data usually results in amplification of the noise and yields poor results.
Hence, to overcome the ill-posedness of the problem, one should enforce extra con-
straints on the solution in addition to the data-model mismatch. One solution to both
uniqueness and ill-posedness problem is regularization [67]. The general optimiza-

tion expression can be stated as:
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X = arg min J(x) 2.7)

X

where J is a vector-valued cost function that outputs the total penalty of the solution.

In the inverse problem setting, the cost function J is generally composed of two parts

as:

Jx)= L(y,x)+ _A R(x) (2.8)
Data-fidelity ~ Regularization geoyjarization
term parameter torm

The data-fidelity term measures how much the solution matches the measurements,
whereas the regularization term enforces a condition by adding a cost to the min-
imization expression utilizing a penalization. The regularization parameter A is a
trade-off parameter that provides a balance between the measurement noise and the

prior knowledge imposed on the solution.

2.7.1.2 Tikhonov Regularization

There are many regularization techniques proposed for the inverse problem of ECGI.
Tikhonov regularization [84] is a technique that is widely used in the regularization of
the inverse problem of ECGI [75,77,85,86]. The solution to the Tikhonov regularized

inverse problem is in the following form:

X Tikhonov = arg min ||y — AXHS + A ||RXH; (2.9)

where the regularization term is discretized and given in the matrix form. The solution
to the regarding expression is found by optimization and is expressed in the closed

form as follows:

Krikhonov = (ATA + ARTR) ATy (2.10)

The regularization matrix R determines the order of the regularization:
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e R =1 corresponds to the zero-order Tikhonov solution where the solution is

confined to have bounded energy.

e R = D, where D is a spatial gradient operatir matrix, corresponds to the first-
order Tikhonov solution. The solution to enforced to have smoother surface

gradients.

e R = L, where L is the Laplacian matrix that penalizes surface smoothness us-
ing second order derivative approximations between the center node and its

first-order neighbors [87].

It is important to note that the regularization part can also be composed of multiple

terms.

2.7.1.3 Truncated Singular Value Decomposition

One of the deterministic approaches to regularize the solution is to eliminate the con-
tributions of the smaller singular values to the solution. In singular value decomposi-
tion, the matrix is decomposed into its left and right eigenvectors and singular values

as follows:

A =UxVH (2.11)

where unitary matrix U ;. s stacks the left singular vectors of A ;. in its columns,
Y v« 1s usually a rectangular matrix that stores the singular values in the diagonal
entries and unitary matrix V y«y stores the right singular vectors. In the case of
matrix A being real, the hermitian operation can be switched to transpose. In this

case, the solution to Eqn. (2.5) can be expressed as:

y = Ax (2.12)
y =UXVTx (2.13)
x = VI 1UTy (2.14)
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where subscript £ is dropped for convenience. Equations (2.13) and (2.14) can be

decomposed into a summation of vectors.

y= i o v, x (2.15)
i=1
x = i Vit y (2.16)
- i
2.17)

where N is the number of the singular values or rank of the matrix A. The smaller
singular values have smaller contributions to the y in Eqn. (2.15). When computing
in the inverse, conversely, the contribution of the smaller singular values is reversed
by the inversion hence making the contribution of the signal to measurement insignif-
icant with respect to the noise in the measurement. TSVD is a method to inspect the
singular value distribution of the matrix A as in Figure 3.3 and determine a cut-off

index for the singular values to be used in the reconstruction.

The zero-order Tikhonov has a corresponding SVD interpretation. Eqn. (2.9) with

R =1 can be rewritten as follows:

Ix) = [ A x— [3] 13 (2.18)

J(x) = ||Ax - 3|3 (2.19)

When the singular value decomposition of the system matrix is utilized, we can

achieve a diagonal system matrix as follows:
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Ax =y (2.20)

A=UxV" (2.21)
Uz Virx =y (2.22)
»x =UTy (2.23)
\f-/
y
Yx=3 (2.24)

where y represents the noisy measurements. When Eqn. (2.24) is inserted into Eqn. (2.10)

with R = I, one can obtain the spectral filtered version of the Tikhonov solution:

#SVs
_ Z i T
X = o~ mui YVi (225)

where o0;’s are in the descending order, u; and v; are the left and right singular vectors,

respectively.

Besides deterministic techniques, the approaches that formulate the problem in stochas-
tic framework are also available. Statistical inversion methods represent the solutions
in terms of probability distributions, from which either a single solution, or samples
from the posterior distribution can be obtained [88]. It is also possible with statistical
methods to assess estimation error in terms of confidence intervals [89,90] and error
bounds [91-93]. Bayesian Maximum A Posteriori (MAP) estimation and Kalman
filtering are among the most popular methods used to estimate the solution in the

statistical framework.

2.7.1.4 Bayesian Maximum A Posteriori (MAP) estimation

In this approach, both y and x are assumed to be random with a joint probability

density function (pdf), p(y, x). Then, the solution is chosen to maximize the posterior
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probability density function (pdf) of the epicardial potentials [94]:

X = argmax p(x\y)

— argmax P(y\x)p(x)

x [ p(y\x)p(x)dx (2.26)

One of the most common assumptions for the prior distribution in the MAP estimation
1s to use Gaussian distribution. Furthermore, noise is also assumed to have 1.i.d.
Gaussian distribution. Under these assumptions, the Bayesian MAP solution can be

expressed in closed form as:
fmap = (ATC'A + CY) T (ATC Yy 4 CL'%) (2.27)

With the Gaussian assumption, the Bayesian MAP solution also corresponds to the

minimum mean square error (MMSE) estimate:

% =%+ CLAT (ACLAT +C,) (y — AX) (2.28)

The detailed derivation of the solution can be found in Section 7.1. This type of
statistical formulation also allows the estimation of error bounds via error bounds and

error covariance [89,92]:

C.=(ATC;'A+CY) (2.29)

Note that this is not an a posteriori error metric that measures the error between the
reconstruction and the ground truth, instead it is a statistical average of the recon-

struction error [90].

Given the i.i.d. Gaussianity assumption for the noise and prior models along with
a zero-mean prior, the solution expression Eqn. (4.5) is equivalent to zero-order
Tikhonov solution with regularization parameter equal to inverse SNR [90], which

is commonly utilized in ECGI [75,77, 85, 86].

Eqn. (4.5) requires the covariance matrix Cy and the mean vector X to be defined
statistically from the prior information about the distribution of epicardial poten-
tials. The common way to do so is to infer these parameters utilizing the realiza-

tions coming from the prior distribution, or in the implementation scenario, a training
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dataset which composes of previously measured or recorded ground truth oracles.
The dataset formation techniques for the estimation of prior model parameters are

explained in Chapter 3.

2.7.1.5 Kalman Filter

In Kalman filtering, solutions are represented as state-space formulation and spatio-
temporal relations are implicitly considered by the utilization of non-linear state tran-
sitions [95-97]. The major drawback of the Kalman filter approach is to estimate
the state transition matrix [98]. The formulation of the problem in Kalman filtering

setting is as follows:

Vi = Axy + vy (2.30)
Xk+1 = FXk + Wi (231)
(2.32)

where A is the forward matrix in Eqn. (2.5), F is the state transition matrix, vy is the

measurement noise and wy, is the process noise at time instance k.

The solution algorithm to the problem formulated this way is as follows:

xp = Fxp_4 (2.33)
P, =FP, F' +C, (2.34)
K; = P,AT (AP, AT + C,) ™! (2.35)
x = xp + Ki(yr — Axy) (2.36)
P/ = (I-K,A)P; (2.37)

where x;, is the state vector , P}, is the covariance matrix of the state vector at time
k, F is the state transition matrix, A is the forward transfer matrix, K, is the Kalman

gain, and QQ and R are the covariance matrices of process and measurement noises at
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time k. The superscript ™ represents the updated variable at time k. The equations cor-
respond to state time update, state covariance time update, Kalman gain calculation,

state measurement update and state measurement covariance update respectively.

2.7.1.6 ECGI Applications of Traditional Methods

The deterministic and statistical estimation methods are extensively used to solve
the inverse problem of ECGI. Tikhonov regularization has been employed in many
studies [75,77,85,86]. Some studies employed Tikhonov regularization on both spa-
tial and temporal dimension (spatio-temporal) and multiple spatial constraints on the
problem Eqn. (2.6), where the temporal prior is based on the discrete derivative oper-
ators acted on rows of X, or as unit sample responses of high-pass filters [99] and the
spatial regularizations were zero and second order Tikhonov. In this study they also
proposed the L-surface method, a 2D extension of the L-curve method, to determine
the pair of regularization parameters. They found that incorporation of the temporal
prior produced more accurate results when compared to the post-processing filtering
results, i.e., confining solution to a smoother temporal space was a better idea than
imposing spatial constraints and applying smoothing filters after the reconstruction.
A later approach [100], utilized the weighted autocovariance matrix of columns of
lexicographically flattened X as what they named a proto-prior and computed the
solutions from the decomposition of this matrix, that are calculated with the measure-
ment, forward model and modelled noise. It is also possible to estimate the solution
on a beat by beat basis by using different regularizations and use averaging on the
computed solutions [101]. There have been attemps to improve the statistical solu-
tions by extracting the features of the space where epicardial potentials lie using a
dataset. Cluitmans et al. formed a basis for the reconstruction space and conduct
the calculation in the transformed domain [102]. The projection-on-realistic-basis
approach ended up improving the correlation coefficients of the solution by approxi-
mately 2.5% on the solution computed by Tikhonov and GMRes, and approximately
8% on the solution computed by TSVD method. Milanic et al. compared the regular-
ization techniques under three main categories: Tikhonov (zero,first and second or-
der), iterative (zero,first,second order conjugate gradient and SVD) and non-quadratic

techniques (first and second order total variation). They found that there is little dif-
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ference among their performance on average over all source models they used.

One of the most used statistical estimation techniques in ECGI with direct inver-
sion is Bayesian MAP estimation. Serinagaoglu et al. combined the body surface
potentials and the measurements taken from coronary veins to augment the inverse
problem and computed the reliability of the solution by error covariance in Bayesian
MAP estimation. They found that the addition of direct measurements did not signif-
icantly improve the statistical error expectation [89]. In a later study, they again used
the sparse epicardial potentials to augment the inverse problem and computed solu-
tions using 4 different inverse problem techniques: MAP and Tikhonov regularization
with and without the sparse measurements. They concluded that the incorporation of
sparse epicardial potentials resulted in much smaller predicted error standard devia-
tion when compared to solutions that did not use the sparse measurements. They also
found out that Tikhonov results produced smooth spatial results and did not illustrate

the wave shape in detail [90].

Kalman filter is another statistical estimation approach to estimate the epicardial po-
tentials. In fact, it is one of the maain methods to incorporate the temporal relationship
between the epicardial potentials at consecutive time instances by utilization of state
transitions. In [103], authors used the epicardial potentials to estimate the state tran-
sition matrix by formulating the problem such that the entries of the state transition
matrix became unknowns and the epicardial potentials became the measurements,
following the approach proposed by [98]. They investigated three different scenarios
where the epicardial potentials were the measured ground truths, Tikhonov solutions
and MAP solution. They concluded that the Kalman filtering approach that utilizes
the real epicardial potentials outperformed other Kalman-filter based approaches that
use inverse solutions to estimate the state transition matrix. MAP solutions were
better than the Kalman-Tikhonov solutions in terms of both correlation coefficient
and relative difference measurement star. Dogrusoz et al. used simulated training
dataset to estimate the initial estimate for the state vector and the covariance matrix
for the Kalman filter using ML and MAP-based techniques. In spatial and temporal
correlation metrics, the Kalman filtering approach with MAP-based estimated priors

outperformed the Tikhonov regularization [104].
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Almost all the approaches mentioned in this section require training data for differ-
ent purposes. Cluitmans et al. used a realistic training dataset to form a basis for the
span of possible EGM solutions and incorporated this prior information to project
their solutions into this domain in their deterministic approach. In [89,90], the re-
alistic training data was used to estimate the mean and covariance of the previously
assumed Gaussian pdf using unbiased maximum likelihood estimators. In Kalman
filtering approach, the training data is utilized to estimate the state transition ma-
trix in [103] and for the estimation of prior model parameters in the Bayesian MAP
solution to estimate the initial state vector of the Kalman filter in [96]. Erenler et
al. used two different training dataset for the MAP estimation of Kalman-filter re-
lated parameters [105]. In the first dataset, they included the beats whose excitation
origins are in the range of 20 mm of the ground truth beat’s initial stimulation point,
whereas the second dataset included the beats that are at most 40 mm distant than
the test beat’s excitation origin. They concluded that using a wider range region that
covers the pacing locations of the beats resulted in slightly improved electrogram re-
constructions, stating that the diverse training set provided more regularized results.
In another study, they compared the usage of generated (or simulated) training data
and measured training data in the context of MAP and maximum likelihood based
estimation. They concluded that even using a simple simulation method with a large
coverage of pacing locations 80 mm, can sufficiently represent the prior distribution
in Kalman-filter-based-ECGI [104]. In [106], the authors used a neighborhood based
training data selection process, similar to [105]. In this study, they concluded that
using beats from the first or second order neighbors of the ground truth beat gener-
ally resulted in sufficient accuracy of reconstruction. The inclusion of further beats
resulted in a slight decrease in the performance. It is important to point out the com-
mon drawback of these approaches. In these studies, the pacing location of the test
beats are known previously from the stimulated node information. In the real life
scenario, this approach would require the estimation of ground truth excitation ori-
gin via inverse reconstruction that does not require any training data, e.g. Tikhonov
solution. The created datasets’ coverage will depend on this first initial estimate and
the accuracy of excitation origin finding algorithm. Hence, the accumulated in the
first reconstruction may lead to a dataset that is not properly composed for the ground

truth excitation origin.
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All the estimation techniques introduced here have not yet been shown to have any
significant superiority to the others. The formulations of them impose the relationship
to be linear in measurement formation process and state transition. Although, under
ideal circumstances the measurement formation process is linear, the state transition
have known to be non-linear. Learning-based methods, especially neural networks,
have shown significant performance in capturing the non-linear patterns in the data.

