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submitted by BİLAL OKUMUŞ in partial fulfillment of the requirements for the
degree of Master of Science in Mechanical Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mehmet Ali Sahir Arıkan
Head of Department, Mechanical Engineering

Assist. Prof. Dr. Özgür Uğraş Baran
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ABSTRACT

DEVELOPMENT AND IMPLEMENTATION OF A LOCAL ALGEBRAIC
TRANSITION MODEL IN K-ω-SST FORMULATION

OKUMUŞ, BİLAL

M.S., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. Özgür Uğraş Baran

Co-Supervisor: Assist. Prof. Dr. Onur Baş

August 2023, 72 pages

This study proposes a new correlation-based algebraic transition model using local

variables. Instead of solving an additional transport equation for intermittency, the

model employs an intermittency function that controls the source terms of the tur-

bulence model used. Thus, the new model solves transition problems using much

less computational power compared to one- or two-equation transition models. The

intermittency function of the present model is a more sophisticated modified version

of that in the SA-BCM transition model, and it is coupled with the k-ω-SST turbu-

lence model to eliminate the shortcomings in the SA-BCM model. The present model

is implemented in an in-house CFD solver and calibrated against a series of standard

flat plate experiments. An additional airfoil test case is used to calibrate the parameter

that provides separation correction. The model is tested with remaining flat plate and

airfoil test cases. The validation results show a good agreement with the experiments.

It is shown that the new model provides comparable success with more complicated

transition models. Therefore, the present model provides an alternative means to in-

clude boundary layer transition effects in CFD simulations by reducing the number
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of constants and functions needed compared to that in other transition models.

Keywords: Laminar-to-turbulent Transition, Correlation-based Transition Model, Tur-

bulence Modeling, Algebraic Model, Intermittency Function
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ÖZ

K-ω-SST MODELİ İÇİN YEREL CEBİRSEL TÜRBÜLANSA GEÇİŞ
MODELİ GELİŞTİRİLMESİ VE UYGULANMASI

OKUMUŞ, BİLAL

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Özgür Uğraş Baran

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Onur Baş

Ağustos 2023 , 72 sayfa

Bu çalışmada, yerel değişkenleri kullanan korelasyon tabanlı yeni bir cebirsel türbü-

lansa geçiş modeli sunulmaktadır. Model, kesiklilik için fazladan bir taşınım denk-

lemi çözmek yerine, kullanılan türbülans modelinin üretim terimini kontrol eden

bir kesiklilik fonksiyonundan faydalanmaktadır. Böylece model, bir veya iki denk-

lemli modellere göre çok daha az hesaplama gücü kullanarak problemleri çözmeyi

başarmaktadır. Modelin kesiklilik fonksiyonu, SA-BCM türbülansa geçiş modelin-

deki fonksiyonun oldukça geliştirilip değiştirilmiş bir hâlidir ve SA-BCM modelin-

deki eksiklikleri ortadan kaldırmak için k-ω-SST türbülans modeli ile birleştirilmiş-

tir. Mevcut model, kurum içi geliştirilen bir HAD çözücüsüne eklenip standart düz

levha deneyleri kullanılarak kalibre edilmiştir. Akım ayrışması ihtiva eden geçiş prob-

lemleri içi ek bir parametre de 2 boyutlu kanat deney sonuçları kullanılarak kalibre

edilmiştir. Geliştirilen model diğer düz levha ve kanat deneyleri ile doğrulanmıştır.

Yeni model ile alınan benzetimler sonucu deneylerle uyumlu sonuçlar elde edilmiştir.

Böylece yeni modelin daha karmaşık türbülans geçiş modelleri ile benzer sonuçlar
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verdiği gösterilmiştir. Buna göre, mevcut model, diğer türbülansa geçiş modellerin-

dekine kıyasla ihtiyaç duyulan sabit ve fonksiyonların sayısını azaltarak, türbülansa

geçiş etkilerini HAD benzetimlerine dahil etmek için alternatif bir yol sağlamaktadır.

Anahtar Kelimeler: Türbülansa Geçiş, Korelasyon Tabanlı Geçiş Modeli, Türbülans

Modelleme, Cebirsel Model, Kesiklilik Fonksiyonu
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CHAPTER 1

INTRODUCTION

Boundary layer transition to turbulence is widely encountered in today’s industrial

CFD problems. Its application areas vary from low Reynolds number flows on aerial

vehicles to turbomachinery flows [1]. The complexity of the transition, which has

distinct mechanisms compared to turbulence, makes it difficult to model with a unified

equation. The primary approach in CFD modeling remained to assume the flow is

fully turbulent, neglecting the transition process [2]. DNS is an alternative, but today’s

computational resources are still insufficient for its general industry use. Therefore,

transition-aware model development has been an active research topic for decades

and much progress has been made from stability theory-based methods such as the eN

method [3, 4] to the Local Correlation-Based Transition Modeling (LCTM) concept

[5, 2, 6, 7, 8].

Historically, the earlier method used to model the transitional effects is the eN method

[3, 4]. Although this method gives reasonably good results in predicting natural tran-

sition, it fails when the domain is subjected to high freestream turbulence intensity [8].

Due to high freestream turbulence intensity, the transition mechanism is no longer the

natural transition but becomes the bypass transition. As the linear instability stages

are bypassed, the stability theory-based methods have no capability to predict by-

pass transition. In addition, the eN method requires coupling with a high-resolution

boundary layer code and solving numerous non-local operations that cannot be easily

performed by modern general-purpose CFD codes [8].

Low Reynolds number turbulence models are another method of choice. These mod-

els try to reproduce laminar behavior near the wall by means of damping functions

[9]. However, they suffer from the lack of representing real flow physics and are
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found to be unreliable [6].

A major milestone in transition modeling is the introduction of the intermittency con-

cept in the model equations, based on Emmons’ [10] ideas of the random intermittent

characteristics of turbulence. Emmons [10] proposed a probability distribution func-

tion for turbulence called intermittency factor, γ. This factor takes a value of zero

in the laminar flow regime, while it becomes one when the flow turns completely

turbulent. The values between 0 and 1 are transitional flows that are entirely not lam-

inar or turbulent. Later, Dhawan and Narasimha [11] improved the formulation of

the intermittency factor by using a wide range of experiments and suggested a gener-

alized intermittency function related to turbulent spot production rate and transition

location. Starting from this, Steelant and Dick [12] and, following, Suzen and Huang

[13] developed a transport equation for intermittency to reproduce the intermittency

profile of Dhawan and Narasimha [11]. They also coupled this intermittency equation

with two-equation turbulence models to manipulate turbulence production. Although

promising results were obtained, the implementation and utilization of these models

were not straightforward.

The essential difficulty in intermittency-based methods stems from their need for

non-local information, i.e., information transfer from non-adjacent cells, to evalu-

ate whether the transition criterion is met. The transition location in intermittency-

based models is usually determined through experimental correlations such as those

of Abu-Ghannam and Shaw [14] or Mayle [15]. Correlations provide the transition

momentum thickness Reynolds number Reθt at which the transition occurs, and the

models try to find the location where the local momentum thickness Reynolds number

Reθ exceeds the critical value. That process has the following problematic aspects:

1. Momentum thickness Reynolds number is an integral boundary layer parame-

ter, so taking integrals normal to the walls is required to evaluate it. However,

taking integrals is not an easy task to do in the framework of modern general-

purpose CFD codes using unstructured grids and relying on parallel execution

[8] due to the necessity to implement additional search and integration algo-

rithms for complex geometries [16].

2. Correlations depend on freestream turbulence intensity. Although it does not
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pose a big problem as much as the previous item, a non-local information trans-

fer is again needed. However, if freestream turbulence intensity is not a constant

but a locally calculated variable, a violation of the Galilean-invariance principle

is introduced, as the turbulence intensity depends on the velocity.

To avoid the former drawback, Menter et al. [5] presented a novel approach suggest-

ing that a local scaled parameter, vorticity (or strain rate) Reynolds number Rev [17],

could be used to estimate the momentum thickness Reynolds number Reθ. They pro-

posed an intermittency transport equation whose transition onset function depends

on the proportionality of vorticity Reynolds number Rev and critical momentum

thickness Reynolds number Reθc obtained from correlations. As for the latter draw-

back, they proposed another transport equation to use local freestream parameters in

the correlations. Thus, they overcame the non-information transfer issues, although

the Galielan-invariance problem remained. This complete model, called the γ-R̃eθt

model, was a substantial leap forward in transition modeling as an entirely local for-

mulation was achieved for a correlation-based transition model. Menter et al. [7]

named the modeling framework based on these ideas as Local Correlation-Based

Transition Modeling (LCTM).

The γ-R̃eθt model is validated by different research groups [18] and has shown its

success in general applications [19]. On the other hand, the γ-R̃eθt model is quite

complex and computationally demanding. It involves a series of functions and con-

stants besides the correlations, and two additional transport equations are required to

be solved. These significantly increase the computational cost. Moreover, the cali-

bration way used in the model is not safe as a high number of constants are calibrated

based on the limited test cases.

Baş et al. [20] suggested a pragmatic idea that it is not strictly necessary to have an

additional equation to convect and diffuse the intermittency through the domain. Be-

cause there already exists an equation that has convection and diffusion terms, and it is

the turbulence equation. Starting from this point, they coupled the Spalart-Allmaras

turbulence model [21] with an intermittency function that turns on the production

term of the turbulence equation when the critical momentum thickness Reynolds

number based on experimental correlation is exceeded and, otherwise, turns it off.
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The combined model is called the SA-BC transition model [20, 16], and later with

further improvements, the SA-BCM model [22, 23]. Although the SA-BC model

relied on a very simple idea and its intermittency function had only two controlling

parameters, the model showed promising results compared to higher-order transition

models [24].

Meanwhile, some attempts to simplify the γ-R̃eθt model were made. Coder and

Maughmer [25] suggested a correlation derived using a non-dimensional local pressure-

gradient parameter to eliminate the R̃eθt equation. Later, Menter et al. [2] proposed

the γ model by dropping the R̃eθt equation and adjusting the functions and coef-

ficients. They simplified the correlations in the γ-R̃eθt model by suggesting local

turbulence intensity and pressure gradient formulations. Thus, the use of freestream

velocity in the onset correlation is avoided, and the Galilean-invariance problem is

solved. The additional transport equation for intermittency, however, could not be

dropped until recently. Sandhu and Ghosh [26] performed a sophisticated modifica-

tion on the γ model [2] and combined k and γ equations into one equation called

kγ . Although the approach of Sandhu and Ghosh [26] enables γ equation to be

dropped, all functions in γ equation are included in the k equation. In addition, a

cross-diffusion term is also added to the k equation. On the one hand, γ equation is

disappeared, but on the other, it causes a pretty complex k equation to be solved.

