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ABSTRACT

SECURE MODEL VERIFICATION AND PRIVACY PRESERVATION WITH
ZK-SNARKS AND NEURAL NETWORKS

Seriner Gerenli, Dursun Oylum
M.S., Department of Cryptography
Supervisor : Prof. Dr. Ferruh Ozbudak

September 2023, [79| pages

Neural networks are widely used learning models to achieve successful results in
many application areas today. However, proving and sharing the accuracy and relia-
bility of these networks is often limited due to privacy and security challenges. In this
study, a method of cryptographic proving the accuracy of neural networks without
revealing their intrinsic components is presented. The method is presented by using
the Circom programming language to create a circuit containing these elements by
making use of the final weights, bias values, and inputs of the neural networks. The
use of the Circom programming language makes it possible to convert neural network
elements into electronic circuits. The resulting circuit contains the representation of
the neural network model and mimics the transformation from inputs to outputs. It is
also used with Groth16 which is a Zero Knowledge Proof system to prove the accu-
racy of the neural network without leaking private information. As in this study, the
newly produced circuit can be used with the help of zkREPL or terminal. As a result,
an experimental method is presented to prove the real-world performance of the neu-
ral network model and increase the reliability of the model, and using the knowledge
found in the literature, an approach has been explored to be implemented to solve
current security problems. In this way, the correctness of the model can be proven
without directly telling the hidden inputs to the other party.
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Keywords: Cryptography, Zero Knowledge Proof, Neural Networks, Groth16, Cir-
com, Machine Learning
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0z

ZK-SNARK VE SINIR AGLARI ILE GUVENLI MODEL DOGRULAMA VE
OZEL VERININ KORUNMASI

Seriner Gerenli, Dursun Oylum
Yiiksek Lisans, Kriptografi Boliimii
Tez Yoneticisi : Prof. Dr. Ferruh Ozbudak

Eyliil 2023, [79|sayfa

Yapay sinir aglar giiniimiizde bir¢ok uygulama alaninda basarili sonuglara ulasmak
icin yaygin olarak kullanilan 6grenme modelleridir. Ancak, bu aglarin dogrulugunun
ve giivenilirliginin kanitlanmasi ve paylasilmasi genellikle gizlilik ve giivenlik sorun-
lar1 nedeniyle sinirlidir. Bu ¢calismada, yapay sinir aglarinin i¢sel bilesenlerini ortaya
cikarmadan dogrulugunu kriptografik olarak kanitlayan bir yontem sunulmaktadir.
Yontem, sinir aglarinin nihai agirliklari, bias degerleri ve girdilerinden yararlanarak
bu elemanlar1 igeren bir devre olusturmak icin Circom programlama dili kullanila-
rak sunulmustur. Circom programlama dilinin kullanilmasi, sinir ag1 elemanlarinin
elektronik devrelere doniistiiriilmesini miimkiin kilar. Ortaya cikan devre, sinir agi
modelinin temsilini icerir ve girdilerden c¢iktilara doniisiimii taklit eder. Ayrica, sinir
aginin dogrulugunu 6zel bilgileri sizdirmadan kanitlamak i¢in Zero Knowledge Proof
sistemi olan Grothl6 ile birlikte kullanilir. Bu calismada oldugu gibi yeni iiretilen
devre zZkREPL veya terminal yardimiyla kullanilabilir. Sonug olarak, sinir ag1 mode-
linin gercek diinya performansini kanitlamak ve modelin giivenilirligini artirmak i¢in
deneysel bir yontem sunulmusg ve literatiirde bulunan bilgiler kullanilarak mevcut gii-
venligik probleminin ¢dziimiine yonelik uygulanacak bir yaklagim arastirilmigtir. Bu
sayede gizli girdiler dogrudan kars: tarafa sdylenmeden modelin dogrulugu kanitla-
nabilmektedir.
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CHAPTER 1

INTRODUCTION

The discipline of cryptography has traditionally been used to guarantee the privacy
and integrity of information exchange. The use of these tools, initially limited to mil-
itary and diplomatic communication, gradually extended to other domains of civilian
life, eventually establishing itself as a fundamental component of the contemporary
digital landscape. The proliferation of the Internet has heightened the significance of

encryption in safeguarding personal data and sensitive information.

Machine learning is a pivotal technology that finds extensive use in several domains,
including but not limited to data analysis, predictive modeling, and automated decision-
making across diverse sectors. However, machine learning models are not exclusively
dependent on the efficacy of algorithms and training data. The quality, integrity, and
confidentiality of the input data play a critical role in protecting the performance and
security of the model. Cryptography includes a collection of mathematical method-
ologies that facilitate the establishment of safe encryption and decryption mechanisms
for data. Cryptography techniques provide a viable means of safeguarding input data
or other value not to be shared. The reason for maintaining confidentiality about the
model inputs is expanded further inside the thesis. Using proper data storage tech-
niques enhances the dependability of the model and safeguards against the occurrence

of inaccurate outcomes.

The main problems discussed in this thesis relate to the following. Firstly, the train-
ing data sample may include personal and private information. Individuals who own
ownership of this dataset may be interested in using it to train a model while maintain-

ing a sense of control and authority over the data. Secondly, a person with malicious



motives possessing knowledge of the model’s output may manipulate the model to
get desired outcomes. Thirdly, it facilitates competitors in gaining awareness of the
fundamental principles of powerful AI models and using this knowledge to their ad-
vantage. This thesis explores cryptographic techniques that may be used to minimize

the occurrence of adverse events.

By using the groth16 algorithm, it will be proved that the predictions of the model
belong to this model without revealing the weight, input and biases of the neural net-
work model. For this, an application is presented via terminal and ZKML compiler as
a method. It has been stated in the literature that ZK-snarks may be used with neural
network models; however, there have been deficiencies in terms of their application,
which is why Groth16 and Neural Network models was chosen for this thesis. This

thesis will provide a model of its applicability because of these reasons.

1.1 Related Works

Zhang et al. (2020) conducted a research [38] with the objective of using the Zero
Knowledge Proof technique to safeguard the privacy of a decision tree model. The
primary objective of this research was to maintain the integrity of the forecasts and

precision of the decision tree model.

In their academic article titled "VeriML: Enabling Integrity Assurances and Fair Pay-
ments for Machine Learning as a Service," [39] Zhao et al. (2021) try to develop
a methodology using snark for protecting the training data of six distinct models.
This study is conducted according with the goals of maintaining data integrity and

facilitating equitable financial transactions.

"Decentralized Federated Machine Learning with Blockchain and Zero Knowledge
Proofs" focuses on how Federated Machine Learning (FML) models can use Zero
Knowledge Proofs (ZKP) and blockchain technologies to protect privacy without ex-

posing the main data source [33]].

The aforementioned research was carried out by Lee, Ko, Kim, and Oh (2020) and

was subsequently published with the title "vCNN: Verifiable Convolutional Neural
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Network based on zk-snarks". This article [[14] presents a novel convolutional neural
network (CNN) architecture, referred to as the accelerated verification CNN (vCNN),
which aims to significantly enhance proof performance. The primary objective of
this framework is to guarantee the verifiability of convolutional neural networks by
the incorporation of zk-SNARKSs technology. This paper introduces a novel and fast

language for enhancing the proving performance of convolution equations.

In the article [7] is a publication titled "SafetyNets: Verifiable Execution of Deep
Neural Networks on an Untrusted Cloud," Ghodsi, Gu, and Garg introduce a concep-
tual framework that aims to establish the reliability of deep learning model inference

tasks conducted by an untrusted cloud service provider on behalf of its client in 2017.

1.2 The Outline

This thesis starts with the basic principles of Zero-Knowledge Proof (ZKP) and dis-
cusses the applications of this concept in different fields [3], [22]. To understand the
essence of ZKP, examples of number theory such as discrete logarithm, graph non-
isomorphism, and Schnorr’s Authentication Protocol are examined [31]. Also, both

interactive and non-interactive ZKP approaches are introduced [9].

Building on this basic insight, the focus is on ZKsnarks and specifically the Groth16
algorithm [6]], [20], [36]. By giving examples about the Grothl6 algorithm [27],
examples of data that protects confidentiality, which is one of the powerful and wide

application areas of ZKP, are shown.

The focus of the thesis then shifts to Machine Learning(ML) [21]]. Firstly, the con-
cepts of supervised and unsupervised learning are introduced [2], [26], [29]. Then,
the development processes of a model and the importance of confidentiality in this
process are emphasized [30]. It also explains Zero Knowledge Machine Algorithm

(ZKML) [13], [25].

After the definition of neural network models [11], [32], [37] it is explained how a
model is developed over a Python example [5], [16], [18]]. This model demonstrates

how weights, biases, and inputs are validated without disclosure, using the Groth16

3



algorithm and using a terminal or online compiler (ZKREPL) [3], [12], [29]. This
highlights how ZKP can be integrated with machine learning and how data privacy

can be protected.



