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ABSTRACT

SEMI-AUTOMATIC PROMPTING APPROACH WITH QUESTION DECOMPOSITION
FOR MULTI-HOP QUESTION ANSWERING

Kızıldağ, Arif Ozan

M.S., Department of Information Systems

Supervisor: Prof. Dr. Tuğba Taşkaya Temizel

September 2023, 44 pages

With the help of large language models, prompt engineering enables easy access to vast knowledge
for various applications. However, limited research has been done on multi-hop question answering
using this approach. This thesis introduces a new semi-automatic prompting method for answering
two-hop questions. The method involves creating a prompt with automatically selected examples by
grouping answer-named entities from the training set and using a chain-of-thought principle. The
results demonstrate comparable performance to fine-tuned models on the MuSiQue dataset. Ablation
studies further validate the effectiveness of each component in the proposed method. The approach has
the potential to be applied to more complex multi-hop question-answering systems while upholding
performance on par with other state-of-the-art techniques.

Keywords: Large language models, question decomposition, prompt engineering, multi-hop question
answering
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ÖZ

ÇOKLU ADIMLI SORU CEVAPLAMA İÇİN SORU PARÇALAMA İLE YARI OTOMATİK
İSTEMLEME YAKLAŞIMI

Kızıldağ, Arif Ozan

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Tuğba Taşkaya Temizel

Eylül 2023, 44 sayfa

İstem mühendisliği büyük dil modellerinin yardımıyla çeşitli uygulamalar için geniş bir bilgiye kolay
erişim sağlar. Ancak, çoklu adımlı soru cevaplama konusunda bu yaklaşımı kullanan sınırlı araştırma
yapılmıştır. Bu tez, iki adımlı soruları cevaplamak için yeni bir yarı otomatik istem yöntemi tanıtmak-
tadır. Yöntem, eğitim kümesinden cevap adlı varlıkları gruplayarak ve düşünce zinciri prensibi kulla-
narak otomatik olarak seçilen örneklerle bir istem oluşturmayı içerir. Sonuçlar, MuSiQue veri küme-
sinde ince ayarlı modellere kıyasla benzer performans göstermektedir. Ablasyon çalışmaları, önerilen
yöntemdeki her bileşenin etkinliğini daha da doğrulamaktadır. Bu yaklaşım, diğer son teknoloji tek-
niklerle aynı düzeyde performansı korurken daha karmaşık çoklu adımlı soru-cevaplama sistemlerine
uygulanma potansiyeline sahiptir.

Anahtar Kelimeler: Büyük dil modelleri, soru ayrıştırması, istem mühendisliği, çok adımlı soru yanıt-
lama
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CHAPTER 1

INTRODUCTION

The progress in large language models (LLMs) has facilitated rapid advancement in many areas,
including natural language processing (NLP). This progress has encouraged the discovery of new
methodologies, further accelerating the development of LLMs. Today, language models with 175
billion parameters have become standard, whereas just a few years ago, models with 1 billion param-
eters were considered a dream to be reached. The race for a larger model continues, and models with
trillions of parameters are now on the horizon.

Larger models with higher computational power have led to the development of many sub-tasks in
NLP, allowing them to progress further. In the question-answering (QA) area, the previous norm was
reading comprehension, which means answering a question from a given paragraph. However, the
development of LLMs led to more complex trends like multi-hop reasoning, which involves more
than one step to solve a question. For example, if a question asks to return the highest population of
two cities, one first needs to find the populations and then compare them. The new datasets [1] [2]
accommodating these trends have included distractor paragraphs, open-domain contexts, and multi-
hop questions.

The advent of larger models has shifted the training norm from fine-tuning the pre-trained models to
optimizing the input given to the models, known as prompts. This new approach, using zero-shot or
few-shot techniques, exploits the vast knowledge stored within the billions of parameters of LLMs.
This has led to the emergence of a new field known as prompt engineering, which seeks to optimize
prompts given to the models to extract patterns required for specific tasks. Today, this novel technique
is being applied in many new areas to test the limits of LLMs.

Prompting techniques are being tested on increasingly complex question-answering models. The aim
is to create context-aware models that extract knowledge from these sophisticated models. Prompt
engineering has changed the approaches to question-answering models; instead of creating fine-tuned
models to find solutions in context, newer models take advantage of the vast knowledge of LLMs to
answer questions. Researchers are now working on finding optimal ways to create prompts, aiming to
create more efficient and adaptable question-answering models. The synergy between prompting and
question-answering methods is opening the way to many advances in various domains, showing the
unexplored potential of this combination.

One of the most recent topics in the question-answering area is multi-hop question answering. This
field aims to find solutions to complex questions that require multiple steps because they either need
information from multiple sources or include questions with more than one sub-question, like “How
can we solve question-answering problems stated in recent years’ studies?” This question has a sub-
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question of “What question-answering problems have been reported in recent years’ studies?” Without
answering these questions, no one can find the solution to the main question. Although this kind of
question is a natural part of day-to-day speech, it has only recently started to be explored in the NLP
area.

One of the ways to solve multi-hop questions is through question decomposition. This approach mainly
focuses on dividing questions into the smallest meaningful sub-questions. The advantage of finding
sub-questions is that these questions can be more easily solved due to their nature. After solutions
to these sub-questions are found, they can be exploited to find the actual solution to the main ques-
tion. Although the decomposition step creates an additional computational cost, it improves multi-hop
question answering through its reasoning.

This thesis will focus on the intersection between multi-hop question answering, prompt engineering,
and question decomposition. The proposed methodology explores the effectiveness of this conver-
gence by creating a semi-automatic prompting creation approach. The focus of this thesis is to demon-
strate the effectiveness of this approach, specifically within the context of two-hop questions. Utilized
prompts are given at the end of the thesis for future work.

1.1 Research Questions

This thesis aims to answer the following questions:

RQ1: How can prompt engineering and decomposition techniques be effectively utilized to address
the challenge of multi-hop question-answering in the 2-hop questions using a single prompt?

It is hypothesized that solving multi-hop questions can be improved by adding decomposition to find
sub-questions, compared to prompting without decomposition. To explore this, a new prompting
methodology is proposed to incorporate decomposition techniques into prompt creation.

RQ2: Does incorporating context in the decomposition process lead to improved outcomes compared
to decomposing without context when utilizing prompting techniques?

It is hypothesized that some questions require context to be effectively decomposed into sub-questions.
To find an answer to this question, the proposed prompting methodology will include the context during
decomposition, and it will be compared to decomposition without context.

RQ3: When creating prompts, does clustering sub-question answers using named entity recognition
lead to better outcomes compared to selecting the same named entities for examples for few-shot
prompting?

It is hypothesized that during the creation of a prompt, including examples with answers that relate to
similar named entities can degrade the quality of the prompting solutions. To study this phenomenon,
a novel prompt-creation method is developed to select examples with different representative named
entities automatically.

2



1.2 Contributions of the Study

The main contribution of this thesis is to propose a novel prompting approach that includes decomposi-
tion through a chain of thought reasoning. Only a few works combine prompt engineering methodolo-
gies with question decomposition using chain-of-thought reasoning. One notable example is Khot et al.
[3], which employs a modular approach to create decompositions and then addresses the sub-questions
individually. This work integrates a modular approach into a single prompt to address questions using
decomposition, excluding document retrieval. This thesis study differs from Khot et al. [3] in the
way that (i) decomposition is carried out with the help of the context, (ii) prompt creation is made
semi-automatic with the help of answer named entities, and (iii) it uses a single prompt to address both
question decomposition, and the question answering.

The proposed method uses context paragraphs for improved decomposition. In literature, questions
are often decomposed without considering any context. In this work, the proposed model decomposes
questions in the presence of context, using prompt engineering.