Finally, Menter et al. [27] proposed an algebraic γ model. Although the model seems

to have reduced-order nature and flexible structure, it introduces additional constants

to provide a blending between calibrated values for low and high turbulence intensity.

As a result, free coefficients are included in the model, so the similar problem seen in

the γ-R̃eθt model remained.

The primary motivation behind the present thesis is the question of whether the ideas

of Bas et al. [20] could be applied in the k−ω SST turbulence model [28, 29]. Those

ideas can be summarized as follows:

1. The turbulence model should be enough to transport the intermittency function.

There should be no need for solving additional transport equation or equations.

In other words, the turbulence model manipulated with an algebraic intermit-

tency function should be sufficient to include transitional effects.
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2. The intermittency function should be as simple as possible. The model should

not be too complex and not have too many constants. Otherwise, a proper and

safe calibration cannot be made as the experimental test cases are limited.

The SST turbulence model could be preferable in some types of problems, such as

high-lift configurations, as it gives better results compared to the Spalart-Allmaras

model [30]. The SST model is also desirable, where turbulence decay is important to

be considered. SA-BCM model had some shortcomings, mainly due to the structure

of the selected Spalart-Allmaras turbulence equation. Spalart-Allmaras model does

not transport the turbulence kinetic energy itself but uses a working variable, ν̃, and

relates it with the eddy viscosity. As a result, turbulence intensity decay through the

domain is not calculated and cannot be provided to the correlation in the transition

model. Therefore, the SA-BCM model assumes constant turbulence intensity, which

causes the deviation of the predicted transition location from the actual one, espe-

cially in the presence of high freestream turbulent intensities, and limits the general

applicability of the model [16].

In this thesis, a new transition model is proposed using a local correlation-based alge-

braic intermittency function. The γBC intermittency function of the SA-BCM model

is taken as a baseline. This model is heavily modified without compromising its

simplicity and coupled with the k − ω SST turbulence model to overcome the ma-

jor shortcoming of the SA-BCM model, which is the lack of transportation of the

turbulence intensity along the domain. The limitations in the SA-BCM model are

eliminated without introducing any additional transport equation. This way, accurate

results are obtained with much less computational cost compared with the models in

the literature.

Chapter 2 of this thesis serves as a survey of the literature. The boundary layer tran-

sition mechanisms and the parameters affecting the transition are presented. The

models used to predict the transition are given, and a discussion on some concepts

is made at the end of this chapter. In Chapter 3, how the current transition model

was developed is explained. After the complete formulation of the proposed model

is presented, the calibration procedure is addressed. Chapter 4 summarizes validation

studies and results obtained for experimental test cases. The present model is vali-
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dated using ERCOFTAC T3 series flat plate cases [31], known as standard test cases

for transition modeling, and also on some challenging 2D airfoil test cases. Finally,

Chapter 5 concludes the thesis by evaluating the research outcomes and recommen-

dations for future work.
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CHAPTER 2

TRANSITION TO TURBULENCE

This chapter presents a literature survey on the transition to turbulence in boundary

layer flows and its modeling. The first section describes the main transition modes,

i.e., natural, bypass, and separation-induced, and the important parameters affecting

the transition. In the second section of this chapter, the transition modeling methods

are summarized with an explanation of their advantages and disadvantages. Lastly,

some concepts encountered in transition modeling are discussed to provide a better

understanding of the subject.

2.1 Transition Physics

2.1.1 Transition Modes

2.1.1.1 Natural Transition

Natural transition, or orderly transition, is the primary transition mode seen when

the free-stream turbulence level is relatively low, less than 1% [15]. In Fig. 2.1, the

schematic of the natural transition in a flow over a flat plate is given. The process

starts with the appearance of two-dimensional Tollmien-Schlichting (T-S) waves in

the streamwise direction. These instability waves gradually grow and break down

after passing through a nonlinear stage, causing three-dimensional structures to form

[32]. From this point, turbulent spots emerge [10]. As they expand and propagate

downstream, the laminar portions disappear, and the flow becomes fully turbulent.

The point where the skin friction coefficient deviates from Blasius laminar profile is
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Figure 2.1: The natural transition process. Reproduced from Schlichting [33].

when the turbulent spots are formed [34]. Spots are intermittent turbulent portions,

i.e., outside of them is still considered laminar while the spots encapsulate turbulent

portions. A sketch and an experimental picture of turbulent spots are given in Fig.

2.2.

(a) Growth and propagation of turbulent spots. Re-

produced from Mayle [15].

(b) Experimental picture of a turbulent spot. Repro-

duced from Schlichting [33].

Figure 2.2: Turbulent spot formation
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2.1.1.2 Bypass Transition

The bypass transition is particularly relevant in cases where the flow has significant

free-stream turbulence levels (higher than 1%) or when the boundary layer is sub-

jected to high levels of external disturbances such as surface roughness, or incident

wake flows [15]. Therefore, it is the main dominant mode seen in turbomachinery

cases.

The term bypass comes from the fact that this mechanism bypasses the traditional

natural instability route [35], where small perturbations grow and amplify through

linear and nonlinear stages before leading to turbulence, as depicted in Fig. 2.1. As

the formation and growth of T-S waves are not seen in this mechanism, it is not

possible to make transition predictions using linear stability theory.

Measurements of Mayle and Schulz [36] showed that there is a significant level of

unsteady velocity fluctuations in the pre-transitional flow field under the conditions

of bypass transition. As a result of penetration of high amplitude disturbances, the

laminar boundary layer is distorted, and jet-like streamwise elongated fluctuations,

called streaks or Klebanoff distortions, are seen [18]. Those fluctuations grow down-

stream and cause a much faster breakdown than the natural transition mechanism.

The turbulent spots are formed with the breakdown of the disturbances, and this point

is where the significant deviation of skin friction coefficient from the laminar profile

is seen, similar to natural transition.

A comparison of natural and bypass transition in terms of their effects on skin fric-

tion coefficient is depicted in Fig. 2.3, taken from Durbin [34]. Natural and bypass

transition modes are pretty distinguishable from their pre-transitional behavior. The

gradual growth of a regular oscillating instability wave, seen on the left pane of Fig.

2.3, indicates the natural way of transition. In contrast, the bypass route exhibits

long wavelength and high amplitude pre-transitional fluctuations due to high levels of

disturbances, seen on the right pane of Fig. 2.3.
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Figure 2.3: Left, skin friction beneath gradual growth of a regular oscillating insta-

bility wave. Right, skin friction fluctuations and bypass transition. Solid lines are

instantaneous values, and the dashed line is time-averaged values. Reproduced from

Durbin [34].

2.1.1.3 Separation-Induced Transition

Separation-induced transition is associated with laminar separation bubbles (LSB)

formation. When a laminar flow is subjected to a strong adverse pressure gradient,

the fluid particles having less momentum near the wall separate. The separated veloc-

ity profile is unstable due to its inflection point, and the transition may be triggered

in the shear layer. Then, the turbulent flow may reattach due to enhanced momentum

transfer. In this case, a reversed flow vortex is encapsulated in a region shaped like a

bubble, which is called a laminar separation bubble (LSB) [15]. Within the bubble,

the pressure stays constant until the transition onset. A representative sketch of the

process is given in Fig. 2.4. In the figure, S denotes the point where laminar separa-

tion occurs, T indicates the transition onset point, and R is used where turbulent flow

reattachs. The LSBs are commonly encountered on low Reynolds number airfoils

whose Reynolds numbers vary between 104 and 106 [37].

2.1.2 Transition Parameters

The transition may be affected by many flow and geometric parameters. Broadly

speaking, any factor affecting the laminar boundary layer has an influence on the

transition [15]. However, the effect of some parameters, such as turbulence intensity,
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Figure 2.4: Sketch of a laminar separation bubble (top) and its effect on pressure

coefficient (bottom). Adapted from Horton [38].

pressure gradient, and surface roughness, are more apparent and important than the

others. Those affecting parameters are listed below.

2.1.2.1 Free-stream Turbulence Intensity

The free-stream turbulence intensity (Tu), defined as Eq. 2.1, is a measure of turbu-

lence level in free-stream.

Tu =

√
1

3

(
u′2 + v′2 + w′2

)
U

=

√
2

3
k

U
(2.1)
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where u′2, v′2, w′2 are normal Reynolds stress components, k is turbulent kinetic

energy, and U is free-stream mean flow velocity.

The free-stream turbulence intensity is the most influential parameter for the transi-

tion. The experimental correlations used to predict the transition onset, e.g., the one

of Abu-Ghannam and Shaw [14], are strong functions of turbulence intensity. As

the turbulence intensity increase, the Reynolds number at which the transition be-

gins reduces. High levels of free-stream turbulence intensity are signals for bypass

transition.

2.1.2.2 Pressure Gradient

The effect of the pressure gradient is only significant when the free-stream turbulence

intensity is relatively low [15]. Its effect can be neglected in the presence of high Tu

values, and in fact, that is what is done in the correlation of Mayle [15], which is only

a function of free-stream turbulence intensity. When the laminar flow is subjected

to an adverse pressure gradient, the transition point is shifted upstream due to the

destabilization of the boundary layer. Conversely, the favorable pressure gradient

delays the transition onset.

2.1.2.3 Surface Roughness

Surface roughness causes disturbances in the boundary layer flow, and as a result, the

transition process is shifted upstream. However, three-dimensional surface rough-

nesses sometimes may be exploited to delay the transition [39], so the transition con-

trol is possible by means of surface roughness.

2.2 Transition Prediction

As depicted in the previous section, the transition has distinct mechanisms through

turbulence, and there is no unified theory. Therefore, the transition prediction efforts

mostly rely on modeling. Although simulation methods, DNS and LES, stand as
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appealing alternatives, their demand for computational power is still so huge that their

use in practical engineering purposes is highly limited [40]. Thus, they are excluded

here.