Hence, it is also a promising tool in imaging inverse problems.

2.7.2 Learning-based Methods

Machine learning methods are known for their success for predicting the relationships
between a given set of outputs and inputs in the supervised learning, or the patterns
in the input in unsupervised learning. The earliest efforts in the medical domain was
concentrated on medical image processing to draw conclusions on already computed
medical images [107]. Mostly linear models like SVMs or their non-linear extensions
such as SVMs with kernels are utilized for the tasks like image classification. With
the increasing availability of the data and computing infrastructure, neural networks
and deep learning started to be highly investigated in the field [108]. The trend for
years between 2010 and 2015 can be seen in Figure 2.9.

Lots of different architectures have emerged and been experimented. Review pa-
pers are published on which architecture to use [109] and whether to fully train the
network for medical image analysis [110]. Graph neural networks (GNNs) are also
utilized in different bioinformatics tasks and there is an increasing trend in the num-
ber of published papers for each of these tasks [111]. With the introduction of vi-
sion transformers [112], they are utilized in many medical image processing tasks
in different modalities [113, 114]. Thanks to their architectural properties that stack
components corresponding to affine transformations, i.e. linear transformations and
translations, and point-wise nonlinearities, neural networks can learn the complex
conditional probability distributions, and recently prior probability distributions with
generative models, accurately. The usage of these tools and techniques in medical

imaging inverse problem are explained in the next section.
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Figure 2.9: Distribution of published deep-learning papers in healthcare between

2010 and 2015 [8].

2.7.2.1 General Medical Imaging Inverse Problems

In the last decade, machine learning methods have emerged to exhibit outstanding
performance in different fields of computational imaging. McCann et al. published a
review study on the usage of CNNs in the inverse problems and claimed that CNN's
can generalize all shift-invariant algorithms [115]. They reviewed the applications of
denoising [116], deconvolution [117], superresolution [118] and plain reconstruction
in modalities such as MRI [119, 120] and CT [121, 122]. There are also different
fields of imaging inverse problems where researchers applied learning based tech-
niques such as electrical impedance tomography and sparse synthetic aperture radar
imaging [123, 124]. The utilization of neural networks in medical imaging problem
is not only encountered in image formation process, but also in regularization pa-
rameter selection. Afkham et al. used deep neural networks (DNNs) to estimate the

regularization parameters based on the measurements (or observations) [125].

The most concrete perspective on CNNs generalization to inverse problem comes
from the idea of unrolling. The idea of unrolling, which was first originated in the
study where authors unrolled the iterative shrinkage thresholding algorithm (ISTA)
for sparse coding into a neural network [9], provides a general perspective that nearly

all iterative reconstruction algorithms that alternate between linear steps and point-
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wise nonlinear steps. Therefore, CNNs should be to perform similarly provided that
they are trained properly [115]. In 2017, Jin et al. provided a narrower condition on
the applicable forward operators and showed that the normal operator of the operators
that inherently carry isometry, multiplication and change of variables operations can
be expressed as convolutions. Hence, they used CNNs along with the sparse-view
back-projection to outperform the total-variation regularized computerized tomogra-
phy problem [10]. They showed the structural relationships between ISTA method
with sparsifying transforms and the convolutional neural networks. The review study
also suggested that the spline theory results show that the rectified linear unit (ReLU)
functions can approximate any continuous function, resulting in that CNNs utiliz-
ing ReLLUs can closely approximate the proximal operators utilized in conventional

iterative techniques [115].
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Figure 2.10: Block diagrams for (a) ISTA [9], (b) unfolded version of ISTA with spar-

sify transform, (c) convolutional neural network with residual skip connection [10].

The structural similarity of ISTA and CNN for imaging problems is shown in Fig-
ure 2.10. All methods use a linear transformation (gradient update, sparsifying tran-
formation’s gradient update, linear convolutional layer), a bias term and a point-wise
nonlinearity (shrinkage and ReL.U). The CNN method, additionally utilizes a residual

skip connection to improve and accelerate the learning.
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Recently, generative models are introduced to tackle the inverse problems. Starting
from the study of Bora et al. , there has been numerous work proposing deep gener-
ative priors in the linear inverse problems [126, 127]. Duff et al. named three forms
of generative regularizers for the inverse problems [128]. These methods usually in-
cluded confining solution to the range of the operator, i.e., the set of solutions that
the generative model is trained to generate. One extension to this is to relax the solu-
tion by extending the range space of the generator. Another approach is to add extra
analytical constraints that matches the prior of the latent space, such as bounded en-
ergy. Normalizing flows learn the bijective mapping between a latent space and an
image space of same dimension and provide a generated distribution with tractable

density [129].

One of the most recent advancements that can be considered as the extension of the
variational auto-encoders are variational diffusion models [130]. These models learn
how to predict the original ground truth image from an arbitrarily noisified version
of it [131]. This approach has recently emerged as powerful generative priors for
solving inverse problems [132]. Graikos et al. used diffusion models conditioned on
the measurements as plug-and-play priors for semantic image segmentation and con-
ditional image generation tasks. Conditional generative models for inverse problems
are modelled such that forward operator and measurements impose some constraints
during the reverse diffusion step [133], analogous to gradient update and proximal
steps in iterative methods. Chung et al. showed in [134] that any contraction map-
ping such as projection onto convex sets and gradient steps, can be utilized to impose
the data-fidelity constraint. The utilization of diffusion models are demonstrated in
a set of inverse problem including MRI [135, 136], image in-painting, colorization,

sparse-view computed tomography [133].

2.7.2.2 ECGI Applications of Learning-based Methods

So far, a summarized literature review has been given on the usage of learning-based
methods in medical imaging inverse problems to provide an overview. This section
focuses on the recent advancements resulted from these techniques in the field of

ECGI.
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In [137] used a simulated training set on six cardiac anatomies and on single pac-
ing site to train the conditional variational autoencoder model that reconstructs the
activation pattern throughout the myocardium in a volumetric manner. They use 2D
convolutions to capture spatiotemporal correlations in the data. This approach re-
sulted in mean absolute error of 11.33 + 4.10 ms of error in computed activation

maps.

Pilia et al. generated a simulated dataset to train the Convolutional Neural Networks
(CNNps) to localize the ventricular excitation origin in a two-step process [138]. They
first processed BSPMs to a Cartesian grid. Following that, the first network learned
the activation time boundaries in temporal direction whereas the networks in the sec-
ond step learned to output the ventricular coordinates in cobiveco that correspond the
excitation origin [139]. Although they were able to achieve 1.5+ 1.3 mm localization
error on the generated test data in the best case, the best result on the clinical data was
32.6 £ 25.3 mm with the SVD post-processing. The classical methods like Tikhonov
performed 26.1 + 21.6 mm LE on the clinical data, proving that the trained networks

do not generalize to the clinical test data.

Tenderini et al. used a partial differential equation (PDE) aware deep learning model
for the inverse solution [108]. In this physics-based hybrid approach, the physical
awareness was pursued by the projection of the epicardial potentials on a subspace
spanned by the solutions of the governing PDEs and the inclusion of a tensorial re-
duced basis solver. To train their networks, they simulated and used a synthetic train-
ing data using Aliev-Panfilov model for the EGMs and the corresponding 12-lead
ECGs.

Chen et al. proposed an end-to-end training approach to relate the epicardial and torso
potentials of the pigs. They proposed 2 ways to utilize the common neural network
operations like convolutions and LSTM layers [140]. In the first part, they matched
the directly recorded 1D torso ECG data and 1D EGMs by training a network that is
composed of LSTM and fully connected layers. In the second part, they registered
the 3D torso geometry on a 2D plane. They upsampled the 1D ECG data on this 2D
plane by bilinear interpolation and used a CNN to match the transformed torso data

to the 1D EGMs. They found that CNNs were better at reconstructing the activation
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time maps. They also pointed out that training patterns they utilize in different cross
validation trials (data coming from different pigs) have shown great variability in the

performance.

The geometric meshes are represented as graphs and convolutions operations are re-
defined on this non-Euclidean geometry framework in [141]. In this spatio-temporal
graph convolutional neural network, the spatial convolutions are defined with spline-
based kernels, whereas the temporal convolutions are kept same as the standard 1D
convolutions after the spatial convolution. The signals are directly represented on
their own domain, that is to say, heart and torso geometries. The physics-based in-
verse imaging function was designed to be learned by a bipartite graph assuming that
the linearity between heart and torso potentials in the latent space still holds. The
latent heart potentials on the vertices of the latent heart geometry is expressed by
the linear combination of the vertex voltages of the latent torso geometry. A later
study [142] showed that this methodology showed similar uncertainty with Tikhonov
regularization in reconstructed cardiac sources resulting from cardiac and torso ge-
ometry variability. It was also concluded that the graph neural network (GNN) based
method was less sensitive to the modelled geometric uncertainty. However, the au-
thors stated that the reported generalization metrics were the results of the fine-tuning
experiments conducted with little amount of data. Even with fine-tuning on the ge-
ometries that only differs from the training data in terms of rotation patterns, the
performance drop is observed in the GNN-based technique [143]. In end-to-end
learning-based techniques the training data is used to optimize the reconstruction
metrics directly, i.e., the training configuration is based on learning the conditional
probability distribution, or regularized image reconstruction in the practical imaging
scenario, unlike in traditional methods where the training data is usually used to esti-
mate the prior distribution of the oracle. Within the ECGI literature, there is a notable
absence of learning-based studies that separate image reconstruction and regulariza-

tion into distinct steps, while also incorporating the learning of prior distribution.
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2.8 ECGI Validation

To prove the benefit of the imaging modality, ECGI methods should be experimen-

tally validated so that it can be utilized in human clinical applications and have a

socioeconomic effect. The validation timeline can be seen in Figure 2.11.
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Figure 2.11: Development and validation of ECGI studies [11].

In the experimental ECGI literature, the main ways of data acquisition can be listed

as follows:

e Torso-tank: In this setup, the heart of an animal is isolated from the body and
suspended within a human shaped torso tank. To maintain proper operation of
the heart, it is perfused via blood coming from the arteries of a second support
dog as in Figure 2.12. The blood was returned to the support dog from a right
ventricular cannula to the jugular vein [12, 143, 144]. The torso tank is filled
with an electrolytic solution of 500 (2-cm resistivity to approximately mimic
the conductivity behavior of human thorax. A flexible sock array is placed on
the surface of heart to capture electrical activity via surface electrodes. The
cardiac activation is generated with stimulation electrodes and signals on both
surfaces are recorded simultaneously. This experimental environment has been

also set by utilizing pig hearts as in Figure 2.13 [13].

e in-vivo: These setups include invasive recordings coming from the living or-
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ganisms. In [145], 2 silicone bands with 99 electrodes are inserted in 4 normal
anesthetized dogs’ basal and mid-basal ventricular epicardium. After chest clo-
sure, body surface electrodes are attached to the chest and the unipolar potential
recordings are recorded simultaneously. These experiments are conducted on
a CT table so that during the imaging to avoid a modification in the relative

positions of the electrodes or disconnection of them.

e in-situ: Unlike in-vivo, the in-situ experiments utilized isolated heart prepa-
rations, and it does not provide information about the electrical activity in its
natural physiological state within the body. However, it is free of the interfer-
ence effect of the surrounding tissues and researchers have direct access to the

heart, allowing them to manipulate it more.

e Simulation: Most of the studies that require training data generate synthetic
data to develop the proposed method using the methods explained in Sec-

tion 2.2.

