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Mechanical Engineering, METU

Assist. Prof. Dr. Altuğ Özçelikkale
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ABSTRACT

DATA-DRIVEN REDUCED-ORDER MODELING FOR COMPUTATIONAL
FLUID DYNAMICS

San, Damla
M.S., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. Ali Karakuş

Co-Supervisor: Assist. Prof. Dr. Romit Maulik

September 2023, 100 pages

Reduced order models (ROM) play a crucial role in tackling the computational chal-

lenges posed by complex flow simulations. They provide an effective solution to

the resource-intensive demands of direct numerical simulations. Among the tech-

niques utilized for constructing reduced-order models, proper orthogonal decompo-

sition (POD) stands out as a frequently employed method with applications spanning

diverse fields of engineering and science. Despite its initial appeal as a means to at-

tain both computational efficiency and precise representation of coherent structures

in turbulent flows at high Reynolds numbers, the full realization of this potential re-

mains a goal to be achieved. Appropriate closure modeling methodologies should be

used to achieve an ideal combination between the lowest computing cost inherent in

ROM and the complexities of the targeted flows.

This thesis employs a combination of innovative physics-based and data-driven mod-

eling tools to develop more robust and improved frameworks for ROM in complex

flows. In this thesis, the core concepts of the ROM are introduced, centered around

utilizing reduced bases generated from snapshots. Applying techniques like POD and
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Galerkin Projection is demonstrated through numerical results involving diverse flow

equations, ranging from the Burgers equation to the Navier-Stokes equations. The

primary focus is on addressing the challenges arising from the dynamic changes in-

herent in turbulent flows, which can limit conventional ROM methods. To enhance

the accuracy of the ROM approximation, a closure term is formulated using machine

learning methods.

Each chapter begins by outlining the full-order model (FOM) employed to generate

snapshots representing the flow across different instantaneous time points for each

equation. Subsequently, the steps taken in reduced-order modeling are detailed. By

comparing outcomes obtained from the full-order model to those derived using POD

and Galerkin Projection, an assessment is made to demonstrate the accuracy and effi-

ciency of these methods in reducing computational complexity and providing accurate

solutions for complex fluid flow problems.

Keywords: numerical methods, computational fluid dynamics, reduced order model,

proper orthogonal decomposition, Galerkin projection, artificial neural networks

vi



ÖZ

HESAPLAMALI AKIŞKANLAR DİNAMİĞİ İÇİN VERİYE DAYALI
İNDİRGENMİŞ MODELLEME

San, Damla
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Ali Karakuş

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Romit Maulik

Eylül 2023 , 100 sayfa

İndirgenmiş modeller, karmaşık akış simülasyonlarının ortaya çıkardığı hesaplama

zorluklarının üstesinden gelmede çok önemli bir rol oynar. Doğrudan sayısal simü-

lasyonların yoğun taleplerine etkili bir çözüm sunarlar. İndirgenmiş modeller oluştur-

mak için kullanılan teknikler listesi arasında uygun dik ayrıştırma, çeşitli mühendislik

ve bilim alanlarını kapsayan uygulamalarda sıklıkla kullanılan bir yöntemdir. Yüksek

Reynolds sayılarında türbülanslı akışlarda tutarlı yapıların hem hesaplama verimlili-

ğine hem de kesin temsiline ulaşmanın bir aracı olarak ilk iyi sonuçlarına rağmen, bu

potansiyelin tam olarak gerçekleştirilmesi, ulaşılması gereken bir hedef olmaya de-

vam etmektedir. İndirgenmiş modellemenin doğasında bulunan en düşük bilgi işlem

maliyeti ile hedeflenen akışların karmaşıklığı arasında ideal bir kombinasyon elde

etmek için uygun kapatma modelleme metodolojileri kullanılmalıdır.

Bu tezde, karmaşık akışlarda indirgenmiş modelleme için daha etkili ve gelişmiş çer-

çeveler oluşturmak için en son fizik tabanlı ve veri odaklı modelleme araçlarından

yararlanıyoruz. İlk olarak, uygun dik ayrıştırma kullanılarak anlık görüntülerden he-
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saplanan indirgenmiş tabanlar üzerine inşa edilen indirgenmiş mertebeli modellerin

temel yönleri sunulmaktadır. Burgers denklemi, girdap akış denklemler ve son olarak

Navier-Stokes denklemleri dahil olmak üzere çeşitli akış denklemlerine POD ve Ga-

lerkin Projeksiyonunun uygulanması için sayısal sonuçlar sunarken, ortaya çıkan tür-

bülanslı akışların gelişen dinamikleriyle ilgili zorlukların üstesinden gelmeye odak-

lanıyoruz. Daha sonra makine öğrenmesi teknikleri kullanılarak azaltılmış mertebeli

model yaklaşımının sayısal doğruluğunu artırmayı amaçlayan kapanma terimi oluş-

turulur.

Her denklem için zamanın farklı noktalarındaki akışı temsil eden anlık görüntüleri

oluşturmak için kullanılan tam sıralı model, her bölümün başında açıklanmış ve ar-

dından indirgenmiş sıralı modelleme adımları izlenmiştir. Tam sıralı modelin sonuçla-

rını UDA ve Galerkin projeksiyonu kullanılarak elde edilen sonuçlarla karşılaştırarak,

bu denklemler için bu model sıra azaltma tekniklerinin doğruluğunu ve etkinliğini de-

ğerlendiriyoruz. Bu sonuçlar aracılığıyla, hesaplama karmaşıklığını azaltmada ve kar-

maşık sıvı akışı problemlerine doğru çözümler sağlamada bu yöntemlerin etkinliğini

göstermeyi amaçlıyoruz.

Anahtar Kelimeler: sayısal yöntemler, hesaplamalı akışkanlar dinamiği, indirgenmiş

mertebeli model, uygun ortogonal ayrıştırma, Galerkin projeksiyonu, yapay sinir ağ-

ları
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CHAPTER 1

INTRODUCTION

In this chapter, the conventional differential equation solvers are discussed first. Brief

information about the numerical methods used for solving partial differential equa-

tions is presented, followed by an introduction to reduced-order modeling. The main

modeling principles used to construct reduced-order models and their applications

are explained with a primary focus on one of the most popular model reduction

techniques used within this thesis’s scope: proper orthogonal decomposition (POD).

Finally, closure modeling, a method to increase the accuracy of the reduced-order

model, is introduced.

1.1 Conventional Numerical Methods

Many physical phenomena, such as the propagation of heat or sound, fluid flow,

waves, elasticity, electrodynamics, etc., can be mathematically formulated and mod-

eled by a set of governing equations, several of them being partial differential equa-

tions (PDEs) involving functions of multiple variables. Some of these equations are

difficult or impossible to compute using analytical methods exactly. Numerical meth-

ods provide a way to approximate their solutions to predict the system’s real-world

behavior. Converting these partial equations into a system of algebraic equations is

the key to various numerical methods [2].

PDEs are commonly approached through numerical means, employing methods such

as the finite difference method (FDM), finite volume method (FVM), and finite el-

ement method (FEM). Among these, FDM is the most straightforward method with

the most extended historical usage. In FDM, a grid is constructed using K differ-

1



ent points with neighboring xk, k = 1...K, and the idea is to discretize the variable

derivatives using a Taylor series expansion [1]. For simple problems discretized on

structured grids, FDM is intuitive and easy to implement, leading to very efficient

schemes for many problems. Furthermore, extending the higher-order approxima-

tions using higher-order local polynomial approximations is relatively simple. For

example, up to tenth-order compact finite difference methods were introduced by

Lele [3]. For numerous applications, these schemes have demonstrated their ability

to achieve the goals of high accuracy and low computing cost. However, complex or

multiscale geometries, as in the case of real-life applications, are typically difficult

to deal with effectively and expensive to compute for FDM because of the require-

ment for ordered grids [4]. Element-based discretization is introduced to overcome

the difficulties that arise while solving the complex geometries and discontinuous re-

gions with FDM. Instead of using simple one-dimensional points located structurally

in the domain, elements Dk, generally triangles or quadrilaterals in two-dimension,

and tetrahedra or hexahedra in three-dimension, are used in an unstructured man-

ner to construct the grid [1]. The FVM and FEM are commonly used examples for

element-based methods with significantly less strict requirements for the structured

grid compared to FDM [4].