Various models have been proposed over the years, and some of them are more suc-

cessful in some types of flows, while others show their advantage in different types of

flow conditions. A precise categorization of all of these models may not be possible

as some models combine different features that belong to separate modeling concepts.

In this section, only a basic framework is drawn, and a brief selective review of those

modeling concepts is given.

2.2.1 eN Method

One of the oldest and most mature methods to predict the transition is the eN method

[4, 3] based on the traction of growth of disturbance amplitudes within the boundary

layer flow. eN method does not provide flow field solutions in contrast to RANS-type

transition models, but it is just a transition indication method.

This method needs the calculation of the laminar flow field to have laminar velocity

and temperature profiles along the body. Then, the local amplification rate of unstable

waves is computed using local stability equations, and the local rate is integrated

along a streamline. As a result of this integration process, a global amplification

factor N showing the ratio of growth of disturbances from their initial amplitude to a

given streamwise position is obtained. Once the global amplification factor exceeds

a critical value, the transition process begins.

The main problem with the eN method is its inability to account for the transition

caused by nonlinear effects because it is based on linear stability theory. Therefore,

it is only suitable for the prediction of natural transition. In addition, the selection

of the N factor is not universal and needs experimental correlations to be generalized

[41], so eN is accepted as a semi-empirical method.

The common way to utilize the eN method is the coupling with boundary-layer codes

since typical Navier-Stokes solvers do not provide enough accuracy for the flow field

to evaluate the stability equations that the method needs [42]. Although it is quite
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complicated and requires complex infrastructure, the utilization of the eN method

coupled with RANS approaches is possible for specialized purposes [43, 44, 45].

Recently, a novel approach to mimic the methodology of the eN method in a local

RANS-type formulation has been adopted in Amplification Factor Transport (AFT)

model by Coder and Maughmer [46]. They eliminated the calculation of the integral

parameters by suggesting a simplified non-dimensional pressure gradient parameter.

Then, they derived a transport equation for an amplification factor, ñ, based on the

simplified linear stability theory to track the growth of Tollmien-Schlichting waves.

The factor is used to trip the turbulence model once it exceeds the critical N-factor,

similar to the original eN method.

2.2.2 Low Reynolds Number Turbulence Models

The first inherently RANS-type transition prediction method was the use of a low

Reynolds number turbulence model. Low Reynolds number turbulence models were

initially intended to support laminar regions where the local Reynolds number is

dropped. For instance, the very near the wall is always laminar due to the forma-

tion of a viscous sublayer. As turbulence models were derived by making the fully

turbulent assumption, the utilization of wall functions was essential to solve boundary

layer flows. Low Reynolds number turbulence models, first proposed by Jones and

Launder [9], use wall damping functions to eliminate this need. Although they did

not specifically aim to model the transition, their ability to predict the bypass tran-

sition was seen to some extent. This was because of the similarities in the behavior

of the viscous sublayer and developing laminar boundary layer [47]. Zheng et al.

[48] showed that low Reynolds number models predict too early onset of the transi-

tion and do not have enough sensitivity to separation-induced transition if any further

modifications are not performed.

Various low Reynolds number turbulence models that are specifically devoted to pre-

dicting transition were also proposed. Some of them are the one of Wilcox [49] and

the one of Langtry and Sjolander [50]. Although these formulations enable some

improvement, the transition calibration has an interaction between their viscous sub-

layer formulation. Therefore, they suffer from calibration issues [5]. In addition,
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low Reynolds number turbulence models mostly suffer from robustness and accuracy

problems [42], so the reliability of the results that they offer is questionable.

2.2.3 Laminar Kinetic Energy (LKE) Models

These models are based on the estimation of the laminar fluctuations seen in the pre-

transitional boundary layer when the free-stream turbulence intensity is sufficiently

high to make the transition mode bypass type. Those laminar fluctuations have high

amplitude and are distinguishable from turbulent fluctuations. Mayle and Schulz [36]

introduced the idea of solving another kinetic energy equation to estimate these lam-

inar fluctuations, similar to the transport equation for turbulent kinetic energy, and

named the equation as laminar kinetic energy equation. The source terms of their

model needed non-local information. Walters and Leylek [51] introduced a fully lo-

cal formulation in their three equation kL-kT -ε model, and later, Walters and Cokljat

[52] proposed the kL-kT -ω model, an improved version of the previous model.

In simple terms, the models based on laminar kinetic energy initiate the transition

once the fluctuations reach a critical level. They generally involve three transport

equations, but four equation variations also exist, e.g., the model of Pacciani et al.

[53]. A recent interesting model is the algebraic model of Kubacki and Dick [54].

They derived an algebraic transition model for turbomachinery applications combin-

ing the laminar kinetic energy concept with an intermittency function and coupled it

with the k − ω turbulence model [55]. Although it can be considered as a combined

model, the main rationale still relies on the division of fluctuations to express eddy

viscosity as a sum of small-scale and large-scale eddy viscosity. Later, an extended

version of this model to improve the prediction of separation-induced transition was

proposed by Kubacki et al. [56].

2.2.4 Intermittency Models

Intermittency models introduce the intermittency concept to the model equations. The

basic idea is to provide a probability distribution for turbulence by using an intermit-

tency factor, γ, that is zero in the laminar flow regime and converges to one when the

15



flow turns turbulent. A formulation for this factor was first proposed to describe the

formation of turbulent spots by Emmons [10] and further improved by Dhawan and

Narasimha [11] using a wide range of experiments. Dhawan and Narasimha [11] sug-

gested a generalized intermittency function related to turbulent spot production and

transition location. The algebraic intermittency function of Dhawan and Narasimha

[11], given in Eq. 2.2, is appealing because of its simplicity and ability to represent

the intermittency distribution depending on turbulence parameters.

γ =


1− exp

(
−(x− xt) 2nσ

U

)
(x > xt)

0 (x < xt)

(2.2)

where x is the streamwise position, xt is the transition onset point, n is the formation

rate of the turbulent spots, σ is the propagation rate of the turbulent spots, and U is

the free-stream velocity.

Later, Steelant and Dick [12] and, following, Suzen and Huang [13] developed a

transport equation for intermittency to reproduce the intermittency profile of Dhawan

and Narasimha [11]. They also coupled this intermittency equation with two-equation

turbulence models to manipulate turbulence production.

As the intermittency formulation depends on transition location, xt, to be known,

these models search xt throughout the domain by calculating momentum thickness

Reynolds number, Reθ, which is the sign of transition location once it exceeds a

critical value (Reθ > Reθt) as in the eN method. Therefore, two parameters, i.e.,

local momentum thickness Reynolds number Reθ and transition momentum thickness

Reynolds number Reθt, become essential to evaluate intermittency, which both re-

quire non-local information. Momentum thickness Reynolds number Reθ is defined

as in Eq. 2.3.

Reθ =
ρ∞U∞θ

µ∞
(2.3)

θ is the momentum thickness and is given in equation 2.4.
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θ =

∫ ∞
0

ρ

ρ∞

u

U∞

(
1− u

U∞

)
dy (2.4)

In the last two equations, ρ is the density, µ is the dynamic viscosity, u is the local

velocity, and ∞ subscript is used for free-stream values. By definition, taking inte-

grals normal to the walls is necessary to pursue local momentum thickness Reynolds

number Reθ through the domain, and those integrals might even be impossible to

evaluate on the complex shaped geometries or on the domains using unstructured

meshes [6, 8]. As for transition momentum thickness Reynolds number Reθt, it is

calculated using experimental correlations like that of Mayle [15]. Because those

correlations depend on free-stream turbulence intensity, relevant non-local data has

to be provided to the computational cells inside the boundary layer. The main diffi-

culty in correlation-based methods stems from calculating those two parameters.

To overcome issues related to non-local parameters, Menter et al. [6] proposed a novel

approach suggesting to use of a local parameter called vorticity Reynolds number

Rev, introduced by van Driest and Blummer [17], instead of direct calculation of

Reθ. Menter et al. argued [5] maximum point of Rev through the boundary layer is

proportional to local Reθ with an acceptable error. Thus, the relation in Eq. 2.3 is

replaced with Eq. 2.5. In Appendix A, a more detailed explanation and a derivation

for this replacement are given.

Reθ =
max (Rev)

2.193
(2.5)

where

Rev =
ρd2w
µ

Ω (2.6)

In Eq. 2.6, ρ is the density, µ is the dynamic viscosity, Ω is the magnitude of the

vorticity rate, and dw is the minimum wall distance.

As mentioned earlier, the other issue was the need for non-local information for the

correlations to detect the transition onset. In the early one-equation γ model of Menter

et al. [6], the transition onset criterion was provided through a constant user-defined
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critical Reynolds number. This model was subsequently used as a baseline for the γ-

R̃eθt model of Langtry and Menter [8, 5, 7]. In this model, another transport equation

for R̃eθt was added to calculate the transition onset correlation locally. Thus, this new

model became the first correlation-based transition model based on an entirely local

formulation. Menter et al. [7] called this model framework Local Correlation-Based

Transition Modeling (LCTM). The γ-R̃eθt model is validated by different research

groups [18] and has shown its success in general applications [19]. In addition, var-

ious modifications have been introduced to the γ-R̃eθt model of Menter et al. [5]

to improve the model, such as the inclusion of the cross-flow instability effects by

Seyfert and Krumbein [57], Medida and Baeder [58], Grabe and Krumbein [59] and

also by Langtry [60], the inclusion of surface roughness effects by Dassler et al. [61],

and the inclusion of compressibility effects Kaynak [62].

The model of Lodefier et al. [63] is also one of the early intermittency models. The

model uses vorticity Reynolds number Rev as Reθ, which makes the model very

similar to early γ model of Menter et al. [6], but Lodefier et al. [63] use the correlation

of Mayle [15] for transition onset unlike the early γ model of Menter et al. [6] which

needs constant critical value to be defined. Production term in the model of Lodefier

et al. [63] is based on that of Steelant and Dick [12]. Later, Lodefier and Dick [64]

modified this model to support unsteady simulations and separated intermittency into

two equations for near and free-stream intermittency.

Some intermittency-based models have also been derived without external experi-

mental correlations. These models detect the transition using some carefully cali-

brated threshold functions. An example of these models is the one-equation intermit-

tency model proposed by Ge et al. [65], which is an improved version of [66]. Their

model is capable of predicting bypass and separation-induced transition. A recent

example is the one-equation γ model of Juntasaro et al. [67]. This model makes use

of only one sensing function for both natural and bypass transition, and separation is

predicted using the same function previously proposed by Ge et al. [65].

