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ABSTRACT

ANALYSIS AND IDENTIFICATION OF VISUAL-MOTOR INTEGRATION
IN HUMAN MOTOR CONTROL

Kılıç, Ayşegül

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Mustafa Mert Ankaralı

September 2023, 71 pages

This research focuses on the complexities of visual-motor integration in humans using

target-tracking tasks, emphasizing the dynamics of human-in-loop systems. Drawing

from the foundations of the pursuit and compensatory control models, the study ac-

centuates the profound influence of feedback mechanisms and the predictability of

inputs on performance outcomes.

The research design included four distinct target-tracking tasks, each examining dif-

ferent aspects of visual-motor integration. These tasks were characterized by varia-

tions in trajectory types, including single-frequency sinusoids and sum-of-sine, and

differences in experimental scenes, ranging from visibility of the target and operator

to only error information representation. We collected 25 participants’ position and

velocity data with a haptic device.

An accurate response was observed when participants received direct visual feedback

even under unpredictable stimuli. Another observation was the overall better track-

ing performance when the input was predictable compared to unpredictable stimuli.
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Also, we compared the performance enhancement created by the input and feedback.

We saw that increasing the predictability of the input was more effective than in-

creasing the feedback supplied to improve the performance. Moreover, the consistent

emergence of a "U" shaped magnitude response across unpredictable input experi-

ments alludes to potential intrinsic properties of the human motor system, possibly

influenced by factors such as neural resonance.

This research integrates conventional methodologies with more realistic scenarios,

offering a layered and more nuanced understanding of human capabilities and limi-

tations in motor control models and opening up opportunities for designing systems

that can better interact with or augment human abilities.

Keywords: human manual target tracking, visual-motor integration, input predictabil-

ity, feedback predictability, system identification
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ÖZ

İNSAN MOTOR KONTROLÜNDE GÖRSEL-MOTOR
ENTEGRASYONUNUN ANALİZİ VE TANIMLANMASI

Kılıç, Ayşegül

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Mustafa Mert Ankaralı

Eylül 2023 , 71 sayfa

Bu araştırma, hedef takip görevlerini kullanarak insanlarda görsel-motor entegrasyo-

nun karmaşıklığına odaklanırken insanın sistemin içinde olduğu durumların dinamik-

lerini göz önünde bulundurur. Takip ve telafi edici kontrol modellerinin temellerinden

yola çıkan bu çalışma, geri bildirim mekanizmalarının ve girdilerin öngörülebilirliği-

nin takip performansı üzerindeki temel etkilerini öne çıkarmaktadır.

Araştırma tasarımı, görsel-motor entegrasyonun farklı yönlerini inceleyen dört farklı

hedef takip görevini içermektedir. Bu görevler, tek frekanslı sinüzoidler ve toplam

sinüzoidler gibi yörünge türlerinde varyasyonlar ve hedefin ve operatörün görünür-

lüğünden sadece hata bilgisi temsiline kadar değişen deneysel sahnelerle karakterize

edilmiştir. 25 katılımcının pozisyon ve hız verileri bir haptik cihazla toplanmıştır.

Katılımcıların doğrudan görsel geri bildirim aldığında, öngörülemeyen uyaranlar al-

tında bile isabetli bir tepki verdiği gözlenmiştir. Başka bir gözlem ise, girdi öngö-

rülebilir olduğunda izleme performansının, öngörülemeyen uyaranlara kıyasla genel

olarak daha iyi olduğu yönünde olmuştur. Ayrıca, girdi ve geri bildirimin oluşturduğu

vii



performans artışları karşılaştırılmıştır. Girdinin öngörülebilirliğini artırmanın, perfor-

mansı iyileştirmek için sağlanan geri dönüşü artırmaktan daha etkili olduğunu gö-

rülmüştür. Ayrıca, öngörülemeyen giriş deneylerinde tutarlı bir şekilde "U" şeklinde

büyüklük tepkisinin ortaya çıkmasının, insan motor sisteminin potansiyel içsel özel-

liklerine işaret ediyor olabileceği, bunun da nöral rezonans gibi faktörler tarafından

kaynaklandığı düşünülmektedir.

Bu araştırma, geleneksel uygulamaların üzerine daha gerçekçi senaryolar entegre ede-

rek motor kontrol modellerinde insanın yetenekleri ve sınırları hakkında katmanlı ve

daha ayrıntılı bir anlayış sunar. İnsan yetenekleriyle daha iyi etkileşimde bulunan

veya yeteneklerini artıran sistemler tasarlama fırsatları sunar.

Anahtar Kelimeler: insan manuel hedef takibi, görsel-motor entegrasyonu, girdi ön-

görülebilirliği, geri bildirim öngörülebilirliği, sistem tanımlama

viii



To my beloved family

ix



ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor,

Assist. Prof. Dr. Mustafa Mert Ankaralı. His continuous support, encouragement,

and guidance throughout these three years have been invaluable. Being under his

mentorship and benefiting from his knowledge has been a great experience in my

academic journey.

I want to thank Osman Kaan Karagöz, a great friend and a mentor, who was there

when the workload - or food - seemed like a mountain. My friends, especially Pınar
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

The movement of animals is a complex phenomenon that arises from the dynamic

interaction between their motor and sensory systems. The ability to maintain stability

and accuracy during movement is crucial for an animal’s survival, as it ensures prey

does not stumble or fall while being pursued by predators, while the predators rely on

their tracking ability to sustain.

It is common to use feedback control as a framework to understand the dynamic un-

der these movements [1, 2, 3, 4], as it offers structured insights into the dynamic

interplay between sensory feedback and motor responses. The literature offers ex-

amples ranging from the walking analysis of humans [5] to the examination of the

effect of locomotor dynamics variability of glass knifefish [6]. Motor behaviors can

be represented as closed-loop systems. In this conceptualization, bodily movement is

achieved by activating the musculoskeletal components. In turn, this movement stim-

ulates the sensory systems. Neural components respond to sensory inputs, modify

motor activations, and complete the loop.

Control theory typically models closed-loop systems with three main components:

the controlled (plant), the controller, and the feedback. In the realm of animal move-

ments, the musculoskeletal components are perceived as the plant [7], and the neural

components serve as the controller [2, 8, 9] respectively, with sensory stimuli act-

ing as feedback. The nervous system, for the majority of animals, receives sensory

feedback from various sources that shape a distinct motor response suitable for the in-

tended action. Sensory feedback can manifest as visuals, tactile sensations, auditory
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cues, and vestibular signals, among others.

Within this framework, the neural components of the body address two primary con-

cerns: state estimation and control strategy. State estimation problem is an attempt

to understand the current conditions of a system, such as body orientation relative

to itself and its surroundings. Enhanced state estimation performance allows precise

adjustments, optimizing the movement. The control strategy is created using esti-

mated states to modulate muscle activation levels accordingly, ensuring coordinated

and efficient locomotion, as observed in Hummingbird’s case [10].

As mentioned earlier, there are several feedback sources, and sensory stimuli often

reach the nervous system as a combination of different feedback signals from dif-

ferent sensory systems of the body. Studies have explored haptic feedback in tasks

like juggling [11] and have delved into the significance of vestibular feedback [12].

Among these, visual feedback stands out. The nervous system places significant em-

phasis on visual cues regarding state estimation and the control decision processes

during motor tasks for most animals.

Visual-motor integration, the cognitive ability to incorporate visual feedback into mo-

tor behavior, enables successful execution of body movements. We can find evi-

dence from nature that proves this point. The hawkmoth Manduca sexta’s [13] and

the weakly electric fish Eigenmannia virecens’ [14] natural tracking behaviors, for

instance, are influenced by the luminance of the environment. Additionally, while

preying, bluefish’s prey tracking ability is primarily dictated by visual feedback [15].

Tracking is a universal trait observed in animals, driven by needs like predation, mat-

ing, or foraging. Similarly, as humans, we also engage in various tracking tasks.

Whether it is pilots tracking targets in military operations [16, 17], surgeons lever-

aging joystick-like controllers in robotic surgeries utilizing the visual feedback to

achieve precision in intricate procedures [18, 19, 20], or even in entertainment, while

playing video games which often require players to track and engage moving targets

on screen [21, 22], emphasizing the ubiquity and importance of tracking in our lives.

This research aims to investigate the isolated influence of visual feedback on human

motor movements during tracking tasks, distinguishing its effects from other sensory

inputs.
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1.2 Biological Review

Human’s central nervous system, composed of various units, serves as the body’s

command center. It is designed to adjust to both internal and external changes consis-

tently. This intricate system preserves posture, facilitates movement, and offers fine

motor control [23].

Also, our body is designed to move in the best way possible. It integrates principles

like balance and momentum to do activities efficiently. For example, this optimization

helps us walk easily without getting tired quickly. For example, when we walk, our

legs go through cycles of supporting our weight and swinging forward. This way,

only some muscles are working hard at any one time, which helps us keep going

without getting tired. [24].

When it comes to moving on purpose, like lifting your arm, it all starts in the brain.

The messages from the brain first go to a part called the cerebellum before telling

the muscles what to do. The cerebellum is the protector of balance and fluidity in

muscular activities. Then, these messages are sent to the muscles to get them moving.

As we engage in a motion, our brain continuously harvests real-time data on body

orientation, making micro-adjustments in the blink of an eye. If something goes off

course, the cerebellum corrects it quickly. Thus, any damage to the cerebellum can

disrupt this harmony, resulting in imprecise and rough movements.

The cerebellum also helps us get better at tasks we do repeatedly, like riding a bike,

taking a role in learning and adaptation. At first, movements are rough and less stable,

but with more practice, they become smoother. This improvement happens because

the cerebellum strengthens the brain pathways needed for the task [25].

1.3 Existing Works

The question of how animals utilize their senses in varied tasks has been a subject

of curiosity and research since the dawn of humanity. The fact that many animals

are equipped with multiple senses, which they deploy in distinct ways for specific

actions, has broadened this research field.
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Most real-life tasks of animals require several sensory feedback pathways rather than

dependence on just one. In the research presented in [11], Ankaralı et. al. explores

the impact of haptic feedback on rhythmic behaviors by comparing two paddle jug-

gling tasks – one with visual feedback and the other with visual and haptic feedback.

Similarly, Nickl et al. [26] examines the effect of audio and haptic feedback when

combined with visual feedback. Roth et al. [27] provide a framework for stimulat-

ing and modeling various senses in multisensory behaviors, using the hawkmoth’s

flower-tracking behavior as a case study.

Vision often stands out as the most fundamental and pivotal sense of all the senses.

Spanning a wide range of species, from the most primitive to the most advanced,

is one of the main focuses of research to understand the relation between sensory

perception and task performance. We can see many visuomotor control analysis and

modeling examples for humans, whether it focuses on the task of pole balancing on a

finger [28] or how it can be improved by action video games [29].