The proposed method is a semi-automatic prompt creation method that creates prompts with repre-
sentative different answer-named entities. There are some works, such as Gao et al.[4] and Jiang et
al. [5], that developed methods for automatic prompt creation. In the proposed model, the prompt is
generated semi-automatically. While the initial template of the prompt is crafted manually to suit the
model’s requirements, examples are automatically selected for few-shot prompting. This facilitates the
creation of prompts for new models and datasets. To achieve this, the model finds named entities in
sub-questions answers to group related questions together.

Based on the work of Zhao et al.[6], a comprehensive ablation study is conducted to evaluate the effects
of different choices made when designing the prompt developed in this thesis. This analysis highlights
factors such as the role of decomposition and the inclusion of instructions. The study provides a
guideline for crafting prompts for multi-hop question answering that involve decompositions.

To sum up, contributions of this study are as follows;

• A semi-automatic prompt creation method that creates prompts with representative different
answer-named entities

• The effect of decomposition is shown with the help of context paragraphs.

• A detailed ablation study is carried out to show the impact of different parts of the prompt on
the model performance.

1.3 Organization of the Thesis

The organization of this thesis is as follows: Chapter 2 reviews previous literature and outlines the
reasoning behind this thesis. Chapter 3 explains the prompting methodology from the ground up.
Chapter 4 details the experiments conducted by utilizing the proposed methodology and discusses the
results through a detailed ablation study. Chapter 5 discusses the results and talks about possible future
works. Chapter 6 concludes the thesis and discusses limitations.
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CHAPTER 2

RELATED WORK

In this chapter, related studies are given under four main headings, which are LLMs, multi-hop rea-
soning, question decomposition, and prompt engineering.

2.1 Large Language Models

LLMs have gained immense popularity in recent years, leading companies to compete for the biggest
and most successful models. This trend was made possible by the emergence of the transformer mode
[7], which formed the basis of models like BERT (Bidirectional Encoder Representations from Trans-
formers) [8], RoBERTa [9], BART, Longformer [10], and GPT (Generative Pre-trained Transformer)
[11]. BERT significantly improved upon the original transformer by introducing pre-training and
fine-tuning. Pre-training allows models to learn from vast amounts of unlabeled data, creating repre-
sentations with neighboring tokens. Fine-tuning then leverages this knowledge for downstream tasks,
such as question answering. RoBERTa extends BERT by addressing its limitations through modifica-
tions to the pretraining procedure and training on a larger dataset. Similarly, Longformer overcomes
BERT’s input token limitations by introducing a new attention mechanism that scales linearly with the
sequence length. Another model, BART [12], builds upon BERT’s bidirectional encoder approach,
creating a denoising autoencoder capable of handling a wider range of tasks.

GPT is a series of language models created by OpenAI, utilizing the transformer model and sharing
similarities with BERT. These models employ bidirectional representations for context understand-
ing and can be easily fine-tuned for specific tasks by adding an additional linear layer. OpenAI has
continued to develop larger models, such as GPT3[13], which has 175 billion parameters and enables
few-shot learning. The few-shot learning methodology allows models to reach the underlying knowl-
edge of the LLMs to solve the problems. GPT-3.5, also known as ChatGPT [14], is a version with
conversation capabilities, available through an online platform for data collection and fine-tuning, as
well as an API for more stable access. OpenAI has announced the development of GPT4[15], the
newest model in the GPT family, which possesses multi-modal capabilities, allowing it to process both
images and text. Models after that GPT3 are only accessible with OpenAI’s API. On the other hand,
Meta has created OPT (Open Pre-trained Transformer Language Models) [16] as a rival to GPT3, of-
fering similar performance but being open for use by all researchers. OPT consists of 9 different-sized
models, ranging from 125M to 175B parameters.
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2.2 Multi-hop Reasoning

Multi-hop reasoning is an area that deals with questions requiring multiple information pieces and
the combination of different sources. The name "multi-hop" stems from the need for multiple steps
to complete the reasoning. In the NLP domain, it is commonly used in question-answering models.
Earlier question-answering datasets, like Squad [2], focused mainly on reading comprehension and did
not require multi-hop reasoning. However, advancements in sophisticated models have led to results
comparable to human performance on these datasets.

The advanced question-answering datasets, like HotpotQA [17], have introduced 2-hop bridge ques-
tions derived from the Wikipedia dump using hyperlinks embedded in the opening sentences of doc-
uments. HotpotQA dataset provides two settings: full wiki and distractor. In the full wiki setting,
documents need to be extracted from the Wikipedia dump. In the distractor setting, the model is
trained using two gold paragraphs accompanied by eight distractor paragraphs.

Another dataset is the 2WikiMultiHopQA dataset, as described by Ho et al. [18], which utilizes both
Wikipedia and Wikidata as sources. It incorporates reasoning steps in the dataset and introduces var-
ious types of questions, such as comparison, inference, compositional, and bridge questions. Ad-
ditionally, the dataset includes simple questions generated by rule-based systems, which necessitate
multi-hop reasoning for resolution.

The StrategyQA [19] is another multi-hop dataset consisting of yes-or-no questions that are implicitly
phrased. It was designed to reduce reasoning shortcuts by framing multi-hop questions without direct
references, such as "Did Aristotle use a laptop?". The questions in the dataset were created with a
focus on their feasibility and having definite answers. Additionally, StrategyQA is the first dataset to
include annotated decompositions that relate to specific paragraphs.

FEVER [20], and FEVEROUS [21] emerged, necessitating data extraction from vast sources like
Wikipedia. Some attempts with single-hop models were unsuccessful. To address multi-hop question
answering, different approaches were explored. For instance, Team Papelo [22] created a next-hop
prediction module in FEVEROUS to retrieve related documents in multiple hops. Similarly, Zang et
al. [23] created an iterative document retriever by reranking the documents after each hop. Other
approaches involved using graph reasoning [24] or graph networks [25] to map related documents.
These approaches leverage the interconnectedness of information in order to answer complex ques-
tions. Additionally, some models [26] utilized question decomposition to break down main questions
into smaller ones, which can be solved by single-hop question-answering methodologies.

The advancements in language model based approaches have made significant progress in solving
multi-hop question-answering tasks. However, some of this progress has been achieved by employing
reasoning shortcuts or unintentional data leakage. The MuSiQue dataset [1] is a recent development
designed explicitly to prevent these issues. It adopts a bottom-up approach, utilizing various single-
hop datasets to construct a directed acyclic graph. Carefully crafted questions are formulated based on
this graph. For each question, a total of 20 paragraphs are provided, containing both gold paragraphs
and distractor paragraphs. Moreover, to prevent data leakage between the two sets, the train-test split
is performed by considering underlying single-hop questions, making this a highly challenging dataset
due to its careful construction.
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2.3 Question Decompositon

Question decomposition is the act of breaking down questions into smaller pieces, which are referred
to as sub-questions. This process is particularly important for solving multi-hop questions. Dividing
the main question into multiple sub-questions enables models to comprehend the problems more ef-
fectively, discouraging the use of shortcuts and encouraging the application of multi-hop reasoning
for problem-solving. Xie et al. [27] found that question decomposition is a useful approach for inter-
preting question-answering models. However, they also pointed out that the question decomposition
model has not matured sufficiently to probe these models effectively.

Patel et al. [28] propose a human-in-the-loop approach to solve questions which are first given to hu-
mans to decompose into sub-questions. Then, sub-questions are given to the model, including the final
answers. Although this method shows promising results due to human intervention in decomposition,
it creates a scaling problem due to this necessity. Hence, the authors only solved 50 randomly selected
questions for each dataset. Some of the models utilized unsupervised or distant supervision to solve
decomposition problems. Khot et al. [29] proposed the Text Modular Network and Modular QA ar-
chitecture, in which models create sub-questions with the help of the context and distant supervision
hints. After creating this decomposition, a question is divided into five sub-categories: difference,
comparison, complementation, composition, and conjunction. For each sub-category, specific rules
are set to solve that specific type of question. In this way, their models are able to work in conjunc-
tion with small math models like difference. Perez et al. [30], on the other hand, created a list of
candidate single-hop questions to match multi-hop questions and then solved the main questions by
concatenating sub-questions together. Min et al. [26] proposed the DecompRC model, which utilizes
span detection and Bridge and Comparison reasoning types to find sub-questions. This approach is
motivated by the fact that decomposition with the help of humans is costly.