Although some success has been achieved in predicting the transition, the main draw-

back of the aforementioned models is their need for significantly more computational

power than standard turbulence models, as they all require solving at least one ad-
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ditional transport equation. This is even worse for the γ-R̃eθt model as it needs yet

another transport equation for R̃eθt.

Baş et al. [20] proposed a very straightforward algebraic intermittency model. Their

model makes use of the correlation of Menter et al. [5] to detect the transition onset

point by checking the vorticity Reynolds number, Rev, and releases the underlying

turbulence model when the transition is completed. They manipulated only the pro-

duction term of the Spalart-Allmaras turbulence model [21] with the inclusion of their

intermittency function. The combined model is called the SA-BC transition model

[20, 16], and later with further improvements, the SA-BCM model [22, 23]. The SA-

BC model showed good results compared to higher order transition models can be

obtained using only turbulence equation [24].

Meanwhile, the γ-R̃eθt model followed its simplification path. Coder and Maughmer

[25] tried to simplify the γ-R̃eθt model by means of a correlation based on a non-

dimensional local pressure-gradient parameter. Later, Menter et al. [2] proposed

the γ model as a simplification of the γ-R̃eθt model by dropping R̃eθt equation and

adjusting the functions and coefficients. They suggested local turbulence intensity

and pressure gradient formulations to avoid the use of free-stream values in the onset

correlation. A sophisticated modification was performed by Sandhu and Ghosh [26]

to simplify γ model [2] combining k and γ equations into one equation called kγ .

Finally, Menter et al. [27] proposed an algebraic γ model. The prominent feature of

this model is the blending of the model constants between calibrated values for low

and high turbulence intensity.

2.3 On Some Concepts in Transition Modeling

2.3.1 Locality

Locality is a notion that widely came across in transition modeling, so it would be

beneficial to explain it. Locality is associated with the available information inside

each computational cell. The parameters known or possible to be computed using

only present information inside a cell are local. So a local formulation necessitates
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that the information transfer can only be between adjacent cells through fluxes in the

context of the finite volume scheme. In order words, any information transfer from

non-adjacent cells is a non-local operation.

Locality gains importance in modern general-purpose CFD codes, whose grid data

structures are based on unstructured format and parallel execution is a daily routine

[8], as a non-local operation like taking integral generally requires additional search

and integration algorithms [16]. Even though it is possible to build the essential in-

frastructure, particularly in special-purpose codes, non-local operations significantly

increase the computational burden. Therefore, the local formulation is a quite desir-

able feature for modern models.

2.3.2 Turbulence Intensity

As explained in previous sections, turbulence intensity is the primary parameter in

the correlations. However, there exists some ambiguity about the turbulence intensity

term in the correlations, and it constitutes a source of error. The term of free-stream

turbulence intensity (FSTI) is not that clear to use a correlation safely because each

correlation may have its own free-stream definition [68]. For example, the correlation

of Abu-Ghannam and Shaw [14] makes use of an average value taken halfway the

leading edge and the transition onset location. Similarly, in the correlation of Mayle

[15], the same method is thought to be followed though it is not explicitly remarked

[18]. On the other hand, the correlation of Suzen and Huang [13] employs FSTI at

the transition onset location. As for the initial correlation of Menter et al. [5], it is

obtained by fitting a new curve to the correlations in question and experimental data

collected by different groups and gets use of local FSTI in the implementation. The

correlation of Langtry and Menter [8], which is an improved version of that proposed

by Menter et al. [5] to predict natural transition better, uses local FSTI, too.

The transition onset location may also be different than that found using correlations

due to the length scale effects [69]. Dick and Kubacki [18] indicate using a halfway

location (between the leading edge and the transition onset) to evaluate FSTI enables

to improve predictions (as can be expected); however, there may still be some gap be-

tween the transition location and the predictions especially when large length scales
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dominate. They also point out that the use of FSTI at transition onset location will

probably result in predicting the onset too late, and finally, they suggest that the cor-

relation by Langtry and Menter [8] is the most reliable correlation.
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CHAPTER 3

DEVELOPMENT OF THE MODEL

This chapter describes the fundamentals of the model proposed in the current thesis

work. As the proposed model relies on the ideas of the SA-BCM model, an intro-

duction and formulation for the SA-BCM model is given. Model formulation and the

process of development of the model are presented. The last section explains how the

calibration tasks are performed.

3.1 SA-BCM Model

Bas-Cakmakcioglu (BC) model is an algebraic intermittency-based transition model

proposed by Bas et al. [20]. The model is coupled with the Spalart-Allmaras (SA)

turbulence model [21], and only interaction with the turbulence model is by means

of the manipulation of the production term. The main rationale in the SA-BC model

is that a well-defined correlation-based intermittency function would be enough to

control the turbulence model and it is an unnecessary task to set up an equation only

for the transportation of the intermittency through the domain. Starting from this

point, they proposed an intermittency function γBC which is defined in Eq. 3.1.

γBC = 1− e−(
√
Term1+

√
Term2) (3.1)

Term1 in Eq. 3.1 is defined in Eq. 3.2. Physically, it is the term responsible for trig-

gering the transition. Once the momentum thickness Reynolds number, Reθ, exceeds

a critical value provided by Reθc correlation, the transition process is initiated and

γBC starts to grow.
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Term1 =
max(Reθ −Reθc, 0.0)

χ1Reθc
(3.2)

where Reθ given in Eq. 3.3 is calculated using vorticity Reynolds number, Rev, as

suggested by Menter et al. [5].

Reθ =
max (Rev)

2.193
(3.3)

where Rev is defined in Eq. 3.4.

Rev =
ρd2w
µ

Ω (3.4)

Here, ρ stands for density, dw is minimum wall distance, µ is dynamic viscosity, and

Ω represents the magnitude of the vorticity.

Critical momentum thickness Reynolds number, Reθc, is calculated based on the cor-

relation of Menter et al. [5].

Reθc = 803.73 (Tu∞ + 0.6067)−1.027

where Tu∞ is the free-stream turbulence intensity in percent, and it is assumed as

constant.

Term2 in Eq. 3.1 is defined in Eq. 3.5. It is responsible for activating γBC near-wall

regions. The purpose of Term2 in the model is not for triggering but for supporting

the transition process.

Term2 =
max(νBC − χ2), 0.0

χ2

(3.5)

where

νBC =
νt
Udw

(3.6)
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where νt is turbulent viscosity, U is local velocity magnitude, and dw is minimum

wall distance.

As Term2 included an explicit appearance of local velocity magnitude, it violated

the Galilean-invariance principle. Even though it does not pose a big problem if

the reference frame is fixed and the domain does not have any moving walls, the

Galilean-invariance is a desirable feature for any model. Then, the model develop-

ers [22] improved the model and suggested a new Term2 formulation satisfying the

Galilean-invariance. The improved model is called SA-BCM (Spalart-Allmaras Bas-

Cakmakcioglu with Modifications), and the latest Term2 formulation is given in Eq.

3.7.

Term2 = max

(
µt
χ2µ

, 0.0

)
(3.7)

where µt is turbulent eddy viscosity, and µ is the dynamic viscosity.

The model constants χ1 in Eq. 3.2 and χ2 in Eq. 3.7 are 0.002 and 0.02, respectively.

Finally, the model is coupled with the SA turbulence model as in Eq. 3.8. The

only difference in the original model equation is the inclusion of the γBC into the

production term.

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= P̃ν̃ −Dν̃ +

1

σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xj

∂ν̃

∂xj

]
(3.8)

where

P̃ν̃ = γBCPν̃ (3.9)

where Pν̃ is the original production term of the SA model. All other details of the SA

model can be found in Ref. [21].
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3.2 Proposed Formulation

The current algebraic model carries the same spirit as the SA-BC model [20], and

uses an intermittency function φ to manipulate the source terms of the underlying tur-

bulence model to capture transition behavior. φ function enables damping turbulence

kinetic energy production until the transition onset criterion is met and converges to

φ = 1 to release the underlying turbulence model when the transition to turbulence is

completed.

The intermittency function φ of the present model preserves the same form used in

the SA-BC model [16] as given in Eq. 3.10. Basically, the intermittency function

φ consists of two terms, i.e., one term to control the transition onset utilizing the

correlation, and a second term to enable the diffusion of the intermittency near the

wall.

φ = 1− e−(Term1+Term2) (3.10)

Term1 given in Eq. 3.11 is responsible for triggering the transition onset based on

the correlation. It has the same formulation as SA-BCM [22]; however, the critical

momentum thickness Reynolds number Reθc correlation is modified to use the local

turbulence intensity definition suggested by Menter et al. [2].

Term1 = C1

[
max

(
Reθ
Reθc

− 1, 0

)]0.5
(3.11)

Reθ definition given in Eq. 3.12 is again calculated based on Rev proportionality, and

the constant 2.193 is not changed.

Reθ =
max (Rev)

2.193
=

ρd2w Ω

2.193 µ
(3.12)

where ρ is the density, µ is the dynamic viscosity, Ω is the magnitude of the vorticity,

and dw is the minimum wall distance.

Because the SA-BCM is ultimately based on the Spalart-Allmaras turbulence model,

the turbulence kinetic energy k is not calculated, and turbulence intensity decay

through the domain cannot be known. Therefore, the transition onset correlation

in the SA-BCM model has to make use of a constant turbulence intensity assump-
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tion, which limits its generality as the turbulence intensity may experience significant

changes through the domain. The use of the SST model enabling the direct cal-

culation of turbulence intensity overcomes this deficiency. However, another issue

appears: A nonlocal information transfer is needed between the computational cells

since the transition correlations are based on free-stream turbulence intensity. In ad-

dition, the Galilean-invariance principle is violated because the turbulence intensity

definition depends on the velocity. Menter et al. [2], as a remedy, proposed a local tur-

bulence intensity formulation given in Eq. 3.13 that provides a reasonable estimation

for free-stream turbulence intensity.

TuL = max

(
100

√
2k/3

ωdw
, 100

)
(3.13)

Menter et al. [2] proposed a simplified fully local Reθc correlation, given in Eq. 3.14,

using this new turbulence intensity definition. In the present model, the correlation of

Menter et al. [2] is preferred to make the model locally formulated. As that enables

a simple way of fully local formulation in a two-equation k-ω SST framework, given

the issues mentioned above.