We can use tracking tasks to look into several aspects of visuomotor control. Human

target tracking, deeply rooted in the challenges of human-machine control in aircraft

systems [30], has evolved over the years. McRuer et al. [31] formulated a human

target tracking task with three levels depending on the predictability of the input and

skill improvement ability of the operator. In the compensatory control level, tracking

error is the only feedback, and tracking performance relies heavily on this feedback.

McRuer’s crossover model [32] captures the compensatory control and models the

plant and the operator together as an integrator with a delay. The second level is

pursuit control, which applies when the operator has past experience, creating an

expectation for the input’s future. However, correction of the response is completed

with the help of visual feedback. The highest level is precognitive control, where the

operator knows the input’s entire future.

In the pursuit control level, the operator is hypothesized to use feedforward control

along with the feedback control [32, 33, 34, 35]. McRuer et al. [33] hypothesize

that the compensatory case’s control corresponds to the feedback controller of the

pursuit control, and the feedforward component can be assumed as the inverse of the

controlled dynamics. In research presented in [34], a disturbance signal is introduced
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to the task to identify the control components, and similar to the previous work, the

feedforward component is modeled similarly to the inverse system dynamics. This

has become a common assumption and an outcome for the upcoming research in the

ongoing years [36]. Roth et. al. [37] investigates the measure of the ability of the

operator to learn and invert the controlled dynamics. Yamagami et. al. [38] suggests

that this inversion is applicable at lower frequencies, yet they find this assumption not

applicable to higher frequencies and define a frequency limit to this inversion.

The recent study presented in [39] proposes an identification method to simultane-

ously estimate the feedback and feedforward controllers of the pursuit control by

introducing a disturbance signal and applying FFT with a Hanning window on both

the disturbance and output signals.

[40] compares the tracking performances of humans on horizontal and vertical axes

and suggests better performance on the horizontal axis. In a similar study to under-

stand the human’s capabilities, Yamagami et. al. investigates the control strategy

differences between using their dominant versus nondominant hand [41], yet do not

detect any significant differences. Also, in [42], they use an electromyography (EMG)

interface as an alternative to joystick-like interfaces. They found that EMG improves

the user’s reaction time and more significant bandwidth, which could be helpful in

multimodal interfaces.

The predictability of the input creates another research question. In [43] Yang et. al.

use a complex tracking task that requires continuous adjustments of motor control

to understand how people learn and adapt to perform under unpredictable scenarios.

Similarly, [44] delves into which characteristics make the system difficult to control.

[45] proposes a method to compensate for the delay caused by the unpredictability na-

ture of the input. This question is also investigated for weakly electric glass knifefish

in [46] using single sine, and sum-of-sines signals as a trajectory for fish to follow.

1.4 Contributions

To evaluate the impact of visual cues on tracking motor performance, we designed

a simple one-dimensional manual target-tracking environment in virtual reality. We
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created four fundamental experimental scenarios with two types of experimental scenes

and two types of target trajectory inputs. Changing them one by one, we aimed to cre-

ate a controlled experiment series and distinguish the effects of each change on the

target tracking performance.

Inspired by the work of [31], we delved into two specific visual notification-based

scenes in our experiments. In the first two experiments, we created a scene to repli-

cate the pursuit tracking control, allowing participants to see the input, the target

object’s position to be followed, and the output, which is the subject’s position. The

only change between the first two experiments is the input form, one being a sin-

gle sine trajectory repeated for multiple frequencies and the second being a special

sum-of-sines trajectory. On the other hand, the third and fourth experiments are build

upon the second scene, which mimics the compensatory tracking control introduced

in the same research. In this scene, only the difference between the target’s and the

subject’s position, that is, error information of the position, is given to the subject.

Again, we changed the input form as in the first and second experimental scenarios.

Combined with the exploration of multiple inputs, these scenarios offered a layered

understanding of human tracking behavior under the influence of distinct visual cues.

In this work, creating the compensatory tracking scenario is our principal contribu-

tion. Even though the pursuit task is discussed in many papers [39, 34, 32], to the best

of our knowledge, the compensatory case has yet to be created as an experimental sce-

nario. By creating this environment, we formed a basis to investigate the zero-input

conditions without an assumption. We also take the visual feedback created unin-

tentionally by participants’ seeing their own hands while performing the given tasks

into consideration and make sure to eliminate it by using the experimental setup and

giving instructions to participants, which will be further discussed in the following

chapters.

We aim to investigate the effect of input predictability on the tracking performance of

a pursuit tracking task by comparing the first two experiments. On the other hand, in-

put predictability’s change on the tracking performance of a compensatory system is

made by comparing the last two experiments. We also mention the comparison of pur-

suit tracking and compensatory tracking by comparing both single-sine experiments
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in two different scenes. We create our last and most complex analysis by comparing

two different experimental scenes with sum-of-sines input, which makes it harder to

interpret the effect of unpredictabilities introduced by two different sources.

In situations where an individual’s tracking performance is crucial, such as if the op-

erator is a pilot or a surgeon, it is vital to measure and improve their abilities before

assigning them significant tasks. Examples of this can be seen in publications about

enhancing skills in using surgical robots, as in [47] is important for the operation’s

success. Also, it has been observed that virtual environments are successful in im-

proving and optimizing these skills [48], [49]. The experimental environment we

have created not only quantifies an individual’s abilities but also provides a medium

in which these skills can be developed and enhanced. By employing VR, we have

presented a controlled and immersive environment. Our setup replicates real-world

challenges authentically and eases the analysis of understanding the impact of visual

cues.

Compared to the previous works in the related field, this research is conducted with an

impressive number of 25 participants with a higher demographic variability of almost

half and half division between the genders.

To sum up, our research enlightens visual cues’ significant role in tracking motor per-

formance. The domain of human tracking performance has been rich with research,

particularly around human-machine dynamics and tracking patterns. By harnessing

the capabilities of virtual reality and examining different visual scenarios, we have

added a nuanced dimension to the ongoing conversation in this field, with potential

real-world applications in sight.

1.5 Organization of Thesis

In Chapter 2, we provide an in-depth description of the apparatus details, the ex-

perimental setup, the experimental scenarios, the experimental sequence, and the in-

structions imparted to participants. We finish this section with the data collection

techniques that we used.
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Later in Chapter 3, we define the performance metrics for the tasks and explain the

methodology we used to identify and analyze the system.

In Chapter 4, we investigate the results of each experiment individually and compare

the findings. Then, we try to emphasize the possible reasons underlying the difference

between the results and give our hypotheses.

Finally, in Chapter 5, we conclude this work with a summary of the key findings and

mention possible future work.
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CHAPTER 2

EXPERIMENTS

In this chapter, we meticulously outline the methodological framework employed to

probe the intricacies of visual-motor integration in human subjects. Central to this

investigation is the role of visual feedback in guiding motor responses. The chap-

ter provides an in-depth description of the apparatus used, the experimental setup,

calibration procedures, and the instructions imparted to participants. Furthermore, it

details the structured sequence of experiments, data collection methodologies, and the

analytical tools employed. Ethical considerations, essential to uphold the research’s

integrity, are also given in this chapter. By presenting a thorough account of the

experimental process, this chapter ensures transparency and lays the foundation for

potential replication in future studies centered on visual-motor integration.

This study was approved by the Human Subjects Ethics Committee at Middle East

Technical University with the protocol number 0505-ODTUIAEK-2022. A total of

25 participants, comprising 11 females and 14 males, participated in the experiments.

Their ages ranged between 20 and 30 years. We only recorded their gender and

refrained from collecting any other personal details.

2.1 Apparatus Details

The experimental setup consists of a computer, a computer screen, and an external

haptic device. The experiments were conducted using the "Touch X" haptic device

from 3D Systems, which boasts a 6-degrees-of-freedom (6DOF) positional sensing

capability and 3-degrees-of-freedom force feedback. Notably, while the device can

operate in 6DOF, we exclusively utilized its capability on the horizontal x-axis for this

9



study. Its nominal position resolution exceeds 1100 dpi (0.023 mm). The interface

between the haptic device and the computer was facilitated using the OpenHaptics

toolkit (version 3.5.0) from 3D Systems.

Haptic devices are commonly used alongside 3D graphics. While graphics require a

refresh rate of 30-60 frames per second (fps) for continuous imagery, haptic feedback

needs around 1000 fps due to the nuances of human perception. These different rates

are often managed by running them in separate processes. To handle these varying

rates, haptic and graphic updates run in separate processes. OpenHaptics toolkit,

comprising the Haptic Device API (HDAPI) and QuickHaptics micro API, allowed

direct force rendering. The servo loop rate of 1 kHz ensures that the system operates

in real-time, allowing instantaneous feedback and seamless interactions. The graphics

loop update is at a rate of 30 Hz. The entire experimental software was developed

in C++ language, leveraging the capabilities of both HDAPI and QuickHaptics API

for precise control and feedback. The Touch X device that we used can be seen in

Fig. 2.1.

To use the haptic device user grips the pen-like stylus of the device, and the subject’s

one-dimensional (1D) motion is transferred to the simulation environment by taking

the position, velocity, and acceleration information of the tip of the stylus.

Figure 2.1: 3D Systems Touch X Haptic Device, side view
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2.2 Experiments

In this section, we provide a comprehensive overview of our research methodol-

ogy. We describe the experimental setup and the various scenarios designed to probe

visual-motor integration abilities. We then outline the sequence in which these exper-

iments were conducted, followed by details on the instructions given to participants,

and our data collection methods.

2.2.1 Experimental Setup

Experiments were conducted during daytime hours to ensure participants’ comfort

and prevent eye strain, with low-level night lighting maintained throughout the ses-

sions. The experimental setup was designed to minimize distractions. Participants

faced a plain wall; the only other individual in the room was the researcher oversee-

ing the experiment. The animation on the screen refreshed at a rate of 30 Hz. To

eliminate unmodeled feedback, we positioned subjects so they could not visually ob-

serve their hands. The computer screen was set on a desk, approximately 50 cm away

from the subjects, with the haptic device positioned beneath the desk. Subjects in-

teracted with the device using its stylus. Refer to the illustration of the experimental

setup in Fig. 2.2 for a better understanding.

Before starting each session, we calibrated the Touch X device using its diagnostic

interface to ensure precise tracking and feedback.
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Figure 2.2: Illustration of the experimental setup, the positioning of the computer

screen, and the haptic device.

2.2.2 Experimental Scenarios

Using a target-tracking task, we designed four experimental scenarios to examine

various facets of the subjects’ visual-motor integration abilities. We introduced two

distinct trajectory types, single-frequency sinusoids and sum-of-sine, and operated on

two different experimental scenes.

We can see the illustration of the first experimental scene on the left side of Fig. 2.3.

Fig. 2.4 shows a screen capture of the implemented experimental scene on the left.

In this scene, the operator can see the target and itself on the screen. The second
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experimental scene is illustrated and captured on the right side of Fig. 2.3 and Fig. 2.4,

respectively. The target and the operator are invisible. Instead, participants are given

error information, represented by an error bar on the screen, indicating the difference

between the target’s and the subject’s positions.