Isolated Heart
in Torso Tank

Figure 2.12: Langendorff perfusion setup with canine hearts [12].

All of these validation experiments are conducted to provide a safe basis for the hu-
man clinical operations. The next section will cover the clinical application of ECGI

in humans along with the possible use cases of the methodology.
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Figure 2.13: Acquisition workflow followed in [13]. A: Torso-tank setup with Lan-
gendorff perfused pig heart. B: Ablation lesions C: 3D fluoroscopy scan of full torso
and segmented electrode positions D: ECGI step and comparison to ground-truth

recordings.
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2.9 Clinical Applications

The most common CVDs that require the reconstruction of the electrical activity are
atrial tachycardia (AT), atrial fibrillation (AF), ventricular tachycardia (VT), ventric-
ular fibrillation (VF), premature ventricular contraction and Wolf-Parkinson White
Syndrome. For AF, ECGI is currently used to detect the activation patterns during
the arryhtmia thorough phase mapping to localize the mechanisms of this activation
via the estimated dominant frequency or singularity points in phase mapping [146].
This method is shown to be successful in terms of correlation to the ablated regions.
In PVC, ECGI can provide useful presurgical guideline by localizing the arrhythmo-
genic site or at least estimating a region of interest before the catheterization. For VF,
the contribution of ECGI to diagnosis is provided by a very similar process to that of
AF [146]. Recently, Dogrusoz et al. investigated the methods of ECGI for PVC local-
ization in humans. They compared dipole and potential based source configurations
with different inhomogeneity models in the context of Tikhonov zero-order regular-
ization [54]. They found that dipole-based methods provided more accuracy, however
they do not provide detailed progress of the EGMs over the QRS region and T wave.
In this case, the potential based solution should be used with edge-presevering inverse

and activation time computations.

2.10 Current State of the Art

The most recent research on ECGI is mainly focused on increasing accuracy of the
inverse solutions and generalization among different patient geometries. End-to-end
training approaches like [147] results in uninterpretable behavior in the signal re-
constructions. In [141, 143], the authors propose a physics-based reconstruction by
learning the mapping between latent heart and torso potentials in terms of coefficient-
weighted source-to-measurement distances, that resembles to the forward operator of
MES [66]. By utilization of graph neural networks, the authors claim to generalize
to new geometries by using a small dataset of heart potentials on the new geometry.
Although there is a performance drop in the inference time when they use the trained

network directly, this fine-tuning strategy resulted in sufficient performance. It is also
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important to note that this approach still requires fixed-size inputs, hence the gener-
alization to new geometries are limited to rotated or shifted versions of the training
geometries. The authors state that this approach has advantage over the methods that
use Euclidean networks, i.e., traditional CNN structures. However, physics-based hy-
brid Euclidean approaches and how the modelling can be modified to apply Euclidean

networks remain underinvestigated.

Although it has been shown that the statistical estimation and learning-based tech-
niques can achieve higher accuracy and performance under proper training situations,
there has been a little study on how to systematically select the training data based
on the available dataset or based on the measurement in the inference time. The ex-
isting methods provide intuitive and greedy approaches to this problem, however the
conclusions of those studies was only based on a posteriori reconstruction metrics.
Hence, for both of the frameworks, the assessment of the training data are rarely con-
ducted before the model training. There has been recent developments in the area of
artificial intelligence (Al) on the selection of training data to alter the performance.
Jarrahi et al. states that the data should be taken care of considering the whole life
cycle of Al systems, beyond “preprocessing”. By adopting a data-centric approach,
rather than a model-centric approach which tries to optimize the model based on the
given data, more accurate solutions and less biased systems can be created [148].
However, this systematic approach has not yet been introduced to the field of ECGI,

neither in statistical estimation nor in Al-assisted studies which has recently emerged.

This thesis investigates the usage of variable splitting and unrolling method to aug-
ment the physical knowledge about the system with neural networks. Furthermore,
in the Bayesian MAP inverse problem with Gaussian priors, the effect of prior model

composition is explored in a systematic way.
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CHAPTER 3

EXPERIMENTAL SETUP AND VALIDATION

3.1 Experimental Data

In this thesis, the data from seven in-situ experiments conducted at University of Utah
is utilized for the estimation of prior model parameters in Chapter 4 and training the
denoising neural network in Chapter 5 [149]. In these experiments, the isolated heart
from one canine, which was perfused by a support dogs’ circulatory system, was sus-
pended in a torso tank full of electrolytic solution. All experiments are performed
under deep anesthesia via procedures approved by the Institutional Animal Care and
Use Committee of the University of Utah conforming to the Guide for the Care and
Use of Laboratory Animals (02-03010). A sock that contains 490 electrodes was
placed on the surface of the heart and the measurements are sampled at 1kHz sam-
pling frequency. The heart is stimulated from different pacing sites that cover the
epicardial surface. The total number of beats in the dataset was 380. After removing
the data that contain artifacts, the number of beats dropped to 326. Afterwards, the
dataset is split into two parts as training and test dataset such that the beats in the test
data have unique pacing site locations from 4 experiments. The distribution of these
pacing site locations can be seen in Figure 3.1 All the beats from the remaining 3

experiments are included in the training data.

Since there was no access to the simultaneously recorded torso data, we simulated
the BSPs from the EGMs. The forward problem, i.e., the process of computing the
BSPs from the EGMs, is conducted using an inhomogeneous thorax model, whereas
the inverse problem is computed with a homogenous model which does not include

the lung inhomogeneity, to avoid inverse crime [150]. After the generation of BSPs,
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Figure 3.1: The pacing site distributions of the utilized training data in different ven-
tricles. (a) Number of training data that is paced from the labeled nodes on the left
ventricle shown in red (b) Number of training data that is paced from the labeled

nodes on the left ventricle shown in blue.

they are distorted with 30dB SNR 1i.i.d. noise for each of the time instance separately,

KL

where SNR definition is ratio of the signal variance to noise variance, =

E®

3.2 Geometries

Recordings from only some specific leads were used in the simulations. Hence, from
the fine-meshed torso geometry we have, these leads are labelled and extracted to
generate the coarse-meshed geometry. For the forward model, a simplified torso
geometry with vertices as only recording leads was utilized as in Figure 3.2. The
same torso lead configuration that was proposed by Lux et al. was used [42]. By
using triangulated meshes of the heart and the body surface, the forward transfer ma-
trix is calculated by solving Laplace’s equation using the Boundary Element Method
(BEM) [45,151,152].

The forward models corresponding to these torso geometries are shown in Figure 3.2

and the condition number of them along with the distribution of the singular values
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are computed and plotted in Figure 3.3.

Fine-meshed torso Sparse-meshed torso

IV I

7i¥
J'fN/

N

(a) Front view.

Fine-meshed torso Sparse-meshed torso

i N

(b) Back view.

Figure 3.2: Fine and sparse-meshed torso geometries.

The fine-meshed torso contains 1538 triangular elements whereas the sparse-meshed
torso has 352. Mean node-to-node distance is 11.57 £ 8.56 mm for the fine-meshed
torso and 22.13 &£ 16.77 mm for the sparse-meshed torso. The number of nodes

(vertices) they have is 771 and 192 respectively.
In fine-meshed torso case, the forward matrix A is of size 771 x 490, whereas the
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Figure 3.3: Singular value distribution of forward model corresponding to geometries

in Figure 3.2.

sparse-meshed torso model results in a forward model of size 192 x 490 where 192
leads are selected based on the configuration proposed by [42]. The singular value
distributions and the condition numbers show that, regardless of the system being
under-determined or over-determined, the problem is ill-posed. Aforementioned phe-
nomenon about the uniqueness of the solution is still valid for the over-determined
solution, since the matrix of size 771 x 490 is rank-deficient to the working precision
(rank(A) = 355), hence even for the multiple measurement case, the inverse solution
has both existence and uniqueness problems. The £,-norm condition numbers Ky se
and K ;. are also given in the title of the figure as 5.95 x 10'? and 6,2 x 10'® re-
spectively, which validates the ill-conditionedness of the system matrix regardless of
the over-determined or under-determined properties of the matrix. Hence, regardless
of the number of measurements, the uniqueness problem persists due to the nature of

the forward problem.

3.3 Evaluation Metrics

This section is devoted to the evaluation methods of the results that will be presented
in the next two sections. The ground-truth will be denoted as z and the solution matrix

to the equation Eqn. (2.6) will be denoted as z. For post-reconstruction performance
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evaluation of the imaging problem, two metrics are used. The first one is relative error
(RE) metric that is measure of the Euclidean distance between the reconstruction and

the ground-truth:

3.1

The second metric is Pearson’s correlation coefficient (CC), which is defined as fol-

lows:

(2-2)(z—2)"

Noso,

CC: (3.2)

where NN is the dimension of the vector z and o is the standard deviation with the

following definition:

02 = | D (2(i) — 2(i))’ (3.3)

=1
where z(i) represents the i™ entry of the vector z.

Note that z; vectors in Equations (3.1) and (3.2) can be in the column format as in
Eqn. (2.5). If this format is adapted, the computed metric is the spatial metric. If,
on the other hand, vector z is defined as x;”, then the temporal metric is computed.
These metrics can be evaluated in both spatial and temporal direction of the recon-
struction. Referring to Figure 2.8, the temporal metrics corresponding to measuring
the correlation and error between the rows of the matrix, whereas the spatial metrics
is defined to compare the spatial distribution of the signals, which is represented by
the rows. Therefore, each time temporal metrics are computed, a vector of length
N is generated whose entries represent the performance of the reconstruction of each
lead. In the spatial case, the dimension of the vector is the number of time instances 7’
in the reconstruction. When presenting the results, a summarized metric (using either

mean=std or median(IQR)) is used.

The accuracy of the inverse solution only determines the quality of the reconstruction.

However, to obtain clinically meaningful and impactful results, some post-processing
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techniques are applied to the inverse solution depending on the nature of the inverse
ECG task. Pacing site localization, i.e. locating the origin of signal propagation
on the cardiac surface, is one of the most used post-processing technique to provide
clinicians with meaning information prior to pre-surgical operations to treat diseases

such as PVC and AF. For localization, the activation time method is used.

3.3.1 Activation Time

By definition, activation time is the time instance when the sharpest drop in the volt-
age is observed throughout the EGM. Once the activation times of all the heart nodes
are computed, the node having the smallest activation time is considered to be the

origin of the beat propagation (or pacing site) and labelled as such.

The naive method to find the activation time maps is to apply first order derivative
to the EGMs. The time index having the minimum (negative) value is marked as the
activation time. Due to the noise and the smoothing in the inverse reconstruction, the
activation time maps computed with the naive approach are usually erroneous. To
overcome this, some regularization methods have been proposed using the features
of the geometry. In [153], the authors used Laplacian of the geometries on the com-
puted solution as spatial regularization and the distance to the naive solution as tem-
poral regularization. In another study, Duchateau et al. utilized the graph-incidence
matrix to impose the latency constraint computed from the signals using cross cor-
relation [154]. A more detailed review and the comparison of these approaches can
be found in [155]. In this thesis work, the spatially coherent activation time mapping
approach in [154] is used for the computation of activation times, due to the amount

of balanced regularization it applies.