Reθc = 100.0 + 1000.0 exp(−TuLFPG) (3.14)

This Reθc correlation includes a pressure gradient correction term, Eq. 3.15, which is

also locally calculated.

FPG =

min (1 + 14.68λθL, 1.5) λθL ≥ 0

min (1− 7.34λθL, 3.0) λθL < 0
(3.15)

Here, the pressure gradient parameter is calculated as follows.

λθL = −7.57 · 10−3
dV

dy

d2w
ν

+ 0.0128 (3.16)

dV

dy
= ∇

(−→n · −→V ) · −→n (3.17)

−→n =
∇(dw)

|∇(dw)|
(3.18)
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Term1 alone cannot enable the diffusion of the intermittency function φ into the

depth of the boundary layer because it converges to very low values close to the wall

due to its dependence on wall distance seen in Eq. 3.12. Another term, Term2, is

needed to complete the model for that purpose. Term2 is again similar to SA-BCM

[22] such that both use turbulent Reynolds numberReT , viscosity ratio. However, the

structure of k − ω based models leads us to use a different function than that in SA-

BCM [22]. Direct use of old formulation induces Term2 to be activated everywhere

in the domain; therefore, Term2 is adjusted to increase more slowly at low turbulent

Reynolds numbers ReT . The new proposed Term2 is given in Eq. 3.19.

Term2 = C2 (ReT )3.5 (3.19)

Here, turbulent Reynolds number ReT is calculated as in Eq. 3.20.

ReT =
ρk

ωµ
(3.20)

where ρ is the density, and µ is the dynamic viscosity.

It should also be noted that the current formulation of Term2 has another impact on

the model. As the destruction term of the k equation in Eq. 3.40 is limited depend-

ing on the value the intermittency function φ takes, there exists a risk that freestream

turbulence intensity decay may be distorted if the intermittency function φ is not com-

pletely turned on at the freestream. Therefore, Term2 also ensures the intermittency

function is active at the freestream.

In the present model, a separation correction term is proposed to improve the behavior

of the underlying turbulence model in case of separation. Since the transition model

eventually relies on the turbulence model used to predict the turbulent flow, it inherits

the shortcomings of the turbulence model. It is known that turbulence kinetic energy

(k) production of the SST model is insufficient to reattach the flow at the correct lo-

cation for separation-induced transition [5, 2]. Preliminary results showed that the

turbulent reattachment location is consistently found downstream unless a correction

term is utilized. The correction method preferred in the current model is to allow the

intermittency function φ to exceed one such that the turbulence production is exag-

gerated to generate the required turbulence kinetic energy k rapidly. The proposed
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separation function φsep given in Eq. 3.21 has a simpler formulation compared to

the separation correction functions of other models [5, 2, 67, 65, 56] in the literature.

It basically consists of two controllers, Fon and Foff , i.e., one for activation of the

correction term and one for turning it off.

φsep = min (FonFoff , Csep) (3.21)

Here, similar to the approach of Langtry and Menter [8], Fon function is simply based

on the ratio of the vorticity Reynolds number Rev to the critical momentum thickness

Reynolds number Reθc. Similarly, the scaling coefficient is set to 3.235, which pro-

vides the shape factor (H) at the separation point. Foff checks whether Term2 is

turned on, and if so, it turns off the correction term. Csep controls how strongly the

separation correction is effective, as the larger Csep,the smaller the separation bubble

size. The separation correction term is kept as straightforward as possible and relies

on the functions that have already been calculated.

Fon = max

((
Rev

3.235Reθc

)
− 1, 0

)
(3.22)

Foff = max (1− Term2, 0) (3.23)

Then, the effective intermittency function φeff used to manipulate the production

term of k equation in Eq. 3.27 is calculated as in Eq. 3.24.

φeff = max (φ, φsep) (3.24)

Finally, the model constants are given as follows.

C1 = 2000, C2 = 0.1, Csep = 2.7 (3.25)

3.2.1 Coupling with SST k-ω Turbulence Model

The present transition model is coupled with the Shear Stress Transport (SST) turbu-

lence model of Menter [28] as given in Eq. (3.26) and (3.27).

ρ
Dk

Dt
= P̃k − D̃k +

∂

∂xj

[
(µ+ µtσk)

∂k

∂xj

]
(3.26)

ρ
Dω

Dt
=
α

νt
Pk −Dw +

∂

∂xj

[
(µ+ µtσω)

∂ω

∂xj

]
+ CDw (3.27)
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where Pk, Dk and CDw are production, destruction and cross-diffusion terms of the

original SST turbulence model, respectively. Those are defined as follows in Eq. 3.28,

3.29, and 3.30.

Pk = min
(
µtS

2, 10Dk

)
(3.28)

Dk = β∗ρωk (3.29)

CDw = 2 (1− F1)
ρσω2
ω

∂k

∂xj

∂ω

∂xj
(3.30)

The turbulent eddy viscosity is computed as in Eq. 3.31.

µt = min

[
ρk

ω
,
a1ρk

SF2

]
(3.31)

The blending functions F1 and F2 are defined in Eq. 3.32 and 3.35.

F1 = tanh
(
arg4

1

)
(3.32)

arg1 = min

[
max

( √
k

β∗ωd
,
500ν

d2ω

)
,

4ρσω2k

CDkωd2

]
(3.33)

CDkω = max

(
2ρσω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−10

)
(3.34)

F2 = tanh
(
arg2

2

)
(3.35)

arg2 = max

(
2

√
k

β∗ωd
,
500ν

d2ω

)
(3.36)

Each constant in the SST model is blended between k-ω and k-ε regions using the

function in Eq. 3.37.

ϕ = F1ϕ1 + (1− F1)ϕ2 (3.37)

Here, ϕ1 represents the constant values in inner k-ω region, and ϕ2 is for values in

outer k-ε region. The model constants are as follows.

30



α1 = 5/9, α2 = 0.44,

σk1 = 0.85, σω1 = 0.5, β1 = 0.075,

σk2 = 1.0, σω2 = 0.856, β2 = 0.0828,

β∗ = 0.09, κ = 0.41, a1 = 0.31

Note that some of the model constants above are corrected according to Menter et al.

[29], and for production term Pk, Kato-Launder correction [70] given in Eq. 3.38 is

used instead of the original Pk in Eq. 3.28.

Pk = µtSΩ (3.38)

where Ω is the magnitude of the vorticity rate, and S is the magnitude of the strain

rate.

Modified production and destruction terms of the turbulent kinetic energy equation

are given in Eq. (3.39) and (3.40).

P̃k = φeffPk (3.39)

D̃k = max(φ, 0.1)Dk (3.40)

The intermittency function φ should also be limited not to drop below the factor of

C3 = 1/20 as explained in the model calibration section. This can simply be per-

formed using max function as follows.

φ = max (φ,C3) (3.41)

The modification of F1 blending function in the SST model is also used to avoid any

issues related to the switch between k-ω to k-ε model near the wall, as suggested by

Menter et al. [5].
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Ry =
ρy
√
k

µ
, F3 = exp

(
− Ry

120

)8

, F1 = max (F1orig, F3) (3.42)

where F1orig is the original blending function of the SST model.

3.2.2 Assessment of Limiters on Turbulence Terms

The model includes two essential limiters. The obvious limiter applied on the de-

struction term of the turbulence kinetic energy equation given in Eq. 3.40 appears in

several models [5, 2, 67]. However, the mentioned studies do not provide the theory

and reasoning for this limiter.

The importance of the other limiter, i.e., the lower limiter for intermittency function

φ in Eq. 3.41, may not immediately be recognized because the intermittency is gen-

erally bounded at its transport equation using a constant coefficient in the equation.

Hence, the approach that these models adopt may be considered as an implicit limiter.

Since we eliminate the intermittency equation, the intermittency should be controlled

by a limiter.

Therefore, it can be said that there is a common base leading the model makers to pre-

serve the same limiter form, although the transition models look different. Revealing

the effects of these limiters on any model would be guiding for the other models that

will benefit from them.

3.2.2.1 Destruction Term Limiter

By the destruction term limiter, it is meant the limiter in the destruction term of turbu-

lence kinetic energy equation. As seen in Eq. 3.40, the destruction term is controlled

depending on the value that the intermittency function takes, not the actual value of

the destruction term. Therefore, one should be careful not to be confused by the

terminology.

Although this limiter seems one of the inevitable ingredients for intermittency models

coupled with two-equation turbulence models, given its inclusion in various models
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[5, 2, 26, 67], its justification had not been addressed until some recent works have

shed light on the use of this limiter.

Sandhu and Ghosh [71] investigated the behavior of their algebraic kγ model [26],

which is a simplified model derived from γ model of Menter et al. [2]. They per-

formed a dynamical system analysis and concluded that the destruction term limiter

enables the model to provide a stable solution for the laminar region. The paper of

Coder and Maughmer [30] also presents valuable clues about the near-wall behavior

of transition models based on the SST turbulence model. They showed that the de-

struction term limiter corrects the log-layer behavior of γ−Reθ model as represented

in Fig. 3.1 though some scaling errors come with it. They gradually increased the

destruction term lower limiter and found a value of 0.1, which is the published value

by Menter et al. [5], enabling proper offset.

Figure 3.1: Turbulent boundary layer non-dimensional velocity distribution of γ −
Reθ model for varying destruction limiter constant. Reproduced from Coder and

Maughmer [30].

3.2.2.2 Intermittency Limiter

Another limiter given in Eq. 3.41 is used to prevent the intermittency function φ from

dropping below some critical level. This limiter implicitly exists in transport equation
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models, too. For example, the intermittency equation in γ − Reθ model of Langtry

and Menter [8] and the γ model of Menter et al. [2] reads as Eq. 3.43

∂ (ργ)

∂t
+
∂ (ρUjγ)

∂xj
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt
σγ

)
∂γ

xj

]
(3.43)

where the destruction term Eγ is defined as in Eq. 3.44

Eγ = ca2ρΩγFturb (ce2γ − 1) (3.44)

Here the constant ce2 determines the lower limit for the intermittency factor. γ model

of Menter et al. [2] and γ − Reθ model of Langtry and Menter [8] do not make

the intermittency γ absolute zero in laminar regions but allow it to have a small value

(1/ce2 where ce2 = 50). Ströer et al. [72] investigated the stability behavior of γ−Reθ
model and pointed out that γ takes a small value but 6= 0 inside the laminar boundary

layer to avoid an unstable solution.

