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ABSTRACT

A NEW EFFICIENT TMVP ALGORITHM AND AN APPLICATION FOR
POST-QUANTUM CRYPTOGRAPHY

GÖKCE, Anıl Burak
M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Oğuz YAYLA

September 2023, 49 pages

With the advancements in quantum computing, traditional cryptography is consid-
ered to have little life in the future. That is why NIST initiated a Post-quantum
cryptography-related project in order to standardize quantum-secure cryptography.
With the latest report on this project, the dominating quantum-secure problems ap-
pear to stem from lattice structures. Thus, efficient implementation techniques on
multiplications of lattice elements, which is the bottleneck of lattice-based cryptog-
raphy, emerged as an important topic. In this thesis, we suggest a new 5-way split
TMVP algorithm and its application to lattice multiplications with an implementa-
tion of the lattice-based algorithm NTRU KEM. The results are promising, showing
up to 34%, 35%, and 157% speed-up against Toom4-Karatsuba implementation in
key generation, encapsulation, and decapsulation, respectively.

Keywords: Post-Quantum Cryptography, TMVP, Polynomial Multiplication, NTRU
KEM, Lattice-based Cryptography
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ÖZ

YENİ VE VERİMLİ BİR TMVP ALGORTİTMASI VE KUANTUM ERTESİ
KRİPTOGRAFİYE BİR UYGULAMASI

GÖKCE, Anıl Burak
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Oğuz YAYLA

Eylül 2023, 49 sayfa

Kuantum bilgisayarlarının gelişimiyle birlikte, geleneksel kriptografinin gelecekte az
bir zamanı kaldığı düşünülmektedir. Bu nedenle, NIST, kuantum ertesi kriptografiyle
ilgili bir proje başlatarak kuantum-güvenli kriptografinin standardizasyonunu hedef-
lemiştir. Bu projenin en son raporuna göre, egemen kuantum-güvenli problemlerin
kafes yapılarından kaynaklandığı görülmektedir. Dolayısıyla, kafes tabanlı kriptog-
rafinin en çok kaynağa ihtiyaç duyan konusu olan polinom çarpımlarının verimli uy-
gulama teknikleri önemli bir konu olarak ortaya çıkmıştır. Bu tezde, yeni bir 5-yollu
bölünmüş TMVP algoritması ve bu algoritmanın kafes tabanlı NTRU KEM’e uy-
gulanmasını öneriyoruz. Sonuçlar Toom4-Karatsuba metoduna kıyasla anahtar oluş-
turma, kapsülleme ve dekapsülleme işlemlerinde sırasıyla 34%, 35%, ve 157% hız
artışı göstermektedir.

Anahtar Kelimeler: Kuantum Ertesi Kriptografi, TMVP, Polinom Çarpması, NTRU
KEM, Kafes Tabanlı Kriptografi
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CHAPTER 1

INTRODUCTION

Cryptography is the study of hidden writing, which enables humankind to share confi-

dential data using insecure channels since ancient Egypt. On the other hand, requiring

strong computational power, the real spike in this area happened after the invention

of computers. Nowadays, encryption and decryption are not the only cryptographic

algorithms. Digital signatures algorithms, key encapsulation mechanisms, symmet-

ric and asymmetric encryption algorithms, and hash functions are some examples of

cryptographic algorithms realized with the help of computers.

Public key cryptography is the branch of cryptography that includes cryptographic

systems with public/private key pairs. As the names go, the public key is shared with

everybody, while the private key is kept secret by the generator of the keys. Using this

branch enables us to authenticate entities and/or share secret data with them. Diffie-

Hellman Key Exchange [22], Digital Signature Algorithm [30], and RSA Encryption

Scheme [42] are some examples of the widely known public key cryptosystems.

Besides the creative ways to use cryptography, it is crucial how efficiently we can use

these ways. In cryptography, the algorithm’s implementation platform determines the

efficiency metrics. For example, the software implementations consider the efficiency

of time consumed, while the hardware implementations value the efficiency of the

area used. Therefore, research is constantly going on in this area. Some examples

include [9], [13], and [14].
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1.1 The Arrival of Quantum Computers

Quantum physics and, consequently, quantum computers have been researched for

more than half a century. The first concrete examples of quantum circuits and com-

puters were made real in the late 80s [28] and mid-90s [18], respectively. These

scientific improvements allowed cryptanalysts to use quantum computers as a tool.

Following this idea, Peter Shor invented an algorithm that changed the course of

cryptography altogether [44]. With this algorithm, Shor described a way to break

widely used public key encryption algorithms in a relatively short span of time in the

presence of a quantum computer.

Though a quantum computer that can break the algorithms has not been created yet, it

is expected to arrive soon. Therefore, researchers started working on different kinds of

algorithms that are also resistant to such attacks that exploit the existence of quantum

computers. For this aim, one of the promising areas is lattice-based cryptography.

Scientists believe that cryptographic algorithms based on lattice problems will be used

commonly in the era of quantum computers because of their strength against quantum

attacks. As a result, efficient implementations of these algorithms have become an

important research area.

1.2 NIST PQC Standardization Project

NIST initiated a standardization project for post-quantum cryptographic algorithms

in 2017 [17]. This project aims to standardize the key encapsulation mechanisms

and the digital signature algorithms that are going to be used in the era of quantum

computers. As of the third round of this project, the competing candidates were as

follows:

2



Table 1.1: Candidates making it up to round 3 of NIST PQC Standardization Project
[36]

Key Encapsulation Mechanisms Digital Signature Algorithms
Classic McEliece Crystals-Dilithium
Crystals-Kyber FALCON

NTRU Rainbow
Saber GeMSS
BIKE Picnic

FrodoKEM Sphincs+
HQC

NTRU Prime
SIKE

In 2022, the round 3 results were published by NIST [4]. In the KEM part of the

project, Crystals-Kyber is chosen to be standardized. Besides that, BIKE, Classic

McEliece, HQC, and SIKE are promoted to the 4th round of the project for further

consideration. The remaining KEMs are not considered for standardization anymore.

In the signature part of the project, Crystals-Dilithium, Falcon, and Sphincs+ are

chosen to be standardized. The algorithm selection process of this part is finished at

this point, and the rest of the candidate algorithms are excluded.

1.3 Efficiency of Lattice-based Algorithms

One of the most important applications of cryptography is in the communication area,

especially communication over the Internet. Today, we live in the information age,

and the exchange of information is extremely fast. In this high-speed communication,

it becomes important that the security measures taken are not too slow. In other words,

the efficiency of cryptographic algorithms is what enables us to communicate fast and

securely. Therefore, the efficiency of cryptographic algorithms takes an important

place in the academy. In order to contribute to this area, we look into more efficient

implementations of lattice-based algorithms in this thesis.

Most of the time, the efficiency bottleneck of cryptographic algorithms appears to be

the multiplication operation. Therefore, researchers focus on the multiplication of

mathematical objects (such as integers [46], floating points [21], polynomials [12],

3



and field elements[13, 14]) when they work on the efficiency of cryptographic al-

gorithms. When it comes to lattice-based algorithms, the issue is similar. On the

cryptosystems that are based on lattices, the multiplication is performed in a ring of

the form Rq = Zq[x]/(x
n ± 1). Thus, from now on, we will focus on the multiplica-

tion in Rq. Before proceeding, it should be noted that a multiplication operation in Rq

is actually the same as a cyclic (or nega-cyclic, depending on the dividing polynomial

term of Rq) convolution operation.

1.4 Literature Review of Multiplication in Rq

The efficiency of multiplication in Rq depends on the multiplication algorithm used.

Before presenting some commonly used multiplication algorithms, we can divide

these algorithms into three categories. These categories are NTT, polynomial multi-

plication algorithms followed by polynomial reduction, and Toeplitz Matrix-Vector

Product.

As the first category, the NTT algorithm exists [40]. This algorithm is derived from

FFT to be applied to finite rings. Note that NTT is applicable only because of the con-

volutional nature of multiplication in Rq. NTT has the lowest asymptotic complexity

among all the possible multiplication algorithms. On the other hand, some require-

ments need to be satisfied by the underlying mathematical structure to employ NTT.

This limits the use cases of NTT and directs researchers to design new multiplication

algorithms. Some examples incorporating NTT for multiplication in Rq can be found

in [11, 33, 43].