The database already have the ground-truth stimulation site, hence the ground-truth
pacing locations are already known. Hence, in the following sections, the correla-
tion coefficient of activation time maps and the localization error will be presented
as a performance comparison metric. For localization error, the Euclidean distance
between the ground-truth and the found pacing site is calculated. Since the geometry
is an open epicardial heart geometry and the accuracy of the localization is sufficient,

geodesic distance, the distance calculated from the surface, is not utilized for the
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calculation of the localization error in this study.
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CHAPTER 4

PRIOR MODEL SELECTION VIA EVIDENCE AND COVARIANCE

4.1 Introduction

In Section 2.7.1.6, the statistical approaches to solve the inverse problem of ECG
was explained. For these methods, the main usage of training data is to infer the pa-
rameters that determine the distribution of the prior pdf. Methods developed so far
employed greedy approaches to form the training set, such as sampling the prior pdf
from the proximity of the Tikhonov-estimated solution’s pacing site. In this section,
a procedure to assess the representation capability of a subset of data and finding
a subset as performant as the whole database is presented. One of the earliest at-
tempts to quantify the performance of the training data prior to reconstruction was
in [89]. The authors used evidence, i.e. the marginal pdf of the measurement y, to
numerically sort the likelihood of the training set’s representation capability of the
measurement. Following this idea, this chapter introduces two metrics and regard-
ing selection strategies that can be utilized to determine the representation capability
of a subset of the training data before the reconstruction process. The strategies are
built upon the Bayesian MAP framework. To introduce the assumption, Eqn. (2.5) is

revisited to remind the system formulation:

yk:AXk—FIlk,k‘:l,Q,g,...,T (41)

In this study, x is assumed to be Gaussian distributed with mean X and covariance
matrix Cy; ie., x ~ N(X,Cy). The noise vector ny is assumed to be independent
and identically distributed (i.i.d) with a Gaussian distribution, (n; ~ N(0,C,)),

where C,, = afLI. Furthermore, it is assumed to be uncorrelated with the epicardial
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potentials. With these definitions, the marginal distributions of epicardial potentials

x, measurements y and noise n is as follows:

p(x) = %efé(xf’_‘)cx_l(xf’_‘ﬁ (4.2)
(2m) = [Cx|?

p(n) = %e*%(“)"ﬁl(nﬁ “@.3)
(27) 2 [o21]?

(y) = ! o HYARACAT AN AT (44

M
(21) 2 |ACLAT + 021

where A is an M x N forward system matrix, and the time subscripts of the vari-
ables are dropped for convenience since the prior model is assumed to be stationary

throughout the beat.

The Bayesian MAP solution can be expressed in closed form as:

fvap = (ATC'A +C;1) T (ATC Y + CL'R) (4.5)

The two parameters that completely define the multivariate Gaussian prior pdf, mean
x and covariance Cy, appear in the solution expression. The motivation of selecting a
performant set of prior model parameters is based on the idea that increasing the value
of the marginal pdf at the measurement location is possible by shaping the marginal
pdf by tuning the prior model’s parameters. In other words, the training data that
results in higher evidence provides better match to the observed measurement, hence
is a better representation of the solution that caused the measurement formation. The
hypothesis is that the performance of the reconstruction can be improved by carefully
selecting a subset of data from which the estimated mean and covariance maximize

the evidence.

The evidence formulation, given the prior model parameters H® = (x(® C,(ci)) is as

follows:

p(y|H;) = ; . e_%(y_A’_‘“))T(Cy(i>)7l(y—A»‘<<i)) (4.6)

where M is the measurement domain dimension and Cy = ACLAT + C,. The
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detailed derivation is given in Chapter 7. By representing the evidence parameters
in terms of prior model parameters, one can control the prior model performance.
The numerator in this equation measures the inverse-covariance-weighted prior mean
match to the measurements. The denominator is the normalization term. Taking the
logarithm of this expression has advantages in the working numerical precision in the

computation of the determinant using the eigenvalues.

M 1 |
log(p(y|Hy)) = — 5 log(27) — 5 log(|Cy ™))

- %bg ((y — AxD)7(C, ) (y — AX)) (4.7)

In this section, the proposed procedure to find the best representative set without first
performing the inverse reconstruction is presented. The procedure is composed of

two steps:

1. Dataset Expansion: In the first step, the training beats in the available database

are sorted by the proposed metrics.

2. Termination: The proposed termination criterion specifies under what cir-
cumstances related to the metrics in the first step the dataset expansion should

stop.

The proposed metrics heavily depends on the utilization type of the training data.
To comprehend why these metrics are proposed, how the prior model parameters are

estimated using training data should be inspected.

4.2 [Estimating the prior model parameters

In this study, the unbiased maximum likelihood estimators of mean and covariance
are utilized to determine the prior model parameters from the training set, as in [89,90,
106,156,157]. To estimate the parameters, the training dataset explained in Chapter 3
is used. In this approach a subset of training beats are concatenated in the temporal

dimension, treating them as different realizations of the same multivariate random
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variable. The steps to perform the expansion of training data can be summarized with

sample beats X; and X5 in these steps:

e The beats concatenated along the time axis (in horizontal direction) to form the

new training data X = [X;X,].

e The mean along the time axis X is calculated by averaging the different realiza-

tions of random variables, i.e. the columns of the matrix X.

e The covariance Cy is calculated using the unbiased maximum likelihood co-
variance estimator 2~ (X — %)(X —%)”, where N is the signal domain di-

mension or the number of epicardial sources.

4.2.1 Variance in the training set

The dataset used in this study contains beats stimulated from different regions of
the epicardial surface. The distribution of these locations are plotted in Figure 3.1.
It is observed that the variance of EGMs along the time axis (temporal variance) in
different training beats have different patterns. The temporal variance across the beats
is observed to exhibit dependent pattern on the stimulation location, i.e. pacing site,

as in Figure 4.1.
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(a) Left ventricle stimulation. (b) Apex stimulation.

(c) Right ventricle stimulation.

Figure 4.1: Spatial map of the temporal variance of the EGM signals in different
training beats are shown. The red dot represents the stimulation point where the
signals start to propagate on the epicardial surface. The patterns illustrate that the
amplitude of the fluctuations in the proximity of the pacing site is higher than the rest

of the epicardial surface.
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Figure 4.2: The voltage distribution in one epicardial node has univariate normal
distribution. Concatenation of different realizations for this random variable using
beats having different variances as in Figure 4.1, results in increased variance, hence

attenuated marginal pdf.

Including beats in the training set paced from diverse locations on the heart surface
increases the variance of the distribution, hence results in a decreased value of evi-
dence due to pdf normalization. This relationship for one univariate random variable
is shown in Figure 4.2. The evidence for a test beat is calculated for every time in-
stance in a single computation and evidence for each time instance is generated. In
the following sections, the expansion algorithms will be explained. Before that, the
reader is encouraged to have a look at Figure 4.5 to gain an immediate and concrete

understanding of the training set expansion.

4.2.2 Evidence

The first metric utilized in this study whose relationship with dataset’s prior represen-
tation is evidence. In Figure 4.3, the logarithm of the evidence is plotted against time
for a sample test beat, for two arbitrarily composed training set from the available

training database.

Since, the evidence has tendency to fluctuate thorough out the beat as in Figure 4.3,
the median is used as a comparison metric to evaluate the evidence differences of

training beats.
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Figure 4.3: Logarithm of evidence vs time for two training sets. Depending on the

time instance of the measurement, the “best” model in terms of evidence may change.

To test the hypothesis that higher median evidence match is an indicator of a better
representative training set, Algorithm 1 is implemented. This algorithm starts by in-
cluding the training beat that results in the highest evidence of the given measurement
into the cumulative training set, which will be the final training set once the iterations
are completed. In the second iteration, the algorithm expand the cumulative training
set that is only composed of one beat with every other beat in the training set and cal-
culate the resultant evidence. Although the value of the median evidence decreases
in the second iteration, the algorithm maximizes the evidence for fixed-level of vari-
ance in the training set, assuming that the number of included beats are proportional
to the variance within the cumulative dataset. Hence, it maximizes the evidence in a

variance-aware manner.

4.2.3 Covariance

Due to the spatially dense discretization of the heart, the signals sampled from the

surrounding nodes of an arbitrary node on the epicardial surface are expected to be
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Algorithm 1 Iterative Variance-Aware Evidence Maximization.

Require: N training beats, test beat, forward model
1. Allocate empty array for cumulative training set
2: for all Training beats do
3:  Calculate evidence given by Eqn. (4.7)
4:  Sort the evidence according to the median values along the time axis.
5:  Include the beat that has the highest mean evidence in the cumulative training
set
6: end for
7: while Beats in database > 0 do
8:  Concatenate each of training beats to the cumulative training dataset.
9:  Include the one resulting in the highest evidence in the cumulative training
dataset.
10:  Exclude the beat from the database.
11: end while

12: return Sorted cumulative training set

correlated with the center node. Hence, the cross correlations are observed to be
nearly close to the variance, i.e. off-diagonal entries corresponding to these neigh-
boring nodes are comparably as large as the diagonal entries of the covariance ma-
trix. Hence, especially within a single beat, the covariance matrix tends to be ill-
conditioned with k(Cy) ~ 10°. In addition to the role of covariance in normalizing
the evidence implicitly, the determinant of the ill-posed (or nearly-rank deficient) co-
variance matrices results in the amplification of the pdf (see Eqn. (4.7)), hence the
value of the evidence thorough the covariance of the measurements. Furthermore,
the inverse of the epicardial covariance matrix the appears in the solution expression
(Eqgn. (4.5)), it is important to have a stable inverse to estimate a stable solution. Thus,
a stabilized inverse of the covariance matrix is needed for the proper estimation of the

solution.

The second metric to assess the dataset representation of the prior is determined as
the Lo-norm condition number of the covariance matrix. By using this approach,
the biased estimation of the prior model parameters due to the unbalanced temporal

variance across the surface in the training data can be avoided. The algorithm that
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exploits this property is presented in Algorithm 2.

Algorithm 2 Iterative Covariance-Condition-number minimization.

Require: N training beats
1: Allocate empty array for cumulative training set
2: for all Training beats do
3:  Calculate the condition numbers of the covariance matrices
4. Sort the condition numbers in the ascending direction
5: end for
6: while There exist remaining beats in the dataset do
7. Concatenate each of the training beats to the cumulative training dataset.
8:  Include the beat resulting in the lowest condition number of the covariance
matrix in the cumulative training dataset.
9:  Exclude the beat from the database.
10: end while

11: return Sorted dataset

Algorithm 2 starts by finding the beat that has the most-balanced temporal variance
distribution among the nodes by the utilization of condition number. Following that,
each of the training beats are concatenated to this “best” beat and the condition num-
bers of the covariance matrix for this concatenated training set is calculated iteratively

until there is no remaining beat in the dataset.

So far, the expansion of the training set has been illustrated. The subsequent section

will delve into an explanation of the termination criterion.

4.2.4 The Termination of the Expansion

For both of the algorithms, the termination criterion is determined as the saturated

condition number of the covariance. For this, Algorithm 3 is implemented.

The algorithm employs a greedy approach to find when to stop the expansion pro-
cess. For this, the condition number of the covariance is tracked during the expansion
strategies. The ratio between the condition number of the covariance matrix between

the consecutive iterations is observed. The expansion is terminated by the saturation
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Algorithm 3 Termination of Training Set Data Expansion.

Require: A training set composed of N training beats sorted by either Algorithm 1

or Algorithm 2, Hyper parameters: € (margin), n (number of occurrences).

1: for all Prefix subsets of the cumulative training set do

2:  Calculate the £, norm condition number of the training set’s covariance matrix.

3: end for

4: Calculate the ratios of condition numbers between the consecutive levels of ex-
pansion.

s: while N > 0 do

6:  Search for n consecutive occurrences where ratio remains between 1 + € start-

ing from the end of the training set.

7. if n occurrences found then

8: return Index of the first occurrence
9: else

10: n<<n-—1

11:  end if

12: end while

condition. The saturation condition is satisfied when the consecutive ratio of the con-
dition number of the covariance matrix remain between the range 1 + Margin for N
consecutive occurrences. The hyperparameters n and € of Algorithm 3 is determined
experimentally as 20 and 0.05. A high margin provides better stabilization to the ter-
mination, whereas the high number of occurrences provides reliability of saturation
of the condition number. The effect of a better conditioned covariance matrix can be
seen in Eqn. (4.5), where in the ill-conditioned cases the inverse of it dominates the
first factor in the expression and hence the contribution of the forward matrix. The
point where the covariance gets well conditioned may indicate a point where a good

trade-off between the prior and forward matrix is caught.

4.3 Results

The evidence algorithm is run for every test beat, whereas the covariance algorithm

is run only once, since it is independent of the measurement. The results regarding
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one particular test beat can be seen in Figure 4.5. The training set index is a measure
of how large the accumulated training set index at that iteration, since the algorithm

performs expansion including one beat at each iteration.