If one sets a too high lower limit for the intermittency function φ, then the transition

onset location moves upstream because of undamped excessive turbulence produc-

tion. Similarly, if this limit is removed, then the stability of the model is affected,

and even if one could get a converged result, the transition would be downstream. If

one removes the destruction limiter, then the turbulence would not build up enough

to recover fully turbulent behavior after the transition, and the stability issues would

cause either oscillation in the solution or divergence. Even if a converged solution is

obtained, forces in a fully turbulent region would not be correctly estimated.

3.3 Model Calibration

The present model includes only four constants needed to be calibrated, i.e.,C1, C2, C3,and

Csep. First of them, C1, appears in Term1, Eq. 3.11, and is actually not significant

as much as the others are. It is set to a high value to ensure Term1 is turned on once

the onset of transition is detected. Since the current model is an abrupt model which

neglects the transition length, the main consideration for Term1 is not how gradual

transition is enabled but whether it is activated or not.

The main functionality of the model is controlled by C2 and C3 constants. In addition

to them, Csep has only a secondary purpose that sets a limit for the correction in
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separated flows. C2 appeared in Term2, Eq. 3.11, determines how strong Term2

is to be effective. C3 in Eq. 3.41 is responsible for setting a lower limit for the

intermittency function φ. C2 and C3 are calibrated against two zero pressure gradient

flat plate cases, and then, Csep is calibrated against an airfoil test case for only one

angle of attack.

An important note here to be stated is that there are only a handful of detailed exper-

imental data. Therefore, the fewer coefficients to be calibrated are favorable so that

the calibration would be made using less experimental data, and the validation studies

can be performed using the rest of the data. In the present model, the test cases are

separated for their purpose of use. Each constant is calibrated against only one test

case, and the model is validated against the other cases.

Initial numerical experiments showed the results for the Schubauer and Klebanoff

(S&K) flat plate case [73] are independent of which C2 value is chosen, so S&K case

is used to determine a convenient interval for C3. The denominator of C3 is decreased

gradually, and the transition onset location is monitored. In Fig. 3.2, different tran-

sition onset locations can be seen for varying C3. The yellow shaded area represents

the interval for gradual increments C3 = 1/100 up to C3 = 1/20. The figure also in-

cludes the results obtained using other models, the SA-BCM model of Cakmakcioglu

et al. [22] and the γ model of Menter et al. [2], for comparison. As the lower limit

of the intermittency function is raised, the transition onset location moves upstream.

However, its behavior suddenly changes after C3 = 1/20 by showing more sensitivity

to the constant chosen, and that is even more obvious comparing to C3 = 1/10, as the

change of the former constant to the latter causes a significant shift in the transition

onset location. Therefore, it seems C3 = 1/20 is a proper limit for a stable transition

onset to avoid unexpected behaviors.

After C3 is fixed, C2 is determined using T3B flat plate case. The same method is

followed, and C2 is gradually decreased as the transition onset location is monitored.

As C2 takes a lower value, the transition onset location moves downstream. C2 = 0.1

is seen as suitable for optimum calibration.

Finally, Csep is calibrated against the E387 low Reynolds number airfoil test case with

laminar separation. We have used only zero angle of attack. The calibration param-
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Figure 3.2: Skin friction coefficients of S&K flat plate case for varying C3 constant

eters are the laminar separation bubble (LSB) size and, thus, drag coefficient cd. In

Fig. 3.3a, the pressure coefficient distribution for the E387 airfoil case is given with

varying Csep values. The major differences appear in the separation bubble region,

and it is hard to notice them in full view, so a close-up detail of the separation bub-

ble region is presented in Fig. 3.3b. As Csep value is the upper limit of exaggerated

intermittency at the end, it determines how strongly the separation correction is to be

effective. The higher the separation correction constant Csep, the smaller the sepa-

ration bubble size. Value of Csep is gradually increased from 2 to 3 in order to find

the optimum point. Fig. 3.3b shows the behavior of the model. Because the effect of

increments between 2 to 2.5 and between 2.6 to 3 is hard to notice for each step, those

regions are presented as shaded areas, gray for the former and yellow for the latter.

In those two regions, a reasonable gradual trend is seen while an interesting jump is

came across during the increment from 2.5 to 2.6. The model is seen to be highly

sensitive the values between 2.5 and 2.6; therefore, it is suggested to avoid Csep to

take a value in this interval.

In Table 3.1, aerodynamic coefficients, i.e., lift coefficient cl and drag coefficient cd,

computed using the current transition model are listed for each Csep value. Percent

error compared to experimental data is also given. As mentioned before, the interval
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(a) Full view (b) Close-up view

Figure 3.3: Pressure coefficient distribution for E387 airfoil case at 0◦AoA with vary-

ing Csep

between 2.5 and 2.6 is avoided, and Csep = 2.7 is considered safer to prefer, given

the equity of results for Csep = 2.6 and Csep = 2.7. Thus, Csep = 2.7 is chosen to be

the optimum point providing reasonable accuracy.

The pressure coefficient distribution for the E387 airfoil case with and without separa-

tion correction is given in Fig. 3.4. Again, the results for the other transition models,

the SA-BCM model of Cakmakcioglu et al. [22] and the γ model of Menter et al.

[2], and also results for fully turbulent SST model are included in the figure for com-

parison. In Table 3.2, the aerodynamic coefficients are also given for all mentioned

models. Current calibration makes the behavior of the transition model closer to the

γ model and provides a better prediction of the bubble size than the SA-BCM model

does.
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Table 3.1: Aerodynamic coefficients of E387 airfoil computed using current transition

model for different Csep values

cl Error (%) cd Error (%)

Experiment 0.352 - 0.0105 -

without Csep 0.394 11.93 0.0115 9.52

Csep = 2.0 0.391 11.08 0.0109 3.81

Csep = 2.1 0.390 10.80 0.0109 3.81

Csep = 2.2 0.390 10.80 0.0108 2.86

Csep = 2.3 0.390 10.80 0.0108 2.86

Csep = 2.4 0.390 10.80 0.0108 2.86

Csep = 2.5 0.390 10.80 0.0107 1.90

Csep = 2.6 0.388 10.23 0.0104 0.95

Csep = 2.7 0.388 10.23 0.0104 0.95

Csep = 2.8 0.387 9.94 0.0103 1.90

Csep = 2.9 0.387 9.94 0.0103 1.90

Csep = 3.0 0.387 9.94 0.0103 1.90

Table 3.2: Aerodynamic coefficients of E387 airfoil computed with different models

cl Error (%) cd Error (%)

Experiment 0.352 - 0.0105 -

Fully Turbulent SST Model 0.375 6.53 0.0138 31.43

SA-BCM Model [22] 0.396 12.50 0.0103 1.90

γ Model of Menter et al. [2] 0.388 10.23 0.0104 0.95

Transition Model with Csep = 2.7 0.388 10.23 0.0104 0.95

Transition Model without Csep 0.394 11.93 0.0115 9.52
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Figure 3.4: Pressure coefficient distribution for E387 airfoil case at 0◦AoA
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CHAPTER 4

VALIDATION

In this chapter, validation studies are given. First of all, the flow solver is introduced,

and the numerical settings are summarized. Then, the results obtained for ERCOF-

TAC T3 series experimental flat plate cases [31] are given. Both zero and non-zero

pressure gradient cases are solved using the proposed model. In addition, results for

the Eppler E387 and the NLF(1)-0416 airfoil cases are also presented.

4.1 Flow Solver

All developments presented in this thesis are performed using an open-source density-

based solver FlowPsi, developed by Luke et al. [74]. FlowPsi is capable of dealing

with general unstructured grids and uses a cell-centered finite-volume formulation. It

offers various flux schemes and allows both explicit and implicit temporal discretiza-

tions. Several Gauss-Seidel-based linear system solvers come with the FlowPsi

package, and techniques such as local-time-stepping, relaxation, and preconditioner

are used to improve the solver’s performance.

All results presented in the thesis are obtained using the following settings. Inviscid

fluxes are discretized using the HLLC scheme of Toro et al. [75], and the MUSCL

reconstruction [76] is used for face-state extrapolations. The line-symmetric Gauss-

Seidel (LSGS) method is used as a linear system solver, and a preconditioning tech-

nique is applied to improve the solver performance at low Mach numbers.

FlowPsi offers several RANS turbulence models, including Spalart-Allmaras (SA)

[21], Realizable k-ε [77], k-ω [55], k-ω SST [28]. However, it provides only three
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equation kT -kL-ω model of Walters and Cokljat [52] among the transition sensitive

models. Therefore, the author implemented the SA-BCM model of Cakmakcioglu et

al. [22] and the γ model of Menter et al. [2] into the solver for comparison purposes.

The current transition model is also implemented into the solver in the scope of thesis

work.

4.2 Flat Plate Test Cases

The present model is validated against the ERCOFTAC (European Research Commu-

nity on Flow, Turbulence, and Combustion) T3 series of experimental flat plate test

cases,[31] which are widely used for validation of any transition model in the liter-

ature due to their well-documented data and their relevance to practical engineering

applications. The experiments conducted on a 1.5-meter-long flat plate provide data

for flows with various free-stream velocities and turbulence intensities. The cases

have a free-stream turbulence intensity varying from 0.9% to 6.0%, mostly around

3%, which makes them host bypass transition. The tunnel’s adjustable top wall is

used to generate a pressure gradient, such that some cases are considered representa-

tive of turbine blade loading with streamwise pressure gradient and high turbulence

intensity. For natural transition mode, the Schubauer and Klebanoff (S&K) experi-

mental flat plate case [73] is an example with a free-stream turbulence intensity of

0.03%, so it is also used to validate the present model. The test cases and inlet con-

ditions at the leading edge of the plate are listed in Table 4.1. Note that these are

conditions at the leading edge of the plate, and the domain inlet boundary condition

is a bit higher than these values. It can be calculated by solving the standard k-ω SST

model turbulence intensity decay formulation given in Eq. 4.1.

