
SOME RESULTS ON APN FUNCTIONS AND WEAKLY REGULAR BENT
FUNCTIONS OVER FINITE FIELDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

İLKSEN ACUNALP ERLEBLEBİCİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

JULY 2023

Approval of the thesis:

SOME RESULTS ON APN FUNCTIONS AND WEAKLY REGULAR BENT
FUNCTIONS OVER FINITE FIELDS

submitted by İLKSEN ACUNALP ERLEBLEBİCİ in partial fulfillment of the re-
quirements for the degree of Doctor of Philosophy in Cryptography Department,
Middle East Technical University by,

Prof. Dr. A. Sevtap Selçuk-Kestel
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Oğuz Yayla
Head of Department, Cryptography

Assoc. Prof. Dr. Oğuz Yayla
Supervisor, Cryptography, METU

Examining Committee Members:

Prof. Dr. Murat Cenk
Cryptography, METU

Assoc. Prof. Dr. Oğuz Yayla
Cryptography, METU

Assoc. Prof. Dr. Ahmet Sınak
Mathematics and Computer Science,
Necmettin Erbakan University

Prof. Dr. Zülfükar Saygı
Mathematics, TOBB ETU

Assoc. Prof. Dr. Fatih Sulak
Mathematics, Atılım University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: İLKSEN ACUNALP ERLEBLEBİCİ

Signature :

v

vi

ABSTRACT

SOME RESULTS ON APN FUNCTIONS AND WEAKLY REGULAR BENT
FUNCTIONS OVER FINITE FIELDS

Acunalp Erleblebici, İlksen

Ph.D., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Oğuz Yayla

July 2023, 80 pages

In this thesis, we present our work on Carlet’s bivariate APN construction and repre-
sentations of APN power functions. We report necessary and sufficient conditions on
some families of bivariate APN functions and our observations about the representa-
tion of the APN power functions by following the methods given by Calderini et al. in
2021 and Budaghyan et al. in 2022 and we give some computational results on this
research. On the other hand, we study the application of cryptographic functions in
coding theory, and we derive several linear codes with good parameters by employing
weakly regular bent functions over the finite fields of odd characteristics.

Keywords: APN functions, bivariate APN construction, APN power functions, linear
code, weight distribution, weakly regular bent function

vii

viii

ÖZ

SONLU CİSİMLER ÜZERİNDE APN VE ZAYIF DÜZENLİ BÜKÜK
FONKSİYONLARA İLİŞKİN BAZI SONUÇLAR

Acunalp Erleblebici, İlksen

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Oğuz Yayla

Temmuz 2023, 80 sayfa

Bu tezde Carlet’in iki değişkenli neredeyse mükemmel lineer olmayan (APN) fonksi-
yonlarının ve APN kuvvet fonksiyonlarının üzerine yaptığımız çalışmalar sunulmak-
tadır. 2021’de Calderini ve arkadaşlarının, 2022’de Budaghyan ve arkadaşlarının ver-
diği yöntemlerden yararlanılarak sırasıyla bazı iki değişkenli APN ailelerinin inşası
için gerekli ve yeterli koşullar ve APN kuvvet fonksiyonlarının gösterimi hakkındaki
incelemelerimiz sunulmaktadır ve bu araştırma hakkında bazı hesaba dayalı sonuçlar
verilmektedir. Diğer taraftan, kriptografik fonksiyonların kodlama teorisindeki uy-
gulamasını çalışıyoruz, ve tek karakteristikli sonlu cisimler üzerinde zayıf düzenli
bükük fonksiyonları kullanarak iyi parametrelere sahip birçok doğrusal kod elde edi-
yoruz.

Anahtar Kelimeler: Neredeyse mükemmel lineer olmayan (APN) fonksiyonlar, iki de-
ğişkenli APN fonksiyonların inşası, APN kuvvet fonksiyonları, doğrusal kod, ağırlık
dağılımı, zayıf düzenli bükük fonksiyon

ix

to loving memory of my dad

x

ACKNOWLEDGMENTS

First and foremost, I would like to express my very great appreciation to my thesis
supervisor Assoc. Prof. Dr. Oğuz Yayla for his patient guidance, enthusiastic encour-
agement and valuable advice during the development and preparation of this thesis.
In addition to his professional guidance, I want to extend my appreciation for his
personal support and friendship.

Also, I would like to express my endless gratitude to Assoc. Prof. Dr. Ahmet Sınak
for his valuable suggestions, encouragement and time. His contribution has been truly
remarkable for me.

I would like to express my sincere gratitude to all my friends, especially Banu and
Betül, who supported me throughout this process and made life more beautiful.

I would like to express my profound gratitude to my parents, Sadet and Ahmet, and
my sister, Sema, whose unwavering support and boundless love have been a constant
source of strength and comfort in my life.

I would like to give my special thanks to my husband, Volkan, for his support, not
only in this study but in every facet of our life together and for providing me with the
extra strength to complete my thesis.

I would like to thank my daughter Eylül and my son Ediz for the meaning, uncondi-
tional love and joy they brought to my life.

xi

xii

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xi

TABLE OF CONTENTS . xiii

LIST OF TABLES . xvii

LIST OF FIGURES . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Contribution . 4

1.3 Organization . 4

2 PRELIMINARIES . 7

2.1 Vectorial Boolean Functions 7

2.1.1 Vectorial Boolean Functions and Block Ciphers . . 7

2.1.2 Representations of Vectorial Boolean Functions . . 12

2.1.3 Differential Uniformity and Nonlinearity of Vec-
torial Boolean Functions 15

xiii

2.1.4 Equivalence Relations on Vectorial Boolean Func-
tions . 18

2.1.4.1 EA-equivalence 19

2.1.4.2 CCZ-equivalence 20

2.1.4.3 Cyclotomic equivalence 20

2.1.5 APN Power Functions 21

2.1.6 Known Infinite Families of Non-power APN Func-
tions . 23

2.2 Cyclotomic Fields . 26

2.3 Linear Codes . 27

2.4 Weakly regular bent functions 28

3 APN FUNCTIONS SPECIFIC TO CARLET’S BIVARIATE APN
CONSTRUCTION . 31

3.1 Three Cases of APN Functions From Carlet’s Construction . 32

3.2 Biprojective Almost Perfect Nonlinear Functions 36

3.2.1 Family f1 . 37

3.2.2 Family f2 . 39

3.2.3 Family f3 . 40

4 REPRESENTATIONS OF APN POWER FUNCTIONS 43

4.1 Dobbertin Power Function’s Representations 43

4.2 Computational Results of Dobbertin Power Function’s Rep-
resentations . 46

4.3 Computational Results of Niho Power Functions Represen-
tations . 48

xiv

5 LINEAR CODES GENERATED FROM WEAKLY REGULAR BENT
FUNCTIONS OVER Fp . 53

5.1 The construction methods of linear codes from functions . . . 53

5.2 Three-weight linear codes based on the set D1 55

5.3 Two-weight linear codes based on the set D2 58

5.4 Two-weight linear codes based on the set D0 63

6 CONCLUSION . 67

REFERENCES . 69

APPENDICES

A SAGEMATH IMPLEMENTATIONS OF ALGORITHMS IN THIS
STUDY . 75

CURRICULUM VITAE . 79

xv

xvi

LIST OF TABLES

Table 2.1 Known APN power functions xd over Fn
2 22

Table 2.2 Infinite families of quadratic APN polynomials over the finite field
F2n that are well-known . 25

Table 5.1 The Hamming weights of CD1 in Theorem 9 when m is even 57

Table 5.2 The Hamming weights of CD1 in Theorem 9 when m is odd 58

Table 5.3 The Hamming weights of CD2 in Theorem 10 when m is odd with
p ≡ 3 (mod 4) or m is even . 62

Table 5.4 The Hamming weights of CD2 in Theorem 10 when m is odd with
p ≡ 1 (mod 4) . 62

Table 5.5 The Hamming weights of CD0 in Theorem 11 65

xvii

LIST OF FIGURES

Figure 2.1 Block Cipher [26] . 8

Figure 2.2 SPN [26] . 10

Figure 2.3 Feistel Cipher [26] . 10

Figure 2.4 AES [26] . 11

Figure 4.1 The location of the representations for m = 2, k = 1, 2, 3 49

Figure A.1 Representation of Dobbertin Function by combining a function
with weight 3 and inverse of a function with weight 2 76

Figure A.2 Representation of Dobbertin Function by combining a function
with weight 4 and inverse of a function with weight 3 76

Figure A.3 Representation of Niho Function by combining a function with
weight 2 and inverse of a function with weight 3 77

Figure A.4 Representation of Niho Function by combining a function with
weight 3 and inverse of a function with weight 4 77

xviii

CHAPTER 1

INTRODUCTION

Vectorial boolean functions, which accept binary sequences of length n as input and

produce binary sequences of length m as output (with n and m being positive in-

tegers), hold significant significance in the realm of cryptography within the field

of computer science. The security and effectiveness of cryptographic systems are

closely tied to the ability of these functions to withstand various types of crypto-

graphic attacks. Moreover, they find wide-ranging utility in diverse domains, includ-

ing sequence design, combinatorics, coding theory, and projective geometry. Indeed,

differential uniformity and nonlinearity are two important cryptographic properties

of functions. APN functions [1] are the vectorial boolean functions with perfect dif-

ferential uniformity. In this thesis we consider Carlet’s bivariate APN construction

method [19]. After presenting this construction, Zhou and Pott in [65] construct a

new APN family, and Taniguchi revealed a new APN family by simplifying Carlet’s

construction in [59]. This construction is extended By Calderini et al. in 2021 [18].

Linear codes find diverse applications in various fields, including graph theory, au-

thentication codes, data storage systems, communication, consumer electronics, de-

sign theory and cryptography. Linear codes with few weights, in particular, hold

significant practical value and find application in a wide range of systems. Numer-

ous construction methods exist for generating such codes, and one of the prominent

approaches is based on functions defined over finite fields.

Constructing linear codes from functions has been a well-explored research area in

the literature. While substantial progress has been made in this direction, it remains

an active area of study. Many linear codes have been derived from cryptographic

1

functions, including quadratic functions [27, 28, 31], weakly regular bent functions

[27, 28, 39, 50, 58, 61], almost perfect nonlinear functions [22, 47, 64], and weakly

regular plateaued functions [51, 52, 55]. These code constructions based on functions

play a crucial role in various applications and continue to be of interest in both theory

and practice.

The first part of this thesis focuses on bivariate APN functions, when utilized as S-

boxes in block ciphers or as non-linear combining or filtering functions in the pseudo-

random generators of stream ciphers, demonstrating robust performance against both

differential and linear cryptanalysis. In the second part of the thesis, we consider the

APN power family, especially Dobbertin and Niho APN power family and deal with

the different representations of these functions. In the third part of this thesis, we

deal with few-weight linear codes based on weakly regular bent functions over finite

fields.

1.1 Motivation

Given positive integers n and m, vectorial Boolean functions or (n,m)-functions are

mappings between the vector spaces Fn
2 and Fm

2 , where F2 is the finite field with two

elements and they are implemented in a cryptosystem as substitution boxes (S-boxes)

in block ciphers in order to create confusion, and nonlinear combining or filtering

functions in the pseudo-random generators of stream ciphers. S-boxes must be re-

sistant to differential cryptanalysis [2]. Differential cryptanalysis involves studying

how variations in the input can influence the resulting differences in the output. Let

F be any function from Fn
2 to Fm

2 , F is called differentially δ-uniform if the equation

DaF (x) = F (x) + F (x + a) = b has at most δ solutions for every nonzero a ∈ Fn∗
2

and every b ∈ Fm
2 . If x1 is a solution of the equation then x1 + a is also a solution.

So the smallest possible value of differential uniformity is 2, then there is a minimum

limit of 2, as δ ≥ 2. The function’s resistance to differential cryptanalysis depends

on its differential uniformity being small. Almost perfect nonlinear functions (APN)

have δ = 2 and they are resistant to differential cryptanalysis.

APN functions have a significant place in symmetric cryptography. These functions

2

can be constructed using various methods, resulting in an infinite family of such func-

tions. Since 1990, only a small number of infinite families of APN functions have

been investigated. There are six known infinite families of APN monomials or APN

power functions seen on Table 2.1, represented by F (x) = xd over F2n where d is

positive integer. Due to their great resilience to differential attacks and simple hard-

ware implementation, APN power functions with low differential uniformity have

been the subject of much research in recent years. There are also about 15 known

infinite families of quadratic APN polynomials presented in [18]. This specifically

demonstrates how difficult it is to create such functions. Among the known APN

functions, the APN functions with exceptional power hold a prominent position due

to their significance. For this reason, we study their different representations. These

investigations will shed light on the cryptographic properties of these functions.

In a finite field Fp with p elements, where p is an odd prime, an [n, k, d] linear code

C is a k-dimensional linear subspace of Fn
p , defined over Fp, with a Hamming dis-

tance of d. Linear codes are a fundamental component of modern cryptographic sys-

tems. They provide the necessary tools for error correction, data integrity, secure

key exchange, and protection against various attacks, making them indispensable for

securing sensitive information in a digital world.

The construction of linear codes from functions has been a thoroughly investigated

research domain in existing literature. Two primary, generic construction methods, re-

ferred to as the first and second methods, can be distinguished from other approaches

in the literature for constructing linear codes from functions. Many linear codes with

exceptional parameters have been generated using cryptographic functions based on

both the first generic construction method (as demonstrated in [22, 28, 50, 51]) and

the second generic construction method (as shown in [28, 31, 52]). We note that these

codes find themselves application areas in secret sharing and information theory. To

be motivated by this, in this thesis, we use the second generic construction method on

weakly regular bent functions to produce good linear codes.

3

1.2 Contribution

Carlet introduced in [19] bivariate APN construction, in which APN functions are

built by using the simplest Maiorana–McFarland function. In the first part of this

thesis, we work on Carlet’s APN function construction method. First of all, by using

the methods introduced by Calderini et al in [18], we give new necessary and suf-

ficient conditions for some APN functions built by using Maiorana–McFarland and

bi-projective functions in Carlet’s construction. Then in the second part of this thesis

inspired by [9], we report our observations about the representation of APN power

functions and give our experimental data on it. When we come to the third part,

we give new linear code with flexible parameters by employing weakly regular bent

functions.

Based on the research presented in this thesis, we have the opportunity to share our

findings with the academic community through an international conference presenta-

tion and the submission of two research papers. These papers are titled:

• İ. Acunalp Erleblebici, O. Yayla, A General Version of Carlet’s Construction

of APN Functions, 27th International Conference on Applications of Computer

Algebra, 2022, Gebze, Türkiye.

• İ. Acunalp Erleblebici, A. Sınak, O. Yayla, On the Carlet’s Bivariate APN Con-

struction and Representation of Dobbertin Power Functions, eprint

• İ. Acunalp Erleblebici, A. Sınak, O. Yayla, Few-weight linear codes based on

weakly regular bent functions over finite fields, eprint

1.3 Organization

In the next chapter, we go over some fundamental concepts, and then in Chapter 3,

we introduce APN functions specific to Carlet’s construction introduced in [19], and

extended in [18]. In Chapter 4, we give our observations about representations of

APN power functions, extend the results introduced in [9] and give our experimental

results on these representations. In Chapter 5, we report new few-weight linear codes

4

based on weakly regular bent functions over finite fields.

5

6

CHAPTER 2

PRELIMINARIES

2.1 Vectorial Boolean Functions

Consider a positive integer, n. F2n denotes the finite field comprising 2n elements,

while F ∗
2n signifies the set containing its non-zero elements, forming its multiplicative

group. A Boolean function, denoted as f , is a function that accepts a sequence of 0s

and 1s as input and produces either 0 or 1 as output. Furthermore, a vectorial Boolean

function represents an extension of traditional Boolean functions. The functions from

F2n to F2m are called vectorial Boolean function or (n,m)-functions. Given such a

function F , the Boolean functions f1, . . . , fm such that

F (x) = F (x1, . . . , xn) = (f1(x), . . . , fm(x))

are referred to as F ’s coordinate functions. The component functions of F are the

linear combinations of these coordinate functions with non-zero coefficients. When

the values of m and n are left unspecified, functions labelled as (n,m)-functions are

commonly known as vectorial Boolean functions or S-boxes. These S-boxes serve

as the nonlinear components in block ciphers, as described in reference [26], in Fig-

ure 2.1

2.1.1 Vectorial Boolean Functions and Block Ciphers

In a block cipher, plaintext P is divided into blocks Pi of a specific length, and mul-

tiple blocks are encrypted using the same encryption key. Block ciphers operate it-

eratively, constructed by applying a reversible transformation referred to as a round

7

Figure 2.1: Block Cipher [26]

function repeatedly.

The composition of N round functions can be written as

EK(.) = F 0
K0

◦ F 1
K1

◦ · · · ◦ FN−1
KN−1

(.).

Here, F i
Ki

represents the i-th round function, and Ki corresponds to the i-th round

key. These round keys are derived from the original key K through the key sched-

ule algorithm. Substitution Permutation Networks (SPN) in Figure 2.2 and Feistel

Networks in Figure 2.3 are among the most well-known and widely used designs for

iterated block ciphers.

An SPN’s round function typically consists of three essential layers:

• Substitution Layer: This layer applies a substitution operation to the data, often

using an S-box or a similar nonlinear transformation to introduce confusion.

• Permutation Layer: In this layer, the positions of the data bits are rearranged or

permuted to enhance diffusion.

• Key Addition Layer: The round key is XORed (added) to the data to introduce

the effect of the encryption key.

These three layers work in combination to achieve the cryptographic operations within

a single round of an SPN-based block cipher.