The second category is to employ regular polynomial multiplication algorithms. These

algorithms first multiply the polynomials using efficient polynomial multiplication

methods and then perform a modular polynomial reduction in order to compute the

resulting element of Rq. The improvement of such algorithms started with Karat-

suba Algorithm [29]. Karatsuba is a 2-way split algorithm, i.e., the sub-polynomials

that are to be multiplied are half the size of the original polynomials. After this im-

provement, the generalization is proposed by [46], which defines the ways to generate

3-way, 4-way, etc. splitting algorithms.
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The third category for multiplication in Rq is TMVP. In fact, TMVP is a matrix-

vector product algorithm. Additionally, TMVP can be used to compute convolutions.

Therefore, similar to NTT, TMVP can be applied in order to multiply polynomials in

finite polynomial rings. The history of using TMVP for multiplication started with

Fan and Hasan employing TMVP to implement multiplication in GF (2n) in 2007

[25]. Then, in 2013, Cenk et al. integrated this technique into the multiplication

of binary polynomials [13]. In 2016 and 2018, Ali and Cenk implemented faster

modular integer multiplication for prime modulus p = 2521 − 1, which is employed

in very important curves such as P-521 and E-521 [5, 6]. In 2018, Taşkın and Cenk

integrated TMVP for modular integer multiplication of Curve25519 [45]. Finally,

Paksoy and Cenk incorporated TMVP in order to implement multiplication in Rq in

2020 [37].

1.5 Our Contribution

In this thesis, we focus on the employment of TMVP for multiplication in Rq. More-

over, we offer a new multiplication algorithm to be used in Rq. The proposed algo-

rithm is to employ a 5-way Toeplitz-matrix Vector Product. The formulae for this

algorithm are derived by benefiting from the papers [15], [47], and [49]. Using this

algorithm for the multiplication of the elements of Rq in lattice-based algorithms en-

ables us to build more efficient implementations of LBC algorithms.

1.6 Outline

After the introduction, the basics related to the main topic of this thesis are given

in chapter 2. Then, the new 5-way TMVP algorithm formulae and analysis, and an

application of this algorithm are given in the chapters 3 and 4, respectively. Finally,

the thesis concludes in chapter 5.
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CHAPTER 2

BACKGROUND

In this chapter, the preliminary knowledge of lattice-based cryptography and lattice-

based algorithms is given. We start from the ground up, by giving the basic definitions

about lattice-based cryptography, including the definition of lattices itself. This part

also states some hard problems of Lattice-based Cryptography. Then, we proceed

to introduce the lattice-based algorithm we focus on. This algorithm is the NTRU

that is submitted to NIST PQC Standardization Project [16]. After that, as we will

use Toeplitz-matrix Vector Product in our new algorithm, an entrance to this area

of cryptography is made by bringing in the related definitions such as the definition

of Toeplitz matrices. In addition, the technique to be utilized for performing the

multiplication in Rq using Toeplitz-matrix vector product is presented in this part.

Finally, in the last section of this chapter, the TMVP formulae existing in the literature

are given, and an insight into the usage of TMVP in multiplication is presented.

2.1 Lattices and Some Hard Problems

In order to work on the efficient multiplication techniques for lattice-based cryptogra-

phy, we first need to understand the basics of lattices. In this section, the fundamental

definitions that are used in the topic of lattices are given. The first one is the most

basic one; the definition of a lattice:

Definition 2.1.1. Let a1, a2, ..., an be linearly independent vectors in Rn. Then, the

set

{k ∈ Rn : k =
n∑

i=1

kiai for some k1, k2, ..., kn ∈ Z}

7



is called a lattice in Rn.

In the following part of this section, the algorithmic problems related to lattices are

explained. Moreover, some insight into their hardness is presented with the help of

various important references.

2.1.1 Shortest Vector Problem

Definition 2.1.2. Given a lattice L in Rn, let B = {a1, a2, ..., an} be a basis of L, and

let λ(L) denote the length of the shortest vector in the lattice, i.e., λ(L) = minl∈L ||l||.
Then, given B, the problem of finding a non-zero vector v in the lattice such that

||v|| = λ(L) is called Shortest Vector Problem. As the approximation version of this

problem, given B and an approximation parameter γ > 1, the problem of finding a

non-zero vector v in the lattice such that ||v|| ≤ γ · λ(L) is denoted as SVPγ .

Shortest Vector Problem is considered to be a hard problem in post-quantum cryp-

tography as of today. In 1996, Ajtai laid the ground for some computationally hard

problems related to lattices [2], namely Shortest Vector Problem and Shortest Ba-

sis Problem. Later, in 2001, Ajtai et al. discovered an algorithm that solves SVP

in an n-dimensional rational lattice, whose time complexity is randomized 2O(n) [3].

Clearly, this algorithm is not practical to use in order to solve the problem. After that,

Micciancio proved that approximating the shortest vector with a factor of
√
2 is hard,

which supports and improves the results of Ajtai [35].

Definition 2.1.3. Given a lattice L in Rn, let B = {a1, a2, ..., an} be a basis of L, and

let λ(L) denote the length of the shortest vector in the lattice, i.e., λ(L) = minl∈L ||l||.
Then, given B and a parameter β ≥ 1, and a number d > 0, the problem of deciding

whether λ(L) ≤ d or λ(L) ≥ β · d is defined as GapSVPβ .

Note. An oracle solving GapSVPβ problem should return yes when λ(L) ≤ d, no

when λ(L) ≥ β · d, and an error if neither of the conditions is satisfied.

Basically, GapSVP is the decision version of SVP. This fact makes us feel that GapSVP

should be as hard as SVP. Since science does not work with feelings, various pieces

8



of research are conducted after GapSVP’s introduction into the literature in order to

prove that it is indeed a hard problem. First, Micciancio and Goldwasser showed that

"GAPSVP is NP-hard under deterministic nonuniform polynomial time reductions"

[35]. Later, Lyubashevsky et al. closed the deal in 2009, by proving the equivalence

of Unique Shortest Vector Problem and GapSVP up to a polynomial [31].

2.1.2 Closest Vector Problem

Definition 2.1.4. Given a lattice L in Rn, let B = {a1, a2, ..., an} be a basis of L.

Given a vector y ∈ L, Closest Vector Problem is the problem of finding the vector

x ∈ L such that ||x − y|| = mina∈L ||a− y||. In other words, compliant with the

name, given a vector y ∈ L CVP is the problem of finding the closest vector to y.

The most groundbreaking study on Closest Vector Problem is the one conducted by

Goldreich et al. in 1999 [26]. Basically, they reduced SVP to CVP, which shows that

SVP is not harder than CVP. Furthermore, as we know that SVP is a hard problem,

the key point of [26] is the fact that CVP is also hard in the post-quantum era. In

addition, Micciancio conducted a study in 2001, which made two important contri-

butions on CVP to the literature [34]. First, they gave a simple proof of the hardness

of CVP. Second, they showed that CVP remains hard even if the unlimited amount of

preprocessing of the chosen lattice is allowed before revealing the challenge vector y.

2.1.3 Learning With Error Problem

After this introductory study on lattices, Regev proposed a generalized hard problem

in 2005 [41]; namely, learning with error problem:

Definition 2.1.5. Given a prime number p, vectors s, a1, a2, ..., ak ∈ Zn
q , and a prob-

9



ability distribution χ : Zq → (0, 1), consider the list of equations

< s, a1 > +e1 = t1

< s, a2 > +e2 = t2

...

< s, ak > +ek = tk

where each ei is sampled from the distribution χ. Then, the problem of obtaining s

given the pairs (a1, t1), (a2, t2), ..., (ak, tk) is called learning with error problem, and

denoted as LWEp,χ .

Importantly, in [41], Regev showed that LWE is at least as hard as GapSVP. Further-

more, this result indicates that LWE is quantum-secure since GapSVP is believed to

be quantum-secure [39].

Later, in 2010, Lyubashevsky et al. added a new dimension to LWE by introducing

Ring Learning With Error Problem (RLWE) into the literature [32]. With this novelty,

the usage of lattice-based cryptography has become practically efficient in employing

state-of-the-art technology. Furthermore, in 2012, Banerjee et al. presented Learning

With Rounding Problem [8]. This problem maintains the efficiency of RLWE while

adding the deterministic generation of the error terms.

2.2 NTRU

In this thesis, we apply the new 5-way TMVP algorithm to the NTRU Key Encap-

sulation Mechanism, which is one of the lattice-based candidates of the NIST PQC

Standardization Project for round 3 [36]. In this section, we first summarize the math-

ematical structures and parameters for the NTRU version submitted to NIST for the

third round of the Standardization Project, which is given in [16]. Then, we continue

with the detailed specifications of NTRU Public Key Encryption and NTRU Key En-

capsulation Mechanism, as defined in [16].
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2.2.1 Ideal Definitions

NTRU KEM employs ideal lattices. Therefore, we first need to define the modulus

polynomials of the ideals. The required polynomials are defined as follows:

ϕ1 = x− 1

ϕn =
xn − 1

x− 1
= xn−1 + xn−2 + ...+ 1 =

n−1∑
i=0

xi

Notice that

ϕ1ϕn = (x− 1) · x
n − 1

x− 1
= xn − 1.