CHAPTER 2

ZERO KNOWLEDGE PROOF

2.1 What is a zero-knowledge proof ?

According to "ZKProof Community Reference" study [5] (Benarroch et al., 2022),
ZKP requires proving true statements without saying secret information directly. The
prover tries to prove the statement, and the verifier continuously checks the results.
In addition, a statement (Notation: x € L) means that it is a claim, and the prover
and verifier know it. The statement needs to be substrate and call instance (Notation:
I). Then, the secret information calls the witness (Notation: w). This part focuses on

some examples of ZKP in real life, and the above table shows some examples,

Table 2.1: Example of ZKP

Statement Instance Witness
I am an adult Tamper-resistant Birthdate and
identification chip personal data
We are not bankrupt Encrypted bank records Portfolio data-
decryption key
This expression is a theorem | The logical rules of inference | Logical implications

Another example is the famous Ali Baba Cave. The exploration of Ali Baba Cave
provides valuable insights into the comprehension of ZKP. For clarity, the story sub-
jects could be Peggy and Victor. This is the story of Peggy and Victor, who found a
ring-shaped cave with a closing magic door at the entry on the other side. She says

she’s found a secret word that opens the magical door but doesn’t want to tell him
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what it is. He also wants to find out if Peggy does know the secret word. After that,
Peggy and Victor agree to call the two ways "Paths A" and "Paths B." Then she goes
in any direction without him being able to see where she is going. After that, he goes
into the cave and shouts the name of either the A or B way he wants her to take to
get back. Knowing the secret word, she can find the right path back to him without
trouble. Due to this, Peggy and Victor can do this action more than once. He is more

sure that she knows the secret word as he says it repeatedly.

e Complete: The prover tries to show the correct proof of the statement, which
the verifier will accept. This property means that if the statement being proved
is confirmed, an honest prover can convince an honest verifier of its truth with a
high probability. The evidence system will be complete if a prover and a valid
witness can convince an honest prover that this statement is true. Now, the prof
system is considered. In the exercise that follows, imagine an adversary who is

complete.

1. Run Setup(params) — (setupR, setupP , setupV , auxi)

2. The adversary select a worst case instance and witness Adversary(params,
setupR, setupP , setupV , auxi)— (x,w)

3. The interaction continues until Prover gives a error or verifier gives reject
or accept the confirmation. If the protocol does not end, it will error. (
Prove(setupP , x,w, start) ; Verify(setupV , x)) — result

4. Adversary wins if (setupR, x,w) € R and result is not accept.

If no one ever creates an effective adversary with a significant advantage, a
proof system for R operating on params is finished. The application will de-
termine what constitutes an effective adversary (computer hardware, operating
time, memory utilization, lifetime, incentives, etc.) and how much benefit can
be allowed. Statistical completeness (also known as unconditional complete-
ness), where the chance of success is low for any opponent, and perfect com-
pleteness, where the advantage is precisely zero for any adversary, are examples

of exceptionally strong cases.

e Soundness: The prover tries to show proof of the statement, but it is not true,

and the verifier will reject it. This property means that if the statement being
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proved is false, no cheating prover can convince an honest verifier that it is
true with a high probability. A proof system is sound if a dishonest verifier has
little to no chance of being persuaded that a misleading statement is true by
a dishonest prover. A proof system’s complete specification must include an

exact definition of soundness that conveys this intuition.

1. Run Setup(params) — (setupR, setupP , setupV , auxi)

2. The adversary select instance Adversary(params, setupR, setupP , setupV

,auxi)— x

3. The adversary interact with the verifier ( Adversary ; Verify(setupV , z))

— result

4. Adversary wins if (setupR, z) ¢ L and result is accept.

e Zero-knowledge: The secret information will always be secret, meaning the
verifier cannot know it. This property means that the protocol does not reveal
any information about the secret beyond that the statement being proved is true.

In other words, the verifier learns nothing about the secret itself.

Advantage(params) = Pr[Adversary wins] - %

2.1.1 Requirements for a zero-knowledge proof system specification

The proof system has some requirements,

1. The type of statement definition must be clear.

2. Algorithm details are known by prover and verifier and all construction about

this system.

3. Setup definitions used by the prover and verifier. (“PrivateSetupp ™

or “PrivateSetupy”, respectively not known to the other party)

4. The primary objective of the proof system is to provide precise and well-defined

specifications of the security it aims to provide.

5. The security analysis of the ZKP system and list of assumptions that have not

yet been confirmed.



2.1.2 Specifying Statements for ZK

The statements considered in this study fit into the relation 1R between instances x and
witnesses w. The relation R specifies which pairs (z,w). Then, they are considered
related to each other, but they are not. L defines that instance = has a witness w in R.
These notes mention details about definitions.

The statement of form is « € L, this means that "I know witness w of instance x in
R". Acceptance means that (z,w) € R, while rejection means that (z,w) € L and

that (w) is not a witness to (z, w) € R.

2.1.3 Examplel: Discrete logarithm (discrete-log)

The following is an explanation by step of the (ZKP) protocol for showing knowledge

of a discrete logarithm.

let p be large number and p = 2¢ + 1 and q is prime.

g be generator of the group Z," = {1,...,p—1} ={¢*:i=1,...,p— 1}

w be secret information known by prover

e r = ¢g"( mod p be the instance known both of them

P: I know base g of the x, mod p

Relation is R = {(z,w) : ¢*( mod p)}

Languageis L = {z : Jw : (z,w) € R

This table explains the protocol briefly, and g, x, p publish.

Table 2.2: Discrete Logarithm Protocol



Verifier Instance Prover

Choose a random number x

Compute h = g"

h +—

Choose a random number b

—b

Compute s = (r + bw) mod p — 1

S <

2* mod p = hg® mod p ??

Focus on the how check use this method.

2.1.4 Example2: Graph non-isomorphism

The common inputs GG; and G5 are not isomorphism.

Table 2.3: Graph Non-isomorphism Protocol

Verifier Instance Prover

Choose a random number ¢ € 1,2

Randomly select permutation 7 € Sy,

Compute F' = 7(G;)

F+—

Find j € (1,2)

Gy , For Gy , F is isomorphism

check j=i ?

7 is the secret value. Also, the set is not isomorphic groups and the secret value

belongs it.



2.1.5 Example3: Schnorr’s Identification Protocol

In "Cryptography Made Simple" book (Smart, 2016) [31] shows this algorithm with
its details. Peggy knows the x such that y = ¢*. During creating an identification

protocol, i.e the wish is Peggy to show in ZK that she knows the value of x.

Table 2.4: Schnorr’s Identification Protocol

Peggy Victor

knows x knows y

r < g* forarandom k < Z/qZ | — r

e<— | e« Z/qZ

s <« k+ (x*e) (modq) — s | r=g¢"%xy°

e Peggy generates a random k from Z/qZ and she computes the  value such that

r = g~

Peggy sends the 7 to Victor.

Victor generates the random e from Z/qZ.

Victor sends the e to Peggy.

e Peggy computes the s such that s = k + (z * ).

Peggy sends the s to Victor.

Victor verifies r = ¢g° x y~—°.

Now, the ZKP features Completeness, Soudness and Zero Knowledge are displayed

on this protocol.

o Completeness: If Peggy actually knows the secret discrete logarithm x, Victor

can accept the protocol since,

gs % y—e — gk+:c*e % (gx)—e — gk—i-x*e % g—:c*e — gk —r

e Soundness: Let us assume that Peggy does not know the secret discrete loga-
rithm z, she has to choose a random value from Z,, meaning that the probability

of Peggy convincing Victor is %.

10



Zero-Knowledge: "What did Victor learn from the protocol?" is the question.
If Victor can write proper protocol without talking to Peggy, he can’t make
anyone believe that Peggy knows something. Here, the same thing happens.

Victor can write the following as an acceptable protocol:

e < Z/qZ.

o r=g°xy “.

Output the transcript,

P—=V:r
V—>P:e,

P—V:s.

One must notice how easy it is to write a valid protocol without any interaction,
meaning that no one can understand if the transcript given above is a simulation or

not. Therefore, Schnorr’s Identification Protocol has the ZK property.

2.1.6 Differences Between Interactive and Non-interactive ZKP

There are two distinct categories of ZKP protocols, namely interactive and non-
interactive protocols. To prove a statement using an interactive ZKP (IZKP) protocol,
both parties (prover and verifier) must be online. A non-interactive ZKP (NZKP) pro-
tocol, on the other hand, enables the prover to prove the assertion whether the verifier
is online or offline. In other words, with NZKP protocols, the verifier may verify
the claim without interacting with the prover online. As a result, a NZKP protocol is
often quicker and more efficient since it does not need any online connection or inter-
action between the prover and the verifier to prove the statement or claim. A NZKP
protocol, on the other hand, demands that both the verifier and the prover share a ran-
dom string, usually given by a trusted third party. A pre-planned application of this

random string is also necessary.

11



2.2 What is the ZK-snark?

The notion of SNARK, or concise non-interactive argument of knowledge, is espe-
cially important in the domain of non-interactive proofs for showing the integrity of

outcomes for huge computations. These words refer to a proof system, which is:

e Succient: The proof is quite little in comparison to the size of the statement or

witness, 1.e. the size of the calculation itself.

e Non-interactive: It is not necessary and interaction rounds between the prover

and the verifier.

e Argument: It is secure only for provers with constrained computing resources,
which implies that provers with adequate computational power may persuade

the verifier of a false assertion.

o Knowledge-sound: The prover is only able to generate proof if possessing
knowledge of a particular witness for the statement. In an official capacity, for
every prover capable of creating a valid proof, there exists an extractor capa-
ble of extracting a witness, sometimes referred to as "the knowledge," for the

statement.