In the case of FVM, each spatial location represents a local cell that can have a solu-

tion discontinuous to neighboring cells. This method can be applied to all differential

equations, which can be written in the divergence form [4]. Conservation laws are

written for each volume; boundary and initial conditions are applied. Using Gauss’

theorem, the volume integral over the divergence can be changed into a surface inte-

gral across the borders. That is, Gauss’ theorem enables transforming the integration

of the differential of the dependent variable inside the cells to integrating the depen-

dent variable’s fluxes across the cell boundaries [4]. The equation is then integrated

over the volume. Generally, one may calculate these integrals using the proper numer-

ical approximation methods, which yields a differential equation that is considerably

simplified [4]. However, problems arise in FVM while attempting to enhance the or-

der of accuracy. Since the solution value for each cell is defined as the value at its

center, the solution on the boundary is not clearly defined. Therefore, this method

must be supported with some form of reconstruction method. A local interpolation
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method is typically utilized, with nearby cell values considered. More cell values and

specific mesh structures must be considered to obtain higher-order interpolation of

the solution and flux. For example, Wang [5] developed the spectral volume method

in which each mesh cell, or spectral volume, is subdivided. The sub-cell state aver-

ages are then utilized to generate a high-order reconstruction of the solution inside

the spectral volume. However, this contradicts the fundamental requirement for geo-

metric flexibility and leads to a less local method that is both complex and unstable

[1]. One can be encouraged to adopt an alternative strategy and add more degrees of

freedom to the element which yields in FEM.

Above all the methods explained so far, FEM is by far the most adaptable method,

and it can be implemented to solve various numerical problems. Because of this,

FEM may be used to solve any differential equation numerically [4]. The basic idea

behind the FEM is to convert the problem into a vector problem using the properties

of Hilbert spaces, i.e. a linear vector space that has an inner product operation so

that the original problem can be expressed as the sum of coefficients multiplied by

basis functions that are symmetric in space [1]. The solution function over each

finite element domain is then approximated using the weighted residual concept. The

ability to formulate methods for basis functions of various orders is a benefit of the

FEM. Higher basis function orders result in higher-order, accurate approaches, which

have the crucial advantage of increasing accuracy for a certain mesh. The FEM is

frequently superior for multiphysics problems when there is a significant degree of

coupling and nonlinearity because of its capacity to resolve fine details in the solution.

While Finite Element Method (FEM) can provide more precise solutions using lower-

resolution grids by adjusting the order of basis functions, its symmetric nature can

introduce a complicated challenge for situations where data propagates directionally,

as seen in wave problems and conservation laws [1]. Finite difference and finite vol-

ume methods address this challenge by employing upwinding techniques, achieved

through stencil choice or the development of reconstruction methods. These ap-

proaches mitigate the issue by favoring specific directions of information propagation

[1]. A viable solution to this issue involves a strategic combination of finite element

and finite volume methods. This entails employing a collection of basis and test func-

tions that emulate the finite element approach while solving the equation more aligned
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with the finite volume method. This blend of techniques led to the development of

the discontinuous Galerkin Finite Element Method (DG-FEM). [1].

What sets the discontinuous Galerkin (DG) approach apart from the conventional

finite element method is that the resulting equations are related only to the gener-

ating element. This means that the linked mass matrix remains localized for each

element. The solution within each element is not rebuilt by examining neighbor-

ing elements. Hence, each element can be seen as a distinct entity requiring some

boundary information from its neighbors [6]. Consequently, the mass matrix can be

efficiently inverted, leading to an economical computation and an explicit semidis-

crete approach. Reconstruction of the solution is not required either, except for the

zeroth-order method, which is equivalent to the finite volume method. Moreover, by

carefully constructing the numerical flux to align with the fundamental dynamics, an

improved ability is achieved to guarantee stability for convection-dominated prob-

lems, exceeding the capabilities of conventional FEM approaches. [1]. Unlike the

Finite Volume Method, the DG-FEM tackles the main problem of achieving accurate

results on different grids using a local element-based approach [1]—table 1.1 lists the

general characteristics of popular numerical approaches.

Table 1.1: Generic properties of well-known numerical methods. ✓ and ✗ indicate

success and failure, respectively, while the (✓) symbol indicates that the method re-

quires modifications to solve the problem [1].

Properties Numerical Methods

FDM FVM FEM DG

Complex geometries ✗ ✓ ✓ ✓

High-order accuracy ✓ ✗ ✓ ✓

Explicit semi-discrete form ✓ ✓ ✗ ✓

Wave dominated problems ✓ ✓ (✓) ✓

Elliptic problems ✓ (✓) ✓ (✓)

The main drawback of DG-FEM is the relatively high number of degrees of freedom

introduced due to the decoupling of the elements [1]. Compared to the continuous

FEM, this doubles the number of degrees of freedom for linear elements [1].
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1.2 Turbulence

For over five decades, researchers have been actively studying the simulation of tur-

bulent flows, given its significant influence on various practical uses like ocean mod-

eling, weather prediction, aviation, energy generation, and more [7]. From the begin-

ning of turbulence research, effectively forecasting, controlling, and understanding

the chaotic aspects of turbulent phenomena has consistently proven challenging. This

is due to the intricate combination of disorder and structure and the extensive range

of lengths and time scales inherent in turbulent flows. The Navier-Stokes equations,

a rather straightforward set of equations, govern the complex behavior of turbulence.

However, there are no analytical solutions to even the simplest turbulent flows. The

Navier-Stokes equations can exclusively be solved through the aforementioned meth-

ods numerically to generate a comprehensive representation of the turbulent flow. In

this representation, the flow properties like velocity and pressure are expressed as

functions of both space and time [8].

Advanced numerical models, like direct numerical simulation (DNS), can encompass

a broad spectrum of dynamic spatiotemporal scales within turbulent flows. This is

achievable by accurately representing the entire energy spectrum of turbulence down

to the Kolmogorov scale by utilizing exceptionally fine grid resolutions [7]. Because

of the continual increase in computer power, DNS can be obtained for various simple

turbulent flow problems. However, as the system’s dynamics grow into a more de-

tailed and complex version, the need for more accurate and high-fidelity simulations

with large numbers of degrees of freedom (DOF) advances, leading to a considerable

amount of computational power and computing times ranging from hours to days

depending on the availability of resources. This turns out to be a much more severe

problem when a serious amount of analysis has to be conducted. [9]. It should also be

mentioned that the ongoing increase in computing power and performance driven by

Moore’s law has reached saturation levels in recent years [10]. As a result, many ac-

tive research efforts in various fields are committed to developing efficient and robust

modeling algorithms. These efforts aim to enhance the achievable quality of numeri-

cal simulations while optimizing computational expenses to the fullest extent [7]. For

example, instead of trying to solve for the immediate flow pattern, approaches cen-
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tered around the Reynolds-averaged Navier-Stokes (RANS) equations are pursued,

or the dominant energy-containing patterns are directly calculated while representing

the impact of the smaller patterns through modeling, as seen in large eddy simula-

tion (LES). [8]. Closure models are additionally employed to enhance these methods,

addressing the consequences of truncated scales in low-fidelity or lower-resolution

models.

Distinctive recurring shapes, known as coherent structures, are common features of

numerous turbulent flows. It is evident that in flows where these dominant struc-

tures prevail, as in the case of turbulent flows, it might be achievable to construct a

relatively accurate, low-dimensional model of the flow by focusing solely on these

dominant structures, which leads to the development of cost-effective reduced order

models (ROMs). The influence of the smaller, less energetic, seemingly less orga-

nized component of the flow could then be simulated in an alternative manner as in

the case of conventional numerical methods.

The concept of constructing ROMs for nonlinear dynamical systems was introduced

in computational fluid dynamics to reduce computational expenses. Over time, vari-

ous techniques for creating ROMs have been put forward. These methods have found

diverse applications such as flow control, incorporating data into weather and cli-

mate models, assessing uncertainty, and more. The following section will delve into

comprehensive insights regarding these Reduced Order Models.

