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ABSTRACT

ON PLATEAUED FUNCTIONS, LINEAR STRUCTURES, PERMUTATION
POLYNOMIALS AND C-DIFFERENTIAL UNIFORMITY

Kaytanci, Kiibra
Ph.D., Department of Cryptography
Supervisor : Prof. Dr. Ferruh Ozbudak

August 2023, 48| pages

A desired goal in designing good cryptosystems is to construct boolean functions with
good cryptographic properties, such as having high nonlinearity, balancedness, high
correlation immunity, and high algebraic immunity. In this thesis, we obtain concrete
upper bounds on the algebraic immunity of a class of highly nonlinear plateaued
functions without linear structures than the one given recently in 2017 by Cusick.
Moreover, we extend Cusick’s class to a much bigger explicit class, and we show that
our class has better algebraic immunity by an explicit example. We also give a new
notion of the linear translator, which includes the Frobenius linear translator given
in 2018, Cepak, Pasalic, and Muratovi¢-Ribi¢ as a particular case. We find some
applications of our new notion of linear translator to the construction of permuta-
tion polynomials. Furthermore, we give explicit classes of permutation polynomials
over F,» using some properties of [F, and some conditions of 2011, Akbary, Ghioca,
and Wang. Additionally, recently Ellingsen et al. introduced a new concept, the c-
Difference Distribution Table and the c-differential uniformity, by extending the usual
differential notion. The motivation behind this new concept is based on having the
ability to resist some known differential attacks, as shown by Borisov et. al. in 2002.
In 2022, Hasan et al. gave an upper bound of the c-differential uniformity of the
"”—2) In their work, they also

z+1
presented an open question on the exact c-differential uniformity of /. By using a

perturbed inverse function / via a trace function Tr(
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new method based on algebraic curves over finite fields, we solve the open question
in the case Tr(c) = 1 = Tr(2) for ¢ € Fan \ {0, 1} completely and we show that the
exact c-differential uniformity of H is 8. In the remaining case, we almost completely
solve the problem, and show that the c-differential uniformity of H is either 8 or 9.

Keywords: Plateaued functions, Linear structure, Permutation polynomials, c-Differential
Uniformity
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0z

PLATEAUED FONKSIYONLAR, DOGRUSAL YAPILAR, PERMUTASYON
POLINOMLARI VE C-DIFERANSIYEL TEKDUZELIK UZERINE

Kaytanci, Kiibra
Doktora, Kriptografi Bolimii
Tez Yoneticisi : Prof. Dr. Ferruh Ozbudak

Agustos 2023, 8| sayfa

Iyi sifreleme sistemlerinin tasarlanmasinda istenen bir amag, yiiksek dogrusal ol-
mama, dengelilik, yiliksek korelasyon bagisiklig1 ve yiiksek cebirsel bagisikliga sa-
hip olmak gibi iyi kriptografik 6zelliklere sahip boole fonksiyonlar1 olusturmaktir.
Bu tezde, son zamanlarda 2017°de Cusick’te verilenden, dogrusal yapilari olmayan
yiiksek diizeyde dogrusal olmayan plateaued fonksiyonlar sinifinin cebirsel bagisikli-
&ina iligkin somut iist sinirlar elde ediyoruz. Ayrica, Cusick’in sinifin1 ¢ok daha biiyiik
bir sinifa genisletiyoruz ve bir 6rnekle sinifimizin daha iyi cebirsel bagisikliga sahip
oldugunu gosteriyoruz. Ayrica 2018’de verilen Frobenius dogrusal ¢evirici, Cepak,
Pasalic ve 6zel bir durum olarak Muratovié¢-Ribi¢ iceren yeni bir dogrusal ¢evirici
kavrami veriyoruz. Yeni dogrusal ¢evirici kavramimizin permiitasyon polinomlarinin
ingasinda bazi uygulamalarim1 buluyoruz. Ayrica, IF,’1n bazi1 6zelliklerini ve 2011’°in
bazi kosullarini, Akbary, Ghioca ve Wang’1 kullanarak [F;» iizerinde permiitasyon po-
linomlarinin simiflarini veriyoruz. Ayrica, son zamanlarda Ellingsen ve digerleri di-
feransiyel kavramini genisleterek yeni bir kavram olan c-Fark Dagilim Tablosunu ve
c-diferansiyel tekdiizeligi tanitti. Bu yeni konseptin arkasindaki motivasyon, 2002’de
Borisov ve digerleri tarafindan gosterilen bazi bilinen farkli saldirilara direnme yete-
negine sahip olmaya dayanmaktadir. 2002°de Hasan ve digerleri Tr(%) fonksiyonu
aracilifiyla H ters fonksiyonla pertiirbe edilen c-diferansiyel tekdiizeliginin bir iist
sinirint verdi. Calismalarinda, A ’1n tam c-diferansiyel tekdiizeligi hakkinda agik bir
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soru da sundular. Sonlu cisimler iizerinden cebirsel egrilere dayali yeni bir yontem
kullanarak, ¢ € Fan \ {0,1} i¢in T'r(c) = 1 = T'r(:) durumunda agik soruyu tama-
men ¢Oziiyoruz ve H’in tam c-diferansiyel tekdiizeliginin 8 oldugunu gosteriyoruz.
Kalan durumda, sorunu neredeyse tamamen ¢6ziiyoruz ve H 1n c-diferansiyel tekdii-

zeliginin 8 veya 9 oldugunu gosteriyoruz.

Anahtar Kelimeler: Plateaued fonksiyonlari, Dogrusal Yapilar, Permiitasyon poli-
nomlari, c-Diferansiyel Tekdiizelik
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CHAPTER 1

INTRODUCTION

In cryptography, in order to design stream and block ciphers, boolean functions play
a significant role. Boolean functions with good cryptographic properties have an
ability to withstand the known cryptanalytic attacks. One of the properties of Boolean
functions is nonlinearity which is defined as the Hamming distance to the closest
affine function. Having high nonlinearity is a desired property for good cryptosystems
since the systems having low nonlinearity are vulnerable to some attacks such as
Linear Cryptanalysis for Block Ciphers, Linear Cryptanalysis for Stream Ciphers,

Fast Correlation Attacks, etc. Bent functions attain the highest possible nonlinearity.

In [36], Zheng and Zhang introduced Plateaued functions in 1999 as potentially good
cryptographic functions. They are a generalization of bent functions. They are im-
portant not only for cryptography but also for some related areas, including coding
theory and communication. There have been many results in recent years regarding
their construction, existence, and applications. We refer to [4], [7], [L1O], [9], [11],

[14], [23], [26], [28],[32], [33].

Recently, Cusick [15] gave an explicit construction of highly nonlinear plateaued
functions without linear structure. In Section [3] we obtain a much larger class of
explicit functions having all these good properties and including Cusick’s class of
functions as a very small subclass. Moreover, we prove that Cusick’s class has quite a
low algebraic immunity by concrete upper bounds. We also give an explicit example

of our class having better algebraic immunity than the functions in Cusick’s class.

For the construction of non-trivial mathematical structures, it has been shown that



linear structures (and linear translators) are useful. There are important connections
between linear translators and permutation polynomials over finite fields (see, [20]).
Recently, the authors in [13]] gave a generalization of linear translators called the
Frobenius linear translator. They also give some applications of their generalization
to the construction of permutation polynomials. In Chapter [5| we obtain a further
and natural generalization of linear translators using additive polynomials. Our gen-
eralization also has applications to the construction of permutation polynomials (see,

Theorem [5.1] Theorem [5.2] and Example [2| below).

Akbary, Ghioca, and Wang [1]] established a very interesting method to construct
permutation polynomials over “big” finite fields. If an explicit class of permutation
polynomials that satisfies certain criteria is found over a subfield IF, it can be used to
construct an explicit class of permutation polynomials over an extension field IF». For
example, the authors in [[12]] obtained such explicit permutation polynomial classes
over [F 2 by using certain properties of ;. By a similar motivation, we obtain further

explicit permutation polynomial classes over F;» via IF, with n > 2 in Chapter 4]

Differential cryptanalysis is one of the most crucial cryptanalytic methods for evalu-
ating the security of symmetric encryption algorithms such as block ciphers. In 1990,
Biham and Shamir first applied this new type of cryptanalytic attack to DES-like
cryptosystems in [2]]. This new method made a significant improvement in designing

the symmetric encryption algorithms.