SNARK systems may also have a zero-knowledge feature, which allows the proof to

be performed without exposing anything about the intermediate stages (the witness).

A zk-SNARK protocol, like any other non-interactive proof system, is defined by

three algorithms that operate in the following approach:

e The method Gen serves as the setup process, producing a string that contains
essential setting information for subsequent steps in the proving process. Addi-
tionally, it generates a verification key, which is often considered to be known

only to the verifier. Typically, the operation is overseen by a reliable entity.

e The algorithm "Prove" is a proving algorithm that accepts as input the setting
information, the assertion, and a matching witness, and produces the proof as

output.

12



e The Verify algorithm is designed to accept or reject a proof based on the veri-
fication key, statement, and proof provided as input. It returns a value of 1 to

indicate acceptance or 0O to indicate rejection.

2.2.1 Example of ZK-Snark

This example is that of Vitalik Buterin, the founder of Ethereum. Vitalik Buterin’s
"Quadratic Arithmetic Programs: from Zero to Hero" paper [34] (Vitalik, 2016) gives
a comprehensive and elaborated solution below. However, it is crucial to begin by
providing the essential introductory details. In order to properly understand this spe-

cific example, it is necessary to have some foundational information.

2.2.1.1 Preliminaries

Definition of Arithmetic Circuit: This is an acyclic graph and it includes nodes
which are addition and multiplication gates. Then, wires connect inputs and outputs
by using nodes. Each node has two inputs and one output. The figure below explains

it.

35

. .

s 1 52

Figure 2.1: Arithmetic circuit for f(sq, s, 53) = ($1 - S2) - s3

The witness s = (s1, S, ..., S,) to be the values for the n wires so that the inputs and
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outputs of each gate match the requirements set by the gate.

Rank-1 Constraint System (R1CS): The 1 refers to the matrix of degrees. It uses
the representation of the structure. There are three triplets (a, b, ¢); they are vectors.

There is an equation and its form,
(4)-(B) - (C)=0
(A), (B), (C) is a linear combinations then,
(A)=ay-s1+ag-s2+ ...

(B):b1'81+b2'$2+...
(0)201'81+CQ'82+...

s; denotes solution s vector.
For R1CS, outputs known by both of parties, solution vector is checked by verifier

and prover.

Quadratic Arithmetic Programs (QAP): There are target point 71,79, ...7,, € F).
Then, compute (x) = [[)_, (z —ry)

In the circuit, each goal point is like a gate. The QAP builds 3n polynomials for each
target point r, that, when evaluated at r,, give the 3n constants of the gth gate’s rank-
I-constraint. The m rank-1 limits are written as a single equation over the functions

in the QAP.

Lagrange Polynomials: There are some ways to find the unique polynomial p,,(x) of
degree n that makes the statement p,, (z;) = y;, where i = 0, 1, ..., n given the points

(x;, ;). Interpolation points are the points g, x1, ..., Zp,.

The values (g, yo), (€1,91), ---, (Tn, yn) are said to be interpolated by the polynomial
pn(T).
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If the interpolation points x, ..., x,, are all different, then finding a polynomial that
goes through the points (z;,y;), where i = 0,...,n is the same as computing linear

equations Az = b that has only one solution.

In Lagrange interpolation, the matrix A is just the identity matrix because the inter-

polating equation is:

pol@) = D uiln(a)

Consider the £, ;(z):

Finally,

Lo(x)= ][ i

Ly — T

The next finding shows that Lagrange polynomials can be used to solve the problem

of polynomial interpolation.

Eliptic Curve: The equation for an elliptic curve in two variables is a particular type

of cubic equation. A curve with this form is called an "elliptic curve",
v =1+ Az + B

Addition. The second intersection of the tangent of P at another point is used. The

symmetry is taken from the x-axis of the point where the tangent intersects.

P($17?J1)7Q($2;y2)

\ = Y2 — U
To — X1

P®Q = R(x3,y3)

T3 = (/\2 — T —.I'Q)

15



ys = (Mx1 — z3) — 1)

Doubling. In cases when the points P and () coincide, the process of addition is
altered due to the absence of a clearly defined straight line passing through point P.
Consequently, the operation is completed by using a limiting case, namely the tangent
to the curve at point P, denoted as F.

3t 42
T
P& P = R(x3,y3)

A

T3 = ()\2 — 2[)’51)

ys = (Mx1 — z3) — 1)

2.2.1.2 Example Solution about ZK-SNARK

In this example, the secret value equals 3 and solution steps are given below step by
step.

Problem Statement — R1CS

This is the statement:

* +x+5=35
First, the flattening process is applied. In this porcess, convert the original code which
may have very complicated statements and expression and two types statements.
e r = y (where y can be a variable or a number)
e © = y(op)z (where op can be +, -, *, or / and y and z can be variables, numbers
or expressions)
The result of the flattening:

a=1xxxr — T
b=axx — 23
c=b+r =1+

d=c+5—=>2>+x+5
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> —_—
+—>m Cc =X"3+x d =x"3+x+5

Figure 2.2: Flattening for ZK-snarks

This is the solution:

s=[1,z,a,b,¢,d], secret:]l1,3,9,27, 30,35

An R1CS has three-vector groups (A, B, C'). The s must be satisfy s-axs-b—s-c = 0.
Each gate has triple (A4, B, C):

Gatel: ¢ = z x x = 22
s=[1,z,a,b,c,d
A=1[0,1,0,0,0,0]
B=10,1,0,0,0,0]
C =

[0,0,1,0,0,0]

Gate2: b=axz

s=[l,z,a,b,c,d
A=10,0,1,0,0,0]
B =10,1,0,0,0,0]
C =10,0,0,1,0,0]

Gated: c=b+ =z
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s=[1,z,a,b,c,d
A=1[0,1,0,1,0,0]
B =11,1,0,0,0,0]
C = [0,0,0,0,1,0]

Gated: d=c+5

s=[l,z,a,b,c,d
A=15,0,0,0,0,1]
B =1[1,0,0,0,0,0]
C =10,0,0,0,0,1]
R1CS— QAP

The next step is to convert this R1ICS into QAP form, which uses the same reasoning
but uses polynomials instead of dot products. The four groups of three vectors with
lengths of six to six groups of three polynomials with degree 3. One of the require-
ments is that the polynomials must be evaluated at each z point. If the polynomials
at x = 1 are computed, the first set of vectors is obtained, and if the polynomials at

x = 2 are computed, the second set of vectors is received, and so on.

Gatel
A3(1) =0 Bs(1)=0 Cs(1)=1
Ay(1) =0 By(1)=0 Cy(1)=0
As(1)=0 Bs;(1)=0 C5(1)=0
Ag(1) =0 Bg(1)=0 Cs(1)=0
Gate2
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A1(2)=0 B1(2)=0 C1(2)=0
Ay(2) =0 B(2)=1 (3(2)=0
A3(2) =1 B3(2)=0 C3(2)=0
Ay(2) =0 By(2)=0 C4(2)=1
A5(2) =0 B5(2)=0 C5(2)=0
As(2) =0 Be(2)=0 Cs(2)=0
Gate3
Ai1(3)=0 Bi(3)=1 (C1(3)=0
Ay(3)=1 B2(3)=0 (33)=0
A3(3) =0 B3(3)=0 C3(3)=0
Ay(3) =1 B4(3)=0 C4(3)=0
A5(3) =0 B3(3)=0 Cs5(3)=1
As(3) =0 Bs(3)=0 Cs(3)=0
Gate4
Ai(4)=5 Bi4)=1 C1(4)=0
As(4) =0 By(4)=0 Cy4)=0
A3(4) =0 B3(4)=0 C3(4)=0
Ay(4) =0 By4)=0 C44)=0
As(4) =1 Bs(4)=0 C54)=0
Ag(4) =0 Bg(4)=0 Cs(4) =1

Lagrange interpolation will be used to transform the R1CS. Using Lagrange interpo-
lation to take the first value from each vector, make a polynomial from that, process
the first value of each vector, and then convert this to the second values, third values,

etc., 1s repeated.
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A polynomials
Ai(z) = =5+ 9.166x — 52 + 0.83323

A1) =1 A2)=0 AB3) =1 As(4)=0
As(z) =8 — 11.333z + 52% — 0.66623

Az(z) = —6 + 9.5x — 42% + 0.523

A1) =0 A4(2)=0 Ay(3)=1 A44)=0
Ay(z) =4 — Tz + 3.52° — 0.52®

As(x) = —1+ 1.833z — 22 4 0.16623

As(2) =0 As(3)=0 Ag(4) =0

B polynomials
Bi(r) = 3 — 5.166x + 2.5z — 0.33323

By(z) = —2 + 5.166x — 2.52° + 0.3332°

Bs(2)=0 Bs(3)=0 Bs(4)=0
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By(1) =0 B4(2)=0 By3)=0 By4)=0
0

B;(1) =0 Bs5(2)=0 Bs;(3)=0 B;s4)=0
Bs(xz) =0
Bs(1) =0 Bs(2) =0 Bs(3)=0 Bs(4)=0
Bs(z) =0