1.3 Reduced Order Modelling

Reduced order models (ROMs) now play a central role in the modern design, op-

timization, and control of complex systems. These models are computational rep-

resentations characterized by significantly fewer dimensions than full order models

(FOM), derived from conventional numerical techniques such as the finite element

method [11]. They are formulated to decrease the system’s degrees of freedom while

preserving its essential characteristics [12]. These models aim to offer accurate de-

pictions of system dynamics while substantially lowering the computational costs

compared to the original numerical model [13].
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ROMs have been successfully demonstrated to provide a fast approximation of a se-

lected objective at significantly lower computing costs when compared to the cur-

rently used traditional modeling techniques, drawing a great deal of attention from

the CFD research community [7, 14]. The construction of these ROM methodologies

is guided by the coherent structures that arise in the flow field. Coherent structures

refer to organized and persistent motion patterns resulting from instability in a mate-

rial region’s past or present life. They may possess many shapes, including vortices,

eddies, swirls, jets, and waves. These structures are significant because they can con-

siderably impact the transport of momentum, heat, and other quantities within a fluid.

They can be used to identify dominant patterns of behavior of the fluid flow that need

to be accurately captured in the reduced model, which makes them an attractor or

manifold with a lower intrinsic dimension [15, 16, 17].

Recently, there has been a growing interest in employing reduced-order models for

linear time-varying and nonlinear systems. The reduced-order methods involve map-

ping the dynamical system onto subspaces that encompass features of the anticipated

solution. In comparison, finite element methodologies utilize basis elements within

the subspaces that lack any connection to the actual parameters of the system being

approximated [18].

A ROM can be conceptualized as an extension of the latent space or manifold, essen-

tially an approximate simplification in terms of kinematics [19]. In this context, it is

assumed that the FOM solution for a function u(x, t) is effectively captured by the

basis functions of the ROM :

ur(x, t) =
r∑

i=1

ai(t)φi(x) (1.1)

Here, x represents the spatial coordinates, and t denotes time. The term φi(x) cor-

responds to the ith basis function, accompanied by its corresponding amplitude or

time coefficient ai(t). These basis functions convey physical significance, particu-

larly when prominent coherent structures are present [19]. While the conventional

assumption suggests that the basis functions φi(x) remain independent of time, and

the dynamics are captured within the coefficients ai, recent studies have shown the

potential for time-varying basis functions [20]. However, in the scope of this thesis,

we will consider the case in which the basis functions are only a function of space.
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ROMs are conventionally divided into two main categories: physics-based and data-

based. Physics-based models are constructed using fundamental governing equations,

wherein the operators of the full order model (FOM) are projected onto the reduced

subspace through methods like Galerkin-type techniques to form a ROM. [21]. These

models offer benefits because of their ability to be understood and applied broadly,

along with extensive methods for performing stability and uncertainty analysis [21].

However, turbulent and convection-dominated flows are typically expensive to repre-

sent using physics-based ROMs, resulting in an increase in the number of modes (or

degrees of freedom) to be preserved in ROM. On the other hand, data-based models

rely entirely on archival data (hence known as non-intrusive) to determine the un-

derlying relations that drive the system’s dynamical evolution [21]. In contrast to

intrusive alternatives, non-intrusive ROMs have experienced advantages from the ex-

tensive utilization of machine learning (ML) technologies, which have facilitated the

development of robust and accurate models. Neural networks, in particular, have been

widely used to simulate the dynamical evolution of ROMs. On the other hand, neu-

ral networks often lack human comprehensibility and broad applicability, potentially

becoming excessively reliant on substantial amounts of data [21].

Different approaches can be utilized to formulate ROM basis functions. Frequently

used ones are the Reduced Basis Method (RBM) [22], Proper Orthogonal Decom-

position (POD) [16], Proper Generalized Decomposition (PGD) [23], and Dynamic

Mode Decomposition (DMD) [24]. When it comes to reducing the order of non-

linear problems with varying parameters, the two most prevalent used methods are

the Reduced Basis method (RBM) and the Proper Orthogonal Decomposition (POD)

[25]. Although the main principle behind the two methods is the Galerkin projection,

which creates a dynamic system spanned by the basis functions, they differ in the

computation of the subspace’s so-called reduced or reduced-order basis. The RBM is

typically used to provide foundations for stationary problems when many parameters

are sought as a solution [25]. Recently, POD, which involves basis functions in-

corporating data from solutions of the dynamic system at predetermined time points

referred to as snapshots, has emerged as perhaps the most widely utilized and efficient

model reduction method for nonlinear problems. [18].

Karl Pierson [26] and Harold Hotelling [27] laid the mathematical foundations for
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the Proper Orthogonal Decomposition by introducing principal component analysis,

a statistical approach for simplifying a data set. The method minimizes multivariate

data’s dimensionality while maintaining as much relevant information as necessary.

POD methods are widely used in many research fields for order reduction of practical

engineering systems [28]. John Lumley [16] was the first to introduce this method

from the fluid dynamics point of view with the name Proper Orthogonal Decompo-

sition. In the context of turbulence, he introduced this technique to break down the

random vector field symbolizing turbulent fluid movement into several deterministic

functions. Each function aims to contain a portion of the overall fluctuating kinetic

energy within the flow, offering a representation based on coherent structures. [16].

Then, to calculate the POD modes for large-scale fluid dynamics problems, Lawrance

Sirovich [29] formulated the method of snapshots. The first POD model was devel-

oped by Aubry et al. [15] to model the wall region of a turbulent boundary layer.

This study appears to be among the first to propose a coherent relationship between

low-dimensional chaotic dynamics and realistic turbulent systems.

POD uses an appropriate collection of modes derived from the full-order model,

which involves partial differential equations in their discrete or semi-discrete form

to capture the dominant aspects of an efficiently multi-degree-of-freedom system and

represent it to the necessary precision [30]. As a fluid dynamics problem is approxi-

mated using a considerable number of snapshots, generating a substantial amount of

basis vectors, the singular values diminish rapidly. As a result, a restricted collection

of basis vectors becomes sufficient for reconstructing and approximating the snap-

shots, as they preserve the primary portion of collective energy [31]. Subsequently,

the CFD model is projected onto a more compact domain defined by a subset of ap-

propriate orthogonal modes or POD eigenfunctions through Galerkin projection. This

process leads to constructing a ROM, enabling the determination of dynamics within

each distinct subspace [32]. The Galerkin projection is formulated to generate a sim-

plified model wherein the truncated linear coefficients of the POD bases transform

over time as a collection of ordinary differential equations (ODEs). As a result, the

system is substantially reduced in complexity, yet crucial attributes of the governing

equations are preserved [33]:

da
dt

= f(a) (1.2)
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where a is the time coefficient found by POD as in Equation 1.1 and f contains the

ROM operators (e.g., vectors, matrices, and tensors) that are constructed during the

offline phase using ROM basis functions. The low-dimensional ROM provided by

Equation 1.2 is then utilized in the online phase for parameter values that differ from

those utilized during training. The computational cost of ROM is orders of magnitude

less than that of FOM since it is low-dimensional [19].

The POD technique has been widely applied in numerous fields such as detection, es-

timation, pattern recognition, image processing, and system control. It is an efficient

method for representing complex processes and a valuable tool for storing informa-

tion for various purposes. It has been employed in fluid mechanics to reconstruct a

flow field using limited data [34]. This approach draws inspiration from Everson and

Sirovich’s method, originally used for reconstructing human face images with incom-

plete data [35]. In this work, using only limited surface pressure data, they accurately

reconstructed the entire pressure field using just 6 POD modes.

Although the POD combined with the Galerkin projection technique has been exten-

sively used for capturing temporal changes in fluid dynamic problems, the ROMs can

also be utilized to capture the system’s parametric variations. For example, Epure-

anu et al. [36] developed a model by gathering snapshots not only across different

time instances but also across various inter-blade phase angles. Despite construct-

ing the snapshot collection at a single Mach number, the resultant reduced models

were effectively employed for flow analysis at different Mach numbers. Bui-Thanh

et al. [37, 34] also extended the application of the POD technique to address a steady

transonic external aerodynamic problem. In [37], the POD approach was combined

with a cubic-spline interpolation technique to create reduced-order models capable

of effectively representing parameter variations. This method was then, relying on

the dataset of snapshots, utilized to forecast the flow pressure patterns at any Mach

number and angle of attack encompassed by the defined range.

