
SECURE MODEL VERIFICATION AND PRIVACY PRESERVATION WITH
ZK-SNARKS AND NEURAL NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DURSUN OYLUM SERINER GERENLI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

SEPTEMBER 2023

Approval of the thesis:

SECURE MODEL VERIFICATION AND PRIVACY PRESERVATION WITH
ZK-SNARKS AND NEURAL NETWORKS

submitted by DURSUN OYLUM SERINER GERENLI in partial fulfillment of the
requirements for the degree of Master of Science in Cryptography Department,
Middle East Technical University by,

Prof. Dr. A. Sevtap Selçuk Kestel
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Oğuz Yayla
Head of Department, Cryptography

Prof. Dr. Ferruh Özbudak
Supervisor, Mathematics, METU

Examining Committee Members:

Assist. Prof. Dr. Buket Özkaya
Cryptography, METU

Prof. Dr. Ferruh Özbudak
Mathematics, METU

Assist. Prof. Dr. Eda Tekin
Cryptography, Karabük University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: DURSUN OYLUM SERINER GERENLI

Signature :

v

vi

ABSTRACT

SECURE MODEL VERIFICATION AND PRIVACY PRESERVATION WITH
ZK-SNARKS AND NEURAL NETWORKS

Seriner Gerenli, Dursun Oylum

M.S., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

September 2023, 79 pages

Neural networks are widely used learning models to achieve successful results in
many application areas today. However, proving and sharing the accuracy and relia-
bility of these networks is often limited due to privacy and security challenges. In this
study, a method of cryptographic proving the accuracy of neural networks without
revealing their intrinsic components is presented. The method is presented by using
the Circom programming language to create a circuit containing these elements by
making use of the final weights, bias values, and inputs of the neural networks. The
use of the Circom programming language makes it possible to convert neural network
elements into electronic circuits. The resulting circuit contains the representation of
the neural network model and mimics the transformation from inputs to outputs. It is
also used with Groth16 which is a Zero Knowledge Proof system to prove the accu-
racy of the neural network without leaking private information. As in this study, the
newly produced circuit can be used with the help of zkREPL or terminal. As a result,
an experimental method is presented to prove the real-world performance of the neu-
ral network model and increase the reliability of the model, and using the knowledge
found in the literature, an approach has been explored to be implemented to solve
current security problems. In this way, the correctness of the model can be proven
without directly telling the hidden inputs to the other party.

vii

Keywords: Cryptography, Zero Knowledge Proof, Neural Networks, Groth16, Cir-
com, Machine Learning

viii

ÖZ

ZK-SNARK VE SİNİR AĞLARI İLE GÜVENLİ MODEL DOĞRULAMA VE
ÖZEL VERİNİN KORUNMASI

Seriner Gerenli, Dursun Oylum

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Eylül 2023, 79 sayfa

Yapay sinir ağları günümüzde birçok uygulama alanında başarılı sonuçlara ulaşmak
için yaygın olarak kullanılan öğrenme modelleridir. Ancak, bu ağların doğruluğunun
ve güvenilirliğinin kanıtlanması ve paylaşılması genellikle gizlilik ve güvenlik sorun-
ları nedeniyle sınırlıdır. Bu çalışmada, yapay sinir ağlarının içsel bileşenlerini ortaya
çıkarmadan doğruluğunu kriptografik olarak kanıtlayan bir yöntem sunulmaktadır.
Yöntem, sinir ağlarının nihai ağırlıkları, bias değerleri ve girdilerinden yararlanarak
bu elemanları içeren bir devre oluşturmak için Circom programlama dili kullanıla-
rak sunulmuştur. Circom programlama dilinin kullanılması, sinir ağı elemanlarının
elektronik devrelere dönüştürülmesini mümkün kılar. Ortaya çıkan devre, sinir ağı
modelinin temsilini içerir ve girdilerden çıktılara dönüşümü taklit eder. Ayrıca, sinir
ağının doğruluğunu özel bilgileri sızdırmadan kanıtlamak için Zero Knowledge Proof
sistemi olan Groth16 ile birlikte kullanılır. Bu çalışmada olduğu gibi yeni üretilen
devre zkREPL veya terminal yardımıyla kullanılabilir. Sonuç olarak, sinir ağı mode-
linin gerçek dünya performansını kanıtlamak ve modelin güvenilirliğini artırmak için
deneysel bir yöntem sunulmuş ve literatürde bulunan bilgiler kullanılarak mevcut gü-
venliğik probleminin çözümüne yönelik uygulanacak bir yaklaşım araştırılmıştır. Bu
sayede gizli girdiler doğrudan karşı tarafa söylenmeden modelin doğruluğu kanıtla-
nabilmektedir.

ix

Anahtar Kelimeler: Kriptografi, Sıfır Bilgi İspatı, Sinir Ağları, Groth16, Circom, Ma-
kine Öğrenmesi

x

To my family

xi

xii

ACKNOWLEDGMENTS

I would like to extend my heartfelt appreciation to my supervisor, Prof Dr. Ferruh
Özbudak, for his help throughout the process of developing and preparing this thesis.

I would like to express my gratitude to the members of my examination committee,
Assist. Prof. Dr. Buket Özkaya and Assist. Prof. Dr. Eda Tekin, for their valuable
time dedicated to me.

I would like to thank my manager Ömer Yaminoğlu, who supported the writing of
this thesis.

I would like to thank my dear friends who have always supported me, especially my
high school friends who encouraged me during the writing of my thesis.

I would like to express my gratitude to my dear husband Umur Gerenli. He gave me
great ideas, even on topics completely unrelated to his expertise. Thanks for being by
my side with incredible suggestions and constant support.

I would want to extend my heartfelt gratitude to my family. They consistently provide
me with their love and support whenever I need it.

xiii

xiv

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xiii

TABLE OF CONTENTS . xv

LIST OF TABLES . xix

LIST OF FIGURES . xx

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Related Works . 2

1.2 The Outline . 3

2 ZERO KNOWLEDGE PROOF . 5

2.1 What is a zero-knowledge proof ? 5

2.1.1 Requirements for a zero-knowledge proof system
specification . 7

2.1.2 Specifying Statements for ZK 8

2.1.3 Example1: Discrete logarithm (discrete-log) 8

xv

2.1.4 Example2: Graph non-isomorphism 9

2.1.5 Example3: Schnorr’s Identification Protocol 10

2.1.6 Differences Between Interactive and Non-interactive
ZKP . 11

2.2 What is the ZK-snark? . 12

2.2.1 Example of ZK-Snark 13

2.2.1.1 Preliminaries 13

2.2.1.2 Example Solution about ZK-SNARK . 16

2.2.2 Groth16 . 23

3 MACHINE LEARNING . 33

3.1 Definition of Machine Learning 33

3.2 Supervised Learning and Unsupervised Learning 34

3.3 Process of Developing Model 34

3.4 Importance and relevance of privacy in ML 36

3.5 Zero Knowledge Machine Learning 39

3.6 Neural Networks . 39

3.6.1 Neural Networks Structure with Python Code . . . 40

3.7 Reversing Model . 51

4 IMPLEMENTATION OF ZKML PROTOTYPE 53

4.1 CIRCOM and Snarkjs . 55

4.2 Terminal . 55

4.2.1 Step 1: Installation 56

xvi

4.2.2 Step 2: Writing Circuits 57

4.2.3 Step 3: Computing Witness 61

4.2.4 Step 4: Proving circuits (Groth16) 62

4.3 ZkREPL . 69

5 CONCLUSION . 71

5.1 Limitations . 72

5.2 Future Work . 72

REFERENCES . 75

xvii

xviii

LIST OF TABLES

Table 2.1 Example of ZKP . 5

Table 2.2 Discrete Logarithm Protocol . 8

Table 2.3 Graph Non-isomorphism Protocol 9

Table 2.4 Schnorr’s Identification Protocol 10

xix

LIST OF FIGURES

Figure 2.1 Arithmetic circuit for f(s1, s2, s3) = (s1 · s2) · s3 13

Figure 2.2 Flattening for ZK-snarks . 17

Figure 3.1 Process of Machine Learning [2] 36

Figure 3.2 Neuron [28] . 40

Figure 3.3 Neural Netwrok Structure . 41

Figure 3.4 Output of Python code 1 . 42

Figure 3.5 Output of Python code 2 . 43

Figure 3.6 Output of Python code 3 . 43

Figure 3.7 ReLU Graph . 45

Figure 3.8 Output of Python code 5 . 46

Figure 3.9 Output of Python code 7 . 48

Figure 3.10 Train Loss and Validation Loss for each epoch 49

Figure 3.11 Train Accuracy and Validation Accuracy for each epoch 49

Figure 3.12 Confusion Matrix of Neutral Network Model 50

Figure 3.13 Output of Python code 8 . 51

Figure 4.1 Neutral Network Flowchart . 54

Figure 4.2 Circom and Snarkjs . 56

Figure 4.3 Image of Terminal Output 1 . 60

Figure 4.4 Image of Terminal Output 2 . 62

Figure 4.5 The output of zkREPL . 69

xx

LIST OF ABBREVIATIONS

CRS Common Reference String

IZKP Interactive Zero Knowledge Proof

ML Machine Learning

NZKP Non-Interactive Zero Knowledge Proof

QAP Quadratic Arithmetic Programs

R1CS Rank-1 Constraint System

ReLU Rectified Linear Unit

ZK Zero Knowledge

ZKML Zero Knowledge Machine Learning

ZKP Zero Knowledge Proof

ZKSNARK Zero-Knowledge Succinct Non-interactive ARgument of Knowl-
edge

xxi

xxii

CHAPTER 1

INTRODUCTION

The discipline of cryptography has traditionally been used to guarantee the privacy

and integrity of information exchange. The use of these tools, initially limited to mil-

itary and diplomatic communication, gradually extended to other domains of civilian

life, eventually establishing itself as a fundamental component of the contemporary

digital landscape. The proliferation of the Internet has heightened the significance of

encryption in safeguarding personal data and sensitive information.

Machine learning is a pivotal technology that finds extensive use in several domains,

including but not limited to data analysis, predictive modeling, and automated decision-

making across diverse sectors. However, machine learning models are not exclusively

dependent on the efficacy of algorithms and training data. The quality, integrity, and

confidentiality of the input data play a critical role in protecting the performance and

security of the model. Cryptography includes a collection of mathematical method-

ologies that facilitate the establishment of safe encryption and decryption mechanisms

for data. Cryptography techniques provide a viable means of safeguarding input data

or other value not to be shared. The reason for maintaining confidentiality about the

model inputs is expanded further inside the thesis. Using proper data storage tech-

niques enhances the dependability of the model and safeguards against the occurrence

of inaccurate outcomes.

The main problems discussed in this thesis relate to the following. Firstly, the train-

ing data sample may include personal and private information. Individuals who own

ownership of this dataset may be interested in using it to train a model while maintain-

ing a sense of control and authority over the data. Secondly, a person with malicious

1

motives possessing knowledge of the model’s output may manipulate the model to

get desired outcomes. Thirdly, it facilitates competitors in gaining awareness of the

fundamental principles of powerful AI models and using this knowledge to their ad-

vantage. This thesis explores cryptographic techniques that may be used to minimize

the occurrence of adverse events.

By using the groth16 algorithm, it will be proved that the predictions of the model

belong to this model without revealing the weight, input and biases of the neural net-

work model. For this, an application is presented via terminal and ZKML compiler as

a method. It has been stated in the literature that ZK-snarks may be used with neural

network models; however, there have been deficiencies in terms of their application,

which is why Groth16 and Neural Network models was chosen for this thesis. This

thesis will provide a model of its applicability because of these reasons.

1.1 Related Works

Zhang et al. (2020) conducted a research [38] with the objective of using the Zero

Knowledge Proof technique to safeguard the privacy of a decision tree model. The

primary objective of this research was to maintain the integrity of the forecasts and

precision of the decision tree model.

In their academic article titled "VeriML: Enabling Integrity Assurances and Fair Pay-

ments for Machine Learning as a Service," [39] Zhao et al. (2021) try to develop

a methodology using snark for protecting the training data of six distinct models.

This study is conducted according with the goals of maintaining data integrity and

facilitating equitable financial transactions.

"Decentralized Federated Machine Learning with Blockchain and Zero Knowledge

Proofs" focuses on how Federated Machine Learning (FML) models can use Zero

Knowledge Proofs (ZKP) and blockchain technologies to protect privacy without ex-

posing the main data source [33].

The aforementioned research was carried out by Lee, Ko, Kim, and Oh (2020) and

was subsequently published with the title "vCNN: Verifiable Convolutional Neural

2

Network based on zk-snarks". This article [14] presents a novel convolutional neural

network (CNN) architecture, referred to as the accelerated verification CNN (vCNN),

which aims to significantly enhance proof performance. The primary objective of

this framework is to guarantee the verifiability of convolutional neural networks by

the incorporation of zk-SNARKs technology. This paper introduces a novel and fast

language for enhancing the proving performance of convolution equations.

In the article [7] is a publication titled "SafetyNets: Verifiable Execution of Deep

Neural Networks on an Untrusted Cloud," Ghodsi, Gu, and Garg introduce a concep-

tual framework that aims to establish the reliability of deep learning model inference

tasks conducted by an untrusted cloud service provider on behalf of its client in 2017.