C polynomials
Ci(1)=0 C1(2)=0 G,(3)=0 C\(4)=0
Cl($) =0

Co(l) =0 C5(2) =0 C5(3) =0 C5(4) =0
CQ(J?) =0

Cs(1) =1 C5(2) =0 C5(3) =0 C5(4) =0
Cs(x) = 4 — 4.333x + 1.52% — 0.16623

Ci(1)=0 Cyu(2)=1 Cu(3)=0 Cy4(4)=0
Cy(x) = —6 + 9.5z — 42? 4 0.5z°

Bs(z) =4 — 7z + 3.52% — 0.52°

Co(1) =0 C5(2)=0 Ce(3)=0 Cyl4)=1
Co(z) = —1 + 1.8332 — 2 + 0.16623

FindA-s,B-sand C - s
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A-s

[ 5 8§ 6 4 -1
90.166 —11.333 9.5 -7 1.833
o 5 -4 35 -1
0.833  —0.666 0.5 —0.5 0.166
B-s o
1
[ 3 2 000 0] |3
5166 5166 0 0 0 0| |9
25 —25 0 0 0 0| |27
0333 0333 0 0 0 0] |[30
_35_
C-s
00 4 6 4 1]
0 0 —4333 95 -7 1833
00 15 —4 35 -1
0 0 —0.166 0.5 —0.5 0.166]

Now, A-s+«B-s—C -

s =t

=
o] 3| [ 43 ]
o 9| |-73343
ol l27| | 385
0] [30] |-5.166
_35_
L
~[10.332
| s
| 0.666 |
=
3| [ —41]
9| |71.666
27| | —245
30 | 2833
_35_

t = [—88.0,592.666, —1063.777,805.833, —294.777,51.5, —3.444]

In order to address each restriction, a specific point is selected. This selection leads to

the generation of four constraints, denoted as examples 1, 2, 3, and 4. These examples

are used to construct a polynomial that can effectively execute remainderless division.

minimal polynomial Z:

Z=(x—1)*(r—2)%(x—3)x(x—4)

And find the h:

Z = [24,-50,35,-10,1]

h=t/Z = [—3.666,17.055, —3.444]
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Finally, there is no reminder and reach the final result. Prover can send the h, t and Z,

then Verifier can be verify by checking A- s+« B-s—C-s=hx Z.

2.2.2 Grothl6

Daniel Jens Groth’s 2016 work "On the Size of Pairing-based Non-interactive Argu-
ments" [10] describes the Groth16 cryptography proof method. Itis a zero-knowledge

proof system and one of the most common zkSNARK proving methods.

Choose an elliptic curve pairing such that G1, G2, G5 and generators g1, g2, g3. And,
these groups of order is 13. Then, pairing e : G; x G5 — GJ3. This is the Groth16

protocol,
e Setup Phase: (CRS,ST) <— SETUP(R): R is a R1CS input and computes a
Common Reference String (CRS) and Simulation Trapdoor (ST).

e Prover Phase: m + PROVE(R,CRS,I,W): I is instance and w is witness vector,

algorithm prove takes them and output is proof.
o Verify: accept,reject < VFY(R,CRS,I,7): The algorithm result is reject or
accept.
Circuit

Before you can check your program in Groth16, you have to change it into an R1CS

constraint system.
1. R1CS

The witness vector for a rank-1 constraint system (R1CS) with n variables, m con-
straints, and p public inputs is w € F,,. By default, the first p values of w are the
public input, and the first public input, wy, is always 1. The m constraints in R1CS

are a product equation between three inner products:

(w-a;) (w-b;)=w-¢

where vectors (a;, b;, ¢;) € F3™,
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2. Polynomials (QAP)

The choosen base z € F™ and define functions for each condition so that A;(z;) =
A,;;, and the same goes for B and C'. Then define A(X) =) w; - A;(X), like B
and C. The QAP can be shown to be true if there is a low-degree H (X)) that satisfies,

i€[0,n)

It can only be considered "exact" (more accurately, a low-degree polynomial) if the

conditions match.

In this section, a very useful example from the following document [27] will be

shown.
Trusted setup

Groth16 needs to be set up in a certain way to make the common reference string,
which is a set of numbers that everyone can use. This setup can be broken down into

two parts: one that is generic and one that is specific to the circuit.

Also, the common reference string (CRS) model is based on the idea that there is a
reliable setup in which everyone has access to the same string CRS from some distri-
bution D. Schemes that have been shown to be safe in the CRS model are safe as long
as the setup was done right. The common reference string model has proven to be a
very easy way to build a wide range of efficient primitives that need to be very secure.
This doesn’t answer the question of how to set up what needs to be done. In reality,
this is done by putting together a trusted setup process with multiple players using

multi-party computation between users who are not thought to be working together.
Setup Stage:

Choose a maximum number of limits, m. Randomly generate the numbers «, 3,7, 9.
In addition, example will be made with real numbers so that it will be more under-

standable. Example elliptic curve is,

BLS6s := {(z,y)|y* = 2> +6 for all x,y€Fy}
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This is finite cyclic group and there is 13 points,

G1[13] ={(13,15) — (33,34) — (38,15) — (35,28)
— (26,34) — (27,34) — (27,9) — (26,9) —
(35,15) — (38,28) — (33,9) — (13,28) — Q}

Go[13] ={(7v?,160v°) — (10v%,280°) — (4207, 160°) — (3707, 27v°)
— (16v%,280°) — (17v%,380°) — (1707, 150°)
— (16v%,150%) — (37v%,160°) — (4207, 270°)
— (4202, 270°) — (1002, 150%) — (Tv?,27v*) — Q}

Find the target polynomial is Z(x). Then, m; = 5 for first constraint and my = 7 for

second constraint in ;3.
Z(x) = (& — m)(x — mo)

Z(x) = (x = 5)(x=T7)

Z(x)=2*+x+9

QAP result:

Ap(z) =0 By(z) =0 Co(z) =0

Ai(x) =0 Bi(z) =0 Ci(z) =Tz +4
Ay(x) =6x+10 By(x)=0 Co(z) =0
As(z) =0 Bs(x) =6x+10 Csi(z) =0
Ay(z) =0 By(x) =Tz +4 Cy(x) =0
As(x) =Trx+4 Bs(x)=0 Cs(z) =6z + 10

In the setup phase, a sampling process is conducted to get five random and invertible
components, denoted as «, 3, v, ¢, and 7, from the scalar field F,. Moreover, the

simulation trapdoor is often known as the toxic waste of the initial configuration stage.

ST: <a7/87’77577—)
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Then, the 7 is secret point for example ST = (6,5,4,3,2) andn = 1, m = 4

deg(Z)~1 B-Aj (o) +aeBy ()+C5() \ ™
1 )
J=0

glamglﬁagl(Sv (glsj7"')j:0 K

_ deg(Z)—2
B-Aj () 4By ()+C;(s) \ oz 299
a1 o Vg1 ¢
j=1 7=0

CRS¢q, = {[6](13, 15),[5](13, 15), [4](13, 15), ([2°](13, 15), [2'](13, 15)),

([5Ao<2> +64(2) + Oo<2>} (13,15), {5141(2) HOLE) CW)} (13, 15>)
({5,42(2) + 6122(2) + 02(2)] (13.15), {5A3(2) + 61‘;3@) + 03@] (13,15),

{5/14(2) +6A44(2) + 04(2)} (15.15), {5%15(2) +645(2) + C5<2)} (13, 15)) ,

3 3
(21 15,15 )

The G, part of the CRS gives 12 points from BLS6_6,

CRSg, =

CRSq, ={[6](13,15), [5](13,15), [4](13,15), ([1)(13, 15), [2](13, 15)),
([0](13,15), [11](13,15)), ([2](13,15), [5](13, 15), [10](13, 15),
[5](13,15)), [5](13,15)}

CRSq, ={([0]g1, [11]g1), ([2]g1, [5]g1, [10]g1, [5]g1), [B]g1}

CRSe, ={[6]g1, [5]g1, [4]g1, (1191, [2] 1),

([0]g1, [11]g1), ([2]g1, [5]g1, [10]g1, [5]91), [5]g1}

CRSq, ={(27,34),(26,34), (38,15), ((13,15), (33, 34)),

(@, (33,9)), ((33,34), (26, 34), (38, 28), (27,9)), (26,34) }

The G, part of the CRS gives 5 points from BLS6_6,

CRSe, ={9 059 (027, ) 10"}

CRSg, ={[5](Tv?,16v%), [4](Tv*, 16v°), [3](7v?, 16v%), ([1](Tv*, 16v°), [2](7v?, 160%)) }
CRSg, ={[5]¢2, [4]92). [392, ([1]g2, [2]92) }
CRSq, ={(16v%,280°), (3707, 27v%), (420%, 160v°), ((Tv?, 160%),

(100*,280%)) }

26



Assume that the simulated trap door is removed. Given the assumed difficulty of
the discrete logarithm issue in groups, it becomes impossible to determine the secret
evaluation point, thus making the evaluation of polynomials at such a point impossi-
ble. Nevertheless, the polynomials evaluated at that particular location show a lower
degree in relation to the coefficients of both generators, as compared to the degree of

the desired polynomial.
Prover Stage:

Given a instance [; =< 11 > and a witness vector w = (wy, ws, W3, ..., Wy,), in
example w =< 2, 3,4, 6 >. Here, it is necessary to refer to the definitions of witness

and instance again. For this example,

Also, sample random value » = 11 and ¢ = 4 from F;3. Then, the proof is 7 =

(91, 9, 9%).