Later, the differential uniformity was described in [27]]. The differential uniformity
of a given function measures the resistance against differential attacks. To design a
good cryptosystem, functions with low differential uniformity are one of the desired
properties to prevent differential attacks on the cipher. Since then, many researchers
have worked on constructing functions with low differential uniformity. We refer to

[S 6, 8].

In 2002, Borisov et al. in [3] introduced a new type of differential called multiplicative
differential that is used in the differential attack on some ciphers. Hence it can be used
to analyze the resistance against an extension of a differential attack. Then, in 2020,
Ellingsen et al. in [[17] extended this idea and defined the c-Difference Distribution

Table and the c-differential uniformity. A low c-differential uniformity is a good



cryptographic property as the usual notion of differential uniformity. Later, the c-
differential uniformity of some of the functions with known differential uniformity
was studied in [[18]], [19], [29], [30], [34], [35]. Hasan et al. in [[19] worked on the
c-differential uniformity of some known perfect nonlinear functions and the inverse

function. The differential uniformity of the inverse function remains the same under

a?

the operation of adding a trace function Tr(w )

) to the inverse function. So they

worked on the c-differential uniformity of the perturbed inverse function via a trace
I2

z+1
1=Tr() forc € Fy \ {0,1} and 9 in the remaining case for ¢ # 0.

[

function 7 (=25 ) in [19] and gave the upper bound, which is 8 in the case T'r(c) =

Finding the exact value of the c-differential uniformity of functions is a challenging
problem. In many cases, finding a lower bound for the c-differential uniformity re-
quires different techniques than finding an upper bound. There is no general method
in the literature for finding a lower bound of the c-differential uniformity of func-
tions. This method can yield additional results for similar problems within this field.

We refer to [25] for another use of algebraic curves in cryptography.

In Chapter [6] we develop a new method using algebraic curves over finite fields,
which is not used in the references [18]], [[19], [29]], [30], [34], [35] in order to find
an effective lower bound of the c-differential uniformity of a function. By this new
method, we almost completely solve the open question in /|19, Remark 10]. What we
mean by almost completely solve is the following: in the case Tr(c) = 1 = Tr(2)
for ¢ € Fan \ {0,1}, we completely solve the question and the exact c-differential
uniformity of the perturbed inverse function via a trace function 7 r(f—jl) is 8. In the

remaining case, we show that the c-differential uniformity of the perturbed inverse

a?

function via a trace function Tr(w S

) is either 8 or 9, which is, in a sense, the next

best result.

The thesis is organized as follows: In Chapter[2] some basic definitions and tools will
be given, which are required to follow the subsequent chapters. In Chapters 5]

and [6] we give details of our corresponding contributions and motivations.






CHAPTER 2

PRELIMINARIES

Let ¢ be a power of a prime number and F . be the finite field of order ¢" where
n > 1. The extension field F;» can be viewed as an n-dimensional vector space over

IF,. The trace function 1T'r,, from F» to I, is defined as

Try, :Fpm — T,

n—1

a—a+al+al - +af

A Boolean function f of n-variables is a function from % to [Fs.

Definition 2.1. Let f : F, — Fy be a Boolean function. Then the Walsh transform f
of f is defined as

f =7
TR Z(_l)f(;v)+w-z
zelFy
where w = (wy,wa, ..., W), T = (T1,T,...,2T,) and W+ x = W1T1 + + -+ + Wy Tp.

Definition 2.2. Let f : [} — [y be a Boolean function. Then f has linear structure
at a € Y if and only if either f(x + a) + f(z) = 0 for any v € Fi(a is called a
O-linear structure) or f(x + a) + f(x) = 1 for any x € Fy(a is called a 1-linear

structure).

Definition 2.3. Let f : F} — Fy be a Boolean function. Then f is called an s-
plateaued function where 0 < s < n if | f(w)[?> € {0,2"%} for any w € F? where
| f(w)| denotes the size of f(w).



Definition 2.4 (See, for example [7]). Let f : F} — Fy be a Boolean function. The

algebraic normal form of f is

f(x) = @ ar H ot ],

TeP(N) TeP(N)

where P(N) denotes the power set of N = {1,...,n}. The degree of the algebraic
normal form of f is equal to

max{|Z| : az # 0}.

Definition 2.5 (See, for example [7]). Let f : F} — F be a Boolean function. The
algebraic immunity AI(f) of f is defined to be the minimal degree of a nonzero
function g from FY to Fy for which f - g=0or (f+1)-g=0, i.e

AI(f) :=min{degg: g € Ann(f)U Ann(f + 1)}
where Ann(f) is the set of annihilators of f. A function g is an annihilator of f if
f-9=0.

Remark 1. It is well-known that for any Boolean function f of n-variables, AI(f) <

ElL

Let IF, denote the finite field of order ¢ = 2" where n > 1. Any map F' : Fon — Fom is
called a vectorial binary function or (n, m)-function where n, m are positive integers.
When n = m, the univariate representation of a binary function F' is of the form

2" —1

F(z) = Z a;z’,  a; € Fon,
i=0

whose algebraic degree is the maximum Hamming weight of the vector ¢ where a; #

0. The absolute trace function T'r,, from Fsy. to 5 is defined as

Tr, : Fon — Iy

2 922 gn—1
a—at+ao +a” +--t+a

Definition 2.6. For any function F' : F, — [F, and a € F,, the derivative of I in the

direction a with ¢ = 2" is defined as
Dp(z,a) == F(x +a) + F(z) forall x € F,,.

6



The Difference Distribution Table entry at point (a,b) for any a,b € F, is defined as
Ap(a,b) :=|{z € F,: Dp(z,a) =0} | .
The differential uniformity of I is defined as

Ap = max{Ap(a,b) : a,b € F,, a # 0}.

When Ap := 9, the function F' is called d-uniform. Since characteristic of F, is 2,
then § > 2. If 6 = 2, then the function F' is called almost perfect nonlinear. Based on

this concept, the definition of the c-differential uniformity is as follows.

Definition 2.7. Let F' : I, — ¥, be a function and let a, c € F, be given with g = 2".

The c-derivative of F at a is
Dp(x,a) = F(x + a) + cF(z), forany z € F,.
For any a,b € [y, the c-differential uniformity of ' : F, — I, is
Ap =max{.Ap(a,b) :a,b € Fy, anda # 0 ifc =1}
where the c-Difference Distribution entries are

Ap(a,b)=|{z €F,: F(x+a) + cF(x) =b} |.

When ¢ = 1, we have the usual notion of differential uniformity. If \Ar = d., then
d. is called the c-differential uniformity of F'. If 6. = 1, then F’ is perfect c-nonlinear

(PcN). If 6. = 2, then F is almost perfect c-nonlinear (APcN).

The theory of algebraic curves over finite fields is essentially equivalent to the theory
of function fields in positive characteristics. From now on, we will use the language
of function fields. For notation and further background on function fields, we refer to

[31].

Definition 2.8. A place P of the function field F'/K is the maximal ideal of some
valuation ring O of F/K.

Definition 2.9. An Artin-Schreier curve is a curve over the algebraically closed field

Fan of the form y* +y = f(x) where f is a rational function over Fan.

7



Some important properties of Artin-Schreier extensions are presented in the following

proposition which we will use below.

Proposition 2.1 (Artin-Schreier Extensions). [[31l] Prop. 3.7.8] Let F'/ K be an al-
gebraic function field of characteristic 2. Suppose that uw € F'is an element which

satisfies the following condition:
u # w? 4+ w forallw € F.

Let
F' = F(y) withy* +y = u. 2.1)

Such an extension F'|F is called an Artin-Schreier extension of F. For P € Pg we

define the integer mp by

m  if there is an element z € F satisfying
mp = vp(u+ (22+2))=-m<0andm #£0 mod 2,
—1 ifvp(u+ (2* +2)) > 0 for some z € F.
(d) If at least one place () € Pp satisfies m¢q > 0, then K is algebraically closed in
F'" and
g':29+1(—2+ Z (mp+1).degP),

2
PePr

where ¢'(resp. g) is the genus of F'/ K(resp. F/K)).



CHAPTER 3

CUSICK’S HIGHLY NONLINEAR PLATEAUED FUNCTIONS
AND THEIR MODIFICATIONS

For integers d > 3 and £ > 1, Cusick introduced an explicit class of Boolean func-

tions of degree d in n = 2dk — 1 variables given by

k—1 m—1
Je(@, 20,0 2y) = Zxdjﬂ e Xgjra T Z TjTjtm- 3.1
j=0 J=1

where m = dk. He proved that these are 1-plateaued, have no linear structure and
have nonlinearity 2! — 2" They become balanced by adding a concrete linear
function. Note that adding a linear function does not change plateauedness, nonlin-
earity or the set of linear structures. He also states that ... a high algebraic immunity

is not to be expected’in [[15, page 80, the last paragraph].