The substitution layer, which is the only nonlinear component of the cipher, is com-

posed of several S-boxes and vectorial Boolean functions are what S-boxes are. The

8

properties of vectorial Boolean functions, particularly the S-boxes used in Substitution-

Permutation Networks (SPNs), play a crucial role in the security and functionality of

SPN-based block ciphers.

• Bijectiveness of S-Boxes: For decryption to be possible, the S-boxes (vectorial

functions) should be bijective. This means that each output value should have

a unique corresponding input value, ensuring that the transformation can be

reversed during decryption.

• Permutation Layer Linearity: The permutation layer in an SPN is typically

designed as a linear transformation. This linear diffusion helps in spreading

input differences across the block, enhancing security.

• Bit-Wise Key Addition: In the key addition layer, the round key Ki is added bit-

wise to the internal state. This process introduces the effect of the encryption

key on the data.

• Security Implications: The properties of the vectorial Boolean functions used

in SPNs directly impact the cipher’s security. Properties such as nonlinearity,

resistance to cryptanalysis techniques like differential and linear attacks, and

their algebraic properties are crucial in determining the cipher’s strength against

attacks.

The design and properties of the vectorial Boolean functions, as well as the overall

structure of SPNs, are fundamental considerations in the development of secure block

ciphers. These aspects impact both the security and the ability to perform decryption

in the context of SPN-based ciphers.

The substitution-permutation cipher used by the Advanced Encryption Standard (AES)

[44] (in Figure 2.4) has S-boxes that are the inverse functions.

Indeed, linear and differential attacks [44] are two of the most potent techniques

used to analyze and potentially break block ciphers. The functional characteristics

that measure the resistance of vectorial Boolean functions, including S-boxes used in

block ciphers, to these attacks, are:

9

Figure 2.2: SPN [26]

Figure 2.3: Feistel Cipher [26]

10

Figure 2.4: AES [26]

1. Differential Uniformity: Differential uniformity is a property that quantifies

how differences in input bits propagate to differences in output bits through the

S-box or vectorial Boolean function. Lower differential uniformity indicates

greater resistance to differential attacks, as it makes it harder for attackers to

predict the relationship between input and output differences.

2. Nonlinearity: Nonlinearity measures how closely the function resembles a lin-

ear transformation. Higher nonlinearity is desirable because it makes it more

difficult for attackers to exploit linear approximations in linear attacks.

In addition to these characteristics, there are two other essential requirements for

vectorial Boolean functions:

1. Large Algebraic Degree: Vectorial Boolean functions should have a sufficiently

high algebraic degree. A high algebraic degree is crucial to protect against

higher-order differential attacks, which can exploit polynomial relations be-

tween inputs and outputs to break the cipher.

2. Balancedness: Balancedness ensures that there is no statistical dependence be-

tween the inputs and outputs of the function. This property helps prevent at-

tackers from identifying patterns or biases in the function’s behavior, which

could be exploited in statistical attacks.

11

These characteristics and requirements collectively contribute to the overall security

of block ciphers, making them resistant to various types of attacks, including differ-

ential and linear attacks, as well as higher-order differential and statistical attacks.

2.1.2 Representations of Vectorial Boolean Functions

The algebraic normal form (ANF) of any (n,m)-function F is represented as:∑
I⊆{1,...,n}

aI(
∏
i∈I

xi) ; aI ∈ Fm
2

In this representation, F is expressed as a sum of terms, where each term is associated

with a binary vector x, and aI represents coefficients in the finite field Fm
2 .

Relation for Coefficients aI :

aI =
∑

x∈Fn
2 |supp(x)⊆I

F (x)

This relation states that the coefficient aI is obtained by summing the values of the

function F over all binary vectors x in Fn
2 where the support (positions with 1s) of x

is a subset of I .

Relation for the Function F (x):

F (x) =
∑

I⊆supp(x)

aI

This relation expresses the function F (x) as the sum of coefficients aI , where I varies

over all subsets of the support of x.

These relations provide a way to understand and compute the coefficients aI and the

function F (x) in terms of each other, based on the properties of the ANF representa-

tion. These relationships are useful in analyzing and working with Boolean functions

and algebraic normal forms in various cryptographic and computational applications.

Indeed, the algebraic degree of a function, as defined, is a crucial measure of its

complexity in terms of the algebraic normal form (ANF). Specifically, it represents

the highest degree of monomials (terms) with nonzero coefficients in the ANF.

12

For cryptographic purposes, it is vital for vectorial functions to have high algebraic

degrees:

• Functions with higher algebraic degrees are more resistant to various crypto-

graphic attacks, including the Berlekamp-Massey attack on stream ciphers and

higher-order differential attacks on block ciphers.

• High algebraic degree increases the difficulty for attackers to find algebraic

relations between the function’s inputs and outputs. This makes it harder for

them to break the encryption scheme through algebraic analysis.

• Functions with high algebraic degrees tend to be more nonlinear, which is a

desirable property in cryptography. Nonlinearity helps thwart linear and differ-

ential attacks, as it introduces complexity into the function’s behavior.

In summary, a high algebraic degree is a key requirement for cryptographic vectorial

functions because it contributes to the overall security of cryptographic systems by

making them more resistant to a range of potential attacks.

When the dimensions of the input and output spaces of a vectorial Boolean function

are equal (i.e., m = n), a second representation known as the univariate representation

can be employed. In this representation, any vectorial Boolean function F can be

uniquely expressed as a polynomial in the polynomial ring F2n [X] using Lagrange

interpolation. The polynomial’s degree is at most 2n− 1 , and it is represented as:

F (X) =
∑

0≤i<2n

AiX
i, Ai ∈ F2n .

Here, each coefficient Ai is an element from the finite field F2n , and the polynomial

F (X) captures the behavior of the vectorial Boolean function F over the binary vec-

tor X . This univariate representation is a powerful way to analyze and work with

vectorial Boolean functions, especially when the input and output dimensions are the

same (m = n). It allows for the application of polynomial algebra techniques to study

and manipulate these functions.

When we assume n = 2m, it implies that the dimension of the input space is twice

the dimension of the output space. In this context, it’s possible to identify the finite

field F2n with the direct product of F2m and itself, i.e., F2m × F2m .

13

This identification means that elements in the field F2n can be represented as ordered

pairs (a, b), where a and b are elements from F2m . This is useful in various mathe-

matical and cryptographic contexts, especially when dealing with vectorial Boolean

functions and operations involving fields of characteristic 2.

By making this identification, you can often simplify mathematical expressions and

computations when working with vectorial Boolean functions in situations where n =

2m. Then a functionF : F2n → F2n can be represented as a (univariate) polynomial

in F2n [X], or a (bivariate) polynomial in F2m [x, y]× F2m [x, y].

A linear map L : F2n → F2n is an F2-linear vector space endomorphism of F2n . The

univariate representation of a linear map L takes the form:

L(X) =
∑

0≤i<n

BiX
2i , Bi ∈ F2n .

This representation is known as a linearized polynomial, and its algebraic degree is at

most one.

An affine map A : F2n → F2n is defined as A(X) = L(X) + C where L is linear

map and C ∈ F2n is a constant. Affine maps combine linear transformations with

translations.

Quadratic functions are a subset of (n,m)-functions with an algebraic degree at most

2. They can be represented as:

Q(X) =
∑

0≤i ̸=j<n

Ai,jX
2i+2j + L(X) + C,Ai,j ∈ F2n ,

where L is linear map and C ∈ F2n is a constant. Quadratic functions encompass

more complex transformations compared to linear or affine functions.

These definitions and representations are essential in the study and analysis of vecto-

rial Boolean functions, particularly in the context of cryptographic algorithms where

understanding the algebraic properties and degrees of these functions is crucial for

security and performance analysis.

For m/n, define trace function Trmn = F2n → F2m as Trmn (x) =
n/m−1∑
i=0

x2mi . If

m = 1, Tr1n is denoted by Trn.

14

2.1.3 Differential Uniformity and Nonlinearity of Vectorial Boolean Functions

Differential uniformity and nonlinearity are two important properties used to assess

the cryptographic strength of vectorial Boolean functions, particularly in the context

of symmetric key cryptography and the design of cryptographic algorithms.

Differential Uniformity: Differential uniformity measures how differences in input

bits propagate to differences in output bits when applying a vectorial Boolean func-

tion. It quantifies the uniformity of these differences. In cryptographic applications,

lower differential uniformity is desired because it makes it harder for attackers to pre-

dict the relationship between input and output differences. Vectorial Boolean func-

tions with low differential uniformity are more resistant to differential cryptanalysis,

which is an attack method that analyzes how small input differences affect output

differences.

Nonlinearity: Nonlinearity assesses how closely a vectorial Boolean function re-

sembles a linear transformation. It quantifies the deviation from linearity. In cryp-

tography, higher nonlinearity is preferred because it introduces complexity into the

function’s behaviour, making it harder for attackers to exploit linear approximations

in attacks. Nonlinearity is crucial in resisting linear cryptanalysis, which is an attack

technique based on linear approximations of the cipher’s behaviour.

Both properties are essential for ensuring the security of cryptographic algorithms,

as they help resist various types of cryptanalysis attacks. Cryptographers often strive

to design vectorial Boolean functions with low differential uniformity and high non-

linearity to enhance the security of the cryptographic systems in which they are em-

ployed.

Absolutely, vectorial Boolean functions play a critical role in the design of crypto-

graphic algorithms, particularly in the construction of substitution boxes, commonly

referred to as S-boxes. These S-boxes are integral components in the development of

block ciphers.

Vectorial Boolean functions, particularly when used in the form of S-boxes, are es-

sential components in the creation of secure block ciphers. They add complexity,

15

nonlinearity, and resistance to attacks, all of which are vital for the strength and relia-

bility of cryptographic algorithms used to protect sensitive data and communications.

Due to the fact that F2n can be viewed as an n-dimensional vector space over the

prime field F2, F2n can be associated with Fn
2 , this is allowed. Indeed, in many cryp-

tographic contexts, finite field elements in F2n can be represented as n-dimensional

binary vectors. This representation simplifies mathematical operations and manipu-

lations, making it easier to work with cryptographic algorithms.

The Advanced Encryption Standard (AES) [25], also known as Rijndael, is a prime

example of this. AES is a widely used symmetric-key block cipher, and it has a (8, 8)-

function at its core. In AES, the field F28 is used, which corresponds to 8-bit binary

representations. Each element in F28 can be thought of as an 8-bit binary vector.

This representation allows AES to perform bitwise operations and transformations

on these binary vectors efficiently, making it a versatile and secure encryption algo-

rithm. It demonstrates how the choice of representation can significantly impact the

efficiency and effectiveness of cryptographic algorithms.

When a vectorial Boolean function is utilized as an S-box, it is obviously crucial

to examine its resilience to different cryptanalytic attacks. Differential cryptanalysis

[2] is one of the most effective methods of attacking block ciphers. It is about how

differences in input a can affect the resultant difference in output b.

Derivative of a function F , denoted as DaF , or the (n, n)-function DaF , is a mathe-

matical tool used to explain how a change in the input of a (n, n)-function F affects

the resulting difference in the output. It helps analyze the relationship between dif-

ferences in inputs and their corresponding differences in outputs. The (n, n)-function

DaF is defined as:

DaF (x) = F (x+ a) + F (a).

In essence, DaF (x) quantifies how a change in the input vector x by the direction a

influences the change in the output of the function F . This concept is often used in

the analysis of cryptographic functions to understand their behaviour when subjected

to variations in input values.

In [62], the idea of differential uniformity of a function is proposed as a way to

16

quantify the function’s contribution to the block cipher’s resistance to differential

cryptanalysis. The largest number of solutions x ∈ F2n to any equation of the form

DaF (x) = b is known as the differential uniformity ∆F of a (n, n)-function F , i.e.

F (x) + F (x+ a) = b for a, b ∈ F2n with a ̸= 0,,

∆F = maxa∈F ∗
2n ,b∈F2m

|{x ∈ F2n : F (a+ x) + F (x) = b}|.

If x1 is a solution of the equation F (a+x)+F (x) = b, then x1+a is also a solution,

then ∆F must be even for any F , and hence must be greater than or equivalent to

2. Indeed, almost perfect nonlinear (APN) functions are a class of (n, n)-functions

where ∆F = 2. The parameter ∆F represents the maximum differential uniformity of

the function, and when it equals 2, it signifies that the function has optimal resistance

to differential cryptanalysis.

A quadratic function F is APN if and only if the following equation holds for every

A ∈ F∗
2n , where F∗

2n represents the set of non-zero elements in F∗
2n and the equation

has exactly two solutions:

F (X + A) + F (X) + F (A) + F (0) = 0.

In other words, for each non-zero element A in the finite field F2n , the equation above

should have precisely two solutions for the variable X .

The Walsh transform is a useful tool for examining any (n,m)-function F . The Walsh

transform of F : F2n → F2n is defined as

WF (a, b) =
∑
x∈Fn

2

(−1)Trn(ax+bF (x))

for a, b ∈ Fn
2 .

Nonlinearity in (n,m)-functions and the relationship with almost bent (AB) functions

and bent functions is crucial in the context of cryptographic function analysis. Nonlin-

earity measures how closely an (n,m)-function F resembles a linear transformation.

It quantifies the deviation from linearity. The nonlinearity of an (n,m)-function F

can be expressed using the formula:

2n−1 − 1

2
maxa∈F∗

2n ,b∈F2m
|WF (a, b)|.

17

For (n, n)-functions, the nonlinearity is limited from above by 2n−1 − 2
n−1
2 [23].

Functions achieving this upper bound are known as almost bent (AB) functions.

AB functions are a subset of (n, n)-functions that attain the highest possible non-

linearity for odd values of n. They offer the highest level of resistance to linear

cryptanalysis. AB functions provide strong resistance to both differential and linear

cryptanalysis. AB functions have certain limitations, such as challenges in combining

them with vectorial functions to achieve high algebraic degrees.

Bent functions are defined for even values of n and have nonlinearity equal to 2n−1−
2

n
2 . They are conjectured to have the highest possible nonlinearity for even values of

n. Bent functions are highly resistant to various cryptanalysis techniques.

So, the nonlinearity of cryptographic functions, particularly (n,m)-functions, plays

a critical role in their resistance to cryptanalysis. AB functions and bent functions

are examples of functions that achieve optimal nonlinearity levels, and they offer

strong resistance to both differential and linear cryptanalysis. However, they may

have limitations [23] when it comes to achieving high algebraic degrees, which is

also an important consideration in the design of cryptographic algorithms.

2.1.4 Equivalence Relations on Vectorial Boolean Functions

In the study and classification of almost perfect nonlinear (APN) and almost bent

(AB) functions in the literature, various equivalence relations are used to group func-

tions that exhibit similar cryptographic properties. Two commonly used equivalence

relations are CCZ-equivalence and EA-equivalence. Both CCZ-equivalence and EA-

equivalence are valuable tools in the analysis and classification of cryptographic func-

tions. They help researchers identify functions that can be used interchangeably in

cryptographic algorithms while preserving desired security properties, such as resis-

tance to differential attacks and nonlinearity. These equivalence relations simplify

the study of function classes and aid in the design and evaluation of secure crypto-

graphic systems. But for several significant families of functions, the two equivalence

relations coincide. Most notably, two quadratic APN functions are CCZ-equivalent

if and only if they are EA-equivalent [62]. Due to this fact, EA-equivalence may be

18

simpler to use in some situations. In the context of power functions, particularly in

finite fields, it is indeed the case that CCZ-equivalence and cyclotomic equivalence

are equivalent [63]. This is a notable property when dealing with power functions,

and it simplifies the classification and analysis of such functions.

2.1.4.1 EA-equivalence

Affine equivalence and extended affine (EA) equivalence are important in the study

of cryptographic functions, especially in the context of analyzing their properties and

transformations.

Two functions F : F2n → F2n and A1◦F ◦A2 , where A1, A2 = F2n → F2n are affine

permutations, are called affine equivalent if they can be transformed into each other

through a composition of affine permutations. This means that they exhibit similar

properties under affine transformations.

Affine equivalence is used to group functions that behave similarly under affine trans-

formations, which are commonly encountered in cryptographic algorithms.

Two functions F and F ′, where F ′ is defined as F ′ = A1◦F◦A2+A, and A is an affine

function, are called extended affine (EA)-equivalent if they can be transformed into

each other through an affine transformation involving an additional affine function A.

In other words, they are equivalent under a more general class of transformations that

include both affine permutations and an additional affine term.

EA equivalence is a broader equivalence relation that encompasses affine equivalence.

It allows for the consideration of more general transformations that may involve an

extra affine component.

Notably, if the original function F is not affine, then the functions F and F ′ (related

through EA equivalence) have the same algebraic degree. This means that their alge-

braic properties remain unchanged even after the additional affine transformation.

EA equivalence is useful in cryptographic analysis when dealing with functions that

may not be strictly affine but can be transformed into each other through a com-

bination of affine operations and an affine component. It provides a more flexible

19

framework for analyzing and classifying functions in various cryptographic contexts.

2.1.4.2 CCZ-equivalence

Carlet-Charpin-Zinoviev equivalence (CCZ-equivalence) is a valuable tool in the study

and classification of cryptographic functions, and it offers a more general equivalence

relation than extended affine (EA) equivalence.

Two functions F, F ′ = F2n → F2n are called CCZ-equivalent if their respective

graphs, denoted as GF and GF ′ , are affine equivalent where GF = {(x, F (x)) |
x ∈ F2n} and GF ′ = {(x, F ′(x)) | x ∈ F2n}. In other words, they exhibit similar

properties under affine transformations of their input-output pairs.

CCZ-equivalence implies the existence of an affine automorphism L = (L1, L2) of

F2n × F2n such that for any pair (x, y) in the graph GF such that y = F (x) , the

corresponding pair in the graph GF ′ satisfies L2(x, y) = F ′(L1(x, y)).