Figure 2.3: Illustration of experimental scenes: the first (left) and the second scene

(right)

Figure 2.4: Screen capture of the implemented experimental scenes: the first (left)

and the second scene (right). Upper and lower images show the horizontal movement

on the screen.

On the left-hand side of Fig. 2.3, x(t) denotes the subject’s position, which translates

to the center of the orange square on the screen, while r(t) indicates the target object’s

position, taken from the gray square’s center. On the right, e(t) signifies the difference

between the target and the subject’s positions, such that e(t) = y(t)−x(t). However,

the actual positions, x(t) and r(t), are not shown to the subjects in this second scene.
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In the first experimental scenario, namely Experiment 1, the first experimental scene

is used. The operator can see the target and itself on the screen. The task is to track the

target object animated on the computer screen using the haptic device as a medium. In

this scenario, the target has a single-frequency sinusoidal trajectory described in (2.1).

This scenario is repeated for five different frequencies, for f1 = 0.10 Hz, f2 = 0.25

Hz, f3 = 0.55 Hz, f4 = 0.85 Hz, and f5 = 1.0 Hz. The amplitude of the trajectories

is 20 mm. Movement velocity requirements vary between 0.2π cm/s to 2π cm/s.

r(t)SSm = 10sin(2pifmt), for m = 1,2,..,5 (2.1)

In the second experimental scenario, Experiment 2, participants track a sum-of-sine

signal depicted in (2.2). This scenario uses the first experimental scene, similar to

Experiment 1. The goal remains to follow the target object as closely as possible. To

create a signal without any pattern, we introduced random phase differences ϕm to

each sine component of the input.

r(t)SoS =
5∑

m=1

= 5sin(2pifmt+ ϕm) (2.2)

The third experimental scenario, Experiment 3, requires subjects to track an input

with a single-frequency sinusoidal trajectory for several frequencies, similar to Ex-

periment 1. However, in this scenario, second experimental scene is used. The aim is

to minimize the error bar animated on the screen as much as possible.

In the fourth and final experimental scenario, Experiment 4, tracking trajectory is a

sum-of-sines signal, like Experiment 2. On the other hand, this scenario uses the

second experimental scene like Experiment 3. The objective is to minimize the error

bar animated on the screen.

In summary, Experiments 1 and 2 utilize the first experimental scene differing tra-

jectory signals. Experiments 3 and 4 use the second experimental scene with the

difference created again by the introduced input.

Details of the four main groups of experiments are given below.

14



1. Experiment 1: Single Frequency Sinusoidal Signal Tracking:

• Subjects were tasked with tracking a target, represented as a box on the

screen, moving in a single-frequency sinusoidal trajectory along the hori-

zontal axis.

• Boxes with identical dimensions visually represent the target and the op-

erator.

• We repeated this experiment for several single-frequency sinusoids with

frequencies of 0.1 Hz, 0.25 Hz, 0.55 Hz, 0.85 Hz, and 1 Hz. The trajec-

tory maintained a consistent amplitude of 2 cm, resulting in varying target

velocities, with 1 Hz being the most rapid.

2. Experiment 2: Sum-of-Sines Signal Tracking:

• Similar to Experiment 1, subjects were tasked with tracking a target, rep-

resented as a box on the screen, moving in a sum-of-sines trajectory along

the horizontal axis.

• Boxes with identical dimensions visually represent the target and the op-

erator.

• EEach sinusoidal component of the sum-of-sine signal has the same am-

plitude, and incorporated phase differences introduce unpredictability. See

Eq. (2.2) for details.

3. Experiment 3: Error Minimization with Single Frequency:

• Unlike the previous scenarios, the target and operator are not visible—instead,

the error signal representing the difference between the target and the sub-

ject’s position is given.

• The objective was to minimize this error, represented by a bar on the

screen.

• The target followed several single-frequency sinusoidal trajectories with

the frequencies mentioned earlier. The amplitude remained fixed at 20mm.

4. Experiment 4: Error Minimization with Sum-of-Sines:

• Similar to the third scenario, only the error signal is present.
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• The target’s movement was defined by a sum-of-sine signal, with each

component having the same amplitude and a phase difference to introduce

unpredictability. See Eq. (2.2) for details.

All experimental tasks necessitate unidirectional movement, specifically along the

horizontal axis (left to right), using either the wrist or the arm. Participants received

solely visual feedback during the experiments.

2.2.3 Experimental Sequence

The experiments followed a specific sequence to ensure consistency and accuracy.

Initially, the single-frequency sinusoidal trajectory experiments (Experiment 1 & Ex-

periment 3) were conducted in a randomized frequency order for each participant,

meaning each subject experienced the experiments in a unique sequence. Every fre-

quency was tested twice in one-minute sessions. Subjects first undertook Experiment

1, followed by Experiment 3 for the same frequency. After completing Experiment 1

and 3, the sum-of-sines experiments (Experiment 2 & Experiment 4) were carried out

four times in one-minute sessions. An example of the entire experimental sequence

is illustrated in Table 2.1.
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Table 2.1: A randomized experimental sequence example.

Step Experiment Number Length (sec) Trial

Step 1 Exp. 1 f2 60 2

Step 2 Exp. 3 f2 60 2

Step 3 Exp. 1 f4 60 2

Step 4 Exp. 3 f4 60 2

Step 5 Exp. 1 f3 60 2

Step 6 Exp. 3 f3 60 2

Step 7 Exp. 1 f5 60 2

Step 8 Exp. 3 f5 60 2

Step 9 Exp. 1 f1 60 2

Step 10 Exp. 3 f1 60 2

Step 11 Exp. 2 60 2

Step 12 Exp. 4 60 2

Step 13 Exp. 2 60 2

Step 14 Exp. 4 60 2

We gave 30-45 seconds rest periods between each step to subjects. Combined with

the rest periods (from Step 1 to the end of Step 10), Experiment 1 and Experiment 3

took approximately 30 minutes, while Experiment 2 and Experiment 4 lasted around

14-15 minutes. The entire experimental procedure, from initiation to finish, spanned

about 45 minutes. When factoring in the training period, the total duration for each

participant reached approximately one hour.

2.2.4 Instructions to Participants

Participants received a briefing about the experimental procedure, which included

details about their seating arrangement, designed to obscure their hand movements,

and guidance on the proper use of the haptic device. To prevent potential bias, we

did not disclose the overarching objectives of the study, such as the nature of the
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upcoming input or strategies for successful task completion. For Experiments 1 and

2, participants were told that their movements would be represented by an "orange"

square on the screen, which they should aim to align with a "gray" target square. In

Experiments 3 and 4, subjects were instructed to minimize the width of a displayed

"blue" error bar.

A training session was conducted after this orientation, allowing participants to fa-

miliarize themselves with the tasks. This session allowed them to practice each ex-

periment they would later perform in the main experimental phase. Each training

task lasted approximately 45 seconds. After the training, participants were given a

15-minute rest before initiating the primary experiments.

2.2.5 Data Collection

Data was captured at an almost flawless rate of 1 kHz, capturing the target’s position,

the participant’s position, and the participant’s velocity. Positional data was measured

in millimeters, while velocity data was recorded in millimeters per second. Only the

central 40 seconds of the one-minute data set was used for analysis purposes. We

excluded each experiment’s initial and final 10 seconds to account for potential biases,

such as diminishing attention or fatigue.
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CHAPTER 3

TASK PERFORMANCE AND ANALYSIS METHODS

In this chapter, we introduce the performance metrics we used to measure the success

of the participants’ tracking behavior. We also discuss why some participants are not

included in the analysis. In addition, we describe in detail the analysis techniques we

used to examine our data.

Table 3.1 represents the parameters used in this chapter and their meanings.

Table 3.1: Parameters and their definitions

Parameters Description Units

Discrete-time variables

ta Analyzed experiment length sec

Fs Servo loop sampling rate Hz

fm Single sine input frequency Hz

xi Subject position at ith step mm

ri Target position at ith step mm

ei Position error at ith step mm

Frequency Domain Terms

X(jω) FFT of xi signal

R(jω) FFT of ri signal

T (jω) FFT of the transfer function
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3.1 Task Performance

In our study, we conducted 1D manual target-tracking experiments in a virtual re-

ality environment with 25 participants. We conducted four tracking task scenarios

with each subject and recorded their activity. It was imperative to establish a robust

performance metric to evaluate the proficiency of each participant’s performance and

exclude the participants with insufficient performance to achieve a meaningful out-

come from the response.

3.1.1 Mean Squared Error

We chose the Mean Squared Error (MSE) as our primary evaluation criterion for the

subject’s task success. Mathematically, MSE is defined as:

MSE =
1

n

n∑
i=1

(ri − xi)
2 =

1

n

n∑
i=1

e2i (3.1)

Here, n is the total number of time steps of the analyzed fragment of the data. In our

case, it is Fs.ta = 40000.

MSE quantifies the average deviation between the target’s path and the participant’s

tracking movement. A lower MSE value indicates that the participant closely fol-

lowed the target’s trajectory, reflecting a higher tracking accuracy. Conversely, a

larger MSE suggests potential deviations from the target’s path, indicating less pre-

cise tracking.

Given the nature of our experiment, the MSE is especially relevant. It provides an

average measure of tracking accuracy and emphasizes more significant deviations,

ensuring that participants’ tracking remains consistently close to the target through-

out the experiment. Based on the mean MSE values of all participants, we established

a threshold to determine the participants’ success for each experiment. Participants

with an MSE exceeding this threshold were deemed to have insufficient tracking ac-

curacy and were subsequently excluded from the final results. This approach ensured

that our results were derived from participants who accurately demonstrated a consis-
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tent tracking performance. We ensured that if the subjects exceeded the threshold of

any experiment, they would be exempted from all of the experiments.

We determined the threshold based on the 95th percentile, which refers to the value

below which 95% of the MSE falls. In other words, only 5% of the MSE is above this

value. This term can be represented as:

P (MSE ≤ P ) = 0.95 (3.2)

For Experiment 1 and Experiment 3, mean value of the MSE is calculated as:

mean5
m=1 meanm(first trial mse(fm)&second trial mse(fm)) (3.3)

It means that we first take the mean of two trials for each frequency. Then, the mean

MSE is calculated by taking the mean of every single sine experiment for each indi-

vidual. For Experiment 2 and Experiment 3, the mean MSE is calculated by averaging

the MSE values of each trial.

21



Figure 3.1: Mean MSE distributions for all experiments and all participants:

(a)Experiment 1, (b) Experiment 2, (c) Experiment 3, (d) Experiment 4. The solid

line represents the 95th percentile of each experiment’s mean MSE, respectively. Cir-

cles are the mean MSE of each participant individually.

As seen in Fig. 3.1, the 23rd subject could not perform successfully and has a mean

MSE above the threshold for all experiments. This subject is exempted from the

analysis.

3.2 System Identification

System identification is used to construct mathematical models of dynamic systems

based on observed data. In our experiment, where human subjects are tasked with

tracking a target in a virtual reality environment, system identification allows us to

understand the dynamic relationship between the target’s movement (input) and the
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subject’s response (output). This understanding is crucial for quantifying the subject’s

tracking ability and predicting their response to different target trajectories.