Some models like DecomP [3] utilize prompt engineering to decompose the questions. This model
utilizes vast knowledge of the LLMs to solve the decomposition problems. This model is explained in
detail under the prompt engineering subsection.

2.4 Prompt Engineering

Prompt engineering is a recently emerging area that deals with LLMs and few-shot learning, opti-
mizing prompts for different tasks and providing these prompts to large models to obtain the desired
answers. Unlike traditional supervised learning, where the model needs to be fine-tuned to achieve
success, in prompting, there is a need to give some questions or sentences with an empty space inside
it.[31]

Manual prompts are typically crafted by humans, often requiring multiple attempts and adjustments
to get the format right. Creating these prompts demands expertise in the subject and can be time-
consuming [31]. In contrast, automatically generated prompts can sometimes use unnatural language,
especially when directly optimized. [5].

Petroni et al.[32] explore using language models as knowledge bases by creating the LAMA dataset,
which provides templates for probing them. Brown et al. [13] design manual prefixes to run their
GPT-3 model for various NLP tasks. Meanwhile, Schick and Schütze craft prompting templates for
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text generation and classification in several studies [33] [34]. Schick and Schutze [35] and Schick et
al. [36] search predefined prompt temples and find the labels for them.

Gao et al.[4] propose a method to find the optimal prompt format by first selecting label words and
then converting them into a prompt format. It utilizes RoBERTa [9] model to fine-tune for prompting.

There are several ways to utilize the prompting methodology with LLMs. One approach is to fine-tune
the models using structured prompts. In this methodology, models are trained using structured prompts
as inputs from the training set. When validation questions are presented in the same format, answers
can be obtained from the model.

A prompt can be run in a few-shot or zero-shot format where there is no fine-tuning required. In
zero-shot, only the question to be answered is asked, and the model returns an answer. On the other
hand, in few-shot prompting, example questions and answers to solve the main question are carefully
selected. These example questions provide the model with guidance on how to solve the problem.
These approaches work due to innate connections inside the LLMs. When an instruction is given,
the model calls related neurons to return the appropriate responses. This can be achieved with either
long instructions or short commands like "Do this". These instructions guide the model’s reasoning
to achieve results without any fine-tuning. The process is also known as context learning. Dong et
al. [37] highlight that this method offers an easy-to-understand interface. It learns in a way similar to
humans and does not require any training.

In few-shot prompting, the structure of the prompt is important. There are numerous different elements
in the prompts, such as the question, answer, and context. The order of these elements, as well as the
order of the question examples, are crucial factors to be considered. Lazaridou et al. [38] demonstrate
that placing context in the middle, to bridge the distance between the question and answer decreases
the scores of the model. This is attributed to the problem of integrating long context in language
models. Similarly, Zhao et al. [6] explore the effects of examples in the few-shot format. They state
that language models have a bias towards the most recent example and towards repeated tokens. They
also demonstrate that increasing the number of examples does not always yield better results and can
sometimes produce worse outcomes.

Another type of prompting is the chain of thought prompting, which generates reasoning steps to find
the actual answer instead of creating the answer directly. This way, the model has time to process and
reach a reasonable conclusion. It also allows the model to be more interpretable. Wei et al. [39] show
that chain of thought prompting outperforms normal prompting methods.

Dua et al. [40] developed an approach to decompose questions using successive prompting. This can
be done through either in-context learning or fine-tuning the model. In their method, questions are first
split into smaller ones using prompts. After solving these smaller questions, the answers are combined
to produce the final solution. Therefore allowing them to separate tasks of decomposition and question
answering from each other.

The DecomP model [3], proposed by Tushar Khot et al., is a very recent model that takes the prompting
approach to an extreme. It creates prompts as a modular structure by dividing tasks into smaller
subtasks and solving them that way. The main controller prompt consists of limited few-shot examples,
and at every stage, it refers to other prompts using square brackets. When the main prompt encounters
them, it calls the sub-function stated in square brackets and returns the solution from this prompt in the
next line, running the prompts again. Prompting ends when the prompt returns ’EOQ’ (end of question
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function). Furthermore, sub-functions can call other sub-functions, creating a hierarchical chain that
returns the required solutions. The main advantage of this model is its modularity, allowing it to be
adapted to almost any task with little tweaks. However, due to the modular approach, even the simplest
tasks will require more than one prompt, increasing the computational cost.

2.5 Conclusion

The General NLP QA area is rapidly developing, with the emergence of larger and better models and
approaches leading to improved solutions. This progress has paved the way for exploring new and
interesting areas, such as multi-hop reasoning and decomposition. Consequently, more challenging
datasets like MuSiQue have started to emerge to accommodate these advancements.

Prompt engineering has provided easy access to LLMs instead of traditional fine-tuning methodolo-
gies. This emerging approach has recently attracted the attention of researchers. As far as I know, there
is only one research [3] that merges these concepts together, wherein the general focus is not on QA
methods but rather on a general framework for mostly logical reasoning data. In their methodology,
they introduce a controller prompt and several sub-function prompts. The controller prompt processes
the primary question and invokes the sub-function prompts by referring to their tags enclosed in square
brackets. Whenever a square bracket is detected in the controller, a new prompt is triggered with the
relevant information. The results from this are then relayed back to the controller prompt, and the
generation resumes. The process concludes once the end of the question tag is recognized.

This thesis will focus on creating a compact approach to solving multi-hop questions with a semi-
automatic prompt-creating approach that utilizes unique characteristics of the MuSiQue dataset. The
approach will use a prompting technique to solve questions with a chain of thought reasoning, allowing
for the decomposition of complex questions.
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CHAPTER 3

METHOD

This thesis proposes a semi-automatic prompt engineering method for solving multi-hop questions us-
ing question decomposition. There has been limited research on multi-hop reasoning using a prompt
engineering approach. The most similar work [3] uses a controller and sub-functions framework, in-
stead of relying on a single main prompt. Their approach resembles object-oriented programming. The
controller prompt initially receives the main question and subsequently invokes single-hop question-
answering prompts to address the sub-questions sequentially. These prompts can further call for other
prompts to solve the problem. However, there are several differences between their approach and the
method proposed in this thesis. Firstly, the proposed method uses context information to decompose
the questions more accurately. Some questions are intrinsically created and rely on context for decom-
position. However, in their approach, the context was only used during the answering phase, not the
decomposition phase. Secondly, the main part of the proposed method consists of only one prompt,
unlike the other approach, which uses five different prompts. This approach may reduce system mod-
ularity, but it significantly decreases complexity and computational costs. Lastly, the proposed model
employs chain-of-thought prompting techniques to achieve superior results, instead of using one-word
instructions that would call other prompts.

The proposed method consists of three components; pre-processing, prompt creation, and few-shot
prompting. This section discusses each component and the thought processes behind their develop-
ment.

3.1 The Scope of the Method

The training input data required for the method should include (1) the relevant content for the question
e.g. the gold paragraphs with the correct answer to the question, (2) the main question to be answered,
(3) exemplar sub-questions as they are important for the semi-automatic prompt generation, and en-
hancing the model’s chain of thought, (4) the correct answer. An example of input data can be seen in
Figure 1.