TuLE =

√√√√
Tu2inlet ·

(
1 +

3 · ρ · V · x · β · Tu2inlet
2 · µ (µt/µ)

)−β∗
β

(4.1)

where β∗ = −0.0828 and β = 0.09 which are constants of SST model in the free-

stream, ρ is fluid density, µt is eddy viscosity which equals to ρk/ω, x is the stream-

wise distance to the leading edge, V is the mean convective velocity, andLE subscript

is an acronym for leading edge.
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The inlet conditions are defined to match free-stream turbulence intensity decay over

the plate with the experiments. For all flat plate cases, constant air properties are

assumed with a density of ρ = 1.2 kg/m3 and a dynamic viscosity of µ = 1.8× 10−5

Pa.s.

Table 4.1: Test cases and inlet conditions at the leading edge of the plate

Case u [m/s] Tu [%] µt/µ

S&K 50.1 0.03 1

T3A- 19.8 0.93 8

T3A 5.4 3.3 12

T3B 9.4 6 100

T3C2 5.05 3 8

T3C3 3.85 3 5

T3C4 1.348 3 2

T3C5 8.54 3 15

4.2.1 Grid Independence Study

For zero pressure gradient flat plate cases, two rectangle domains are formed. The

no-slip wall is 1.5-meter-long for S&K, T3A, and T3B cases, while a 1.7-meter-long

wall is generated for T3A- case. For both domains, the top boundary is placed 0.5 m

above the flat plate, and the vertical inlet plane is 0.04 m ahead of the leading edge

of the no-slip wall. Slip wall boundary condition is used for the top boundary and

the distance between the inlet plane and the flat plate. For the inlet plane, uniform

velocity inflow condition is defined, and for the outlet plane, 1 atm pressure outlet

boundary condition is imposed. The boundary conditions and domain dimensions are

represented in Fig. 4.1. For T3A- case, the no-slip wall is 1.7-meter-long, which is

the only difference from Fig. 4.1.

The generated grids are sufficiently refined using five levels of grids. Refinement for

the grid with 1.5-meter-long wall is made using the S&K case, as it has the highest

Reynolds number flow among zero pressure gradient flat plate cases. The details for

grids with 1.5-meter-long wall are listed in Table 4.2. Drag coefficient convergence
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Figure 4.1: Boundary conditions for zero pressure gradient flat plate cases

with respect to grid spacing h is shown in Fig. 4.2, and skin friction coefficient

distributions for different level grids are also given in Fig. 4.3.

Table 4.2: 1.5-meter-long zero pressure gradient flat plate grid details

Number of nodes (X× Y) Grid spacing h

Level 1 479× 240 2.95× 10−3

Level 2 359× 160 4.17× 10−3

Level 3 239× 120 5.90× 10−3

Level 4 179× 80 8.36× 10−3

Level 5 119× 60 11.83× 10−3

The details of grids generated with 1.7-meter-long wall are listed in Table 4.3. Drag

coefficient convergence with respect to grid spacing h is shown in Fig. 4.4, and skin

friction coefficient distributions for different level grids are also given in Fig. 4.5.

Table 4.3: 1.7-meter-long zero pressure gradient flat plate grid details

Number of nodes (X× Y) Grid spacing h

Level 1 679× 270 2.34× 10−3

Level 2 509× 180 3.30× 10−3

Level 3 339× 120 4.96× 10−3

Level 4 224× 80 7.47× 10−3

Level 5 119× 60 11.83× 10−3

From Fig. 4.3 and 4.5, it can be noticed that Level 3 grids approximately find the

transition location, and the correct location is estimated after Level 2 grids. The dif-
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Figure 4.2: Drag coefficient convergence for S&K flat plate case

ference between Level 2 and Level 1 grids is the steepness of the transition, which

is the main effect that causes drag coefficients to vary. Therefore, oscillatory conver-

gence in T3A- case, seen in Fig. 4.4, should not pose a serious problem. Recall that

the main concern is to estimate the transition location, and the current model has no

means to estimate transition length that is not aimed to be found out.

The chosen grid for T3A- case has 509×180 nodes in x and y directions, respectively,

and the grid for other zero-pressure flat plate cases has 359×160 nodes. As FlowPsi

is a 3-dimensional solver, one cell depth in z-direction is used. For both grids, other

grid parameters are the same: the first wall-normal node height of 1 × 10−5 m, the

first streamwise grid step of 10−3 m from the leading edge of the plate and the expan-

sion ratio of 1.05 in both wall-normal and streamwise directions. These parameters

guarantee y+ < 1 for all cases.

As for flat plate cases with pressure gradient (T3C series), a domain with 2-meter-long

flat plate is generated. The vertical inlet plane is again at 0.04 m ahead of the leading

edge of the plate. However, the top boundary is not a horizontal line anymore but a

curve to impose the streamwise pressure gradient as in the experiment. For each T3C

case, the coordinates of the upper boundary are defined to match experimental free-
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Figure 4.3: Skin friction coefficient distributions of different level grids for S&K flat

plate case

stream velocity distribution over the plate. The generated upper boundary profiles are

pretty much the same of that Menter et al. [2] used. For all T3C cases, the grid has

568× 140× 2 nodes in x, y, and z directions, respectively, and the first wall-normal

node is placed at 2× 10−5 m, ensuring y+ values lower than unity. Other parameters

are the same with grids used for zero pressure gradient flat plates.

4.2.2 Results for Zero Pressure Gradient Test Cases

The skin friction coefficients of zero pressure gradient flat plate cases (S&K, T3A-,

T3A, T3B) are shown in Fig. 4.6. Results for the SA-BCM model of Cakmakcioglu

et al. [22] and γ model of Menter et al. [2] are also included. The present model

represents the proposed model of this thesis. The results show a good agreement with

the experimental data, though an exception for T3A- may be noted. For all cases,

the transition behavior of the current algebraic model is very close to the γ model of

Menter et al. [2]. It may be desirable as the correlations and base turbulence model

used are eventually the same, even though the transition modeling approaches differ.
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Figure 4.4: Drag coefficient convergence for T3A- flat plate case

4.2.3 Results for Pressure Gradient Test Cases

Fig. 4.7 shows the skin friction coefficients of flat plate cases with pressure gradient

(T3C2, T3C3, T3C4, T3C5). For all cases, the results of the current algebraic model

are competitive with the γ model of Menter et al. [2] despite its reduced order na-

ture. The results demonstrate the present approach is a good alternative to transport

equation models.

An interesting point that may be noticed is the transition length performance of the

current model compared to other algebraic models. Although the current approach

does not aim for any estimation of the transition length at all, it seems the current

model estimates the transition length better than the kγ model of Sandhu and Ghosh

[26] and the algebraic γ model of Menter et al. [27], given the results they presented.

It is known that algebraic models tend to make steeper transitions compared to trans-

port equation models [26]. This phenomenon can be seen in both aforementioned

algebraic models, especially in T3A and T3C5 test cases. The present model makes

a smoother transition in those test cases, as seen in Fig. 4.6 and 4.7, so it may be

favorable in that aspect.
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Figure 4.5: Skin friction coefficient distributions of different level grids for T3A- flat

plate case

4.3 Eppler E387 Airfoil Case

Eppler E387 airfoil is one of the well-known benchmark cases in transition modeling.

McGhee et al. [78] tested the Eppler 387 airfoil in the Langley Low-Turbulence

Pressure Tunnel (LTPT) and provided detailed experimental data over Mach number

range from 0.03 to 0.13 and a chord Reynolds number range from 60,000 to 460,000.

For validation, the flow at M = 0.06 and Re = 200, 000 is solved for different angles

of attacks, and compared with the experimental results.

The computational domain shown in Fig. 4.8 is generated as an O-type grid with

dimensions of 708x181. First cell thickness is set to be 10−5 units to ensure y+ < 1

over the surface, and the cell sizes are expanded with a ratio of 1.075 through the

far field. The boundary conditions are set to match experimental conditions at M =

0.06, Re = 200, 000, and Pt = 15 psi. Inlet conditions for turbulence variables are

determined using Tu = 0.09% and µt/µ = 12.
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(a) S&K (b) T3A-

(c) T3A (d) T3B

Figure 4.6: Skin friction coefficients for zero pressure gradient flat plate cases

Figure 4.9: Flow map on the suction side for Eppler E387 airfoil
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(a) T3C2 (b) T3C3

(c) T3C4 (d) T3C5

Figure 4.7: Skin friction coefficients for variable pressure gradient flat plate cases

The flow map on the suction surface is presented in Fig. 4.9. The current transition

model finds laminar separation bubble sizes consistent with the experimental data.

Although the results obtained using the γ model and SA-BCM are similar, the present

model provides a better estimation of turbulent reattachment. An exception at the 8-

degree angle of attack may be noticed as the experiments show the flow is attached

and the transition mode is through the natural transition. However, the present model

still predicts a separation bubble. A similar problem is observed in the γ model and

other transition models by Menter et al. [27], too. Interestingly, SA-BCM finds the

correct transition mode at 8-degree angle of attack and shows that the flow does not

separate. However, SA-BCM again estimates a natural transition at 8.5-degree angle

of attack in contrast to the experimental results.
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(a) O-grid (b) Grid zoomed in

Figure 4.8: Computational domain for Eppler E387

(a) Lift coefficient (b) Drag coefficient

Figure 4.10: Aerodynamic coefficients versus angle of attack graphs for Eppler E387

airfoil

In Fig. 4.10, lift and drag coefficients versus angle of attack are given. The present

model predicts the maximum lift coefficient better than the fully turbulent SST model

and the SA-BCM model. Results are almost identical to the γ model except at the

region between 10 and 15 angles of attack, where the γ model estimates the lift coffi-

cient more accurate. The main advantage of the present model compared to the fully

turbulent SST model appears in the prediction of the drag coefficient, as it takes into

account laminar portions of flow and the presence of the separation bubbles. While

the other transition models give similar results, the current model shows slightly bet-

ter behavior than theirs. Fig. 4.11 shows the lift-drag polar. The present model

accurately predicts the drag bucket and clearly outperforms the fully turbulent SST

model. The behaviors of the current model and the γ model are very close, while the
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SA-BCM model significantly deviates after the maximum lift point.