B-Ant1(s)+aBpi1(s)+Cnii(s) Wi B-Antm (8)+ e Bpym(9)+Cnim(s) Wm
9¢ = (9 ’ ) (o
A_ a . Acs) (AN Ane T A\ Ann(s) 5\
g =919 (91 ) ---(91 ) (91 ) ( ) (91)
S S I n(s In " S W n m Wi,
gt =gt (o) (g ) () ()T ()
s s ()Y In i1 (s)y W W
gF =959 (95"9) () (g (g ) T ()

H(s)-T(s)

Voo o (o) (0P) (90) "
Now, put the real number in formulas,

B:-Ax(T)+a-By(1)+Co(7) B-A3(r)+a-B3(1)+C3(7)

Wlg1 = [Wilg, ° © [Walg, ° ®

B-Ay(r)+a-By(r)+Cy(r) B:As(r)+a-Bs(1)+C5(7)
3 3

[Wslg, © [Wilg,

In order to calculate this particular point, it is critical that one keep in mind that the
prover must not hold the simulation trapdoor. Consequently, the prover should remain
ignorant of the specific values associated with the simulation trapdoor. To calculate

the group element, the prover requires the CRS_GI.
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To illustrate this point, let us examine the polynomials Ay (z) = 62+ 10 and As(x) =
7x 44, which are part of the QAP under consideration. In order to assess the polyno-
mials in the exponent of g; and g, at the undisclosed point 7, while remaining unaware
of the specific value of 7 (which, in this instance, is 2), the CRS and equation may be

used.

CRSq, = {(27,34),(26,34), (38,15), ((13,15), (33, 34)),

)

(@, (33,9)), ((33,34), (26, 34), (38, 28), (27,9)), (26, 34)}

CRSq, = {(16v°,28v%), (37v*, 27v°), (42v%, 160%), ((7v*, 16v°), (1007, 28v%)) }

The colors show where the CRS parameters are used.

[W]g1 = [2](33,34) @ [3](26, 34) @ [4](38, 28) @ [6](27,9)®
= [2-2)(13,15) @ [3- 5](13,15) @ [4 - 10](13, 15) @ [6 - 7](13, 15)
= [4+ 15+ 40 + 42](13, 15) = [10](13, 15) = [10]g;

Given that the values of «a, 9, and 7 are currently unknown, it is recommended to

search for the values [a]g1 and [0]g1 inside the CRS_GI.

[Algr = [a]gr & [Ao(7)]g1 & [11][Ar(T)]g1 & [W1][A2(7)] 91
@ [Wa][As(7)]gr ® [Ws][Aa(7)]g1 & [Wi][A5(7)] g1
@ [r][6]gx
= [6]g1 @ [2][A2(7)]g1 & [6][A5(7)]g1 @ [11][3] g1

Find [Ay(7)]g1 and [A5(7)]gy

[As(T)]gl = [6- 7" @ 10 - 7%g1
= [6](33,34) @ [10)(13, 15)
= [6-2)(13,15) @ [10](13, 15) = [9](13, 15)
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[As(T)]gl = [T- ' @4 - 7%g1
= [7](33,34) @ [4](13, 15)
= [7-2](13,15) @ [4](13, 15) = [5](13, 15)

[Algs = (27,34) @ [2] & [6] @ [11](38,15)
— [6](13,15) @ [2- 9](13,15) @ [6 - 5](13, 15) @ [11 - 3](13, 15)
=[6+2-9+6-5-+11-3](13,15) = [9](13, 15)

According to QAP, B3 = A and By = As

[Blg1 = [Blg1 @ [Bo(7)]g1 @ [[1][B1(7)]g1 & [WA][Ba2(7)]g1©
[Wa][Bs(7)]g1 @ [Wa][Ba(7)]g1 ® [Wa][Bs(7)]g1 @ [t][0]gn
= (26,34) & [3] & [4] @ [4](38, 15)
5(13,15) @ [3 - 9](13,15) @ [4 - 5](13,15) & [4 - 3](13, 15)

S

[
[5+3-944-5+4-3](13,15) = [12)(13, 15)

[Blgz = [Blg2 @ [Bo(7)]g2 ® [11][B1(7)] g2 @ [W1][Ba(7)]g2®
© [Wa][Bs(7)]g2 @ [Ws][Ba(7)]g2 & [Wal[Bs(7)]g2 & [t][0]g2
= [5]g2 @ [3][B5(7)]g2 © [4][Ba(7)]g92 © [4][3] g2

Find [B3(7)]go and [B4(7)]ga

[Bs(7)]g2 =[6-7" © 10 - 7%g1
= [6](10v%, 28v*) @ [10](7v?, 160°)
= [6 - 2](7v?, 16v®) @ [10](Tv?, 160°) = [9](7v?, 16v3)
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[Ba(r)lg2=[7-7" @4 7]g1
= [7](100?, 28v%) @ [4](7v?, 160°)
= [7-2](Tv?,16v°) @ [4](Tv?, 160°) = [5)(Tv?, 1603)

[Blga = (1602, 280%) @ [3] ® [4] D [4] (4202, 160°)
= [5](7v*,16v°) @ [3 - 9)(Tv?, 16v°) @ [4 - 5](Tv?, 16v°) @ [4 - 3](Tv?, 160°)
=[5+3-9+4-5+4-3)(70? 16v%) = [12](Tv* + 160°)
= (Tv?,270°)

o = Wl & [O7E0, 6 ialg, & p1Bl: © [-ri)elo
- ® (26,34) @ [4] @ [11] @ [-11 - 4](38,15)

= [10](13,15) @ [5](13, 15) @ [4 - 9](13, 15) @ [11 - 12](13,15) ® [~11 - 4 - 3](13, 15)
=[10+5+4-9+11-12—11-4-3](13,15) = [12](13, 15)
= (13,28)

Finally,
™ = ((35,15), (13,28), (Tv*, 27v%))

Verification Stage:

Know 7, and verification of proof is very easy. The pairing is verified,
€<g1A7 g2B> = €<g1a7 g25) ’ e<g1[7 g2’y) ’ e(glca g26)

Remember that,

™= (91A,910792B)

Also,
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I In
I B:Ag(r)+a-By(r)+Cp(7) B:-Ay(r)+a-By (1)+C (1) ! B-An(1)+a-Bn(1)+Cn (1)
g = |5 v 3 YA Rl ool gn Bt

gl =0 @ [11](33,9) = [11 - 11](13,15) = [4](13,15)

= (35, 28)

The Weil Pairing Rule refers that,

a*b

e([alg1; [b]g2) = e(g1, 92)

So,

e([A]g1,[B]g2) = e((35,15), (Tv*,27v%)) = e([9](13, 15), [12](7v?, 160%))

9-12

l
)

)
0%, 160°)
) 108

Tv? 16U

e(la]gl, [Blg2) = e ) = e([6](13,15), [5](7v*, 16v%))

72, 160°))8°
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) =
)
)
1602, 28v°)
)
7v?,16v%))
)

e([Ig1, [7]g2) = e 37v%,27v%)) = e([4](13,15), [4](Tv?, 16v%))

0%, 160°))

v 16v 16

I
)

)
)
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Finally,

e(g1, 92)9*12 = e(g1, 92)6*5 -e(g1, 92)4*4 -e(g1, 92)12*3

The Weil pairing may be characterized as a finite cyclic group with an order of 13.
Consequently, the process of exponentiation is performed within the structure of mod-

ular 13 arithmetic.

(g, g2)" = elg1, g2)"*
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The verification part is finished. It is evident that the left and right sides of the equa-
tion show similar characteristics, so indicating that the verification process acknowl-
edges the validity of the zk-SNARK and encourages the verifier to generate an accep-

tance response.
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CHAPTER 3

MACHINE LEARNING

3.1 Definition of Machine Learning

Machine learning (ML) is a methodology designed to optimize the computational
capabilities of computers in processing and managing data. There are instances in
which it is impossible to accurately evaluate the knowledge obtained from data based
on its apparent meaning. In such situations, ML becomes relevant. In the contem-
porary context, in which many kinds of datasets are easily accessible, there has been
a consistent increase in the need for machine learning. This technology has been
widely used in diverse industries to extract essential information and is naturally built

to acquire knowledge from patterns inside data.

Numerous studies have been conducted to investigate methods of facilitating au-
tonomous learning in computers without the need for explicit programming. Various
approaches have been investigated by mathematicians and programmers in order to
tackle this difficulty, namely within the realm of large datasets. In order to overcome
the problems presented by the intricate nature of data, machine learning utilizes a
diverse range of algorithms. Data scientists emphasize that there is no generally op-
timal algorithm that can effectively address all issues. The selection of an algorithm

must be customized to suit the individual situation under consideration.
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3.2 Supervised Learning and Unsupervised Learning

Supervised learning is very common in classification difficulties since the goal is
typically to get the computer to learn a categorization system that we have created.
Classification learning, in a larger sense, is appropriate for any circumstance where
it is profitable to infer a classification and if doing so is straightforward. As long as
the inputs are available, this model is not necessary, but it is impossible to draw any

conclusions about the outputs if some of the input values are missing.