1.2 The Outline

This thesis starts with the basic principles of Zero-Knowledge Proof (ZKP) and dis-

cusses the applications of this concept in different fields [5], [22]. To understand the

essence of ZKP, examples of number theory such as discrete logarithm, graph non-

isomorphism, and Schnorr’s Authentication Protocol are examined [31]. Also, both

interactive and non-interactive ZKP approaches are introduced [9].

Building on this basic insight, the focus is on ZKsnarks and specifically the Groth16

algorithm [6], [20], [36]. By giving examples about the Groth16 algorithm [27],

examples of data that protects confidentiality, which is one of the powerful and wide

application areas of ZKP, are shown.

The focus of the thesis then shifts to Machine Learning(ML) [21]. Firstly, the con-

cepts of supervised and unsupervised learning are introduced [2], [26], [29]. Then,

the development processes of a model and the importance of confidentiality in this

process are emphasized [30]. It also explains Zero Knowledge Machine Algorithm

(ZKML) [13], [25].

After the definition of neural network models [11], [32], [37] it is explained how a

model is developed over a Python example [5], [16], [18]. This model demonstrates

how weights, biases, and inputs are validated without disclosure, using the Groth16

3

algorithm and using a terminal or online compiler (ZkREPL) [3], [12], [29]. This

highlights how ZKP can be integrated with machine learning and how data privacy

can be protected.

4

CHAPTER 2

ZERO KNOWLEDGE PROOF

2.1 What is a zero-knowledge proof ?

According to "ZKProof Community Reference" study [5] (Benarroch et al., 2022),

ZKP requires proving true statements without saying secret information directly. The

prover tries to prove the statement, and the verifier continuously checks the results.

In addition, a statement (Notation: x ∈ L) means that it is a claim, and the prover

and verifier know it. The statement needs to be substrate and call instance (Notation:

I). Then, the secret information calls the witness (Notation: w). This part focuses on

some examples of ZKP in real life, and the above table shows some examples,

Table 2.1: Example of ZKP

Statement Instance Witness

I am an adult Tamper-resistant Birthdate and

identification chip personal data

We are not bankrupt Encrypted bank records Portfolio data-

decryption key

This expression is a theorem The logical rules of inference Logical implications

Another example is the famous Ali Baba Cave. The exploration of Ali Baba Cave

provides valuable insights into the comprehension of ZKP. For clarity, the story sub-

jects could be Peggy and Victor. This is the story of Peggy and Victor, who found a

ring-shaped cave with a closing magic door at the entry on the other side. She says

she’s found a secret word that opens the magical door but doesn’t want to tell him

5

what it is. He also wants to find out if Peggy does know the secret word. After that,

Peggy and Victor agree to call the two ways "Paths A" and "Paths B." Then she goes

in any direction without him being able to see where she is going. After that, he goes

into the cave and shouts the name of either the A or B way he wants her to take to

get back. Knowing the secret word, she can find the right path back to him without

trouble. Due to this, Peggy and Victor can do this action more than once. He is more

sure that she knows the secret word as he says it repeatedly.

• Complete: The prover tries to show the correct proof of the statement, which

the verifier will accept. This property means that if the statement being proved

is confirmed, an honest prover can convince an honest verifier of its truth with a

high probability. The evidence system will be complete if a prover and a valid

witness can convince an honest prover that this statement is true. Now, the prof

system is considered. In the exercise that follows, imagine an adversary who is

complete.

1. Run Setup(params) −→ (setupR, setupP , setupV , auxi)

2. The adversary select a worst case instance and witness Adversary(params,

setupR, setupP , setupV , auxi)−→ (x,w)

3. The interaction continues until Prover gives a error or verifier gives reject

or accept the confirmation. If the protocol does not end, it will error. 〈

Prove(setupP , x,w, start) ; Verify(setupV , x)〉 −→ result

4. Adversary wins if (setupR, x,w) ∈ R and result is not accept.

If no one ever creates an effective adversary with a significant advantage, a

proof system for R operating on params is finished. The application will de-

termine what constitutes an effective adversary (computer hardware, operating

time, memory utilization, lifetime, incentives, etc.) and how much benefit can

be allowed. Statistical completeness (also known as unconditional complete-

ness), where the chance of success is low for any opponent, and perfect com-

pleteness, where the advantage is precisely zero for any adversary, are examples

of exceptionally strong cases.

• Soundness: The prover tries to show proof of the statement, but it is not true,

and the verifier will reject it. This property means that if the statement being

6

proved is false, no cheating prover can convince an honest verifier that it is

true with a high probability. A proof system is sound if a dishonest verifier has

little to no chance of being persuaded that a misleading statement is true by

a dishonest prover. A proof system’s complete specification must include an

exact definition of soundness that conveys this intuition.

1. Run Setup(params) −→ (setupR, setupP , setupV , auxi)

2. The adversary select instance Adversary(params, setupR, setupP , setupV

, auxi)−→ x

3. The adversary interact with the verifier 〈 Adversary ; Verify(setupV , x)〉

−→ result

4. Adversary wins if (setupR, x) /∈ L and result is accept.

• Zero-knowledge: The secret information will always be secret, meaning the

verifier cannot know it. This property means that the protocol does not reveal

any information about the secret beyond that the statement being proved is true.

In other words, the verifier learns nothing about the secret itself.

Advantage(params) = Pr[Adversary wins] - 1
2

2.1.1 Requirements for a zero-knowledge proof system specification

The proof system has some requirements,

1. The type of statement definition must be clear.

2. Algorithm details are known by prover and verifier and all construction about

this system.

3. Setup definitions used by the prover and verifier. (“PrivateSetupP ”

or “PrivateSetupV ”, respectively not known to the other party)

4. The primary objective of the proof system is to provide precise and well-defined

specifications of the security it aims to provide.

5. The security analysis of the ZKP system and list of assumptions that have not

yet been confirmed.

7

2.1.2 Specifying Statements for ZK

The statements considered in this study fit into the relation R between instances x and

witnesses w. The relation R specifies which pairs (x,w). Then, they are considered

related to each other, but they are not. L defines that instance x has a witness w in R.

These notes mention details about definitions.

The statement of form is x ∈ L, this means that "I know witness w of instance x in

R". Acceptance means that (x,w) ∈ R, while rejection means that (x,w) ∈ L and

that (w) is not a witness to (x,w) ∈ R.

2.1.3 Example1: Discrete logarithm (discrete-log)

The following is an explanation by step of the (ZKP) protocol for showing knowledge

of a discrete logarithm.

• let p be large number and p = 2q + 1 and q is prime.

• g be generator of the group Zp
∗ = {1, ..., p− 1} = {gi : i = 1, ..., p− 1}

• w be secret information known by prover

• x = gw(mod p be the instance known both of them

• P: I know base g of the x, mod p

• Relation is R = {(x,w) : gw(mod p)}

• Language is L = {x : ∃w : (x,w) ∈ R

This table explains the protocol briefly, and g, x, p publish.

Table 2.2: Discrete Logarithm Protocol

8

Verifier Instance Prover

Choose a random number x

Compute h = gr

h←−

Choose a random number b

−→ b

Compute s = (r + bw) mod p− 1

s←−

xs mod p = hgb mod p ??

Focus on the how check use this method.

x(r+bw) = xrxbw = xrxwb = hgb

2.1.4 Example2: Graph non-isomorphism

The common inputs G1 and G2 are not isomorphism.

Table 2.3: Graph Non-isomorphism Protocol

Verifier Instance Prover

Choose a random number i ∈ 1, 2

Randomly select permutation π ∈ SVi

Compute F = π(Gi)

F←−

Find j ∈ (1, 2)

G1 , F or G2 , F is isomorphism

−→ j

check j=i ?

π is the secret value. Also, the set is not isomorphic groups and the secret value

belongs it.

9

2.1.5 Example3: Schnorr’s Identification Protocol

In "Cryptography Made Simple" book (Smart, 2016) [31] shows this algorithm with

its details. Peggy knows the x such that y = gx. During creating an identification

protocol, i.e the wish is Peggy to show in ZK that she knows the value of x.

Table 2.4: Schnorr’s Identification Protocol

Peggy Victor

knows x knows y

r ← gk for a random k ← Z/qZ −→ r

e←− e← Z/qZ

s← k + (x ∗ e) (mod q) −→ s r = gs ∗ y−e

• Peggy generates a random k from Z/qZ and she computes the r value such that

r = gk.

• Peggy sends the r to Victor.

• Victor generates the random e from Z/qZ.

• Victor sends the e to Peggy.

• Peggy computes the s such that s = k + (x ∗ e).

• Peggy sends the s to Victor.

• Victor verifies r = gs ∗ y−e.

Now, the ZKP features Completeness, Soudness and Zero Knowledge are displayed

on this protocol.

• Completeness: If Peggy actually knows the secret discrete logarithm x, Victor

can accept the protocol since,

gs ∗ y−e = gk+x∗e ∗ (gx)−e = gk+x∗e ∗ g−x∗e = gk = r

• Soundness: Let us assume that Peggy does not know the secret discrete loga-

rithm x, she has to choose a random value from Zq, meaning that the probability

of Peggy convincing Victor is 1
q
.

10

• Zero-Knowledge: "What did Victor learn from the protocol?" is the question.

If Victor can write proper protocol without talking to Peggy, he can’t make

anyone believe that Peggy knows something. Here, the same thing happens.

Victor can write the following as an acceptable protocol:

• e← Z/qZ.

• r = gs ∗ y−e.

• Output the transcript,

P → V : r,

V → P : e,

P → V : s.

One must notice how easy it is to write a valid protocol without any interaction,

meaning that no one can understand if the transcript given above is a simulation or

not. Therefore, Schnorr’s Identification Protocol has the ZK property.

2.1.6 Differences Between Interactive and Non-interactive ZKP

There are two distinct categories of ZKP protocols, namely interactive and non-

interactive protocols. To prove a statement using an interactive ZKP (IZKP) protocol,

both parties (prover and verifier) must be online. A non-interactive ZKP (NZKP) pro-

tocol, on the other hand, enables the prover to prove the assertion whether the verifier

is online or offline. In other words, with NZKP protocols, the verifier may verify

the claim without interacting with the prover online. As a result, a NZKP protocol is

often quicker and more efficient since it does not need any online connection or inter-

action between the prover and the verifier to prove the statement or claim. A NZKP

protocol, on the other hand, demands that both the verifier and the prover share a ran-

dom string, usually given by a trusted third party. A pre-planned application of this

random string is also necessary.

11

2.2 What is the ZK-snark?

The notion of SNARK, or concise non-interactive argument of knowledge, is espe-

cially important in the domain of non-interactive proofs for showing the integrity of

outcomes for huge computations. These words refer to a proof system, which is:

• Succient: The proof is quite little in comparison to the size of the statement or

witness, i.e. the size of the calculation itself.

• Non-interactive: It is not necessary and interaction rounds between the prover

and the verifier.

• Argument: It is secure only for provers with constrained computing resources,

which implies that provers with adequate computational power may persuade

the verifier of a false assertion.

• Knowledge-sound: The prover is only able to generate proof if possessing

knowledge of a particular witness for the statement. In an official capacity, for

every prover capable of creating a valid proof, there exists an extractor capa-

ble of extracting a witness, sometimes referred to as "the knowledge," for the

statement.

SNARK systems may also have a zero-knowledge feature, which allows the proof to

be performed without exposing anything about the intermediate stages (the witness).

A zk-SNARK protocol, like any other non-interactive proof system, is defined by

three algorithms that operate in the following approach:

• The method Gen serves as the setup process, producing a string that contains

essential setting information for subsequent steps in the proving process. Addi-

tionally, it generates a verification key, which is often considered to be known

only to the verifier. Typically, the operation is overseen by a reliable entity.

• The algorithm "Prove" is a proving algorithm that accepts as input the setting

information, the assertion, and a matching witness, and produces the proof as

output.

12

• The Verify algorithm is designed to accept or reject a proof based on the veri-

fication key, statement, and proof provided as input. It returns a value of 1 to

indicate acceptance or 0 to indicate rejection.

2.2.1 Example of ZK-Snark

This example is that of Vitalik Buterin, the founder of Ethereum. Vitalik Buterin’s

"Quadratic Arithmetic Programs: from Zero to Hero" paper [34] (Vitalik, 2016) gives

a comprehensive and elaborated solution below. However, it is crucial to begin by

providing the essential introductory details. In order to properly understand this spe-

cific example, it is necessary to have some foundational information.

2.2.1.1 Preliminaries

Definition of Arithmetic Circuit: This is an acyclic graph and it includes nodes

which are addition and multiplication gates. Then, wires connect inputs and outputs

by using nodes. Each node has two inputs and one output. The figure below explains

it.

Figure 2.1: Arithmetic circuit for f(s1, s2, s3) = (s1 · s2) · s3

The witness s = (s1, s2, ..., sn) to be the values for the n wires so that the inputs and

13

outputs of each gate match the requirements set by the gate.