The model is designed to handle bridge questions, which involve selecting embedded questions within
each other during the pre-processing step. In multi-hop reasoning, bridge questions are typically con-
nected by a named entity or the answer to a sub-question. These sub-questions are merged with other
sub-questions by replacing the named entity with a paraphrased version of the first sub-question. For
instance, in Figure 1, named entity "#1" replaced by "the country where the film Duhulu Malak was
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Gold paragraph 1: [Title: Duhulu Malak] (Omitted for clarity)
Gold paragraph 2: [Title: Sri Lanka national cricket team] (Omitted for clarity)
Main Question: When did the country where the film Duhulu Malak was produced win the World
Cup?
Sub-question 1: Which was the country for Duhulu Malak?
A1: Sri Lanka
Sub-question 2: When did #1 win the world cup
Expected answer: 1996

Figure 1: An example data

Question: When was the institute that owned The Collegian founded?
Sub-question 1: The Collegian → owned by
Sub-question 2: When was #1 birthed?

Figure 2: An example for incomplete sub-question

produced" which is paraphrased version of the sub-question 1. While bridge questions can cover a
range of topics, this thesis primarily focuses on general questions rather than logical reasoning.

The scope of the method is defined as follows to reduce the complexity and the computational cost:

• The method works with two-hop questions,

• The method needs relevant content such as gold paragraphs to be able to generate questions.

3.2 Pre-processing

Certain pre-processing methods should be applied to the dataset before applying the model. For in-
stance, the dataset might not include uniformly structured questions, which may impair the perfor-
mance of the model. Moreover, it might not satisfy the model prerequisites. Therefore, the following
steps are conducted:

• Remove the questions if they do not include two hops

• Eliminate the questions containing sub-questions with incomplete sentences. The example in
the Figure 2 shows the problem in sub-question 1.

• Select the main questions having a question inside the question. This is achieved by using regex.
These questions have sub-questions in which a named entity is replaced by another sub-question.
This process and its motivation are explained later in this section.

The first step in the pre-processing involves removing questions with three or more hops. This is
because bridge questions with more than two hops are less common compared to those with two
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Question: What city is the person who broadened the doctrine of philosophy
of language from?
Sub-question 1: Who broadened the doctrine of philosophy of language
Sub-question 2: What city is #1 from?

Figure 3: Example question after pre-processing

Use minimal answers.
What is the named entity type of the following phrase?
Answer

Figure 4: Prompt used for named entity extraction

hops. Additionally, bridge questions with more than two hops can have different structures. For
example, there are three sub-questions named as A, B, and C. In a three-hop question, the bridges
could be between A and B, and B and C, or A and B directly bridged to C. Similarly, four or more
hop questions have more possible bridge connection types. Therefore, only the two-hop questions are
selected to simplify the later processes since they have only one possible connection type.

To further reduce the computational cost and create a uniformly distributed dataset, a subset of ques-
tions is selected by utilizing named entities inside the sub-questions. This process is done by replacing
the named entity of the first sub-question (inside question) with “.*” and doing regex matching with
the main question. Only the questions that match regex are kept in the dataset. Figure 3 shows an ex-
ample question after pre-processing and regex matching between them. As can be seen, sub-question
2 includes the "What city" and "from?" phrases, which is also present in the main question.

3.3 Prompt Creation

Prompt creation is a two-step process. The first step is to cluster sub-question answers based on their
named entities in the training dataset. In this way, different prompts can be created according to the
named entity types. The problem of repetitive use of similar answers in the prompt makes the model
biased towards certain answers and therefore degrades performance. This issue will be discussed in
Chapter 4.

The answers are clustered with the help of ChatGPT. The prompt in Figure 4 is used to retrieve the
named entity types of all the questions in the training dataset.

The first line of the prompt helps reduce the size of the output, and prevents ChatGPT from printing a
long string of text. The second line specifies the rules of the selection of the named entity. The third
line represents the answer to be extracted from the dataset. Once they are extracted, all the results are
converted to lowercase, and punctuation is removed, such as transforming answers like “Location”,
“location”, and “location” into one. Initially, there were 56 named entities for the inside question
answers, and 151 for the main answers. However, the output included similar named entity categories,
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Context1: [Title: (title1)] (context1)
Context2: [Title: (title2)] (context2)
Q: (main question)
Decompose Q to the maximum number of meaningful sub-questions. Use
minimal answers and keep named entities, adjectives, adverbs when possible
in your answers.
Q1: (sub-question1)
A1: (sub-question1 answer)
Q2: (sub-question2)
A2: (sub-question2 answer)

Figure 5: Main prompt

such as “brand” and “brand company”. To further reduce the number of named entities, ChatGPT is
used to reduce the group by giving the list of named entities. The utilized prompt consists of a list
containing all the named entities and their number of occurrences in the dataset, along with a line
stating, ’merge similar named entities.’ The response returned a list of named entities grouped by their
similarities. Finally, 25 named entities for the inside question answers and 67 for the main answers
are obtained. Figure 8 in Appendix B shows the distribution of the named entities before and after
merging.

The second step is the creation of the actual prompt itself. The main bulk of the prompt is selected by
the questions from the training set utilizing the method above. The prompt utilized is shown in Figure
5.

Other prompting methods are also tested, showing that the best results were obtained using this partic-
ular format, which was documented as an ablation study in Section 4.5. During decomposition, certain
questions require context to be present due to implicit wording in the main questions. Similarly, titles
are necessary because they do not appear in the context. The following instruction is added to the
prompt: "According to context above, answer the following question with the shortest answer".

Each prompt consists of six questions from the training set and one from the validation set. The
question from the validation set is always positioned as the last question in the prompt. For validation,
sub-questions and sub-question answers from the prompt are removed because these lines are expected
to be generated by the model. Examples are selected from the training set, where questions are grouped
by their answer named entities. After the prompt format is manually crafted, the model automatically
chooses six examples to finalize the prompt.

3.4 Few-shot Prompting

After prompt generation, ChatGPT or GPT 3.5 is used for the prompts and to obtain the predictions.
Open AI’s API provides significant computing power with the cost of 0.0015$ per 1000 input tokens
and 0.002$ per 1000 output tokens (June 2023). Although it still has a considerable cost (using this
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model, running 200 prompts costs around 1$), compared to the other options, it is favorable consider-
ing the complexity of creating and debugging an LLM.

Another model, OPT (Open Pretrained Transformer), is also tested on local devices. A commercial
computer with an Nvidia 3060 mobile with 6GB of memory could barely run a 1.3B parameter model.
Another device with Nvidia TitanX can run a 2.7B parameter version. The problem is that smaller
models generally have worse scores than the larger versions on prompting [13]. Another option was
using TRUBA (Turkish National Science e-Infrastructure). The problem is that the large models re-
quire a lot of GPUs. Clusters with 16 GB V100 GPUs, OPT-175B requires 22 (https://alpa.ai/opt). It
means almost reserving all the infrastructure, meaning waiting nearly a month in the queue to obtain
the results (not including unexpected errors, which resets waiting time).

Comparing these two factors, ChatGPT selected for modeling purposes, which tends to give long and
drawn-out answers. To solve it, the prompt contains a set of rules for the answers, shown in the
last part. After obtaining the prompt results, the last line generated by the model is retrieved, which
includes “A2” and extracts the results. The extracted result was compared to the actual results with
Exact Match (EM) and F1 score metrics. These results are discussed in Chapter 4.
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CHAPTER 4

EXPERIMENTS

This chapter presents the experiments to test the proposed model’s performance, including sub-sections
on Dataset, Experimental Setup, Compared Models, Results, and Ablation Study.

4.1 Dataset

In this thesis, the MuSiQue, a multi-hop question-answering dataset, is used [1]. It consists of 24,814
two to four-hop questions. Most of the questions fall into the 2-hop category, whereas the 3-hop and
4-hop questions constitute a much smaller portion of the data set due to their distinct structures.

The dataset is specifically designed in a bottom-up approach to minimize data leakage and discon-
nected reasoning. To achieve this, the dataset was thoroughly constructed with certain rules in mind.
Each question in the dataset is accompanied by its decompositions. These sub-questions were obtained
from five different single-hop datasets: SQuAD [2], T-REx [41], Natural Questions [42], MLQA [43],
and Zero Shot RE [44]. The questions were then organized into a directed acyclic graph, and new
multi-hop questions were generated by establishing links between questions using named entities.