Applying Galerkin’s reduced-order modeling can also effectively diminish the over-

all computational time for problems requiring repetitive simulations, such as inverse

design optimization problems [38]. The studies conducted by LeGresley and Alonso

[39], as well as Bui-Thanh et al. [34], showcased the viability of employing the POD
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technique as an economical and reduced-order solution for aerodynamic shape opti-

mization. Bui-Thanh et al.’s approach draws inspiration from Everson and Sirovich’s

gappy POD reconstruction method [35], while LeGresley and Alonso’s approach

builds upon the gradient-based methodology for optimizing cost functions.

Conventional discretization methods often result in spaces containing millions of de-

grees of freedom, whereas ROMs typically encompass spaces of modest scale, rang-

ing from 10 to 100. In practical terms, utilizing ROM approximations can lead to

substantial acceleration, often on the order of magnitudes, along with notable reduc-

tions in memory demands. Due to the quadratic nonlinearity, the resulting dense

system in fluid dynamics applications has triadic interactions with an order of O(r3)

computational load, where r refers to the maintained number of modes.

Although these reduced-order models have many advantages, one drawback is that

the number of modes needed to represent a flow can quickly grow too big to han-

dle since the linear superposition of orthogonal modes must approximate nonlinear

processes. Even though the excluded POD modes might not incorporate a signif-

icant portion of the system’s kinetic energy, they still exert a considerable impact

on the dynamics of the reduced-order system. This phenomenon contributes to the

unsatisfactory performance of the POD Galerkin ROM. In fact, an accurate predic-

tion of the dynamics of the ROM depends on the interaction between the discarded

POD modes and those kept in the ROM [40]. This issue is especially noticeable in

non-stationary and rapidly changing turbulent flows. This is attributed to the flows

being dominated by convection and characterized by multiscale phenomena across

extensive spatial and temporal scales [41]. Consequently, a considerable number of

modes might be required for the ROM to ensure solution accuracy, thereby constrain-

ing computational efficiency. On the other hand, if the number of modes is restricted

due to modal truncation, the ROM could experience a substantial information loss.

[41]. Therefore, although ROMs can be used for academic test problems with simple

dynamics, their usage in real-life engineering problems is limited since the current

ROMs do not have enough DOF to represent the under-resolved regime that is critical

in complex flows [19, 11]. In recent years, closure models have been established to

enhance the accuracy of ROMs and mitigate stability issues arising from truncation

within the POD-Galerkin methodology.
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1.4 Closure Modelling

The requirement for closure modeling is inherent when simulating dynamic turbulent

flows, a task usually tackled through methods like detached eddy simulation (DES)

and large eddy simulation (LES), both involving subgrid modeling. Similar chal-

lenges are encountered in reduced order models; for instance, the error arising from

truncating the POD basis, referred to as "mode truncation instability," is a widely

recognized source of inaccuracy in ROMs [41, 42]. Based on the Kolmogorov hy-

potheses outlined in [43], turbulent flow at a high Reynolds number is distinguished

by an energy cascade phenomenon. In this cascade, larger flow scales containing en-

ergy undergo disintegration, transferring energy to progressively smaller scales. This

process continues until the length scales become sufficiently small; at this point, vis-

cous forces take over and contribute to the dissipation of turbulent kinetic energy [44].

The outcome indicates that when the ROM truncates the less significant higher-order

modes within the subspace approximation, its capability to identify the dissipation

range of the turbulent energy spectrum diminishes. Consequently, the ROM becomes

inefficient at dissipating adequate energy, leading to elevated energy levels and even-

tual instability [41]. An under-resolved simulation is a numerical simulation in which

the number of ROM modes is insufficient to capture the dynamics of the underlying

system as in the case of turbulent flows [45]. There are two different ways to increase

the numerical accuracy of an under-resolved simulation:

• Increasing the ROM dimension, i.e. r in Equation 1.1

• Adding a low-dimensional closure term.

Given that one of the key advantages of a ROM lies in its reduced computational cost,

enhancing numerical accuracy while upholding computational efficiency is crucial

[45]. Therefore, addressing the ROM closure problem becomes essential to attain

accurate results. This involves modeling the impact of the discarded ROM modes on

the ROM dynamics or the temporal development of resolved ROM modes [19].

da

dt
= f(a) + Closure(a) (1.3)

where the low-dimensional term Closure(a) simulates the impact of the discarded

12



ROM modes. The closure problem frequently arises when numerically simulating

turbulent flows. Even conventional numerical discretization techniques (such as fi-

nite volume or finite element methods) necessitate modeling the impacts of sub-grid

scales that are inherently present in the under-resolved regions. [19]. Although there

is a great number of closure models can be found in the area of CFD, such as large

eddy simulation (LES) based on physical understanding from Kolmogorov’s statisti-

cal theory of turbulence, in the case of ROM, only a few closure models have been

explored [19]. The contrast in closure modeling between POD-based reduced-order

modeling and traditional turbulence modeling seems even more noticeable, partic-

ularly considering that the concept of an energy cascade, a fundamental modeling

principle in Large Eddy Simulation (LES), remains applicable within POD. [46].
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Figure 1.1: Comparison between closure modeling in LES on the left and ROM on

the right. In this analogy, the higher k index represents smaller scales. In LES, kc

and kf represent the grid cut-off and test filtering scales, respectively. Meanwhile, in

ROM, R and R̃ denote the number of POD modes retained in the model and the test

truncation process, respectively. (adapted from [7]).

The process of constructing a closure model for ROM shares similarities with that of

LES closure models [47]. Closure models can also be classified as physics-based or

data-driven, as in the case of ROMs. The physics-based category relies heavily on the

intuitive understanding of the physical aspects, like the fundamental notion of energy

cascade in turbulence and conservation principles. This leads to proposing a specific
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form for the closure term by incorporating physical insights such as a dissipative term.

These models are also called functional closure modeling methods [19, 42]. Lumley

and his team’s mixing length model was perhaps the first practical, functional ROM

closure model [15]. After this approach, more accurate closure models for ROM have

emerged, including the Smagorinsky model, in which eddy viscosity is added to the

system’s physical viscosity to drain the surplus energy [48, 49]. The variational mul-

tiscale (VMS) model [50] is another example of a functional ROM closure model.

Within the VMS methodology, the inherent hierarchical arrangement of the ROM ba-

sis is exploited to establish precise mathematical expressions for interactions among

different spatial scales. This is achieved by leveraging the provided FOM data to

construct a closure model that captures these inter-scale interactions. [40, 51].

The streamline-upwind Petrov-Galerkin (SUPG) ROMs are the foundation for an-

other physics-based closure model [52]. This scenario calculates stabilizing parame-

ters based on the underlying finite element discretization and the POD basis truncation

with the proper theoretical foundation provided by finite element error analysis. Un-

fortunately, it has been found that the effectiveness of this kind of closure is typically

inadequate when modeling complex flows involving many POD modes [46] and is

likely to be useless when employed for simulating chaotic, turbulent flows [42].

Another popular closure modeling technique is Mori–Zwanzig formalism, originally

developed by Mori [53] and Zwanzig [54]. It is based on the idea of breaking down

the behavior of a complex system into simpler components, such as resolved and un-

resolved parts, that can be analyzed and modeled more easily [55]. Following the

principles of the Mori–Zwanzig formalism, the impact of scales that remain unre-

solved is depicted in the exact dynamics of the resolved scales through the memory

term [56].

The construction of data-driven ROM closures, in which existing data is used to

generate the ROM closure model, is the most active field of study in ROM closure

modeling [57]. The rise in data-driven closure modeling can be attributed to fac-

tors such as the generation of extensive datasets, the accessibility of user-friendly

machine-learning libraries, affordable computing resources, and the availability of

high-quality training materials, all of which have contributed to its increased adoption
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[19]. Given that projection-based ROMs are commonly constructed using snapshot

data, whether obtained from experiments or computational sources, it is logical to

expand this dataset to estimate the closure term efficiently. For example, enhancing

the model can be accomplished by considering insights from POD temporal modes

obtained directly from the FOM. This leads to introducing correction coefficients to

the initial ROM structure, a process often referred to as calibration [58, 59, 60]. Al-

ternately, the eigenvalues of the linear dynamics matrix can be reassigned to achieve

ROM stabilization [61]. Eigenvalue correction typically has to be used with optimiza-

tion strategies to ensure accuracy. Other techniques [41] use direct snapshot analysis

to restore the ROM.