After this, we can pass to the definitions of the ideals used by NTRU KEM:

Rq = Zq[x]/(ϕ1ϕn)

Sq = Zq[x]/(ϕn)

Sp = Zp[x]/(ϕn)

As defined above, Rq is the set of polynomials with a maximum degree of n− 1 and

with coefficients modulo q. Similarly, Sq is the set of polynomials with a maximum

degree of n− 2 and with coefficients modulo q. Finally, Sp is the set of polynomials

with a maximum degree of n− 2 and with coefficients modulo p.

2.2.2 Parameter Sets

NTRU parameters consist of three integers, four sets, and a function, denoted as

(n, p, q,Lf ,Lg,Lr,Lm,Lift) [16]. From these parameters, n, p, and q are coprime

positive integers, Lf , Lg, Lr, and Lm are sets of polynomials, and Lift is a one-to-one

function on Lm into Z[x] which satisfies Lift(m) = m mod 3 for all m ∈ Lm. Fi-

nally, in order to check whether a parameter set is correct, one needs to satisfy that all

of the coefficients of the polynomial

(p · r · g + f · Lift(m)) mod (ϕ1ϕn) (2.1)

are in the set {−q/2,−q/2+ 1, ..., q/2− 1} for each (f, g, r,m) ∈ (Lf ,Lg,Lr,Lm).
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There are two versions of NTRU parameter sets: HPS and HRSS.

HPS parameter set requires the following to hold:

• n is a prime, and 2 and 3 are of order n − 1 in the multiplicative group of

integers (Zn,×),

• p = 3,

• q is a power of 2,

• Lf = S3,

• Lg is the set consisting of the elements of S3 that have exactly q/16− 1 coeffi-

cients equaling 1 and q/16− 1 coefficients equaling −1,

• Lr = S3,

• Lm is the set consisting of the elements of S3 that have exactly q/16− 1 coef-

ficients equaling 1 and q/16− 1 coefficients equaling −1,

• Lift(m) is defined as the identity function.

Let T+ be the set consisting of the elements v =
∑

i vix
i of S3 that satisfy

∑
i vivi+1 ≥ 0.

Then, HRSS parameter set requires the following to hold:

• n is a prime, and 2 and 3 are of order n − 1 in the multiplicative group of

integers (Zn,×),

• p = 3,

• q = 2⌈7/2+log2(n)⌉,

• Lf = T+,

• Lg = {ϕ1 · v : v ∈ T+},

• Lr = S3,

• Lm = S3,
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• Lift(m) = ϕ1 · S3(m/ϕ1) where S3 function reduces the input polynomial to

S3 with coefficients from {−1, 0, 1}.

In the NTRU submission [16], there exist four different parameter sets. Table 2.1

displays the information in detail:

Table 2.1: The defining parameter sets for different levels of NTRU submission [16]
Level Name n p q

HPS2048509 509 3 2048

HPS2048677 677 3 2048

HPS4096821 821 3 4096

HRSS701 701 3 8192

2.2.3 NTRU Public Key Encryption Scheme

Note that our main goal for this section is to present NTRU Key Encapsulation Mech-

anism. In order to achieve this, NTRU PKE is needed to be explained first because

NTRU KEM is based on it. Therefore, we will first introduce NTRU PKE. NTRU

PKE consists of three algorithms; Key Generation, Encryption, and Decryption.

The pseudocode of the key generation of the submitted NTRU scheme is presented in

Algorithm 1. In the first step, two ternary polynomials, namely f and g, are sampled

with the help of Sample_fg function defined in [16]. Next, the inverse of the polyno-

mial f in the ring Sq is computed as fq. Then, using fq, the public key h is calculated

in Rq, as shown in the figure. After that, two more inverses are computed. These are

hq, which is the inverse of h in Sq, and fp, which is the inverse of f in Sp. Finally,

using the calculated polynomials, the public key and the private key are constructed

as h and (f, fp, hq), respectively.
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Algorithm 1 Pseudocode of the key generation algorithm of the NTRU PKE scheme

[16]
Require: seed

Ensure: ((f, fp, hq), h)

1: (f, g)← Sample_fg(seed)

2: fq ← 1/f mod (q, ϕn)

3: h← (3 · g · fq) mod (q, ϕ1ϕn)

4: hq ← 1/h mod (q, ϕn)

5: fp ← 1/f mod (p, ϕn)

6: return ((f, fp, hq), h)

The pseudocode of the NTRU encryption algorithm is shown in Algorithm 2. This

algorithm gets a plaintext (r,m) and the public key h as inputs. Note that the plaintext

components r and m are polynomials in Lr and Lm, respectively. Moreover, Lift is

a function that maps the polynomials in Lm to a polynomial in Rq. The encryption

process starts with the lifting of the polynomial m. Then, the ciphertext polynomial c

in Rq is computed as indicated in line 2 of the pseudocode in Algorithm 2.

Algorithm 2 Pseudocode of the encryption algorithm of the NTRU PKE scheme [16]

Require: (h, (r,m))

Ensure: c

1: m′ ← Lift(m)

2: c← (r · h+m′) mod (q, ϕ1ϕn)

3: return c

The pseudocode of the NTRU decryption algorithm is shown in Algorithm 3. In the

first step, a validity check for the ciphertext polynomial is performed. Because of

the nature of NTRU, the sum of the coefficients of c must be 0 in Zq. Therefore,

invalid (and potentially harmful) ciphertexts get eliminated at this point by making

the decryption process return fail. Via the second and third steps of the pseudocode

below, a candidate plaintext polynomial m is calculated. Then, the other component

of the candidate plaintext, namely the polynomial r, is computed using m and the

ciphertext polynomial c in steps 4 and 5. Finally, if this (r,m) pair is in Lr × Lm,
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the candidate plaintext is accepted and returned. Otherwise, the decryption process

returns fail.

Algorithm 3 Pseudocode of the decryption algorithm of the NTRU PKE scheme [16]

Require: ((f, fp, hq), c)

Ensure: (r,m, fail)

1: if c ̸= 0( mod (q, ϕ1)) return (0, 0, 1)

2: a← (c · f) mod (q, ϕ1ϕn)

3: m← (a · fp) mod (p, ϕn)

4: m′ ← Lift(m)

5: r ← ((c−m′) · hq) mod (q, ϕn)

6: if (r,m) ∈ (Lr × Lm) then

7: return (r,m, 0)

8: else

9: return (0, 0, 1)

10: end if

2.2.4 NTRU Key Encapsulation Mechanism

Now that NTRU PKE is defined, the way to obtain NTRU KEM is fairly straightfor-

ward. NTRU KEM is produced using a transformation, which converts any public

key encryption scheme to a key encapsulation mechanism [16]. The resulting key

generation, encapsulation, and decapsulation algorithms are presented in this section.

NTRU KEM Key Generation algorithm consists of two stages. It is presented in

Algorithm 4. First, this algorithm runs NTRU PKE Key Generation algorithm in

order to create the secret and public polynomials for PKE. Second, it samples 256-

bit secret s from the uniform distribution. As a result, the private key is formed as

(f, fp, hq, s), and the public key is simply the polynomial h.
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Algorithm 4 Pseudocode of the key generation algorithm of the NTRU KEM scheme

[16]
Require: seed

Ensure: ((f, fp, hq, s), h)

1: ((f, fp, hq), h)← Algorithm1(seed)

2: s←$ {0, 1}256

3: return ((f, fp, hq, s), h)

NTRU KEM Encapsulation algorithm is given in Algorithm 5. The procedure is de-

scribed as follows. First, the algorithm samples coins from a uniform distribution

randomly. Then, the algorithm runs Sample_rm function, which performs the gen-

eration of r and m polynomials conforming to the NTRU equation, which is Eq.

(2.1), and the parameter set. And then, the algorithm runs NTRU PKE Encryption

algorithm in order to encrypt the message (r,m) and generates the ciphertext c. After

that, k is computed as the hash of (r,m), where H1 is the hash function SHA3_256

[24]. Eventually, the algorithm returns the ciphertext c and the shared secret k.