In this chapter, we show that indeed algebraic immunity of the functions in (3.1) is
low. Note that the largest degree of the class for a fixed odd integer n > 3 occurs
when k£ = 1. Moreover, if m = "T’l is a prime, then k may only taken to be 1 in
(3.1). The following result shows in particular that this class has very low algebraic

immunity when £ is small.

Proposition 3.1. For integers d > 3 and k > 1, let n = 2dk — 1 and fi, : Fy — Fy
be the Boolean function defined in (3.1). We have:

i) AI(f,) < 3.

ii) Fork > 2, AI(f,) < min{k +2, %1},

Proof. We first prove item 7). Put © = (21,29, ...,Zpm_1) and y = (Y1, .., Ym-1) =

9



(Tmat, - - - Tom—1) Where m = dk. Let
h(z) = 2122 ... Ty and g(x,y) = T1y1 + T2yo + -+ + T 1Ym—1-
Then it is easy to observe that
filzy, .. xn) = W)z, + g(2,y).
It is enough to prove that
Sl an) (9(z,y) +1) (2 +1) = 0

for all 7,y € F5*~! and x,, € Fy. Indeed, deg (g(z,y) + 1) (zp, +1) =2+ 1 = 3.

Moreover,

filwy, . a) (9(z,y) + 1) (@ + 1) = (M(@)zm + 9(2,9)) (9(2,y) + 1) (2m + 1)
= (h(z)zmg(z,y) + h(@)zm + 9(2,y) + 9(z, y)) (Tm + 1)
= (h(@)zm (9(2,y) + 1)) (Tm + 1)
= h(z) (9(z,y) + 1) (zm(zm +1)) =0,

as (zy, (2, + 1)) = 0. This completes the proof of item 7).
Next, we consider the proof of item 7). Note that

(@1, 2n) =1 Zg+ Tapr - Taa + - F Th1)(d41) - - - Tma1Tm + (2, Y).

fk(xla cen ,l‘n) ((531 + 1)(17d + 1) cee (if(kﬂ)(dﬂ) + 1) (Q(SBJJ) + 1))
=z1(x1 + 1)ri(z, .. 20) + Tap (Tagpr + D)ro(ze, .. 2,) + .0
+ Th-1)(dr1) (Tr-1)@rr) + Dre(rr, ..o 20)

+9(z,y) (9(z,y) + 1) rrga (@1, ..., 1)

for some polynomials 71 (x1, ..., 2,), ..., "k+1(21, . .., x,) in algebraic normal form.

As
(1 +1) = 2g41 (a1 + 1) = = 1)@+ (@ k-1)@+1) + 1) =0
and g(z,y) (9(z,y) + 1) = 0 as Boolean functions and
deg ((z1 + D(@apr +1) - (@@ + 1) (9(a,y) + 1)) =k +2,

10



we have AI(f;) < k+ 2. Also

fk(xla"'axn) (fk(xla--'7$n) + 1) = 0.

And deg (fi(z1,...,2,) +1) = d = L. Hence AI(f,) < min{k + 2, 21} O

Next, we define a much larger explicit class of Boolean functions containing Cu-
sick’s class as defined in (3.I) as a small subclass. The functions of this class are
1-plateaued, having nonlinearity 2"~ — 2"z and balanced up to addition of a con-
crete linear function as in Cusick’s class. Moreover, we also have a characterization
whether a function in our class has a linear structure. This condition is easy to apply.
Moreover, we give an explicit example demonstrating that the algebraic immunity of

a function in our class is much better compared to the class defined in (3.1).

We first note that if h : F5*~! — [Fy is an arbitrary map, then we have

[{(atm, B) € Fa x F3" ! - h(B) + = 0} = 271,

Now we are ready to give our much larger class of Boolean functions consisting of
1-plateaued, highly nonlinear functions without linear structure. It is easy to make

them balanced by adding a linear term as explained in the theorem as well.

Theorem 3.2. Let n > 3 be odd and n = 2m — 1. Let 7 : F3*™t — F7 ! be a
permutation map. Let go, g1 : Fy'~" — Fy be Boolean maps. Let f : F — Ty be the

Boolean map defined as
f : Fglil X FQ X anil — FQ
(@, Zm, y) = go(®) + Tmg1(x) + 7(2) - y.

Then we have:

i) fisa l-plateaued function.

ii) f has no nonzero linear structure if and only if the subset
S = {(am, B) €Fy x F™ 11 g (77 (B)) + oy = 0} C Fy x Fp*

is not an affine or linear subset (of dimension m-1).
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iti) The nonlinearity of f is 2"~ — 2(*=1/2,

iv) For (u,p,v) € F3=! x Fy x FJ""Y, the function

fu,u,v(xaxmay) = f(xaxmay)+um+u$m+vy

is balanced if and only if g, (7~ (v)) + p = 1.

Proof. Letw = (o, oy, ) € F3 7! x Fy x 7. We have

flwy=">_ > Y (-ne@tema@ir@ytactanin iy

z€Fy ! #m€F2 yepy—!

— -1 90(2) +Tm g1 (z)+-z+amTm 1 (m(z)+8)-y
> 2D > -1

:L"E]ngfl Tm EF2 yeIFQ"fl

=2m7t 3 N (mpym@temn@testantn for r(y) =

:EE]F;n_ 1 xm€Fa

— gl () O+ (B § (L)@ (B raman,

ITm E]FQ

Hence

. 2 (—1)9 D+ B)if gy (171(8)) = ap,
flw) =

0 otherwise.

This completes the proof of the item ).

It is well-known that the nonlinearity of an arbitrary Boolean function
[ Fy — Fyis 277! — %gqe% |f(w)|. Hence in our case the nonlinearity of our
2

function f is

1 . 1 .
2" — 5 max|f(w)| =21 - J2m =2 27
welFy

This completes the proof of item 7ii).

It is also well-known that the Walsh value f,,,.,(0,0,0) of fu .0(2, Zm,y)is f(u, u, v).

Hence

fu,u,v(()?O’O) =0<«= gl(ﬂ'_l(v)) +pu=1.

12



Note that f, , ., (z, x,,,y) is balanced if and only if fu’wj(O, 0,0) = 0. This completes

the proof of item iv).

It only remains to prove the item ii). Let Sy denote the support of the Walsh spectrum
of f, thatis Sy = {w € FP™! x Fy x FP'~L: f(w) # 0}. Let S C Fy x F~! be the

subset defined as
S ={(am,B) €Fy x Fy 1 g (77 1(B)) + a = 0}. (3.2)

It follows from the proof of item 7) above that S; = Fy' ! x S. For v € Fy, let Af(v)

be the sum

As(v) = Z (—1)/ @)+ @)

z€lFy
It is clear that v is a linear structure of f if and only if A;(v) = +2". Moreover, it is

not difficult to observe that

flw)P(=1)"" = 2"A (v),

welF

o3

which holds for an arbitrary Boolean map f : F} — 5. In our case f is

1-plateaued and hence

Yo f@P D =Y )= =2m Y (),

wE]FS wESf wESf

where we use our proof of item ) above. These implies that if v € F?, then we have

Ap(v)=2) (-1

wESf

As |Sf| = 2"1, we conclude that v € F% is a linear structure of f if and only if
(v-w=0forallw € Sy)or (v-w=1forall w € Sy). Assume that v = (a, a,,,b) €
F7~' x Fy x Fy'~! is a nonzero linear structure of f. Recall that S; = Fy'~' x S
where S is defined in (3.2). First we show that a = 0. Indeed otherwise there exist
o, € Fy ! such that a - a # a - o/. For fixed (o, 8) € S, both («, ay,, 3) and
(!, o, B) are elements of S;. Then it is impossible that (a, @y, ) - (o, ay,, b) =

(@, am,b) - (¢, ayy, b) which is a contradiction.

Next, assume that v - w = 0 for all w € Sy. Then v = (0, a,,,b) and 0 = (ay,, b) -
(qm, B) for all (a,, B) € S. As v # 0, there exist (c,d) € Fy x F5*~! such that

13



(am,b) - (c,d) # 0. We choose such (c,d) € Fy x F5"~!. As S is not a linear space
and its cardinality is 2!, the [Fy-span of S is the whole vector space Fy x F3"!. In

particular, there exist a subset 7' C S such that

However, this is a contradiction as (a,, b) - (¢,d) # 0 by definition. This completes

the proof of item 4¢) under the assumption about v - w = 0 for all w € 5.