In Figure 4.4, the reconstruction metrics of all the test are concatenated and plotted
together. The data utilization ratio of the evidence selection algorithm can be seen
in Table 4.2. On average, the evidence algorithm used 81% of the available database
whereas the covariance algorithm found a dataset composed of 82 beats, resulting
in a utilization ratio of 26.5%. The results show that it is possible to achieve the
reconstruction on the overall test dataset with the generalization of the whole training

dataset with a careful selection of the training data.
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Figure 4.4: RE and CC comparison for the whole test dataset’s reconstruction. (Out-

liers are not shown.)

For quantitative analysis, paired-sample Student’s t-test is utilized to investigate if
there is statistically significant difference between the metric distributions given by
the whole dataset. The results have shown that covariance algorithm was able to find
a single training set from the available training database for all test beats that matches

distribution of the performance metrics given by the whole dataset, except for test
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data 6. Evidence on the other hand, have exhibited similar performance that matches
that of all training set except for test data 6 and 8, with alpha-significance level 0.05.
In Figure 4.5, the mutual outlier result, test data 6, is inspected. Although the t-test
did not yield statistically significant similarity, the summarized metrics (mean = std)
produce similar results, with performance loss by 1.4% in temporal RE and 2% in
temporal CC. Likewise, the temporal CC distribution of test data 6 in Figure 4.7 ex-
hibits significant similarity to the metric distribution provided by the whole dataset.
Hence, although the t-test results may indicate similar performance to the all train-
ing set, the scenarios where t-test indicated statistically significant difference do not
necessarily imply poorer performance. For the temporal RE and temporal metrics’

distribution for the whole test data, see Section 7.2.

Table 4.1: p-values for Student’s t-test for concatenated metric distributions.

Test Data | Covariance | Evidence
1 0.698 0
2 0.917 0.05
3 0.684 0.729
4 0.935 0.623
5 0.443 0.073
6 0.027 0.006
7 0.065 0.862
8 0.555 0.023
9 0.785 0.318
10 0.802 0.568
11 0.884 0.406
12 0.284 0.816
13 0.756 0.567
14 0.378 0.671
15 0.802 0.346
16 0.156 0.479
17 0.192 0.693

As mentioned earlier in Chapter 3, solely presenting the epicardial voltage map re-
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constructions are not sufficient for the datasets utilized in this study, since the main
aim is to localize the pacing site. For this, activation time maps are calculated, and

the corresponding metrics are illustrated in Table 4.2.

Table 4.2: Activation CC and localization error (Evi: Evidence, Cov: Covariance)

Test LE (mm) AT-CC Evidence Data
Data | Evi Cov All | Evi | Cov | All | Usage (# Beats)
1 958 | 7.66 | 7.66 | 0.82 | 0.93 | 0.93 249
2 12.03 | 10.35 | 10.35 | 0.93 | 0.96 | 0.97 280
3 9.38 | 13.53 | 13.53 | 0.97 | 0.98 | 0.99 248
4 10.02 | 4.1 4.1 1097|099 | 0.99 265
5 11.7 | 11.19 | 11.19 | 0.97 | 0.99 | 0.99 253
6 26.52 | 839 | 839 | 0.97 | 0.99 | 0.99 271
7 0 8.45 | 8.45 |0.92 098 | 098 275
8 6.95 | 3.85 | 3.85 | 0.96 | 0.99 | 0.99 254
9 7.55 | 5.16 | 5.16 | 0.84 | 0.92 | 0.88 245
10 0 19.87 | 16.71 | 0.84 | 0.93 | 0.93 238
11 4.69 | 5773 | 573 | 0.89 | 0.94 | 0.94 239
12 8.8 0 0 0.83 | 0.96 | 0.95 259
13 726 | 524 | 524 1092|099 | 0.99 254
14 713 | 5.13 | 5.13 [ 098 | 1 1 172
15 4.07 | 582 | 5.82 | 0.88 | 0.89 | 0.91 243
16 0 5.67 | 567 | 0.89|0.87 | 0.83 258
17 461 | 876 | 9.6 |0.81 | 0.9 | 0091 257
mean | 7.66 | 7.58 | 7.45 | 091 | 0.96 | 0.95 250.29
std | 6.19 | 4.48 4 0.06 | 0.04 | 0.05 23.52

Although the correlation is 1% higher in the covariance case on average, the local-
ization error is slightly higher. When the results are inspected separately for each test
data, we observe that covariance-produced results matched that of the all training set
except for test data 10, which is the reason for the difference of 0.13 mm LE on av-
erage. This specific case can be seen in Figure 4.6. Furthermore, evidence-produced

results show similar localization performance to the remaining algorithms, although
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it results in 5% lower average correlation coefficient. However, the standard deviation
in LE is 38% and 51% higher than the covariance and all dataset standard deviations

respectively.

It is observed from the wide-spread blue region (the earliest activated) that all the
solutions smooth out the activation time maps and loosens the isochrones, indicating
that the Bayesian MAP inverse operator delays the solution. From Figure 4.5, it
is possible to observe the difference in the convergence speed of standard deviation
ranges. The standard deviation of the temporal metrics are ceases to decrease. For
temporal metrics, this implies that the reconstruction are more stable on the whole
surface of the heart, i.e., in between the heart nodes. In the covariance algorithm, the
temporal metrics’ standard deviation stabilizes after a couple of iteration, whereas
in the evidence scenario, the stabilization required approximately 40 iterations. This
might indicate that the balanced estimation of the spatial covariance prior resulted in

a faster convergence of spatially balanced performance over the epicardial surface.
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Figure 4.6: AT maps computed from 3 different algorithms plotted on the epicardial

surface. The pacing locations, the minimum AT point, is marked with a yellow dot.
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4.4 Discussion

In this study two methods are proposed for sorting the training set beats sorted by
their (proposed) capabilities of resulting in better performance. The evidence ap-
proach generates a different training data for every inference case due to its definition

involving the measurements.

The covariance approach, on the other hand, generated a single training dataset from
the whole available training database. The covariance approach, by achieving the
competitive performance to that of the whole training dataset. The condition num-
ber of the covariance matrix is closely related to the principal component analysis
(PCA) [158]. PCA is a dimension reduction technique. It calculates the eigenvalues
of the covariance (scatter in PCA terminology) matrix to find the dimension hav-
ing the most scatter. The dimensions corresponding to the highest eigenvalues carry
more information about the variance of the data, hence the data can be represented
in lower number of dimensions. The covariance approach proposed here, optimizes
the implicit cross-correlation (variance in the 1.1.d. epicardial potential case) patterns,
formulated by the condition number of the covariance. By doing so, the variability
coming from different stimulating location are automatically considered, and spatial
variance is estimated as unbiased as possible for any arbitrarily paced data one the
same geometry. Although the test data contain the realizations drawn from different
distributions, the selected subset of covariance condition number minimizer data was
able to represent 4 different distribution of training data’s spatial covariance and is

performant on all distributions on the test data.

It is important to note that this study proposed a method to evaluate the training data
information content in the context of prior model formation in MAP-based ECGI. It
does not provide the “best” composition in a given database. In real life scenarios,
the approach can be used to determine the sufficiency of limited training data for the
estimation. Furthermore, the iterative nature of it allows an online scheme where

every incoming training data can be assessed continuously.
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4.5 Limitations and Future Work

The proposed procedure is only applied to the Bayesian-MAP formulated inverse
problem of electrocardiography. Following items should be tested to generalize the

usage of the procedure to other settings:

e Due to the choice of Gaussian priors, the covariance matrices appeared di-
rectly in the solution. It is important to validate the performance under different

choice of priors.

e The experiments are conducted utilizing one dataset, due to the limited data
that can be accessed in the field of ECGI. The experiments should be repeated

with other available datasets.

e In the experiments, the potentials simulations are conducted with one geometry
and the geometric errors are not accounted for in this study. The method should

be tested in an environment where the geometry is also a control variable.

As an advantage, the utilization of the approach can be tested in a similar framework
for a different problem, such as Bayesian-MAP based image restoration problem with
Gaussian priors. Since the forward and inverse models are arbitrary and there is
no specific assumption imposed on them, this step will increase the reliability of
the generalization of the method to other inverse problems with different forward

operators.
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CHAPTER 5

PHYSICS-BASED AI-ASSISTED SOLUTION TO ECGI

In Section 2.7.2.2, the current learning-based approaches were explained. None of
them combined the physics-based knowledge with just using the forward model in
the original signal and measurement domain. In this section, the inverse problem is
reformulated to be integrated with learning-based approach to avoid explicitly defin-
ing the prior. For this, Half Quadratic Splitting (HQS) method is used to split the
variables on the problem, following the approach introduced in [159]. One of the
recent attempts to use the approach in the setting of inverse problems by proposed by
Zhang et al. [160]. They utilized a UNet [161] CNN for the proximal update step for

the image restoration and single image super-resolution problem.

5.1 Theory

The inverse problem formulation defined in Eqn. (2.5) can be formulated by utilizing
an implicit prior instead of assuming the shape of the prior. In such cases, variable
splitting methods allows us to formulate the problem so that we can obtain the solu-
tion by alternatively optimizing the data fidelity term and the regularization term that
corresponds to the a priori information we have about the oracle. In HQS method, the
optimization equation given in Eqn. (2.8) is transformed into an optimization problem
with the introduction of intermediate variable z and regularization parameter p. The

new constrained problem can be formulated as follows:

x = argmin ||y — Ax|[3 + uR(z), st x=1z (5.1
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Then the problem can be formulated as an unconstrained problem as in Eqn. (5.2).

1 A
J(x,2) = 5lly — Ax[[; + pR(z) + 5 |[x — 2|3 (5.2)

Eqn. (5.2) can be split into two equations for alternating optimization on variables x

and z:

Xip1 = argmin ||y — Ax|[[3 + A[|x — z|? (5.3a)

A
Zyk+1 = arg min §]|Z —xk1l3 + uR(z) (5.3b)

The expression in Eqn. (5.3a) measures how reconstruction matches the observation,
hence data-fidelity. The solution to this expression can be found analytically as fol-

lows:

X1 = (ATA + 01 YA Ty + Azy) (5.4)

which is a Tikhonov variant that seeks a solution around a previous estimate. Equiv-
alently, one can also consider the least squares solution to the augmented system as

follows:

eer = argmin [ A%~ [ &, JIB 55

When the regularization term in Eqn. (5.3b) is rewritten as in Eqn. (5.6a), the opti-
mization step corresponds to denoising the image with Gaussian i.i.d. denoiser with
noise level \/g according to Bayesian probability [160], due to the £,-norm-squared

data fidelity term with the implicit forward operator identity.

Zyx41 = argmin —2 — ||z — XkHH% + uR(z) (5.6a)
Z =
X

Zx+1 = Denoiser (XkH, \/g> (5.6b)
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This step is a proximal update that tries to minimize the regularization penalty in the
proximity of the previous estimate coming from the data-fidelity update. In the ideal

scenario, this regularization function is an indicator function where:

0, ifzekX
R(z) =

oo, otherwise
where X is the subspace where epicardial potentials live.

The alternating optimization steps for variables z and k are applied to incorporate
the physics (the forward model) of the problem and the implicit prior to be learned
by a denoiser neural network. The regularization term is going to be kept implicit,
so that the CNN learns to apply proximal operator on the subspace that is unknown
to us. For comparison, in the zero-order-Tikhonov where the regularization term is
R(z) = ||z||3, this step would correspond to minimizing the energy of the solution in

the proximity of the inverse estimate.

5.2 Method

To apply the formulation to the inverse problem of ECG, some pre-processing proce-

dures should be performed. In this study,

e The reordering of epicardial nodes to increase the spatial correlation of the
randomly stacked potentials
e Data normalization and reshaping to assure proper training of the neural net-

work with LSTM and convolution layers

steps are carried out.

5.2.1 Node reordering in the unstructured grid

Due to the nature of the coordinate systems on which the signals in these problems are

defined, CNN is a good choice to learn the prior. However, measurements and epicar-
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dial signals of the ECGI inverse problem are defined on unstructured grids. The CNN
kernels might indeed be able to learn the temporal dependencies in the matrix form
of the epicardial signals in Eqn. (2.6). However, spatial features cannot be extracted
this way since the ordering of the epicardial nodes, hence the rows of the matrix X,
are arbitrarily numbered in the geometries’ mesh generation stage. To overcome this
and utilize CNNs for denoising, an algorithm to reorder the node numbering is im-
plemented. The algorithm aims to decrease the mean of neighborhood orders in a
convolutional neural network kernel, so that the kernels defined in regular grids can
learn the features of the spatially relevant signals on the geometry. The neighborhood
order between two nodes is defined by the number of edges in the shortest connecting

path on the geometry graph. This node-sorting algorithm can be seen in Algorithm 4.
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Algorithm 4 Skip-neighbor order minimizing node renumbering.