When learning without supervision its name is unsupervised learning, it is believed
that all observations are the result of latent variables, placing them at the very end
of the causal chain. Unsupervised learning, when the machine is supposed to figure
out things on its own rather than being given instructions, appears to be far more
difficult. Actually, there are two methods for unsupervised learning. The first strategy
is to instruct the agent by employing a reward system to denote success rather than
by providing explicit categorizations. This strategy generalizes well to the actual
world, where agents may get rewards for doing some behaviors and penalties for
others. Clustering is a second kind of unsupervised learning. The objective of this
kind of learning is to merely identify commonalities within the training data rather
than maximizing a utility function. It is frequently assumed that the found clusters
would rather closely fit an intuitive categorisation. For instance, grouping people
based on demographics may cause the rich to be grouped in one category and the
destitute in another. Despite the fact that the algorithm won’t have names to give these
clusters, it may still create them and utilize those clusters to place fresh instances into

either one of the clusters or the other.

3.3 Process of Developing Model

Because the thesis focuses on the supervised learning method, this section addresses
the process of applying supervised machine learning to a real-world problem. Ac-
cording to The study "Types of machine learning algorithms" (Ayodele, 2010) [2],
this thesis includes details of process. The dataset must be gathered initially. The

most informative fields (attributes, characteristics) might be suggested if the neces-
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sary expert is on hand. If not, the most straightforward approach is "brute-force,"
which entails measuring all characteristics in the hopes that the appropriate ones may

be identified.

Preparing and processing the data is the second phase. Researchers can manage miss-

ing data in a number of ways, depending on the circumstances.

The act of discovering and eliminating as many unnecessary and redundant features
as you can is known as feature subset selection. As a result, the data’s dimensions
are reduced, making it possible for data mining algorithms to work more quickly and

efficiently.

The development of clearer and more precise classifiers might be facilitated by these
recently developed characteristics. Additionally, the identification of significant traits
helps people comprehend the acquired topic and the created classifier more clearly.
The instances from which the agent tries to learn are these inputs, also known as the
"training set". It’s not always the best idea to thoroughly understand the training set,
though. For instance, if I attempted to teach you exclusive or but all the combinations
I gave you were one true and one false, never both false or both true, you may learn

that the answer is always true.

Not all training sets contain appropriately categorized inputs, as you might expect.
This might cause issues if the algorithm is strong enough to remember even the os-

tensibly "special cases" that don’t meet the more general rules.

Finding algorithms that are both potent enough to learn complicated functions and
reliable enough to generate findings that can be generalized is difficult because this

may also result in over fitting.

The final state is then achieved after the model has been updated repeatedly using the

test set.
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Figure 3.1: Process of Machine Learning [2]

3.4 Importance and relevance of privacy in ML

The following section explains several reasons that may give rise to security problems.
Private individual information

Any active user of information services leaves a lot of personal data in the open
network that are either required for the fulfillment of their requests or due to legal
requirements, such as name and surname, passport information, information about
where they are located, the items they have purchased, the specifics of their financial
transactions, etc. Therefore, the presence of personal data in the network opens the

door to the possibility of its collection, analysis, and use for both beneficial and detri-
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mental ends. Although most nations have laws requiring the protection of personal
data, these laws often can’t stop the exposure of personal data and its misuse. Addi-
tionally, consumers frequently "tick" the appropriate boxes without properly reading
the privacy regulations for information services (or without reading them at all). Be-
cause of this, a normal user eventually forgets where and what personal information

he left behind.

The training sample may contain some confidential, in particular, private data. Own-
ers of this data may be interested in having being used them to train a model, but do
not want to lose control of it. The model owner may also not want the model param-

eters to be known to others, including those who provide data to train the model.

When sensitive data is utilized to train models in conventional settings, privacy is a
major problem in the area of machine learning. If the models were trained on sensitive
data, sharing machine learning models, especially pre-trained models, may give rise
to privacy problems. Such algorithms could unintentionally leak private data from
training sets on specific people if they are released. When sensitive information is ac-
cidentally included during model training, it’s referred to as data leakage in machine
learning. A model might mistakenly learn to generate predictions based on sensitive
information if it is trained on data that contains information that it shouldn’t have

access to.

When an attacker can extrapolate private information about a person from a trained
model’s predictions, this is known as an inference assault. Even if the model does not
directly access private data during training, its predictions may nevertheless include
sensitive information.In model inversion attacks, an adversary looks at the results of
a machine learning model to try to recreate personal data about individuals. This can
be particularly troublesome if the output of the model is utilized to make decisions in

delicate areas.
Identification of Risks and Manipulation of the Model

The examination and comprehension of a model’s decision-making process may be
facilitated by an attacker via the access to the model’s parameters. This facilitates

comprehension about the rationale behind the model’s decision-making process, the
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specific attributes it prioritizes, and the data samples to which it reacts with more
precision. Based on the provided data, potential assailants possess the ability to dis-
cern weaknesses within the model and then engage in manipulative actions to exploit
those weaknesses. As an example, one might strategically focus on certain areas in
which the model exhibits vulnerabilities, hence enabling the circumvention of secu-
rity mechanisms or the generation of deceptive data. An instance of unauthorized
access to the parameters of the image processing model might enable an adversary to
generate counterfeit pictures or execute changes with the intention of evading recog-

nition systems.
Competition-related Concerns

The interception or disclosure of model parameters raises substantial security issues
related to protecting competitive techniques and advances in the field of artificial
intelligence. This facilitates competitors in gaining awareness of the fundamental
principles of powerful Al models and using this knowledge for their own advantage.
Performing a competitor analysis involves the divulgence of important information,
such as the structural configuration of the model, the learning algorithms applied, the
data processing techniques utilized, and the adjustments made to hyperparameters.
This facilitates competitors to accelerate the advancement of their own models, get

more effective results, and attain a competitive advantage.

Moreover, the disclosure of model weights have the capacity to compromise private
knowledge and trade secrets. The unauthorized disclosure of sensitive information or
proprietary knowledge inside an organization may lead to enormous losses in terms of
time and financial resources. This has the potential to undermine extensive research
and development efforts and large monetary investments. Moreover, the act of con-
fiscating weights might possibly suggest the exploitation of the model. The use of the
model by persons with malicious intentions to produce misleading or harmful content
has the capacity to mislead the broader populace, undermine security measures, and

lead to substantial social and economic consequences.

Therefore, it is crucial to prioritize the maintenance of secrecy and privacy regarding

model weights in the field of artificial intelligence and deep learning.
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3.5 Zero Knowledge Machine Learning

ZKML has the potential to facilitate several novel applications in practical settings
due to its robust assurances about privacy and integrity. So, the customers are not
granted access to the proprietary machine learning models owned by the firms. Con-
sequently, they must rely on the assurance that the forecasts are being accurately

calculated as stipulated.

By using ZKML, the service provider is able to demonstrate the superior quality
and precision of the models, as well as verify that the forecasts are derived from
these same models. In some instances, the validation of claims on the high accuracy
achieved by certain machine learning models or algorithms poses a significant chal-
lenge. ZKML offers a partial resolution to this problem. By including a ZKP to verify
the asserted precision, it demonstrates the existence of a machine learning model ac-

knowledged by the proprietor, as supported by the ZKP’s knowledge soundness.

In an alternative context, ZKML may also facilitate the prediction of public models

on confidential datasets.

It may also be used to demonstrate the existence of adversarial instances for a publicly
accessible model, whereby two inputs exhibit proximity to each other but are assigned

to distinct categories.

3.6 Neural Networks

Neural networks are a collection of algorithms that are roughly based on the human
brain and have the goal of identifying patterns. They analyze sensory data by cate-
gorizing or grouping raw input using machine perception. They identify numerical
patterns contained in vectors, into which all real-world data, whether pictures, music,

text, or time series, must be transformed.

Neural networks are used to cluster and categorize data. Consider them a grouping
and classification layer above the data you collect and manage, and also aid in the

grouping of unlabeled data based on similarities between example inputs.
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Network designs are classified into two types based on the kind of connections be-
tween neurons: "feed-forward neural networks" and "recurrent neural networks."
The network is referred regarded as a "feed-forward neural network" if there is no
"feedback" from the neurons’ outputs to the inputs throughout the network. Other-
wise, if such feedback occurs, i.e. a synaptic link from the outputs to the inputs ,
the network is referred to as a "recurrent neural network." Neural networks are often
organized in "layers." Feed-forward neural networks are classified as "single layer"

or "multi-layer" based on the number of layers.

Neuron: The model characterizes a neuron as a binary processing unit. The firing
state of a neuron is determined by its output signal, which is regulated by a threshold

logic or activation function.

The model neuron, much to its real counterpart, has a multitude of inputs and a single
output. Each input to the neuron is associated with a weight. In order to determine
whether a neuron will generate an output signal, it is necessary to compute the sum-
mation of the products obtained by multiplying each input with its corresponding
synaptic weight. The activation function is then computed using the summation value

obtained.