Algorithm 5 Pseudocode of the encapsulation algorithm of the NTRU KEM scheme

[16]
Require: h

Ensure: (c, k)

1: coins←$ {0, 1}256

2: (r,m)← Sample_rm(coins)

3: c← Algorithm 2(h, (r,m))

4: k ← H1(r,m)

5: return (c, k)

The last NTRU KEM algorithm is the decapsulation algorithm. This algorithm is as

shown in Algorithm 6. As can be seen below, the first step in decapsulation is to

decrypt the ciphertext. After that, the algorithm computes k1 using the hash function

H1 and assigning the input as (r,m). H1 is defined as SHA3_256, just like encapsu-

lation. Then, the algorithm computes k2 as the hash of (s, c) using the hash function

H2, which is actually again SHA3_256 [24]. In the end, the algorithm returns k1 if
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fail is 0, and returns k2 otherwise.

Algorithm 6 Pseudocode of the decapsulation algorithm of the NTRU KEM scheme

[16]
Require: (f, fp, hq, s)

Ensure: k

1: (r,m, fail)← Algorithm 3((f, fp, hq), c)

2: k1 ← H1(r,m)

3: k2 ← H2(s, c)

4: if fail = 0 then

5: return k1

6: else

7: return k2

8: end if

At this point, it is important to note that the shared secret k returned by NTRU KEM

Encapsulation algorithm is the same as k1 that is computed in NTRU KEM Decap-

sulation algorithm. Therefore, the shared secrets of the two parties (that are encap-

sulating and decapsulating) are the same as long as fail returned by the decryption

operation is 0. In other words, the secret is successfully shared between the parties

whenever the decryption operation does not fail.

On the other hand, the decapsulation algorithm returns k2, which is a pseudorandom

value that gives no information about the shared secret, if the decryption fails. This

step is added in order to comply with NIST’s requirements on the standardization of

post-quantum key encapsulation mechanism algorithms.

2.3 Toeplitz Matrices and Their Usage in Multiplication in Rq

In this section, the introduction to Toeplitz matrices and their usage for efficient mul-

tiplication in cryptography is done. In the first part of this section, the definition of

Toeplitz matrices is given. In the second part, the technique that describes how to use

TMVP for the multiplication operation in Rq is explained.
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2.3.1 Toeplitz Matrices

First of all, the definition of Toeplitz matrices is given as follows:

Definition 2.3.1. Let Tn×n = [ti,j] where i, j = 0, 1, . . . n− 1 be a matrix. Then, T is

called a Toepltiz Matrix if for all i, j ti,j = t(i−1),(j−1) holds.

For further intuition on Toeplitz matrices, the form of an n × n Toeplitz matrix T is

shown below as an example:



a0 a1 a2 · · · an−1

an a0 a1
. . . an−2

an+1 an a0
. . . an−3

... . . . . . . . . . ...

a2(n−1) · · · an+1 an a0


(2.2)

At this point, an important property of Toepltiz matrices that we need to mention is

the fact that the addition of two Toeplitz matrices results in a Toeplitz matrix. In other

words, Toeplitz matrices are closed under addition.

2.3.2 Multiplication in Rq Using Toeplitz Matrices

In literature, there exists a way to employ Toeplitz-matrix vector products (TMVP)

when multiplying polynomials in rings of the form Rq = Zq[x]/(x
n ± 1) [37]. This

method stems from the fact that multiplication in Rq is actually equivalent to a cyclic

(or negacyclic, depending on the quotient polynomial) convolution of the coefficient

arrays of the polynomials. Therefore, the representation of this convolution as a

matrix-vector product turns out to be the result of the multiplication of the two poly-

nomials in Rq.
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2.3.2.1 Case of Rq = Zq[x]/(x
n − 1)

Assume that A(x), B(x) ∈ Rq = Zq[x]/(x
n − 1), i.e.,

A(x) = a0 + a1x+ · · ·+ an−1x
n−1 and,

B(x) = b0 + b1x+ · · ·+ bn−1x
n−1.

We are going to convert one of the polynomials to a Toeplitz matrix and the other to

a vector. The first polynomial, say A, is to be converted to a Toeplitz matrix. Given

A is defined as above, the matrix that is the result of the conversion is as follows:

T =



a0 an−1 an−2 · · · a1

a1 a0 an−1
. . . a2

a2 a1 a0
. . . a3

... . . . . . . . . . ...

an−1 · · · a2 a1 a0


Then, the second polynomial, which is B in this case, is transformed into a vector in

the most trivial way, as follows:

V =



b0

b1
...
...

bn−1


Finally, the transformation of the polynomial multiplication A(x) · B(x) in Rq into

the TMVP is realized by the Eq. (2.3).

T · V =



a0 an−1 an−2 · · · a1

a1 a0 an−1
. . . a2

a2 a1 a0
. . . a3

... . . . . . . . . . ...

an−1 · · · a2 a1 a0


·



b0

b1
...
...

bn−1


=



c0

c1
...
...

cn−1


(2.3)
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As a result, the multiplication outcome of this TMVP reveals the coefficients of the

polynomial C(x) = A(x) ·B(x) in Rq, where

C(x) = c0 + c1x+ · · ·+ cn−1x
n−1.

2.3.2.2 Case of Rq = Zq[x]/(x
n + 1)

Assume that A(x), B(x) ∈ Rq = Zq[x]/(x
n + 1), i.e.,

A(x) = a0 + a1x+ · · ·+ an−1x
n−1 and,

B(x) = b0 + b1x+ · · ·+ bn−1x
n−1.

A very similar procedure to the previous section is employed. The only difference is

at the step of the conversion of A to a Toeplitz matrix. Given A is defined as above,

this time, the matrix that is the result of the conversion is as follows:

T =



a0 −an−1 −an−2 · · · −a1
a1 a0 −an−1

. . . −a2
a2 a1 a0

. . . −a3
... . . . . . . . . . ...

an−1 · · · a2 a1 a0


Then, the second polynomial B is transformed into a vector in the same way as in the

previous section:

V =



b0

b1
...
...

bn−1


Finally, the transformation of the multiplication A(x) · B(x) in Rq into the TMVP is

realized by the Eq. (2.4).
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T · V =



a0 −an−1 −an−2 · · · −a1
a1 a0 −an−1

. . . −a2
a2 a1 a0

. . . −a3
... . . . . . . . . . ...

an−1 · · · a2 a1 a0


·



b0

b1
...
...

bn−1


=



c0

c1
...
...

cn−1


(2.4)

As a result, again, the multiplication outcome of this TMVP reveals the coefficients

of the polynomial C(x) = A(x) ·B(x) in Rq, where

C(x) = c0 + c1x+ · · ·+ cn−1x
n−1.

2.4 Toeplitz Matrix-Vector Product (TMVP) Formulae

In this section, we will present the TMVP algorithms that are available in the litera-

ture. There exist 2-way, 3-way, and 4-way split algorithms that compute the product

of a Toeplitz matrix and a vector [49]. In 2007, Fan and Hasan used 2-way split and

3-way split TMVP in order to increase the efficiency of multiplication in extended bi-

nary fields [25]. Later in 2012, Hasan and Negre generalized the TMVP formulae for

binary fields [27]. Then, Ali and Cenk utilized 2-way TMVP and 3-way TMVP and

built a highly efficient multiple precision integer multiplication algorithm [6]. Finally,

Paksoy and Cenk came up with the formulization of 4-way split TMVP algorithm and

applied it to Saber in 2020 [37]. In this section, we will cover these algorithms and

their computational complexities.

2.4.1 2× 2 TMVP

Let T2×2 be a Toeplitz matrix and A2×1 be a vector. Then, the product T · A can be

computed using the following equations:

T.A =

T1 T0

T2 T1

 ·
A0

A1

 =

Q1 +Q2

Q1 +Q3

 (2.5)

where
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Q1 = T1(A0 + A1)

Q2 = (T0 − T1)A1

Q3 = (T2 − T1)A0

(2.6)

From Eqs. (2.5)-(2.6), we see that there exist 3 multiplications, 3 additions, and 2

double additions. Thus, we denote the complexity of this algorithm as 3M+3A+2Ad.