The dataset was split into train, validation, and test sets in such a way that no single-hop question was
shared between different sets. This approach prevents data leakage between the training and validation
sets. Table 1 presents the breakdown of the examples in each set, categorized by the number of hops.

Table 1: Dataset statistics of MuSiQue-Ans

Hop Count Train Dev Test Total
2-hop 14376 1252 1271 16899
3-hop 4387 760 763 5910
4-hop 1175 405 425 2005
Total 19938 2417 2459 24814

The MuSiQue dataset offers two options: answerable and full. The answerable option includes only
the questions that can be answered, along with their corresponding context. The full option includes
answerable questions and the same questions with one of the required contexts removed. For example,
the full dataset contains both the example shown in Figure 1 and another version with gold paragraph
2 removed.
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For this thesis, the MuSiQue-answerable option is utilized as the gold paragraphs are needed as relevant
context for the method. Using the full dataset requires a proper method to find relevant documents,
but the proposed model lacks this capability. Unanswerable questions in the MuSiQue full rely on this
document finding process.

4.2 Experimental Setup

The experiments conducted in July 2023 used the OpenAI API with the model "gpt-3.5-turbo" or Chat-
GPT. Few-shot prompting examples were pre-processed using the steps from Chapter 3. A total of 10
example questions were selected to test the proposed model. Six of these examples were incorporated
into the proposed model, while the remaining examples were employed for ablation studies that re-
quire more than six examples only. The examples for few-shot prompting and the main prompt format
can be found in Appendix A.2.

4.3 Compared Models

To ensure a fair comparison of the proposed model, two baseline models with different prompting ap-
proaches and incorporated four additional baseline models [1] specifically designed for the MuSiQue
dataset are utilized. One baseline approach utilizes the few-shot method, where only questions and
answers are provided. Another approach employs a zero-shot methodology. On the other hand, base-
lines from the MuSiQue dataset use fine-tuning techniques with varying strategies. The following
subsections provide a detailed description of these models.

4.3.1 Baseline 1

The first baseline model’s prompts consist of questions, sub-questions, and answers without context
or chain-of-thought reasoning. Figure 6 shows the prompting format of the first baseline model. The
questions used as examples for n-shot prompting are identical to those tested with the proposed model,
ensuring a fair comparison. The order of the example questions was kept the same, with only the
context, and the instruction stating the generation rules. The full prompt can be seen in the Appendix
A.1.

4.3.2 Baseline 2

In the second baseline approach, ChatGPT is used to answer questions directly in a zero-shot format
without providing any examples or decomposition. A chain-of-thought reasoning step with additional
instructions is added to get more concise answers. Figure 7 shows the prompt format of the second
baseline model.
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Q: (Example question)
Q1: (sub-question1)
A1: (sub-question1 answer)
Q2: (sub-question2)
A2: (sub-question2 answer)
-
.
.
.
-
Q: (Example question)
Q1: (sub-question1)
A1: (sub-question1 answer)
Q2: (sub-question2)
A2: (sub-question2 answer)
-
Q: (main question)

Figure 6: Baseline1 prompt format

Context1:[Title: (title1)](context1)
Context2:[Title: (title2)] (context2)
According to context above, answer the following question with the shortest
answer:
Q: (main question)

Figure 7: Baseline2 prompt format
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4.3.3 State of the Art Models

The MuSiQue dataset also incorporates four baseline models for comparison purposes, as described
in Chapter 2. The first model is an end-to-end approach, which takes context and questions as input
and directly provides answers as output. The second model, known as the "select and answer" model,
operates in two steps: it first selects relevant context paragraphs and then answers the question based on
the selected paragraphs. Both of these models are fine-tuned using Longformer [10] and the selection
mechanism of the second model utilizes RoBerta model [9].

The other two models are the step execution models. They start by creating a directed acyclic graph
composed of decompositions. This is achieved by training with BART-Large [12] on gold decomposi-
tions. Subsequently, the first two models utilize these decompositions to generate answers.

Please note that these models utilize paragraph retrieval, either adding extra steps to extract gold para-
graphs or using all paragraphs from a dataset where each question has a total of 20 paragraphs. In this
thesis, gold paragraphs are used directly due to the token limit of the GPT model. Moreover, using
gold paragraphs simplifies the problem by focusing on decomposition as the main objective.

4.4 Results

As explained above, six different baseline models are selected for comparison with the proposed
model. The first comparison was made with the models published by the authors of the dataset. On
their GitHub page, validation predictions for each model are available. To obtain predictions for the
subset used in this thesis, the predictions are extracted by matching question IDs between the subset
and the predictions. The results obtained for each of the four models are presented in Table 2. It is
worth mentioning that the F1 scores were 0.02 higher than the results on the whole dataset.

Table 2: Evaluation results

Model EM F1
dev_end2end_model 0.3385 0.4355
select_answer_model 0.3906 0.4853
step_execution_by_end2end_model 0.4167 0.4652
step_execution_by_select_answer_model 0.4375 0.5158

The proposed method explained in Chapter 3 is used for testing its performance. After preprocessing
the dataset and obtaining the subset, six example questions are extracted for n-shot prompting from
the training set. In this process, after identifying named entities from answers to the first and second
sub-questions for the whole training subset, a random question is selected. Then, any other questions
containing the same named entities are removed from the selection pool. This procedure is repeated
until six examples are extracted for prompting. Questions are then put into the proposed prompt format.
The prompt can be found in Appendix A.2. After creating the n-shot part of the prompt, a question
from the validation set is merged by utilizing the same format except for sub-questions and answers,
which are expected to be generated by ChatGPT.
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The comparisons are carried out using the exact match and F1 scores. Additionally, the answers that
ChatGPT did not provide are collected by filtering the outputs for negative words such as ’no’, ’not’,
and ’unknown’. This was necessary because ChatGPT tends to provide "do not know" answers.

Table 3: Evaluation results: baseline1, baseline2, and proposed model

Model Exact Match (EM) F1 Score "Do not know" Predictions
Baseline1 (Run1) 0.146 0.238 40
Baseline1 (Run2) 0.130 0.233 37
Baseline1 (Run3) 0.161 0.270 34
Baseline2 (Run1) 0.448 0.581 5
Baseline2 (Run2) 0.448 0.588 5
Baseline2 (Run3) 0.471 0.584 5
Proposed Model(Run1) 0.620 0.732 5
Proposed Model(Run2) 0.619 0.725 2
Proposed Model(Run3) 0.620 0.728 3

The results are presented in Table 3. Due to inconsistencies in the performance of ChatGPT, three
different results are collected for each model with the same selected examples. Among the three
models, the "Baseline 1" performed the poorest. This approach relies heavily on the internalized
knowledge of the language model to solve the problem. It achieved an average exact match score
of 0.15 and an F1 score of 0.25. The "Baseline 1" model provided more "do not know" answers,
indicating that the model generated answers without any knowledge of the contexts.

The second baseline model demonstrated comparable performance to the proposed model, although
with a slight 0.17 margin lower in both the exact match and F1 scores. During the experiments,
it is observed that this approach can generate correct responses if allowed to provide long answers.
However, when employing the chain of thought reasoning to limit the output length, it tended to select
incorrect outputs.

Lastly, the proposed model outperformed the other baseline models, achieving an average exact match
score of 0.62 and an F1 score of 0.73. Although the presence of "do not know" answers decreased over-
all, this could be attributed to the context and example questions. The proposed model demonstrated
superior performance compared to the baselines.