Rank-1 Constraint System (R1CS): The 1 refers to the matrix of degrees. It uses

the representation of the structure. There are three triplets (a, b, c); they are vectors.

There is an equation and its form,

(A) · (B)− (C) = 0

(A), (B), (C) is a linear combinations then,

(A) = a1 · s1 + a2 · s2 + ...

(B) = b1 · s1 + b2 · s2 + ...

(C) = c1 · s1 + c2 · s2 + ...

si denotes solution s vector.

For R1CS, outputs known by both of parties, solution vector is checked by verifier

and prover.

Quadratic Arithmetic Programs (QAP): There are target point r1, r2, ...rm ∈ Fp.

Then, compute t(x) =
∏m

Q=1(x− rq)

ui(rq) = ui,q

vi(rq) = vi,q

wi(rq) = wi,q

In the circuit, each goal point is like a gate. The QAP builds 3n polynomials for each

target point rq that, when evaluated at rq, give the 3n constants of the qth gate’s rank-

1-constraint. The m rank-1 limits are written as a single equation over the functions

in the QAP.

Lagrange Polynomials: There are some ways to find the unique polynomial pn(x) of

degree n that makes the statement pn(xi) = yi, where i = 0, 1, ..., n given the points

(xi, yi). Interpolation points are the points x0, x1, ..., xn.

The values (x0, y0), (x1, y1), ..., (xn, yn) are said to be interpolated by the polynomial

pn(x).

14

If the interpolation points x0, ..., xn are all different, then finding a polynomial that

goes through the points (xi, yi), where i = 0, ..., n is the same as computing linear

equations Ax = b that has only one solution.

In Lagrange interpolation, the matrix A is just the identity matrix because the inter-

polating equation is:

pn(x) =
n∑

j=0

yiLn,j(x)

Consider the Ln,j(x):

Ln,j(x) =

1 if i = j

0 if i ̸= j

Finally,

Ln,j(x) =
n∏

k=0,k ̸=j

x− xk

xj − xk

The next finding shows that Lagrange polynomials can be used to solve the problem

of polynomial interpolation.

Eliptic Curve: The equation for an elliptic curve in two variables is a particular type

of cubic equation. A curve with this form is called an "elliptic curve",

y2 = x3 + Ax+B

Addition. The second intersection of the tangent of P at another point is used. The

symmetry is taken from the x-axis of the point where the tangent intersects.

P (x1, y1), Q(x2, y2)

λ =
y2 − y1
x2 − x1

P ⊕Q = R(x3, y3)

x3 = (λ2 − x1 − x2)

15

y3 = (λ(x1 − x3)− y1)

Doubling. In cases when the points P and Q coincide, the process of addition is

altered due to the absence of a clearly defined straight line passing through point P .

Consequently, the operation is completed by using a limiting case, namely the tangent

to the curve at point P , denoted as E.

λ =
3x1

1 + 2

2y1

P ⊕ P = R(x3, y3)

x3 = (λ2 − 2x1)

y3 = (λ(x1 − x3)− y1)

2.2.1.2 Example Solution about ZK-SNARK

In this example, the secret value equals 3 and solution steps are given below step by

step.

Problem Statement −→ R1CS

This is the statement:

x3 + x+ 5 = 35

First, the flattening process is applied. In this porcess, convert the original code which

may have very complicated statements and expression and two types statements.

• x = y (where y can be a variable or a number)

• x = y(op)z (where op can be +, -, *, or / and y and z can be variables, numbers

or expressions)

The result of the flattening:

a = x ∗ x→ x2

b = a ∗ x→ x3

c = b+ x→ x3 + x

d = c+ 5→ x3 + x+ 5

16

Figure 2.2: Flattening for ZK-snarks

This is the solution:

s = [1, x, a, b, c, d], secret : [1, 3, 9, 27, 30, 35]

An R1CS has three-vector groups (A,B,C). The s must be satisfy s·a∗s·b−s·c = 0.

Each gate has triple (A,B,C):

Gate1: a = x ∗ x = x2

s = [1, x, a, b, c, d]

A = [0, 1, 0, 0, 0, 0]

B = [0, 1, 0, 0, 0, 0]

C = [0, 0, 1, 0, 0, 0]

Gate2: b = a ∗ x
s = [1, x, a, b, c, d]

A = [0, 0, 1, 0, 0, 0]

B = [0, 1, 0, 0, 0, 0]

C = [0, 0, 0, 1, 0, 0]

Gate3: c = b+ x

17

s = [1, x, a, b, c, d]

A = [0, 1, 0, 1, 0, 0]

B = [1, 1, 0, 0, 0, 0]

C = [0, 0, 0, 0, 1, 0]

Gate4: d = c+ 5

s = [1, x, a, b, c, d]

A = [5, 0, 0, 0, 0, 1]

B = [1, 0, 0, 0, 0, 0]

C = [0, 0, 0, 0, 0, 1]

R1CS−→ QAP

The next step is to convert this R1CS into QAP form, which uses the same reasoning

but uses polynomials instead of dot products. The four groups of three vectors with

lengths of six to six groups of three polynomials with degree 3. One of the require-

ments is that the polynomials must be evaluated at each x point. If the polynomials

at x = 1 are computed, the first set of vectors is obtained, and if the polynomials at

x = 2 are computed, the second set of vectors is received, and so on.

Gate1

A1(1) = 0 B1(1) = 0 C1(1) = 0

A2(1) = 1 B2(1) = 1 C2(1) = 0

A3(1) = 0 B3(1) = 0 C3(1) = 1

A4(1) = 0 B4(1) = 0 C4(1) = 0

A5(1) = 0 B5(1) = 0 C5(1) = 0

A6(1) = 0 B6(1) = 0 C6(1) = 0

Gate2

18

A1(2) = 0 B1(2) = 0 C1(2) = 0

A2(2) = 0 B2(2) = 1 C2(2) = 0

A3(2) = 1 B3(2) = 0 C3(2) = 0

A4(2) = 0 B4(2) = 0 C4(2) = 1

A5(2) = 0 B5(2) = 0 C5(2) = 0

A6(2) = 0 B6(2) = 0 C6(2) = 0

Gate3

A1(3) = 0 B1(3) = 1 C1(3) = 0

A2(3) = 1 B2(3) = 0 C2(3) = 0

A3(3) = 0 B3(3) = 0 C3(3) = 0

A4(3) = 1 B4(3) = 0 C4(3) = 0

A5(3) = 0 B5(3) = 0 C5(3) = 1

A6(3) = 0 B6(3) = 0 C6(3) = 0

Gate4

A1(4) = 5 B1(4) = 1 C1(4) = 0

A2(4) = 0 B2(4) = 0 C2(4) = 0

A3(4) = 0 B3(4) = 0 C3(4) = 0

A4(4) = 0 B4(4) = 0 C4(4) = 0

A5(4) = 1 B5(4) = 0 C5(4) = 0

A6(4) = 0 B6(4) = 0 C6(4) = 1

Lagrange interpolation will be used to transform the R1CS. Using Lagrange interpo-

lation to take the first value from each vector, make a polynomial from that, process

the first value of each vector, and then convert this to the second values, third values,

etc., is repeated.

19

A polynomials

A1(1) = 0 A1(2) = 0 A1(3) = 0 A1(4) = 0

A1(x) = −5 + 9.166x− 5x2 + 0.833x3

A2(1) = 1 A2(2) = 0 A2(3) = 1 A2(4) = 0

A2(x) = 8− 11.333x+ 5x2 − 0.666x3

A3(1) = 0 A3(2) = 1 A3(3) = 0 A3(4) = 0

A3(x) = −6 + 9.5x− 4x2 + 0.5x3

A4(1) = 0 A4(2) = 0 A4(3) = 1 A4(4) = 0

A4(x) = 4− 7x+ 3.5x2 − 0.5x3

A5(1) = 0 A5(2) = 0 A5(3) = 0 A5(4) = 1

A5(x) = −1 + 1.833x− x2 + 0.166x3

A6(1) = 0 A6(2) = 0 A6(3) = 0 A6(4) = 0

A6(x) = 0

B polynomials

B1(1) = 0 B1(2) = 0 B1(3) = 1 B1(4) = 1

B1(x) = 3− 5.166x+ 2.5x2 − 0.333x3

B2(1) = 1 B2(2) = 1 B2(3) = 0 B2(4) = 0

B2(x) = −2 + 5.166x− 2.5x2 + 0.333x3

B3(1) = 0 B3(2) = 0 B3(3) = 0 B3(4) = 0

B3(x) = 0

20

B4(1) = 0 B4(2) = 0 B4(3) = 0 B4(4) = 0

B4(x) = 0

B5(1) = 0 B5(2) = 0 B5(3) = 0 B5(4) = 0

B5(x) = 0

B6(1) = 0 B6(2) = 0 B6(3) = 0 B6(4) = 0

B6(x) = 0

C polynomials

C1(1) = 0 C1(2) = 0 C1(3) = 0 C1(4) = 0

C1(x) = 0

C2(1) = 0 C2(2) = 0 C2(3) = 0 C2(4) = 0

C2(x) = 0

C3(1) = 1 C3(2) = 0 C3(3) = 0 C3(4) = 0

C3(x) = 4− 4.333x+ 1.5x2 − 0.166x3

C4(1) = 0 C4(2) = 1 C4(3) = 0 C4(4) = 0

C4(x) = −6 + 9.5x− 4x2 + 0.5x3

C5(1) = 0 C5(2) = 0 C5(3) = 1 C5(4) = 0

B5(x) = 4− 7x+ 3.5x2 − 0.5x3

C6(1) = 0 C6(2) = 0 C6(3) = 0 C6(4) = 1

C6(x) = −1 + 1.833x− x2 + 0.166x3

Find A · s, B · s and C · s

21

A · s


−5 8 −6 4 −1 0

9.166 −11.333 9.5 −7 1.833 0

−5 5 −4 3.5 −1 0

0.833 −0.666 0.5 −0.5 0.166 0

 ·



1

3

9

27

30

35


=


43

−73.343
38.5

−5.166



B · s


3 −2 0 0 0 0

−5.166 5.166 0 0 0 0

2.5 −2.5 0 0 0 0

−0.333 0.333 0 0 0 0

 ·



1

3

9

27

30

35


=


−3

10.332

−5
0.666



C · s


0 0 4 −6 4 −1
0 0 −4.333 9.5 −7 1.833

0 0 1.5 −4 3.5 −1
0 0 −0.166 0.5 −0.5 0.166

 ·



1

3

9

27

30

35


=


−41
71.666

−24.5
2.833



Now, A · s ∗B · s− C · s = t:

t = [−88.0, 592.666,−1063.777, 805.833,−294.777, 51.5,−3.444]

In order to address each restriction, a specific point is selected. This selection leads to

the generation of four constraints, denoted as examples 1, 2, 3, and 4. These examples

are used to construct a polynomial that can effectively execute remainderless division.

minimal polynomial Z:

Z = (x− 1) ∗ (x− 2) ∗ (x− 3) ∗ (x− 4)

Z = [24,−50, 35,−10, 1]

And find the h:

h = t/Z = [−3.666, 17.055,−3.444]

22

Finally, there is no reminder and reach the final result. Prover can send the h, t and Z,

then Verifier can be verify by checking A · s ∗B · s− C · s = h ∗ Z.

2.2.2 Groth16

Daniel Jens Groth’s 2016 work "On the Size of Pairing-based Non-interactive Argu-

ments" [10] describes the Groth16 cryptography proof method. It is a zero-knowledge

proof system and one of the most common zkSNARK proving methods.

Choose an elliptic curve pairing such that G1, G2, G3 and generators g1, g2, g3. And,

these groups of order is 13. Then, pairing e : G1 × G2 −→ G3. This is the Groth16

protocol,

• Setup Phase: (CRS,ST) ← SETUP(R): R is a R1CS input and computes a

Common Reference String (CRS) and Simulation Trapdoor (ST).

• Prover Phase: π← PROVE(R,CRS,I,W): I is instance and w is witness vector,

algorithm prove takes them and output is proof.

• Verify: accept, reject ← VFY(R,CRS,I,π): The algorithm result is reject or

accept.

Circuit

Before you can check your program in Groth16, you have to change it into an R1CS

constraint system.

1. R1CS

The witness vector for a rank-1 constraint system (R1CS) with n variables, m con-

straints, and p public inputs is w ∈ Fn. By default, the first p values of w are the

public input, and the first public input, w0, is always 1. The m constraints in R1CS

are a product equation between three inner products:

(w · ai) · (w · bi) = w · ci

where vectors (ai, bi, ci) ∈ F3·n.

23

2. Polynomials (QAP)

The choosen base x ∈ Fm and define functions for each condition so that Ai(xj) =

Aij , and the same goes for B and C. Then define A(X) =
∑

i∈[0,n) wi ·Ai(X), like B

and C. The QAP can be shown to be true if there is a low-degree H(X) that satisfies,

A(X) ·B(X)− C(X) = H(X) · Zx(X)

It can only be considered "exact" (more accurately, a low-degree polynomial) if the

conditions match.

In this section, a very useful example from the following document [27] will be

shown.

Trusted setup

Groth16 needs to be set up in a certain way to make the common reference string,

which is a set of numbers that everyone can use. This setup can be broken down into

two parts: one that is generic and one that is specific to the circuit.