Because L is an affine automorphism and thus a permutation, the function L1(x, F (x))

must also be a permutation [12]. This means that it bijectively maps elements of F2n

to itself.

CCZ-equivalence is more general than EA-equivalence [10]. While EA-equivalence

considers transformations that involve affine permutations and an additional affine

term, CCZ-equivalence encompasses a broader set of affine transformations that align

the graphs of two functions under an affine automorphism.

Importantly, any permutation is CCZ-equivalent to its inverse [21], highlighting the

generality and flexibility of CCZ-equivalence in capturing the properties of crypto-

graphic functions.

2.1.4.3 Cyclotomic equivalence

Cyclotomic equivalence is used to classify two power functions F (x) = xd and

G(x) = xe over F2n based on their exponents d and e, where d,e and n are pos-

itive integers.Two power functions are considered cyclotomic equivalent if specific

20

conditions related to their exponents are met.

Two power functions F (x) = xd and G(x) = xe over F2n are considered cyclotomic

equivalent if one of the following conditions is satisfied:

• d ≡ 2ke mod (2n − 1) for some positive integer k.

• d−1 ≡ 2ke mod (2n − 1) for some positive integer k if gcd(d, 2n − 1) = 1,

where d−1 represents the multiplicative inverse of d modulo 2n − 1.

Cyclotomic equivalence offers the advantage of being easier to test than both ex-

tended affine (EA) and Carlet-Charpin-Zinoviev (CCZ) equivalence, which involve

more complex transformations and conditions.

Cyclotomic equivalence relies on relationships between the exponents d and e modulo

2n − 1. These relationships help classify power functions that have similar properties

and behavior when it comes to exponentiation.

The use of modular arithmetic and the consideration of the greatest common divisor

(gcd) are central to determining cyclotomic equivalence.

In summary, cyclotomic equivalence provides a simpler and more direct way to clas-

sify power functions based on their exponents and how they relate modulo 2n − 1.

It is particularly useful when analyzing and categorizing APN power functions in

cryptographic contexts, where modular arithmetic plays a significant role.

2.1.5 APN Power Functions

Power functions were the first discovered APN functions since if we take F (x) = xd,

power function, then F is APN if and only if the derivative D1F is a two-to-one

mapping i.e. for any a ̸= 0

DaF (x) = (x+ a)d + xd = adD1F (x/a)

then DaF is two-to-one mapping if and only if D1F is two-to-one.

As mentioned before there are six known infinite families of APN monomials pre-

sented in Table 2.1.

21

Table 2.1: Known APN power functions xd over Fn
2 .

Functions Exponents d Conditions Degree In
Gold 2i + 1 gcd(i, n) = 1 2 [37], [53]

Kasami 22i − 2i + 1 gcd(i, n) = 1 i+ 1 [41], [43]
Welch 2t + 3 n = 2t+ 1 3 [33]
Niho 2t + 2

t
2 − 1, t even n = 2t+ 1 t+2

2
[32]

2
3t+1

2 + 2t − 1, t odd t+ 1

Inverse 22t − 1 n = 2t+ 1 2t [1], [53]
Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i+ 3 [34]

The conjecture by Dobbertin [34] that the classification of monomial almost perfect

nonlinear (APN) functions is comprehensive up to CCZ-equivalence suggests that

any monomial APN function can be transformed, through CCZ-equivalence, into an

instance belonging to one of the families of functions listed in Table 2.1. The power

APN functions play an important role through the known APN functions. The Gold,

Kasami, Welch, and Niho APN power functions are well-known in the field of cryp-

tography for their cryptographic properties. These functions exhibit a special property

related to their classical Walsh spectrum, depending on whether n is odd or even:

These functions are considered "AB," which stands for almost bent functions when

n is odd. AB functions are a subset of APN functions and have the highest possible

nonlinearity for odd values of n. In this case, the functions are known to have optimal

resistance to differential cryptanalysis.

For even values of n, the Walsh coefficients of these functions take values from the

set {0,±2n/2,±2n+2/2} in their classical Walsh spectrum. Even though they are not

strictly AB for even n, they still exhibit strong cryptographic properties and provide

resistance to certain types of cryptanalysis.

When it comes to inverse function, it is differentially 4-uniform for n is even and for

n is odd, it is APN. Since the algebraic degree of any AB function cannot be more

than (n+1)/2, the inverse APN function which has the algebraic degree n− 1 is not

an AB function [21]. The inverse function’s Walsh spectrum was determined in [46]

by Lachaud and Wolfman. The inverse function has the best-known nonlinearity for n

even since it contains all integers with t = 0 mod 4 in the range −2n/2+1, . . . , 2n/2+1

if n is even.

22

Canteaut and Dobbertin independently discovered the final instance of APN power

functions in 1999, and Dobbertin proved it in 2000 [35]. The Dobbertin family of

power functions’ nonlinearity and also the Walsh spectrum remain unknown until

some observations and computational data on the differential spectrum of power func-

tions xd with an exponent of the form d = Σk−1
i=1 2

ni − 1 over Fnk
2 ; since the exponents

of both the inverse and the Dobbertin family are special cases of this form, are pre-

sented in [9].

2.1.6 Known Infinite Families of Non-power APN Functions

In this section, we will present an overview of the known infinite families of non-

power APN (Almost Perfect Nonlinear) functions, as stated [26]. The exploration of

APN and AB (Almost Bent) functions involved considerations of EA-equivalence and

permutation inverses until the construction of non-power APN functions was achieved

through CCZ-equivalence, as described in [16]. Notably, when employed alongside

Gold power APN functions, it was revealed in [16] that CCZ-equivalence offers a

broader scope than EA-equivalence combined with inverse transformations. Conse-

quently, this led to the construction of the first classes of APN and AB functions

that are EA-inequivalent to power functions. This research also challenged the pre-

viously held notion that all AB functions could be EA-equivalent to permutations,

as suggested in [16], and refuted the conjecture put forth in [21]. Moreover, it was

demonstrated in [14] and [10] that for Gold power functions, other quadratic APN

polynomials, and APN polynomials CCZ-inequivalent to both quadratic and power

functions, CCZ-equivalence can be more general than EA-equivalence when com-

bined with inverse transformations.

In [36], a significant breakthrough was achieved with the discovery of the first in-

stances of APN functions that exhibit CCZ-inequivalence in comparison to power

functions. These instances took the form of binomials: x3 + wx528 over F212 and

x3 +wx36 over F210 . The inspiration for these discoveries stemmed from considering

the combination of two Gold APN functions. Subsequently, the first infinite classes

of APN binomials, which demonstrated CCZ-inequivalence to power functions, were

established as a generalization of the polynomial x3+wx528 presented in [12]. These

23

classes are designated as F1 and F2 and are seen in Table 2.2.

The family of hexanomials F3 was established by extending a construction technique

originally introduced by J. Dillon and outlined in [36]. In this extended approach, the

focus was on quadratic polynomials expressed as F (x) = x(Ax2 + Bxq + Cx2q) +

x2(Dxq + Ex2q) + Gx3q over F22m , where q = 2m. Through this extension, new in-

stances of quadratic APN functions in 6 and 8 variables were generated, demonstrat-

ing their CCZ-inequivalence to power functions, as described in the original approach

detailed in [6].

In [14], it was observed that functions in the form of F + f , where F represents an

APN function and f is a Boolean function, exhibit a maximum differential uniformity

of 4. This insight led to the creation of the F4 family, encompassing both APN and

AB functions. It is important to note that among all families of APN functions, only

the F4 family remains inequivalent to power functions across all values of n.

When considering linear functions denoted as L1 and L2, the construction involv-

ing expressions like L1(x
3) + L2(x

9) led to the discovery of two additional infinite

families of APN and AB functions, namely, F5 and F6 (refer to Table 2.2).

By employing the isotopic shift construction method, the family denoted as F11 in

Table 2.2 was derived in [8]. The aim was to establish a broader equivalence relation

than CCZ-equivalence by utilizing isotopic equivalence principles applied to planar

functions. These functions are defined over the field Fpn , where p is a prime greater

than 2, and are extended to vectorial functions. Interestingly, this endeavour led to

the discovery of a novel method for constructing APN functions distinct from power

functions.

A very effective method for the building of new APN functions is the so-called bivari-

ate construction of APN functions, which was first described in [19]. This approach

led to the introduction of the F10, F12, F14 and F15 infinite families of APN func-

tions (see [8], [38], [59], [65]).

APN polynomials, which are CCZ-inequivalent to monomials, are all quadratic at

this time. In dimension 6, there is just one known instance of an APN function that is

neither quadratic nor power.

24

Table 2.2: Infinite families of quadratic APN polynomials over the finite field F2n that
are well-known

Family Functions d Conditions Source
F1 −
F2

x2s+1 + u2k−1x2ik+2mk+s
n = pk,gcd(k, 3) =

gcd(s, 3k) = 1, p ∈ {3, 4},i =
sk mod p,m = p − i,n ≥ 12,u
primitive in F∗

2n

[13]

F3 sxq+1 + x2i+1 + xq(2i+1) +

cx2iq+1 + cqx2i+q

q = 2m, n = 2m, gcd(i,m) =

1, c ∈ F2n , s ∈ F2n/

Fq, X
2i+1+cX2i+cqX+1 has

no solution x s.t. xq+1 = 1

[11]

F4 x3 + a−1Trn1 (a
3x9) a ̸= 0 [14]

F5 x3 + a−1Trn3 (a
3x9 + a6x18) 3|n, a ̸= 0 [15]

F6 x3 + a−1Trn3 (a
6x18 + a12x36) 3|n, a ̸= 0 [15]

F7 −
F9

ux2s+1 + u2kx2−k+2k+s
+

vx2−k+1 + wu2k+1x2s+2k+s

n = 3k, gcd(k, 3) =

gcd(s, 3k) = 1, v, w ∈
F2k , vw ̸= 1, 3|(k + s),u
primitive in F∗

2n

[4, 5]

F10 (x+ x2m)
2k+1

+

u′(ux+ u2mx2m)
(2k+1)2i

+

u(x+ x2m)(ux+ u2mx2m)

n = 2m,m ≥ 2 even,
gcd(k,m) = 1 and i ≥ 2 even,
u primitive in F∗

2n , u
′ ∈ F2m

not a cube

[65]

F11 a2x22m+1+1 + b2x2m+1+1 +

ax22m+2 + bx2m+2 +(c2 + c)x3

n = 3m,m odd,L(x) =

ax22m + bx2m + cx satisfies the
conditions of Lemma 8 of [8]

[8]

F12 u(uqx + xqu)(xq + x) +

(uqx + xqu)2
2i+23i + a(uqx +

xqu)2
2i
(xq + x)2

i

+ b(xq +

x)2
i+1

q = 2m, n = 2m, gcd(i,m) =

1, x2i+1 + ax + b has no roots
in F2m

[59]

F13 x3 + a(x2i+1)2
k
+ bx3·2m +

c(x2i+m+2m)2
k

n = 2m = 10, (a, b, c) =

(β, 0, 0), i = 3, k = 2,F∗
4 =<

β > or n = 2m,m

odd,3 ∤ m, (a, b, c) =

(β, β2, 1),F∗
4 =< β >, i ∈

{m− 2,m, 2m− 1, (m− 2)−1

mod m}

[17]

F14 u[(uqx + xqu)2
i+1 + (uqx +

xqu)(xq+x)2
i
+(xq+x)2

i+1]+

(uqx + xqu)2
2i+1 + (uqx +

xqu)2
2i
(xq +x)+ (xq +x)2

2i+1

q = 2m, n =

2m, gcd(3i,m) = 1, u

primitive in F∗
2n

[38]

F15 u[(uqx + xqu)2
i+1 + (uqx +

xqu)(xq+x)2
i
+(xq+x)2

i+1]+

(uqx+xqu)2
3i
(xq+x)+(uqx+

xqu)(xq + x)2
3i

q = 2m,m odd, n =

2m, gcd(3i,m) = 1, u primi-
tive in F∗

2n

[38]

25

x3 + a17(x17 + x18 + x20 + x24) + Tr2(x
21) + Tr3(a

18x9)+

a14Tr6(a
52x3 + a6x5 + a19x7 + a28x11 + a2x13)

For further information on APN function constructions, take a look at [7, 18, 20].

2.2 Cyclotomic Fields

For a given set S, we denote its size as #S, and we define S⋆ as S without the element

0. The magnitude of a complex number z belonging to the set of complex numbers

is represented as |z|. We denote a field with q elements as Fq, where q is defined as

q = pn with n as a positive integer and p as an odd prime. The Trace function for an

element α in Fq over Fp is introduced as Trm(α) = α + αp + αp2 + · · ·+ αpn−1 .

We introduce the terms non-squares and squares to classify elements in the field F∗
p,

which we denote as NSQ and SQ respectively. The quadratic character of F∗
p is

denoted as η0, and for simplicity, we denote p∗ as η0(−1)p.

We explore the creation of a cyclotomic field denoted as Q(ξp), obtained by extending

the rational field Q with the inclusion of the complex primitive p-th root of unity ξp.

This field Q(ξp) has the splitting field of the polynomial xp − 1, a Galois extension

of degree p − 1. The field basis for this extension within the cyclotomic field Q(ξp)

is this subset {1, ξp, ξ2p , . . . , ξp−1
p }. The Galois group Gal(Q(ξp)/Q) is described as

the set {σa : a ∈ F ∗
p }, where σa represents the automorphism of Q(ξp) defined

as σa(ξp) = ξap . Notably, the cyclotomic field Q(ξp) features a unique quadratic

subfield, Q(
√
p∗), with its Galois group denoted as Gal(Q(

√
p∗)/Q) = {1, σγ} for

some γ ∈ NSQ.

For elements a in F∗
p and b in Fp, it is evident that σa(ξ

b
p) = ξabp , and σa(

√
p∗

m
) =

ηn0 (a)
√
p∗

m. We report some useful results in the following lemmas:

Lemma 1. [49]

i.)
∑

a∈F⋆
p
η0(a) = 0.

ii.)
∑

a∈F⋆
p
ξabp = −1 for every b ∈ F⋆

p.

26

iii.)
∑

a∈F⋆
p
η0(a)ξ

ab
p = η0(b)

√
p∗ =

√
p∗, if b ∈ SQ,

−
√
p∗, if b ∈ NSQ.

iv.)
∑

a∈F⋆
p
η0(a)ξ

a
p =

√
p∗.

iv.)
∑

a∈Fp
ξa

2b
p =

p, if b = 0,
√
p∗, if b ∈ SQ,

−
√
p∗, if b ∈ NSQ.

v.)
∑

a∈Fp
ξabp =

 p, if b = 0,

0, if b ̸= 0.

Lemma 2. [49, Theorem 5.15] G(η) = (−1)m−1
√
p∗

m
.

Lemma 3. [49, Theorem 5.33]∑
x∈Fq

ξTr
m(ax2+bx)

p = G(η)η(a)ξ
−Trm(b

2

4a
)

p .

2.3 Linear Codes

When we consider a finite field Fp containing p elements, where p is an odd prime,

we define an [n, k, d] linear code denoted as C. This linear code C is characterized by

being a k-dimensional linear subspace within Fn
p , and it is established over the same

finite field Fp. Additionally, the Hamming distance of this code is specified as d. We

define the Hamming weight of a codeword, denoted as c = (c0, c1, . . . , cn−1), using

the expression wt(c) = #{ci ̸= 0 : 0 ≤ i ≤ n − 1}. Here, we count the number of

non-zero components in the codeword.

The dual code of C is defined to be the set

C⊥ = {(u1, . . . , un) ∈ Fn
p : u1v1 + · · ·+ unvn = 0 for all (v1, . . . , vn) ∈ C},

which is represented by [n, n − k, d⊥] over Fp, where d⊥ is the minimum Hamming

distance of C⊥.

Now, let’s consider Aw as the count of codewords within C that possess a weight of

w. When we refer to the weight distribution of C, we are essentially talking about the

27

sequence (1, A1, A2, . . . , An). A code C earns the label "t-weight" when the number

of non-zero values in the sequence (A1, A2, . . . , An) equals t. This characterization

plays a crucial role in error detection and correction capabilities. Its weight enumer-

ator is represented by the polynomial 1 + A1y + · · · + Any
n, where Aω signifies the

count of non-zero codewords with a weight of ω in C. Let A⊥
1 represent the count of

codewords with a weight of 1 in C⊥. The sequence (1, A⊥
1 , A

⊥
2 , . . . , A

⊥
n) is the weight

distribution of the dual code C⊥. The first four Pless power moments in [40, p.259]

are given as

n∑
i=0

Ai = pk,

n∑
i=0

iAi = n(p− 1)pk−1 − A⊥
1 p

k−1,

n∑
i=0

i2Ai = pk−2
(
(p− 1)n(qn− n+ 1)− (2pn− p− 2n+ 2)A⊥

1 + 2A⊥
2

)
),

n∑
i=0

i3Ai = pk−3((p− 1)n(p2n2 − 2pn2 + 3pn− p+ n2 − 3n+ 2)

−(3p2n2 − 3p2n− 6pn2 + 12pn+ p2 − 6p+ 3n2 − 9n+ 6)A⊥
1

+6(pn− p− n+ 2)A⊥
2 − 6A⊥

3).

For the codes constructed in this paper, it’s important to note that A⊥
1 = 0 because

their defining sets do not include the element (0, 0). Thus, one can easily verify their

parameters by applying the first two Pless power moments:

n∑
i=0

Ai = pk,

n∑
i=0

iAi = n(p− 1)pk−1.