3.2.1 Non-Parametric Transfer Function Extraction

One approach to system identification is the non-parametric method, which does not

assume any specific model structure but instead derives the system’s response directly

from the data. Our study focused on the non-parametric transfer function, which

provides a frequency domain representation of the system’s dynamics.

We have five distinct single-frequency sinusoidal trajectories for the target in Exper-

iment 1 and 3. We recorded the tracking response of subjects for each trajectory.

Using the Fast Fourier Transform (FFT), we extracted the frequency components of

both the target’s trajectory and the subject’s response. The transfer function, the ratio

of the subject’s output to the target’s input in the frequency domain, was computed

for each frequency. Combining the results from all five trajectories, we constructed

a Bode plot, which graphically represents the magnitude and phase of the transfer

function across the frequency spectrum.

Mathematically, for a given frequency 2πfm = ωm:

T (jω) =
X(jω)

R(jω)
, at frequencies ω1, ω2, .., ω5 (3.4)

In Experiment 2 and 4, we introduce a more complex trajectory for the target, a sum-

of-sine signal with each sinusoidal signal having distinct phase differences to avoid

introducing a predictable pattern. As with the single sine trajectories, we recorded

the subject’s response and used FFT to extract the frequency components. The Bode

plot response was then derived using the same approach as before. The advantage

of using a sum-of-sine signal trajectory is that it allows for simultaneous testing of

the system’s response at multiple frequencies, providing a comprehensive view of the

system’s dynamics.

It is important to note that our analysis operates under the assumption of linearity,

which means that we assume the relationship between the target’s movement and
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the subject’s response is linear, and superposition applies. While this simplifies our

analysis and the resulting models, potential nonlinearities in the subject’s response

could be considered in future studies.

While presenting our findings, we use the mean response of the participant group.

However, this method tends to overlook the inherent variability among individuals.

To address this limitation, we also establish a confidence region around the derived

magnitude and phase responses. To bound our results, we determine the lower and

upper limits by calculating the lower quartile (25th percentile) and the upper quartile

(75th percentile), calculated as given in Eq. (3.5) and Eq. (3.6), respectively.

P (MSE ≤ Plower) = 0.25 (3.5)

P (MSE ≤ Pupper) = 0.75 (3.6)

We also present our phase and magnitude responses on a complex plane. Complex

plane characterization can be denoted as:

αeiθ (3.7)

Furthermore, it can represent the response at a distinct frequency. Here, α is the

magnitude calculated as:

α = |T (jwm)| (3.8)

Here θ shows the phase lag and computed as

θ =
imaginary(T (jwm))

real(T (jwm))
(3.9)

In this characterization, we use the unit circle as a reference point to symbolize the

perfect response of one. On the other hand, the positive real axis represents perfect

tracking with zero lag.
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3.2.2 Noise Content Characterization

As we change the experimental scene, we introduce unpredictability to the experi-

ments. Noise content characterization is a process used to understand the nature and

presence of unwanted or extraneous signals within recorded data. In both Experiment

2 and Experiment 4, we track a sum-of-sine signal. By taking the FFT of the output,

one can identify the specific frequency components of the signal. To exclusively an-

alyze the noise, the frequencies corresponding to the stimulus are removed. What is

left, representing the noise, is then compared, helping us measure the noise content

in our experiments.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, we delve into the outcomes of our experiments, presenting the data

we have gathered. We will explore the results, offering interpretations and discussing

their significance in the context of visual-motor integration abilities. Through a bal-

anced analysis, we aim to provide a clear understanding of what our findings suggest

and their implications for the broader field.

4.1 Results

In Experiment 1, we recreated the human pursuit control task. The Bode plot depicted

in Fig. 4.1 provides valuable insights into human motor control and response when the

input is predictable and direct visual feedback from the target’s and subject’s position

is available. The magnitude and phase response of the bode plot show a slight decline

as frequency increases, suggesting that participants found it more challenging to track

the target at higher frequencies. This behavior is consistent with the nature of human

motor response, where rapid movements can be more challenging to execute with

precision. Also, this result is consistent with the outcome presented in [39].

The confidence region’s variability across frequencies further elucidates this obser-

vation. A narrow confidence region at 0.1 Hz indicates consistent tracking by partic-

ipants at lower frequencies, benefiting from the slower target movement and ample

time to adjust based on visual feedback. However, the wider confidence region at 1

Hz reveals increased response variability, likely due to the combined effects of neural

processing delays, muscle response times, and the inherent challenges of rapid target

tracking. While aiding in the tracking task, the direct visual feedback might have
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become more challenging for participants to process in real time as the frequency

increased, leading to the observed variability in response. Overall, the results under-

score the complexities and limitations of human motor control, mainly when tasked

with tracking rapid movements.

Then again, as seen from the complex plane representation of the mean response

given in Fig. 4.2, the response is distributed in a small spectrum and does not vary

much. Subjects possess a consistent, near-perfect performance.

Figure 4.1: Experiment 1 magnitude and phase response plot. The solid lines repre-

sent the mean response, while the transparent bounds correspond to the confidence

region calculated between the first and last quartile.
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Figure 4.2: Experiment 1 response on complex plane. Each circle corresponds to the

response at stimulus frequencies, the darkest shade for the smallest frequency and the

lightest shade for the largest frequency component of the experiment. The unit circle

symbolizes the perfect tracking with gain one as a reference point, and the positive

real axis represents the perfect phase with zero lag.

In Experiment 2, we created a variation of the pursuit control task with a sum-of-

sines signal trajectory, with direct visual feedback of both the target’s and subject’s

positions. The Bode plot given in Fig. 4.3 reveals distinct characteristics of pursuit

control display under more complex input signals. The magnitude response decreases

as the frequency increases, starting from 0.675 at 0.1 Hz and dropping to 0.413 at 0.25

Hz. However, at 1.0 Hz, there is a noticeable upward trend in magnitude response,

rising up to 0.927. The magnitude response for Experiment 2 started high, went

lower for middle frequencies, and then rose again for the highest frequency, forming

a ’U’ shape. This "U" shape suggests that while participants might find tracking the

target at intermediate frequencies challenging, they seem to adapt better at the highest

frequency tested.

The phase response shows a consistent lag across all frequencies, with the phase de-
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lay increasing from −31.1◦ at 0.1 Hz to −46.6◦ at 1 Hz, indicating that participants

consistently lagged behind the target’s movement, with the lag becoming more pro-

nounced at higher frequencies.

The confidence regions provide additional insights into the consistency of partici-

pants’ responses. The magnitude confidence region is narrowest at 0.1 Hz, indicating

consistent tracking at this frequency. However, the confidence region widens as the

frequency increases, suggesting more variability in participants’ tracking ability. This

widening is particularly apparent at 0.25 Hz and 0.55 Hz, where the upper and lower

bounds of the magnitude show significant differences. The phase confidence region

also shows increased variability at higher frequencies, reinforcing the notion of in-

creased challenges in tracking rapid and complex movements.

The complex plane representation of the response given in Fig. 4.4 suggests similar

outcomes. The response lags the input and gets worse as the frequency increases.

Nevertheless, the response at 1 Hz deserves special consideration since it contradicts

the intuition. We will further discuss this phenomenon in the upcoming sections.

Experiment 2 highlights the intricacies of human pursuit control tasks when faced

with unpredictable input signals. While participants can track slower and simpler

movements with relative consistency, the challenges of tracking rapid and compound

movements become evident, as reflected by the decreasing magnitude response and

increasing phase lag.

30



Figure 4.3: Experiment 2 magnitude and phase response plot. The solid lines repre-

sent the mean response, while the transparent bounds correspond to the confidence

region calculated between the first and last quartile.
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Figure 4.4: Experiment 2 response on complex plane. Each circle corresponds to the

response at stimulus frequencies, the darkest shade for the smallest frequency and the

lightest shade for the largest frequency component of the experiment. The unit circle

symbolizes the perfect tracking with gain one as a reference point, and the positive

real axis represents the perfect phase with zero lag.

In Experiment 3, we created a task to track several single-frequency sinusoidal signals

without direct visual feedback of the target’s or subject’s positions. This experiment

is a variation of the compensatory control task presented in [31], yet different from

the original version; input is predictable. We only provided error signals to subjects,

and the task was to minimize this error shown by a bar as much as possible. The Bode

plot for this experiment depicted in Fig. 4.5 offers insights into how humans adapt to

such conditions.

The magnitude response starts strong at 0.993 for 0.1 Hz, indicating near-perfect

tracking at this frequency. However, as the frequency increases, the magnitude re-

sponse drops significantly, reaching as low as 0.281 at 1.0 Hz. This decline suggests

that participants found it increasingly challenging to track the target accurately as the

frequency increased, especially without direct visual feedback of positions.
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The phase response shows a consistent lag across the tested frequencies, starting from

−9.67◦ at 0.1 Hz and increasing to −32.6◦ at 1.0 Hz. This phase lag indicates that

participants were consistently behind the target’s movement, with the delay becoming

more pronounced as the frequency increased.

At 0.1 Hz, the magnitude confidence region is relatively narrow, suggesting consis-

tent tracking by most participants. However, the confidence region widens as the

frequency increases, especially at higher frequencies like 0.85 and 1.0 Hz. This

widening indicates increased variability in participants’ tracking abilities under these

conditions. The phase confidence region also shows increased variability, particularly

at frequencies like 0.55 and 0.85 Hz.

The complex plane representation of the response in Fig. 4.6 suggests a consistent

response drop as the frequency increases.

In summary, Experiment 3 underscores the challenges faced by participants when

deprived of direct visual feedback of positions. While they could track slower move-

ments with relative accuracy, the complexities of tracking rapid movements without

direct positional feedback became evident. The decreasing magnitude response and

increasing phase lag, coupled with the widening confidence regions, highlight the

limitations of human compensatory tracking control under such conditions.
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Figure 4.5: Experiment 3 magnitude and phase response plot. The solid lines repre-

sent the mean response, while the transparent bounds correspond to the confidence

region calculated between the first and last quartile.
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Figure 4.6: Experiment 3 response on complex plane. Each circle corresponds to the

response at stimulus frequencies, the darkest shade for the smallest frequency and the

lightest shade for the largest frequency component of the experiment. The unit circle

symbolizes the perfect tracking with gain one as a reference point, and the positive

real axis represents the perfect phase with zero lag.

Experiment 4 creates the most complex scenario for tracking. The task is to mini-

mize the errors without direct visual feedback of the target’s or subject’s positions

when the input is an unpredictable sum-of-sines signal. This experiment creates a

complete replica of the compensatory control task. In this experiment, both the input

and the scene introduce unpredictability to the tracking task. The Bode plot given

in Fig. 4.7 for this experiment reveals the intricacies of human motor control under

these conditions.