Activation
function

= () -

Summing
junction

Synaptic
weights

Figure 3.2: Neuron [28]]

3.6.1 Neural Networks Structure with Python Code

The MNIST [18]] handwritten digit classification issue is a well recognized dataset

often used in the field of computer vision. In addition, The abbreviation MNIST

40



represents the Modified National Institute of Standards and Technology dataset.

While the dataset has been mostly solved, it may still serve as a valuable resource
for learning and honing the skills required to create, assess, and use neural networks
for the purpose of picture categorization starting from the ground up. This encom-
passes the process of constructing a reliable test framework to evaluate the model’s
performance, investigating potential enhancements to the model, and implementing
mechanisms to store and subsequently use the model for making predictions on novel

data.

This part aims to elucidate the process of constructing a neural network for the pur-
pose of classifying handwritten digits, starting from the very beginning. A neural

network model will be set up as shown below.
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Figure 3.3: Neural Netwrok Structure

Partl: Dataset Preprocessing

The collection consists of 60,000 grayscale photos of handwritten single digits rang-
ing from O to 9. Each image is a tiny square with dimensions of 28x28 pixels. The
objective is to categorize a provided picture of a handwritten numeral into one of ten

distinct categories that correspond to integer values ranging from O to 9, inclusively.

Python code 1:
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# load .npz file
data = np.load('mnist.npz’)
X_train_all, y_train_all = datal[’x_train’],datal’y_train’]

X_test,y_test = datal[’x_test’],datal[’y_test’]

X_valid = X_test[:10000]
X_train = X_train_all[10000:]
y_valid = y_test[:10000]

y_train = y_train_all[10000:]

data.close()

Output:

Data keys: ['x_test', 'x_train', 'y_train', 'y_test']
X_train_shape: (50000, 28, 28)

X_valid_shape (10000, 28, 28)

X_test_shape (10000, 28, 28)

y_valid_shape (10000,)

y_test._shape (10000,)

Figure 3.4: Output of Python code 1

e Training dataset: Subset of data that is used to train a model.

e Validation dataset: Subset of data that is used to impartially assess the perfor-
mance of a model that has been trained on a separate dataset, with the purpose

of fine-tuning the model’s hyperparameters.

e Test dataset: Subset of data that is used to impartially assess the performance

of a trained model, which has been fitted on the training dataset.

Additionally, a visual representation of the first three photos within the dataset is
generated, showcasing the inherent handwriting characteristics of the images that are

to be categorized.

Python code 2:

# 28 x 28 picture
plt.figure (figsize=(7,3))

for i in range (3):
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plt.subplot(l, 3, 1 + 1)
plt.axis (True)
plt.imshow (X_train[i], cmap='gray’)

plt.subplots_adjust (wspace=0.2, hspace=0.2)

Output:

o

10 10

20 20
0

10 20 o 10 20

10 20

Figure 3.5: Output of Python code 2

The collection contains images with pixel values that are either black and white or
unsigned numbers within the range of 0 to 255. A recommended first step in the
process is to normalize the pixel values of grayscale pictures, such as by rescaling
them to the range of [0,1]. The first step in this process is transforming the data
type from unsigned integers to floating-point numbers, followed by dividing the pixel

values by the maximum value.

Python code 3:

X_train = X_train.reshape ((X_train.shape[0],28 * 28))

X_train X_train.astype ("float32") / 255

X_test = X_test.reshape((X_test.shape[0],28 x 28))

X_test = X_test.astype("float32") / 255

X _valid = X_valid.reshape ((X_valid.shape[0],28 % 28))

X_valid = X_valid.astype("float32") / 255
Output:
(50000, 784)

(10000, 784)
(10@0@, 784)

Figure 3.6: Output of Python code 3
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Next, use a one-hot encoding technique to represent the class attribute of each sample.
This process involves converting the integer representation of the class into a binary
vector consisting of ten elements. In this vector, a value of 1 is assigned to the index
corresponding to the class value, while all other indices are assigned a value of 0.

This may be accomplished using the to_categorical() function.

Python code 4:

y_train = to_categorical (y_train)
y_valid = to_categorical (y_valid)

y_test = to_categorical (y_test)

Part2: Layers

Neural networks encode information or abstract patterns in parameters known as
weights and biases. Neural networks are comprised of layers, with each layer includ-
ing nodes. Also, the weights and bias are often regarded as fundamental components
inside a neural network. In the process of transmitting inputs between neurons, the
inputs undergo a multiplication with corresponding weights, followed by their sum-

mation with a bias term. This combined value is then fed into an activation function.

This is an illustrative neural network architecture comprising of an input layer, two
hidden layers, and an output layer. During training a neural network using the train-
ing set, the network is first assigned a group of weights. The first step of neural
computation involves the calculation of the weighted sum of the input signals. The
multiplication operation is performed between the inputs and weights, resulting in
the computation of a weighted sum. Following that, a constant bias is introduced
into the weighted total. Ultimately, the calculated value is inputted into the activation

function, which produces an output.

Activation function - ReL.U

Model inputs are the primary components of a neural network’s design. These inputs
are processed and transformed by an activation or threshold function to activate the
unit, producing an output. Here, the ReLLu function will be emphasized since it will

be utilized.
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Rectified linear unit, often called ReLLU, is a non-linear activation function widely
used in neural networks. Utilizing the Rectified Linear Unit (ReLU) function pre-
vents simultaneous stimulation of all neurons. This implies that a neuron will become
inactive once the result of the linear transformation equals zero. It may be described

as follows using mathematics:

ReLU Function

51— RelU

ReLU(x)

-4 -2 0 2 4
X

Figure 3.7: ReLU Graph

ReLU function is considered more efficient compared to other activation functions
due to its selective activation of neurons. Unlike other functions, ReLU activates a
specific number of neurons at any one moment, rather than activating all neurons

simultaneously.

Part3: Class Probability
Softmax activation function

The Softmax activation function calculates the relative probabilities and it returns the
probability of each class. Here, the Z represents the values from the neurons of the
output layer. The exponential acts as the non-linear function. Later these values are
divided by the sum of exponential values in order to normalize and then convert them

into probabilities.
exp(zi)
> j exp(z;)

y' = softmax(z;) =
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Argmax Function

The argmax function is used to determine the argument or arguments (arg) that cor-

respond to the greatest (max) value obtained from the target function.

Python code 5:

model = tf.keras.Sequential ()
model.add (Dense (128, activation='relu’, input_shape=(X_train.shape[l],)))
model.add (Dense (128, activation='relu’, ))

model.add (Dense (10, activation =’softmax’))

model.summary ()

Output:
Model: "sequential"
Layer (type) Output Shape Param #
dense (Dense) (None, 128) 3712
dense_1 (Dense) (Mone, 128) 16512
dense_2 (Dense) (None, 1@) 1290

Total params: 21514 (84.04 KB)
Trainable params: 21514 (84.04 KB)
Non—trainable params: @ (0.00 Byte)

Figure 3.8: Output of Python code 5

Part4: Loss Function, Gradient
Cross Entropy Loss Function

Within the framework of an optimization procedure, the objective function is used to

assess a prospective solution, often known as a set of weights.

The objective function may be optimized by either maximizing or minimizing it, in-
dicating the pursuit of a candidate solution with the greatest or lowest score, respec-

tively.

In the context of neural networks, the objective is often to reduce the error. Therefore,
the objective function is often denoted as a loss function, and the computed value

given by the loss function is commonly referred to as "loss."
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It is the Multi-class classification problem, so here Cross-Entropy Loss is used as the

loss function.

The term "cross-entropy loss" is often denoted as "cross-entropy" or "logarithmic

loss" in academic literature.

The projected probabilities are compared to the actual class output result, which may
be either O or 1. A score is then generated, taking into account the deviation of the
probability from the anticipated value. The penalty exhibits a logarithmic relation-
ship, whereby little discrepancies (e.g., 0.1 or 0.2) are associated with relatively low
scores, while substantial discrepancies (e.g., 0.9 or 1.0) result in much higher scores. A

model that accurately predicts probabilities with a cross entropy value of 0.

L==> uylog(y)
k

Gradient

In a broad context, the concept of gradient pertains to the measure of the slope of
an equation. Gradients, on the other hand, refer to partial derivatives, which serve to
characterize the alteration seen in the loss function in relation to slight modifications
in the function’s parameters. This little modification in the loss functions provides

insights into the subsequent approach for mitigating the output of the loss function.

In this model, the RMSprop gradient algorithm is used. RMSprop operates by com-
puting the gradient of the loss function relative to the parameters of the model and
thereafter adjusting the parameters in the direction opposite to the gradient in order
to minimize the loss. A notable characteristic of this approach is the use of a mov-
ing average of the squared gradients to adjust the learning rate. This intervention

contributes to the stabilization of the learning process.

Python code 6:

model.compile (optimizer="rmsprop",
loss="categorical_crossentropy",
metrics=["accuracy"])

Lastly, the model is trained with the help of the code below, the meanings of the terms
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here are as follows.

e Epoch: The frequency at which the algorithm iterates over the whole training

dataset.

e Batch: It denotes the number of samples to be taken to for updating the model

parameters.