2.4 Weakly regular bent functions

Consider a p-ary function f : Fq −→ Fp, where Fq is a finite field with q elements,

and Fp is another finite field with p elements. The Walsh transform of f is a complex-

valued function defined as

Wf (β) =
∑
x∈Fq

ξp
f(x)−Trm(βx), β ∈ Fq.

28

A function f : Fq −→ Fp is termed bent if |Wf (β)|2 = pn for every β ∈ Fq (see [54]

for Boolean bent and [45] for p-ary bent).

A bent function f is referred to as weakly regular if it satisfies the condition: Wf (β) =

up
n
2 ξ

f⋆(β)
p , where u ∈ {±1,±i}, and f ⋆ is a p-ary function defined over Fq. If this

condition is not met, f is classified as non-weakly regular. Specifically, when u = 1,

the function f is termed regular. In this context, f ⋆ is referred to as the dual of f , and

it is also a weakly regular bent function if f is.

The following lemma proves to be highly valuable for computing the Hamming

weights of the proposed codes in Chapter 5 in this thesis.

Lemma 4. [58] Let f be a weakly regular bent function. Then, for every β ∈ Fq,

Wf (β) = ϵf
√
p∗

m
ξf

⋆(β)
p

where ϵf ∈ {±1} represents the sign of Wf , and f ⋆ denotes the dual of f .

Consider a weakly regular bent function f : Fq → Fp satisfying two essential homo-

geneous conditions:

- f(0) = 0, and

- f(ax) = akff(x) for all x ∈ Fq and a ∈ F⋆
p, where kf is an even positive

integer with gcd(kf − 1, p− 1) = 1.

The collection of such weakly regular bent functions is denoted as RF . In the context

of this thesis, we will utilize the following result from [58] in Chapter 5:

Lemma 5. [58] For any function f ∈ RF , we have f ⋆(0) = 0 and f ⋆(aβ) =

alff ⋆(β) for all a ∈ F⋆
p and β ∈ Fq, where lf is a positive even integer with gcd(lf −

1, p− 1) = 1.

The following lemma is used to determine the length of linear codes.

Lemma 6. [58] Let f : Fq → Fp be an unbalanced function with Wf (0) = ϵf
√
p∗

m,

where ϵf = ±1 is the sign of Wf . For j ∈ Fp, define Nf (j) = #{x ∈ Fq : f(x) = j}.

29

• If m is even, then

Nf (j) =

 pm−1 + ϵfη0(−1)(p− 1)
√
p∗

m−2
, if j = 0,

pm−1 − ϵfη0(−1)
√
p∗

m−2
, if j ∈ F⋆

p.

• If m is odd, then

Nf (j) =

pm−1, if j = 0,

pm−1 + ϵf
√
p∗

m−1
, if j ∈ SQ,

pm−1 − ϵf
√
p∗

m−1
, if j ∈ NSQ.

The following lemma is used to find the weight distributions of linear codes.

Lemma 7. [58] Let f ∈ RF with Wf (0) = ϵf
√
p∗

m and f ∗ be the dual of f . For

j ∈ Fp, define Nf∗(j) = #{β ∈ Fq : f
∗(β) = j}.

• If m is even, then

Nf∗(j) =

 pm−1 + ϵfη0(−1)(p− 1)
√
p∗

m−2
, if j = 0,

pm−1 − ϵfη0(−1)
√
p∗

m−2
, if j ∈ F⋆

p.

• If m is odd, then

Nf∗(j) =

pm−1, if j = 0,

pm−1 + ϵfη0(−1)
√
p∗

m−1
, if j ∈ SQ,

pm−1 − ϵfη0(−1)
√
p∗

m−1
, if j ∈ NSQ.

30

CHAPTER 3

APN FUNCTIONS SPECIFIC TO CARLET’S BIVARIATE APN

CONSTRUCTION

Let n = 2m and the function F be defined as F : (x, y) ∈ F2n → (B(x, y), G(x, y)) ∈
F2m × F2m . In [19], Carlet considered the simplest Maiorana-McFarland function

B(x, y) = xy and gave three conditions for F to be APN:

i. The function x → G(x, y) is APN for any fixed y.

ii. The function y → G(x, y) is APN for any fixed x.

iii. The function G(x, bx+ c) is APN for any b and c.

Since G is quadratic, it can be assumed that c = 0. Then the following APN class is

revealed.

Theorem 1 (Carlet [19]). Let n = 2m; let i, j be such that gcd(i− j,m) = 1 and let

s, t ̸= 0, u and v in F2m . Set G(x, y) = sx2i+2j + ux2iy2
j
+ vx2jy2

i
+ ty2

i+2j . Then

F (x, y) = (xy,G(x, y)) is APN if and only if the polynomial G(X, 1) = sX2i+2j +

uX2i + vX2j + t has no zero in F2m .

This method was also used later by Zhou–Pott [65] and Taniguchi [59] to construct

new APN classes. We record their results below.

Theorem 2 (Zhou–Pott [65]). Let n = 2m, m even, and let i be such that gcd(i,m) =

1. Set G(x, y) = x2i+1+αy2
j(2i+1). Then F (x, y) = (xy,G(x, y)) is APN if and only

if α ∈ {u2i+1(t2
i
+ t)1−2j : u, t ∈ F2m}. In particular if j is even, then F is APN if

and only if α is not a cube.

31

Theorem 3 (Taniguchi [59]). Let n = 2m and i be an integer such that gcd(i,m) = 1.

Set G(x, y) = x22i+23i+ax22iy2
i
+by2

i+1 with a ∈ 0, 1. Then F (x, y) = (xy,G(x, y))

is APN if and only if X2i+1 + aX + b has no zero in F2m .

3.1 Three Cases of APN Functions From Carlet’s Construction

Considering the following theorem and lemma in [18], we get new results on bivariate

APN functions.

Theorem 4 ([18]). Let

F (x, y) = (xy, a(x2i+1)
2k

+ b(x2iy)
2h

+ c(xy2
i

)
2r

+ d(y2
i+1)

2s

)

be an APN function over F22m . Then, F is EA-equivalent to one of the following

functions

F1(x, y) = (xy, x2i+1 + x2i+h
y2

h
+ b′x2ky2

i+k
+ c′y2

i+r+2r),

F2(x, y) = (xy, x2i+1 + x2ky2
i+k

+ c′y2
i+r+2r),

F3(x, y) = (xy, x2i+1 + c′y2
i+r+2r), with c′ ̸= 0.

The following lemma gives the requirement for the family F1 given in Theorem 4 to

be APN, when h = m/2, k, r = 0.

Lemma 8. [18, Lemma 6.1] Let n = 2m with m > 2 even. Let i coprime with m. If

F (x, y) = (xy, x2i+1+x2i+m/2
y2

m/2
+ bxy2

i
+ cy2

i+1) is APN, then cX2i+1+ bX2i +

X2m/2
+ 1 has no zero in F2m .

We now give a general result for the family F1 of functions. It is assumed in Lemma

9 that h, k, r,m are integers such that they divide each other in any order ending with

m. It is assumed in the lemma without loss of generality that h divides k, k divides r,

r divides m. But it holds under any order of divisibility condition.

Lemma 9. Let h, k, r,m be positive integers such that h divides k, k divides r, r

divides m. Let n = 2m with m > 2 even. Let i coprime with m. If F1(x, y) =

(xy, x2i+1 + x2i+h
y2

h
+ bx2ky2

i+k
+ cy2

i+r+2r) is APN, then cX2i+1+2r + bX2i+k
+

X2h + 1 has no zero in F2m .

32

Proof. Denote F (x, y) = (xy,G(x, y)) with G(x, y) = x2i+1+x2i+h
y2

h
+bx2ky2

i+k
+

cy2
i+r+2r . Since F1 is APN, G satisfies the following conditions

i. The function x → G(x, y) is APN for any fixed y;

ii. The function y → G(x, y) is APN for any fixed x;

iii. The function G(x, βx+ γ) is APN for any β and γ.

The conditions (i) and (ii) are clearly satisfied. We deal with the third one. We can

consider γ = 0 since G is quadratic. We have G(x, βx) = x2i+1 + β2hx2i+h
x2h +

b′β2i+k
x2kx2i+k

+ c′β2i+r+2rx2i+r+2r . If we take x ∈ F2h with h dividing k, k dividing

r, r dividing m, then we have the function F ′(x) = (1+β2h+bβ2i+k
+cβ2i+r+2r)x2i+1 .

If there exist β such that 1 + β2h + bβ2i+k
+ cβ2i+r+2r = 0, then for any a ∈ F∗

2h
and

for any x ∈ F2h , F ′(x) + F ′(x+ a) = 0 imply that G(x, βx) is not APN.

A similar no-root condition can be proven for a sub-class of the family F1, which we

give in the following theorem.

Theorem 5. Let n = 2m with m > 2 even. Let i < m/2 coprime with m, let

h = m/4, k = 2m/4, r = 3m/4. Let A = X2h , B = bX2i+k
, C = cX2i+r+2r be

monomials for some b, c ∈ F2m and the determinant be a polynomial

D(X) =

∣∣∣∣∣∣∣∣∣∣∣

1 A B C

C2m/4
1 A2m/4

B2m/4

B2m/2
C2m/2

1 A2m/2

A23m/4
B23m/4

C23m/4
1

∣∣∣∣∣∣∣∣∣∣∣
∈ F2m [X].

Then, F1(x, y) = (xy, x2i+1 + x2i+h
y2

h
+ bx2ky2

i+k
+ cy2

i+r+2r) is APN if and only if

D(X) ∈ F2m [X] has no zero.

Proof. We set G(x, y) = x2i+1 + x2i+h
y2

h
+ bx2ky2

i+k
+ cy2

i+r+2r , then G(x, βx) =

x2i+1+β2hx2i+h
x2h + bβ2i+k

x2kx2i+k
+ cβ2i+r+2rx2i+r+2r . G(x, βx) = Lβ(x

2i+1) for

Lβ(x) = x + β2hx2h + bβ2i+k
x2k + cβ2i+r+2rx2r . Therefore, F1 is APN if and only

if Lβ is a permutation of F2m . We have h = m/4, k = 2m/4, r = 3m/4. Then

33

Lβ(x) = x+Ax2m/4
+Bx22m/4

+Cx23m/4 for A = β2h , B = bβ2i+k , C = cβ2i+r+2r .

Lβ is a permutation if and only if

D(β) =

∣∣∣∣∣∣∣∣∣∣∣

1 A B C

C2m/4
1 A2m/4

B2m/4

B2m/2
C2m/2

1 A2m/2

A23m/4
B23m/4

C23m/4
1

∣∣∣∣∣∣∣∣∣∣∣
is nonzero. Lβ is a permutation for any β if and only if the polynomial D(X) ∈
F2m [X] has no zero.

We extend the necessary condition given [18] for a function F2. Similar to Lemma 9,

we assume in Lemma 10 that h, k, r,m are integers such that they divide each other

in any order ending with m.

Lemma 10. Let h, k, r,m be integers such that they divide each other in any order

ending with m with m > 2. Let n = 2m and i be co-prime with m. If F2(x, y) =

(xy, x2i+1 + x2ky2
i+k

+ cy2
i+r+2r) is APN, then cX2i+1+2r +X2i+k

+1 has no zero in

F2m .

Proof. We have F (x, y) = (xy,G(x, y)) with G(x, y) = x2i+1+x2ky2
i+k

+cy2
i+r+2r .

As in the extension of the previous lemma, we dealt with the third condition. G(x, βx) =

x2i+1 + β2i+k
x2kx2i+k

+ cβ2i+r+2rx2i+r+2r . If we take x ∈ F2k , since k divides r and

r divides m, we have the function F ′(x) = (1+β2i+k
+ cβ2i+r+2r)x2i+1 . If there exist

β such that 1 + β2i+k
+ cβ2i+r+2r = 0, then for any a ∈ F∗

2k
and for any x ∈ F2k

F ′(x) + F ′(x+ a) = 0 imply that G(x, βx) is not APN.

A no-root condition for a sub-class of the family F2 is presented in the following

theorem.

Theorem 6. Let n = 2m with m > 2 even. Let i < m/2 coprime with m and

k = m/3, r = 2m/3. Let A = x2i+k
, B = cX2i+r+2r be monomials for some c ∈ F2m

and the determinant D(X) be a polynomial

D(X) =

∣∣∣∣∣∣∣∣
1 A B

B2m/3
1 A2m/3

A22m/3
B22m/3

1

∣∣∣∣∣∣∣∣ ∈ F2m [X].

34

Then, F2(x, y) = (xy, x2i+1 + x2ky2
i+k

+ cy2
i+r+2r) is APN if and only if D(X) has

no zero in F2m [X].

Proof. We set G(x, y) = x2i+1 + x2ky2
i+k

+ cy2
i+r+2r then G(x, βx) = x2i+1 +

β2i+k
x2kx2i+k

+cβ2i+r+2rx2i+r+2r . G(x, βx) = Lβ(x
2i+1) for Lβ(x) = x+β2i+k

x2k+

cβ2i+r+2rx2r . F2 is APN if and only if Lβ is a permutation of F2m . We note that

Lβ is a linearized polynomial. We have k = m/3, r = 2m/3. Then, Lβ(x) =

x + Ax2m/3
+ Bx22m/3 for A = β2i+k , B = cβ2i+r+2r . Lβ is a permutation for any β

if and only if ∣∣∣∣∣∣∣∣
1 A B

B2m/3
1 A2m/3

A22m/3
B22m/3

1

∣∣∣∣∣∣∣∣
is nonzero. So Lβ is a permutation for any β if and only if the polynomial D(X) ∈
F2m [X] has no zero.

In the remaining part of this section, we deal with the family F3, and present sufficient

condition in Lemma 11 and a necessary-sufficient condition in Theorem 7 for some

of its subclasses.

Lemma 11. Let n = 2m with m > 2 even. Let i coprime with m and r divides m. If

F3(x, y) = (xy, x2i+1 + cy2
i+r+2r)

is APN, then cX2i+1+2r + 1 has no zero in F2m .

Proof. We set F (x, y) = (xy,G(x, y)) with G(x, y) = x2i+1 + cy2
i+r+2r . As in

the extension of previous lemmas we dealt with the third condition. G(x, βx) =

x2i+1 + cβ2i+r+2rx2i+r+2r .

If we take x ∈ F2r , and if r divides m then we have the function F ′(x) = (1 +

cβ2i+r+2r)x2i+1 . If there exist β such that 1+ cβ2i+r+2r = 0, then for any a ∈ F∗
2r and

for any x ∈ F2r , F ′(x) + F ′(x+ a) = 0 imply that G(x, βx) is not APN.

Theorem 7. Let n = 2m with m > 2 even. Let i < m/2 coprime with m and

r = m/2. Then,

F3(x, y) = (xy, x2i+1 + cy2
i+r+2r)

35

is APN if and only if

1 + (cX2i+r+2r)
2m/2+1

has no zero in F2m .

Proof. We set G(x, y) = x2i+1+cy2
i+r+2r then G(x, βx) = x2i+1+cβ2i+r+2rx2i+r+2r

and G(x, βx) = Lβ(x
2i+1) for Lβ(x) = x + cβ2i+r+2rx2r . F3 is APN if and only if

Lβ is a permutation of F2m . Lβ(x) = x+Ax2m/2 , A = cβ2i+r+2r . Lβ is a permutation

if and only if ∣∣∣∣∣∣ 1 A

A2m/2
1

∣∣∣∣∣∣
is nonzero.

So Lβ is a permutation for any β if and only if

1 + (cX2i+r+2r)
2m/2+1

has no zero in F2m .

3.2 Biprojective Almost Perfect Nonlinear Functions

Let q = 2k and m ∈ Z+. A polynomial of type Xq+1 + aXq + bX + c ∈ F2m [X] is

called projective, and a polynomial of type axq+1 + bxqy+ cxyq + dyq+1 ∈ F2m [x, y]

is called bivariate projective (or bi-projective) polynomial of degree q + 1. Using

bi-projective polynomials is an extension method of the construction methods given

in Section 3.1.

A general representation of the bivariate construction with two biprojective polyno-

mials over F2m is given by

F (x, y) = (Ax2i+1 +Bx2iy + Cxy2
i

+Dy2
i+1, ax2j+1 + bx2jy + cxy2

j

+ dy2
j+1).

Then we consider Theorem 7.1 in [18] as follows;

Theorem 8. [18, Theorem 7.1] Let m be positive even integer, n = 2m, i, j ≤ m/2

and

F (x, y) = (Ax2i+1 +Bx2iy + Cxy2
i

+Dy2
i+1, ax2j+1 + bx2jy + cxy2

j

+ dy2
j+1)

36

be APN over F2n . Then F is EA-equivalent to one of the following function:

1. f1(x, y) = (x2i+1 + x2iy + Axy2
i
+By2

i+1, x2j+1 + ax2jy + bxy2
j
+ cy2

j+1)

2. f2(x, y) = (x2i+1 + xy2
i
+ Ay2

i
, x2j+1 + ax2jy + bxy2

j
+ cy2

j+1)

3. f3(x, y) = (x2i+1 + Ay2
i+1, x2j+1 + x2jy + axy2

j
+ by2

j+1)

4. f4(x, y) = (x2i+1 + Ay2
i+1, x2j+1 + axy2

j
+ by2

j+1), where a ∈ {0, 1}.

In the following subsections, we look for the conditions of Families f1, f2, f3 and

f4 by using Carlet’s method that is used in Section 3.1. But, a general result is not

recorded here. It would be a future work to extend the observations in the following

subsections.

3.2.1 Family f1

We now consider the function f1(x, y) = (x2i+1 + x2iy + Axy2
i
+ By2

i+1, x2j+1 +

ax2jy + bxy2
j
+ cy2

j+1) and prove new requirements in order to say that f1 is APN

by using similar arguments as in Section 3.1.