4.5 Ablation Study

During the development of the proposed model, several key decisions were made. To demonstrate the
effectiveness of these decisions, six different ablation studies were conducted to analyze the effects of
each decision. These decisions have a direct impact on the model’s prompt, which in turn influences
the results generated by the model. The prompts for the ablation study were designed by selectively
removing or altering specific sections of the original prompt. Each subsection of the study provides an
explanation of a decision step and its respective effects on the actual model.
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4.5.1 N-shot Number of Example Questions

Zao et al. [6] state the importance of the structure of the prompt in a few-shot format, which has a
tendency to high variance due to selected examples. This variance is caused by models copying hidden
correlations between example questions, even down to small details such as the second character of the
answers or the number of words in the sub-questions. To mitigate these hidden correlations, increasing
the number of examples can be helpful, but it introduces challenges, such as lengthy prompt size. This
increase in prompt size not only escalates computational costs, but also poses issues with the input
size limitations of the model. The default model of ChatGPT supports up to 4k input tokens, and
accommodating varying context sizes requires a flexible input size.

Table 4 displays various example sizes and their corresponding results on the utilized subset. Addi-
tional examples were chosen from the dataset to increase the example size, following the same method
of selecting them based on different answer-named entities. The model is tested with up to 10 ex-
amples; however, the input size limitation of 4k tokens prevented me from running more than seven
examples. The results show that an increase in the example size generally leads to improved perfor-
mance, except for the case of 4 example prompts. The drop in performance could be attributed to two
factors: random chance or a hidden correlation between the fourth example and the first three. The
models with 6 and 7 few-shot examples demonstrated the best performance in terms of exact match,
while the 7-example solution yielded the highest score in the F1 category.

The proposed model uses six examples for two reasons: First, no notable improvements are observed
when the example size is increased to seven. Second, selecting six example models provides the
prompt with a margin for error, allowing it to accommodate examples with larger contexts.

Table 4: The first ablation study shows the performance of the model with respect to the different
number of examples in the prompt

Model Exact Match (EM) F1 Score "Do not know" Predictions
Model 1 Example 0.526 0.632 6
Model 2 Example 0.554 0.689 7
Model 3 Example 0.583 0.707 8
Model 4 Example 0.563 0.683 3
Model 5 Example 0.604 0.720 3
Model 6 Example (Proposed, Average) 0.620 0.728 3
Model 7 Example 0.620 0.752 2

4.5.2 The Impact of Including the Context

Another thing to consider is the impact of adding context to the prompt. LLMs are generally believed to
contain vast knowledge and can easily answer common questions without any context. This means that
adding context could have minimal effects due to question decomposition. To test this, a new prompt
is created by removing context from the main prompt. This new prompt consists of six examples, each
containing a main question, instructions, sub-questions, and sub-question answers. This prompt is a
similar model except for the instructions, which provide a chain of thought reasoning similar to the
proposed model.
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As shown in Table 6, the result demonstrates a significant performance loss in terms of exact match and
F1 scores, as well as more negative predictions. Compared to the first baseline, it has fewer negative
predictions but yields similar results. This means that adding the instructions alone allows the model
to answer more questions, although incorrectly.

4.5.2.1 The Impact of Inaccurate Selection of the Context

After examining the system’s performance without any context, the impact of introducing random
context is explored further. To do this, two random contexts are selected from the dataset for each
question in the validation set while keeping the example contexts the same as in the proposed model.

The results in Table 6 indicate that its effects are the worst among all the ablations conducted, even
compared to not using any context. This suggests that using incorrect context impacts the performance
significantly.

4.5.2.2 The Impact of the Context on Decomposition

The impact of using context during decomposition is assessed by calculating F1 scores for each sub-
question. Table 5 presents results for inner (sub-question1) and outer questions(sub-question2). Some
question decompositions include only one sub-question. This is due to missing context or because the
question is directly answered by the first sub-question. The Table provides F1 scores both with and
without considering these questions.

The results show that outer questions have a higher overall F1 score than inner questions. This is
expected because, during the preprocessing step, the structure of the sub-question is retained in the
main question. Whether answers from one sub-question are included or excluded, the F1 scores for
inner questions remain close to each other. However, the score for outer questions increases when
the exclusion of the F1 score calculation occurs. Furthermore, adding context during the decompo-
sition process slightly improves the performance of the decomposed question. At the same time, it
significantly increases the answer performance.

Table 5: Results sub-question F1 scores according to context

Model Sub-Question1 F1 Sub-Question2 F1 One Sub-Question
Questions Removed

with incorrect context 0.644 0.727 -
without context 0.690 0.858 -
Proposed (average) 0.692 0.840 -
with incorrect context 0.646 0.801 18
without context 0.690 0.858 0
Proposed (average) 0.693 0.880 9
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Table 6: Results of ablation studies with modified prompts

Model Exact Match (EM) F1 Score "Do not know" Predictions
with incorrect context 0.099 0.130 55
without context 0.135 0.234 14
without chain of thought 0.500 0.662 10
with additional instruction 0.505 0.629 10
without decomposition 0.542 0.695 2
same named entity 0.542 0.689 6
changed order of examples 0.600 0.714 7
Proposed 0.620 0.728 3

4.5.3 The Impact of Chain of Thought

The model presented in this thesis utilizes chain-of-thought reasoning by incorporating instructions, as
demonstrated in Chapter 3. It is proposed that adding this reasoning can improve the model’s overall
reasoning capabilities. However, by increasing the prompt size with unnecessary tokens, the model’s
performance may also be negatively affected. To assess the impact of this reasoning approach, two
tests are conducted. The first test involved removing the instructions entirely, while the second test
increased the word count by adding more words.

4.5.3.1 Removal of the Chain of Thought

In the first test, the instructions from the prompt are removed. Hence, the new prompt consists of
contexts, main questions, sub-questions, and sub-question answers. The same six examples are used
for a fair comparison.

As shown in Table 6, without the context, the results yielded an exact match (EM) score of 0.5 and an
F1 score of 0.662. Additionally, there were 10 question responses containing unknown results. This
represents a decrease of 0.12 points in the EM score and 0.5 points in the F1 score compared to the
proposed model. The significant decrease in the EM score compared to the F1 score is related to the
instructions, which states the rules for selecting the answers.

4.5.3.2 Effect of Length of the Chain of Thought

The other side of the scale is increasing the instructions. For this purpose, ChatGPT is asked to bloat
the instructions. The following new instructions are obtained;

In order to achieve comprehensive decomposition, ensure that sentence Q is fragmented
into an extensive assortment of profoundly meaningful sub-questions. Employ succinct
answers that retain named entities, adjectives, and adverbs whenever feasible, thereby
optimizing the process.
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This new line replaced the original instructions in the prompt and obtained a new prompt consisting of
contexts, main questions, sub-questions, and sub-questions answers.

As shown in Table 6, without the context, the results yielded an exact match (EM) score of 0.505
and an F1 score of 0.669. Additionally, there were 10 question responses containing unknown results.
The results are very similar to the prompt without context. From the results, it can be deduced that
bloating the prompt with an increased number of unnecessary tokens creates complexity for the model.
Moreover, increased tokens create distance between the main question and the answers, causing the
model to miss strong reasoning relations between them.

Based on both results, it can be deduced that when adding a chain of thought reasoning to a prompt
model, careful consideration must be given. These lines should be concise to avoid creating distance
between the related elements.

4.5.4 Effectiveness of Decomposition

To investigate the impact of decomposition on multi-hop questions, the main focus of this thesis re-
volves around the question of decomposing them. In order to observe the effects of decomposition,
a new prompt was created by removing the sub-questions and their corresponding answers. Instead,
the final solution was substituted in their place. As a result, the prompt now comprises contexts, main
questions, instructions, and the answer.

As shown in Table 6, the model without the decomposition component exhibits a significant drop in
the EM (exact match) score, while experiencing only a slight decrease in the F1 score. This drop can
be attributed to the model producing additional artifacts instead of solely returning the answers. When
compared to the second baseline model without examples, this model performs better. However, with
only the answers provided, the model fails to identify the required solution structure correctly.