Early investigations about data-driven closure modeling revolved around regression

techniques, where the closure model was partially or entirely constructed as a func-

tion of accessible information (such as resolved scales). [19]. These methods em-

ploy traditional least-squares methods in which the error between the ROM and FOM

caused by the discarded modes is minimized. The reader may refer to [51, 62, 63]

for a detailed analysis of reduced order models coupled with the data-driven closure

models.

Machine learning, i.e., the neural network regression approach, can be a promising

choice for data-driven closure modeling. The objective of integrating neural network

regression into ROMs is to establish non-intrusive ROM frameworks that exclusively

utilize data to grasp the dynamics of the relevant solution space. This technique is ap-

pealing because it is portable and can function with various data generation methods

while eliminating the requirement to access the governing equations. For example,

neural networks can compute stabilization elements like eddy viscosity as a closure

model. Another application involves predicting the evolution of POD time coeffi-

cients using neural networks based on their previous values [33, 64, 65]. Notably,

avoiding the Galerkin projection using artificial neural networks has outperformed

the conventional Galerkin projection approach in accuracy. Despite a minimal com-

putational overhead, these models offer dependable predictions even when confronted

with parameter variations [64].
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1.5 Motivation

This study aims to introduce an automated framework that establishes stable reduced-

order models by utilizing Galerkin projection. We focus on achieving this goal while

employing a limited number of modes, ensuring computational efficiency without

significantly compromising accuracy. A key aspect of our approach involves incorpo-

rating closure concepts, which are pivotal in enhancing the robustness and reliability

of the resulting reduced-order models.

To increase the accuracy and stability of Galerkin ROMs, we apply data-driven clo-

sure model correction on POD temporal coefficients. For the construction of the

closure model, machine learning techniques are exploited to find the corrective terms

to minimize the error between the full and reduced order models. This methodol-

ogy offers the potential for significant improvements in the predictive capabilities

of reduced-order models and presents opportunities to explore and understand the

underlying physical processes of complex flows. Our investigation extends beyond

assessing the ROM‘s suitability for the temporal evolution of PDE solutions. We ex-

plore the ROM’s capacity to solve PDEs across various parameter values, including

scenarios with different Reynolds numbers.

Initially, our study embarks on a comprehensive examination of the efficacy of the

proposed techniques for reduced-order modeling. This evaluation predicts a nonlin-

ear wave propagation scenario where the viscous Burgers equation governs the under-

lying dynamics. This equation is often considered a foundational framework for early

assessment of numerical techniques in fluid flow studies due to its ability to contain

the traits of general nonlinear multidimensional advection-diffusion problems.

As the subsequent test case for the formulated approach, we then seek to validate

the adaptability and efficiency of the framework in addressing a more complex and

demanding fluid dynamics problem, the 2D vorticity-streamfunction equation. The

snapshots are generated using the source code in [66].

Following these cases, the same reduced-order model is utilized to reconstruct the

flow field around a square-cylinder governed by the Navier-Stokes equation. We em-

ploy libParanumal, a state-of-the-art high-order discontinuous Galerkin finite-element
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flow solver, to obtain high-fidelity data. This solver has been developed by the Par-

allel Numerical Algorithms Group at Virginia Tech [67] and plays a pivotal role in

obtaining accurate and detailed flow information for our analyses.

Our closure modeling framework is constructed using JAX [68], a Python-based

open-source numerical computing library designed for high-performance machine

learning research. The analysis presented in the following sections involves the com-

parison of different reduction sizes against the closure model. We evaluate the effec-

tiveness of the reduced-order models in contrast to an artificial neural network-based

closure model. Additionally, this study highlights the challenges associated with ac-

curately capturing the complex dynamics inherent to the system.

1.6 The Outline of the Thesis

The remainder of the thesis study is structured as follows,

Chapter 2. This chapter presents the methodologies adopted for ROM. It begins

with mathematical foundations for basis formulation using POD, through which fun-

damental flow patterns are uncovered. Then, its integration into the Galerkin projec-

tion will be explained. Concluding the chapter, the closure model principle based on

artificial neural networks adopted in this study will be introduced, emphasizing JAX.

Chapter 3. This chapter explores the effectiveness of the proposed ROM techniques

in predicting nonlinear wave propagation governed by the viscous Burgers equation.

The performance of the models is evaluated, considering their capabilities and limi-

tations in capturing the intricate dynamics of the system.

Chapter 4. The 2D vorticity-streamfunction equation is tested in this chapter. Singu-

lar value decomposition is applied while obtaining the POD modes. The fundamental

idea underlying the closure model based on neural networks remains consistent, with

adjustments in the count of layers and neurons.

Chapter 5. The dynamic behavior of fluid flow around a cylinder can be effectively

described by the two-dimensional, incompressible, and laminar Navier-Stokes equa-

tions for viscous flow. To further test the applicability of the proposed reducer-order
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methods in more realistic problems, fluid flow around a square cylinder has been in-

vestigated and presented in this chapter. The reason behind eliminating the pressure

contribution in the standard Galerkin Reduced Order Model (GROM) is explained

with reference to certain common assumptions.
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CHAPTER 2

REDUCED ORDER MODELING BASED ON PROPER ORTHOGONAL

DECOMPOSITION

Proper Orthogonal Decomposition (POD) and Galerkin Projection are essential math-

ematical tools in various fields, including engineering, physics, and data analysis.

These strategies entail reducing complex high-dimensional data or systems to a smaller

number of modes or basis functions that capture the fundamental characteristics of the

original data. Examining reduced-order models based on the aforementioned meth-

ods is the primary focus of this thesis. Three main steps need to be carried out to

construct such a model. The first step is obtaining the so-called snapshots from the nu-

merical solution of the parametrized differential equations. Then, the reduced-order

bases are calculated using the POD by using this snapshot data. Finally, the Galerkin

reduced-order model (G-ROM) is created by projecting the governing equations to

these reduced-order bases. In this section, specifics of both the POD and Galerkin

Projection methods, including their theoretical foundations and practical applications

to well-known partial differential equations, will be presented.

2.1 Proper Orthogonal Decomposition

Similar to the conventional Fourier decomposition [69], the POD projects a target

function onto a set of basis functions called modes. This process yields a finite set

of scalar coefficients that characterize the behavior of the given function. The POD

provides a distinct collection of modes guaranteed to establish the most optimal linear

foundation for representing a finite-size set of observations. In other scientific fields,

the same procedure is also called Singular Value Decomposition (numerical math-
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ematics), Karhuen–Loeve Decomposition (stochastic) [70], Principal Components

Analysis (statistical analysis) [27], Empirical Orthogonal Functions (meteorology)

[71], and Singular Spectrum Analysis (time series analysis).

There will often be patterns in space and time in the context of turbulence and other

complicated spatiotemporal phenomena [72]. Numerical and experimental data re-

garding these complex fields can be analyzed using the POD to identify key trends

and features, particularly coherent structures. However, the objective here is to find

a low-dimensional subspace to build a model by projecting the governing equations,

not to examine the data. We want to use the POD to offer a "relevant" collection of

basis functions, as described in Chapter 1. The POD will produce fundamental spatial

components, which our models will subsequently dynamically reproduce as combina-

tions of time-varying POD modes [72]. In this section, the mathematical background

for POD will be displayed by following the notation presented in [72].

2.1.1 Theoretical Background

We consider a collection of M sample or representative data sets, denoted as uk.

These data sets might originate from experimental observations or, as in this instance,

numerical solutions to a system of differential equations with varying parameters. To

obtain appropriate representations for elements within uk, it is necessary to project

each u onto suitable basis functions. These basis functions are assumed to belong

to an inner product space. In this context, the goal is to identify an optimal basis

φi(x)
∞
k=1 for the data set, aiming for finite-dimensional representations of the follow-

ing form:

uM =
M∑
k=1

akφk(x) (2.1)

We aim to choose φ in a manner that offers a more accurate representation of the

ensemble uk compared to any alternative linear basis.