Moreover, the 2-TMVP formula can be generalized to matrices of size n = 2l for

l ∈ N+. Then, the complexity of the algorithm is calculated as

M(n) = 3M(n/2) + 3n− 1 (2.7)

2.4.2 3× 3 TMVP

Let T3×3 be a Toeplitz matrix and A3×1 be a vector. Then, the product T · A can be

computed using the following equations:

T.A =


T2 T1 T0

T3 T2 T1

T4 T3 T2

 ·

A0

A1

A2

 =


Q3 +Q4 +Q6

Q2 −Q4 +Q5

Q1 −Q2 −Q3

 (2.8)

where

Q1 = (T4 + T3 + T2)A0

Q2 = T3(A0 − A1)

Q3 = T2(A0 − A2)

Q4 = T1(A1 − A2)

Q5 = (T1 + T2 + T3)A1

Q6 = (T0 + T1 + T2)A2

(2.9)

From Eqs. (2.8)-(2.9), we see that there exist 6 multiplications, 9 additions, and 6

double additions. To further reduce the complexity of this algorithm, we can eliminate

some recomputations performed during the computations of Qi values. For example,

the summation operation T1+T2 is required both in the computation of Q5 and that of

Q6. We can compute T1 + T2 once during the computation of Q5, and store it so that
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we can use it later again in the computation of Q6, decreasing the number of required

addition operations by one. Therefore, we denote the complexity of this algorithm as

6M + 8A+ 6Ad.

Furthermore, the 3-TMVP formula can be generalized to matrices of size n = 3l for

l ∈ N+. Then, the complexity of the algorithm is calculated as

M(n) = 6M(n/3) + 5n− 1 (2.10)

2.4.3 4× 4 TMVP

Let T4×4 be a Toeplitz matrix and A4×1 be a vector. Then, the product T · A can be

computed using following equations [37]:

T.A =


T3 T2 T1 T0

T4 T3 T2 T1

T5 T4 T3 T2

T6 T5 T4 T3

 ·

A0

A1

A2

A3



=


Q1 −Q2 + 8Q3 − 8Q4 + 27Q5 +Q6

Q1 +Q2 + 4Q3 + 4Q4 + 9Q5

Q1 −Q2 + 2Q3 − 2Q4 + 3Q5

Q0 +Q1 +Q2 +Q3 +Q4 +Q5



(2.11)

where

Q0 =
(12T6−4T5−15T4+5T3+3T2−T1)A0

12

Q1 =
(12T5+8T4−7T3−2T2+T1)(A0+A1+A2+A3)

12

Q2 =
(−12T5+16T4−T3−4T2+T1)(A0−A1+A2−A3)

24

Q3 =
(−6T5−T4+7T3+T2−T1)(A0+2A1+4A2+8A3)

24

Q4 =
(−6T5−5T4−5T3+5T2−T1)(A0−2A1+4A2−8A3)

120

Q5 =
(4T5−5T3+T1)(A0+3A1+9A2+27A3)

120

Q6 = (−12T5 + 4T4 + 15T3 − 5T2 − 3T1 + T0)A3

(2.12)
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According to Eqs. (2.11) and (2.12), there exist 43 addition, 7 multiplication, and

18 double addition operations in 4-way split TMVP algorithm aside from the scalar

multiplication and shift operations. Similar to the 3-way case, it is possible to elim-

inate some operations to lower the total count of the operations required. With the

employment of Algorithms 3 and 4 from [37], the total number of operations for the

algorithm turns out to be 7M + 32A+ 13Ad.

Moreover, similar to the previous versions of TMVP, this version is also capable

of being generalized to sizes n = 4l for l ∈ N+. Subsequently, the generalized

complexity of the algorithm is presented by [37] as

M(n) = 7M(n/4) + 33n/2− 21. (2.13)

2.4.4 Hybrid Usage of TMVP Formulae

Although the asymptotic complexity of the higher-level TMVP algorithms is bet-

ter, their performance decreases with the decreasing sizes of multiplications. More-

over, each algorithm, including the schoolbook multiplication algorithm, has a region

where that algorithm is the most efficient one. Therefore, the most efficient multipli-

cation method emerges from the combined usage of the algorithms.

In literature, various examples of hybrid employment of multiplication algorithms

exist. For example, Bernstein came up with the idea of combined utilization of 2-way,

3-way, and 4-way split multiplication algorithms in 2009 [10]. In another instance,

Adikari et al. used TMVP-2 and TMVP-3 algorithms together in order to achieve

better cryptoprocessors [1]. Yet another occurrence of hybrid employment appears in

[37]. In this work, Paksoy et al. employed TMVP-2, TMVP-3, and TMVP-4 in order

to efficiently implement the multiplication operation used in Saber algorithm.
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CHAPTER 3

NEW 5-WAY TOEPLITZ MATRIX-VECTOR PRODUCT

ALGORITHM

In this chapter, we will present the original aspect of the thesis. Explicitly, we will

give the information on the 5-way TMVP algorithm. We start with the derivation of

the formulae for this algorithm. The derivation stems from some previous papers on

TMVP and efficient multiplication techniques. The resulting formulae are presented

as a Toeplitz-matrix vector product in Eq. (3.11). Then, we continue with the com-

plexity calculation of this algorithm. After computing the complexity of various parts

of the algorithm and summing the results, we get the total complexity of the algo-

rithm as M(n) = 13M(n/5) + (46n/5 − 18)A + 19n/5Ad for n being a power of

5. In the final part of this chapter, we give some insights into the differences between

our 5-way TMVP algorithm and other 5-way split algorithms that are present in the

literature.

3.1 Derivation

In this section, an efficient computation of the product of a Toeplitz matrix and a vec-

tor, whose entries are integers, is considered. In this regard, we give the 5-way TMVP

formulae and their complexity evaluation. Note that such TMVP can be extended to

be used in the multiplication of the Toeplitz matrix and vector of size n = 5l for

l = 2, 3, 4 . . . . In addition, 5-way TMVP can be used as the top-level split algorithm

whenever the size of the multiplication is a multiple of 5.

The construction of the 5-way TMVP formulae is based on the technique provided in
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the publications [15], [47], and [49]. In 2008, Cenk et al. discovered the formulae that

enable more efficient implementation of multiplication in F2 [15]. Then, Venkatesan

and Kumar used the formulae in [15] and the techniques in [49] in order to implement

convolution operation efficiently in hardware [47]. In this thesis, we compute the 5-

way TMVP formulae using the formulae in [47] and the technique in [49].

Let A and B be two degree-4 polynomials as follows:

A(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 ,

B(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4.

Moreover, the product polynomial C(x) = A(x) ·B(x) can be shown as

C(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + c6x
6 + c7x

7 + c8x
8.

At this stage, the Eqs. (3.1) and (3.2) provide the coefficients of C(x) [47].

P1 = a0b0 P2 = a1b1 P3 = a2b2 P4 = a3b3 P5 = a4b4

P6 = (a0 − a1)(b0 − b1) P7 = (a0 + a2)(b0 + b2)

P8 = (a2 + a4)(b2 + b4) P9 = (a3 − a4)(b3 − b4)

P10 = (a0 − a2 − a3)(b0 − b2 − b3) P11 = (a1 + a2 − a4)(b1 + b2 − b4)

P12 = (a0 − a1 − a3 + a4)(b0 − b1 − b3 + b4)

P13 = (a0 − a1 − a2 − a3 + a4)(b0 − b1 − b2 − b3 + b4)

(3.1)

c0 = P1

c1 = −P6 + P2 + P1

c2 = P7 − P1 + P2 − P3

c3 = P13 − P12 − P10 + P8 + P4 − P3 + P1 − P5

c4 = P13 − P11 − P10 − P6 − P9 + P1 + P2 + P3 + P3 + P4 + P5

c5 = P13 − P12 − P11 + P7 + P5 − P3 + P2 − P1

c6 = P8 − P5 − P3 + P4

c7 = −P9 + P5 + P4

c8 = P5

(3.2)
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Moreover, we have the calculation of the coefficients of C stemming directly from

the schoolbook multiplication technique as follows:

c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0

c3 = a0b3 + a1b2 + a2b1 + a3b0

c4 = a0b4 + a1b3 + a2b2 + a3b1 + a4b0

c5 = a1b4 + a2b3 + a3b2 + a4b1

c6 = a2b4 + a3b3 + a4b2

c7 = a3b4 + a4b3

c8 = a4b4

(3.3)

Therefore, using Eqs. (3.2) and (3.3), we get the following set of equations:

a0b0 = P1

a0b1 + a1b0 = −P6 + P2 + P1

a0b2 + a1b1 + a2b0 = P7 − P1 + P2 − P3

a0b3 + a1b2 + a2b1 + a3b0 = P13 − P12 − P10 + P8 + P4 − P3 + P1 − P5

a0b4 + a1b3 + a2b2 + a3b1 + a4b0 = P13 − P11 − P10 − P6 − P9 + P1 + P2

+ P3 + P3 + P4 + P5

a1b4 + a2b3 + a3b2 + a4b1 = P13 − P12 − P11 + P7 + P5 − P3 + P2 − P1

a2b4 + a3b3 + a4b2 = P8 − P5 − P3 + P4

a3b4 + a4b3 = −P9 + P5 + P4

a4b4 = P5

(3.4)