Assume finally that v-w = 1 for all w € S. We choose (aﬁfl), B©) € S and we define

S* = {(am +al), B+ 8Y) : (am, B) € S}.

Note that S is affine if and only if ST is linear. Moreover, v = (0, a,,, b) is a nonzero
linear structure of f if and only if (a,,,b) - (o, 8Y) = 0 for all (o, B%) € SE. The
same argument we used in the assumption v - w = 0 for all w € S; applied to S*

completes the proof. O

Example 1. Let n = 2m — 1 = 11. Choose the permutation map

T :Fy — T

x = (20, 1, T2, T3, T4) > (m1(), T (), m3(2), T4 (2), 75(2))
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where

™ (x) = XgX1L2 + LoX1T4 + ToXoX3 + ToLoXy + T3 + To + T1X9X3L4 + L1X2Ty
+ X122 + Tox3 + Loy + T3Ty,

To(x) = Tox1T2 + BT + ToT2T3T4 + TT2T3 + ToT3Ts + ToTs + ToTy + 12273
+ 212324 + X124 + T1 + T2X3 + T324,

3(x) = X 1T3T4 + ToT1T3 + ToT1T4 + ToToZy + ToXa + ToX3Ty + T1XT2T3 + T1To
+ T1T3%4 + T1X4 + T2T3T4 + To + T3y,

4(x) = 21224 + ToT1T2 + ToT1X3 + ToT1X4 + ToX1 + ToXaXy + ToXo + Toxs
+ Zo + T1T2T4 + T1X3 + o34 + Tol3 + T3,

T5(2) = Tox1T2T3 + ToT1T2 + ToX1T3 + ToZ1%s + ToTaZs + ToT3Ts + ToTs + TolLa

+ T129%3 + T1T2T4 + T1X2 + T1T3 + T1X4 + T1 + ToTy + T3T4 + Ty.
Then take
go : ]Fg — [y
(x0, T1, T, T3, T4) — To + T2 + T3
and
g1 Fg — Iy
(zo, 1, Ta, T3, T4) — T1Tox3 + 1.
An application of our construction in Theorem[3.2| gives the map
f Ty xFy xFy — Ty
(@, 25,9) = go(x) + z501(2) + 7(2)y

(z0, 21, T2, T3, Ta, Ts, Yo, Y1, Y2, Y3, Ya) — To + To + 23 + (212223 + 1) x5 + yom1(2)

+ y1m2(x) + yam3(2) + ysma(@) + yams(x)
where T;(x) is defined as before fori = 1,...,5. The map is balanced, has no linear
structure, has nonlinearity 992 = 2'° — 25 and has algebraic immunity 4.

In Example |1, 7 : F5 — [F35 corresponds to the permutation map = +— x3°. Note

that as m = 5 is a prime, there is only one function in Cusick’s class, which is f; in
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. Moreover, AI(f;) < 3. Example [1| gives a concrete example in our class of
Theorem [3.2]improving the algebraic immunity while keeping all the good properties
of the maps of Cusick’s class: high nonlinearity, 1-plateauedness, absence of having
nonzero linear structures, and balancedness. Moreover, using different permutations
7 : F5 — T3 and other suitable maps go(z), g1 () we get a lot of different Boolean
functions with algebraic immunity 4 easily satisfying the conditions: 1-plateauedness,

absence of having nonzero linear structures, and balancedness.
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CHAPTER 4

CONSTRUCTING PERMUTATION POLYNOMIALS

Akbary, Ghioca and Wang [[1] recently established a very interesting construction in
order to construct polynomials over “big” finite fields using a commutative diagram
relating the big field to some smaller subsets and the corresponding conditions on
the maps of the commutative diagram. In fact, this construction gives different meth-
ods using different commutative diagrams leading to different conditions on different

maps and subsets (see, for example [1, Proposition 5.9] and [/1, Proposition 5.6]).

They generalized many earlier results and constructed many new permutation polyno-
mial families. They also motivated many research directions in constructing explicit
classes of permutation polynomials in “big” finite fields in the following sense: If a
class of objects satisfying certain properties can be constructed which are guaranteed
to satisfy a full set of conditions of Akbay, Ghioca and Wang in a small set (see, for
example [[1, Proposition 5.9] or [1, Proposition 5.6]), then it is possible to obtain an

explicit class of permutation polynomials in the big finite field.

Recently Cepak, Charpin and Pasalic, among other results, gave such explicit classes
in [12]. Namely, in [12, Section 6], they obtain permutation polynomials over [F
using certain polynomials over [F,. We refer to Propositions 6, 8, 9 and the corre-

sponding corollaries in [12].

Motivated by these results, we give explicit large class of permutation polynomials
over [ 2 starting from polynomials over F,. We first state the proposition given by

Akbary, Ghioca and Wang [1] and then we introduce the notion of b-permutation.

Proposition 4.1. [[1] Proposition 5.9] Let ¢(z) be an F-linear polynomial over I,
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and h(x) € Fyn[z] be any polynomial satisfying h(z? — x) € [}, for all v € Fyn. Let
g(x) € Fynlx]. Then
i. h(z?—2)p(z) + g(x? — x) is a permutation polynomial of F . if and only if
(a) ¢(x) induces a permutation polynomial of F .
(b) h(z)p(x) + g(x)? — g(x) permutes S = {a? — a|la € Fyn }.

ii. For each ¢(z) satisfying (a), we have (¢"~")! - ¢ permutation polynomials

of B n of the form ¢(z) + g(z7 — x).

Definition 4.1. Let m(z) € F,[z] and b € F, be given. We call m(x) a b-permutation

over F, if the evaluation mapping x — m(x) + bx defines a permutation over F,.

Remark 2. Note that it is not difficult to construct a b-permutation polynomial start-
ing from a permutation polynomial. Indeed if x — h(x) is a permutation polynomial,

then x — h(x) — bz is a b-permutation over F,,.

4.1 Constructing Permutation Polynomials over [ . via [,

First we present our results in characteristic 2. The following proposition indicates
that it is easy to construct the corresponding large families of permutation polynomi-

als over IF 2 as the component go(z) € F,[z] may be chosen arbitrarily.
Proposition 4.2. Let ¢ = 2* for some integer k. Let 0 € F,2/F, satisfy 07 + 6 = 1
and go(z) € F,[z] be arbitrary. Then we have:
o F(x) =1+ go(z? + ) + 0(2¥9 4 2% + 29 + x) is a permutation over F for
any 1 > 1.
e I[fq#1 mod 3, then
F(z) =2+ go(z% + z) + 0(z*? + 22T 4 2972 4+ 23 + 29 + 7)
is a permutation over F 2.
e I[fq#1 mod b5, then
F(z) =+ go(z? + ) + 0(z* + 2" + 297 + 2° + 29 + 1)
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is a permutation over F .
e Ifr > 1is an integer such that gcd(r,q — 1) = 1, then
F)=a+go(z?+2)+ 0 ((27+ )" + (27 4 x))

is a permutation over F .

In fact, Propositiond.2]is just a special subcase of the next theorem. We prefer to state
Proposition [4.2] independently as it shows that the conditions of the next theorem are
very easy to satisfy. We do not prove it as it follows from the proof of the next

theorem.

Theorem 4.3. Let q = 2F for some integer k. Let 6 € F 2 /F, satisfying 01+ 6 = 1.
Let go(z) € Fy[x] be arbitrary and g,(x) € F,[z] be a 1-permutation over F,,. Then

F(z) =z + go(z?+ )+ 0(g1(z? + z))

is a permutation over F .

Proof. The proof comes from [[I, Proposition 5.9], by taking g(z) of the form g(x) =
go(x) + Og1(x) € Fplx], h(x) as a constant function equal to 1 and p(z) = z.
Observe that S = {y? + y|y € F,2} =, since char(F,) = 2. Then

h(x)p(x) + g(z)? 4+ g(x) = & + go(x)? + 0%g1(x)? + go(z) + 091 (x).
If x € IF,, the equality implies
hz)p(x) + g(2)! + g(x) = 2 + gi(x).
Since gy () is a 1-permutation over I, the function
F(z) =z + go(2? + ) + 0(g1 (27 + z))
is a permutation over [F 2. [
Next, we present our results in odd characteristic. Again, we first state a special

subcase in the next proposition.