We introduce an averaging operator represented as
〈
·
〉

to define this optimality cri-

terion formally. This operator represents the spatial integration involved in the inner

product operation. The choice of basis functions should be oriented towards maxi-
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mizing the average projection of the collection of functions uk onto φ.

max
φ

〈
|(u, φ)|2

〉
||φ2||

(2.2)

where | · | denotes the modulus and || · || is the L2 - norm given by

||f || = (f, f)1/2 (2.3)

and the expression (·, ·) represents the inner product of two functions across a prede-

termined range or domain.

However, numerous local maxima may exist in the maximizing problem stated in

Equation 2.2, which would add new basis functions to the decomposition in Equation

2.1. As a result, we have a calculus of variations problem where we would like to

maximize
〈
|(u, φ)|2

〉
while still meeting the requirement ||φ2|| = 1. The function

that must be maximized in this constrained optimization problem is determined by

[69]:

J [φ] =
〈
|(u, φ)|2

〉
− λ(||φ2|| − 1) (2.4)

where λ is a Lagrange multiplier.

2.1.2 Autocorrelation Matrix of a Finite Dimensional POD

In practical applications, the objective is to find the most suitable low-dimensional

representation for data collection. Suppose this data corresponds to the numerical

results of a partial differential equation, as represented by a finite element approach.

Each data element incorporates a finite element solution obtained at a distinct time

point for time-dependent problems or a specific parameter setting for problems in-

volving parameters. For the context of this study, the data is considered to encompass

finite element solutions of time-dependent partial differential equations. In this sce-

nario, the snapshots are treated as vectors, and the collection of functions uk trans-

forms into a set of M vectors, each with a dimension of N . Consequently, the auto-

correlation function takes the form of an autocorrelation tensor of dimensionsN×N :

C = ⟨u⊗ u⟩ (2.5)

Here, N represents the total degrees of freedom (DOF) within the system, M rep-

resents the count of snapshots, and ⊗ denotes the tensor product. The eigenvectors
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of the problem correspond to the principal axis of the data points uk within the M -

dimensional space. The autocorrelation matrix can be seen in Figure 2.1.

N

M

Snapshot Matrix

N

N

Correlation Matrix

N

N

Spatial Modes

Figure 2.1: Autocorrelation matrix C resulted from POD, N is the number of nodes

and M is the total number of snapshots

The equation mentioned in Equation 2.4 results in the desired optimal POD basis.

This basis is formed by the eigenfunctions φi of an integral equation whose kernel

corresponds to the averaged autocorrelation function.

Cφ = λφ (2.6)

The member vectors of the ensemble {uk} can be decomposed as follows once the

basis vectors from this eigenvalue problem have been determined.

u =
∞∑
k=1

akφk (2.7)

The problem at hand determines the precise definition of the eigenvalues. For exam-

ple, eigenvalues measure twice the flow’s kinetic energy when applied to incompress-

ible fluid flow. If the POD modes are calculated using the H1 - Sobolov norm rather

than the L2 - norm, then eigenvalues are a measure of dissipation or vorticity [73].

Arranging the eigenvectors by the magnitude of their associated eigenvalues enables

the creation of truncated models containing the highest energy components. For in-

stance, this is an appropriate ordering for incompressible flow applications in which

the velocities are represented with POD modes, and corresponding eigenvalues repre-

sent kinetic energy. Nevertheless, its applicability in different systems varies. Alter-

nate arrangements can be established for systems where achieving a more favorable

maximization is feasible and more convenient [69].
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2.1.3 Method of Snapshots

Solving the eigenvalue problem is the simplest way to compute the POD modes.

Nonetheless, since the dimension N , which corresponds to every point in the mesh

for each of the scalar quantities of the finite element basis, is typically quite large,

practical implementation can generate significant costs, even when only a limited

number of modes are required to depict a function. The method of snapshots was

introduced in [29] as an alternative method for obtaining the POD basis in which

underlying numerical solutions are called snapshots. The basic idea is to use alge-

braic manipulations to reduce the large eigenvalue problem to a much smaller one,

as seen in Figure 2.2. As a result, the POD basis functions require significantly less

computational effort to obtain.

If φ is an eigenvector, it can be expressed as a linear combination of the snapshots

throughout the basis.

φ =
M∑
k=1

wkuk (2.8)

where the coefficientswk remain to be determined. TheN -dimensional eigenfunction

problem may then be written as(
1

M

M∑
i=1

ui ⊗ ui,
M∑
k=1

wku
k

)
= λ

M∑
k=1

wku
k (2.9)

Rearranging the left-hand side to yields
M∑
i=1

[
M∑
k=1

1

M

(
ui,uk

)
wk

]
ui, (2.10)

it may be concluded that the solution of Equation 2.9 has coefficients wk such that
M∑
i=1

1

M

(
ui,uk

)
wk = λai i = 1, . . . ,M. (2.11)

Thus, with the method of snapshots, the resulting elements of the modified autocor-

relation matrix are given by

Cij = (u(x, t(i)),u(x, t(j))) (2.12)

Here, the index i corresponds to the i-th instance of the solution snapshot, with i and

j taking values from 1 to M , where M represents the total number of provided snap-

shots. The integral expression represents the inner product of two snapshots, i and j,
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M

M

M

Correlation Matrix Temporal Modes

N

M

Snapshot Matrix

M

Figure 2.2: Correlation matrix C resulted from method of snapshots, N is the number

of nodes and M is the total number of snapshots

resulting in a matrix C. This matrix is non-negative, definite, and symmetric, ensuring

its eigenvalues are non-negative, and it has a complete set of orthogonal eigenvectors.

The computation of these eigenvectors for matrix C serves as an intermediary step in

determining the actual POD modes.

CW = ΛW (2.13)

where Λ = diag [λ1, λ2, . . . , λM ] is a diagonal matrix containing the eigenvalues

of this decomposition and W =
[
w1,w2, . . . ,wM

]
. The eigenvalues are stored in

descending order, λ1 ≥ λ2 ≥ . . . ≥ λM .

The eigenvalues obtained using the snapshot method align with those acquired from

the direct method. Nonetheless, the spatial coefficients and temporal modes derived

through the snapshot method differ from the spatial modes and temporal coefficients

of the direct method by a scaling factor. In the direct method, spatial modes are or-

thonormal due to their origin from the eigendecomposition of the symmetric matrix

C, while temporal coefficients are not. Conversely, temporal modes are orthonormal

in the snapshot method, but spatial coefficients are not. To achieve matching out-

comes between both approaches, it is necessary to normalize each spatial coefficient

within the snapshot method and adjust the scaling of temporal modes accordingly

[74].

Then, the orthogonal POD basis functions can be obtained by projecting the field
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variable u into eigenvectors resulting from the Equation 2.13. They can be written as

φ1(x) =
M∑
k=1

w1
ku
(
x, t(k)

)
, φ2(x) =

M∑
k=1

w2
ku
(
x, t(k)

)
, . . . ,

φM(x) =
M∑
k=1

wM
k u
(
x, t(k)

) (2.14)

where wn
k is the kth component of the n th eigenvector wn. The eigenvectors need to

be normalized to fulfill the requirement of being orthogonal to each other and having

a unit length. It can be shown that, for this to be true, the eigenvector wn must satisfy

the following equation:
M∑
k=1

wn
kw

n
k =

1

λn
(2.15)

where λn is the n th eigenvalue associated to the eigenvector wn. In practical cases,

most algorithms used to solve the eigensystem, as outlined in Equation 2.13, provide

an eigenvector matrix W where all the eigenvectors are normalized to have a unit

length. In that case, the orthogonal POD bases are given by

φn(x) =
1√
λn

M∑
k=1

wn
ku
(
x, t(k)

)
(2.16)

where φn(x) is the n th POD basis function.

It’s important to emphasize that the POD should be performed individually for each

field variable in the case of multidimensional governing equations.