Also, the common reference string (CRS) model is based on the idea that there is a

reliable setup in which everyone has access to the same string CRS from some distri-

bution D. Schemes that have been shown to be safe in the CRS model are safe as long

as the setup was done right. The common reference string model has proven to be a

very easy way to build a wide range of efficient primitives that need to be very secure.

This doesn’t answer the question of how to set up what needs to be done. In reality,

this is done by putting together a trusted setup process with multiple players using

multi-party computation between users who are not thought to be working together.

Setup Stage:

Choose a maximum number of limits, m. Randomly generate the numbers α, β, γ, δ.

In addition, example will be made with real numbers so that it will be more under-

standable. Example elliptic curve is,

BLS66 := {(x, y)|y2 = x3 + 6 for all x, y ∈ F43}

24

This is finite cyclic group and there is 13 points,

G1[13] ={(13, 15)→ (33, 34)→ (38, 15)→ (35, 28)

→ (26, 34)→ (27, 34)→ (27, 9)→ (26, 9)→

(35, 15)→ (38, 28)→ (33, 9)→ (13, 28)→ Q}

G2[13] ={(7v2, 16v3)→ (10v2, 28v3)→ (42v2, 16v3)→ (37v2, 27v3)

→ (16v2, 28v3)→ (17v2, 38v3)→ (17v2, 15v3)

→ (16v2, 15v3)→ (37v2, 16v3)→ (42v2, 27v3)

→ (42v2, 27v3)→ (10v2, 15v3)→ (7v2, 27v3)→ Q}

Find the target polynomial is Z(x). Then, m1 = 5 for first constraint and m2 = 7 for

second constraint in F13.

Z(x) = (x−m1)(x−m2)

Z(x) = (x− 5)(x− 7)

Z(x) = x2 + x+ 9

QAP result:

A0(x) = 0 B0(x) = 0 C0(x) = 0

A1(x) = 0 B1(x) = 0 C1(x) = 7x+ 4

A2(x) = 6x+ 10 B2(x) = 0 C2(x) = 0

A3(x) = 0 B3(x) = 6x+ 10 C3(x) = 0

A4(x) = 0 B4(x) = 7x+ 4 C4(x) = 0

A5(x) = 7x+ 4 B5(x) = 0 C5(x) = 6x+ 10

In the setup phase, a sampling process is conducted to get five random and invertible

components, denoted as α, β, γ, δ, and τ , from the scalar field Fr. Moreover, the

simulation trapdoor is often known as the toxic waste of the initial configuration stage.

ST = (α, β, γ, δ, τ)

25

Then, the τ is secret point for example ST = (6, 5, 4, 3, 2) and n = 1, m = 4

CRSG1 =


g1

α, g1
β, g1

δ,
(
g1

sj , ...
)deg(Z)−1

j=0
,

(
g1

β·Aj(s)+α·Bj(s)+Cj(s)

γ

)n

j=0

,(
g1

β·Aj+1(s)+α·Bj+1(s)+Cj(s)

δ

)m

j=1

,

(
g1

sj ·Z(s)
δ

)deg(Z)−2

j=0

CRSG1 =

{
[6](13, 15), [5](13, 15), [4](13, 15), ([20](13, 15), [21](13, 15)),([

5A0(2) + 6A0(2) + C0(2)

4

]
(13, 15),

[
5A1(2) + 6A1(2) + C0(2)

4

]
(13, 15)

)
([

5A2(2) + 6A2(2) + C2(2)

3

]
(13, 15),

[
5A3(2) + 6A3(2) + C3(2)

3

]
(13, 15),[

5A4(2) + 6A4(2) + C4(2)

3

]
(13, 15),

[
5A5(2) + 6A5(2) + C5(2)

3

]
(13, 15)

)
,(

20T (2)

3
(13, 15)

)}
The G1 part of the CRS gives 12 points from BLS6_6,

CRSG1 ={[6](13, 15), [5](13, 15), [4](13, 15), ([1](13, 15), [2](13, 15)),

([0](13, 15), [11](13, 15)), ([2](13, 15), [5](13, 15), [10](13, 15),

[5](13, 15)), [5](13, 15)}

CRSG1 ={([0]g1, [11]g1), ([2]g1, [5]g1, [10]g1, [5]g1), [5]g1}

CRSG1 ={[6]g1, [5]g1, [4]g1, ([1]g1, [2]g1),

([0]g1, [11]g1), ([2]g1, [5]g1, [10]g1, [5]g1), [5]g1}

CRSG1 ={(27, 34), (26, 34), (38, 15), ((13, 15), (33, 34)),

(Q, (33, 9)), ((33, 34), (26, 34), (38, 28), (27, 9)), (26, 34)}

The G2 part of the CRS gives 5 points from BLS6_6,

CRSG2 =
{
g2

β, g2
γ, g2

δ,
(
g2

sj , ...
)deg(Z)−1

j=0

}
CRSG2 =

{
[5](7v2, 16v3), [4](7v2, 16v3), [3](7v2, 16v3), ([1](7v2, 16v3), [2](7v2, 16v3))

}
CRSG2 =

{
[5]g2, [4]g2), [3]g2, ([1]g2, [2]g2)

}
CRSG2 =

{
(16v2, 28v3), (37v2, 27v3), (42v2, 16v3), ((7v2, 16v3),

(10v2, 28v3))
}

26

Assume that the simulated trap door is removed. Given the assumed difficulty of

the discrete logarithm issue in groups, it becomes impossible to determine the secret

evaluation point, thus making the evaluation of polynomials at such a point impossi-

ble. Nevertheless, the polynomials evaluated at that particular location show a lower

degree in relation to the coefficients of both generators, as compared to the degree of

the desired polynomial.

Prover Stage:

Given a instance I1 =< 11 > and a witness vector w = (w1, w2, w3, . . . , wm), in

example w =< 2, 3, 4, 6 >. Here, it is necessary to refer to the definitions of witness

and instance again. For this example,

Also, sample random value r = 11 and t = 4 from F13. Then, the proof is π =

(gA1 , g
C
1 , g

B
2).

gw1 =
(
g

β·An+1(s)+α·Bn+1(s)+Cn+1(s)

δ
1

)W1

...
(
g

β·An+m(s)+α·Bn+m(s)+Cn+m(s)

δ
1

)Wm

gA1 = ga1 · g
A0(s)
1 ·

(
g
A1(s)
1

)I1
...
(
g
An(s)
1

)In · (gAn+1(s)
1

)W1

...
(
g
An+m(s)
1

)Wm ·
(
gδ1
)r

gB1 = ga1 · g
B0(s)
1 ·

(
g
B1(s)
1

)I1
...
(
g
Bn(s)
1

)In · (gBn+1(s)
1

)W1

...
(
g
Bn+m(s)
1

)Wm ·
(
gδ1
)t

gB2 = ga1 · g
B0(s)
2 ·

(
g
B1(s)
2

)I1
...
(
g
Bn(s)
2

)In · (gBn+1(s)
2

)W1

...
(
g
Bn+m(s)
2

)Wm ·
(
gδ2
)t

gC1 = gw1 · g1
H(s)·T (s)

δ ·
(
gA1

)t · (gB1)r · (g1)−rt

Now, put the real number in formulas,

[W]g1 = [W1]g
β·A2(τ)+α·B2(τ)+C2(τ)

3
1 ⊕ [W2]g

β·A3(τ)+α·B3(τ)+C3(τ)
3

1 ⊕

[W3]g
β·A4(τ)+α·B4(τ)+C4(τ)

3
1 ⊕ [W4]g

β·A5(τ)+α·B5(τ)+C5(τ)
3

1

In order to calculate this particular point, it is critical that one keep in mind that the

prover must not hold the simulation trapdoor. Consequently, the prover should remain

ignorant of the specific values associated with the simulation trapdoor. To calculate

the group element, the prover requires the CRS_G1.

27

To illustrate this point, let us examine the polynomials A2(x) = 6x+10 and A5(x) =

7x+4, which are part of the QAP under consideration. In order to assess the polyno-

mials in the exponent of g1 and g2 at the undisclosed point τ , while remaining unaware

of the specific value of τ (which, in this instance, is 2), the CRS and equation may be

used.

CRSG1 = {(27, 34), (26, 34), (38, 15), ((13, 15), (33, 34)),

(Q, (33, 9)), ((33, 34), (26, 34), (38, 28), (27, 9)), (26, 34)}

CRSG2 =
{
(16v2, 28v3), (37v2, 27v3), (42v2, 16v3), ((7v2, 16v3), (10v2, 28v3))

}
The colors show where the CRS parameters are used.

[W]g1 = [2](33, 34)⊕ [3](26, 34)⊕ [4](38, 28)⊕ [6](27, 9)⊕

= [2 · 2](13, 15)⊕ [3 · 5](13, 15)⊕ [4 · 10](13, 15)⊕ [6 · 7](13, 15)

= [4 + 15 + 40 + 42](13, 15) = [10](13, 15) = [10]g1

= (38, 28)

Given that the values of α, δ, and τ are currently unknown, it is recommended to

search for the values [α]g1 and [δ]g1 inside the CRS_G1.

[A]g1 = [α]g1 ⊕ [A0(τ)]g1 ⊕ [I1][A1(τ)]g1 ⊕ [W1][A2(τ)]g1⊕

⊕ [W2][A3(τ)]g1 ⊕ [W3][A4(τ)]g1 ⊕ [W4][A5(τ)]g1

⊕ [r][δ]g1

= [6]g1 ⊕ [2][A2(τ)]g1 ⊕ [6][A5(τ)]g1 ⊕ [11][3]g1

Find [A2(τ)]g1 and [A5(τ)]g1

[A2(τ)]g1 = [6 · τ 1 ⊕ 10 · τ 0]g1

= [6](33, 34)⊕ [10](13, 15)

= [6 · 2](13, 15)⊕ [10](13, 15) = [9](13, 15)

= (35, 15)

28

[A5(τ)]g1 = [7 · τ 1 ⊕ 4 · τ 0]g1

= [7](33, 34)⊕ [4](13, 15)

= [7 · 2](13, 15)⊕ [4](13, 15) = [5](13, 15)

= (26, 34)

[A]g1 = (27, 34)⊕ [2](35, 15)⊕ [6](26, 34)⊕ [11](38, 15)

= [6](13, 15)⊕ [2 · 9](13, 15)⊕ [6 · 5](13, 15)⊕ [11 · 3](13, 15)

= [6 + 2 · 9 + 6 · 5 + 11 · 3](13, 15) = [9](13, 15)

= (35, 15)

According to QAP, B3 = A2 and B4 = A5

[B]g1 = [β]g1 ⊕ [B0(τ)]g1 ⊕ [I1][B1(τ)]g1 ⊕ [W1][B2(τ)]g1⊕

⊕ [W2][B3(τ)]g1 ⊕ [W3][B4(τ)]g1 ⊕ [W4][B5(τ)]g1 ⊕ [t][δ]g1

= (26, 34)⊕ [3](35, 15)⊕ [4](26, 34)⊕ [4](38, 15)

= [5](13, 15)⊕ [3 · 9](13, 15)⊕ [4 · 5](13, 15)⊕ [4 · 3](13, 15)

= [5 + 3 · 9 + 4 · 5 + 4 · 3](13, 15) = [12](13, 15)

= (13, 28)

[B]g2 = [β]g2 ⊕ [B0(τ)]g2 ⊕ [I1][B1(τ)]g2 ⊕ [W1][B2(τ)]g2⊕

⊕ [W2][B3(τ)]g2 ⊕ [W3][B4(τ)]g2 ⊕ [W4][B5(τ)]g2 ⊕ [t][δ]g2

= [5]g2 ⊕ [3][B3(τ)]g2 ⊕ [4][B4(τ)]g2 ⊕ [4][3]g2

Find [B3(τ)]g2 and [B4(τ)]g2

[B3(τ)]g2 = [6 · τ 1 ⊕ 10 · τ 0]g1

= [6](10v2, 28v3)⊕ [10](7v2, 16v3)

= [6 · 2](7v2, 16v3)⊕ [10](7v2, 16v3) = [9](7v2, 16v3)

= (37v2, 16v3)

29

[B4(τ)]g2 = [7 · τ 1 ⊕ 4 · τ 0]g1

= [7](10v2, 28v3)⊕ [4](7v2, 16v3)

= [7 · 2](7v2, 16v3)⊕ [4](7v2, 16v3) = [5](7v2, 16v3)

= (16v2, 28v3)

[B]g2 = (16v2, 28v3)⊕ [3](37v2, 16v3)⊕ [4](16v2, 28v3)⊕ [4](42v2, 16v3)

= [5](7v2, 16v3)⊕ [3 · 9](7v2, 16v3)⊕ [4 · 5](7v2, 16v3)⊕ [4 · 3](7v2, 16v3)

= [5 + 3 · 9 + 4 · 5 + 4 · 3](7v2, 16v3) = [12](7v2 + 16v3)

= (7v2, 27v3)

[C]g1 = [W]g1 ⊕
[H(s)Z(s)

δ
]g1 ⊕ [t][A]g1 ⊕ [r][B]g1 ⊕ [−rt][δ]g1

= (38, 28)⊕ (26, 34)⊕ [4](35, 15)⊕ [11](13, 28)⊕ [−11 · 4](38, 15)

= [10](13, 15)⊕ [5](13, 15)⊕ [4 · 9](13, 15)⊕ [11 · 12](13, 15)⊕ [−11 · 4 · 3](13, 15)

= [10 + 5 + 4 · 9 + 11 · 12− 11 · 4 · 3](13, 15) = [12](13, 15)

= (13, 28)

Finally,

π =
(
(35, 15), (13, 28), (7v2, 27v3)

)
Verification Stage:

Know π, and verification of proof is very easy. The pairing is verified,

e(g1
A, g2

B) = e(g1
α, g2

β) · e(g1I , g2γ) · e(g1C , g2δ)

Remember that,

π = (g1
A, g1

C , g2
B)

Also,

30

g1
I =

(
g1

β·A0(τ)+α·B0(τ)+C0(τ)
γ

)
·
(
g1

β·A1(τ)+α·B1(τ)+C1(τ)
γ

)I1

...