4.5.5 Effectiveness of Named Entity Grouping

The last ablation study examines the effects of selecting different named entities during the prompt
creation process to demonstrate their effectiveness. For this purpose, six examples are chosen with
the same named entities, where the answers to the first sub-questions were selected as locations, and
the answers to the second sub-questions were chosen as numbers. Apart from that, the same prompt
structure is maintained.

In Table 6, it can be observed that utilizing the same named entities resulted in worse performance
compared to the proposed model, with an EM score of 0.521 and an F1 score of 0.665. The hidden
correlations between examples can arise from selecting the same structure, evidently contributing to
the decrease in performance. This correlation, in turn, leads to a loss in performance.

4.5.6 Order of the Examples

The problem of recency bias arises when creating prompts, as models tend to establish stronger con-
nections between related texts that are close to each other. This applies to various elements of ques-
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tions, such as context, sub-questions, main question, and answer, as well as between examples used
for few-shot prompting [38]. To demonstrate this effect, the order of the examples in the model is
rearranged.

To achieve this, a new prompt is created by swapping the places of questions in the first and fourth
places with the last and third places. The new prompt was then put to the test again utilizing ChatGPT,
and the results can be seen in Table 6. The obtained results are very close to the proposed model, with
a slight reduction in EM and F1 scores.
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CHAPTER 5

DISCUSSION AND FUTURE WORK

In this chapter, the results related to the research questions, followed by an exploration of potential
future work, will be discussed.

5.1 Discussions

The results from the previous chapter show that the proposed model has an advantage over the other
prompting techniques that do not include parts of the proposed model.

RQ1: How can prompt engineering and decomposition techniques be effectively utilized to address
the challenge of multi-hop question-answering in the 2-hop questions using a single prompt?

The proposed model demonstrates how to integrate prompt engineering and decomposition using the
MuSiQue dataset and GPT-3.5. The results indicate that using decomposition in a prompt combined
with a chain of thought reasoning yields better performance than using without it. This chain of
thought approach enhances the model’s scores by allowing it to think and reason through multiple
steps, ultimately leading to a more informed conclusion.

The proposed model is designed and tested for 2-hop questions. This can be extended by either adding
multi-hop questions with more than two hops or using a broader subset of questions. In the broader
subset approach, it is important to select questions carefully. This means having an equal number of
examples from different question types while still grouping them by named entities as in the original
model. For questions with more than two hops, new examples should be added. The main challenge
is that questions with three or more hops can have varied connections between their sub-questions. It
is essential to provide examples from all these connections in the few-shot samples for the model to
handle such questions correctly.

The proposed model can be extended by retrieving documents between gold and distractor paragraphs.
This can involve adding a new prompt before the current model, which will determine the appropriate
context for the questions. This selection can be done using a zero-shot approach or by including one or
two examples in a few-shot approach. The method can also benefit from the conventional capabilities
of ChatGPT. Instead of sending just one prompt to the model and using the given answer, one could
extend the conversation with the OpenAI API by adding more instructions before or after the initial
method. While this can offer more flexibility, it could also raise the computational costs significantly
due to repeated prompt submissions.
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In the ablation study, six different versions of the proposed model are tested by removing parts of
the prompt. The study showed that removing the context and giving incorrect context led to the most
significant performance drop. On the other hand, changing the order of the questions resulted in the
least performance drop. These can be attributed to the method’s reliance on the context and the named
entity grouping of different questions respectively. Using models other than ChatGPT might yield
different results, especially if the new language model is trained on the MuSiQue dataset or datasets
from which it sources sub-questions. The results of the ablation study could also vary depending on
the internal reasoning of other models.

RQ2: Does incorporating context in the decomposition process lead to improved outcomes compared
to decomposing without context when utilizing prompting techniques?

In Chapter 4’s ablation study, the context is removed from the prompt to highlight the difference
between its inclusion and exclusion. the effects of using gold paragraphs are tested against random
contexts selected for each question. Finally, the F1 score for sub-questions is calculated to gauge the
influence of context on the generated sub-questions.

The results clearly show that excluding the context leads to a significant drop in performance when
answering questions. However, sub-question F1 scores indicate a slight increase in performance. When
context is provided during decomposition in the proposed method, the model can directly answer
the questions instead of creating meaningful questions. This happens either because the model has
knowledge without needing the context or the context helps the model find a reasoning shortcut. On
the other hand, using the wrong context results in lower F1 scores compared to both the no-context
and proposed methods. This suggests that selecting the wrong context hinders the decomposition of
questions.

RQ3: When creating prompts, does clustering sub-question answers using named entity recognition
lead to better outcomes compared to selecting the same named entities for examples for few-shot
prompting?

The proposed model processes the answers to sub-questions provided in the dataset with respect to the
named entity and selects a set of questions where the sub-questions differ from each other. On the other
hand, the ablation study demonstrates that the worst possible outcome is observed when examples are
randomly sampled for few-shot prompting by selecting the same named entities for sub-questions.
The results show reduced performance compared to the proposed model. From this, it can be deduced
that clustering the answers to sub-questions and using them in the few shot prompting yields better
outcomes.

5.2 Future Work

Several potential future works can stem from this research. First and foremost, the proposed prompting
model can be modularized to enhance its effectiveness. Instead of using a single large prompt to
process the data, the prompt could be divided into several smaller prompts, one for decomposition and
another for answering sub-questions. The first prompt breaks down questions into sub-questions using
context. When a sub-question is identified, a new prompt is called to address it. The answer from
this new prompt is then fed back to the original model to continue the decomposition. Once the final
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answer is reached, the prompting stops. This strategy would enable the improvement of the method by
adding additional modules for processing sub-questions.

Another way to improve the proposed model is through the selection of ’gold’ paragraphs. Instead of
solely relying on these gold paragraphs, a document retrieval approach can be employed to retrieve the
most relevant context automatically. This adaptation will make the model more versatile, enabling its
application across various datasets and a wider range of cases. This approach can also be combined
with modularity to enhance the solution.

The proposed model can also be extended to handle a diverse set of question types. The current method
filters out similar two-hop questions by focusing on sub-questions within the main question. It does
this by replacing a named entity with a sub-question. The method only selects questions where the
surrounding context remains identical on a token basis. This approach can be improved to consider
questions where the surrounding context is paraphrased. Additionally, the selection could be extended
to include questions where sub-questions are intertwined. When creating the prompt, it is important to
include all question types in several step-by-step examples while maintaining a balanced representation
of each type. Alternatively, a universal prompt can be developed to address various question types,
which include more than two-hop questions. Similarly, examples for each type of question need to be
present to ensure the model’s success.

The model could be improved to accommodate questions with more than two hops. These types of
questions contain different connections between sub-questions within the same hop. Taking this into
consideration, a new prompting methodology could be developed to extend the range of the prompts.

One of the ways to improve the approach is by using advanced LLMs for prompting. In prompt
engineering, larger models typically perform better than smaller ones because of their high reasoning
capabilities. However, smaller models can excel when they are carefully fine-tuned. One option is to
fine-tune a model of similar size, or another is to use a newer model like GPT-4 or GPT-3.5 with a
16k token input. Whichever is chosen, these models will need more computational power due to their
bigger size or the additional fine-tuning process.
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CHAPTER 6

CONCLUSION AND LIMITATIONS

This thesis offers a guideline for using large language models to solve two-hop questions through
prompting methodology and decomposition. The research evaluates the effectiveness of prompting
models in decomposing and answering multi-hop questions. It also explores the impact of example
selection in few-shot prompting techniques. Moreover, the research analyzes the consequences of the
design choices in few-shot prompting. This study utilizes the MuSiQue dataset, which includes ques-
tion decompositions due to its bottom-up creation method. A subset of this dataset is used, excluding
questions with more than two hops or decompositions with two words.