From here, we sum the equations after multiplying the first equation by T8, the second

by T7, and so on until the last one, which is multiplied by T0. Then, we rearrange the

left-hand side of the resulting equation with respect to bi. The resulting equation is as
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follows:

(T8a0 + T7a1 + T6a2 + T5a3 + T4a4)b0

+ (T7a0 + T6a1 + T5a2 + T4a3 + T3a4)b1

+ (T6a0 + T5a1 + T4a2 + T3a3 + T4a4)b2

+ (T5a0 + T4a1 + T3a2 + T2a3 + T1a4)b3

+ (T4a0 + T3a1 + T2a2 + T1a3 + T0a4)b4

= T8P1 + T7(−P6 + P2 + P1) + T6(P7 − P1 + P2 − P3)

+ T5(P13 − P12 − P10 + P8 + P4 − P3 + P1 − P5)

+ T4(P13 − P11 − P10 − P6 − P9 + P1 + P2 + 2P3 + P4 + P5)

+ T3(P13 − P12 − P11 + P7 + P5 − P3 + P2 − P1)

+ T2(P8 − P5 − P3 + P4)

+ T1(−P9 + P5 + P4) + T0P5

(3.5)

Afterward, denoting the equation’s left-hand expression as f(T, a, b), we transform

its right-hand expression. In explicit, we break down the nine products on the right-

hand and sort the results with respect to Pi. Thus, we get Eq. (3.6).

f(T, a, b) =(T8 + T7 − T6 + T5 + T4 − T3)P1 + (T7 + T6 + T4 + T3)P2

+ (−T6 − T5 + 2T4 − T3 − T2)P3 + (T5 + T4 + T2 + T1)P4

+ (−T5 + T4 + T3 − T2 + T1 + T0)P5

+ (−T7 − T4)P6 + (T6 + T3)P7

+ (T5 + T2)P8 + (−T1 − T4)P9

+ (−T5 − T4)P10 + (−T4 − T3)P11

+ (−T5 − T3)P12 + (T5 + T4 + T3)P13.

(3.6)

Note that, by Eq. (3.1), each Pi is of the form Li(a)Li(b). Moreover, for each term

on the right side of Eq. (3.6), the coefficient of Pi is a linear expression L′
i(T ).

Therefore, we can replace L′
i(T )Pi with QiLi(b) for each i = 1, 2, ..., 13, where

Qi = L′
i(T )Li(a) are as follows:
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Q1 = (T8 + T7 − T6 + T5 + T4 − T3)a0

Q2 = (T7 + T6 + T4 + T3)a1

Q3 = (−T6 − T5 + 2T4 − T3 − T2)a2

Q4 = (T5 + T4 + T2 + T1)a3

Q5 = (−T5 + T4 + T3 − T2 + T1 + T0)a4

Q6 = (−T7 − T4)(a0 − a1)

Q7 = (T6 + T3)(a0 + a2)

Q8 = (T5 + T2)(a2 + a4)

Q9 = (−T4 − T1)(a3 − a4)

Q10 = (−T5 − T4)(a0 − a2 − a3)

Q11 = (−T4 − T3)(a1 + a2 − a4)

Q12 = (−T5 − T3)(a0 − a1 − a3 + a4)

Q13 = (T5 + T4 + T3)(a0 − a1 − a2 − a3 + a4)

(3.7)

After the replacement of each L′
i(T )Pi by QiLi(b), we get Eq. (3.8).

f(T, a, b) = Q1b0 +Q2b1 +Q3b2 +Q4b3 +Q5b4 +Q6(b0 − b1)

+Q7(b0 + b2) +Q8(b2 + b4) +Q9(b3 − b4) +Q10(b0 − b2 − b3)

+Q11(b1 + b2 − b4) +Q12(b0 − b1 − b3 + b4)

+Q13(b0 − b1 − b2 − b3 + b4)

(3.8)

Then, we reorder the new expression’s right side in terms of bi and get

f(T, a, b) = (Q1 +Q6 +Q7 +Q10 +Q12 +Q13)b0

+ (Q2 −Q6 +Q11 −Q12 −Q13)b1

+ (Q3 +Q7 +Q8 −Q10 +Q11 −Q13)b2

+ (Q4 +Q9 −Q10 −Q12 −Q13)b3

+ (Q5 +Q8 −Q9 −Q11 +Q12 +Q13)b4.

(3.9)

After that, we can equate the coefficients of bi in Eq. (3.9) with the coefficients of bi
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in the left-hand expression of Eq. (3.5). This results in the following five equations:

T8a0 + T7a1 + T6a2 + T5a3 + T4a4 = Q1 +Q6 +Q7 +Q10 +Q12 +Q13

T7a0 + T6a1 + T5a2 + T4a3 + T3a4 = Q2 −Q6 +Q11 −Q12 −Q13

T6a0 + T5a1 + T4a2 + T3a3 + T2a4 = Q3 +Q7 +Q8 −Q10 +Q11 −Q13

T5a0 + T4a1 + T3a2 + T2a3 + T1a4 = Q4 +Q9 −Q10 −Q12 −Q13

T4a0 + T3a1 + T2a2 + T1a3 + T0a4 = Q5 +Q8 −Q9 −Q11 +Q12 +Q13

(3.10)

Finally, Eq. (3.10) can be transformed to a matrix-vector product equation because it

is actually a linear system of equations. The result of the transformed matrix-vector

product is actually a Toepltiz matrix-vector product since the matrix is a Toepltiz

matrix. As a result, the right-hand side indicates the required five-way split formulae

in order to compute the product. The explicit TMVP equation is given below:



T4 T3 T2 T1 T0

T5 T4 T3 T2 T1

T6 T5 T4 T3 T2

T7 T6 T5 T4 T3

T8 T7 T6 T5 T4


·



a0

a1

a2

a3

a4


=



Q5 +Q8 −Q9 −Q11 +Q12 +Q13

Q4 +Q9 −Q10 −Q12 −Q13

Q3 +Q7 +Q8 −Q10 +Q11 −Q13

Q2 −Q6 +Q11 −Q12 −Q13

Q1 +Q6 +Q7 +Q10 +Q12 +Q13


(3.11)

3.2 Complexity Calculation

In this section, the complexity of the proposed 5-way TMVP algorithm is calculated.

The calculation is divided into three parts. The complexities of multi-evaluation step,

sub-multiplication step, and reconstruction step is calculated in the following sections

in respective order.

3.2.1 Multi-evaluation

First, we have the multi-evaluation computations on matrix T . The computations are

given in Table 3.1. Note that a Toeplitz matrix can be defined by its first column

and first row. In total, we need to keep track of 2k − 1 integers in order to store and
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operate on an k × k Toeplitz matrix with integer elements. Therefore, the addition of

two Toeplitz matrices costs 2k − 1 integer additions.

Table 3.1: Five-Way Split Formula of TMVP —Multi-evaluation of the Toeplitz Ma-
trix T

Underlying Computations Addition Cost
R1 = −(T7 + T4) 2n/5− 1

R2 = T6 + T3 2n/5− 1

R3 = T5 + T2 2n/5− 1

R4 = −(T4 + T1) 2n/5− 1

R5 = −(T5 + T4) 2n/5− 1

R6 = −(T4 + T3) 2n/5− 1

R7 = −(T5 + T3) 2n/5− 1

R8 = T4 −R7 2n/5− 1

R9 = −R3 −R6 + T0 + T1 6n/5− 3

R10 = R3 −R4 2n/5− 1

R11 = 2T4 −R2 −R3 4n/5− 2

R12 = R2 −R1 2n/5− 1

R13 = T8 + T5 −R1 −R2 6n/5− 3

Total (36n/5− 18) A

Second, we have the multi-evaluation computations on vector A. These computations

are shown in Table 3.2

Table 3.2: Five-Way Split Formula of TMVP —Multi-evaluation of the vector A
Underlying Computations Addition Cost
R′

1 = a0 − a1 n/5

R′
2 = a0 + a2 n/5

R′
3 = a2 + a4 n/5

R′
4 = a3 − a4 n/5

R′
5 = a0 − a2 − a3 2n/5

R′
6 = a1 + a2 − a4 2n/5

R′
7 = R′

1 −R′
4 n/5

R′
8 = R′

7 − a2 n/5

Total 2n A

3.2.2 Products

In 5-way TMVP algorithm, there exist thirteen sub-multiplication operations. The

operations are presented in Table 3.3.
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Table 3.3: Five-Way Split Formula of TMVP —Recursive Products
Underlying Computations Multiplication Cost
Q1 = R13a0 M(n/5)

Q2 = R12a1 M(n/5)

Q3 = R11a2 M(n/5)

Q4 = R10a3 M(n/5)

Q5 = R9a4 M(n/5)

Q6 = R1R
′
1 M(n/5)

Q7 = R2R
′
2 M(n/5)

Q8 = R3R
′
3 M(n/5)

Q9 = R4R
′
4 M(n/5)

Q10 = R5R
′
5 M(n/5)

Q11 = R6R
′
6 M(n/5)

Q12 = R7R
′
7 M(n/5)

Q13 = R8R
′
8 M(n/5)

Total 13M(n/5)

3.2.3 Reconstruction

In the reconstruction step, the product T · A is reconstructed. The computations

required for this step are provided in Table 3.4.