Python code 7:

training_results = model.fit (X_train,
y_train,
epochs=21,
batch_size=64,

validation_data=(X_valid, y_valid))

Output:

Epoch 1/21

782/782 [ ] - 1s 863us/step - loss: 0.2861 - accuracy: 0.9159 - val_loss: 0.1706 - val_accuracy: 0.9449
Epoch 2/21

782/782 [ ] - 1s 783us/step - loss: 0.1224 - accuracy: 0.9624 - val_loss: 0.1175 - val_accuracy: 0.9644
Epoch 3/21

782/782 [ ] - 1s 794us/step - loss: 0.0844 - accuracy: 0.9738 - val_loss: 0.1170 - val_accuracy: 0.9657
Epoch 4/21

782/782 [ ] - 1s 788us/step - loss: 0.0642 - accuracy: 0.9792 - val_loss: 0.0997 - val_accuracy: 0.9725
Epoch 5/21

782/782 | ] - 1s 785us/step - loss: 0.0513 - accuracy: 0.9840 - val_loss: 0.0873 - val_accuracy: 0.9753
Epoch 6/21

782/782 [ ] - 1s 792us/step - loss: 0.0416 - accuracy: 0.9875 - val_loss: 0.0980 - val_accuracy: 0.9740
Epoch 7/21

782/782 [ ] - 1s 804us/step - loss: 0.0345 - accuracy: 0.9897 - val_loss: 0.0946 - val_accuracy: 0.9771
Epoch 8/21

782/782 [ ] - 1s 796us/step - loss: 0.0280 - accuracy: 0.9911 - val_loss: 0.1036 - val_accuracy: 0.9759
Epoch 9/21

782/782 [ ] - 1s 826us/step - loss: 0.0222 - accuracy: 0.9928 - val_loss: 0.1223 - val_accuracy: 0.9752
Epoch 10/21

782/782 [ ] - 1s 799us/step - loss: 0.0199 - accuracy: 0.9940 - val_loss: 0.1107 - val_accuracy: 0.9776
Epoch 11/21

782/782 [ ] - 1s 808us/step - loss: 0.0170 - accuracy: 0.9948 - val_loss: 0.1170 - val_accuracy: 0.9770
Epoch 12/21

782/782 [ ] - 1s 794us/step - loss: 0.0131 - accuracy: 0.9959 - val_loss: 0.1244 - val_accuracy: 0.9771
Epoch 13/21

782/782 [ ] - 1s 792us/step - loss: 0.0127 - accuracy: 0.9959 - val_loss: 0.1233 - val_accuracy: 0.9798
Epoch 14/21

782/782 [ ] - 1s 838us/step - loss: 0.0102 - accuracy: 0.9970 - val_loss: 0.1724 - val_accuracy: 0.9710
Epoch 15/21

782/782 [ ] - 1s 796us/step - loss: 0.0095 - accuracy: 0.9967 - val_loss: 0.137@ - val_accuracy: 0.9769
Epoch 16/21

782/782 [ ] - 1s 798us/step - loss: 0.0081 - accuracy: 0.9974 - val_loss: 0.1411 - val_accuracy: 0.9794
Epoch 17/21

782/782 [ ] - 1s 782us/step - loss: 0.0080 - accuracy: 0.9973 - val_loss: 0.1605 - val_accuracy: 0.9761
Epoch 18/21

782/782 [ ] - 1s 794us/step - loss: 0.0069 - accuracy: 0.9977 - val_loss: 0.1632 - val_accuracy: 0.9761
Epoch 19/21

782/782 [ ] - 1s 798us/step - loss: 0.0058 - accuracy: 0.9983 - val_loss: 0.1634 - val_accuracy: 0.9781
Epoch 20/21

782/782 [ ] - 1s 81@us/step - loss: 0.0048 - accuracy: 0.9985 - val_loss: 0.1785 - val_accuracy: 0.9757
Epoch 21/21

782/782 | ] - 1s 811lus/step - loss: 0.0046 - accuracy: 0.9985 - val_loss: 0.1852 - val_accuracy: 0.9767

Figure 3.9: Output of Python code 7

In this particular scenario, it is evident that the model exhibits a satisfactory level of

conformity, as shown by the convergence of the train and test learning curves. There
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is no discernible indication of either over-fitting or under-fitting.
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Figure 3.10: Train Loss and Validation Loss for each epoch
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Figure 3.11: Train Accuracy and Validation Accuracy for each epoch

The confusion matrix is a matrix representation that summarizes the predictions made.
The data shown illustrates the number of accurate and inaccurate predictions for each
class. This helps in comprehending the classes the model misidentifies as belonging

to a different class. The confusion matrix of the model,
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Figure 3.12: Confusion Matrix of Neutral Network Model

Since the accuracy of the model is very high, it will usually predict correctly. In the

example below, the model predicts 7 when input 7 is used.

Python code 8:

predictions = model.predict (X_test)
index = 0 #input:7

print (! Ground Truth:’, y_test[index])
for i in range (10):

print ("digit:’, i, ’'probability’, predictions[index][i])
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Output:

313/313 [ 1 - 0s 293us/step
Ground Truth: [6. 0. 0. 0. 0. @. 0. 1. 0. 0.]
digit: @ probability 1.617217e-27

digit: 1 probability 1.55733e-25

digit: 2 probability 2.56947e-21

digit: 3 probability 4.284002e-22

digit: 4 probability 1.1497379e-30

digit: 5 probability 1.4742214e-23

digit: 6 probability 2.6451834e-37

digit: 7 probability 1.0

digit: 8 probability 2.8408497e-27

digit: 9 probability 1.6598822e-18

Figure 3.13: Output of Python code 8

Consequently, a neural network model was implemented using the Python program-

ming language.

3.7 Reversing Model

This is the main question "How to reach input if weight, bias and output are un-

known?". When the activation function is ignored, it is quite simple to reverse.

output = (input x weight) + bias

Reverse it,

input = (output — bias)/weight

Although it is difficult to estimate the activation function, there are several research on
attacks, and by knowing the weights and biases, it is possible to reach the input data.
ReL.U is not an invertible function, therefore things may become a little complicated
when it’s employed as the activation function. ReL U eliminates negative inputs while
maintaining positive inputs. As a result, it could be difficult to determine which input
value was obtained with the output value if it is positive. Reversal may be achieved
in a few specific instances in a simple model using the ReLLU layer. Anyone may
estimate the proportionality of the result to the input, for instance, if the output value

is positive and the weights used to determine the input are also positive.
When the computational information of the model is hidden, its resistance to these
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attacks will increase. The weight, bias, and inputs of the model are often hidden
using the supported technique, which is seen to be the most accurate way to close

these weaknesses in security.
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CHAPTER 4

IMPLEMENTATION OF ZKML PROTOTYPE

This thesis presents a ZKML example for Neural network models based on the prob-
lems mentioned in "Importance and relevance of privacy in ML". Via Circom lan-
guage, it proves that the neural network model belongs to the model created without

giving its weight, bias, and inputs to the other party.

In the previous chapter, the input comes to the model, the weights are multiplied,
and bias is added to it in the neural networks model. The result of this operation is
the input of the next layer. In the neural network example given above, there were
two hidden layers, and the ReLU() activation function was used between the hidden
layers. Finally, the probabilities of the classes were determined with the Softmax()

function. The model output was also reached with the Argmax() function.

The flowchart shown below shows the formation of final weights via iterative pro-
cesses. The final model result is obtained when the indicated functions are applied to

these weights.

This is the Neural Network Modelling process,
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Figure 4.1: Neutral Network Flowchart

The weight, bias and input in the final version of the model should remain hidden.
Model calculations can be done using CIRCOM without revealing this information
by using Groth16. Terminal or zZKREPL can be used as a compiler. Both options will

be presented in this thesis.



4.1 CIRCOM and Snarkjs

Domain-specific languages (DSLs), such as Circom, aim to facilitate the develop-
ment of ZKP applications by providing a witness generator and a constraint system
based on the RICS paradigm. The latter may be inputted into a zZkSNARK gener-
ator in order to generate a prover and verifier. The use of the three aforementioned
artifacts, namely the witness generator, prover, and verifier, may be employed in the
construction of a ZK application. The CIRCOM compiler mostly employs the Rust
programming language and is publicly available as an open-source software. The
language is specifically designed to operate at a low-level, closely resembling the

structure and functionality of circuits.

Snarkjs is a JavaScript version of zksnarks, and the library provides for the creation

of proofs, verification part, and trusted setup.

4.2 Terminal

In this method, Using the Circom 2 Document [12], the script created for the model
can be verify in the terminal step by step. Also, the following table shows which files

are created using the terminal and what are used as inputs.
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zkml.circom

input:
input, weights, bias

output (shortly):
argmax(softmax((relu((weight*input)+bias))))

COMPILER

l

R1CS
input(secret)

Generate Key (CRS)
verification key proving key witness(w)
l \\ ‘ ///
verify +—| n=(a,bc) |+— prove «——— | public output{l)
YES/NO

Figure 4.2: Circom and Snarkjs

4.2.1 Step 1: Installation

The primary instrument used is the Circom compiler, implemented in the Rust pro-
gramming language. To make Rust accessible on your system, it is possible to install
Rustup. For users operating on Linux or macOS systems, accessing the terminal and
input the following command is recommended. With the following commands, a
folder will be cre