The magnitude response starts at 0.465 for 0.1 Hz, indicating that participants could

moderately track this frequency component of the input sum-of-sines signal. How-

ever, as the frequency increases, the magnitude response dips, reaching a minimum of

0.197 at 0.55 Hz before slightly increasing again. Like Experiment 2, the magnitude

response for Experiment 4 started high, went lower for middle frequencies, and then

35



rose again for the highest tested frequency, forming a ’U’ shape. This pattern suggests

that participants found it most challenging to track the target around the mid-range

frequencies.

The phase response consistently lags across the tested frequencies, starting from

−50.95◦ at 0.1 Hz and increasing to −66.1◦ at 1.0 Hz. This consistent phase lag

indicates that participants were always behind the target’s movement, with the delay

becoming more pronounced as the frequency increased.

The confidence regions provide insights into the variability in participants’ responses.

At 0.1 Hz, the magnitude confidence region is relatively broad, suggesting varied

tracking capabilities among participants. This variability becomes even more pro-

nounced at higher frequencies, such as 0.85 and 1.0 Hz. The phase confidence region

also shows increased variability across all frequencies, indicating that participants’

reactions to the sum-of-sines signal were diverse.

From the complex plane representation given in Fig. 4.8, we see that the response

is almost like a noise response, and the subjects were almost unable to follow the

input at most frequencies. Again, like Experiment 2, the response at 1 Hz deserves

special consideration since it contradicts the intuition, and we will further discuss this

phenomenon in the upcoming sections.

Experiment 4 highlights human compensatory control’s complexities when tracking

a sum-of-sine signal without direct positional feedback. The fluctuating magnitude

response, increasing phase lag, and wide confidence regions emphasize the challenges

participants faced under these conditions.
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Figure 4.7: Experiment 4 magnitude and phase response plot. The solid lines repre-

sent the mean response, while the transparent bounds correspond to the confidence

region calculated between the first and last quartile.
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Figure 4.8: Experiment 4 mean response characterized by a point on the complex

plane. Each circle corresponds to the response at stimulus frequencies, the darkest

shade for the smallest frequency and the lightest shade for the largest frequency com-

ponent of the experiment. The unit circle symbolizes the perfect tracking with gain

one as a reference point, and the positive real axis represents the perfect phase with

zero lag.

4.2 Comparison Between Experiment 1 and Experiment 2 (Predictable vs. Un-

predictable Input With Direct Visual Feedback)

Both Experiment 1 and Experiment 2 shared the same experimental scene, creating

variations of the pursuit control task. We provided direct visual feedback of both the

target’s and the subject’s positions to participants. The primary distinction between

the two was the nature of the tracking signal: a single sine wave in Experiment 1

versus a sum-of-sines in Experiment 2, where the sum-of-sines input decreased the

predictability of the task.

In Experiment 1, participants displayed a relatively high magnitude response across

the tested frequencies, which suggests that participants could track the single sine
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wave with a high degree of accuracy, especially at lower frequencies. The phase re-

sponse showed a gradual increase in lag, indicating a consistent but minor delay in

participants’ tracking relative to the target’s movement. Contrastingly, in Experiment

2, the magnitude response was notably lower, which suggests that participants found

it more challenging to track the sum-of-sines signal, especially at mid-range frequen-

cies. The phase lag in Experiment 2 was also more pronounced than Experiment

1. This indicates a more significant delay in participants’ reactions when tracking a

more complex, unpredictable signal. The confidence regions for both experiments

further emphasize the increased challenge of Experiment 2. While the confidence

regions in Experiment 1 were relatively narrow, indicating consistent performance

among participants, the regions in Experiment 2 were wider, especially at higher fre-

quencies. This suggests more significant variability in participants’ ability to track

the sum-of-sines signal.

The human sensory-motor system is a dynamic control system that responds to ex-

ternal stimuli. In Experiment 1, where the input is a single-frequency sine wave,

the system is subjected to a predictable and periodic stimulus analogous to a system

tested with a simple harmonic input. Given the system’s inherent design and prior

experiences, it can effectively "tune" itself to this frequency, resulting in a more accu-

rate and phase-aligned response. This is evident from the higher magnitude response,

and more negligible phase lag observed in Experiment 1. Experiment 2 introduces a

sum-of-sines signal, representing a superposition of multiple harmonic inputs. When

faced with such a complicated input, a typical control system might find it challeng-

ing to track each frequency component accurately. This complexity is mirrored in the

overall reduced magnitude response and increased phase lag of Experiment 2. The

system’s response becomes more reactive than predictive as it adapts to the rapidly

changing input in real-time.

Biologically, the difference between the responses can be interpreted as the human

brain’s ability to anticipate and adapt to predictable patterns. The outcome might

suggest that the neural pathways involved in sensory-motor integration become more

efficient when exposed to a consistent stimulus, leading to improved tracking perfor-

mance, and the unpredictability of the sum-of-sines input might be challenging the

brain’s anticipatory mechanisms. The wider confidence regions observed might be
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attributed to the variability in individual neural responses to this unpredictable stim-

ulus. Overall, this results in a better performance when the input has a recognizable

pattern compared to a complex, unpredictable input.

In essence, comparing Experiments 1 and 2 provides a comprehensive understanding

of how dynamic systems with perfect feedback react to different inputs. While the

system can adeptly track simple, predictable inputs, its performance can fade when

confronted with complicated and unpredictable stimuli, highlighting the significance

of system adaptability and tuning in biological systems and control engineering.

Figure 4.9: Comparison of magnitude and phase responses between Experiment 1 and

Experiment 2, tracking of predictable input (red) versus unpredictable input (green)

with direct visual feedback. The solid lines represent the mean response, while the

same colored transparent bounds correspond to the confidence region calculated be-

tween the first and last quartile for respective experiments.
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Figure 4.10: Comparison of system responses on a complex plane between Experi-

ment 1 and Experiment 2, tracking of predictable input (shades of red) versus unpre-

dictable input (shades of green)with direct visual feedback. Each circle corresponds

to the response at stimulus frequencies, the darkest shade for the smallest frequency

and the lightest shade for the largest frequency component of the experiments. The

unit circle symbolizes the perfect tracking with gain one as a reference point, and the

positive real axis represents the perfect phase with zero lag.

4.3 Comparison Between Experiment 1 and Experiment 3 (Predictable Input

With vs. Without Direct Visual Feedback)

In comparing Experiment 1 and Experiment 3, the difference lies in the nature of the

visual feedback provided to the subjects. Both experiments utilize the same single

sine input signals, but the feedback mechanisms differ, leading to distinct behavioral

and performance outcomes.

We observe distinct differences in magnitude and phase responses when examining

the Bode plots of Experiment 1 and 3 in Fig. 4.11. For Experiment 1, the magnitude

response remains relatively high across the tested frequencies, indicating a robust
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tracking ability when direct visual feedback is provided. While showing a gradual

lag, the phase response remains within a manageable range, suggesting that partici-

pants can effectively compensate for the phase differences introduced by the system

dynamics. In contrast, Experiment 3 exhibits a more attenuated magnitude response,

especially at higher frequencies, suggesting that the absence of direct feedback affects

the participants’ ability to track the target accurately, particularly at higher frequen-

cies. The phase response for Experiment 3 also indicates a more pronounced lag,

which we can attribute to the increased reliance on error feedback and the inherent

challenges in processing this abstract form of feedback.

Figure 4.11: Comparison of magnitude and phase responses between Experiment 1

and Experiment 3, tracking of predictable input with (red) versus without (blue) direct

visual feedback. The solid lines represent the mean response, while the same colored

transparent bounds correspond to the confidence region calculated between the first

and last quartile for respective experiments.
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Figure 4.12: Comparison of system responses on a complex plane between Experi-

ment 1 and Experiment 3, tracking of predictable input with (shades of red) versus

without (shades of blue) direct visual feedback. Each circle corresponds to the re-

sponse at stimulus frequencies, the darkest shade for the smallest frequency and the

lightest shade for the largest frequency component of the experiments. The unit circle

symbolizes the perfect tracking with gain one as a reference point, and the positive

real axis represents the perfect phase with zero lag.

Building on these observations, the nature of the visual feedback provided to the sub-

jects in the two experiments leads to distinct behavioral and performance outcomes.

In Experiment 1, where subjects receive direct visual feedback from both the target

and their position, the system can be likened to a closed-loop control system with

full-state feedback from an engineering standpoint. This direct feedback allows im-

mediate and intuitive corrections, resulting in a more linear and predictable system.

Suggesting that the human motor system, when equipped with comprehensive infor-

mation, can effectively minimize tracking errors, leading to a more stable response.

Conversely, in Experiment 3, the absence of direct positional feedback might cause

the brain to rely more on memory and prediction, introducing elements of uncertainty.
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The observed Mean Squared Error (MSE) trends presented in Fig. 4.13 further ac-

centuate these differences. The relatively consistent MSE across repeated trials in

Experiment 1 suggests a stable system response. In contrast, the drastic changes in

MSE between repeated trials in Experiment 3 indicate a system with higher variance

and potentially less predictability. This variability underscores the profound impact of

feedback mechanisms on system performance and stability, highlighting the intricate

interplay between engineering principles and biological systems in human tracking

tasks. Increasing MSE with frequency for both experiments indicates the challenges

in tracking as the input frequency rises, which we could attribute to the inherent lim-

itations in the human motor system’s bandwidth.

Figure 4.13: Comparison of mean squared error between trials for Experiment 1 and

Experiment 3, dark red line depicts the first trial for Experiment 1 while the light red

signal represents the second trial. Similarly, the dark blue signal depicts the first trial

in Experiment 3, while the light blue represents the second trial.

Suppose we interpret the outcomes from the biological view, while the initial perfor-

mance in Experiment 3 is inferior due to the lack of direct visual feedback. In that
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case, the human motor system is known for its adaptability. Relying solely on error

feedback might have forced subjects to pay more attention to their performance and

adapt more quickly to reduce the error, resulting in a steeper learning curve and a

more rapid decrease in tracking error over repeated trials. Also, the decline in over-

all performance could result from cognitive load. Experiment 1 might have a lower

cognitive load since subjects can directly see and follow the target. In contrast, Ex-

periment 3 might impose a higher cognitive load as subjects need to interpret the error

signal and adjust their movements accordingly.

In summary, the critical difference between the two experiments is the type of feed-

back provided, which can have significant implications for motor adaptation, learn-

ing, cognitive load, and the cerebellum’s role in these processes. Analyzing the results

from these experiments can provide insights into how different feedback mechanisms

influence motor control and adaptation.

4.4 Comparison Between Experiment 3 and Experiment 4 (Predictable vs. Un-

predictable Input Without Direct Visual Feedback)

We used the same scene for Experiment 3 and Experiment 4 and created variations of

compensatory control tasks. These two experiments differ in introduced input signals.

In Experiment 3, participants were subjected to track several single-frequency sinu-

soidal signal inputs, while in Experiment 4, they encountered a sum-of-sine signal.

This difference in input complexity is reflected in their complex domain characteri-

zations given in Fig. 4.15 and magnitude and phase responses given in Fig. 4.14.