We first consider the case i = 0. If i = 0 is substituted, we get

f1(x, y) = (x2 + xy + Axy +By2, x2j+1 + ax2jy + bxy2
j

+ cy2
j+1).

We define B1,0(x, y) := x2 + xy + Axy + By2 and G1,0(x, y) := x2j+1 + ax2jy +

bxy2
j
+ cy2

j+1. We know that the function f1 is APN if the system of equations

B1,0(x, y) +B1,0(x+ a, y + b) = c

G1,0(x, y) +G1,0(x+ a, y + b) = d

has 0 or 2 solutions for every nonzero a, b ∈ F∗
2m , and for every c, d ∈ F2m . As

B1,0(x, y) = x2 + xy + Axy + By2, we get bx+ ay + Abx+ Aay = c by replacing

c with c+ ab+Aab+Bb2 + a2 in the equation B1,0(x, y) +B1,0(x+ a, y + b) = c.

Then, we need to check the number of solutions in the equation

G1,0(x,
c+ b(A+ 1)x

a(A+ 1)
) +G1,0(x+ a,

c+ b(A+ 1)x

a(A+ 1)
+ b) = d,

37

for a(A+1) ̸= 0. Changing c into a(A+1)c and x into ax and defining Ga,b,c(x) :=

G1,0(ax, bx + c), we get that the function f1 is APN if and only if Ga,b,c is an APN

function. So, we have the same result with Carlet’s construction [19] of the case

B(x, y) = xy, which is discussed in the previous section.

From this observation above, we have the following corollary.

Corollary 1. Let

f1(x, y) = (x2 + xy + Axy +By2, x2j+1 + ax2jy + bxy2
j

+ cy2
j+1)

and define Ga,b,c(x) := G1,0(ax, bx + c). For a(A + 1) ̸= 0, the function f1 is APN

if and only if Ga,b,c is an APN function.

For i = 1, we have

f1(x, y) = (x3 + x2y + Axy2 +By3, x2j+1 + ax2jy + bxy2
j

+ cy2
j+1),

and B1,1(x, y) := x3+x2y+Axy2+By3, G1,1(x, y) := x2j+1+ax2jy+bxy2
j
+cy2

j+1.

Dealing with the equation B1,1(x, y) + B1,1(x + a, y + b) = c, by changing c into

c+ a3+ a2b+Aab2+ bB3, we have (a+ b)x2+(a2+Ab2)x+(Aa+Bb)y2+(a2+

Bb2)y = c. Taking s, u ̸= 0, v and t instead of a+ b, a2+Ab2, Aa+Bb and a2+Bb2

respectively, we get sx2+ux+vy2+ty = c. Then if we take d = c+vy2+ty, we have

sx2 + ux+ d = 0. Taking y = sx
u

and k = sd
u2 , we have the formula y2 + y + k = 0.

If m is odd, this formula has a root

y1 =
∑
j∈J

k2j =
∑
i∈I

k2i ,

where J = {0, 2, 4, . . . ,m− 1} and I = {1, 3, 5, . . . ,m− 2}.

For m = 3, I = {1} and J = {0, 2} we have y1 = k2. So the roots of the

formula (a + b)x2 + (a2 + Ab2)x + (Aa + Bb)y2 + (a2 + Bb2)y = c are x1 =

a+b
a2+Ab2

(c+(Aa+Bb)y2+(a2+Bb2)y
a2+Ab2

)2 and x2 = a2+Ab2

a+b
[((a+b)(c+(Aa+Bb)y2+(a2+Bb2)y

(a2+Ab2)2
)2 + 1]

for a2 + Ab2 ̸= 0.

Now, we consider the number of solutions in the equation G1,1(x, y)+G1,1(x+a, y+

b) = d by taking A = B = 1. Then

G1,1((a+b)(c+ y2 + y)
2
, (a+b)y)+G1,1((a+b)(c+ y2 + y)

2
+a0, (a+b)y+b0) = d

38

for every nonzero a0, b0 ∈ Fm
2 must has no solution or one solution for the root x1

and one solution for the root x2. If G1,1 has two solutions for the root x1, then it has

two solutions for the other root x2. This contradicts the fact that G1,1 is APN.

Then we have Corollary 2 below.

Corollary 2. Let

f1(x, y) = (x3 + x2y + xy2 + y3, x2j+1 + ax2jy + bxy2
j

+ cy2
j+1)

. For a2 + b2 ̸= 0 the function f1 is APN if and only if

G1,1((a+b)(c+ y2 + y)
2
, (a+b)y)+G1,1((a+b)(c+ y2 + y)

2
+a0, (a+b)y+b0) = d

must has no solution or one solution for the root x1 and one solution for the root x2

for every nonzero a0, b0 ∈ Fm
2 .

3.2.2 Family f2

In this section, we consider f2(x, y) = (x2i+1+xy2
i
+Ay2

i
, x2j+1+ax2jy+ bxy2

j
+

cy2
j+1). For i = 0, we set

f2(x, y) = (B2,0(x, y), G2,0((x, y)),

where B2,0(x, y) = x2+xy+Ay and G2,0(x, y) = x2j+1+ax2jy+bxy2
j
+cy2

j+1. If

we change c into c+a2+ab+Ab2 in the equation B2,0(x, y)+B2,0((x+a, y+b) = c

and x = c+ay
b

in G2,0(x, y)+G2,0(x+a, y+b) = d we get G2,0(c+ay, yb)+G2,0(c+

ay + a, yb+ b) = d. So actually the result is again Carlet’s function.

Obtaining this result we have the corollary as follows.

Corollary 3. Let

f2(x, y) = (x2 + xy + Ay, x2j+1 + ax2jy + bxy2
j

+ cy2
j+1)

and define Ga,b,c(x) := G2,0(ax, bx+ c). For b ̸= 0, f2 is APN if and only if Ga,b,c is

an APN function.

For i = 1, then we set B2,1(x, y) := x3 + xy2 + Ay3. Changing c into c + a3 + Ab3

in B2,1(x, y)+B2,1(x+ a, y+ b) = c, we have ax2 +(a2 + b2)x = c+Aby2 +Ab2y.

39

If we take d = c + Aby2 + Ab2y, y = ax
a2+b2

and k = ad
(a2+b2)2

for (a2 + b2) ̸= 0,
we have y2 + y + k = 0. For m = 3, we have the root y1 = k2. Then the roots
of x2a + a2x + b2x + Aby2 + Ab2y = c are x1 = a (c+Aby2+Ab2y)2

(a+b)3
and the other one

x2 =
a2+b2

a
[(ad

(a2+b2)2
)
2
+ 1]. For A = 1,

G2,1(a(c+ by(ay+ by+ b)2, (a+ b)y)+G2,1(a(c+ by(ay+ by+ b))2+(a+ b)a, (a+ b)y+ b) = d

must have zero solution or one solution for the root x1 and one solution for the root

x2 due to the same reason for f1.

From this computations, the following corollary is given.

Corollary 4. Let

f2(x, y) = (x3 + xy2 + y2, x2j+1 + ax2jy + bxy2
j

+ cy2
j+1).

For a2 + b2 ̸= 0 and m = 3 the function f2 is APN if and only if the equation

G2,1(a(c+ by(ay+ by+ b)2, (a+ b)y)+G2,1(a(c+ by(ay+ by+ b))2+(a+ b)a, (a+ b)y+ b) = d

must have zero solution or one solution for the root x1 and one solution for the root

x2.

3.2.3 Family f3

Now we consider the function f3(x, y) = (x2i+1 + Ay2
i+1, x2j+1 + x2jy + axy2

j
+

by2
j+1).

For i = 0, we set B3,0(x, y) := x2 + Ay2. Dealing with the number of solutions for

B3,0(x, y) +B3,0(x+ a, y + b) = c, we have c = a2 +Ab2. So f3 is APN if and only

if G3,0(x, y) = x2j+1 + x2jy + axy2
j
+ by2

j+1 is APN.

Then we have the following corollary.

Corollary 5. Let

f3(x, y) = (x2 + Ay2, x2j+1 + x2jy + axy2
j

+ by2
j+1).

f3 is APN if and only if G3,0(x, y) = x2j+1 + x2jy + axy2
j
+ by2

j+1 is APN.

For i = 1, we define B3,1(x, y) = x3 + Ay3. If we take c = c + a3 + Ab3, d =

c+Aby2+Ab2y and m = 3, the roots of the formula B3,1(x, y)+B3,1(x+a, y+b) = c

40

are x1 = a(d
a3
)2 and x2 = a((d

a3
)2 + 1). Then G3,1(a(c + Aby2 + Ab2y)2, a3y) +

G3,1(a(c + Aby2 + Ab2y)2 + a, a3y + b) = d must has zero solution or one solution

for the root x1 and one solution for the root x2 to be an APN function.

After these results, we can give the corollary below.

Corollary 6. Let

f3(x, y) = (x3 + Ay3, x2j+1 + x2jy + axy2
j

+ by2
j+1).

For a ̸= 0, f3 is APN if and only if the equation G3,1(a(c + Aby2 + Ab2y)2, a3y) +

G3,1(a(c + Aby2 + Ab2y)2 + a, a3y + b) = d must has zero solution or one solution

for the root x1 and one solution for the root x2

We note that Family f4 can be handled similarly to Family f3.

41

42

CHAPTER 4

REPRESENTATIONS OF APN POWER FUNCTIONS

Power functions were the first known and simplest APN functions. These functions

are of the form F (x) = xd for some natural number d. Until now, we know six infinite

families of APN power functions, shown in table Table 2.1. In this table, the exponent

d in the univariate form is shown in the second column and the conditions satisfied for

F (x) = xd to be APN functions are shown in the third column. New representations

of the Niho, Welch and Dobbertin functions are shown in [9] as the composition of the

two power functions xi ◦ x1/j , and it is proven that these representations are optimal.

From this point of view, we study finding alternative representations of Dobbertin and

Niho functions.

4.1 Dobbertin Power Function’s Representations

In this section, it appears that we are considering a specific power function denoted

as xd, where the exponent d is given by:

d = 24i + 23i + 22i + 2i − 1.

Additionally, it is mentioned that n is equal to 5i.

The power function xd is a monomial and is of particular interest in the study of

almost perfect nonlinear (APN) functions in cryptography due to its cryptographic

properties.

It has been demonstrated in [9] that the Dobbertin power function can be expressed

as the composition of a cubic power function and the inverse of a quadratic power

43

function. This representation is optimal in the sense that no two power functions of a

lesser algebraic degree can be used to represent the functions in this way.

We examine xd to represent the composition of two functions which are different from

those shown in [9] concerning binary weight. We establish that xd is equivalent to a

power function composed of a cubic power function and the inverse of a quadratic

power function with six different representations in the following lemma. We see that

the first two congruences are different from the four congruences given in [9].

Lemma 12. The following equivalences hold for any positive integer m:

∑4
i=1 2

im − 1 ≡ 23m+1 24m+2m+1
2m+1

≡ 23m+1 23m+2m+1
22m+1

≡ 2m+1 22m+2m+1
24m+1

≡ 2m+1 23m+2m+1
23m+1

≡ 2m+1 23m+22m+1
22m+1

≡ 22m+1 22m+2m+1
2m+1

mod(25m − 1)

Proof. Similar to [9], we consider first congruence and prove that 2m+1 is invertible

modulo 25m − 1. To show that we need that gcd(2m + 1, 25m − 1). Then

gcd(2i + 1, 2j − 1) =

 1, if j/gcd(i, j) is odd;

2gcd(i,j) + 1, if j/gcd(i, j) is even.

We have gcd(2m + 1, 25m − 1) = 1 since gcd(m, 5m) = m. If we replace 2m by

x, we have the equivalence (x + 1)(x4 + x3 + x2 + x − 1) ≡ 2x3(x4 + x + 1) mod

(x5−1). Calculating the expression on the left-hand side of this equivalence, we have

(x+ 1)(x4 + x3 + x2 + x− 1) = x5 + 2x4 + 2x3 + 2x2 − 1 ≡ 2x4 + 2x3 + 2x2 mod

x5 − 1. Then considering the right-hand side we have 2x7 + 2x4 + 2x3 and we have

x5 = 1, so we have the equivalence.

We can prove other five statements of lemma similarly since 22m + 1, 23m + 1 and

24m + 1 are invertible mod (25m − 1).

The corollary that follows is an obvious result of Lemma 12.

44

Corollary 7. Consider the power function xd, where d is determined as 24m + 23m +

22m + 2m − 1,defined within the field F25m . It can be established that xd exhibits

cyclotomic equivalence to power functions characterized by the exponents 24m+2m+1
2m+1

,
23m+2m+1

22m+1
, 22m+2m+1

24m+1
, 23m+2m+1

23m+1
, 23m+22m+1

22m+1
, 22m+2m+1

2m+1
. We know from [9] that this

representations are optimal in terms of their weight.

We know that two power functions denoted as F (x) = xd and G(x) = xe, defined

over the finite field F2n , where d, e, and n are positive integers, are considered cyclo-

tomic equivalent under the following conditions:

• d ≡ 2ke (mod 2n − 1) for some positive integer k or

• d−1 ≡ 2ke (mod 2n − 1) for some positive integer k, but only if gcd(d, 2n −
1) = 1, where d−1 represents the multiplicative inverse of d modulo 2n − 1.

Then we consider the multiplicative inverse d−1 of the power d and we try to represent

d−1 as the fraction of two numbers by doing a computer search and we have the lemma

as follows.

Lemma 13. The following equivalents are true for any positive odd integer m:

1∑4
i=1 2

im−1
≡ 23m−1 2m+1

22m+2m+1

≡ 22m−1 22m+1
23m+2m+1

≡ 2m−1 23m+1
23m+22m+1

≡ 22m−1 2m+1
24m+2m+1

≡ 2m−1 22m+1
24m+22m+1

≡ 2m−1 2m+1
24m+23m+1

mod (25m − 1)

Proof. We first prove that, 22m+2m+1, 23m+2m+1, 23m+22m+1, 24m+2m+1,

24m + 22m + 1 and 24m + 23m + 1 are invertible modulo 25m − 1.

We consider the first one and prove that

gcd(22m + 2m + 1, 25m − 1) = 1

when m is odd. The others can be proven similarly. By Euclidean algorithm, we get

the following equation array:

45

gcd(22m + 2m + 1, 25m − 1) = gcd(22m + 2m + 1,25m − 1 mod (22m + 2m + 1))

= gcd(2m + 2, 22m − 1)

= gcd(2m + 2, 3).

gcd(2m + 2, 3) =

 1, if m is odd;

3, if m is even.

Hence, we see that they are relatively prime when m is odd. Then, the correctness

holds as follows.

If we replace 2m by x, we show that (x+1)x3(x4+x3+x2+x− 1) ≡ 2x2+2x+2

(mod ()x5− 1). For the left-hand side of this equation, we have 2x7+2x6+2x5 and

this is equivalent to 2x2 + 2x+ 2 modulo (x5 − 1).

The other congruences are proven in the same way.

The following corollary follows from Lemma 13.

Corollary 8. Let xd be the power function defined over the field F25m with d = 24m+

23m +22m +2m − 1 and d−1 be the multiplicative inverse of d modulo 25m − 1. Then

for any odd integer m, xd is cyclotomic equivalent to the power functions with the

exponents 2m+1
22m+2m+1

, 22m+1
23m+2m+1

, 23m+1
23m+22m+1

, 2m+1
24m+2m+1

, 22m+1
24m+22m+1

and 2m+1
24m+23m+1

.

After mentioning all of the above on Dobbertin power function representations, we

report our experimental results of the representations of this function in the next sec-

tion.

4.2 Computational Results of Dobbertin Power Function’s Representations

We have the Dobbertin function F (x) = xd, d = 24m + 23m + 22m + 2m − 1 where

n = 5m. Then we try to find its cyclotomic equivalent function G(x) = xe satisfying

the criteria d ≡ 2ke (mod ()2n − 1) for some positive integer k, or d−1 ≡ 2ke

(mod ()2n − 1) for some positive integer k in the case that gcd(d, 2n − 1) = 1, with

d−1 being the multiplicative inverse of d modulo 2n − 1.

• We can represent F(x) by combining a function with weight 4 and inverse of a

46

function with weight 3, for each k in 1 ≤ k ≤ n. For m = 2, 3, 4, 5, 6, 7 we

have 24 representations of the function.

• We can represent F(x) by combining a function with weight 5 and inverse of

a function with weight 4, for each k in 1 ≤ k ≤ n. For m = 2 we have 5

representations of the function, m = 3 and m = 4 we have 65 representations

of the function.

• We can represent F(x) by combining a function with weight 4 and inverse of

a function with weight 6, for each k in 1 ≤ k ≤ n. For m = 2 we have 48

representations of the function, m = 3 we have 24 representations and m = 4

we have 44 representations of the function.

• We can represent F(x) by combining a function with weight 4 and inverse of

a function with weight 7, for each k in 1 ≤ k ≤ n. For m = 2 we have 12

representations of the function, m = 3 we have 184 representations and m = 4

we have 72 representations of the function.

• We can represent F(x) by combining a function with weight 5 and inverse of

a function with weight 5, for each k in 1 ≤ k ≤ n. For m = 2 we have 45

representations of the function, m = 3 we have 85 representations and m = 4

we have 55 representations of the function.

• We can represent F(x) by combining a function with weight 5 and inverse of

a function with weight 7, for each k in 1 ≤ k ≤ n. For m = 2 we have

5 representations of the function, m = 3 we have 220 representations of the

function.

• We can represent F(x) by combining a function with weight 6 and inverse of

a function with weight 4, for each k in 1 ≤ k ≤ n. For m = 2 we have 72

representations of the function, m = 3 we have 204 representations and m = 4

we have 252 representations of the function.