Proposition 4.4. Ler ¢ = p*, where p is any odd prime number. Let 3 € F 2 /F, and
v = p9—p. Let go(x) € F,[x] be arbitrary. Then we have :
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e I[fq#1 mod 3, then

F(z) =+ go (x—q—5> + 8
Y

fyq

P e TR T T

|:x3q $2q+1 xq—i—? 1’3 x4 T

is a permutation over F .

e I[fq#1 mod b, then

F(x)=x+ go (x—q—£>

vty
x5q x4q+1 .T3Q+2 x2q+3 xq+4 .’L’5 24 T
+8 {W o 574q+1 + 1073q+2 o ~y20+3 - 57q+4 - $ B % + ;]

is a permutation over F 2.

o Ifr > 1is an integer such that gcd(r,q — 1) = 1, then

- (0[5 )

is a permutation over IF 2.

We do not prove Proposition [d.4] as its proof follows from the next theorem.

Theorem 4.5. Let ¢ = p*, where p is any odd prime number. Let 3 € F 2 /F, and
v = p?— B. Let go(z) € F,lx] be arbitrary and ¢,(x) € F,[z] be a 1-permutation

¢ x ¢ x
Fz) =z +go <—q——) + B <—q——)
Y Y Y Y

is a permutation over F .

over F,. Then

Proof. The proof comes from [[I}, Proposition 5.9], by taking g(z) of the form g(x) =
90 (f—j) + Bg <%> € F,2[z], h(z) as a constant function equal to 1 and p(z) = z.
Observe that S = {y? — y|y € F,2} = F,. Now consider the map

Yy = vy + g(vy)? — g(vy).

Then

Yy +9(vy)? = g(vy) = vy + 90(W)? + B9 (y)? — 90(y) — B (y)
=y + (87— B)a1(y)

=7y + a1(y)]-
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Since gy (y) is a 1-permutation over F,, the function

¢ ¢ x
F(z) =2+ g0 (———) + 891 (———)
vy Y4y

is a permutation over [F 2. O

4.2 Constructing Permutation Polynomials over FF . via F, withn > 3

In Section we give explicit classes of permutation polynomials over F > using

polynomials over [F,.

In this section we give explicit classes of permutation polynomials over F . using
polynomials over I, with n > 3. In fact, it is not easy to give such classes using
the conditions of Akbary, Ghioca and Wang [[1, Proposition 5.9] since we need to
consider the subset S = {y?" — y|y € F,n}. This subset is easy to handle if n = 2,
which we applied in Section 4.1} Hence in this section we use a different method of

Akbary, Ghioca and Wang, namely [1, Proposition 5.6].

First we present our result for n = 3. The next proposition indicates the correspond-
ing permutation polynomial class is large as the chosen components g, g» € F,[x]

are arbitrary and gy € F,[x] has to satisfy a certain condition.

Proposition 4.6. Let {0y, 6,02} be a basis of F s over IF,. We assume that T'r3(6y) #

0 without loss of generality. We choose ay, a1, a2 € F, satisfying
(a0 — a2)® + (a2 — ao)(ar — ag) + (a1 — az)* # 0. (4.1)

Let gy, g1, g2 € F[x] be such that go(x)Tr3(00) + g1(x)Tr3(01) + go(2)Tr3(62) is an

(ap + a1 + az)-permutation of F,.. Then
F(z) = apz + apx? + apr? + Oogo(Tr3(x)) + 0191 (Tr3(x)) + Oaga(Trs(w))

is a permutation over F .

Proof. We use [}, Proposition 5.6], by taking g(z) of the form

9(x) = bogo(w) + 0191(x) + O292()
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and h(z) as a constant function equal to 1. Let p(z) = aoz + a129 + ayz? € F[x]

with ag, a1, a, satisfying [@.I). For x € IF, we have

o(x) + Trs(g(x)) = apx + a12? + agx® + Tr3(0ogo(z) + 6191 (x) + O292(x))
= (ao + a1 + az)x + go(2)Tr3(6h) + g1(x)Tr3(01) + g2()Tr3(62).

Since go(x)Tr3(00) + g1(x)Tr3(01) + g2 (x)Tr3(02) is an (ag + a1 + az)-permutation
of IF,, the condition (ii) of [1, Proposition 5.6] is satisfied.

It remains to prove that ker p N ker Trs = {0}. As Trs(z) = z + 27 + 2¢° and
o() = agz + a129 + az? € F,[z] considering their g-associates (see, for example,

[22] Definition 3.58]) it is enough to prove that
ged(1 +t + 1%, ag + ayt + agt?) = 1. 4.2)

Indeed, if follows from [22, Theorem 3.62] that ker ¢ N ker T'r3 = {0} if and only
if (4.2) holds. By a simple computation we observe that (@.I)) is equivalent to the

condition

ged(1 4+t + 1%, ag + art + ast?) = 1.

For n > 3 in general, the condition
(CLQ — a2)2 + (CLQ - ao)(a1 - CLQ) + (a1 - (IQ)Q 7é 0

corresponds to the resultant condition, which is well-known in algebraic geometry.

We recall its definition (see, for example, [22, Definition 1.93]).

Definition 4.2. Let f(x) = apz™ + a2 ' + -+ - + a,, € F,[z] be a polynomial of
degree n and g(x) = boz™ + bya™ ' + -+ + by, € F,[z] be a polynomial of degree
m withn,m € N*. Then the resultant Res(f, g) of the two polynomials is defined by

22



the determinant

apgp Qi ce Qp, 0 e 0
0 Qg aq Qp, 0 0
m rows
0 ... 0 a a R
Res(f,g) = \
b b1 ... b, 0 ... 0
0 by b b 0
n rows

of order m + n.

Now we are ready to generalize Proposition 4.6]in the next theorem.

Theorem 4.7. Let {0y,6:,...,0,_1} be a basis of Fyn over F,. We assume that

n—1

Tr,(6p) # 0 without loss of generality. Let ¢(x) = apx + a1 + a,_127

be an I ;-linear polynomial over I, satisfying the resultant
Res(ag + ait + -+ ap_1t" 14+t +---+ ") £0. 4.3)

Let g0, 91 .- -, gn—1 € Fy[z] be such that go(x)Tr,(00) + -+ + Gn-1(2)T7(0n-1) is

an (ag + - - - + an—1)-permutation of F,.. Then
F(z) = ¢(@) + bogo(Trn(@)) + - - + 01901 (Trn ()
is a permutation over [F n.

Proof. We use a similar method as in the proof of Proposition Take g(x) of the

form

9(x) = go(@)Tra(b0) + -+ + gn—1(2)T7n(0n-1)

and h(x) as the constant function equal to 1. Let
o(r) = apx + az7 - - + ap_127 € Fylz]
with ay, ..., a,_; satisfying . For x € IF, we have
o) +Tr,(g(z)) = (ag+ -+ an_1)x + go(z)Tr,(00) + - + gn1(x) T (0p—1)-
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This is a permutation polynomial over I, since
9o(2)Trn(bo) + -+ + gn1(2)Tr7(0n1)
isan (ap+- - -+a,—1)-permutation of IF,. So condition 2 of [1, Proposition 5.6] holds.

The proof of ker pNker T'r,, = {0} comes from an important property of the resultant
[22] page 36] (see also, [21, Corollary 8.4, page 203]). It indicates that the polynomi-
als1+¢t+---+t"tand ag + a1t + - - - + a,_1t"' do not have common root if and

only if holds. Note that we also use g-associates before this argument. [
y
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CHAPTER 5

A FURTHER GENERALIZATION OF LINEAR
TRANSLATORS

For an arbitrary F, and a map f : F;» — [F, with n > 2, the concept of linear
structure in Definition corresponds to the notion of linear structure: Let v € Fyn,
b € IF,. Then v is called b-linear translator of f : Fyn — F if

f(x +~u) = f(z) +buforallz € Fjn and y € F,,.

Note that if ¢ = 2, then b is either 0 or 1 and we have either O-linear translator or

1-linear translator coinciding with O-linear structure or 1-linear structure.

Recently Cepak, Pasalic and Muratovi¢-Ribi¢ generalized the notion of linear trans-

lators and gave an application for constructing permutation polynomials (see [13]).

In this chapter we obtain a further and very natural generalization of the notion of
linear translators. We also give two different applications of our more general version
to permutation polynomials. Theorem [5.1]is an easy but rather unexpected applica-
tion. It gives a class of permutation polynomials over [F;» using a surjective map

f :Fm — S CF, and our notion of generalized linear translator.