Require: Heart Geometry with N Nodes, StartOrder

1: Calculate neighborhood orders for every node up to 21% order.!

2: Number node 1 as 1 in the new ordering (CenterNode).

3: Remove the current node from the remaining nodes.

4: Add removed node to used nodes.

5. while There are still nodes to be renumbered do

6:  Assign new indices to the 1%-order, not-used neighbors of the CenterNode.
7:  Remove them from the remaining nodes and add them to the used nodes.
8:  Assign new indices to the 2"-order, not-used neighbors of the CenterNode.
9:  Remove them from the remaining nodes and add them to the used nodes.
10:  Order < StartOrder
11:  while Order <22 do

12: Calculate not-used, Order™ neighbors.
13: for node in Order™ neighborhoods do
14: if node is not renumbered yet then
15: CenterNode < node

16: CenterNode added to used nodes and removed from remaining nodes.
17: end if

18: end for

19: if CenterNode changed then

20: break

21 else

22: Order < Order + 1

23: end if

24:  end while
25: end while

26: return New Numbering

To compare the original sorting, the consecutive neighborhood orders between con-
secutive nodes in the numbering are plotted in Figure 5.1. As it can be observed,

the mean cost difference is negligible between 2 scenarios. However, the resorting

'Experimentally found order that contains the furthest node for every beat
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Original order: Starting order: 3
Mean Cost: 1.1984 Mean Cost: 1.2033
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(a) Original Sorting (b) Start Order: 3

Figure 5.1: Comparison of consecutive neighborhood orders in regular grid.

Table 5.1: Cross-neighborhoods for 3 sample nodes.

Node numbers N1 N2 N3

N1 0] 2| 4
N2 2103
N3 4 1310

allowed us to minimize the distance in terms of neighborhood orders between con-
secutive nodes based on the numbering. The mean discontinuity was 4.65 before
resorting, and it is reduced to 2.93. The calculated cost is the measure of mean
cross-neighborhood orders given a window of 6, which matches the spatial dimen-
sion of the convolutional kernels in the CNN. For each consecutive 6 nodes, all the
15 (C(6,2)) order-differences are calculated, and the mean of neighborhood order
distance is computed by subtracting one from each of the calculated entries, consid-
ering that obtaining a first order neighbor in the Euclidean grid is the best possible
scenario. A sample calculation for cross-neighborhood cost can be seen in Table 5.1.
The neighborhood orders between nodes N1, N2 and N3 are calculated. As expected,
the diagonals are zero and the neighborhood matrix is symmetric. From the values
in red, which corresponds to the cross-neighborhood orders, 1 is subtracted and the

mean of them are calculated. In this specific case, the cost is calculated to be 2.
Figure 5.2 shows the distribution of the resorted nodes based on color. It can be
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Distribution of node number Reordered distribution of node number
on the epicardial surface on the epicardial surface

Figure 5.2: Spatial distributions of reordered nodes.

clearly observed that in the resorted geometry, the color discontinuities are smoother,
which is an implication of node numbering is more suitable for the keeping the

consecutively-numbered nodes correlated.

5.2.2 Unrolling the optimization

Equations (5.3a) and (5.3b) are optimized with via the data fidelity block correspond-
ing to Eqn. (5.4) and the CNN denoiser network.

Measurement

_____________________________________________________________________________________________

A H A A

SCLE ] SCLE ** Denoiser ' SR ™ Denoiser zzé
Fidelity —> Fidelity SHre > Fidelity S
Block | Block Block
N VRN Y
\ZeroVector | | - *tunroliing 2"unroliing |
g J
Y

Initialization with

Tikhonov estimate Proposed reconstruction scheme

Figure 5.3: A sample architecture for HQS method for two unrolling iterations.

The data-fidelity block corresponds to the Tikhonov solution, when zy in Eqn. (5.4)
is taken as all O vector as in the earliest (the leftmost) block of the scheme given in

Figure 5.3.
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5.2.3 Data-Fidelity Block

The Tikhonov-variant operation that corresponds to data-fidelity block has only one
design parameter. Along multiple iterations, depending on the noise level of the es-
timates, the regularization parameter that balances the trade-off between the data-

model mismatch and the distance from the current estimate should be set.

The initial estimate to the input of this block, xg, is experimented with zero vec-
tor and zero-order Tikhonov estimate. For the first two blocks that produce the
initial estimate and the DFBlock of first unrolling iteration, these values are deter-
mined using one of the most used classical methods in ECGI. The L-curve technique,
which is highly convenient for finding the regularization parameter in BEM formu-
lated problems [162], is used to find a convenient range of regularization parameter
A in Eqn. (5.3a). In this method, the norm of the constraint and the residual are plot-
ted in logarithmic scale and the point that has the highest curvature is selected as the
optimal point. These quantities are computed for each of the training sample in the

dataset and the mean values are used to plot the L-curve in Figure 5.4.

Since the ground-truth data is already known, post-reconstruction metrics are also
calculated with different regularization parameters to perform sanity check on what
is found in the L-curve. The parameter sweep is conducted the same as before in the
L-curve, by exponentially sweeping a wider region at first as in Figure 5.4a and then
zooming into the promising region and performing a linear sweep as in Figure 5.4b.
The resultant curves for parameter selection can be seen in Figures 5.5 and 5.6. In
these experiments, for all the training data, CC and RE are calculated, and their mean
values are plotted. These figures imply that the optimal parameter should be in the

proximity of 1.75 x 10, where CC peaks and RE has its lowest value.

The experiments conducted on the training data for both experiments showed that in
72% of the data, two-times Tikhonov estimation penalized with the previous estimate,
i.e., initialization with zero-order-Tikhonov estimate, resulted in better mean tempo-
ral RE. The optimal selection of regularization parameter for the zero-order Tikhonov
estimate (the initial estimate in Figure 5.3) is 1.75 x 10~*. The L-curve results also

match this optimal parameter. Hence, the training process is initiated with the esti-
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mates computed with this regularization parameter. The regularization parameter of
the DFBlock in the first unrolling iteration is left initialized as this value and left as a

trainable parameter to be learned by the neural network.
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(b) Linear Sweep

Figure 5.4: L-Curve for exponential and linear sweeps.
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Figure 5.5: Exponential sweep of regularization parameter and post-reconstruction

metrics for the whole training dataset. The mean values of RE and CC are plotted.

Relative Error
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Figure 5.6: Linear sweep in a broader range of regularization parameters and post-
reconstruction metrics for the whole training dataset. The mean values of RE and CC

are plotted.
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5.2.4 Convolutional Neural Network

As mentioned before, the denoising step Eqn. (5.3b) is to be performed by a neural
network, in particular, a CNN. In this section, the model architecture and the training

configuration is going be presented.

5.2.4.1 Model architecture

The utilized base design for the neural network is also inspired from UNet with the

following modifications:

e A residual skip connection is added between input and output.

e A residual skip connection is added to the convolutional blocks utilized in the

same level encoder-decoder blocks.

e The number of convolutional kernels (output channel parameter in PyTorch) is
not specified as increasing powers of two, instead used custom and manually

set channel numbers.

The CNN model and the regularization parameter of the data-fidelity block are op-
timized by the Adam optimizer with learning rates 10~* and 10~® respectively. The
learning rate (LR) of the regularization parameter is intentionally set to provide slow
update to avoid the sensitivity of the solution to the regularization parameter. The
model parameters are updated after every batch of data is forward-fed to the network,
whereas the update period for the regularization parameter is one per every epoch.
This approach also guarantees that the sensitive parameter does not get updated with
just one batch of data, which may deviate the solution for other batches further. In-
stead, the gradient is accumulated and the mean of the total gradient to every batch is

applied to the regularization parameter.

The first training experiment setup is as follows:

e LRyodel: 104 o LRReg. param* 10~8
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e Optimizer: Adam e Scheduler Patience: 50
e Loss: Mean squared error e Scheduler Factor: 0.2

e Batch size: 64 e Scheduler monitor: Validation loss

5.2.4.2 Neural Network Architecture

The general architecture of the UNet model is given in Figure 5.7. Following that, the
layer-wise components of the main blocks of the UNet are given in Figure 5.8. The
convolutional block of the network has two convolutions, two batch normalization
layers following the convolutions, ReLLU activations and a subsequent dropout layer
after the first nonlinearity. Furthermore, there is a skip connection that concatenates
the input of the convolutional block and the first set of features coming from the
dropout layer. The encoder block is composed of one convolutional block whose
output is connected to the same level decoder block and the max pooling layer. The
decoder block, on the other hand, utilizes a 1D transpose convolution with kernel
size and stride equal to 2, resulting in a sequence upsampled by 2. After the transpose
convolution, the output depthwise concatenated to the features coming from the same-
level encoder via skip connection and there is a convolutional block that halves the

number of channels in the concatenation.

U-Net
Encoder Decoder Convolutional
Block(1,16) Block(32,16) Block(17,1)
Decoder

Encoder

Block(16,32) Block(64,32)
Encoder Decoder
Block(32,64) Block(128,64)
Encoder Latent Decoder
Block(64,128) Transformation Block(128,128)

Figure 5.7: The general architecture of the proposed UNet.
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Conv1D(6,same) Convolutional

Skip
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Normalization

l

RelLU
l Transpose

DecoderBlock(C;,,Cout)

Conv1d(C;,,,Cout)

v

Skip Depthwise
Connection Concat

v

Convolutional
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Y

Depthwise
Concat

l

Conv1D(6,same)
(Cin +Cout ’ Cout)

l

Batch
Normalization

l

RelLU

Figure 5.8: Layer-wise components of the U-Net architecture.

There are 4 encoder and 4 decoder blocks utilized in the proposed network. There
is a convolutional block at the end of the tensor flow to transform the output of the
decoder so that the output has only one channel, just like the input. Between the
level-4 encoder and decoder a transformation block is used to apply a transformation

on the encoded features in the latent space.

There are three model architectures proposed for the denoiser neural network. Differ-
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ent layers for transformation blocks are utilized. For the transformation block, first
a ConvolutionalBlock(128,128) is utilized. This network only utilized the spatial
features of the signals to learn the prior. To learn a spatio-temporal prior LSTM-
Block is used in the latent transformation. In addition to these, another scenario is
implemented with Long-Short-Term Memory (LSTM) units. In addition to the Con-
volutionalBlock(128,128) as the latent transformation, two LSTM layers are utilized
at the input and the output layers of the UNet. This scheme provides the configuration
for the network to learn the temporal prior directly at the signal space, rather than the

latent space.

Bi-LSTM UNet
(battﬁ:ll;h:tch) N BF;CCI(CZ:I;:S) > Blgg;&(:; 6) 4’(:;?:;:?1201" )al T (batt::g:tch)
y !
B.(E,ZEG‘Z‘,’QZ) Bigiz(t:i‘ﬂz)
Y -
Encoder R Decoder
Block(32,64) Block(128,64)
= =
Blfcnkc(g:;rza) ] §|12|V(?1' ;2:;?) 7 B.o[c’ﬁﬁ?i?{ 28)

Figure 5.9: The Bi-LSTM UNet architecture.

5.2.4.3 Data Preparation

The epicardial and thorax data simulations are conducted as explained in Chapter 3.
The data from experiments have shape [N X t;] where ¢; corresponds to the number
of time instances EGMs were captured for training data ¢ and /N corresponds to the
number of source locations, i.e. vertices of the geometry, to be reconstructed on the
epicardial surface. Due to the variations in ¢;, i.e., due to the fact that each data have

different time lengths, there are two options for setting the input data dimension:

e Procedure 1: Treating time dimension as the batch dimension, so that the neu-
ral networks’ layer sizes can be independent of this variation. Hence, the data

is reshaped to [B 1, N ] where B corresponds to the batch size or the time in-
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stances and N corresponds to the number of spatial features, i.e. nodes. The
unsqueezed second dimension is added for the proper operation of convolu-

tional layers implemented in PyTorch [163].

e Procedure 2: Finding an optimum range of EGM segment and an algorithm
for generating batches to deal with time-length variability, and building the

network based on this pre-determined length.

Depending on the types of layers of network used to learn the implicit prior, the
approach used to generate batches is determined. The networks that learn only the
spatial prior can exploit the flexibility of the first procedure. The options that utilize
the temporal correlation of the signals require the model to input the training data in
fixed shape. Hence, a procedure to generate fixed size batches from the training data

having different shapes is needed.