Table 3.4: Five-Way Split Formula of TMVP —Reconstruction
Underlying Computations Addition Cost
U1 = Q12 +Q13 n/5

U2 = Q9 − U1 n/5

U3 = Q5 +Q8 −Q11 − U2 3n/5

U4 = Q4 −Q10 + U2 2n/5

U5 = Q3 +Q7 +Q8 −Q10 +Q11 −Q13 n

U6 = Q2 −Q6 +Q11 − U1 3n/5

U7 = Q1 +Q6 +Q7 +Q10 + U1 4n/5

Total 19n/5 Ad

3.2.4 Total Complexity

We calculate the total complexity by adding the costs shown in Tables 3.1, 3.2, 3.3,

and 3.4. After adding values in these tables, the result turns out to be as follows:

M(n) = 13M(n/5) + (46n/5− 18)A+ 19n/5Ad (3.12)
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Furthermore, we can generalize this result for matrix-vector products in Zq of size

n = 5l for l = 1, 2, 3, . . .. Note that, since we are in Zq, A = Ad = 1. Thus, the

computation of the resulting complexity is as follows:

M(n) = 13M(n/5) + (46n/5− 18) + 19(n/5)

M(n) = 13M(n/5) + 13n− 18
(3.13)

3.3 Comparison with Other 5-way Split Algorithms

When it comes to 5-way split algorithms, the first one that comes to mind is the 5-

way version of Toom-Cook multiplication algorithm [19]. On the other hand, this

algorithm requires various division operations. Furthermore, this requirement reveals

two obstacles when the mathematical structure is Rq. Firstly, it introduces a number

of multiplication operations in the finite field that the quotient polynomial ring relies

on. This excessive amount of operations decreases the efficiency of the algorithm

for the use case o Rq. Secondly, when the divisor is not relatively prime with the

base field size (q of Rq in NTRU), it is impossible to calculate the result theoretically.

When the best case scenario of q being a power of 2 happens, we can divide a number

in Zq by 2 by shifting it right by 1, as long as the least significant bit of the number is

0.

Fortunately, the proposed TMVP algorithm does not contain any divisions, allowing

us to avoid all the mentioned complications.
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CHAPTER 4

FASTER NTRU USING THE PROPOSED 5-WAY TMVP

In this part of the thesis, various hybrid multiplication techniques are considered for

each NTRU parameter set defined in [16]. Moreover, the 5-way TMVP algorithm

described in chapter 3 has been chosen as the highest level for each hybrid multi-

plication method so that the effect of the new algorithm can be observed at its full

potential. Note that the sizes of the polynomials of NTRU are not multiples of 5.

Thus, in order to employ the 5-way TMVP algorithm, a padding operation is to be

done. The padded length is denoted as n′ throughout this chapter.

For each version of NTRU, an exploration is performed to find the hybrid multiplica-

tion method that has the highest software performance. The exploration consists of

two stages. In the first stage, several hybrid multiplication methods are analyzed with

respect to the number of addition and multiplication operations they contain. The

tables showing these numbers are presented in the following sections. In the second

stage, promising hybrid methods are implemented, and their performances are com-

pared. Thus, the chosen hybrid method is ensured to be the one having the highest

performance among the considered methods.

Each hybrid multiplication method contains a series of TMVP algorithms followed

by the schoolbook matrix-vector product algorithm. This is because it is known that

the schoolbook algorithm outperforms the other algorithms when the size is small

[38].

35



4.1 NTRUHPS2048509

For this parameter set, the polynomials to be multiplied lie in the ring

Z2048[x]/(x
509 − 1).

In order to employ 5-way TMVP, the polynomials are padded to different multiples

of 5. Table 4.1 presents the number of operations for hybrid multiplication methods

that are used for the HPS2048509 version.

Table 4.1: Number of operations vs hybrid multiplication method for the
HPS2048509

Method #Addition
Operations

#Multiplication
Operations

#Total
Operations

510
5-way−−−→ 102

3-way−−−→ 34
2-way−−−→ 17 77516 67626 145142

520
5-way−−−→ 104

4-way−−−→ 26
2-way−−−→ 13 76466 46137 122603

525
5-way−−−→ 105

5-way−−−→ 21
3-way−−−→ 7 70832 49686 120518

540
5-way−−−→ 108

4-way−−−→ 27
3-way−−−→ 9 78864 44226 123090

As can be seen from the table above, the least number of operations is achieved when

the padded length is set to 525. However, the difference in the number of operations

between padding to 520, 525, and 540 is not significant. Therefore, we decided to im-

plement these three methods and use the implementation results as the tie-breaker.

The implementation results show that the most performant method appears when

padding is done up to 520. As a result, the hybrid method given in Eq. (4.1) is

employed in the implementation.

520
5-way TMVP−−−−−−→ 104

4-way TMVP−−−−−−→ 26
2-way TMVP−−−−−−→ 13 (4.1)

4.2 NTRUHPS2048677

For this parameter set, the polynomials to be multiplied lie in the ring

Z2048[x]/(x
677 − 1).

In order to employ 5-way TMVP, some polynomial padding methods are employed.

Table 4.2 presents the number of operations for hybrid multiplication methods that

are employed for the HPS2048677 version.
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Table 4.2: Number of operations vs hybrid multiplication method for the
HPS2048677

Method #Addition
Operations

#Multiplication
Operations

#Total
Operations

680
5-way−−−→ 136

4-way−−−→ 34
2-way−−−→ 17 118582 78897 197479

690
5-way−−−→ 138

3-way−−−→ 46
2-way−−−→ 23 137084 123786 260870

700
5-way−−−→ 140

5-way−−−→ 28
4-way−−−→ 7 155170 57967 213137

700
5-way−−−→ 140

5-way−−−→ 28
2-way−−−→ 14 121201 99372 220573

According to Table 4.2, there are three candidates for the most efficient algorithm.

It is common knowledge that the multiplication operation is more costly than the

addition operation. This knowledge brings the third option of Table 4.2 forth. On

the other hand, most of today’s processors can pipeline the instructions, which virtu-

ally equalizes the cost of addition and multiplication operations. Therefore, the first

and last methods presented in Table 4.2 are also considered for the implementation

stage. After the implementations are finished, it is seen that the highest performance

is achieved with the method of padding to 680, which is given in Eq. (4.2).

680
5-way TMVP−−−−−−→ 136

4-way TMVP−−−−−−→ 34
2-way TMVP−−−−−−→ 17 (4.2)

4.3 NTRUHPS4096821

For this parameter set, the polynomials to be multiplied lie in the ring

Z4096[x]/(x
821 − 1).

In order to employ 5-way TMVP, different padding strategies are considered. Ta-

ble 4.3 presents the number of operations for hybrid multiplication methods that are

considered for the HPS4096821 version.
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Table 4.3: Number of operations vs hybrid multiplication method for the
HPS4096821

Method #Addition
Operations

#Multiplication
Operations

#Total
Operations

825
5-way−−−→ 165

5-way−−−→ 33
3-way−−−→ 11 155344 122694 278038

840
5-way−−−→ 168

4-way−−−→ 42
2-way−−−→ 21 169434 120393 289827

840
5-way−−−→ 168

4-way−−−→ 42
3-way−−−→ 14 160789 107016 267805

840
5-way−−−→ 168

4-way−−−→ 42
3-way−−−→ 14

2-way−−−→ 7 146593 80262 226855

850
5-way−−−→ 170

5-way−−−→ 34
2-way−−−→ 17 172921 146523 319444

Looking at Table 4.3, the only method that can be eliminated turns out to be padding

up to 850. Therefore, all the methods shown in Table 4.3 are realized to see the fastest

method. The results show that the fastest multiplication occurs when the method Eq.