For Experiment 3, the magnitude response starts relatively high at lower frequen-

cies. Then, it attenuates as the frequency increases, suggesting that participants could

track the target effectively at lower frequencies, but their performance declined at

higher frequencies. The phase response shows a consistent lag across the frequency

spectrum, indicating a delay in participants’ reactions, which is expected given the

absence of direct positional feedback. On the other hand, Experiment 4’s magni-

tude response is considerably lower across all frequencies compared to Experiment

3, indicating a reduced ability to track the target, especially given the more complex

45



sum-of-sines input. The phase response for Experiment 4 also exhibits a more pro-

nounced lag, especially at higher frequencies, suggesting that the participants found

it even more challenging to synchronize their movements with the target’s trajectory.

We can attribute the differences in magnitude and phase responses between the two

experiments to the inherent challenges of tracking a more complex and unpredictable

input signal in Experiment 4. The sum-of-sine signal input introduces multiple fre-

quency components, making it harder for participants to anticipate and respond to

target movements, especially without direct positional feedback.

Biologically, the brain’s ability to process and react to sensory information might be

overwhelmed by the unpredictability of the sum-of-sine signal input in Experiment

4. Without direct visual feedback, participants rely more on internal models and

predictions. The added complexity of the input signal in Experiment 4 could disrupt

these internal models, leading to decreased tracking accuracy and increased phase

lag.

In summary, while both Experiment 3 and Experiment 4 deprived participants of

direct positional feedback, the added complexity of the sum-of-sine signal in Exper-

iment 4 further challenged the participants’ tracking abilities, as evidenced by the

Bode plot responses. This outcome further highlights the intricate balance between

input complexity and the availability of feedback in determining human performance

in tracking tasks.
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Figure 4.14: Comparison of magnitude and phase responses between Experiment

3 and Experiment 4, tracking of predictable input (blue) versus unpredictable input

(black) without direct visual feedback. The solid lines represent the mean response,

while the same colored transparent bounds correspond to the confidence region cal-

culated between the first and last quartile for respective experiments.
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Figure 4.15: Comparison of system responses on a complex plane between Experi-

ment 3 and Experiment 4, tracking of predictable input (shades of blue) versus un-

predictable input (shades of black) without direct visual feedback. Each circle cor-

responds to the response at stimulus frequencies, the darkest shade for the smallest

frequency and the lightest shade for the largest frequency component of the experi-

ments. The unit circle symbolizes the perfect tracking with gain one as a reference

point, and the positive real axis represents the perfect phase with zero lag.

4.5 Comparison Between Experiment 2 and Experiment 4 (Unpredictable In-

put With vs. Without Direct Visual Feedback)

Both Experiment 2 and Experiment 4 utilized a sum-of-sine signal input, but they

were presented to participants with different visual feedback scenarios. In Experiment

2, participants had direct visual feedback of the target and their position, while in

Experiment 4, this direct feedback was absent. The Bode plot responses and complex

plane characterizations of both experiments are shown in Fig. 4.16 and Fig. 4.17

respectively.
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Figure 4.16: Comparison of magnitude and phase responses between Experiment 2

and Experiment 4, tracking of unpredictable input with (green) versus without (black)

direct visual feedback
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Figure 4.17: Comparison of system responses on a complex plane between Exper-

iment 2 and Experiment 4, tracking of unpredictable input with (shades of green)

versus without (shades of black) direct visual feedback. Each circle corresponds to

the response at stimulus frequencies, the darkest shade for the smallest frequency and

the lightest shade for the largest frequency component of the experiments. The unit

circle symbolizes the perfect tracking with gain one as a reference point, and the pos-

itive real axis represents the perfect phase with zero lag.

The phase response for both experiments shows a lag. However, it is more pro-

nounced in Experiment 4, suggesting that, without direct visual feedback, participants

in Experiment 4 experienced a more significant delay in their reactions to the target’s

movements.

The magnitude responses of both experiments shown in Fig. 4.16 exhibit a notable

"U" shape or notch filter-like behavior. This characteristic shape suggests that the

system (in this case, the human subjects) attenuates specific frequencies more than

others. The more pronounced response around 1 Hz might indicate a resonance or a

frequency at which the human motor system is most responsive or sensitive.

Observing a notch filter-like magnitude response in Experiment 2 and 4 is intriguing
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and can be attributed to various factors. Explanation can be made from both bio-

logical and methodological views. From the biological point of view, this outcome

might arise from the inherently adaptive mechanisms of the human sensory-motor

system. When faced with a sum-of-sine input, specific frequencies might be more

challenging for the brain to process and track, leading to a reduced response, creating

a "notch" in the frequency response where the system’s tracking ability is diminished.

Another reason could be neural resonance. Just as mechanical systems have resonant

frequencies, neural circuits can also exhibit resonance-like behaviors. The frequen-

cies around the notch may be more challenging for the brain to process due to some

form of neural resonance or interference.

From the engineering point of view, his phenomenon could result from the predomi-

nant noise around the 1 Hz frequency during data collection. This type of noise char-

acteristic might artificially inflate the response at this frequency, making it appear as if

the response is better, thereby creating a notch-like appearance. In Fig. 4.18, we give

the responses at the stimulus frequencies with blue and noise content with orange. To

explicitly investigate the noise content we got rid of the response at stimulus frequen-

cies. In Fig. 4.19, we see the general trend of noise on a wider frequency range, de-

creasing as the frequency increases. Fig. 4.20 zooms to the focused frequency range.

In this figure, we do not see any indications of a suspected noise pattern creating a

false response, which makes the biological explanations more credible.

Figure 4.18: FFT results of Experiment 2 (left) and Experiment 4 (right). The blue

lines correspond to the stimulus frequencies.
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Figure 4.19: Noise content extracted from FFT of Experiment 2 (left) and Experiment

4 (right) up to 3 Hz to observe the general noise trend. Orange circles correspond to

the stimulus frequencies.

Figure 4.20: Noise content extracted from FFT of Experiment 2 (left) and Experiment

4 (right) up to 1.2 Hz to closely see the trend around the stimulus frequencies. Orange

circles correspond to the stimulus frequencies.

The difference in Bode plot responses between the two experiments underscores the

importance of feedback mechanisms in tracking systems. Direct visual feedback in

Experiment 2 likely provided participants with a reference point, aiding error correc-

tion and enhancing their tracking performance. Without this feedback in Experiment

4, participants had to rely solely on feedback, leading to decreased tracking accuracy

and increased phase lag.

Biologically, direct visual feedback in Experiment 2 would have engaged the partic-
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ipants’ visual processing pathways, allowing for real-time adjustments and correc-

tions. Without this feedback, in Experiment 4, participants had to rely more heav-

ily on proprioceptive feedback, which might not be as effective for complex, multi-

frequency inputs like the sum-of-sine signals.

In conclusion, while both Experiment 2 and Experiment 4 subjected participants to

the same sum-of-sine input, the presence or absence of direct visual feedback played

a crucial role in their tracking performance. The Bode plot responses highlight the

challenges posed by complex inputs, mainly when feedback mechanisms are limited

or absent.

4.6 Discussion

Using the first experimental scene, Experiment 1 and Experiment 2 create versions

of the pursuit control task presented in [31]. If we model this scene on a state space,

naming our state vector as Zp, our states would be:

Zp =



x

ẋ

r

ṙ

e

ė


(4.1)

On the other hand, Experiment 3 and Experiment 4 create versions of compensatory

control tasks presented in the same research using the second experimental scene. If

we model this scene using a state space, naming our state vector Zc, our states would

be:

Zc =

e
ė

 (4.2)

In this second experimental scene, the only source of feedback is the position er-
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ror, which creates a reactive control task. Humans cannot measure their motor com-

mand output; other than the error, the system’s states are unobservable. The compen-

satory display control model is often represented with a simple closed-loop diagram

in Fig. 4.21.

Figure 4.21: Block diagram for the compensatory control model.

Access to position and velocity information of both the input and the output, along

with the error position and velocity, creates a better observer in the first experimental

scene. Since two copies of the same information correcting each other are present

within the observer, the error is corrected using other states’ information and feed-

back. This phenomenon creates a better overall control with both predictive and re-

active components. In this scene, the reactive component is suggested to be the same

controller in the compensatory display [32]. In contrast, the predictive component is

commonly modeled with a feedforward component [34, 36, 37, 38]. Here, we suggest

to model the effect of input and output separately. In Fig. 4.22, FFx is the feedfor-

ward model of the effect of having the state information and an estimation of motor

commands of the operator. FFr is for the feedforward model of directly seeing the

target.
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Figure 4.22: Block diagram for the pursuit control model.

The body is assumed to voluntarily create redundancy in biology, collecting and

merging various sensory information to achieve the best prediction and control [50,

51]. Having complete state information in the pursuit control task creates similar

redundancy. In this scene, we hypothesize that humans could be using their internal

model predictor (IMP) regardless of the input type since they can predict the output of

their own motor command. However, we still see a decrease in performance between

Experiment 1 and Experiment 2, suggesting that IMP becomes less functional based

on the input’s predictability.

Humans’ IMP works on experience basis [52, 53, 54, 55] and can be considered the

source of feedforward models in systems [56]. In our last hypothesis, we mentioned

that IMP could be affected by the predictability property of the input, suggesting that

predictable inputs increase the prediction ability and create experience since they give

insight into the future of input. We can now ask how the IMP performance changes

for different feedbacks given predictable inputs. If we compare Experiment 1 and

Experiment 3, where the inputs have predictable patterns, responses are close to each

other at lower frequencies yet significantly differ at higher frequencies. This outcome

could suggest that the compensatory control could still be under the influence of IMP

at lower frequencies, and consequently, we might be able to mention feedforward

models for predictable inputs at lower frequencies. However, it is crucial to point at
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higher frequencies, performance gradually decreases for Experiment 3, suggesting a

bandwidth to IMP at this compensatory control case.

Another critical deduction can be the frequency sensitivity of IMP. Even with pre-

dictable input and perfect state knowledge demonstrated in the pursuit control task in

Experiment 1, we see a decay in performance as the frequency increases, suggesting

a bandwidth limit to IMP and feedforward control, similar to the findings in [38].

However, this pursuit control bandwidth can be considered broader compared to the

compensatory control task in Experiment 3.

Up to this point, we discussed the effects of input and feedback on IMP. We can also

look into which aspect the IMP relies more heavily on by comparing Experiments

1, 2, and 3 together. In Experiment 1, we have perfect feedback with predictable

input. Experiment 2 differs in input, while Experiment 3 separates from Experiment

1 in feedback states. As seen from Fig. 4.24, mean MSE is lowest for Experiment

1, as expected. However, contrary to our expectations, the second lowest mean MSE

level is presented for Experiment 3 and the highest MSE levels, and consequently, the

worst performance is observed for Experiment 2.
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Figure 4.23: We give mean MSE results for each participant and the overall mean

MSE for Experiments 1 (red), 2 (green), and 3 (blue). For Experiments 1 and 3, we

calculate the mean MSE by taking the mean of every single-frequency performance.