The proof uses a trick that was used earlier in [24]]. Moreover, this method gives the

inverse permutation explicitly.

The second application is Theorem [5.2] below and it shows that under certain condi-
tions one can get permutation polynomials on [F;» again using
f : Fgmn — S C I, and the corresponding generalized linear translator. Finally,

we give an explicit example illustrating that there exist generalized linear translators
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satisfying the conditions of Theorem [5.2] and not being Frobenius linear translators,

which is the notion expressed in [13]].
We start with our generalization of the notion.

Definition 5.1. Let S C F, and let v,b € Fyn. Let A : Fyn — Fyn be an additive
map. We say that vy is a (b, A)-linear translator with respect to S for the mapping
fiFpm =S if

f(+yu) = f(z) + bA(u)

forall x € Fyn and for all u € S.

Now we are ready to present a first application of the notion in Definition [5.1]

Theorem 5.1. Let S C Fyn and f : Fpn — S be a surjective map. Let v € F,
be a (b, A)-linear translator with respect to S for the map f where A is an additive
map and v,b € Fyn. Then for any g € Fyn|x] which maps S into S, we have that
F(z) =+ vg(f(x)) is a permutation over Fn if and only if () = z + bA(g(z))

is a permutation on S.

Moreover, if F' is a permutation over Fn, then its inverse function F~' is given ex-
plicitly as
F7(z) = 2 = v9(™ ' (f(2)))-

Proof. Let x be any element of F». Then we have F'(z) = x+~vg(f(x)) by definition.
By applying f to the both sides of the equality we obtain

f(F(2)) = flz+v9(f(x)))
f(x) +bA(g(f(x))) since f is (b, A)-linear translator (5.1)

W (f(x)) by definition of the map 1.
(4

(f () = f(F(x)).

Therefore we have

Assume first that ¢ is a permutation over S. Let F'(z1) = F(x2) for some x1,x2 €
[F,». Then applying f to both sides of the equality we have f(F'(x1)) = f(F(z2)).
By using (5.1)), we obtain

O(f (1)) = f(F(21)) = f(F(22)) = ¥(f(22)).



Since v is a permutation over S, we get f(z1) = f(x2). As F(x1) = F(z2) we also

have
z1+79(f(21)) = 22 + v9(f(22)).

These imply that 1 = 5. Therefore I’ is injective and indeed [ is bijective.

Conversely, assume that /' is a permutation over F,». Let s be any element of S.
Since f is a surjective map, there exists a € [F,» satisfying f(«) = s. Because F is

permutation over Fn, there is x € F,» such that F(z) = a. By using (5.1)), we have

Therefore 1 is surjective and in fact, 1 is bijective. Then F'(z) = = + vg(f(z)) is a

permutation over F» if and only if ¢/(2) = 2z + bA(g(2)) is a permutation over S.

Next, we compute F'~! explicitly. Let y = F'(z) = x + vg(f(x)). Then we have

fly) = flz +v9(f(x)))

(
(x 4+ ~yu), where u = g(f(x)) € S
(

x) + bA(u), since v is a (b, A)-linear translator

f
=f

f(x) +0A(g(f(2))), recall u = g(f(x))
=2+ bA(g(2)), where f(z) =z

As 1) is a permutation on S we have that for each y there exists x = y—~vg(¢¥"*(f(y)))
satisfying F'(x) = y. Therefore, F'(x) is surjective and the desired result follows. The

converse of the statement is proved similarly.

Moreover, F~1(z) = 2 — yg(¢~(f(2))) since f~1(2) = z. O

Next, we give another application of Definition [5.1]

Theorem 5.2. Let f be a function from Fn onto ¥y, v € Fy,.. Let y be a (b, A)-linear
translator of f where b € F, and A(x) € Fn[z| is an additive map satisfying the
following conditions:

1. AisF-linear.

27



2. A(y) #£0.
3. A(ya) = A(v)A(a) forall a € F,,.
4. Forany v € Fpn: If A(yx) € A(y)F,, then x € F,,.

5. Alg, is onto.

For any map h : ¥, — F, consider the map

G:Fp —TFp
z = Az) + A()h(f (@)

Then G is a permutation over F . if and only if the following derived map depending
on h and b

g:F, =T,
u +— u+ bh(u)

is a permutation over .

Proof. We use a method similar to the ones in [20] or [13]]. Let z, € Fyn satisfy
G(z) = G(z + vya). Then

Gz +y0) = Az +ya) + A()h(f (2 + ya))
A(x) + A(ya) + A(y)h(f(z + va)) by condition 1,

and hence
AMh(f(z)) = Alya) + A()A(f (z + ya)). (5.2)
Divide both sides of equation by A(7), since A(7y) # 0 by condition 2. Then we
have Alra)
_ Ao

As f(x), f(x+~a) € Flz], h € F,[z] and 1((770;) € F,, by condition 4 we get € F,.

Taking a = o € F,, we have



Note that A(ya) = A(y)A(a) by condition 3, so we get

h(f(x)) = Aa) + h(f(z + va))

and hence by using that 7 is a (b, A)-linear translator for f, we get

h(f(x)) = Ala) + h(f(z) + bA(a)).
Then substituting u = f(z) € F,[z], we have
h(u) = A(a) + h(u + bA(a)). (5.3)
Consider
g(u) = u+ bh(u)
g(u+bA(a)) = u+ bA(a) + b(h(u + bA(a)))
=u+b(A(a) + h(u+ bA(a))
= u + bh(u)
= g(u).
Here as x runs through F», v = f(z) runs through F, as f is onto. Then we get

g(u) = g(u+ bA(a)). (5.4)

Thus the mapping G is a permutation over [F» if and only if the only a satisfying
equation (5.4) is a = 0. If b = 0, then we obtain that A(a) = 0 as g is permutation.
As A\Fq is one-to-one, we get a = 0. If b = 0, then from equation || we have

h(u) = A(a) + h(u+ bA(a)) = A(a) + h(u).

Hence A(a) = 0. Therefore, a = 0. O

The next example illustrates a simple situation when the conditions of Theorem
hold. Note that the polynomial A(x) in the next example is not in the form of a
Frobenius linear translator. Moreover, the next example illustrates that the conditions

of Theorem 5.1/ hold easily as its conditions are weaker.

Example 2. Let ¢ = 2 and n = 4. Take A(z) = o’z + a"2? + a2t + ad2® € Fyu[z]

where a* =1+ aand v = o € 5. Then A(z) satisfies the following conditions:
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1. Ais Fo-linear since A is additive.

2. A(y) # 0since A(y) = A(a®) = a* # 0.

3. A(ya) = A(y)A(a) for all a € F; since
Ala) = a’a+a’a® + a’a’ + aa® = a(e® + @' + o’ +a°) = a
and

A(ya) = o*(aa) + a’(a?a)? + o*(aPa)* + o’ (’a)® = aA(y) = A(a)A(y).

4. Forany x € Fpu: If A(yx) € A(7)F,, then x € F,. Consider § = o' € Fou /Ty
for1 <1 < 14, then we have

A(y0) = A(ya') & A(y)Fy where A(y) = o for 1 <i < 14.

Indeed, we have {A(ya') : 1 < i < 14} = Fi5\ {0,a'}. For example,
A(ya) = a® and A(yal!) = a.

5. Alg, is onto.

Let f : Fys — Ty be the map x — Try(x). Then o is a (1, A)-linear translator of f

since we have

f(x+~u) = f(z + a’u) = Try(z + o’u) = Try(z) + uTry(a?)
=Try(z)+u= f(z)+u

forall x € Fyu and for all u € .
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CHAPTER 6

THE C-DIFFERENTIAL UNIFORMITY OF THE PERTURBED
INVERSE FUNCTION

Consider the perturbed inverse function H () via a trace function 7'r (%) In [19],
Hasan et. al give an upper bound of the c-differential uniformity of A and they leave
an open question whether the upper bound is attained. By using Theorem[6.1} Remark
Bl Remark 4] and Example [3] below, we determine the exact c-differential uniformity
of H inthe case Tr(c) = 1 = Tr(1/c) for ¢ € Fyx\{0, 1}. In particular, in Theorem
below, the upper bound 8 for the exact c-differential uniformity is attained in the
case Tr(c) = 1 = Tr(1/c). In the remaining case, we show that the c-differential

uniformity of H(x) is either 8 or 9 for n > 11.