(
gn

β·An(τ)+α·Bn(τ)+Cn(τ)
γ

)In

g1
I = O ⊕ [11](33, 9) = [11 · 11](13, 15) = [4](13, 15)

= (35, 28)

The Weil Pairing Rule refers that,

e([a]g1, [b]g2) = e(g1, g2)
a∗b

So,

e([A]g1, [B]g2) = e((35, 15), (7v2, 27v3)) = e([9](13, 15), [12](7v2, 16v3))

= e((13, 15), (7v2, 16v3))9·12

= e((13, 15), (7v2, 16v3))108

e([α]g1, [β]g2) = e((27, 34), (16v2, 28v3)) = e([6](13, 15), [5](7v2, 16v3))

= e((13, 15), (7v2, 16v3))6·5

= e((13, 15), (7v2, 16v3))30

e([I]g1, [γ]g2) = e((35, 28), (37v2, 27v3)) = e([4](13, 15), [4](7v2, 16v3))

= e((13, 15), (7v2, 16v3))4·4

= e((13, 15), (7v2, 16v3))16

e([C]g1, [δ]g2) = e((13, 28), (42v2, 16v3)) = e([12](13, 15), [3](7v2, 16v3))

= e((13, 15), (7v2, 16v3))12·3

= e((13, 15), (7v2, 16v3))36

Finally,

e(g1, g2)
9∗12 = e(g1, g2)

6∗5 · e(g1, g2)4∗4 · e(g1, g2)12∗3

The Weil pairing may be characterized as a finite cyclic group with an order of 13.

Consequently, the process of exponentiation is performed within the structure of mod-

ular 13 arithmetic.

e(g1, g2)
4 = e(g1, g2)

4

31

The verification part is finished. It is evident that the left and right sides of the equa-

tion show similar characteristics, so indicating that the verification process acknowl-

edges the validity of the zk-SNARK and encourages the verifier to generate an accep-

tance response.

32

CHAPTER 3

MACHINE LEARNING

3.1 Definition of Machine Learning

Machine learning (ML) is a methodology designed to optimize the computational

capabilities of computers in processing and managing data. There are instances in

which it is impossible to accurately evaluate the knowledge obtained from data based

on its apparent meaning. In such situations, ML becomes relevant. In the contem-

porary context, in which many kinds of datasets are easily accessible, there has been

a consistent increase in the need for machine learning. This technology has been

widely used in diverse industries to extract essential information and is naturally built

to acquire knowledge from patterns inside data.

Numerous studies have been conducted to investigate methods of facilitating au-

tonomous learning in computers without the need for explicit programming. Various

approaches have been investigated by mathematicians and programmers in order to

tackle this difficulty, namely within the realm of large datasets. In order to overcome

the problems presented by the intricate nature of data, machine learning utilizes a

diverse range of algorithms. Data scientists emphasize that there is no generally op-

timal algorithm that can effectively address all issues. The selection of an algorithm

must be customized to suit the individual situation under consideration.

33

3.2 Supervised Learning and Unsupervised Learning

Supervised learning is very common in classification difficulties since the goal is

typically to get the computer to learn a categorization system that we have created.

Classification learning, in a larger sense, is appropriate for any circumstance where

it is profitable to infer a classification and if doing so is straightforward. As long as

the inputs are available, this model is not necessary, but it is impossible to draw any

conclusions about the outputs if some of the input values are missing.

When learning without supervision its name is unsupervised learning, it is believed

that all observations are the result of latent variables, placing them at the very end

of the causal chain. Unsupervised learning, when the machine is supposed to figure

out things on its own rather than being given instructions, appears to be far more

difficult. Actually, there are two methods for unsupervised learning. The first strategy

is to instruct the agent by employing a reward system to denote success rather than

by providing explicit categorizations. This strategy generalizes well to the actual

world, where agents may get rewards for doing some behaviors and penalties for

others. Clustering is a second kind of unsupervised learning. The objective of this

kind of learning is to merely identify commonalities within the training data rather

than maximizing a utility function. It is frequently assumed that the found clusters

would rather closely fit an intuitive categorisation. For instance, grouping people

based on demographics may cause the rich to be grouped in one category and the

destitute in another. Despite the fact that the algorithm won’t have names to give these

clusters, it may still create them and utilize those clusters to place fresh instances into

either one of the clusters or the other.

3.3 Process of Developing Model

Because the thesis focuses on the supervised learning method, this section addresses

the process of applying supervised machine learning to a real-world problem. Ac-

cording to The study "Types of machine learning algorithms" (Ayodele, 2010) [2],

this thesis includes details of process. The dataset must be gathered initially. The

most informative fields (attributes, characteristics) might be suggested if the neces-

34

sary expert is on hand. If not, the most straightforward approach is "brute-force,"

which entails measuring all characteristics in the hopes that the appropriate ones may

be identified.

Preparing and processing the data is the second phase. Researchers can manage miss-

ing data in a number of ways, depending on the circumstances.

The act of discovering and eliminating as many unnecessary and redundant features

as you can is known as feature subset selection. As a result, the data’s dimensions

are reduced, making it possible for data mining algorithms to work more quickly and

efficiently.

The development of clearer and more precise classifiers might be facilitated by these

recently developed characteristics. Additionally, the identification of significant traits

helps people comprehend the acquired topic and the created classifier more clearly.

The instances from which the agent tries to learn are these inputs, also known as the

"training set". It’s not always the best idea to thoroughly understand the training set,

though. For instance, if I attempted to teach you exclusive or but all the combinations

I gave you were one true and one false, never both false or both true, you may learn

that the answer is always true.

Not all training sets contain appropriately categorized inputs, as you might expect.

This might cause issues if the algorithm is strong enough to remember even the os-

tensibly "special cases" that don’t meet the more general rules.

Finding algorithms that are both potent enough to learn complicated functions and

reliable enough to generate findings that can be generalized is difficult because this

may also result in over fitting.

The final state is then achieved after the model has been updated repeatedly using the

test set.

35

Figure 3.1: Process of Machine Learning [2]

3.4 Importance and relevance of privacy in ML

The following section explains several reasons that may give rise to security problems.

Private individual information

Any active user of information services leaves a lot of personal data in the open

network that are either required for the fulfillment of their requests or due to legal

requirements, such as name and surname, passport information, information about

where they are located, the items they have purchased, the specifics of their financial

transactions, etc. Therefore, the presence of personal data in the network opens the

door to the possibility of its collection, analysis, and use for both beneficial and detri-

36

mental ends. Although most nations have laws requiring the protection of personal

data, these laws often can’t stop the exposure of personal data and its misuse. Addi-

tionally, consumers frequently "tick" the appropriate boxes without properly reading

the privacy regulations for information services (or without reading them at all). Be-

cause of this, a normal user eventually forgets where and what personal information

he left behind.

The training sample may contain some confidential, in particular, private data. Own-

ers of this data may be interested in having being used them to train a model, but do

not want to lose control of it. The model owner may also not want the model param-

eters to be known to others, including those who provide data to train the model.

When sensitive data is utilized to train models in conventional settings, privacy is a

major problem in the area of machine learning. If the models were trained on sensitive

data, sharing machine learning models, especially pre-trained models, may give rise

to privacy problems. Such algorithms could unintentionally leak private data from

training sets on specific people if they are released. When sensitive information is ac-

cidentally included during model training, it’s referred to as data leakage in machine

learning. A model might mistakenly learn to generate predictions based on sensitive

information if it is trained on data that contains information that it shouldn’t have

access to.

When an attacker can extrapolate private information about a person from a trained

model’s predictions, this is known as an inference assault. Even if the model does not

directly access private data during training, its predictions may nevertheless include

sensitive information.In model inversion attacks, an adversary looks at the results of

a machine learning model to try to recreate personal data about individuals. This can

be particularly troublesome if the output of the model is utilized to make decisions in

delicate areas.

Identification of Risks and Manipulation of the Model

The examination and comprehension of a model’s decision-making process may be

facilitated by an attacker via the access to the model’s parameters. This facilitates

comprehension about the rationale behind the model’s decision-making process, the

37

specific attributes it prioritizes, and the data samples to which it reacts with more

precision. Based on the provided data, potential assailants possess the ability to dis-

cern weaknesses within the model and then engage in manipulative actions to exploit

those weaknesses. As an example, one might strategically focus on certain areas in

which the model exhibits vulnerabilities, hence enabling the circumvention of secu-

rity mechanisms or the generation of deceptive data. An instance of unauthorized

access to the parameters of the image processing model might enable an adversary to

generate counterfeit pictures or execute changes with the intention of evading recog-

nition systems.

Competition-related Concerns

The interception or disclosure of model parameters raises substantial security issues

related to protecting competitive techniques and advances in the field of artificial

intelligence. This facilitates competitors in gaining awareness of the fundamental

principles of powerful AI models and using this knowledge for their own advantage.

Performing a competitor analysis involves the divulgence of important information,

such as the structural configuration of the model, the learning algorithms applied, the

data processing techniques utilized, and the adjustments made to hyperparameters.

This facilitates competitors to accelerate the advancement of their own models, get

more effective results, and attain a competitive advantage.

Moreover, the disclosure of model weights have the capacity to compromise private

knowledge and trade secrets. The unauthorized disclosure of sensitive information or

proprietary knowledge inside an organization may lead to enormous losses in terms of

time and financial resources. This has the potential to undermine extensive research

and development efforts and large monetary investments. Moreover, the act of con-

fiscating weights might possibly suggest the exploitation of the model. The use of the

model by persons with malicious intentions to produce misleading or harmful content

has the capacity to mislead the broader populace, undermine security measures, and

lead to substantial social and economic consequences.

Therefore, it is crucial to prioritize the maintenance of secrecy and privacy regarding

model weights in the field of artificial intelligence and deep learning.

38

3.5 Zero Knowledge Machine Learning

ZKML has the potential to facilitate several novel applications in practical settings

due to its robust assurances about privacy and integrity. So, the customers are not

granted access to the proprietary machine learning models owned by the firms. Con-

sequently, they must rely on the assurance that the forecasts are being accurately

calculated as stipulated.

By using ZKML, the service provider is able to demonstrate the superior quality

and precision of the models, as well as verify that the forecasts are derived from

these same models. In some instances, the validation of claims on the high accuracy

achieved by certain machine learning models or algorithms poses a significant chal-

lenge. ZKML offers a partial resolution to this problem. By including a ZKP to verify

the asserted precision, it demonstrates the existence of a machine learning model ac-

knowledged by the proprietor, as supported by the ZKP’s knowledge soundness.

In an alternative context, ZKML may also facilitate the prediction of public models

on confidential datasets.

It may also be used to demonstrate the existence of adversarial instances for a publicly

accessible model, whereby two inputs exhibit proximity to each other but are assigned

to distinct categories.

3.6 Neural Networks

Neural networks are a collection of algorithms that are roughly based on the human

brain and have the goal of identifying patterns. They analyze sensory data by cate-

gorizing or grouping raw input using machine perception. They identify numerical

patterns contained in vectors, into which all real-world data, whether pictures, music,

text, or time series, must be transformed.

Neural networks are used to cluster and categorize data. Consider them a grouping

and classification layer above the data you collect and manage, and also aid in the

grouping of unlabeled data based on similarities between example inputs.

39

Network designs are classified into two types based on the kind of connections be-

tween neurons: "feed-forward neural networks" and "recurrent neural networks."

The network is referred regarded as a "feed-forward neural network" if there is no

"feedback" from the neurons’ outputs to the inputs throughout the network. Other-

wise, if such feedback occurs, i.e. a synaptic link from the outputs to the inputs ,

the network is referred to as a "recurrent neural network." Neural networks are often

organized in "layers." Feed-forward neural networks are classified as "single layer"

or "multi-layer" based on the number of layers.

Neuron: The model characterizes a neuron as a binary processing unit. The firing

state of a neuron is determined by its output signal, which is regulated by a threshold

logic or activation function.

The model neuron, much to its real counterpart, has a multitude of inputs and a single

output. Each input to the neuron is associated with a weight. In order to determine

whether a neuron will generate an output signal, it is necessary to compute the sum-

mation of the products obtained by multiplying each input with its corresponding

synaptic weight. The activation function is then computed using the summation value

obtained.