For Procedure 2, Algorithm 5 is implemented to generate batches of desired size
from the training data of various length. First, a batch size is determined and is given
as an input to the algorithm. The algorithm completes the data whose time dimen-
sion is smaller than this size is completed to desired batch size by cyclic concatena-
tion. If the training data contains more number of time instances, then it is split into
mini-batches of the desired batch size, starting from the first time instance. The lat

incomplete batch is completed by prepending the previous time instances.

In addition, to accelerate the neural network training, the inputs are normalized into

the range of [0 1]. For training data X, this is conducted as follows:

e X < X—min(X) — The input is shifted into the range[0, max(X) — min(X)]

TV
Peak-to-peak amplitude

X
peak-to-peak amplitude

o X +

Depending on the type of the Latent Transformation utilized in these networks, the

data is fed-forward to network differently. The transformation blocks are as follows:

e ConvolutionalBlock(128,128): In this case, different time instances are pro-

cessed separately as different batches. The temporal dependency of the signals
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Algorithm S Training Data Creation.

Require: A training database with N beats, batchsize
1: for Beat in the training set do
2:  t < time length of the beat
3. if ¢ <batchsize then

4: Repeat the beat in the time dimension | times

batesize |
batchsize

5: return Take the first batchsize time instances starting from ¢ = 0

6: else if ¢t =batchsize then

7: return Beat itself

8. else

9: Split the beat into equal pieces of size batchsize and save

10: Generate a final overlapping sequence of length batchsize from the end of

the beat and save

11: Concatenate saved beats in another dimension
12: return The concatenated tensor

13:  end if

14: end for

are not exploited in the learning process, hence only spatial prior is learned
thorough this configuration. Hence, Procedure 1 is employed in the batch gen-

eration.

e LSTMBIlock: This scenario enables network to learn the temporal dependency
between the encoded features in the latent space of the network. This requires

the network layers to be initialized as the same batchsize used in Procedure 2.

The normalized inputs are fed into the neural network and the output of the networks
are denormalized using the inverse process, by first amplifying by previously saved
peak-to-peak amplitude and then shifted by the minimum of the input. In the in-
ference step, same normalization and denormalization steps are applied to the test
data. Depending on the type of the neural network the normalization is performed

differently:

e Spatial normalization: In the networks that learn only the spatial prior, the
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normalization is performed along the spatial dimension of the input data. Hence,

this approach is utilized with Procedure 1.

e Spatiotemporal normalization: Since the spatial normalization causes signals
to lose temporal correlation, due to the fact that the peak-to-peak amplitude of
the spatial distribution changes over time, the spatiotemporal normalization is
performed in the networks which learn the spatiotemporal prior. In this ap-
proach, the whole training batch is normalized, instead of each of the indepen-
dent time instances. This normalization is applied on the batches generated via

Procedure 2.

The train-validation split of the data is performed randomly with a fixed random
seed to avoid the random performance alterations due to the random split. The train-
validation ratio was set to 0.05, hence 15 test beats are used for validation and 294
beats are used for training. The batch generation (Algorithm 5) is conducted on these
split datasets differently to prevent batches from the training data being in validation

data.

5.2.5 Architectural Evolution and Empirical Validation Results

In this section, the form of the final proposal for the neural network architecture is
validated by showing the performance of the previous models and model benchmark-

ing.

Figure 5.10 shows a scenario that corresponds to a reasonable validation data general-
ization, utilizing only spatial features of the data. Results in Figure 5.11 may indicate
that the spatially encoded features do not possess any correlation along the temporal
axis. Hence, it might be better to learn the temporal correlation in the signal domain.
On the other hand, when the temporal correlations are taken into account as described
in the scenario in Figure 5.11, the temporal correlation coefficient peaked at 0.99. Ex-
ploiting both spatial correlation in neighboring reordered nodes and the consecutive
time frames enabled model to fit data really well and simultaneously provided re-
markable validation results. Hence, Bi-LSTM Spatial UNet, is used to perform the

inference on the test data.
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To decide the batch size, which directly affects the model architecture, a series of

experiments are run and the train and validation results are inspected.

Table 5.2: Performance of Bi-LSTM UNet with different batch size configurations.

Batch | Train Train Validation Validation Train Validation
size CC RE CC RE Loss Loss
16 | 0.963 0.205 0.848 0.486 3.121 13.203
32 10965 0.202 0.912 0.349 3.410 7.698
64 | 0967 0.195 0.929 0.319 3.552 6.746
128 | 0.945 0.257 0.888 0.397 4.116 7.807

The results clearly showed that 64 as batch size is the optimal choice to capture the
temporal correlations in the training data, hence the batch size parameters of the ar-

chitectures that learn spatiotemporal prior are fixed.

5.3 Predictions on Test Data

The proposed method’s performance is compared with the zero-order Tikhonov regu-
larization and Bayesian MAP estimation using the same training data for prior model
estimation using 4 EGM reconstruction metrics, activation time CC and localization
error. These results, in median (IQR) representation, are collected under three ta-
bles as temporal metrics in Table 5.3, spatial metrics in Table 5.4 and activation time
related metrics in Table 5.5. The most performant method’s result is given in bold

font.

In all the test data, the proposed method outperformed the remaining methods. On
average, NN improves the reconstructions of Tikhonov by 21.2% and MAP by 14.8%
in terms of temporal RE. The temporal CC is observed to be the highest for the NN
for every test beat, and it resulted in an average of approximately 0.1 improvement in
the CC. The improvement is more obvious when temporal REs provided by NN and

Tikhonov are compared, which is decrement by 0.16 on average.

When spatial metrics are analyzed, it is observed that the proposed method provides
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more stable and consistent reconstruction throughout different time instances of the
beat, greatly improving the IQR at least by 33%. This can also be observed in Fig-
ure 5.13, where spatial CC is plotted in box plots. The qualitative analysis imme-
diately shows that the distributions provided by NN are much more compact when
compared to the remaining metrics. Other distributions for three remaining metrics
can be found in Section 7.3. Both the improved median and best-case temporal met-
rics, along with the compact distribution of spatial metrics clear shows the benefit of

learning temporal prior.

Table 5.3: Temporal Metrics for Test Data using different reconstruction methods in

median(IQR) representation.

Test Temporal CC Temporal RE

Data | Proposed MAP Tikhonov | Proposed MAP Tikhonov
1 0.86(0.22) 0.76(0.21) 0.75(0.26) | 0.50(0.34) 0.62(0.26) 0.63(0.31)
2 0.83(0.30) 0.73(0.39) 0.79(0.35) | 0.57(0.45) 0.70(0.42) 0.67(0.39)
3 0.86(0.17) 0.73(0.24) 0.80(0.16) | 0.51(0.27) 0.66(0.25) 0.61(0.24)
4 0.88(0.19) 0.84(0.18) 0.83(0.26) | 0.63(0.29) 0.71(0.38) 0.73(0.31)
5 0.91(0.19) 0.85(0.25) 0.85(0.23) | 0.56(0.17) 0.70(0.29) 0.74(0.29)
6 0.91(0.12) 0.83(0.18) 0.83(0.15) | 0.45(0.31) 0.57(0.25) 0.61(0.26)
7 0.83(0.23) 0.72(0.29) 0.68(0.37) | 0.57(0.10) 0.68(0.31) 0.72(0.35)
8 0.86(0.22) 0.75(0.29) 0.69(0.47) | 0.51(0.14) 0.66(0.35) 0.68(0.46)
9 0.88(0.21) 0.75(0.27) 0.75(0.24) | 0.49(0.36) 0.64(0.26) 0.67(0.25)
10 | 0.86(0.22) 0.74(0.33) 0.70(0.40) | 0.52(0.37) 0.63(0.31) 0.68(0.33)
11 | 0.88(0.24) 0.76(0.32) 0.79(0.26) | 0.53(0.36) 0.62(0.33) 0.67(0.31)
12| 0.88(0.22) 0.80(0.33) 0.78(0.33) | 0.53(0.32) 0.60(0.31) 0.69(0.39)
13 | 0.90(0.18) 0.82(0.20) 0.81(0.24) | 0.45(0.39) 0.59(0.28) 0.64(0.37)
14 | 0.89(0.17) 0.81(0.32) 0.76(0.33) | 0.49(0.36) 0.59(0.33) 0.67(0.40)
15 | 0.88(0.17) 0.80(0.20) 0.79(0.19) | 0.51(0.34) 0.61(0.25) 0.63(0.26)
16 | 0.88(0.14) 0.77(0.15) 0.75(0.21) | 0.47(0.28) 0.61(0.23) 0.65(0.28)
17 | 0.88(0.14) 0.81(0.14) 0.76(0.20) | 0.47(0.30) 0.57(0.23) 0.65(0.29)

Med

(I0R) 0.88(0.02) 0.78(0.06) 0.79(0.05) | 0.50(0.05) 0.61(0.06) 0.66(0.05)
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Table 5.4: Spatial Metrics for Test Data using Different Reconstruction Methods.

Test Spatial CC Spatial RE
Data | Proposed MAP Tikhonov | Proposed MAP Tikhonov
1 0.80(0.10) 0.73(0.33) 0.73(0.23) | 0.60(0.13) 0.69(0.30) 0.70(0.23)
2 0.86(0.08) 0.67(0.20) 0.78(0.25) | 0.51(0.13) 0.74(0.18) 0.63(0.26)
3 0.86(0.12) 0.69(0.30) 0.77(0.26) | 0.53(0.18) 0.75(0.24) 0.69(0.30)
4 0.79(0.18) 0.69(0.41) 0.68(0.38) | 0.64(0.28) 0.71(0.38) 0.73(0.31)
5 0.83(0.11) 0.75(0.27) 0.69(0.34) | 0.56(0.17) 0.70(0.29) 0.74(0.29)
6 0.87(0.16) 0.76(0.33) 0.78(0.34) | 0.50(0.23) 0.64(0.31) 0.64(0.33)
7 0.82(0.13) 0.70(0.31) 0.63(0.35) | 0.55(0.10) 0.67(0.16) 0.71(0.20)
8 0.85(0.13) 0.71(0.28) 0.70(0.23) | 0.52(0.14) 0.67(0.20) 0.68(0.13)
9 0.87(0.11) 0.69(0.30) 0.57(0.41) | 0.51(0.17) 0.74(0.24) 0.76(0.29)
10 | 0.78(0.22) 0.66(0.27) 0.57(0.39) | 0.58(0.28) 0.72(0.27) 0.76(0.32)
11 0.80(0.22) 0.69(0.33) 0.66(0.38) | 0.59(0.22) 0.73(0.28) 0.76(0.27)
12| 0.79(0.26) 0.70(0.52) 0.68(0.59) | 0.62(0.29) 0.72(0.36) 0.75(0.35)
13 | 0.87(0.15) 0.81(0.31) 0.79(0.20) | 0.49(0.21) 0.60(0.32) 0.62(0.19)
14 | 0.84(0.11) 0.80(0.64) 0.77(0.39) | 0.53(0.23) 0.59(0.43) 0.65(0.29)
15 ] 0.85(0.03) 0.75(0.20) 0.78(0.15) | 0.53(0.07) 0.68(0.20) 0.63(0.16)
16 | 0.88(0.06) 0.78(0.25) 0.73(0.23) | 0.47(0.15) 0.64(0.28) 0.66(0.25)
17 | 0.87(0.08) 0.82(0.23) 0.74(0.18) | 0.50(0.18) 0.59(0.28) 0.64(0.21)
Med
(I0R) 0.85(0.05) 0.70(0.08) 0.71(0.10) | 0.53(0.06) 0.69(0.09) 0.68(0.10)
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Table 5.5: ATCC and Localization Error for Test Data using Different Reconstruction

Methods.
Test AT CC Localization Error
Data | Proposed MAP Tikhonov | Proposed MAP Tikhonov
1 0.99 0.97 0.96 26.93 17.31 17.31
2 0.98 0.94 0.98 5.36 10.64 15.30
3 0.98 0.94 0.98 22.61 18.62 23.62
4 0.89 0.95 0.92 5.15 7.33 8.55
5 0.83 0.94 0.91 10.58 11.84 7.74
6 1.00 0.97 0.98 5.06 20.22 14.70
7 0.99 0.91 0.84 0.00 12.31 12.31
8 0.92 0.73 0.80 26.19 24.36 24.36
9 0.97 0.95 0.89 5.11 20.65 29.52
10 0.98 0.91 0.62 5.81 21.23 30.39
11 0.97 0.97 0.94 8.52 21.18 26.87
12 0.98 0.98 0.97 12.41 13.80 12.26
13 0.99 0.98 0.99 4.84 5.02 7.42
14 0.99 0.98 0.99 0.00 8.53 5.31
15 0.96 0.97 0.94 4.53 7.98 5.46
16 0.99 0.96 0.94 21.96 35.54 33.77
17 0.94 0.94 0.92 13.62 28.41 14.57
Med
(I0R) 0.98(0.02) 0.95(0.03) 0.94(0.07) | 5.8(8.6) 17.0(10.5) 14.7(16.6)
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The activation time computation, as a post-processing step, is realized to compare
the performance of the proposed method to the classical methods. On average, NN
method outperformed MAP by 3% and Tikhonov by 4% in terms of activation time
CC. The approach again provided the more compact CC distribution on average. Fur-
thermore, it significantly outperformed the classical methods at localizing the pacing
site of the test beats. The proposed approach yielded a reduction in error by a factor of
one third compared to the alternative methods, showcasing its superior performance
and efficacy. In test data 4 and 5, the NN reconstructions resulted in less localization
error, although the activation time correlation was lower. From this, one can deduce
that the proposed method can reconstruct the epicardial signals better at the earlier ac-
tivated stages. Although the correlation is lower due to the errors in the reconstruction
of later activated time instances, the signals at the nodes that have smaller activation
time is reconstructed better. This fact can be observed in Figure 5.14. The regions
where the activation time maps show smaller values is earlier activated regions. In
these points, the proposed approach produced a wider region of red values, which

implies the lower RE and successful temporal reconstructions.