Theorem 6.1. Let us consider ¢ € F3.\{0, 1} and the function H(x) = 1 + Tr(xx—jl)

over Fon where n > 11. Then the following statements hold:

1. IfTr(c) =1=1Tr(1/c), then Ay = 8.

2. Otherwise, 8 <, Ay < 9.

Proof. The c-differential uniformity of H is
max{.Ag :a,b€F, anda # 0if c = 1},

where the c-Difference Distribution entries Ay = {z € Fon : H(x + a) + cH(z) =

b}. Our aim is to find the exact number of solutions in x to the equation

1 2 1 2
LR (e NI oY (R Y 6.1)
T+ a r+a+1 T r+1
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for any a,b € Fyn and ¢ € Fan\{0, 1}.
If @ = 0, then Equation (6.1) turns into = + T'r x’“"—jl + ¢t +cTr x"’“"—jl =b It
gives us exactly one solution for any b € Fy.. Let us assume that a # 0. We divide

the problem into 4 cases according to the prescribed values of the trace function.

(z+a)? N — 2?2
Case 1. Assume that 7T'r (x+a+1> =0="1r (x—ﬂ) holds. So we have bx? + (ab +

¢+ 1)x 4+ ac = 0. When b = 0, the solution is x = ci—cl Consider b # 0, we

have 22 4 %ty 4 9 — (. Put 21 := 2EH 2. Now consider the curves:

72 + a?
Bt = o
2 a?
Eis: Yig T Y12 = 1
acb
E, :2? = -\
S B
Case 2. Assume that T'r % = land Tr (;—jl) = 0 hold. Then Equation

(6.1) turns into (b + 1)z + (ab+a + c+ 1)z + ac = 0. When b+ 1 = 0, the

: : __ _ac : 2 abt+a+tct+1 ac  _
solution is x = T Consider b + 1 # 0, we have = + bl Lt g = 0.
abt+a+c+1

S Now consider the curves:

Put x5 :=

2% + a?

Eoq iy =—+1
2,1 Y1 T Y21 rtat1 +
2 a?
Ess =
22 Yoo T Y22 P
ac(b+1)

. A2 _
EQ'x2+x2_a2b2+a2+c2+1'

Case 3. Assume that T'r % = 0and Tr (%) = 1 hold. Then Equation

(6.1) becomes (b + ¢)z? + (ab+ ac+ ¢+ 1)z + ac = 0. When b + ¢ = 0, the

solution is # = 2. Consider b + ¢ # 0, we have x? 4 gbtactetl,. | ac _ ()

b+c bte
Put x5 := %x Now consider the curves:
2, 2
9 7+ a
Byx s+ = oy
2 a?
E3o:y50+Ys2 = oo +1
ac(b+ c)

- —
Baragtts = o ot a1
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(z+a)?

Case 4. Assume that T'r ool

=1=1Tr (%) Then we have the following

equation (b+c+ 1)z? + (ab+ac+a+c+ 1)z +ac=0. Whenb+c+1 =0,

the solution is # = 2. Consider b+ ¢+ 1 # 0, we have o2 + dtactaretly 4

ac__ — .— abtactatetl
et — O Putry = S50

b+c+1

z. Now consider the curves:

22 + 2
Eyq1:y? =— +1
4,1 Yig T Y4 o+l +
2 a?
E,s: = 1
42 " Yy T Ya2 1 +
ac(b+c+1)

.2
E4.ZE4+I'4:

a?b? +a?2c2+a?+c2 41

The poles s; of E; in the variable b for 1 < ¢ < 4 are as follows:

1
with multiplicity 2,

S1 =
a
|

oy = 2T Gith multiplicity 2,

a

1

oy = 2CT T L ith multiplicity 2,

a

ac+a+c+1 . e
sy = —  — with multiplicity 2.
a

One can easily observe that we have different poles since the below cases:

S1 7& S2,

S3 3& Sy,

s1 = sz if and only if ac = 0,
s = sqifand only if a(c + 1) = 0,
s = sgif and only if a(c + 1) = 0,

59 = sy ifand only if ac = 0

are satisfied. Since we have different poles for each curve F; for 1 < ¢ < 4, we can

see that they have different function fields by using Theorem 3.4.13, Theorem 3.5.10

and Proposition 3.7.8 in [31]. Now we need to show that each F; ; and E; 5 over L

for 1 < i < 4 are similarly split over an algebraic closure Fy of Fy.. By substituting
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each z; to E;; and I » for 1 < ¢ < 4, we get

2 2 iﬁ- 2

B o _ rHa gy T4

1,1-y1,1+yl,1—x+a+1_ AL |
ab+c+1 a

220? + a'b® + a*c* + a?
(rib+a?b+ac+a+ab+c+1)(ab+c+1)

2 x%b2

E. o y2 Fyg = x  @ter x%bZ
12 - Y1 1,2 z+1 abilclis-l +1 (x1b +ab+c+ 1)(ab Y+ 1)7
212
2 2 z3(b%+1) 9
& te T T
By vt oon = oy H1= iy o+l
TDrareg tat1

3% + 23 + a*b? + a* + a** + a? N
(x2b+ 22+ a?b+a? +ac+ab+c+1)(ab+a+c+1)
2

Y

x
Em3£3+mg=x+1
x2(b?
_ a2b21(a2ig+1 _ x3b* + 13
o _wa(b4)) - )
e 1 (xeb+ a2 +ab+a+c+1)(ab+a+c+1)
22 (b%+c?) 2
Bsq: 02, 4+ s = v’ +a® _ mmieeren TO
WS e a1 T w1y
ab+ac+c+1

230% + 22 + a'B? + a'® + a*c® + a?
(z3h 4+ xsc + a?b+ a’c+a+ab+c+ 1)(ab+ ac+c+ 1)’

2 z2(b2+c?)
L2 _ _ a?b?+a?c?+ci+1
ab+actc+1

21,2 2.2
x3b° + 3¢

= 1
(a:3b+xgc+ab+ac+c+1)(ab~|—ac+c+1)+ ’
22(b24-c241) )
x2+a2 2b24(22 21 .2 1—|—CL
By ydy +yun = ———— + 1= COieC il
) , ) 24 (b+c+1)
ZE+G+1 ab+4ac+a+c+1+a+1

230 + 23 + 25 4 a*b? + a*® + a* + @’ + a?
— +1
(x4b+ z4c+ 24 + 0?0+ a’c+a? +ab+c+ 1)(ab+ ac+a+ c+ 1)

Y

9 x2(b2+c%+1)
) _ _ a?b’4a’c?+a?+c2+1
ab+act+a+c+1

Tib? + 23 + 23 41
(x4b+24c+ 24 +0b+ac+a+c+1)(ab+ac+a+c+1)

The poles t; ; of £; jfor1 <i<4and 1 < j < 2 are of the form:

a*b+ac+a+ab+c+1
b

ti1 = with multiplicity 1,

b 1
tho = % with multiplicity 1,
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a*b+a’+ac+ab+c+1

lo1 = b1 with multiplicity 1,
b 1
tyy = % with multiplicity 1,
a’b+a*c+a+ab+c+1 ) e
t31 = with multiplicity 1,
’ b+c
b 1
[y, — 2 OCHCT with multiplicity 1,
' b+c
b= Ghtafetaitabtet] ith multiplicity 1
= W1 ultiplicCi
H b+c+1 PHEY &
b 1
b, = T aCTOTCF with multiplicity 1.

b+c+1

Recall that Ty is a fixed algebraic closure of 5. Let El,l/FQ be the constant field
extension of Ej;/Fs. Let T} C F, be the set consisting of o € 77 such that there

exists a place P; of ELI corresponds to a pole of y; ;. Let P, (b) = HaeTl (b—a). The

arguments above imply that o € T} if and only if P, («) = 0, where P, (b) satisfies
Pi(b) == (a+1)(ab+c+1)*[(a+1)(ab+c+ 1) + b] + acb®.
Similarly for F; 2, we define
Py(b) == (ab+c+1)*(ab+c+ 1 +b) + acb’.

For Fs 1, we define
Py(b) :=(a+ 1)(a(b+1) +c+ 1)?*[(a+1)(ab+a+c+ 1) +b+ 1] +ac(b+ 1),
For F 5, we define

Pyb) :=(a(b+1)+c+1)3*ab+1)+c+ 1+ (b+1)) +ac(b+1)>
For Fjs 1, we define
Ps(b) == (a+1)(a(b+c)+c+1)°[(a+1)(a(b+c)+c+ 1)+ (b+c)] +ac(b+c)*.
For Es 5, we define

Ps(b) = (a(b+c)+c+1)3ab+c)+c+ 14 (b+c)) +acb+c)’.
For E4 1, we define
P;(b) := (a+1)(a(b+c+1)+c+1)%[(a+1) (a(b+c+1)+et1)+(b+c+1)]H+ac(b+ce+1).
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For E4 5, we define

Py(b) := (a(b+c+1)+c+1)(alb+c+ 1) +c+ 1+ (b+c+1)) +ac(b+c+1)°.