Then, the field variables and their temporal evolution can be approximated using these

POD basis functions and their corresponding time coefficients, where r is consider-

ably smaller than M .

u′
r(x, t) =

r∑
k=1

ak(t)φk(x) (2.17)

Introducing the mean velocity subtracted at the initial stage of our analysis, a recon-

structed flow field can be generated.

ur = ū(x) +
r∑

k=1

ak(t)φk(x), (2.18)
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2.1.4 The Singular Value Decomposition

The equivalent results obtained from direct POD and snapshot POD arise from their

strong connection to the singular value decomposition (SVD) of the snapshot matrix.

The snapshot matrix can be represented as S with dimension N ×M :

S =


| | |
u1 u2 · · · uM

| | |

 (2.19)

The SVD is a unique matrix decomposition that exists for every complex-valued ma-

trix S with dimension N ×M :

S = UΣV∗ (2.20)

In this context, U is an N × N matrix, V is an M ×M matrix with columns that

are orthogonal and normalized, and Σ is an N ×M matrix containing non-negative

real values on its diagonal and zeros elsewhere. The symbol * refers to the conjugate

transpose operation.

MN

M

Snapshot Matrix

N

M
M M

Figure 2.3: Singular value decomposition of the snapshot matrix, N is the number of

nodes and M is the total number of snapshots

The non-zero diagonal elements of Σ are positive numbers arranged in decreasing

order, i.e., σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0. These are known as the singular values

of matrix S. The SVD method can transform any rectangular matrix into a diagonal

form, a distinctive feature compared to eigenvalue decomposition, which applies only

to square matrices. The schematic of the SVD can be seen in Figure 2.3.
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Most widely used numerical implementations are well-established, and many modern

programming languages offer straightforward interfaces. That being said, the SVD

of a matrix will be computed in this thesis using the Python libraries, especially the

most common one NumPy [75].

2.1.5 Practical Aspects

In practical applications, constructing the POD basis commonly involves utilizing

the snapshot technique, similar to the approach outlined in Section 2.1.3. This can be

achieved by solving the eigenvalue problem described in Section 2.1.2 or by perform-

ing Singular Value Decomposition (SVD) on a slightly adapted snapshot matrix. A

multitude of software tools are accessible to perform these operations. For instance,

the linear algebra modules in Python and MATLAB provide diverse algorithms for

solving eigenvalue problems and computing the SVD [75, 76].

The dimension of the applied POD basis stands out as a critical factor influencing the

model’s accuracy. In the existing literature, a heuristic approach is commonly em-

ployed to ascertain the POD base’s rank [25]. This method relies on a metric termed

the energy ratio, denoted as relative information content (RIC), which quantifies the

proportion of captured energy in relation to the system’s total energy. The energy

ratio RIC is given by

RIC =

∑r
k=1 λk∑M
k=1 λk

× 100, (2.21)

where λi are the POD eigenvalues from Equation 2.11. For example, suppose the

intention is to encompass at least 99.9% of the overall energy within the POD basis.

In that case, the value of r is selected as the smallest whole number for which the

cumulative residual information content RIC satisfies the condition RIC ≥ 0.999.

In cases where the POD eigenvalues exhibit a rapid decline, only a limited number of

POD modes is necessary to simulate elements from the snapshot matrix effectively.

However, in scenarios like convection-dominated problems, where the POD eigenval-

ues decrease slower, a larger number of POD modes are required to capture a specific

energy threshold within the system adequately.
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The other important aspect of POD lies in its orthogonality, which implies that in a

suitable function space, one can write:

(φi, φj) =

1, i = j

0, i ̸= j
(2.22)

The orthonormality characteristic is beneficial because it indicates that each coeffi-

cient aki depends exclusively on the spatial mode φk [74].

2.2 Galerkin Reduced Order Modeling

In numerical fluid flow simulations, one can only integrate a finite number of differen-

tial equations or look for solutions on a finite spatial grid. To address this limitation,

Galerkin projection emerges as a technique for converting an evolution problem or

partial differential equation of infinite dimensions into a finite ensemble of ordinary

differential equations [72]. This section provides a concise overview of this method.

The Galerkin projection, also known as the Galerkin method, was introduced by the

Russian mathematician and engineer Boris Galerkin. This method is designed to

approximate an infinite-dimensional partial differential equation by converting it into

a system of ordinary differential equations. This conversion involves projecting the

equation onto a finite-dimensional space constructed using suitable basis functions

[25]. The Galerkin method is closely related to the weak formulation of the partial

differential equation and finds significant application, notably in the Galerkin finite

element method.

The basis functions of the standard finite element method are piecewise polynomial

functions within the cells of some computational mesh, continuous over the cell

edges, and non-zero only within the cell [38]. A finite element model’s spatial resolu-

tion can be tailored to the problem. For example, the underlying mesh can be refined

locally (h-adaptivity), the polynomial degree can be adjusted locally (p-adaptivity),

or the mesh points can be relocated (r-adaptivity) [38]. Even when adaptivity is used,

the solution space can become quite high-dimensional for some applications [38].

A Galerkin reduced-order model (GROM), as opposed to a typical finite element
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model, is based on basis functions more closely related to the solutions of the exam-

ined PDE problem, i.e., snapshots. Several techniques exist for deriving the Galerkin

reduced-order model’s basis functions. One such strategy is the Taylor method,

wherein basis functions are constructed using derivatives of solutions at a specific

reference point within the parameter space. Another approach, the Lagrange method,

involves solutions to the problem at different parameter values as the foundation for

basis functions. The Hermite method, which combines aspects of both the Lagrange

and Taylor methodologies, incorporates solutions and their first derivatives at multi-

ple parameter values to establish the basis functions [38, 77, 78, 79]. This thesis will

obtain the basis functions of interest through POD.

2.2.1 Galerkin Projection

The system of PDEs that represents the dynamics of a variable of interest u can be

depicted in its basic form:
du

dt
= F (u) (2.23)

where F (·) represents a nonlinear operator that may involve spatial derivatives, inte-

grals, and u = u(x, t) is a variable defined on a spatial domain Ω. The solution u

corresponds to an appropriate phase or state space, which we designate by X , at each

(fixed) time t. Hence, if u = u(x, t) is a function defined over the spatial domain Ω,

X should be a space of functions defined on the domain Ω that is sufficiently flexible

to encompass all feasible solutions.

Given a finite-dimensional linear subspace S of X , we wish to determine a dynam-

ical system that evolves on S and approximates Equation 2.23 in some sense. This

dynamic system may be denoted

du

dt
= FS(u) (2.24)

where u(x, t) ∈ S and FS is a vector field on S. Galerkin projection specifies this

vector field by

FS(u) = PF (u) (2.25)

where P : X → S is the orthogonal projection onto S. To apply this method explic-

29



itly, we expand u(x, t) as

ur(x, t) =
r∑

k=1

ak(t)φk(x) (2.26)

where φk(x) are basis functions described by POD modes that span the subspace S.

Consider a general nonlinear PDE that describes the evolution of a vector field u(x, t),

over time. This equation includes both a linear component and quadratic nonlinear

terms and can be represented as

∂u

∂t
= L[u] +N [u,u] (2.27)

The operator L represents a linear operation, while N represents a quadratic nonlin-

ear operation. Galerkin projection of the Equation 2.27 onto φk, the results in an

expression as follows:(
∂u

∂t
, φk

)
= (L[u],φk) + (N [u,u],φk) (2.28)

By inserting Equation 2.26 into Equation 2.28 and then simplifying the resulting

equation using the orthonormality condition provided in Equation 2.22, we can ex-

press the implementation of the GROM in the following manner:

dâk
dt

= Bk +
r∑

i=1

Likâi +
r∑

i=1

r∑
j=1

Nijkâiâj, for k = 1, 2, . . . , r (2.29)

Here, ak represents the vector containing the time coefficients of the GROM, Bk is a

vector with dimensions r × 1, Lik is a matrix of size r × r, and Nijk is a tensor with

dimensions r × r × r.

The system given by the above equation consists of r coupled ODEs for modal coeffi-

cients, ak, which can be solved numerically by any suitable time integration scheme.

Additionally, the POD basis functions and ROM operators (Bk, Lik, Nijk) can be

precomputed from the data, which makes the system more efficient.