Figure 3.2: Neuron [28]

3.6.1 Neural Networks Structure with Python Code

The MNIST [18] handwritten digit classification issue is a well recognized dataset

often used in the field of computer vision. In addition, The abbreviation MNIST

40

represents the Modified National Institute of Standards and Technology dataset.

While the dataset has been mostly solved, it may still serve as a valuable resource

for learning and honing the skills required to create, assess, and use neural networks

for the purpose of picture categorization starting from the ground up. This encom-

passes the process of constructing a reliable test framework to evaluate the model’s

performance, investigating potential enhancements to the model, and implementing

mechanisms to store and subsequently use the model for making predictions on novel

data.

This part aims to elucidate the process of constructing a neural network for the pur-

pose of classifying handwritten digits, starting from the very beginning. A neural

network model will be set up as shown below.

Figure 3.3: Neural Netwrok Structure

Part1: Dataset Preprocessing

The collection consists of 60,000 grayscale photos of handwritten single digits rang-

ing from 0 to 9. Each image is a tiny square with dimensions of 28×28 pixels. The

objective is to categorize a provided picture of a handwritten numeral into one of ten

distinct categories that correspond to integer values ranging from 0 to 9, inclusively.

Python code 1:

41

load .npz file

data = np.load(’mnist.npz’)

X_train_all, y_train_all = data[’x_train’],data[’y_train’]

X_test,y_test = data[’x_test’],data[’y_test’]

X_valid = X_test[:10000]

X_train = X_train_all[10000:]

y_valid = y_test[:10000]

y_train = y_train_all[10000:]

data.close()

Output:

Figure 3.4: Output of Python code 1

• Training dataset: Subset of data that is used to train a model.

• Validation dataset: Subset of data that is used to impartially assess the perfor-

mance of a model that has been trained on a separate dataset, with the purpose

of fine-tuning the model’s hyperparameters.

• Test dataset: Subset of data that is used to impartially assess the performance

of a trained model, which has been fitted on the training dataset.

Additionally, a visual representation of the first three photos within the dataset is

generated, showcasing the inherent handwriting characteristics of the images that are

to be categorized.

Python code 2:

28 x 28 picture

plt.figure(figsize=(7,3))

for i in range(3):

42

plt.subplot(1, 3, i + 1)

plt.axis(True)

plt.imshow(X_train[i], cmap=’gray’)

plt.subplots_adjust(wspace=0.2, hspace=0.2)

Output:

Figure 3.5: Output of Python code 2

The collection contains images with pixel values that are either black and white or

unsigned numbers within the range of 0 to 255. A recommended first step in the

process is to normalize the pixel values of grayscale pictures, such as by rescaling

them to the range of [0,1]. The first step in this process is transforming the data

type from unsigned integers to floating-point numbers, followed by dividing the pixel

values by the maximum value.

Python code 3:

X_train = X_train.reshape((X_train.shape[0],28 * 28))

X_train = X_train.astype("float32") / 255

X_test = X_test.reshape((X_test.shape[0],28 * 28))

X_test = X_test.astype("float32") / 255

X_valid = X_valid.reshape((X_valid.shape[0],28 * 28))

X_valid = X_valid.astype("float32") / 255

Output:

Figure 3.6: Output of Python code 3

43

Next, use a one-hot encoding technique to represent the class attribute of each sample.

This process involves converting the integer representation of the class into a binary

vector consisting of ten elements. In this vector, a value of 1 is assigned to the index

corresponding to the class value, while all other indices are assigned a value of 0.

This may be accomplished using the to_categorical() function.

Python code 4:

y_train = to_categorical(y_train)

y_valid = to_categorical(y_valid)

y_test = to_categorical(y_test)

Part2: Layers

Neural networks encode information or abstract patterns in parameters known as

weights and biases. Neural networks are comprised of layers, with each layer includ-

ing nodes. Also, the weights and bias are often regarded as fundamental components

inside a neural network. In the process of transmitting inputs between neurons, the

inputs undergo a multiplication with corresponding weights, followed by their sum-

mation with a bias term. This combined value is then fed into an activation function.

This is an illustrative neural network architecture comprising of an input layer, two

hidden layers, and an output layer. During training a neural network using the train-

ing set, the network is first assigned a group of weights. The first step of neural

computation involves the calculation of the weighted sum of the input signals. The

multiplication operation is performed between the inputs and weights, resulting in

the computation of a weighted sum. Following that, a constant bias is introduced

into the weighted total. Ultimately, the calculated value is inputted into the activation

function, which produces an output.

fi(x) = wix+ bi

Activation function - ReLU

Model inputs are the primary components of a neural network’s design. These inputs

are processed and transformed by an activation or threshold function to activate the

unit, producing an output. Here, the ReLu function will be emphasized since it will

be utilized.

44

Rectified linear unit, often called ReLU, is a non-linear activation function widely

used in neural networks. Utilizing the Rectified Linear Unit (ReLU) function pre-

vents simultaneous stimulation of all neurons. This implies that a neuron will become

inactive once the result of the linear transformation equals zero. It may be described

as follows using mathematics:

Figure 3.7: ReLU Graph

ReLU function is considered more efficient compared to other activation functions

due to its selective activation of neurons. Unlike other functions, ReLU activates a

specific number of neurons at any one moment, rather than activating all neurons

simultaneously.

f(x) =

0, x < 0

x, x ≥ 0

Part3: Class Probability

Softmax activation function

The Softmax activation function calculates the relative probabilities and it returns the

probability of each class. Here, the Z represents the values from the neurons of the

output layer. The exponential acts as the non-linear function. Later these values are

divided by the sum of exponential values in order to normalize and then convert them

into probabilities.

y′ = softmax(zi) =
exp(zi)∑
j exp(zi)

45

Argmax Function

The argmax function is used to determine the argument or arguments (arg) that cor-

respond to the greatest (max) value obtained from the target function.

Python code 5:

model = tf.keras.Sequential()

model.add(Dense(128,activation=’relu’,input_shape=(X_train.shape[1],)))

model.add(Dense(128,activation=’relu’,))

model.add(Dense(10,activation =’softmax’))

model.summary()

Output:

Figure 3.8: Output of Python code 5

Part4: Loss Function, Gradient

Cross Entropy Loss Function

Within the framework of an optimization procedure, the objective function is used to

assess a prospective solution, often known as a set of weights.

The objective function may be optimized by either maximizing or minimizing it, in-

dicating the pursuit of a candidate solution with the greatest or lowest score, respec-

tively.

In the context of neural networks, the objective is often to reduce the error. Therefore,

the objective function is often denoted as a loss function, and the computed value

given by the loss function is commonly referred to as "loss."

46

It is the Multi-class classification problem, so here Cross-Entropy Loss is used as the

loss function.

The term "cross-entropy loss" is often denoted as "cross-entropy" or "logarithmic

loss" in academic literature.

The projected probabilities are compared to the actual class output result, which may

be either 0 or 1. A score is then generated, taking into account the deviation of the

probability from the anticipated value. The penalty exhibits a logarithmic relation-

ship, whereby little discrepancies (e.g., 0.1 or 0.2) are associated with relatively low

scores, while substantial discrepancies (e.g., 0.9 or 1.0) result in much higher scores.A

model that accurately predicts probabilities with a cross entropy value of 0.

L = −
∑
k

yklog(y
′
k)

Gradient

In a broad context, the concept of gradient pertains to the measure of the slope of

an equation. Gradients, on the other hand, refer to partial derivatives, which serve to

characterize the alteration seen in the loss function in relation to slight modifications

in the function’s parameters. This little modification in the loss functions provides

insights into the subsequent approach for mitigating the output of the loss function.

In this model, the RMSprop gradient algorithm is used. RMSprop operates by com-

puting the gradient of the loss function relative to the parameters of the model and

thereafter adjusting the parameters in the direction opposite to the gradient in order

to minimize the loss. A notable characteristic of this approach is the use of a mov-

ing average of the squared gradients to adjust the learning rate. This intervention

contributes to the stabilization of the learning process.

Python code 6:

model.compile(optimizer="rmsprop",

loss="categorical_crossentropy",

metrics=["accuracy"])

Lastly, the model is trained with the help of the code below, the meanings of the terms

47

here are as follows.

• Epoch: The frequency at which the algorithm iterates over the whole training

dataset.

• Batch: It denotes the number of samples to be taken to for updating the model

parameters.

Python code 7:

training_results = model.fit(X_train,

y_train,

epochs=21,

batch_size=64,

validation_data=(X_valid, y_valid))

Output:

Figure 3.9: Output of Python code 7

In this particular scenario, it is evident that the model exhibits a satisfactory level of

conformity, as shown by the convergence of the train and test learning curves. There

48

is no discernible indication of either over-fitting or under-fitting.

Figure 3.10: Train Loss and Validation Loss for each epoch

Figure 3.11: Train Accuracy and Validation Accuracy for each epoch

The confusion matrix is a matrix representation that summarizes the predictions made.

The data shown illustrates the number of accurate and inaccurate predictions for each

class. This helps in comprehending the classes the model misidentifies as belonging

to a different class. The confusion matrix of the model,

49

Figure 3.12: Confusion Matrix of Neutral Network Model

Since the accuracy of the model is very high, it will usually predict correctly. In the

example below, the model predicts 7 when input 7 is used.

Python code 8:

predictions = model.predict(X_test)

index = 0 #input:7

print(’Ground Truth:’, y_test[index])

for i in range (10):

print(’digit:’, i, ’probability’, predictions[index][i])

50

Output:

Figure 3.13: Output of Python code 8

Consequently, a neural network model was implemented using the Python program-

ming language.

3.7 Reversing Model

This is the main question "How to reach input if weight, bias and output are un-

known?". When the activation function is ignored, it is quite simple to reverse.

output = (input ∗ weight) + bias

Reverse it,

input = (output− bias)/weight

Although it is difficult to estimate the activation function, there are several research on

attacks, and by knowing the weights and biases, it is possible to reach the input data.

ReLU is not an invertible function, therefore things may become a little complicated

when it’s employed as the activation function. ReLU eliminates negative inputs while

maintaining positive inputs. As a result, it could be difficult to determine which input

value was obtained with the output value if it is positive. Reversal may be achieved

in a few specific instances in a simple model using the ReLU layer. Anyone may

estimate the proportionality of the result to the input, for instance, if the output value

is positive and the weights used to determine the input are also positive.

When the computational information of the model is hidden, its resistance to these

51

attacks will increase. The weight, bias, and inputs of the model are often hidden

using the supported technique, which is seen to be the most accurate way to close

these weaknesses in security.

52

CHAPTER 4

IMPLEMENTATION OF ZKML PROTOTYPE

This thesis presents a ZKML example for Neural network models based on the prob-

lems mentioned in "Importance and relevance of privacy in ML". Via Circom lan-

guage, it proves that the neural network model belongs to the model created without

giving its weight, bias, and inputs to the other party.

In the previous chapter, the input comes to the model, the weights are multiplied,

and bias is added to it in the neural networks model. The result of this operation is

the input of the next layer. In the neural network example given above, there were

two hidden layers, and the ReLU() activation function was used between the hidden

layers. Finally, the probabilities of the classes were determined with the Softmax()

function. The model output was also reached with the Argmax() function.

The flowchart shown below shows the formation of final weights via iterative pro-

cesses. The final model result is obtained when the indicated functions are applied to

these weights.

This is the Neural Network Modelling process,

53

Figure 4.1: Neutral Network Flowchart

The weight, bias and input in the final version of the model should remain hidden.

Model calculations can be done using CIRCOM without revealing this information

by using Groth16. Terminal or zkREPL can be used as a compiler. Both options will

be presented in this thesis.

54

4.1 CIRCOM and Snarkjs

Domain-specific languages (DSLs), such as Circom, aim to facilitate the develop-

ment of ZKP applications by providing a witness generator and a constraint system

based on the R1CS paradigm. The latter may be inputted into a zkSNARK gener-

ator in order to generate a prover and verifier. The use of the three aforementioned

artifacts, namely the witness generator, prover, and verifier, may be employed in the

construction of a ZK application. The CIRCOM compiler mostly employs the Rust

programming language and is publicly available as an open-source software. The

language is specifically designed to operate at a low-level, closely resembling the

structure and functionality of circuits.

Snarkjs is a JavaScript version of zksnarks, and the library provides for the creation

of proofs, verification part, and trusted setup.

4.2 Terminal

In this method, Using the Circom 2 Document [12], the script created for the model

can be verify in the terminal step by step. Also, the following table shows which files

are created using the terminal and what are used as inputs.

55

Figure 4.2: Circom and Snarkjs

4.2.1 Step 1: Installation

The primary instrument used is the Circom compiler, implemented in the Rust pro-

gramming language. To make Rust accessible on your system, it is possible to install

Rustup. For users operating on Linux or macOS systems, accessing the terminal and

input the following command is recommended. With the following commands, a

folder will be created in the name of Circom on the computer. The necessary files can

be made in this folder, and the process can be completed.