One can observe that there is a relation as follows:

We want to show that each P, for 1 < <8

r /I - (6.2)
1<5<8
J#i
When we show the Equation (@ 1s satisfied, then we can conclude that each curve
E;;jforl < <4and1 < j < 2is irreducible. Moreover, it gives us that there
are at least 8 solutions of the system . So each curve F; ; and E;  have different
function fields by Theorem 3.4.13, Theorem 3.5.10 and Proposition 3.7.8 in [31]]. We

need to check the ideals whether < P;(b), P;(b) >= 1for 1 <+i,j < 8and i # j.
Consider

Py(b) := Agb* + Ash® + Ayb? + A1b + A,
Py(b) := Byb* + Bsb® + Byb? + B1b + By.

Since B, # 0, we can define

Bs B, B, B,
Cy:=—=—,0y:=—,C1 .= —=—and Cj := —.
BT R P T By T B T B,

Then we obtain

< Pi(b), Py(b) > =< Py(b),b* + Csb® + Cyb* + C1b + Cy >
=< Py, (A + AyC3)b + (Ay + A,Co)0* + (A + A4Ch)b
+ (Ao + A4Co) > .

Assume that A3 + A4C3 # 0. Then let us denote

A2 + A402 Al + A401
D2 R A

Az + AsCo At b p .7A0+A400
T A+ A TN As + A 0

D =" =
! As + A,Cs
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So we have

< P(b), Py(b) > =< Py, b* + Dyb* + D1b+ Dy >
=< (Ag + A4D2)b5 + (AQ + A4D1)62 + (Al + A4D0)b + Ao,
b3 + Dyb® + Dib+ Dy > .

Assume that A3 + A4Dy # 0. Then let us denote

Ayt ADy o Ak ADy Ao

B, - = —_—
2 As + AyD,

T Ayt ADy VT Ayt ADy

So we have

< Pl(b), Pz(b) >=
< (Ey + Dy)b* + (Ey + D1)b+ (Eg + Do), b* + Dyb® + Db+ Dy > .

Assume E5 + Dy # 0. Then let us denote

Ei+ D Ey+ D
_ b+ nd Fy = o+ 0

Fi =——a =
YT Ey+ Dy Es+ Dy

So we have

< Py(b), Po(b) > =< b* + Fib+ Fy, b° + Dob® + Dib + Dy >
=< b2 + F1b+ F(), (D2 + Fl)b2 —+ (FO + Dl)b—f- DO > .

Assume D, + F # 0. Then let us denote

Fy+ D D
= ot 1andGO:: 0

G .
YT D+ Ry Dy + Fy

So we have
< Pl(b),PQ(b) >=< (Fl + Gl)b—l— (F() + Go),b2 + G1b+ Go > .

Assume F; + G # 0. Then let us denote

Fh+G G
= ot 0andKO:: 0

H, - 0
O R Gy Hy + Gy

So we have

< Pi(b), Py(b) >=< b+ Hy,b+ K > .

Assume Hy # K,. Then we obtain
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Here in order to show < Py(b), P»(b) >= 1 we need to exclude the values of a

satisfying the following equalities :

By =0,

Az + AC3 =0,

As + AyDy =0,

Es+ Dy =0, (6.3)
Dy + F; =0,

Fi+G =0,

H, = K,.

Observe that

(a+1) a*(a+1),

(a+1)a*(c+1) + ac Bs = a*(c+1) + ac,

Ay = (a+ Da(c+ 1) By =a(c+1)% (6.4)

(a+1)(c+ 1) By = (c+1)3
(a+1)

D2(c+1)4 By = (c+ 1)%

Our goal is to find the number of values of @ such that the given Equations in (6.3)
are satisfied. Here the degree of the polynomials will give the upper bound, which we

look for that 1s 77.

Now let consider the ideal < P;(b), P;(b+1) >. The following cases must be satsfied:

Az #0,

Ay + Az # 0,

Cy+1#0 where 02:%, Ky = A4+A32—3A2+A1,
Di+1#0 where D;,= %, Ci = ﬁ, (6.5)
Ey+1+#0 where Eoz%, DOZCQCil’ Cozﬁ

Ey # Fy where Fy= EgK—l(i T
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The maximum number of a’s that must be excluded for the above inequalities (6.5)
equals 39. When one can do the same calculation for each < FP;(b), P;(b) > for
1 <i,j < 8andi # j, then the total number of such a’s is less than 2048 = 2!, If
you eliminate such values of a, the system is irreducible and gives us a full split. So
we can conclude that if we work on the field of order 2!!, then by Theorem 3.4.13,
Theorem 3.5.10 and Proposition 3.7.8 in [31] we have a full split in the algebraic

closure [F511. Here is the diagram we have:

By, Eyo Eay E-z;z Esq E3.2 By Eyo
]Fo ) 11 ]Fz b. IQ b 13 J 14
Fr)

Figure 6.1: The Hasse diagram over Fy(b)

Therefore we can deduce that the number of solutions of the system is greater than or

equal to 8. By using Theorem 9 in [[19], we get the following result:

1. fTr(c) =1=1Tr(1/c), then Ay =8;

2. Otherwise, 8 <. Ay < 9.

]

Remark 3. In ([19, TABLE 1)), up to n = 8, Hasan et al. gives the c-differential
uniformity of the function H(x) for ¢ € Fon \ {0, 1} when T'r(c) =1 = Tr(%). In our
Table [6.1) we update their table and the only difference is for n = 3. Note that there
are no such ¢ € Fan \ {0, 1} satisfying Tr(c) = 1 = Tr(L). Therefore we express the
c-differential uniformity of H(x) forn = 3 as 0 in Table

Remark 4. Forn =9, we implemented the algorithm for the c-differential uniformity

of the function H(x) in MAGMA software. The algorithm ran in parallel for about
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Table 6.1: The c-differential uniformity

of H over Fan
n  whenTr(c)=1=Tr()
2 1
3 0
4 4
5 6
6 6
7 6
8 7
9 7
10 8

3 days on Magma software. We get the exact c-differential uniformity of the function
H(x) which is 7.

699 o — 41004

Example 3. Forn = 10, a = w?'%, b = w%, ¢ where w is the generator of
3, satisfying wi® + w® + w® + w? + w? + w + 1 = 0, one can easily find that the
w*-differential uniformity of H is 8 in the case Tr(c) = 1 = Tr(+). Moreover, by

using Theorem 9 in [19] we can conclude that the c-differential uniformity of H is 8.
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CHAPTER 7

CONCLUSION

In this thesis, we define a new class of Boolean functions which includes Cusick’s
class of functions [15] as a small subclass. We obtain explicit permutation polyno-
mial classes over [F 2 via I, and also over F» via I, with n > 3. We give a natural
generalization of the notion of linear translators, which is called (b,A)-linear transla-
tor. By using the connection between linear translators and permutation polynomials
over finite fields, we obtain a class of permutation polynomials over F .. For ap-
plications, our class of Boolean functions would be preferable compared to Cusick’s
class of functions mentioned above as our class is much larger, having cryptographic
properties as good as (or even better than) the class of Cusick’s functions. Using
our methods and a new notion of (b,A)-linear translator, it would be possible to con-
struct further interesting algebraic structures like permutation polynomials or special
functions. In 2009, Edel and Pott in [[16] showed that the perturbation method can
construct new APN classes. This suggests studying the perturbation of some cryp-
tographically interesting functions, such as the study stated in [19] for the perturbed
inverse function via trace function. There is an open question presented in [19] to
obtain the c-differential uniformity of the perturbed inverse function via trace func-
tion. We find the exact value of the c-differential uniformity of the function H(x) in
the case Tr(c) = 1 = Tr(%). Moreover, we give a lower bound of the c-differential
uniformity of the function for n > 11. Therefore we provide an almost complete
solution to the given open problem in (//9, Remark 10]). Using our method, it can
be possible to get information about the c-Difference Distribution Table and the c-
differential uniformity of functions. We remarked that our method gives new uses of

algebraic curves over finite fields, which are not in the literature.
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