(4.3) is employed.

840
5-way TMVP−−−−−−→ 168

4-way TMVP−−−−−−→ 42
2-way TMVP−−−−−−→ 21 (4.3)

4.4 NTRUHRSS701

For this parameter set, the polynomials to be multiplied lie in the ring

Z8192[x]/(x
701 − 1).

In order to employ 5-way TMVP, a few padding methods are examined. Table 4.4

presents the number of operations for hybrid multiplication methods that are exam-

ined for the HRSS701 version.

Table 4.4: Number of operations vs hybrid multiplication method for the HRSS701
Method #Addition

Operations
#Multiplication
Operations

#Total
Operations

720
5-way−−−→ 144

4-way−−−→ 36
2-way−−−→ 18 130476 88452 218928

725
5-way−−−→ 145

5-way−−−→ 29 157030 142129 299159

750
5-way−−−→ 150

5-way−−−→ 30
5-way−−−→ 6 127963 79092 207055

750
5-way−−−→ 150

5-way−−−→ 30
3-way−−−→ 10 131174 101400 232574

750
5-way−−−→ 150

5-way−−−→ 30
2-way−−−→ 15 137427 114075 251502
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Table 4.4 suggests that the least number of operations is achieved when the padding

is done all the way through 750 and 5 − 5 − 5 TMVP configuration is employed.

However, the implementation results show that the first configuration (5− 4− 2) out-

performs all the other competitors. This is because of the fact that modern processors

handle schoolbook multiplication best when the size is close to 16 [37]. As a result,

the chosen hybrid configuration for HRSS701 is the one presented in Eq. (4.4).

720
5-way−−−→ 144

4-way−−−→ 36
2-way−−−→ 18 (4.4)

4.5 Implementation and Results

The multiplication algorithms are implemented using the C language without using

AVX/AVX2 instructions. Thus, it is called C-reference implementation. The results

are obtained by integrating the implemented hybrid multiplication algorithms to the

reference implementation provided by the NTRU team via their GitHub project1. The

software is compiled using make files provided in the GitHub project, and the result-

ing program is run on a computer with an Intel i3-12100F processor.

The timing results are presented in Table 4.5. The results for the Toom4 column

stem from the execution of the code obtained from the GitHub project. This project

employs a hybrid multiplication technique in order to multiply two polynomials: a

4-way Toom-Cook method followed by two layers of Karatsuba methods. Thus the

column name Toom4 is used.

1 The link to the GitHub project is https://github.com/jschanck/ntru

39

https://github.com/jschanck/ntru


Table 4.5: Cycle counts comparison with NIST PQC 3rd round submission of
NTRU[16]

Variant Algorithm Toom4[16] This work Speed-up

NTRU-HPS2048509
Key Generation 1326070 1040750 27%

Encapsulation 128971 105322 22%

Decapsulation 134416 70921 90%

NTRU-HPS2048677
Key Generation 2044569 1523904 34%

Encapsulation 179637 141305 27%

Decapsulation 194402 75514 157%

NTRU-HPS4096821
Key Generation 2755285 2472278 11%

Encapsulation 213529 198014 8%

Decapsulation 220813 162560 36%

NTRU-HRSS701
Key Generation 2096825 1751068 20%

Encapsulation 107203 79549 35%

Decapsulation 202758 118973 70%

As can be seen in Table 4.5, we achieved a significant speed-up in the execution times

of all NTRU primitives. A further observation of the table shows that the speed-up of

decapsulation is much higher than that of others. This is because there exist various

kinds of time-consuming operations in key generation and encapsulation primitives,

while the only time-consuming operation in decapsulation is the multiplication oper-

ation. As a result, the speed-up in key generation ranges from 11% to 34%, and in

encapsulation ranges from 8% to 35%, while in decapsulation the speed-up ranges

from 36% to 157%.

4.6 A Remark on Data Type Constraints

The source code provided in the GitHub project uses the uint16_t data type in

order to hold the coefficients of polynomials. That is why all the implementations

and tests regarding this study are conducted conforming to this preference. On the

other hand, it is possible to use larger data types as the holder of the coefficients

of polynomials, such as uint32_t and uint64_t, when the implementations are

compiled for 32-bit or 64-bit processors. This is rather important because the size of

the data type limits the number of 4-way TMVP steps that one can use in a hybrid

method. Further insight into this limitation could be gained from [37]. One can see
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examples of such algorithms as follows:

512
4-way−−−→ 128

4-way−−−→ 32
4-way−−−→ 8 (4.5)

704
4-way−−−→ 176

4-way−−−→ 44
4-way−−−→ 11 (4.6)

832
4-way−−−→ 208

4-way−−−→ 52
4-way−−−→ 13 (4.7)

Indeed, the methods in Eqs. (4.5), (4.6), and (4.7) outperform their competitors de-

scribed in the previous sections. However, as mentioned before, these methods are

not applicable when the size of the data type is 16-bit or less. As a result, the applica-

tion of the findings of this research on constrained devices can be a further research

topic.
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CHAPTER 5

CONCLUSION

With advancements in the area of quantum computing, post-quantum cryptography

stands out as an aspect that is worth studying. First of all, studies like [2] and [41]

discovered some problems that are hard even in the presence of a full-scale quantum

computer. Then, NIST decided to perform the PQC Standardization Process [17],

whose aim is to encourage studies on post-quantum cryptography and standardize the

post-quantum public key cryptographic primitives. The process is still ongoing with

very few finalists [4].

Most of the algorithms in the NIST PQC Standardization Process depend on hard

lattice problems, such as Shortest Vector Problem, Learning with Error Problem, and

Ring Learning with Error Problem. Some examples for such candidate algorithms

are NTRU[16], Crystals-Dilithium [23], and Saber [48]. This also indicates that

lattice-based cryptography is the top candidate for future public key cryptography.

Therefore, the efficient algorithms and implementation related to LBC need to be

researched in order to advance the practical use cases of LBC further.

In this thesis, we worked on the efficiency of polynomial multiplication in a ring of

the form Rq = Zq[x]/(x
n ± 1), which is the operation that the efficiency of lattice-

based schemes mostly depends on. There exist several polynomial multiplication

techniques in the literature.These are Toom-Cook [19], NTT [20], and TMVP [13]. In

the literature, various techniques are implemented in various situations. For example,

the Toom-Cook method is employed in [48] in order to implement the multiplication

required by the ring of Saber. Similarly, NTT is utilized in the algorithm details

of Kyber [7]. Finally, instances of the employment of TMVP for multiplication in
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lattices can be seen in [37].

Among these, we suggested TMVP for the multiplication of lattice elements. In

addition, we formulated a new 5-way split TMVP technique in order to employ it in

lattice-based schemes. The formulation is performed with the help of a transformation

technique, which is described in [49]. This transformation technique paves the way

to convert a degree-n polynomial multiplication to a size-5 Toeplitz-matrix vector

product. Moreover, the total number of operations of the formulated technique turns

out to be

M(n) = 13M(n/5) + (46n/5− 18)A+ 19n/5Ad.

After the formulization of 5-way split TMVP, we tested it against a commonly used

multiplication algorithm, that is Toom-Cook. NTRU implementation suggested by

[16] performs the multiplication operation using a Toom-Cook 4-way split followed

by two levels of Karatsuba. We call this algorithm Toom4.

In order to test the suggested TMVP-5 algorithm, we replaced Toom4 with TMVP-5

in the NTRU implementation and ran both versions to see the differences in time.

The results showed that we are able to improve the time efficiency of software NTRU

implementations using this new technique. According to the benchmark results, the

suggested algorithm executes faster than Toom4. The results indicate an increase in

the execution speed. Quantitatively, we have speed-ups of

• 27% in key generation, 22% in encapsulation, and 90% in decapsulation algo-

rithms of NTRU-HPS2048509,

• 34% in key generation, 27% in encapsulation, and 157% in decapsulation algo-

rithms of NTRU-HPS2048677,

• 11% in key generation, 8% in encapsulation, and 36% in decapsulation algo-

rithms of NTRU-HPS4096821, and

• 20% in key generation, 35% in encapsulation, and 70% in decapsulation algo-

rithms of NTRU-HRSS701.

With an improvement in the execution time, the 5-way split TMVP algorithm looks

promising for future implementations of lattice-based schemes.
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