Terminal code 1:

curl --proto ’=https’ --tlsv1.2 https://sh.rustup.rs -sSf | sh

git clone https://github.com/iden3/circom.git

cd circom

cargo build --release

cargo install --path circom

npm install -g snarkjs

56

4.2.2 Step 2: Writing Circuits

It is aimed to explain the logic by choosing the numbers that are small integers. There
are five inputs, two hidden layers, each hidden layer contains two nodes and lastly, it
can be thought of as having three classes. It includes Relu(), Softmax() and Argmax()

functions with final weights. The circuit specially created for neural networks is as
follows:

pragma circom 2.1.4;

function relu (x) {

return x > 0 ? x : 0;

}

function max (x, y) {

return x > y ? x : y;

}

function power (x, n) {

var result = 1;

for(var i = 0; i < n; i++){

result = result * x;

}

return result;

}

template weight(){

signal input in[5];

signal input w1[10];

signal input w2[4];

signal input w3[6];

signal input bias1;

signal input bias2;

signal input bias3;

signal hidden_1[2];

signal hidden_2[2];

signal out[3];

signal temp1;

signal temp2;

signal temp3;

signal temp4;

57

signal temp5;

signal temp6;

signal temp7;

signal temp8;

signal temp9;

signal temp10;

signal softmax_sum;

signal max_value;

signal final1;

signal final2;

signal final3;

signal output result1;

signal output result2;

signal output result3;

signal d;

d <-- 1;

signal e;

e <-- (272/100);

// Hidden 1 result

temp1 <-- relu((in[0]*w1[0]) + (in[1]*w1[2]) + (in[2]*w1[4])

+ (in[3]*w1[6]) + (in[4]*w1[8]) + bias1);

hidden_1[0] <== temp1 * d;

temp2 <-- relu((in[0]*w1[1]) + (in[1]*w1[3]) + (in[2]*w1[5])

+ (in[3]*w1[7]) + (in[4]*w1[9]) + bias1);

hidden_1[1] <== temp2 * d;

// Hidden 2 result

temp3 <-- relu((temp1*w2[0]) + (temp2*w2[2]) + bias2);

hidden_2[0] <== temp3 * d;

temp4 <-- relu((temp1*w2[1]) + (temp2*w2[3]) + bias2);

hidden_2[1] <== temp4 * d;

// output

temp5 <-- relu((temp3*w3[0]) + (temp3*w3[2]) + bias3);

out[0] <== temp5 * d;

58

temp6 <-- relu((temp4*w3[1]) + (temp4*w3[3]) + bias3);

out[1] <== temp6 * d;

temp7 <-- relu((temp4*w3[2]) + (temp4*w3[5]) + bias3);

out[2] <== temp7 * d;

// softmax function

softmax_sum <-- temp5 + temp6 + temp7;

temp8 <-- power(e,temp5)/softmax_sum;

temp9 <-- power(e,temp6)/softmax_sum;

temp10 <-- power(e,temp7)/softmax_sum;

//Finally result

max_value <-- max(max(temp8,temp9),temp10);

if (max_value == temp8) {

final1 <-- temp5;

} else if (max_value == temp9){

final2 <-- temp6;

} else{

final3 <-- temp7;

}

result1 <== final1 * d;

result2 <== final2 * d;

result3 <== final3 * d;

}

component main = weight();

/* INPUT = {

"in": [1, 2, 3, 4, 5],

"w1": [5, 5, 5, 3, 1, 5, 1, 2, 1, 1],

"w2": [1, 4, 3, 2],

"w3": [1, 5, 3, 2, 3, 0],

"bias1": "1",

"bias2": "1",

"bias3": "1"

} */

59

A template named "weight()" has been developed in the field of circuit design. In

order to do this task, it is necessary to create a file with the code provided below. Once

the arithmetic circuit has been constructed using the circom programming language,

it is necessary to save the resulting circuit in a file with the .circom extension.

In this particular instance, a file named zkml.circom is generated. The current mo-

ment necessitates the compilation of the circuit in order to get a system of arithmetic

equations that accurately represents it. As a consequence of the compilation process,

then get programs that may be used to calculate the witness. The instruction is as

follows:

Terminal code 2:

circom zkml.circom --r1cs --wasm --sym --c

In this scenario, an R1CS file is generated using the "-r1cs" option. Additionally, a

folder containing the files generate_witness.js, zkml.wasm, and witness_calculator.js

is created using the "–wasm" option.

An image of the terminal that shows both the public and private input/output is also

shown below. Additionally, it contains recently made files.

Output:

Figure 4.3: Image of Terminal Output 1

60

4.2.3 Step 3: Computing Witness

A file called input.json needs to be created, which contains inputs written in standard
json format. All input parameters must have values in it as well.

{

"in": [1, 2, 3, 4, 5],

"w1": [5, 5, 5, 3, 1, 5, 1, 2, 1, 1],

"w2": [1, 4, 3, 2],

"w3": [1, 5, 3, 2, 3, 0],

"bias1": "1",

"bias2": "1",

"bias3": "1"

}

Navigate to the directory named "zkml_js". Proceed to include the provided input

into a file named "input.json". Finally, launch the program.

Before creating the proof, calculation of all the circuit’s signals satisfy all of the

circuit’s constraints. Wasm module is produced by Circom, which helps in doing this

task, for that.

The system just need to provide a file with the inputs, and the module will run the

circuit and compute all of the intermediate signals and the output using the created

Wasm binary and three JavaScript files. Witness is the collective term for a collection

of inputs, intermediate signals, and outputs. The witness is now calculated, and a

binary file witness.wtns is created with it in a snarkjs-acceptable format. The wit-

ness.wtns file will be created by the command. This file has been encoded in a binary

format compatible with snarkjs, the program uses to produce the actual proofs.

Terminal code 3:

node generate_witness.js zkml.wasm input.json witness.wtns

61

4.2.4 Step 4: Proving circuits (Groth16)

The first command activates the potency of the tau ritual. The new command is

used to start a fresh phase, with the first argument after new denoting the curve type,

hence specifying the Groth-16 parameter. In this context, we specify the selection of

the curve, namely the bns128 curve. The subsequent parameter, denoted as ’a’ and

taking the value of 12 in this particular scenario, establishes an upper limit of 2a on

the number of constraints that the configuration has the capacity of accepting. The

pot12_0000.ptau output file has been successfully configured. The second command

serves as a significant addition to the ceremonial proceedings. A new file named

pot12_0001.ptau will be generated, which will serve as a precise copy of the original

file. Additional text is included to improve the level of entropy.

Terminal code 4:

snarkjs powersoftau new bn128 12 pot12_0000.ptau -v

snarkjs powersoftau contribute pot12_0000.ptau pot12_0001.ptau

--name="First contribution" -v

Output:

Figure 4.4: Image of Terminal Output 2

The contributions to the powers of tau are included in the file "pot12_0001.ptau". We

can now continue with Phase 2.

Terminal code 5:

62

snarkjs powersoftau prepare phase2 pot12_0001.ptau pot12_final.ptau -v

The beginning of the second phase involves the calculation of a Groth16 CRS. The

outcome of this stage is contingent upon the R1CS associated with the issue, and the

resultant calculation is stored in the file named zkml_0000.zkey.

Terminal code 6:

snarkjs groth16 setup zkml.r1cs pot12_final.ptau zkml_0000.zkey

snarkjs zkey contribute zkml_0000.zkey zkml_0001.zkey

--name="1st Contributor Name" -v

snarkjs zkey export verificationkey zkml_0001.zkey verification_key.json

Generating a Proof, two files are created and their name is "proof.json" and "pub-

lic.json". The "proof.json" file will include the representation of the real proof via

three curve points like π, while the "public.json" will keep the values of the instance.

Terminal code 7:

snarkjs groth16 prove zkml_0001.zkey witness.wtns proof.json public.json

"proof.json" and "public.json" includes them,

proof.json:

{

"pi_a": [

"110007107169879889684540407167293033402970061

14283318268370750364664387376660",

"309320261999654173676816627378383082772374584

4104446358026888656502754350723",

"1"

],

"pi_b": [

[

"11918365174906303943622045930621900258309023

823041378998581306592065688446777",

63

"12809547534216023254408751251110869870564590

187939700513328004633968803923092"

],

[

"80046092859713559557550797011221378602165717

20683609955667068738063177666908",

"27097713224688463188579057158364856369160759

82739782374084826759442446339020"

],

[

"1",

"0"

]

],

"pi_c": [

"7937909663222064929284024180165088268830162025

436645966096019145276773125208",

"557554480120459382490238839489416483112135168

1983723104402994446372992667414",

"1"

],

"protocol": "groth16",

"curve": "bn128"

}

public.json:

[

"0",

"0",

"580"

]

According to previous chapter, it is possible to get a verifier key from the CRS. In

64

order to validate the evidence proof.json against the instance public.json, the verifier

uses the verification key verification_key.json and applies the verification algorithm

provided by Snark.js. For verification of the proof, please perform the provided com-

mand:

Terminal code 8:

snarkjs groth16 verify verification_key.json public.json proof.json

This is the verification key:

{

"protocol": "groth16",

"curve": "bn128",

"nPublic": 3,

"vk_alpha_1": [

"4729492488277101573624767949545658868784797

357062990795349388016965269418084",

"3519788845822786375959133130017828954038670

591329401705054971621899448324453",

"1"

],

"vk_beta_2": [

[

"2211567741354393684859489156796815846003960

198091728054854525744378230062764",

"2117347711612772369432770650726177129468227

6118108574822440157077141653111699"

],

[

"1873313006285346621024981202713339211931864

5238473227048294205171823217362069",

"4797524190777451848383007268074776485718403

527558482577743075769444636566503"

],

[

"1",

65

"0"

]

],

"vk_gamma_2": [

[

"10857046999023057135944570762232829481370756

359578518086990519993285655852781",

"11559732032986387107991004021392285783925812

861821192530917403151452391805634"

],

[

"84956539231234314176049732474892724384181905

87263600148770280649306958101930",

"40823678758634336813322034031454355683168513

27593401208105741076214120093531"

],

[

"1",

"0"

]

],

"vk_delta_2": [

[

"97248090837489025256042450666483486254570357

67082879279067774638204810690324",

"26468897590628019143261406392592389941398889

50247818315918806909778144895798"

],

[

"45668514353070163232625295672103382343045250

66048603040022933477307826545101",

"83065986263297809720400573884298834864769156

47196706190498690268313590032485"

],

[

"1",

"0"

66

]

],

"vk_alphabeta_12": [

[

[

"10464261506767069192425243362460339755290167

318153616356982569750227841548246",

"12122985929374586040662763703587663865078369

095671949582848591389542016402098"

],

[

"86923113624830340721138471822199860318533250

19862024849826755449030436150136",

"20114352444219032206117806261388120509626384

680404599207707242024633489740847"

],

[

"35513888791808156464874961381107018329834168

80608780378067867408779434112142",

"20282637657341181362776047252753274837115768

573372656430110357260944208994648"

]

],

[

[

"149067806377539140262924003902394234506307726

51030575768641188076541690898668",

"196225982623668875852786663207969381341391349

53454227378574847322629060952680"

],

[

"136919827525481732228789496964642524966090165

37224773158256779460421550231222",

"186043034712582746987448944868343231046721128

92220683564552356189493442876126"

],

[

67

"205343758564442597866432716510738055777780355

33315274687155162429429782147853",

"706330392481983390761076740964556259442026778

0421376151950063177753567889420"

]

]

],

"IC": [

[

"18294679380808953181304951636888711631658671970

202584968773859462936054541948",

"26083641818530225271700460958168816292942696927

7169341008081399982810302841",

"1"

],

[

"97191296033494109405493488377769951978414533784

4864198688314446727599526169",

"45127766407367054672086172240416885892872621218

95622939282424254541231469850",

"1"

],

[

"20603683527061890746213062809168874965211120962

413162366074125393659932303533",

"13855251879707674757033400559169970479349262007

446265478798849432209294152102",

"1"

],

[

"34235683625703474638596620067367748819100738228

10615890955691151161273649666",

"85474192203016711185115518939552861037756086313

85046904056357637600124249523",

"1"

]

]

68

}

At the end of the verification, the terminal says "Ok".

4.3 ZkREPL

Formal languages may be viewed and expressed as claims of membership or knowl-

edge, in which algebraic circuits and R1CS perform crucial roles in defining and

characterizing these languages. To enable the creation of intricate statements, it is

essential to possess a compiler framework capable of converting high-level program-

ming languages into arithmetic circuits and their corresponding R1CS.

These programming languages facilitate the development and evaluation of arithmetic

circuits more naturally and efficiently, relieving developers of the complexities asso-

ciated with R1CS representations. Consequently, individuals can focus on the logical

aspects of the courses they want to construct since the compiler assumes responsibil-

ity for the remaining tasks.

ZkREPL is a compiler that aims to combine ZKP systems with more complex struc-

tures based on the Circom language. By clicking, files can be downloaded and saved.

You can check if the circuit is working here in much less time.