This outcome might suggest that the IMP relies more on the input’s predictability,

and even with restricted state feedback, it helps to display accurate performance. An-

other reason might be the frequency range of experiments. As seen from both united

Bode plot 4.24 and complex plane Fig. 4.25 response representations, it is clear that

the predictable input magnitude response of Experiment 3 is significantly better than

Experiment 2 at lower frequencies, and phase response is better at every frequency.

However, we see a significantly better magnitude response at higher frequencies in

Experiment 2. This outcome could have changed if we increased the frequency range

since, as we discussed, IMP seems to have a bandwidth property. In a broader fre-

quency range, the feedback states might be prevailing.

57



Figure 4.24: Comparison of magnitude and phase responses between Experiment 1

(red), 2 (green), and 3 (blue), tracking of predictable input with direct feedback, un-

predictable input with direct feedback, and predictable input without direct visual

feedback. The solid lines represent the mean response, while the same colored trans-

parent bounds correspond to the confidence region calculated between the first and

last quartile for respective experiments.

58



Figure 4.25: Comparison of system responses on a complex plane between Exper-

iment 1 (shades of red), 2 (shades of green), and 3 (shades of blue), tracking of

predictable input with direct feedback, unpredictable input with direct feedback, and

predictable input without direct visual feedback. Each circle corresponds to the re-

sponse at stimulus frequencies, the darkest shade for the smallest frequency and the

lightest shade for the largest frequency component of the experiments. The unit circle

symbolizes the perfect tracking with gain one as a reference point, and the positive

real axis represents the perfect phase with zero lag.

Regardless of which experiment we conducted, the best responses were almost al-

ways at the lowest frequency, suggesting a frequency sensitivity for the tracking task.

However, unexpectedly, we saw an improved trend in the extreme frequencies for the

cases with unpredictable inputs. This observation can be attributed to various factors,

both biological and methodological. From the biological point of view, it might be

caused by the inherently adaptive mechanisms of the human sensory-motor system.

When faced with a sum-of-sine signal input, specific frequencies might be more chal-

lenging for the brain to process and track, leading to a reduced response. Another

reason could be neural resonance. Just as mechanical systems have resonant frequen-

cies, neural circuits can also exhibit resonance-like behaviors. From the engineering
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point of view, we suspected a predominant noise presence around 1 Hz frequency

during data collection that could artificially inflate the response at this frequency,

making it appear as if there is a higher response, thereby creating a notch-like appear-

ance in the surrounding frequencies. However, upon analyzing the respective figures

discussed earlier, we could not find any evidence of this phenomenon. We concluded

that the shared "U" shape in magnitude response across the two experiments probably

suggests inherent properties of the human motor system.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This research offers a comprehensive exploration into the adaptability and respon-

siveness of the human sensory-motor system, especially in tracking tasks. Rooted

in the pursuit and compensatory control models presented in [31], the experiments

consistently highlighted the profound influence of feedback mechanisms and input

predictability on performance.

In the pursuit control tasks of the initial experiments, direct visual feedback provided

participants with a perfect observer, facilitating both predictive and reactive control

components. This dual control mechanism, characteristic of biological systems, en-

sures optimal performance despite unpredictable stimuli. The transition from Experi-

ment 1 to Experiment 2 illustrates the challenges introduced by unpredictable inputs,

even when participants are equipped with full-state feedback.

The Internal Model Predictor (IMP) operates based on past experiences. In scenar-

ios like Experiments 1 and 2, where participants can anticipate the outcome of their

motor commands, the IMP is actively engaged. However, its effectiveness decreases

with unpredictable inputs, as shown by the performance difference between Experi-

ments 1 and 2. It suggests that while the IMP is good at tracking predictable inputs,

its ability drops when faced with complex, unpredictable stimuli, even with compre-

hensive feedback. Moreover, performance declines with increasing frequency even

in scenarios characterized by perfect predictability and feedback, such as Experiment

1. This decline suggests an inherent bandwidth limit to the IMP and feedforward

control, emphasizing the challenges of high-frequency tracking tasks.

61



Most related works in Chapter 1 recreate the pursuit control task, providing global

variables to the operators. This is not a realistic approach to recreating real-life sce-

narios. For instance, while potentially observing a reference target, pilots frequently

lack comprehensive knowledge of their own state. Similarly, in the tracking tasks

of weakly electric fish, the fish, even in well-lit environments, often only know the

refuge’s position, remaining unaware of their position [57]. Despite being able to

observe the input signal in both scenarios, they interpret it based on perceived er-

rors, mainly because they lack awareness of their state. This research, diverging from

conventional literature, meticulously implemented and tested both the compensatory

control task, as presented in [31], and the pursuit control task, offering a more nu-

anced and layered understanding of these models. For example, our compensatory

control task reflects the experiments done with weakly electric fish in dark settings,

simulating a stabilization challenge.

We encountered a shared "U" shaped magnitude response across unpredictable stimu-

lus experiments, potentially hinting at inherent properties of the human motor system.

Still waiting to be discovered, this phenomenon could result from several biological

factors, such as neural resonance.

This research provides a comprehensive understanding of the capabilities and limi-

tations inherent to the human sensory-motor system in tracking tasks. The findings

highlight the critical importance of feedback mechanisms, input predictability, and

frequency sensitivity in shaping performance. These insights deepen our understand-

ing of human motor control and pave the way for the design of systems that effectively

interact with or augment human capabilities.

5.2 Future work

In future studies, there are several promising areas to explore. We see a decay in

performance as the frequency increases, which indicates that experiments create a

challenge for the subjects, yet one main improvement would be to expand the fre-

quency range. By doing this, we could get a better and more complete understanding

of the topic, perhaps finding important details that the current frequency range might
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miss.

Another important aspect is to include a broader range of participants from different

age groups and backgrounds and those with different health conditions. It would

also be interesting to compare our results with those of professionals, like surgeons

or pilots, who have special training that might give them different sensory feedback

skills.

A significant factor that can impact results is the cognitive load. Tracking an unpre-

dictable sum-of-sine signal trajectory can be more mentally taxing than a single sine

wave, which might lead to reduced performance. At this point, a critical question

in research can be how cognitive load, which is caused by unpredictable trajectories,

affects motor performance and adaptation. To investigate this, a potential study could

add a secondary cognitive task, such as a simple math problem, while participants

perform a tracking task. By comparing performance under these dual-task conditions

to single-task conditions, we could gain insights into the cognitive resources utilized

for motor adaptation.

On the technical side, testing subjects on a 2D trajectory would add another layer to

the experiment and might reveal new findings about how people handle more complex

tasks. Finally, haptic feedback’s effect on a tracking task is an area we have yet to

look into. By adding haptic feedback to our experiments, we could get closer to

understanding how it might be used in real-world settings, especially in jobs like

piloting, where feeling and reacting to feedback is crucial.

63



64



REFERENCES

[1] M. H. Dickinson, C. T. Farley, R. J. Full, M. Koehl, R. Kram, and S. Lehman,

“How animals move: an integrative view,” science, vol. 288, no. 5463, pp. 100–

106, 2000.

[2] T. Kiemel, Y. Zhang, and J. J. Jeka, “Identification of neural feedback for up-

right stance in humans: stabilization rather than sway minimization,” Journal of

Neuroscience, vol. 31, no. 42, pp. 15144–15153, 2011.

[3] N. J. Cowan, M. M. Ankarali, J. P. Dyhr, M. S. Madhav, E. Roth, S. Sefati,

S. Sponberg, S. A. Stamper, E. S. Fortune, and T. L. Daniel, “Feedback control

as a framework for understanding tradeoffs in biology,” American Zoologist,

vol. 54, no. 2, pp. 223–237, 2014.

[4] B. R. Umberger and R. H. Miller, “Optimal control modeling of human move-

ment,” Handbook of human motion, pp. 327–348, 2018.

[5] A. M. Mert, S. Sefati, M. S. Madhav, A. Long, A. J. Bastian, and N. J. Cowan,

“Walking dynamics are symmetric (enough),” Journal of the Royal Society In-

terface, vol. 12, no. 108, p. 20150209, 2015.

[6] I. Uyanik, S. Sefati, S. A. Stamper, K.-A. Cho, M. M. Ankarali, E. S. Fortune,

and N. J. Cowan, “Variability in locomotor dynamics reveals the critical role of

feedback in task control,” Elife, vol. 9, p. e51219, 2020.

[7] S. Sefati, I. D. Neveln, E. Roth, T. R. Mitchell, J. B. Snyder, M. A. MacIver,

E. S. Fortune, and N. J. Cowan, “Mutually opposing forces during locomotion

can eliminate the tradeoff between maneuverability and stability,” Proceedings

of the national academy of sciences, vol. 110, no. 47, pp. 18798–18803, 2013.

[8] E. Roth, S. Sponberg, and N. Cowan, “A comparative approach to closed-loop

computation,” Current opinion in neurobiology, vol. 25, pp. 54–62, 2014.

65



[9] M. S. Madhav and N. J. Cowan, “The synergy between neuroscience and control

theory: the nervous system as inspiration for hard control challenges,” Annual

Review of Control, Robotics, and Autonomous Systems, vol. 3, pp. 243–267,

2020.

[10] S. Ravi, R. Noda, S. Gagliardi, D. Kolomenskiy, S. Combes, H. Liu, A. A.

Biewener, and N. Konow, “Modulation of flight muscle recruitment and wing

rotation enables hummingbirds to mitigate aerial roll perturbations,” Current

Biology, vol. 30, no. 2, pp. 187–195, 2020.

[11] M. M. Ankarali, H. Tutkun Sen, A. De, A. M. Okamura, and N. J. Cowan,

“Haptic feedback enhances rhythmic motor control by reducing variability, not

improving convergence rate,” Journal of Neurophysiology, vol. 111, no. 6,

pp. 1286–1299, 2014.

[12] C. P. Smith and R. F. Reynolds, “Vestibular feedback maintains reaching ac-

curacy during body movement,” The Journal of Physiology, vol. 595, no. 4,

pp. 1339–1349, 2017.

[13] S. Sponberg, J. P. Dyhr, R. W. Hall, and T. L. Daniel, “Luminance-dependent

visual processing enables moth flight in low light,” Science, vol. 348, no. 6240,

pp. 1245–1248, 2015.

[14] D. Biswas, A. Lamperski, Y. Yang, K. Hoffman, J. Guckenheimer, E. S. For-

tune, and N. J. Cowan, “Organisms use mode-switching to solve the explore-vs-

exploit problem,” bioRxiv, pp. 2023–01, 2023.

[15] A. N. Peterson, A. P. Soto, and M. J. McHenry, “Pursuit and evasion strategies in

the predator–prey interactions of fishes,” Integrative and comparative biology,

vol. 61, no. 2, pp. 668–680, 2021.

[16] C.-S. Yu, E. M.-y. Wang, W.-C. Li, G. Braithwaite, and M. Greaves, “Pilots’

visual scan patterns and attention distribution during the pursuit of a dynamic

target,” Aerospace medicine and human performance, vol. 87, no. 1, pp. 40–47,

2016.