From the proximity of the pacing site, NN produced lower RE maps compared to the
remaining classical methods. Hence, this figure justifies the “inconsistency” between
the activation time CC and LE. The corresponding EGM reconstruction is illustrated

in Figure 5.15.

In Figure 5.15, the initial observation is that all the methods caused time latency
with respect to the ground truth in the reconstruction process. Another observa-
tion is the fluctuating EGMs in the Tikhonov solution. This is actually caused by
the temporally-independently corrupted test data. Due to the direct matrix multipli-
cation for the inverse computation which does not enforce any temporal constraint,
Tikhonov and MAP solution generated EGM solutions that have zigzag patterns. Due
to the Bi-LSTM structure in the proposed method, the temporal prior is learned and
successfully used for denoising, producing smoother EGMs along the time dimen-

sion.
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RE maps for test data 5
NN Temporal RE MAP Temporal RE

1]

Activation Map of

Tikhonov Temporal RE Ground-truth

R
.
“é

Figure 5.14: The temporal relative error maps given by 3 different reconstruction

techniques and the corresponding activation map computed from the test signal. The
earlier activated regions (shown by red in the bottom right figure) are shown in red

for a wider region in NN method (top left).

5.4 Discussion

In this chapter, a method is proposed to augment the physics based model with the
learned prior. The approach, in terms of both EGM reconstruction metrics and AT
metrics, outperformed the zero-order Tikhonov and the Bayesian MAP approach us-
ing the same training data. This result can be attributed to the level of complexity of
the constraint each approach imposes on the solution. The Tikhonov regularization
confines the solution space to signals having small energy, whereas MAP estimation
models the prior distribution of the epicardial potentials as Gaussian and outputs the

solution that maximizes the posterior pdf, i.e., finds the most likely solution given the
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Reconstructed EGMs for test data 5
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Figure 5.15: EGM reconstructions by different approaches and test data 5.

measurements. The proposed method starts with a zero-order Tikhonov estimate, and

estimate another solution in the proximity of this solution. Following that, the CNN

is applied as a proximal operator that corresponds to the learned spatio-temporal prior

of the epicardial signals. Although there is a drop in the test performance with respect

to the training data performance as usual, the experiments showed that the model was

able to generalize to priors from other experiments.

5.4.1 Limitations and Future work

In this study, both the training data and test data are corrupted with 20dB SNR noise.

Hence, the model’s sensitivity to noise in training and inference phases are not in-

spected. Furthermore, the measurements are simulated with an inhomogeneous for-



ward model and the inverse solution is performed with a homogenous forward model.
In all these experiments, a single forward model is used. The model’s effect on x;
in Figure 5.3, which is denoised by the CNN to produce the final estimation, can be

expressed as follows:

x1 = (ATA +AT) (T + A(ATA + A1) )ATy (5.7)
— ((ATA + M)+ A(ATA + A1) )ATy (5.8)
= A,y (5.9)

This is why the model learned to denoise a colored noise (which is amplified by the
pseudo-inverse matrix that corresponds to the equation Eqn. (5.4)), unlike what the
formulation in Eqn. (5.1) implies (a white Gaussian). Due to the £,-norm data-fidelity
term, the denoiser was supposed to be denoise an i.i.d Gaussian noise. If we were to
increase the number of iterations, the CNN can be claimed to converge to a state that
performs this task. However, since the optimization is unrolled for only one iteration,
the noise removed by the CNN depends on the forward matrix A. The sensitivity of

the method to the forward model should be quantified by future studies.
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CHAPTER 6

CONCLUSION

This thesis has presented two studies that aim to improve the solution methods to
the inverse problem of ECG, where intelligent ways of training data assessment and
improvement of the accuracy and performance of ECGI by blending data-driven tech-
niques with solid physics-based models are explored. The efforts of this exploration

is divided into two distinct studies, each shedding light on a different facet of ECGI.

6.1 Evidence and Covariance-based Training Data Selection

In the first study, we focused on the pivotal role of training data in shaping the effec-
tiveness of ECGI. Depending on the formulation, the training data is used to estimate
the prior model parameters, estimate the state transition matrix of the Kalman filter
and the initial estimate for the state vectors and for learning the prior distribution or

conditional distribution of the data [96, 137, 141].

Previous studies in the field of ECGI adapted different ways of utilizing the training

data which can be summarized as follows:

e The whole available data is utilized without any selection, especially in limited

data scenarios such as training the neural networks [137].

e Believing that the priors that match the estimated solution more are more suc-
cessful in the reconstruction, the training data to estimate the prior is sampled
from the proximity of the estimated pacing location of the solution by using

Euclidean distance or the neighborhood distance [105, 106].
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In this study, the training data’s representation capability of the prior distribution was
assessed in the Bayesian MAP estimation setting. Introducing the evidence approach
and the covariance approach, we aimed to fine-tune how training data is used. The
evidence approach demonstrated its flexibility by creating custom training data for
each scenario, highlighting its adaptability. The covariance approach, on the other
hand, tapped into the patterns hidden in data’s cross-correlations, essentially refining
how we estimate spatial variance. We found that, the covariance approach was able to
achieve a statistically similar performance by utilizing only one fourth of the training
data by estimating the spatial covariance as unbiased as possible within the avail-
able training database. Considering that the variance imbalance results from different
stimulation locations, our results match the previous results stating that the wider
pacing location coverage on the epicardial surface while forming the training data
resulted in better performance. Our method proposed a systematic way of achieving
this. In conclusion, these methods offer a roadmap for making the most of training
data, helping ECGI researchers determine the sufficiency of representation of training

data for accurate ECGI.

6.2 Physics-based Al-assisted Imaging

The second study took the initial step to redefine model-based ECGI by blending
the best of physics-based models with data-driven learning. By merging the classic
Tikhonov regularization with modern Convolutional Neural Networks (CNNs), a re-
construction method is proposed with careful organization of data that is defined on
an irregular grid, that outperformed traditional approaches. By learning the indicator
function in both spatial and temporal directions, the method provided a better regular-
ization than the classical methods that only used the spatial correlations to represent
the prior. This resulted in improved temporal metrics and more consistent spatial
performance throughout the test beat’s time instances, which is implied by the more
compact distribution of the spatial reconstruction metrics. These results also veri-
fied the neural networks are generalizable to different prior distributions under one

forward model if the training data has sufficient diversity.

This approach differs from the latest efforts to incorporate neural networks in the field
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of ECGI in these aspects:

e Most of the studies used end-to-end training approaches that requires neural
networks to learn both the reconstruction process and the prior [137, 138]. Our
approach utilized the BEM generated forward model and a neural network to
split the whole reconstruction process to analytical and proximal operators.
Hence, neural networks are just used for learning the prior space where the

epicardial signals lie.

e The data is directly used in the form it is measured. Unlike [140], there was
no pre-processing in the data to transform the domain of the signals to a reg-
ular grid. Likewise, there are attempts to define the geometries as graphs and
learn the spatiotemporal prior in the graph domain [141]. This method requires
some custom graph convolutional operations, which are more computationally
expensive and the physics-based relationship is learned in this scheme. Instead,
we compute the physics-based operator from the geometry information we al-
ready have in a less-costly way and use this forward operator directly in the
reconstruction with regular neural network layers. Since, the physics-based op-
erator is computed, the number of required parameters in the neural network
to learn the prior is less than the approach utilizing graphs. Although this ap-
proach is mainly proposed to improve the patient generalization, the networks

are again fine-tuned with different patient data before the inference [143].

e Lastly, measured epicardial potentials and simulated torso potentials are uti-
lized in this study. Most of the studies that utilize large amount of training data
use generated (synthetic) training data to train their networks. In the method
proposed in this thesis, the neural network was able to perform as a proximal
operator that corresponds to the prior of measured signals requiring no need for

preprocessing.

As future extensions of this initial work, the method’s sensitivity to noise and for-
ward model should be quantitatively assessed. In this configuration, the methodology
only allows the generalization of geometric error, such as rotated, shifted or slightly

scaled version of the same geometry. Using plug-and-play reconstruction scheme, the
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study should be improved to determine the generalizability of the trained network to

different forward models.

6.3 Conclusion

The possible approaches to improve the solution to the inverse problem of ECG are
proposed and discussed in this thesis study. The take-off message from the thesis was

it is possible to achieve

e the same performance by utilizing a small portion of training data intelligently.

e higher performance by using intelligent methods to learn the prior distributions
of the epicardial potentials from the data using the building-blocks that is ap-

propriate for the nature of the epicardial potentials.

The works presented here are initial studies that are going to need the proof of gener-
alization to other configurations in the inverse problem. Nevertheless, these prelimi-
nary findings lay the foundation for broader generalizations across various scenarios

in the realm of the inverse problem of ECGI.
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CHAPTER 7

APPENDIX

7.1 Bayesian MAP solution

This section is left for the derivation of Bayesian MAP solution with Gaussian prior

and independent identically distributed Gaussian noise that is uncorrelated with the

measurements.

P ——— A
(27) 7 |Cxl?
(n) = L Y (L

The covariance of y can be obtained as follows:

Cy=E[ly-9y-9]
y=AXx = (y—y)=A(X—X)+n
——

E[(Axo + n)(Axy +n)"]

Cy
C,=E [AXOX§AT] + E [nnT} + E [AxonT + nngT}

TV
Cancels out due to uncorrelatedness
and zero-mean noise

C, = AC, A" +C,

The MAP solution is the solution that maximizes the posterior probability:
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(7.1)

(7.2)

(7.3)

(7.4)
(7.5)

(7.6)
(7.7)

(7.8)



X = argmax p(x\y) (7.9)

— arg max P(y\¥)p(x)

x [ ply\x)p(x)dx (7.10)

The denominator of the Eqn. (7.10) is independent of the variable x. Using the mono-

tonicity of the logarithm function, Eqn. (7.9) can be rewritten as follows:

%X = argmax log(p(x\y)) (7.11)

X = argmax log(p(x)) + log(p(y\x)) (7.12)
The only remaining term that needs to be explicitly defined is the conditional pdf
p(y\x). This expression corresponds to the distribution of y for a given x. With this

observation, the conditional pdf can be written as follows:

1 _
P(y\x) = —5 e 2 AN T y-AT (7.13)
(2m) 2 |Cul?
Inserting Equations (7.1) and (7.13) into Eqn. (7.12), we end up with the following

optimization expression:

(7.14)

% =argmin (y — Ax")C, My — Ax) + (x —X)C, Hx —x)T  (7.15)

X ~~

J(x)

Vo J(x) = —2ATC, 'y +2ATC, 'Ax +2C, '(x —%X) 2 0atx =% (7.16)

The Bayesian MAP solution can be expressed in closed form as:
fmap = (ATC'A + CY) (ATC,ly + CL'%) (7.17)
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7.2 Chapter 4 Results
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