• We can represent F(x) by combining a function with weight 7 and inverse of

a function with weight 3, for each k in 1 ≤ k ≤ n. For m = 2 we have 14

representations of the function, m = 3 we have 35 representations and m = 4

we have 21 representations of the function.

47

• We can represent F(x) by combining a function with weight 7 and inverse of

a function with weight 5, for each k in 1 ≤ k ≤ n. For m = 2 we have

14 representations of the function, m = 3 we have 462 representations of the

function.

• We can represent F(x) by combining a function with weight 8 and inverse of

a function with weight 4, for each k in 1 ≤ k ≤ n. For m = 2 we have

8 representations of the function, m = 3 we have 72 representations of the

function.

Then we try to find the representation of the function as a composition of two func-

tions, one of which has negative terms. Our experimental result shows that there are

no such representations.

Now, we present our experimental results of the representation xd cyclotomic equiv-

alent to the power functions with exponents e as a fraction of two integers x and y.

Then we consider the cyclotomic equivalence d ≡ 2ke (mod ()2n − 1) for some

positive integers d, e, n, k and examine e = x/y with x has weight in range (1, 12),

and y has weight in range (1, 12). In Figure 4.1, the location of the representations is

marked in yellow for m = 2, k = 1, 2, 3.

After having these computational results, we consider representations of Niho power

functions. In the next section, we review some computational results of Niho power

function representations.

4.3 Computational Results of Niho Power Functions Representations

We consider Niho power function F (x) = xd with d = 2t + 2t/2 − 1 defined over

the field F22t+1 , where t is an even integer. In this part of the study, we give our

computational search results as follows.

• We can represent F(x) by combining a function with weight 2 and inverse of a

function with weight 3, for each k in 1 ≤ k ≤ n. For m = 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14 we have 2 representations of the function.

48

Figure 4.1: The location of the representations for m = 2, k = 1, 2, 3

• We can represent F(x) by combining a function with weight 2 and inverse of

a function with weight 6, for each k in 1 ≤ k ≤ n. For m = 2, 3 we have 4

representations and m = 4, 5, 6 we have 2 representations of the function.

• We can represent F(x) by combining a function with weight 3 and inverse of a

function with weight 4, for each k in 1 ≤ k ≤ n. For m = 1, 2, 3, 4, 5, 6, 7 we

have 6 representations of the function.

• We can represent F(x) by combining a function with weight 3 and inverse of a

function with weight 5, for each k in 1 ≤ k ≤ n. For m = 2, 3, 4, 5, 6 we have

6 representations of the function.

• We can represent F(x) by combining a function with weight 3 and inverse of

a function with weight 6, for each k in 1 ≤ k ≤ n. For m = 2 we have 4

representations, m = 3 we have 9 and m = 4, 5, 6 we have 6 representations of

the function.

• We can represent F(x) by combining a function with weight 3 and inverse of

a function with weight 7, for each k in 1 ≤ k ≤ n. For m = 2 we have 3

49

representations, m = 3 we have 12, m = 4 we have 15 representations and

m = 5 we have 9 representations of the function.

• We can represent F(x) by combining a function with weight 4 and inverse of

a function with weight 7, for each k in 1 ≤ k ≤ n. For m = 2 we have 4

representations, m = 3 we have 36, m = 4 we have 60 representations of the

function.

• We can represent F(x) by combining a function with weight 4 and inverse of

a function with weight 6, for each k in 1 ≤ k ≤ n. For m = 2 we have 4

representations, m = 3 we have 52, m = 4 we have 56 representations of the

function.

• We can represent F(x) by combining a function with weight 4 and inverse of

a function with weight 5, for each k in 1 ≤ k ≤ n. For m = 2 we have 24

representations, m = 3 we have 28, m = 4, 5 we have 20 representations of the

function.

• We can represent F(x) by combining a function with weight 4 and inverse of

a function with weight 4, for each k in 1 ≤ k ≤ n. For m = 2 we have 8

representations, m = 3 we have 16, m = 4, 5 we have 4 representations of the

function.

• We can represent F(x) by combining a function with weight 5 and inverse of

a function with weight 7, for each k in 1 ≤ k ≤ n. For m = 2 we have 10

representations, m = 3 we have 115, m = 4 we have 290 representations of the

function.

• We can represent F(x) by combining a function with weight 5 and inverse of

a function with weight 6, for each k in 1 ≤ k ≤ n. For m = 2 we have 10

representations, m = 3 we have 105, m = 4 we have 160 representations of the

function.

• We can represent F(x) by combining a function with weight 5 and inverse of

a function with weight 5, for each k in 1 ≤ k ≤ n. For m = 2 we have 10

representations, m = 3 we have 75, m = 4 we have 60 representations of the

function.

50

• We can represent F(x) by combining a function with weight 5 and inverse of

a function with weight 4, for each k in 1 ≤ k ≤ n. For m = 2 we have 30

representations, m = 3 we have 35, m = 4 we have 15 representations of the

function.

• We can represent F(x) by combining a function with weight 6 and inverse of

a function with weight 6, for each k in 1 ≤ k ≤ n. For m = 2 we have 12

representations, m = 3 we have 144, m = 4 we have 384 representations of the

function.

• We can represent F(x) by combining a function with weight 6 and inverse of

a function with weight 5, for each k in 1 ≤ k ≤ n. For m = 2 we have 12

representations, m = 3 we have 120, m = 4 we have 204 representations of the

function.

• We can represent F(x) by combining a function with weight 6 and inverse of

a function with weight 4, for each k in 1 ≤ k ≤ n. For m = 2 we have 12

representations, m = 3 we have 102, m = 4 we have 90 representations and

m = 5 we have 24 representations of the function.

• We can represent F(x) by combining a function with weight 6 and inverse of

a function with weight 3, for each k in 1 ≤ k ≤ n. For m = 2 we have 8

representations, m = 3 we have 18, m = 4 we have 60 representations and

m = 5 we have 24 representations of the function.

• We can represent F(x) by combining a function with weight 6 and inverse of

a function with weight 2, for each k in 1 ≤ k ≤ n. For m = 2, 3 we have 6

representations, m = 4 we have 24 representations of the function.

• We can represent F(x) by combining a function with weight 7 and inverse of

a function with weight 7, for each k in 1 ≤ k ≤ n. For m = 3 we have 168

representations, m = 4 we have 1176 representations of the function.

• We can represent F(x) by combining a function with weight 7 and inverse of

a function with weight 6, for each k in 1 ≤ k ≤ n. For m = 2 we have 7

representations, m = 3 we have 203 representations and m = 4 we have 714

representations of the function.

51

• We can represent F(x) by combining a function with weight 7 and inverse of

a function with weight 5, for each k in 1 ≤ k ≤ n. For m = 2 we have 7

representations, m = 3 we have 182 representations and m = 4 we have 406

representations of the function.

• We can represent F(x) by combining a function with weight 7 and inverse of

a function with weight 4, for each k in 1 ≤ k ≤ n. For m = 3 we have 56

representations, m = 4 we have 280 representations of the function.

• We can represent F(x) by combining a function with weight 7 and inverse of

a function with weight 3, for each k in 1 ≤ k ≤ n. For m = 2 we have 14

representations, m = 3 we have 21 and m = 4 we have 42 representations of

the function.

• We can represent F(x) by combining a function with weight 7 and inverse of

a function with weight 2, for each k in 1 ≤ k ≤ n. For m = 3, 4 we have 7

representations, m = 5 we have 35 representations of the function.

52

CHAPTER 5

LINEAR CODES GENERATED FROM WEAKLY REGULAR

BENT FUNCTIONS OVER Fp

5.1 The construction methods of linear codes from functions

Cryptographic functions have been a valuable resource in coding theory for creating

linear codes with few weights for an extended period. The process of constructing

linear codes using various types of functions such as quadratic, almost bent, (almost)

perfect nonlinear, (weakly regular) bent, and plateaued functions has garnered signif-

icant attention in research.

One notable aspect is that determining the parameters of codes generated from these

functions is comparatively straightforward, thanks to the well-structured nature of

these functions. This contrasts with the typical challenges encountered in coding

theory when dealing with parameter determination. Numerous techniques exist for

constructing linear codes over finite fields. Among these methods, two stand out as

generic, offering the potential to generate various classes of known codes. Let’s ex-

plore these two generic construction methods for linear codes derived from functions:

First Generic Construction Method: For a polynomial F (x) defined over the finite

field Fq, the first generic construction method for linear codes is defined as follows.

Consider the linear codes C(F), which consist of codewords formed by applying

the trace operator Trm to linear combinations of F (x) and x for various choices of

coefficients a and b in the field Fq. Mathematically, this can be represented as:

C(F) = {(Trm(aF (x) + bx))x∈F⋆
q
: a, b ∈ Fq},

53

These linear codes have a length of (q − 1) and a dimension that is at most 2n.

Second Generic Construction Method: The second generic construction method is

based on a subset D defined as

CD = {(Trm(ad1), . . . ,Trm(adm)) : a ∈ Fq}. (5.1.1)

In this case, the length of the codes is m, and the dimension is at most n. The quality

of CD depends on the choice of the defining set D.

The construction method represented by (5.1.1) was initially explored by Ding et

al. [29, 30], resulting in the proposal of numerous linear codes, as documented in

[27, 28, 29, 30, 31]. Furthermore, this construction method has been used to derive

novel linear codes from cryptographic functions, as demonstrated in works such as

[56, 52, 58, 66].

Inspired by the approach defined in (5.1.1), Li et al. [48] introduced a linear code

construction based on a subset D = (x1, y1), . . . , (xm, ym) ⊆ F2
q . This linear code is

defined as:

CD = c(a,b) = (Trn(ax1 + by1), . . . ,Tr
n(axm + bym)) : , a, b ∈ Fq, (5.1.2)

where the length of the code is m, and its dimension is at most 2n. For every pair

(a, b) ∈ F2
q \ (0, 0), the Hamming weight of a nonzero codeword c(a,b) in CD is calcu-

lated as:

wt(c(a,b)) = #D −ND(a, b),

where ND(a, b) represents the count of pairs (x, y) ∈ D such that the expression

Trm(ax + by) = 0. This construction method offers versatility in producing linear

codes with different parameters, depending on the specific selection of the defining

set D.

Li et al. [48] successfully created several linear codes by utilizing the set D, defined as

D = {(x, y) ∈ F2
q \ (0, 0) : ,Trm(xk + yl) = 0}, where the parameters k and l belong

to the sets {1, 2, pn/2 + 1}. In a more recent development, Jian et al. [42] extended

these constructions by generating additional linear codes following the structure of

54

(5.1.2). They achieved this by employing a defining set D defined as D = {(x, y) ∈
F2
q \ (0, 0) : Trm(xk+yp

u+1) = 0}, with k selected from the set {1, 2}. Subsequently,

Wu et al. [61] introduced a novel set of linear codes following the structure presented

in (5.1.2) and based on the set

D = {(x, y) ∈ F2
q \ {(0, 0)} : Trm(x) + g(y) = 0},

D = {(x, y) ∈ F2
q \ {(0, 0)} : f(x) + g(y) = 0},

(5.1.3)

here, the functions f and g represent weakly regular bent functions that map from Fq

to Fp. Moreover, Sınak [57] have recently constructed several linear codes of the form

(5.1.2) based on the sets of the form (5.1.3) for weakly regular plateaued balanced and

unbalanced functions. On the other hand, Cheng et al. [24] obtained several linear

codes of the form (5.1.2) based on the following defining sets

D = {(x, y) ∈ F2
q \ {(0, 0)} : Trm(x) + g(y) ∈ SQ},

D = {(x, y) ∈ F2
q \ {(0, 0)} : Trm(x) + g(y) ∈ NSQ},

D = {(x, y) ∈ F2
q \ {(0, 0)} : f(x) + g(y) ∈ SQ},

D = {(x, y) ∈ F2
q \ {(0, 0)} : f(x) + g(y) ∈ NSQ},

where f and g are weakly regular plateaued unbalanced functions. Motivated by the

works [24, 42, 48, 57, 61]. In this thesis, we have embarked on the construction of

linear codes in the style of Equation (5.1.2). These codes are constructed based on

the defining sets outlined below:

D1 = {(x, y) ∈ F2
q : Trm(x) + g(y) = 1},

D2 = {(x, y) ∈ F2
q : Trm(x2) + g(y) = 1},

D0 = {(x, y) ∈ (F2
q)

⋆ : Trm(x2) + g(y) = 0},

(5.1.4)

where g is a weakly regular bent function from Fq to Fp.

5.2 Three-weight linear codes based on the set D1

In this subsection, to construct linear codes over a finite field Fp, we consider the

following defining set D1 = {(x, y) ∈ F2
q : Trm(x) + g(y) = 1} when g ∈ RF .

The following lemma finds the size of the defining set D1.

Lemma 14. Let D1 be defined as in (5.1.4) and let g ∈ RF . Then #D1 = p2m−1.

55

Proof. From the orthogonality of exponential sums, we have

#D1 = 1
p

∑
x,y∈Fq

∑
z∈Fp

ξz(Tr
m(x)+g(y)−1)

p

= p2m−1 + 1
p

∑
z∈F⋆

p

∑
x∈Fq

ξzTr
m(x)

p

∑
y∈Fq

ξzg(y)−z
p

= p2m−1.

We need the following lemma to find the Hamming weights of nonzero codewords in

CD1 .

Lemma 15. Let D1 be defined as in (5.1.4). For (a, b) ∈ (F2
q)

⋆, define ND1(a, b) =

#{(x, y) ∈ D1 : Tr
m(ax+ by) = 0}.

• If a ∈ Fq \ F⋆
p, we have that ND1(a, b) = p2m−2.

• If a ∈ F⋆
p, for even m

ND1(a, b) =

 p2m−2 + ϵg(p− 1)pm−2
√
p∗

m
, if g⋆(a−1b) = 1,

p2m−2 − ϵgp
m−2

√
p∗

m
, if g⋆(a−1b) ̸= 1,

and for odd m

ND1(a, b) =

p2m−2, if g⋆(a−1b) = 1,

p2m−2 + ϵgp
m−2

√
p∗

m+1
, if g⋆(a−1b)− 1 ∈ SQ,

p2m−2 − ϵgp
m−2

√
p∗

m+1
, if g⋆(a−1b)− 1 ∈ NSQ.

Proof. From the orthogonality of exponential sums, we have

ND1(a, b) = p2m−2 + 1
p2

∑
z1,z2∈F⋆

p

ξ−z1
p

∑
x∈Fq

ξTr
m(z1x+z2ax)

p

∑
y∈Fq

ξz1g(y)+Trm(z2by)
p .

When a ∈ Fq \ F⋆
p, we can easily see that ND1(a, b) = p2m−2. When a ∈ F⋆

p, we have

56

the following proof. For z1 = −z2a, we have

ND1(a, b) = p2m−2 + pm−2
∑
z2∈F⋆

p

ξz2ap

∑
y∈Fq

ξ−z2ag(y)+Trm(z2by)
p

= p2m−2 + pm−2
∑
z2∈F⋆

p

ξz2ap σ−z2a

∑
y∈Fq

ξg(y)−Trm(a−1by)
p

= p2m−2 + pm−2

∑
z2∈F⋆

p

ξz2ap σ−z2a

(
ϵg
√
p∗

m
ξg

⋆(a−1b)
p

)
= p2m−2 + pm−2ϵg

√
p∗

m
∑
z2∈F⋆

p

ηm0 (−z2a)ξ
−z2ag⋆(a−1b)+z2a
p .

From Lemma 1, when m is even, we have

ND1(a, b) = p2m−2 + ϵgp
m−2

√
p∗

m
∑
z2∈F⋆

p

ξ−z2a(g⋆(a−1b)−1)
p

=

 p2m−2 + ϵg(p− 1)pm−2
√
p∗

m
, if g⋆(a−1b) = 1,

p2m−2 − ϵgp
m−2

√
p∗

m
, if g⋆(a−1b) ̸= 1,

and when m is odd,

ND1(a, b) = p2m−2 + ϵgp
m−2

√
p∗

m
∑
z2∈F⋆

p

η0(−z2a)ξ
−z2a(g⋆(a−1b)−1)
p

=

p2m−2, if g⋆(a−1b) = 1,

p2m−2 + ϵgp
m−2

√
p∗

m+1
, if g⋆(a−1b)− 1 ∈ SQ,

p2m−2 − ϵgp
m−2

√
p∗

m+1
, if g⋆(a−1b)− 1 ∈ NSQ.

The proof is complete.

We present the parameters of the code CD1 based on D1 in the following theorem.

Theorem 9. Let D1 be defined as in (5.1.4) and g ∈ RF . Then, the code CD1 of the

form (5.1.2) is a 3-weight linear [p2m−1, 2m] code over Fp. All parameters are listed

in Tables 5.1 and 5.2 when m is even and odd, respectively.

Table 5.1: The Hamming weights of CD1 in Theorem 9 when m is even

Hamming weight ω Multiplicity Aω

0 1

(p− 1)p2m−2 p2m − (p− 1)pm − 1

(p− 1)(p2m−2 − ϵgp
m−2

√
p∗

m
) (p−1)

p
(pm − ϵg

√
p∗

m
)

(p− 1)p2m−2 + ϵgp
m−2

√
p∗

m (p−1)
p

((p− 1)pm + ϵg
√
p∗

m
)

57

Table 5.2: The Hamming weights of CD1 in Theorem 9 when m is odd
Hamming weight ω Multiplicity Aω

0 1

(p− 1)p2m−2 p2m − 1 + (p− 1)(pm−1 − pm + ϵη0(−1)
√
p∗

m−1
)

(p− 1)p2m−2 − ϵgp
m−2

√
p∗

m+1 (p−1)
2 (pm − pm−1 − ϵη0(−1)2

√
p∗

m−1
)

(p− 1)p2m−2 + ϵgp
m−2

√
p∗

m+1 (p−1)
2 (pm − pm−1)

Proof. The proof follows from Lemmas 14 and 15. The length of the code CD1 is

equal to the size of the defining set D1. From the definition, the Hamming weight

of the zero codeword is zero, that is, wt(c(0,0)) = 0 when (a, b) = (0, 0). For every

(a, b) ∈ F2
q \ {(0, 0)}, the Hamming weight of the nonzero codeword c(a,b) in CD1 is

given by

wt(c(a,b)) = #D1 −ND1(a, b).