[17] W.-C. Li, C.-S. Yu, G. Braithwaite, and M. Greaves, “Pilots’ attention distri-

66



butions between chasing a moving target and a stationary target,” Aerospace

medicine and human performance, vol. 87, no. 12, pp. 989–995, 2016.

[18] M. T. Gettman, M. L. Blute, G. K. Chow, R. Neururer, G. Bartsch, and

R. Peschel, “Robotic-assisted laparoscopic partial nephrectomy: technique and

initial clinical experience with davinci robotic system,” Urology, vol. 64, no. 5,

pp. 914–918, 2004.

[19] A. E. Abdelaal, P. Mathur, and S. E. Salcudean, “Robotics in vivo: A perspective

on human–robot interaction in surgical robotics,” Annual Review of Control,

Robotics, and Autonomous Systems, vol. 3, pp. 221–242, 2020.

[20] M. Nakayama, F. C. Holsinger, D. Chevalier, and R. K. Orosco, “The dawn of

robotic surgery in otolaryngology-head and neck surgery,” Japanese journal of

clinical oncology, vol. 49, no. 5, pp. 404–411, 2019.

[21] K. Ryokai, F. Farzin, E. Kaltman, and G. Niemeyer, “Assessing multiple object

tracking in young children using a game,” Educational Technology Research

and Development, vol. 61, pp. 153–170, 2013.

[22] W. R. Boot, A. F. Kramer, D. J. Simons, M. Fabiani, and G. Gratton, “The

effects of video game playing on attention, memory, and executive control,”

Acta psychologica, vol. 129, no. 3, pp. 387–398, 2008.

[23] K. E. Barrett, S. M. Barman, H. L. Brooks, and J. X.-J. Yuan, Excitable Tissue:

Nerve. New York, NY: McGraw-Hill Education, 2019.

[24] K. E. Barrett, S. M. Barman, H. L. Brooks, and J. X.-J. Yuan, Excitable Tissue:

Muscle. New York, NY: McGraw-Hill Education, 2019.

[25] K. E. Barrett, S. M. Barman, S. Boitano, and J. F. Reckelhoff, Reflex; Voluntary

Control of Posture; Movement. New York, NY: McGraw-Hill Education, 2017.

[26] R. W. Nickl, M. M. Ankarali, and N. J. Cowan, “Complementary spatial and tim-

ing control in rhythmic arm movements,” Journal of neurophysiology, vol. 121,

no. 4, pp. 1543–1560, 2019.

[27] E. Roth, R. W. Hall, T. L. Daniel, and S. Sponberg, “Integration of parallel

mechanosensory and visual pathways resolved through sensory conflict,” Pro-

67



ceedings of the National Academy of Sciences, vol. 113, no. 45, pp. 12832–

12837, 2016.

[28] B. Mehta and S. Schaal, “Forward models in visuomotor control,” Journal of

Neurophysiology, vol. 88, no. 2, pp. 942–953, 2002.

[29] L. Li, R. Chen, and J. Chen, “Playing action video games improves visuomotor

control,” Psychological science, vol. 27, no. 8, pp. 1092–1108, 2016.

[30] M. Noble, P. M. Fitts, and C. E. Warren, “The frequency response of skilled sub-

jects in a pursuit tracking task.,” Journal of Experimental Psychology, vol. 49,

no. 4, p. 249, 1955.

[31] E. S. Krendel and D. T. McRuer, “A servomechanisms approach to skill devel-

opment,” Journal of the Franklin Institute, vol. 269, no. 1, pp. 24–42, 1960.

[32] D. T. McRuer and H. R. Jex, “A review of quasi-linear pilot models,” IEEE

transactions on human factors in electronics, no. 3, pp. 231–249, 1967.

[33] R. J. Wasicko, D. T. McRuer, and R. E. Magdaleno, Human pilot dynamic re-

sponse in single-loop systems with compensatory and pursuit displays, vol. 66.

Air Force Flight Dynamics Laboratory, Research and Technology Division,

Air . . . , 1966.

[34] F. M. Drop, D. M. Pool, H. J. Damveld, M. M. van Paassen, and M. Mulder,

“Identification of the feedforward component in manual control with predictable

target signals,” IEEE transactions on cybernetics, vol. 43, no. 6, pp. 1936–1949,

2013.

[35] H. Ohtsuka, K. Shibasato, and S. Kawaji, “A perceptual motor control model

based on output feedback adaptive control theory,” in ICINCO-RA, 2016.

[36] X. Zhang, S. Wang, J. B. Hoagg, and T. M. Seigler, “The roles of feedback

and feedforward as humans learn to control unknown dynamic systems,” IEEE

transactions on cybernetics, vol. 48, no. 2, pp. 543–555, 2017.

[37] E. Roth, D. Howell, C. Beckwith, and S. A. Burden, “Toward experimental

validation of a model for human sensorimotor learning and control in teleop-

68



eration,” in Micro-and Nanotechnology Sensors, Systems, and Applications IX,

vol. 10194, pp. 380–391, SPIE, 2017.

[38] M. Yamagami, D. Howell, E. Roth, and S. A. Burden, “Contributions of feed-

forward and feedback control in a manual trajectory-tracking task,” IFAC-

PapersOnLine, vol. 51, no. 34, pp. 61–66, 2019.

[39] B. Yu, R. B. Gillespie, J. S. Freudenberg, and J. A. Cook, “Human control

strategies in pursuit tracking with a disturbance input,” in 53rd IEEE Conference

on Decision and Control, pp. 3795–3800, IEEE, 2014.

[40] F. R. Danion, J. Mathew, N. Gouirand, and E. Brenner, “More precise tracking

of horizontal than vertical target motion with both the eyes and hand,” Cortex,

vol. 134, pp. 30–42, 2021.

[41] M. Yamagami, L. N. Peterson, D. Howell, E. Roth, and S. A. Burden, “Effect

of handedness on learned controllers and sensorimotor noise during trajectory-

tracking,” IEEE Transactions on Cybernetics, 2021.

[42] L. N. Peterson, A. H. Chou, S. A. Burden, and M. Yamagami, “Assessing human

feedback parameters for disturbance-rejection,” IFAC-PapersOnLine, vol. 55,

no. 41, pp. 1–6, 2022.

[43] C. S. Yang, N. J. Cowan, and A. M. Haith, “De novo learning versus adaptation

of continuous control in a manual tracking task,” elife, vol. 10, p. e62578, 2021.

[44] S. A. S. Mousavi, X. Zhang, T. M. Seigler, and J. B. Hoagg, “Characteristics that

make linear time-invariant dynamic systems difficult for humans to control,”

IEEE Transactions on Human-Machine Systems, vol. 51, no. 2, pp. 141–151,

2021.

[45] M. G. Parker, A. P. Weightman, S. F. Tyson, B. Abbott, and W. Mansell, “Senso-

rimotor delays in tracking may be compensated by negative feedback control of

motion-extrapolated position,” Experimental brain research, vol. 239, pp. 189–

204, 2021.

[46] E. Roth, K. Zhuang, S. A. Stamper, E. S. Fortune, and N. J. Cowan, “Stimu-

lus predictability mediates a switch in locomotor smooth pursuit performance

69



for eigenmannia virescens,” Journal of experimental biology, vol. 214, no. 7,

pp. 1170–1180, 2011.

[47] D. Lee, H. W. Yu, H. Kwon, H.-J. Kong, K. E. Lee, and H. C. Kim, “Evaluation

of surgical skills during robotic surgery by deep learning-based multiple sur-

gical instrument tracking in training and actual operations,” Journal of clinical

medicine, vol. 9, no. 6, p. 1964, 2020.

[48] R. L. Achtman, C. S. Green, and D. Bavelier, “Video games as a tool to train

visual skills,” Restorative neurology and neuroscience, vol. 26, no. 4-5, pp. 435–

446, 2008.

[49] T. Strobach, P. A. Frensch, and T. Schubert, “Video game practice optimizes

executive control skills in dual-task and task switching situations,” Acta psycho-

logica, vol. 140, no. 1, pp. 13–24, 2012.

[50] P. Richard and P. Coiffet, “Human perceptual issues in virtual environments:

sensory substitution and information redundancy,” in Proceedings 4th IEEE

International Workshop on Robot and Human Communication, pp. 301–306,

IEEE, 1995.

[51] M. Pieszek, A. Widmann, T. Gruber, and E. Schröger, “The human brain main-

tains contradictory and redundant auditory sensory predictions,” PLoS One,

vol. 8, no. 1, p. e53634, 2013.

[52] D. M. Wolpert, R. C. Miall, and M. Kawato, “Internal models in the cerebellum,”

Trends in cognitive sciences, vol. 2, no. 9, pp. 338–347, 1998.

[53] J. Huang, A. Isidori, L. Marconi, M. Mischiati, E. Sontag, and W. Wonham, “In-

ternal models in control, biology and neuroscience,” in 2018 IEEE Conference

on Decision and Control (CDC), pp. 5370–5390, IEEE, 2018.

[54] M. Hayhoe, N. Mennie, B. Sullivan, and K. Gorgos, “The role of internal models

and prediction in catching balls,” in Proceedings of the american association for

artificial intelligence, pp. 1–5, 2005.

[55] D. M. Wolpert, K. Doya, and M. Kawato, “A unifying computational frame-

work for motor control and social interaction,” Philosophical Transactions of

70



the Royal Society of London. Series B: Biological Sciences, vol. 358, no. 1431,

pp. 593–602, 2003.

[56] A. J. Bastian, “Learning to predict the future: the cerebellum adapts feedforward

movement control,” Current opinion in neurobiology, vol. 16, no. 6, pp. 645–

649, 2006.

[57] A. Kunapareddy and N. J. Cowan, “Recovering observability via active sens-

ing,” in 2018 Annual American Control Conference (ACC), pp. 2821–2826,

IEEE, 2018.

71


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation and Background
	Biological Review
	Existing Works
	Contributions
	Organization of Thesis

	Experiments
	Apparatus Details
	Experiments
	Experimental Setup
	Experimental Scenarios
	Experimental Sequence
	Instructions to Participants
	Data Collection


	Task Performance and Analysis Methods
	Task Performance
	Mean Squared Error 

	System Identification
	Non-Parametric Transfer Function Extraction
	Noise Content Characterization


	Results and Discussion
	Results
	Comparison Between Experiment 1 and Experiment 2 (Predictable vs. Unpredictable Input With Direct Visual Feedback)
	Comparison Between Experiment 1 and Experiment 3 (Predictable Input With vs. Without Direct Visual Feedback)
	Comparison Between Experiment 3 and Experiment 4 (Predictable vs. Unpredictable Input Without Direct Visual Feedback)
	Comparison Between Experiment 2 and Experiment 4 (Unpredictable Input With vs. Without Direct Visual Feedback)
	Discussion

	Conclusion and Future Work
	Conclusion
	Future work

	REFERENCES