Figure 4.11: Lift-drag polar curves for Eppler E387 airfoil

4.4 NLF(1)-0416 Airfoil Case

The Natural Laminar Flow NLF(1)-0416 airfoil is an airfoil designed for general

aviation applications. This airfoil was tested at NASA Langley Research Center,

and the experimental results were reported by Somers [79]. The experimental flow

conditions for the validation are M = 0.1 and Re = 4, 000, 000.

(a) O-grid (b) Grid zoomed in

Figure 4.12: Computational domain for NLF(1)-0416
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An O-type grid is generated for the computational domain shown in Fig. 4.12. Each

surface of the airfoil have 500 points and the grid is expanded 164 points with an

expansion ration of 1.1 through the far field. The first cell thickness is set to be

3.5 × 10−6 units considering a y+ < 1 criterion over the surface. The boundary

conditions are set to match experimental conditions. Inlet conditions for turbulence

variables are determined using Tu = 1% and µt/µ = 90, the values which resulted

in approximately 0.1% turbulence intensity near the leading edge of the airfoil.

(a) Lift coefficient versus angle of attack (b) Lift-drag polar curve

Figure 4.13: Aerodynamic coefficients for NLF(1)-0416 airfoil

Fig. 4.13 gives the lift coefficient versus the angle of attack graph and lift-drag polar.

The present model estimates the drag bucket quite well and better than fully turbulent

SST model. Similar to Eppler E387 case, the lift coefficient is overpredicted as the

angle of attack is increased. However, the improvement in drag coefficient predictions

balances this behavior. An interesting point can be noticed and noted here that the

behavior in negative angles of attack is simply the opposite of the case seen in positive

angles. As far as the negative angles of attack are concerned, the drag coefficient is

underpredicted, while the lift coefficient estimations very closely fit the experimental

data. After all, although some overpredictions and underpredictions are seen, the

error band is narrow.
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CHAPTER 5

CONCLUSION

In this thesis, a new correlation-based transition model is proposed. The model em-

ploys an algebraic intermittency function that controls the source terms of the under-

lying turbulence model and entirely relies on local variables. The proposed model is

developed based on the ideas of Baş et al. [20] that the transition can be modeled us-

ing a proper algebraic intermittency function without any need for solving additional

transport equation or equations.

The intermittency function used in the present model is a heavily modified version

of that in the SA-BCM model [20, 22], and it is coupled with the k − ω SST turbu-

lence model [28, 29] to remedy the shortcomings of the SA-BCM model, particularly

the lack of the calculation of the turbulence intensity decay along the domain. The

present model preserves the main form of the SA-BCM intermittency function, i.e.,

the dependency on only two terms, Term1 and Term2. The former term, Term1,

depends on the correlation and starts the transition onset. The latter term, Term2,

is responsible for diffusing the turbulent flow into the depth of the boundary layer.

However, the formulations are not the same of the SA-BCM model. Reθc correlation

in Term1 is replaced with the one suggested by Menter et al. [2] to use local tur-

bulence intensity definition. Term2 is similar to that in the SA-BCM model, but its

form is changed in the present model to avoid a fully turbulent solution.

Some modifications are made to enable a robust coupling with k-ω SST model. The

destruction term of the turbulent kinetic energy equation is limited depending on the

value that the intermittency function takes. In addition, the intermittency function

is forced not to drop below a small minimum value to guarantee the stability and

reliability of the model. Assessment of these limiters is also given in the thesis.
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A new separation correction term is proposed to improve separation-induced transi-

tion predictions. This correction compensates the insufficient turbulence production

of k-ω SST model to reattach the flow in case of separation. The prominent feature

of the proposed correction is that it does not introduce any new functions but relies

on the already calculated terms. Therefore, it does not impose a substantial burden

on the model.

One of the objectives of the present model is to keep it as simple as possible. This

concern is mainly because of avoiding the use of too many cases to make a proper

calibration. As the detailed experimental data is scarce, having fewer coefficients

would be better. In the development of the model, it is strictly avoided to calibrate a

parameter by using more than one case. In other words, each parameter is calibrated

against one case, and the model is validated against the other test cases. The model

has only four parameters that need to be calibrated, and the calibration procedure is

explained in the related section.

The present model is implemented in an open-source flow solver and validated using

well-known ERCOFTAC flat plate cases. The results show a good agreement with

the experimental data in both cases with zero pressure gradient and with non-zero

pressure gradient. In addition, an low Reynolds number airfoil case, Eppler E387,

and a natural laminar flow airfoil, NLF(1)-0416, are used for the validation, and the

model gives very promising results by accurately predicting the drag bucket and the

separation bubble length.

1-equation γ model [2] and algebraic SA-BCM model are also implemented for com-

parison reasons. The results obtained from these models are given in the correspond-

ing figures. Overall, the present model gives results close to the γ model and compet-

itive compared to the SA-BCM model.

The findings of this thesis demonstrate that the present model is a promising alterna-

tive for capturing boundary layer transition effects in daily industrial CFD problems.

The model significantly reduces the number of constants and functions required com-

pared to existing one- or two-equation transition models. The model’s ability to pro-

vide reasonably accurate results with reduced computational cost makes it a valuable

means for engineers and researchers seeking to capture complex flow phenomena
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without compromising accuracy or computational efficiency.

The model proposed in the thesis can capture different transition modes, i.e., natural,

bypass, and separation-induced. For future work, its capabilities can be extended to

handle diverse transitional flows by involving the effects of cross-flow instabilities

and compressibility. In addition, current correlations only provide the effects of tur-

bulence intensity and pressure gradient to the model. Although these are the main

parameters affecting the transition and sufficient in most cases, it would be appeal-

ing to include the surface roughness effects. This thesis does not present any three-

dimensional application, which may be seen as a deficiency. Future work involves

exploring the applications of a wide range of challenging three-dimensional cases.

It should be remembered that the current approach relies on correlations to predict the

transition, and the limits of its ability will always be drawn by the correctness of the

correlations. As the parameters affecting the transition are more precisely taken into

account by the correlations, the error sources will be reduced. Therefore, one side of

the modeling will always depend on the realization of more accurate experiments in

the future.
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APPENDIX A

Reθ PREDICTION USING LOCAL VARIABLES

Using vorticity (or shear) Reynolds number Rev as a sign of transition is the major

breakthrough in the development of intermittency based models. By this way, non-

local operations to calculate a boundary layer parameter are avoided, and fully local

formulations compatible with modern CFD techniques are made possible. Two dif-

ferent but related ways may be shown to support this relation. First one is based on

the findings of Van Driest and Blumer [17] that breakdown of a laminar boundary

layer is related to the high vorticity (shear) regions sufficiently away from the wall

viscous damping. Langtry and Sjolander [50] showed that the maximum value of the

laminar fluctuations are in great agreement with the maximum value of the vortic-

ity Reynolds number Rev, and those two parameters develop by showing almost the

same profiles along the boundary layer as represented in Fig. A.1. Therefore, Langtry

and Sjolander [50] came to a conclusion that local vorticity Reynolds number can be

used as a sign of amplification of the disturbances in a laminar boundary layer. Then,

they developed a low Reynolds number model that controls the transition onset using

vorticity Reynolds number.

Second way to understand the relation between Reθ and Rev may be provided using

boundary layer theory. Menter et al. [6] used Rev = Sy2/ν in non-dimensional

Rev/(2.07Reθc) ratio as an indicator of transition onset in their early one equation

γ transition model, but the detailed derivations were not given in the article, just

giving reference to Wilcox [80] and saying that it is a direct result of the Blasius

boundary layer solution. The solution given by Wilcox [80] is somehow hard to

follow, so another paper will be presented here. Lodefier and Dick [81] analyzed the

aforementioned parameter of Menter et al. [6], and provided a clear derivation based
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Figure A.1: Laminar fluctuations and local vorticity Reynolds number variations per-

pendicular to the wall. Reproduced from Langtry and Sjolander [50].

on Pohlhausen laminar boundary layer profiles.

Following derivation is taken from Lodefier and Dick [81].

Starting with

u

U∞
= (2η − 2η3 + η4) + λ(2η − 6η2 + 6η3 − 2η4) (A.1)

where η = y/δ, δ boundary layer thickness, λ pressure gradient parameter.
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S =
∂u

∂y
=
U∞
δ

∂
(

u
U∞

)
∂η

(A.2)

Sy2

ν
=
U∞δ

ν

[
2− 6η2 + 4η3 + λ

(
2− 12η + 18η2 − 6η3

)]
η2 (A.3)

Boundary conditions for Sy2

ν
is zero at the wall (η = 0) and freestream (η = 1). Then,

in the boundary layer, it becomes maximum when

η =
−1 + 8λ−

√
21− 36λ+ 24λ2

20λ− 10
(A.4)

Inserting (A.4) into (A.3) gives

(
Sy2

ν

)
max

=
U∞δ

ν
f1(λ)

= Reθ
δ

θ
f1(λ) (A.5)

where θ is the momentum thickness.

Based on (A.1), they find

δ

θ
=

315

37− 4λ− 5λ2
(A.6)

Then, (A.5) becomes

(
Sy2

ν

)
max

Reθ
= f ∗1 (λ) (A.7)

Also

K =
ν

U2
∞

dU∞
dx

= Re−2θ
θ2

ν

(
− 1

ρU∞

dp

dx

)
(A.8)

Near the wall
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dp

dx
=

(
∂τ

∂y

)
0

= µ

(
∂2u

∂2y

)
0

= µ

(
U∞
δ2

12λ

)
(A.9)

Combining (A.8) and (A.9)

K (Reθ)
2 =

(
θ

δ

)2

12λ = f2(λ) (A.10)

Numerical fit of (A.7) and (A.10) results in

(
Sy2

ν

)
max

Reθ
= 2.2− 20

3
K (Reθ)

2 (A.11)

They justify K (Reθ)
2 term is negligible small, and then finally

(
Sy2

2.2ν

)
max

= Reθ (A.12)

Later, the relation between Rev and Reθ was shown by Menter et al. [5] using Fig.

A.2 and Fig. A.3. In addition to the equity of scaled (Rev)max and Reθ, the relative

error between those is less than 10% for moderate pressure gradients. So, using Rev

instead of Reθ provides an important tool in transition modeling.

Figure A.2: Scaled vorticity Reynolds

numberRev profile in a Blasius bound-

ary layer. Reproduced from Menter et

al. [5].

Figure A.3: Relative error between Rev

and Reθ as a function of boundary

layer shape factor H . Reproduced from

Menter et. al. [5].
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