The study examines the use of the ChatGPT model for few-shot prompting. Initially, the model clusters
questions based on named entities found in their sub-question answers using a zero-shot prompting
approach. After this clustering, the clusters are combined into more generalized versions. Example
questions are then selected, ensuring no overlapping named entities. The prompts are structured as
follows: Contexts -> main question -> sub-questions with answers. To reduce the variability in results
due to the prompting approach, the model is run three times. For comparison, two baseline prompting
models are also run three times each to minimize the effect of randomness. One of these baseline
models operates in a zero-shot format, while the other runs without any context or instructions. Four
additional baseline models, which are fine-tuned rather than prompted, are sourced from the dataset
paper. The proposed model outperforms all baseline models.

Six ablation studies were conducted to evaluate the impact of various decisions made during prompt
creation: the number of example questions, context, chain of thought, decomposition, named entity
grouping, and order of examples. Results indicate that removing the context or using the wrong context
results in the most significant performance drop, as the model becomes unaware of how to answer
the questions. Conversely, altering the order of the examples has a minimal effect on performance.
Though changing the order can initially decrease performance due to named entity selection during
prompt creation, this effect diminishes over time. As indicated in the Zhao et al.[6], the number
of examples has varying effects on few-shot prompts. In this study, the ablation shows the effects
of example prompts, with ChatGPT able to accommodate up to seven examples. There is a noted
performance increase with additional examples, but the marginal gain diminishes as the number of
examples increases.

The primary constraint of this thesis is the computational cost associated with LLMs. To mitigate this,
most aspects of the proposed model have been refined. This necessity primarily stems from OpenAI’s
API policy that measures cost based on the count of input and output tokens. Although the cost per
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token is relatively small, the prompting method requires a high number of input tokens per prompt,
substantially increasing the overall cost.

In order to reduce the overall computational cost, several key decisions were made during the creation
process of the proposed model. The first of these decisions was to utilize only gold paragraphs. The
inclusion of misleading paragraphs would have increased the context size tenfold. Therefore, the pro-
posed model only employs gold paragraphs. Similarly, the proposed model uses only 2-hop questions
to reduce the complexity of the prompts as well as the reduction in the context size.

This thesis’s final strategy for reducing computational cost is to work with a subset of the dataset.
This subset consists of approximately 2000 training examples and around 200 validation examples.
The proposed model is only run on the validation set. The overall cost is around 1 $ per run of the
validation set.

A limitation of the model in use is LLM’s 4000-token limit, which restricts the space available for
examples in few-shot prompting. As a result, there is a trade-off between the number of contexts for
an example and the number of examples themselves. To accommodate this limitation, the proposed
model selects two contexts (gold paragraphs) and includes six examples.

The proposed models reliance on ChatGPT is a limitation. As mentioned in the discussions and fu-
ture work section, using different LLMs can present various challenges. If a smaller LLM like BERT
is used, it might save on computational costs but might sacrifice performance and input token size.
Conversely, a newer or larger model might deliver better results and handle more input tokens, but
at a much higher computational cost. When testing different models, it is essential to balance com-
putational cost against performance. The ideal model should be selected based on both performance
requirements and computational constraints. While using more examples or a larger subset can en-
hance the model’s performance, it may also significantly increase computing costs.

Another limitation of the proposed model is that it requires pre-decomposed questions for semi-
automatic prompt creation. Since the decomposition of questions using a language model is not yet a
mature topic, one either needs datasets with available decompositions or the decompositions must be
created by humans.
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APPENDIX A

FULL PROMPTS USED IN THIS STUDY.

A.1 Baseline Prompt

Q: How high is the highest point in the place where Tadeusz Peiper died?
Q1: Where did Tadeusz Peiper live when he died?
A1: Warsaw
Q2: How high is the highest point in #1 ?
A2: 115.7 metres

Q: In what year did the author of A Child’s Garden of Verses die?
Q1: who penned a child’s garden of verses
A1: Robert Louis Stevenson
Q2: In what year did #1 die?
A2: 1894

Q: How did the group that Tuvalu signed an agreement to ally with, rank Switzerland’s economy?
Q1: With what group does the agreement form an alliance?
A1: European Union
Q2: How did #1 rank Switzerland’s economy?
A2: Europe’s most innovative country

Q: What manager of the performer of Whole Lotta Love tried to sign Queen?
Q1: Who performed Whole Lotta Love?
A1: Led Zeppelin
Q2: What manager of #1 tried to sign Queen?
A2: Peter Grant

Q: What was depicted on the banners of the religious group strongly opposing the idea of Neoplaton-
ism in the First crusade?
Q1: Which religious group strongly opposed the idea of Neoplatonism?
A1: Christians
Q2: What was depicted on the banners of #1 in the First crusade?
A2: a red cross on a white field
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Q: What did the war the AMX-30 was in inadvertently do in the early 1990s?
Q1: Which war was AMX-30 in?
A1: Gulf War
Q2: What did #1 inadvertently do in the early 1990s?
A2: radicalize the Islamist movement

A.2 Main Prompt

Context1: [Title: Tadeusz Peiper] (omitted for clarity)
Context2: [Title: Warsaw] (omitted for clarity)
Decompose Q to the maximum number of meaningful sub-questions. Use minimal answers and keep
named entities, adjectives, adverbs when possible in your answers.
Q1: Where did Tadeusz Peiper live when he died?
A1: Warsaw
Q2: How high is the highest point in #1 ?
A2: 115.7 metres

Context1: [Title: A Child’s Garden of Verses] (omitted for clarity)
Context2: [Title: Samoa] (omitted for clarity)
Q: In what year did the author of A Child’s Garden of Verses die?
Decompose Q to the maximum number of meaningful sub-questions. Use minimal answers and keep
named entities, adjectives, adverbs when possible in your answers.
Q1: who penned a child’s garden of verses
A1: Robert Louis Stevenson
Q2: In what year did #1 die?
A2: 1894

Context1: [Title: Tuvalu] (omitted for clarity)
Context2: [Title: Switzerland](omitted for clarity)
Q: How did the group that Tuvalu signed an agreement to ally with, rank Switzerland’s economy?
Decompose Q to the maximum number of meaningful sub-questions. Use minimal answers and keep
named entities, adjectives, adverbs when possible in your answers.
Q1: With what group does the agreement form an alliance?
A1: European Union
Q2: How did #1 rank Switzerland’s economy?
A2: Europe’s most innovative country

Context1: [Title: Whole Lotta Love](omitted for clarity)
Context2: [Title: Queen (band)] (omitted for clarity)
Decompose Q to the maximum number of meaningful sub-questions. Use minimal answers and keep
named entities, adjectives, adverbs when possible in your answers.
Q1: Who performed Whole Lotta Love?
A1: Led Zeppelin
Q2: What manager of #1 tried to sign Queen?
A2: Peter Grant
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Context1: [Title: Materialism] (omitted for clarity)
Context2: [Title: Red](omitted for clarity)
Q: What was depicted on the banners of the religious group strongly opposing the idea of Neoplatonism
in the First crusade?
Decompose Q to the maximum number of meaningful sub-questions. Use minimal answers and keep
named entities, adjectives, adverbs when possible in your answers.
Q1: Which religious group strongly opposed the idea of Neoplatonism?
A1: Christians
Q2: What was depicted on the banners of #1 in the First crusade?
A2: a red cross on a white field

Context1: [Title: AMX-30] (omitted for clarity)
Context2: [Title: Islamism] (omitted for clarity)
Q: What did the war the AMX-30 was in inadvertently do in the early 1990s?
Decompose Q to the maximum number of meaningful sub-questions. Use minimal answers and keep
named entities, adjectives, adverbs when possible in your answers.
Q1: Which war was AMX-30 in?
A1: Gulf War
Q2: What did #1 inadvertently do in the early 1990s?
A2: radicalize the Islamist movement
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APPENDIX B

NAMED ENTITY DISTRIBUTION OF SUB-QUESTION
ANSWERS
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before merging
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Figure 8: Named entities before and after processing
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