Figure 4.5: The output of zkREPL

69

Proof:

{"pi_a":["94350128754355673222095400400330664411496

12506145098224051075402039675919101",

"74157313413130936790677802135537591262076993532024

91693102669091419299301911","1"],

"pi_b":[["4728344366910082547317675949662188820051889604003

282169951917603324482942581",

"188705786818521140498474276231277339415422444193449

86786400115243637129821253"],

["68633548667596838495798105394352550571638991294887

37834158283220352039515125",

"580734288399154562811825998515327156506679691510282

2053825706954012892191305"],["1","0"]],

"pi_c":["75213201298452936811147594002147850944841832360051

61493719828393082490808603",

"175326158461167687408716978181210827954522317728628

59716079769737357186508756","1"],"protocol":"groth16","curve":"bn128"}

Public Output:

["0","0","580"]

As mentioned before, the variable with the largest ratio in this context is the projected

result.

70

CHAPTER 5

CONCLUSION

The neural network model has been proven by using each of the options suggested that

which are ZkREPL or terminal, and not sharing the input, weight, and bias. The re-

sults show that our tried-and-true method of confirming neural network models using

the Groth16 restart protocol while keeping the details of the base parts secret works.

This suggested method is a new idea that handles security and privacy concerns well,

which could make neural network-based models more reliable.

The study’s results show that neural network models can be made with different in-

ternal settings when both data security and model security must be kept. This method

hides parts of the model so that they can’t be changed or abused from the outside.

This method can also make the model safer to use in the place where it is made, and

it can widen the range of security measures.

The findings acquired have the potential to enhance the security of systems based

on neural networks, while also carrying significant consequences in the domains of

machine learning and cryptography. Further investigation should be conducted to

thoroughly examine the potential of this method on bigger datasets and other machine

learning architectures in the future.

In summary, this research provides a novel viewpoint about the security aspects of

systems based on neural networks. There is an expectation that future research efforts

in this domain will be focused on advancing the methodology and expanding its range

of applications.

71

5.1 Limitations

• The rationale for the need of multiplying any circuit result by 1 remains unclear.

This observation suggests a potential deficiency in the user’s understanding or

methodology to substantiate their claim, notwithstanding the circuit’s theoreti-

cal validity.

• Due to its limited applicability to quadratic equations, the circuit precluded the

consideration of a broader range of equations. The restricted range of appli-

cability of the circuit constrained its use in addressing diverse mathematical

issues, hence prompting the exploration of alternate methodologies for dealing

with more intricate equations.

• Because of the inherent limitation of the Circom language in accommodating

decimal values, other approaches were required to effectively handle such nu-

merical representations. Consequently, indirect methodologies and intricate

computations were used throughout the procedure. This problem is fixed with

the following function,

function power (x, n) {

var result = 1;

for(var i = 0; i < n; i++){

result = result * x;

}

return result;

5.2 Future Work

It is important to assess the wider potential of the technique proposed in this thesis

by subjecting it to testing using an array of neural network models. This will provide

a comprehensive evaluation of the method and facilitate a deeper understanding of

its inherent limits. By conducting experiments with various model types, depths, and

topologies, researchers may strive to ascertain the optimal conditions in which the ap-

proach exhibits superior performance, as well as identify situations where additional

72

enhancements are necessary. These studies provide a more comprehensive perspec-

tive on the practical uses of the approach in real-world neural network contexts.

Furthermore, within the context of extended validation, it is possible to enhance the

procedure in order to verify not only the weight, bias, and inputs of the neural network

model but also the intrinsic activations at various levels. For example, the number of

layers, the number of nodes, and the activation functions used can also be hidden.

Further investigation and refinement of the approach presented in this thesis with

regard to its consequences on data privacy and security may be considered as a viable

avenue for future research. In situations when the approach is deemed suitable, it is

crucial to evaluate any vulnerabilities that may expose the underlying architecture of

the model or result in breaches of privacy. In this particular context, the objective is

to simulate several attack routes and evaluate the effectiveness of defensive measures

against these assaults.

The methodology used in this thesis is not necessarily restricted just to the valida-

tion of neural network models. Further investigation might be conducted to examine

the potential for applying a comparable methodology to other models, such alterna-

tive machine learning techniques or statistical models. It is crucial to showcase the

method’s potential for broader use as a comprehensive validation methodology.

73

74

REFERENCES

[1] Arnsx, A. (2019) First neural network for beginners explained (with code).
url: https://towardsdatascience.com/first-neural-network-for-beginners-explained-
with-code-4cfd37e06eaf [Accessed on 15 Aug, 2023].

[2] Ayodele, T. O. (2010). Types of machine learning algorithms. New advances in
machine learning, 3, 19-48.

[3] Bellés-Muñoz, M., Isabel, M., Muñoz-Tapia, J. L., Rubio, A., & Baylina, J.
(2022). Circom: A Circuit Description Language for Building Zero-knowledge
Applications. IEEE Transactions on Dependable and Secure Computing.

[4] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., & Ward, N.
P. (2019). Aurora: Transparent succinct arguments for R1CS. In Advances in
Cryptology–EUROCRYPT 2019: 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19–23, 2019, Proceedings, Part I 38 (pp. 103-128). Springer International
Publishing.

[5] Benarroch, D., Brandão, L., Maller, M., and Tromer, E. Pub. (2022). ZKProof
Community Reference. Version 0.3. Ed. by by zkproof.org. Updated versions at
https://docs.zkproof.org/reference [Accessed on 15 Jan, 2023]

[6] Chen, T., Lu, H., Kunpittaya, T., & Luo, A. (2022). A review of zk-snarks. arXiv
preprint arXiv:2202.06877.

[7] Ghodsi, Z., Gu, T., & Garg, S. (2017). Safetynets: Verifiable execution of
deep neural networks on an untrusted cloud. Advances in Neural Information
Processing Systems, 30.

[8] Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., & Wernsing,
J. (2016). Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy. In International conference on machine learning (pp.

75

201-210). PMLR.

[9] Groth, J. (2005). Non-interactive zero-knowledge arguments for voting. In
Applied Cryptography and Network Security: Third International Conference,
ACNS 2005, New York, NY, USA, June 7-10, 2005. Proceedings 3 (pp. 467-482).
Springer Berlin Heidelberg.

[10] Groth, J. (2016). On the size of pairing-based non-interactive arguments.
In Advances in Cryptology–EUROCRYPT 2016: 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part II 35 (pp. 305-326). Springer Berlin
Heidelberg.

[11] Gudikandula, P. (2019). A Beginner Intro to Neural Networks. url:
https://medium.com/@purnasaigudikandula/a-beginner-intro-to-neural-networks-
543267bda3c8 [Accessed on 17 Aug, 2023].

[12] Iden3, “CIRCOM: Circuit compiler for zero-knowledge proofs”, GitHub, 2020.
[Online]. Available: https://github.com/iden3/circom [Accessed on 15 Aug, 2023].

[13] Kang D., & Gan E. Bridging the Gap: How ZK-SNARKs
Bring Transparency to Private ML Models with zkml. 2023. url:
https://medium.com/@danieldkang/bridging-the-gap-how-zk-snarks-bring-
transparency-to-private-ml-models-with-zkml-e0e59708c2fc [Accessed on 4 Aug,
2023].

[14] Lee, S., Ko, H., Kim, J., & Oh, H. (2020). vcnn: Verifiable convolutional neural
network based on zk-snarks. Cryptology ePrint Archive.

[15] libsnark, https://github.com/scipr- lab/libsnark [Accessed on 1 Aug, 2023].

[16] Ma, C., Wojtowytsch, S., & Wu, L. (2020). Towards a mathematical under-
standing of neural network-based machine learning: what we know and what we
don’t. arXiv preprint arXiv:2009.10713.

[17] Mahesh, B. (2020). Machine learning algorithms-a review. International Journal
of Science and Research (IJSR).[Internet], 9(1), 381-386.

76

[18] MNIST, http://yann.lecun.com/exdb/mnist/ [Accessed on 5 Aug, 2023].

[19] Muñoz-Tapia, Jose L.; Belles, Marta; Isabel, Miguel; Rubio, Al-
bert; Baylina, Jordi (2022). CIRCOM: A Robust and Scalable Lan-
guage for Building Complex Zero-Knowledge Circuits. TechRxiv. Preprint.
https://doi.org/10.36227/techrxiv.19374986.v1 [Accessed on 17 Aug, 2023].

[20] Nitulescu, A. (2020). zk-SNARKs: a gentle introduction.

[21] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani,
and M. Costa, “Oblivious multi-party machine learning on trusted processors.” in
Proc. of USENIX Security’16, 2016, pp. 619– 636.

[22] Paar, C. 1963-. (2009). Understanding cryptography : a textbook for students
and practitioners. Berlin ; London :Springer.

[23] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J.
Wernsing, “Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy,” in Proc. of ICML’16, 2016, pp. 201–210.

[24] Raffo, D. (2002). Digital Certificates and the Feige-Fiat-Shamir zero-knowledge
protocol. Master of Science in Computer Science Thesis, Université de Marne la
Vallée, France.

[25] Ray, S. (2019). A quick review of machine learning algorithms. In 2019 Inter-
national conference on machine learning, big data, cloud and parallel computing
(COMITCon) (pp. 35-39). IEEE.

[26] Ray, S. (2019). A Quick Review of Machine Learning Algorithms. 2019
International Conference on Machine Learning, Big Data, Cloud and Parallel
Computing (COMITCon). https://doi.org/10.1109/comitcon.2019.8862451 [Ac-
cessed on 17 Aug, 2023].

[27] Richter, M. (2023). The MoonMath Manual to ZK-SNARKS v1.1.1. Least
Authority Privacy Matters

77

[28] Saxena, A. (2020). Building a simple neural network from scratch. Medium.
https://towardsdatascience.com/building-a-simple-neural-network-from-scratch-
a5c6b2eb0c34 [Accessed on 17 Aug, 2023].

[29] Sharma, S., Sharma, S., & Athaiya, A. (2017). Activation functions in neural
networks. Towards Data Sci, 6(12), 310-316.

[30] Shinde, P. P., & Shah, S. (2018). A review of machine learning and deep
learning applications. In 2018 Fourth international conference on computing
communication control and automation (ICCUBEA) (pp. 1-6). IEEE.

[31] Smart, N. P. (2016). Cryptography Made Simple. (Information Security and
Cryptography). Springer, https://doi.org/10.1007/978-3-319-21936-3 [Accessed
on 21 Dec, 2022].

[32] Tuntas, R., & Dikici, B. (2016). An investigation on the aging responses and
corrosion behaviour of A356/SiC composites by neural network: The effect of
cold working ratio. Journal of Composite Materials, 50(17), 2323-2335.

[33] Venir, E., & Ruzza, L. (2022). Decentralized federated machine learning with
blockchain and zero knowledge proofs.

[34] Vitalik Buterin. Quadratic Arithmetic Programs: from Zero to Hero. 2016. url:
https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-
to-hero-f6d558cea649 [Accessed on 15 Aug, 2023].

[35] Yagnadeepxo. (2023, April 26). The beginner’s guide to ZK-snark: Setting
up your first proof system. DEV Community. https://dev.to/yagnadeepxo/the-
beginners-guide-to-zk-snark-setting-up-your-first-proof-system-3le3 [Accessed
on 15 Aug, 2023].

[36] Yu, W., Xu, M., Yu, D., Cheng, X., Hu, Q., & Xiong, Z. (2022, November).
zk-PCN: A Privacy-Preserving Payment Channel Network Using zk-SNARKs.
In 2022 IEEE International Performance, Computing, and Communications
Conference (IPCCC) (pp. 57-64). IEEE.

[37] Zapechnikov, S. (2020). Privacy-preserving machine learning as a tool for se-
cure personalized information services. Procedia Computer Science, 169, 393-399.

78

[38] Zhang, J., Fang, Z., Zhang, Y., & Song, D. (2020). Zero knowledge
proofs for decision tree predictions and accuracy. Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security.
https://doi.org/10.1145/3372297.3417278 [Accessed on 15 Aug, 2023].

[39] Zhao, L., Wang, Q., Wang, C., Li, Q., Shen, C., & Feng, B. (2021). Veriml:
Enabling integrity assurances and fair payments for machine learning as a service.
IEEE Transactions on Parallel and Distributed Systems, 32(10), 2524-2540.

79

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Related Works
	The Outline

	Zero Knowledge proof
	What is a zero-knowledge proof ?
	Requirements for a zero-knowledge proof system specification
	Specifying Statements for ZK
	Example1: Discrete logarithm (discrete-log)
	Example2: Graph non-isomorphism
	Example3: Schnorr's Identification Protocol
	Differences Between Interactive and Non-interactive ZKP

	What is the ZK-snark?
	Example of ZK-Snark
	Preliminaries
	Example Solution about ZK-SNARK

	Groth16

	Machine Learning
	Definition of Machine Learning
	Supervised Learning and Unsupervised Learning
	Process of Developing Model
	Importance and relevance of privacy in ML
	Zero Knowledge Machine Learning
	Neural Networks
	Neural Networks Structure with Python Code

	Reversing Model

	Implementation of ZKML prototype
	CIRCOM and Snarkjs
	Terminal
	Step 1: Installation
	Step 2: Writing Circuits
	Step 3: Computing Witness
	Step 4: Proving circuits (Groth16)

	ZkREPL

	Conclusion
	Limitations
	Future Work

	REFERENCES