When m is even, we have

wt(c(a,b)) =

(p− 1)p2m−2, if a ∈ Fq \ F⋆

p,

(p− 1)p2m−2 − ϵg(p− 1)pm−2
√
p∗

m
, if a ∈ F⋆

p and g⋆(a−1b) = 1,

(p− 1)p2m−2 + ϵgp
m−2

√
p∗

m
, if a ∈ F⋆

p and g⋆(a−1b) ̸= 1,

and when m is odd, we have

wt(c(a,b)) =

(p− 1)p2m−2, if a ∈ F⋆

p and g⋆(a−1b) = 1 or a ∈ Fq \ F⋆
p,

(p− 1)p2m−2 − ϵgp
m−2

√
p∗

m+1
, if a ∈ F⋆

p and g⋆(a−1b)− 1 ∈ SQ,

(p− 1)p2m−2 + ϵgp
m−2

√
p∗

m+1
, if a ∈ F⋆

p and g⋆(a−1b)− 1 ∈ NSQ.

The weight distribution of this code follows from Lemma 7 with the help of the Pless

power moments. Hence, we complete the proof.

We provide the following example for the code CD1 given in Theorem 9, which is

verified by MAGMA [3].

Example 1. Let g : F34 → F3 be given as g(x) = Tr4(x2) ∈ RF with ϵg =

−1. Then, CD1 is the 3-weight ternary linear [2187, 8, 1377] code over F3 with the

polynomial 1 + 6398y1458 + 60y1620 + 102y1377.

5.3 Two-weight linear codes based on the set D2

In this subsection, to construct linear codes over a finite field Fp, we consider the

following defining set D2 = {(x, y) ∈ F2
q : Trm(x2) + g(y) = 1} when g ∈ RF .

58

The following lemma finds the size of the defining set D2.

Lemma 16. Let D2 be defined as in (5.1.4) and let g ∈ RF . Then

#D2 =

 p2m−1 + ϵgp
m−1, if m is odd with p ≡ 3 (mod 4) or m is even,

p2m−1 − ϵgp
m−1, if m is odd with p ≡ 1 (mod 4).

Proof. The proof follows from Lemmas 1, 2, 3 and 4. Recall that we have Wg(0) =

ϵg
√
p∗

m by Lemma 4. From the orthogonality of exponential sums, we have

#D2 = 1
p

∑
x,y∈Fq

∑
z∈Fp

ξz(Tr
m(x2)+g(y)−1)

p

= 1
p

p2m +
∑
z∈F⋆

p

ξ−z
p

∑
x∈Fq

ξTr
m(zx2)

p

∑
y∈Fq

ξzg(y)p

= p2m−1 + 1

p

∑
z∈F⋆

p

ξ−z
p G(η)η(z)σz(Wg(0))

= p2m−1 + 1
p

∑
z∈F⋆

p

ξ−z
p (−1)m−1

√
p∗

m
ηm0 (z)ϵgη

m
0 (z)

√
p∗

m

= p2m−1 + ϵg(−1)mηm0 (−1)pm−1.

Here, Lemmas 3 and 4 are used in the third equality, Lemma 2 is used in the fourth

equality and Lemma 1 (ii.) is used in the last equality. Thus the proof is complete.

We need the following lemma to find the Hamming weights of nonzero codewords in

CD2 .

Lemma 17. Let D2 be defined as in (5.1.4), and let g ∈ RF with lg = 2. For

(a, b) ∈ (F2
q)

⋆, we define ND2(a, b) = #{(x, y) ∈ D2 : Trm(ax+ by) = 0}. Then

ND2(a, b) =

 p2m−2 − ϵg(−1)m−1ηm0 (−1)pm−1, if t = 0 or t ∈ NSQ,

p2m−2 + ϵg(−1)m−1ηm0 (−1)pm−1, if t ∈ SQ.

Proof. From the orthogonality of exponential sums, we get

ND2(a, b) =
1

p2

∑
x,y∈Fq

∑
z1∈Fp

ξz1(Tr
m(x2)+g(y)−1)

p

∑
z2∈Fp

ξ−z2Tr
m(ax+by)

p

= p2m−2 +

1

p2
(A+B),

59

where

A =
∑
z1∈F⋆

p

∑
x,y∈Fq

ξz1(Tr
m(x2)+g(y)−1)

p

B =
∑
z1∈F⋆

p

ξ−z1
p

∑
z2∈F⋆

p

∑
x∈Fq

ξTr
m(z1x2−z2ax)

p

∑
y∈Fq

ξz1g(y)−Trm(z2by)
p .

From Lemma 16, one can observe that A = p#D2 − p2m, which implies that

A = ϵg(−1)mηm0 (−1)pm.

We can compute B with the help of algebraic tools given in Lemmas 1, 2, 3 and 4.

B =
∑
z1∈F⋆

p

ξ−z1
p

∑
z2∈F⋆

p

∑
x∈Fq

ξTr
m(z1x2−z2ax)

p

∑
y∈Fq

ξz1g(y)−Trm(z2by)
p

=
∑
z1∈F⋆

p

ξ−z1
p

∑
z2∈F⋆

p

∑
x∈Fq

ξ
z1(Tr

m(x2− z2
z1

ax))

p

∑
y∈Fq

ξ
z1(g(y)−Trm(

z2
z1

by))

p

=
∑
z1∈F⋆

p

ξ−z1
p

∑
z2∈F⋆

p

∑
x∈Fq

ξz1(Tr
m(x2−z2ax))

p σz1(
∑
y∈Fq

ξg(y)−Trm(z2by)
p)

=
∑
z1∈F⋆

p

ξ−z1
p

∑
z2∈F⋆

p

∑
x∈Fq

ξTr
m(z1x2−z1z2ax))

p σz1(ϵg
√
p∗

m
ξg

⋆(z2b)
p)

=
∑
z1∈F⋆

p

ξ−z1
p

∑
z2∈F⋆

p

G(η)η(z1)ξ
−Trm

(
(−z1z2a)

2

4z1

)
p ϵgη

m
0 (z1)

√
p∗

m
ξz1g

⋆(z2b)
p)

= ϵg(−1)m−1p∗m
∑
z1∈F⋆

p

ξ−z1
p

∑
z2∈F⋆

p

ξ
z1g⋆(z2b)−Trm(

z1z
2
2a

2

4
)

p)

= ϵg(−1)m−1p∗m
∑
z1∈F⋆

p

ξ−z1
p

∑
z2∈F⋆

p

ξ
z1z22(g

⋆(b)−Trm(a
2

4
))

p).

Denote by t = g⋆(b) − Trm(a
2

4
). Remark that t ∈ Fp and it depends on the pairs

(a, b) ∈ (F2
q)

⋆.

• When t = 0, we have B = −ϵg(−1)m−1(p− 1)p∗m.

60

• When t ̸= 0, we have

B = ϵg(−1)m−1p∗m
∑
z1∈F⋆

p

ξ−z1
p (

∑
z2∈Fp

ξ
z1z22(g

⋆(b)−Trm(a
2

4
))

p − 1)

= ϵg(−1)m−1p∗m
∑
z1∈F⋆

p

ξ−z1
p (

√
p∗η0(z1t)− 1)

= ϵg(−1)m−1p∗m

∑
z1∈F⋆

p

η0(−z1)ξ
−z1
p

√
p∗η0(−t) + 1

= ϵg(−1)m−1p∗m (

√
p∗
√
p∗η0(−t) + 1)

= ϵg(−1)m−1p∗m (pη0(t) + 1)

=

 ϵg(−1)m−1p∗m(p+ 1), if η0(t) = 1,

−ϵg(−1)m−1p∗m(p− 1), if η0(t) = −1.

In the second equality, we used the following fact

∑
z2∈Fp

ξ
z1z22t
p = G(η0)η0(z1t) =

√
p∗η0(z1t)

from Lemmas 2 and 3, and in third equality we used Lemma 1.

Hence, we obtain that

ND2(a, b) = p2m−2 + 1
p2
(A+B)

=

 p2m−2 − ϵg(−1)m−1ηm0 (−1)pm−1, if t = 0 or t ∈ NSQ,

p2m−2 + ϵg(−1)m−1ηm0 (−1)pm−1, if t ∈ SQ,

The proof is complete.

We present the parameters of the code CD2 based on D2 in the following theorem.

Theorem 10. Let D2 be defined as in (5.1.4) and g ∈ RF with lg = 2. Then, the

code CD2 of the form (5.1.2) is a 2-weight

• linear [p2m−1 + ϵgp
m−1, 2m] code with the parameters listed in Table 5.3 when

m is odd with p ≡ 3 (mod 4) or m is even,

• linear [p2m−1 − ϵgp
m−1, 2m] code with the parameters listed in Table 5.4 when

m is odd with p ≡ 1 (mod 4).

61

Table 5.3: The Hamming weights of CD2 in Theorem 10 when m is odd with p ≡ 3

(mod 4) or m is even

Hamming weight ω Multiplicity Aω

0 1

(p− 1)p2m−2 p2m − 1− p−1
2
pm−1(pm + ϵg)

(p− 1)p2m−2 + ϵg2p
m−1 p−1

2
pm−1(pm + ϵg)

Table 5.4: The Hamming weights of CD2 in Theorem 10 when m is odd with p ≡ 1

(mod 4)

Hamming weight ω Multiplicity Aω

0 1

(p− 1)p2m−2 p2m − 1− p−1
2
pm−1(pm − ϵg)

(p− 1)p2m−2 − ϵg2p
m−1 p−1

2
pm−1(pm − ϵg)

Proof. The proof follows from Lemmas 16 and 17. The length of the code CD2 is

equal to the size of the defining set D2. The Hamming weight of the zero codeword

is zero, that is, wt(c(0,0)) = 0 when (a, b) = (0, 0). For every (a, b) ∈ F2
q \ {(0, 0)},

the Hamming weight of the nonzero codeword c(a,b) in CD2 is

wt(c(a,b)) = #D2 −ND2(a, b).

When m is odd with p ≡ 3 (mod 4) or m is even,

wt(c(a,b)) =

 (p− 1)p2m−2, if t = 0 or t ∈ NSQ,

(p− 1)p2m−2 + ϵg2p
m−1, if t ∈ SQ.

When m is odd with p ≡ 1 (mod 4),

wt(c(a,b)) =

 (p− 1)p2m−2, if t = 0 or t ∈ NSQ,

(p− 1)p2m−2 − ϵg2p
m−1, if t ∈ SQ.

The weight distribution of this code can be completely determined from Lemma 7

with the help of the Pless power moments, thereby completing the proof.

We provide the following example for the code CD2 given in Theorem 10, which is

verified by MAGMA [3].

Example 2. Let g : F33 → F3 be given as g(x) = Tr3(wx2) ∈ RF , where ϵg = 1 and

w is a primitive element of F33 . Then, CD2 is the 2-weight ternary linear [234, 6, 144]

code over F3 with the polynomial 1 + 494y162 + 234y144.

62

5.4 Two-weight linear codes based on the set D0

In this subsection, to construct linear codes over a finite field Fp, we consider the

following defining set D0 = {(x, y) ∈ (F2
q)

⋆ : Trm(x2) + g(y) = 0} when g ∈ RF .

The following lemma finds the size of the defining set D0.

Lemma 18. Let D0 be defined as in (5.1.4) and let g ∈ RF . Then

#D0 =

 p2m−1 − ϵg(p− 1)pm−1 − 1, if m is even,

p2m−1 + ϵgη0(−1)(p− 1)pm−1 − 1, if m is odd.

Proof. The proof follows from Lemmas 1, 2, 3 and 4. From the orthogonality of

exponential sums, we have

#D0 + 1 = 1
p

∑
x,y∈Fq

∑
z∈Fp

ξz(Tr
m(x2)+g(y))

p

= 1
p

p2m +
∑
z∈F⋆

p

∑
x∈Fq

ξTr
m(zx2)

p

∑
y∈Fq

ξzg(y)p

= p2m−1 + 1

p

∑
z∈F⋆

p

G(η)η(z)σz(Wg(0))

= p2m−1 + 1
p

∑
z∈F⋆

p

(−1)m−1
√
p∗

m
ηm0 (z)ϵgη

m
0 (z)

√
p∗

m

= p2m−1 + ϵg(−1)m−1ηm0 (−1)(p− 1)pm−1.

Hence, the proof is complete.

We need the following lemma to find the Hamming weights of nonzero codewords in

CD0 .

Lemma 19. Let D0 be defined as in (5.1.4) and let g ∈ RF with lg = 2. For

(a, b) ∈ (F2
q)

⋆, we define ND0(a, b) = #{(x, y) ∈ D0 : Trm(ax+ by) = 0}. Then

ND0(a, b) =

 p2m−2 − 1 + ϵg(−1)m−1ηm0 (−1)(p− 1)pm−1, if t = 0,

p2m−2 − 1, if t ̸= 0.

Proof. From the orthogonality of exponential sums, we get

ND0(a, b) + 1 = 1
p2

∑
x,y∈Fq

∑
z1∈Fp

ξz1(Tr
m(x2)+g(y))

p

∑
z2∈Fp

ξ−z2Tr
m(ax+by)

p

= p2m−2 + 1

p2
(A+B),

63

where

A =
∑
z1∈F⋆

p

∑
x,y∈Fq

ξz1(Tr
m(x2)+g(y))

p ,

B =
∑

z1,z2∈F⋆
p

∑
x∈Fq

ξTr
m(z1x2−z2ax)

p

∑
y∈Fq

ξz1g(y)−Trm(z2by)
p .

By Lemma 18, we have A = p(#D0 + 1)− p2m, which implies that

A = ϵg(−1)m−1ηm0 (−1)(p− 1)pm.

We can compute B with the help of algebraic tools given in Lemmas 1, 2, 3 and 4.

B =
∑

z1,z2∈F⋆
p

∑
x∈Fq

ξTr
m(z1x2−z2ax)

p

∑
y∈Fq

ξz1g(y)−Trm(z2by)
p

=
∑

z1,z2∈F⋆
p

∑
x∈Fq

ξ
z1(Tr

m(x2− z2
z1

ax))

p

∑
y∈Fq

ξ
z1(g(y)−Trm(

z2
z1

by))

p

=
∑

z1,z2∈F⋆
p

∑
x∈Fq

ξz1(Tr
m(x2−z2ax))

p σz1(
∑
y∈Fq

ξg(y)−Trm(z2by)
p)

=
∑

z1,z2∈F⋆
p

∑
x∈Fq

ξTr
m(z1x2−z1z2ax))

p σz1(ϵg
√
p∗

m
ξg

⋆(z2b)
p)

=
∑

z1,z2∈F⋆
p

G(η)η(z1)ξ
−Trm

(
(−z1z2a)

2

4z1

)
p ϵgη

m
0 (z1)

√
p∗

m
ξz1g

⋆(z2b)
p)

= ϵg(−1)m−1p∗m
∑

z1,z2∈F⋆
p

ξ
z1g⋆(z2b)−Trm(

z1z
2
2a

2

4
)

p)

= ϵg(−1)m−1p∗m
∑

z1,z2∈F⋆
p

ξ
z1z22(g

⋆(b)−Trm(a
2

4
))

p).

Denote by t = g⋆(b) − Trm(a
2

4
). Remark that t ∈ Fp and it depends on the pairs

(a, b) ∈ (F2
q)

⋆.

• When t = 0, B = ϵg(−1)m−1ηm0 (−1)(p− 1)2pm.

• When t ̸= 0,

B = ϵg(−1)m−1p∗m
∑
z1∈F⋆

p

(
∑
z2∈Fp

ξ
z1z22(g

⋆(b)−Trm(a
2

4
))

p − 1)

= ϵg(−1)m−1p∗m
∑
z1∈F⋆

p

(η0(z1)
√
p∗η0(t)− 1)

= −ϵg(−1)m−1ηm0 (−1)(p− 1)pm,

64

where we used the following fact
∑

z2∈Fp
ξ
z1tz22
p = G(η0)η0(z1t) =

√
p∗η0(z1t)

from Lemmas 3 and 2 in the second equality, and we used Lemma 1 in the third

equality.

Hence, the proof is ended.

We present the parameters of the code CD0 based on D0 in the following theorem.

Theorem 11. Let D0 be defined as in (5.1.4) and g ∈ RF with lg = 2. Then, CD0 is

a 2-weight linear [n, 2m] code over Fp with the parameters listed in Table 5.5, where

n =

 p2m−1 − ϵg(p− 1)pm−1 − 1, if m is odd with p ≡ 3 (mod 4) or m is even,

p2m−1 + ϵg(p− 1)pm−1 − 1, if m is odd with p ≡ 1 (mod 4).

Table 5.5: The Hamming weights of CD0 in Theorem 11
Hamming weight ω Multiplicity Aω

0 1

(p− 1)p2m−2 p2m−1 − 1 + ϵg(−1)m−1ηm0 (−1)(p− 1)pm−1

(p− 1)(p2m−2 + ϵg(−1)m−1ηm0 (−1)pm−1) (p− 1)(p2m−1 − ϵg(−1)m−1ηm0 (−1)pm−1)

Proof. The proof follows from Lemmas 18 and 19. The length of the code CD0 is

equal to the size of the defining set D0. From the definition, the Hamming weight

of the zero codeword is zero, that is, wt(c(0,0)) = 0 when (a, b) = (0, 0). For every

(a, b) ∈ F2
q \ {(0, 0)}, the Hamming weight of the nonzero codeword c(a,b) in CD0 is

wt(c(a,b)) = #D0 −ND0(a, b)

=

 (p− 1)p2m−2, if t = 0,

(p− 1)p2m−2 + ϵg(−1)m−1ηm0 (−1)(p− 1)pm−1, if t ̸= 0.

The weight distribution of the code CD0 can be completely determined from Lemma

7 with the help of the Pless power moments, which completes the proof.

We provide the following example for the code CD0 given in Theorem 11, which is

verified by MAGMA [3].

Example 3. Let g : F32 → F3 be given as g(x) = Tr2(x10) ∈ RF with ϵg = 1. Then,

CD0 is the 2-weight ternary linear [20, 6, 12] code with the polynomial 1 + 20y18 +

60y12.

65

66

CHAPTER 6

CONCLUSION

This chapter provides a summary of the study presented in this thesis and discusses

the need for additional research in this area.

In this thesis, we divided our work into three parts. The first one is about necessary

and sufficient conditions on some families of bivariate APN functions built by Car-

let’s bivariate APN construction. In the second part, we presented our conclusions

about the representation of Dobbertin and Niho power functions and provided rele-

vant experimental data. Then in the third part, we report our study on few-weight

linear codes based on weakly regular bent functions over finite fields.

To give all the information above, prior to the subject, we started with the prelimi-

nary information. Since APN and bent functions are vectorial Boolean functions, we

started by describing vectorial Boolean functions and reporting properties of them.

We gave information about how vectorial Boolean functions are used in block ci-

phers, and then we mentioned about representations of these functions. Then dif-

ferential uniformity and nonlinearity of these functions are provided and after that

related equivalence relations are described. Then the details regarding APN Power

functions and known infinite families of Non-power APN functions are given. And

last part of the preliminary information is about linear codes based on weakly regular

bent functions over finite fields.

For the first part, we described Carlet’s bivariate APN construction in which APN

functions are built by using the simplest Maiorana–McFarland function. Considering

Theorem 4 we gave necessary and sufficient conditions on functions F1, F2 and F3

67

to be APN. Then we dealt with four functions defined in Theorem 8 and we demon-

strated the conditions in Carlets construction for these functions to be APN in special

cases.

In the second part of this thesis, we considered representations of Dobbertin and Niho

APN power functions. We reported our conclusions about this work then we did

some experimentation to represent these APN power functions and gave our related

experimental results on it.

And third part is about the construction of linear codes from cryptographic functions

namely weakly regular bent functions. We presented several linear codes with flexible

parameters by employing weakly regular bent functions.

We note certain limitations in Chapter 5. Addressing these limitations and exploring

the possibility of generating new linear codes through alternative cryptographic func-

tions within the constructions described earlier could be potential avenues for future

research.

As a future work, we aim to construct a new code CDfg
based on the defining set

Dfg = {(x, y) ∈ F2
q : f(x) + g(y) = 1} for given two weakly regular bent functions

f, g ∈ RF .

68

REFERENCES

[1] T. Beth and C. Ding, On almost perfect nonlinear permutations, Proceedings of
Workshop on the Theory and Application of of Cryptographic Techniques, pp.
65–76, 1994.

[2] E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosystems,
Journal of Cryptology, 4(1), pp. 3–72, 1991.

[3] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput., 24(3-4), pp. 235–265, 1997, ISSN 0747-7171.

[4] C. Bracken, E. Byrne, N. Markin, and G. McGuire, New families of quadratic
almost perfect nonlinear trinomials and multinomials, Finite Fields and Their
Applications, 14(3), pp. 703–714, 2008.

[5] C. Bracken, E. Byrne, N. Markin, and G. McGuire, A few more quadratic APN
functions, Cryptography and Communications, 3, pp. 43–53, 2011.

[6] K. Browning, APN polynomials and related codes, Special volume of Journal
of Combinatorics, Information and System Sciences, 34, pp. 135–159, 2009.

[7] L. Budaghyan, Construction and analysis of cryptographic functions, Springer,
2015.

[8] L. Budaghyan, M. Calderini, C. Carlet, R. S. Coulter, and I. Villa, Constructing
apn functions through isotopic shifts, IEEE Transactions on Information Theory,
66(8), pp. 5299–5309, 2020.

[9] L. Budaghyan, M. Calderini, C. Carlet, D. Davidova, and N. S. Kaleyski, On
two fundamental problems on APN power functions, IEEE Transactions on In-
formation Theory, 68(5), pp. 3389–3403, 2022.

[10] L. Budaghyan, M. Calderini, and I. Villa, On relations between CCZ-and EA-
equivalences, Cryptography and Communications, 12(1), pp. 85–100, 2020.

[11] L. Budaghyan and C. Carlet, Classes of quadratic APN trinomials and hex-
anomials and related structures, IEEE Transactions on Information Theory,
54(5), pp. 2354–2357, 2008.

[12] L. Budaghyan, C. Carlet, and G. Leander, A class of quadratic APN binomials
inequivalent to power functions, Cryptology ePrint Archive, 2006.

69

[13] L. Budaghyan, C. Carlet, and G. Leander, Two classes of quadratic APN binomi-
als inequivalent to power functions, IEEE Transactions on Information Theory,
54(9), pp. 4218–4229, 2008.

[14] L. Budaghyan, C. Carlet, and G. Leander, Constructing new APN functions
from known ones, Finite Fields and Their Applications, 15(2), pp. 150–159,
2009.

[15] L. Budaghyan, C. Carlet, and G. Leander, On a construction of quadratic APN
functions, in 2009 IEEE Information Theory Workshop, pp. 374–378, IEEE,
2009.

[16] L. Budaghyan, C. Carlet, and A. Pott, New classes of almost bent and al-
most perfect nonlinear polynomials, IEEE Transactions on Information Theory,
52(3), pp. 1141–1152, 2006.

[17] L. Budaghyan, T. Helleseth, and N. Kaleyski, A new family of APN quadrino-
mials, IEEE Transactions on Information Theory, 66(11), pp. 7081–7087, 2020.

[18] M. Calderini, L. Budaghyan, and C. Carlet, On known constructions of APN and
AB functions and their relation to each other, Rad Hrvatske akademije znanosti
i umjetnosti: Matematičke znanosti, (546=25), pp. 79–105, 2021.

[19] C. Carlet, Relating three nonlinearity parameters of vectorial functions and
building APN functions from bent functions, Designs, Codes and Cryptogra-
phy, 59(1), pp. 89–109, 2011.

[20] C. Carlet, Boolean functions for cryptography and coding theory, Cambridge
University Press, 2021.

[21] C. Carlet, P. Charpin, and V. Zinoviev, Codes, bent functions and permutations
suitable for DES-like cryptosystems, Designs, Codes and Cryptography, 15(2),
pp. 125–156, 1998.

[22] C. Carlet, C. Ding, and J. Yuan, Linear codes from perfect nonlinear mappings
and their secret sharing schemes, IEEE Transactions on Information Theory,
51(6), pp. 2089–2102, 2005.

[23] F. Chabaud and S. Vaudenay, Links between differential and linear cryptanaly-
sis, pp. 356–365, 1995.

[24] Y. Cheng and X. Cao, Linear codes with few weights from weakly regular
plateaued functions, Discrete Mathematics, 344(12), p. 112597, 2021.

[25] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced encryp-
tion standard, vol, 23, pp. 362–366, 2013.

[26] D. Davidova, On properties of bent and almost perfect nonlinear functions,
2021.

70

[27] C. Ding, Linear codes from some 2-designs, IEEE Transactions on information
theory, 61(6), pp. 3265–3275, 2015.

[28] C. Ding, A construction of binary linear codes from boolean functions, Discrete
mathematics, 339(9), pp. 2288–2303, 2016.

[29] C. Ding and H. Niederreiter, Cyclotomic linear codes of order 3, IEEE Transac-
tions on information theory, 53(6), pp. 2274–2277, 2007.

[30] C. Ding and J. Yuan, Covering and secret sharing with linear codes, in Interna-
tional Conference on Discrete Mathematics and Theoretical Computer Science,
pp. 11–25, Springer, 2003.

[31] K. Ding and C. Ding, A class of two-weight and three-weight codes and their ap-
plications in secret sharing, IEEE Transactions on Information Theory, 61(11),
pp. 5835–5842, 2015.

[32] H. Dobbertin, Almost perfect nonlinear power functions on GF(2n): the Niho
case, Information and Computation, 151(1-2), pp. 57–72, 1999.

[33] H. Dobbertin, Almost perfect nonlinear power functions on GF(2n): the Welch
case, IEEE Transactions on Information Theory, 45(4), pp. 1271–1275, 1999.

[34] H. Dobbertin, Almost perfect nonlinear power functions on GF(2n): A new case
for n divisible by 5, Finite Fields and Applications, pp. 113–121, 2001.

[35] H. Dobbertin, Almost perfect nonlinear power functions on GF(2n): a new case
for n divisible by 5, Finite Fields and Applications: Proceedings of The Fifth
International Conference on Finite Fields and Applications F q 5, held at the
University of Augsburg, Germany, August 2–6, 1999, pp. 113–121, 2001.

[36] Y. Edel, G. Kyureghyan, and A. Pott, A new APN function which is not equiva-
lent to a power mapping, IEEE Transactions on Information Theory, 52(2), pp.
744–747, 2006.

[37] R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation
functions (corresp.), IEEE transactions on Information Theory, 14(1), pp. 154–
156, 1968.

[38] F. Göloğlu, Gold-hybrid APN functions, Preprint, 2020.

[39] Z. Heng, D. Li, and F. Liu, Ternary self-orthogonal codes from weakly regular
bent functions and their application in lcd codes, Designs, Codes and Cryptog-
raphy, pp. 1–24, 2023.

[40] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cam-
bridge university press, 2010.

71

[41] H. Janwal and R. Wilsonat, Hyperplane sections of fermat varieties in P3 in char.
2 and some applications to cyclic, 673, p. 180, 1993.

[42] G. Jian, Z. Lin, and R. Feng, Two-weight and three-weight linear codes based
on weil sums, Finite Fields and Their Applications, 57, pp. 92–107, 2019.

[43] T. Kasami, The weight enumerators for several classes of subcodes of the 2nd
order binary Reed-Muller codes, Information and Control, 18(4), pp. 369–394,
1971.

[44] L. R. Knudsen, Truncated and higher order differentials, Fast Software Encryp-
tion: Second International Workshop Leuven, Belgium, December 14–16, 1994
Proceedings 2, pp. 196–211, 1995.

[45] P. V. Kumar, R. A. Scholtz, and L. R. Welch, Generalized bent functions and
their properties, Journal of Combinatorial Theory, Series A, 40(1), pp. 90–107,
1985.

[46] G. Lachaud and J. Wolfmann, The weights of the orthogonals of the extended
quadratic binary Goppa codes, IEEE transactions on information theory, 36(3),
pp. 686–692, 1990.

[47] C. Li, N. Li, T. Helleseth, and C. Ding, The weight distributions of several
classes of cyclic codes from apn monomials, IEEE transactions on information
theory, 60(8), pp. 4710–4721, 2014.

[48] C. Li, Q. Yue, and F.-W. Fu, A construction of several classes of two-weight and
three-weight linear codes, Applicable Algebra in Engineering, Communication
and Computing, 28, pp. 11–30, 2017.

[49] R. Lidl and H. Niederreiter, Finite fields, 20, Cambridge university press, 1997.

[50] S. Mesnager, Linear codes with few weights from weakly regular bent functions
based on a generic construction, Cryptography and Communications, 9, pp. 71–
84, 2017.

[51] S. Mesnager, F. Özbudak, and A. Sınak, Linear codes from weakly regular
plateaued functions and their secret sharing schemes, Designs, Codes and Cryp-
tography, 87(2-3), pp. 463–480, 2019.

[52] S. Mesnager and A. Sınak, Several classes of minimal linear codes with few
weights from weakly regular plateaued functions, IEEE Transactions on Infor-
mation Theory, 66(4), pp. 2296–2310, 2019.

[53] K. Nyberg, Differentially uniform mappings for cryptography, Workshop on the
Theory and Application of of Cryptographic Techniques, pp. 55–64, 1994.

[54] O. S. Rothaus, On “bent” functions, Journal of Combinatorial Theory, Series A,
20(3), pp. 300–305, 1976.

72

[55] A. Sınak, Minimal linear codes from weakly regular plateaued balanced func-
tions, Discrete Mathematics, 344(3), p. 112215, 2021.

[56] A. SINAK, Minimal linear codes with six-weights based on weakly regular
plateaued balanced functions, International Journal of Information Security Sci-
ence, 10(3), pp. 86–98, 2021.

[57] A. Sınak, Construction of minimal linear codes with few weights from weakly
regular plateaued functions., Turkish Journal of Mathematics, 46(3), pp. 953–
972, 2022.

[58] C. Tang, N. Li, Y. Qi, Z. Zhou, and T. Helleseth, Linear codes with two or three
weights from weakly regular bent functions, IEEE Transactions on Information
Theory, 62(3), pp. 1166–1176, 2016.

[59] H. Taniguchi, On some quadratic APN functions, Designs, Codes and Cryptog-
raphy, 87(9), pp. 1973–1983, 2019.

[60] The Sage Developers, SageMath, the Sage Mathematics Software System (Ver-
sion 9.5), 2023, https://www.sagemath.org.

[61] Y. Wu, N. Li, and X. Zeng, Linear codes with few weights from cyclotomic
classes and weakly regular bent functions, Designs, Codes and Cryptography,
88, pp. 1255–1272, 2020.

[62] S. Yoshiara, Equivalences of quadratic APN functions, Journal of Algebraic
Combinatorics, 35(3), pp. 461–475, 2012.

[63] S. Yoshiara, Equivalences of power APN functions with power or quadratic
APN functions, Journal of Algebraic Combinatorics, 44, pp. 561–585, 2016.

[64] X. Zeng, J. Shan, and L. Hu, A triple-error-correcting cyclic code from the gold
and kasami–welch apn power functions, Finite Fields and Their Applications,
18(1), pp. 70–92, 2012.

[65] Y. Zhou and A. Pott, A new family of semifields with 2 parameters, Advances
in Mathematics, 234, pp. 43–60, 2013.

[66] Z. Zhou, N. Li, C. Fan, and T. Helleseth, Linear codes with two or three weights
from quadratic bent functions, Designs, Codes and Cryptography, 81, pp. 283–
295, 2016.

73

74

APPENDIX A

SAGEMATH IMPLEMENTATIONS OF ALGORITHMS IN

THIS STUDY

In this appendix, we present our SageMath [60] script that we implement to find

representations of Dobbertin and Niho functions as the composition of two functions

like xi ◦ x1/j .

75

Figure A.1: Representation of Dobbertin Function by combining a function with
weight 3 and inverse of a function with weight 2

Figure A.2: Representation of Dobbertin Function by combining a function with
weight 4 and inverse of a function with weight 3

76

Figure A.3: Representation of Niho Function by combining a function with weight 2
and inverse of a function with weight 3

Figure A.4: Representation of Niho Function by combining a function with weight 3
and inverse of a function with weight 4

77

78

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Acunalp Erleblebici, İlksen

Nationality: Turkish

EDUCATION

Degree Institution Year of Graduation

M.S. Institute of Applied Mathematics, METU 2007

B.S. Department of Mathematics, METU 2005

High School Karatay Lisesi 2000

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2007-2019 TÜBİTAK Chief Researcher

2019-2021 HAVELSAN Project Monitoring Engineer

2023- TÜBİTAK Consultant Researcher

PUBLICATIONS

International Conference Publications

İ. Acunalp Erleblebici, O. Yayla, A General Version of Carlet’s Construction of

APN Functions, 27th International Conference on Applications of Computer Alge-

bra, 2022, Gebze, Türkiye.

79

İ. Acunalp Erleblebici, A. Sınak, O. Yayla, On the Carlet’s Bivariate APN Construc-

tion and Representations of Dobbertin Power Function, preprint

İ. Acunalp Erleblebici, A. Sınak, O. Yayla, Few-weight linear codes based on weakly

regular bent functions over finite fields, preprint

80

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Motivation
	Contribution
	Organization

	PRELIMINARIES
	Vectorial Boolean Functions
	Vectorial Boolean Functions and Block Ciphers
	Representations of Vectorial Boolean Functions
	Differential Uniformity and Nonlinearity of Vectorial Boolean Functions
	Equivalence Relations on Vectorial Boolean Functions
	EA-equivalence
	CCZ-equivalence
	Cyclotomic equivalence

	APN Power Functions
	Known Infinite Families of Non-power APN Functions

	Cyclotomic Fields
	Linear Codes
	Weakly regular bent functions

	APN Functions Specific to Carlet's Bivariate APN Construction
	Three Cases of APN Functions From Carlet’s Construction
	Biprojective Almost Perfect Nonlinear Functions
	Family f1
	Family f2
	Family f3

	Representations of APN Power Functions
	Dobbertin Power Function's Representations
	Computational Results of Dobbertin Power Function's Representations
	Computational Results of Niho Power Functions Representations

	Linear codes generated from weakly regular bent functions over Fp
	The construction methods of linear codes from functions
	Three-weight linear codes based on the set D1
	Two-weight linear codes based on the set D2
	Two-weight linear codes based on the set D0

	Conclusion
	REFERENCES
	APPENDICES
	SAGEMATH IMPLEMENTATIONS OF ALGORITHMS IN THIS STUDY
	CURRICULUM VITAE