ODEs obtained from the Galerkin projection explicitly depend on the parameter Re

through a linear operator. As a result, we derive a fluid flow model that is applicable

across all Re. However, it is important to note that the POD modes are optimized

specifically for the Re used while obtaining the FOM, so the model’s accuracy is ex-

pected to be highest near that Re. It has been suggested that the model’s applicability
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range can be expanded by incorporating snapshots from various parameter values, ef-

fectively "stacking" the ensemble [80]. We will apply this technique to compute the

optimal POD modes by creating a snapshot matrix that consists of snapshots obtained

from different Re.

2.2.2 Inner Product

The role of the inner product within the GROM procedure is crucial. Primarily, it

plays a fundamental role in establishing the underlying Hilbert space for the analyti-

cal process. Furthermore, it defines how the governing equations are projected onto

the POD basis, thus determining the mathematical aspect that the POD basis most

effectively represents [81]. This step subsequently forms the basis for constructing

the GROM dynamical model.

Most GROM applied to fluid flow analysis have commonly utilized the incompress-

ible Navier-Stokes equations as the governing equations. In such problems, a suitable

and intuitive selection for the inner product is the L2 inner product. This inner prod-

uct is defined over the spatial domain Ω, reflecting the region of interest. L2 - norm

of a function f is also given in Equation 2.3.

(u, v) =

∫
Ω

uv dΩ (2.30)

Considering the solution vector for the velocity denoted as u, the chosen inner product

aligns with the overall kinetic energy across the system. This interpretation conveys

physical significance to the POD basis, as these modes are ideally suited to represent

the kinetic energy distribution within the ensemble from which they are derived.

The computations of integrals can be approximated along the specified axis using

numerical integration methods such as the trapezoidal rule or the well-known Simp-

son’s 1/3 rule. In this thesis, the composite trapezoidal rule is utilized. This rule

operates by estimating the area beneath the function’s curve f(x) as a trapezoid and

then determining its enclosed area. Consequently for
∫ b

a
f(x)dx,

h =
b− a

n

pi =
yi + yi−1

2
h

(2.31)
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Given a subinterval length represented by h and the function values yi obtained from

f (xi) for i = ranging from i = 1, . . . , n the term pi represents the area of the trape-

zoid over the interval [xi−1, xi] [82]. The complete integration over the interval [a, b]

can be expressed as : ∫ b

a

f(x)dx =
n∑

i=1

pi (2.32)

2.2.3 Initial and Boundary Conditions

The algorithms employed to calculate the POD basis {φi} use snapshots that may

not always exhibit zero values on the Dirichlet boundary. Each POD mode can be

viewed as a specific linear combination of snapshots. Consequently, the POD modes

derived from the original snapshots, as demonstrated in Equation 2.8, tend to have

non-zero values along the Dirichlet boundary in most cases. Consequently, when

computing the POD basis and constructing a ROM, careful attention must be given to

handling the boundary conditions to ensure that the resulting POD modes are zero on

the Dirichlet boundary.

There are numerous approaches can be found in the literature [83, 84, 85, 86] for deal-

ing with both steady and time-dependent inhomogeneous Dirichlet boundary condi-

tions. For the sake of this thesis, however, only steady inhomogeneous Dirichlet

boundary conditions will be presented. The reader may refer to [25] for more details.

The finite element solution of the problem with the steady Dirichlet boundary condi-

tion is represented with snapshots
{
uk
}M
k=1

where u is a function of both space x and

time t.

u(x, t) = g(x) on [0, T ]× ΓD ⊂ Γ. (2.33)

In this approach, the POD is employed to modified snapshots
{
uk − ū

}M
k=1

rather

than raw snapshots
{
uk
}M
k=1

where ū is an extension of g into Ω which satisfies the

boundary condition. This function must then be added to the reduced-order approxi-

mation of u. The most common choice for ū is the temporal average of the snapshots,

i.e.

ū :=
1

M

M∑
k=1

uk. (2.34)
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As a result, the POD modes are calculated from the fluctuations of the snapshots. This

approach is also recognized as the centered-trajectory method [25]. Employing the

snapshot averages ū displays a notable benefit in flow-related scenarios by maintain-

ing the linear characteristics of the solution, including features like divergence within

the velocity field.

The mean field ū and the elements of the POD basis {φk} are constructed from linear

combinations of the snapshots
{
uk
}M
k=1

, resulting in divergence-free velocity POD

modes and an approximation that automatically fulfills the continuity equation [87,

88, 89].

The modified snapshots
{
uk − ū

}M
k=1

satisfy homogeneous Dirichlet boundary con-

ditions. As a result, creating a ROM using the POD basis functions is possible, which

also satisfies homogeneous Dirichlet boundary conditions.

Regarding the initial condition for a projection-based reduced-order model, i.e., Equa-

tion 2.26, a0k is typically derived by projecting u0 − ū in the L2 sense onto the POD

basis as follows

a0k =
(
u0 − ū, φk

)
, k = 1, . . . , r (2.35)

where ū can be found using Equation 2.34 and r is the number of POD modes. Con-

sequently, the reduced-order approximation of the initial condition u0 has the form

u0 ≈ ū+
r∑

k=1

a0kφk (2.36)

The POD space represents the best possible approximation in the L2 sense of the

initial condition u0. Unless explicitly stated, all projection-based ROMs presented in

the thesis will adopt this initial condition.

2.2.4 Numerical Methods

The first and second-order derivatives are calculated by employing second-order ac-

curate central differences in the interior points and second-order accurate one-sided

(forward or backward) differences at the edges to approximate the differential opera-

tors (linear and nonlinear terms) in the GROM.
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O (∆x2) centered difference approximations for interior points:

f ′(x) : {f(x+∆x)− f(x−∆x)}/(2∆x)

f ′′(x) : {f(x+∆x)− 2f(x) + f(x−∆x)}/∆x2
(2.37)

O (∆x2) forward and backward difference approximations for boundaries:

f ′(x) : {−3f(x) + 4f(x+∆x)− f(x+ 2∆x)}/(2∆x)

f ′′(x) : {2f(x)− 5f(x+∆x) + 4f(x+ 2∆x)− f(x+ 3∆x)}/∆x3
(2.38)

f ′(x) : {3f(x)− 4f(x−∆x) + f(x− 2∆x)}/(2∆x)

f ′′(x) : {2f(x)− 5f(x−∆x) + 4f(x− 2∆x)− f(x− 3∆x)}/∆x3
(2.39)

Once Equation 2.29 is derived through applying Galerkin projection, the system’s

temporal evolution at any parameter can be predicted using a suitable time integration

technique. In the scope of this thesis, we want to approximate the solution to a first-

order differential equation given by

dy(x)

dt
= y′(x) = f(x, y), with y (x0) = y0 (2.40)

The third-order Runge-Kutta method involves approximating the solution of the ini-

tial value problem by calculating the integrand, denoted as f(x, y), three times during

each step. For step i+ 1.

yi+1 = yi + 1/6 (k1 + 4k2 + k3) , (2.41)

where
k1 = hf (xi, yi) ,

k2 = hf (xi + h/2, yi + k1/2) ,

k3 = hf (xi + h, yi − k1 + 2k2) ,

and xi = x0 + ih.

2.2.5 A Summary of the Procedure for Building GROM

The following algorithm outlines the steps of the Galerkin projection-based ROM

(GROM) process:
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• Take the ensemble average of the snapshots obtained from the FOM. ū(x) =

1
M

∑M
k=1 u

(k)(x)

• Decomposed each snapshot into its mean and instantaneous fluctuation parts.

u
(
x, tk

)
= ū(x) + u′

(
x, tk

)
• Construct a data correlation matrix of the fluctuating part, C = [cij] from the

snapshots where cij =
∫
Ω
u′ (x, ti)u′ (x, tj) dΩ. Here, i and j refer to the snap-

shot indices.

• Compute the optimal POD basis functions by solving the eigenvalue problem

denoted by Equation 2.12 or by applying singular value decomposition stated

in Equation 2.20.

• Using the eigenvalues stored in descending order in the diagonal matrix, Λ,

or singular values stored in the diagonal matrix Σ, define the orthogonal POD

basis functions for the velocity field.

• Rewrite the fluctuating component of the field variables into the POD modes.

u′
M(x, t) =

M∑
k=1

ak(t)φk(x)

where ak(t) is the time-dependent modal coefficients and φk(x) refer to the

POD modes.

• Select r modes, where r is much smaller than M , in a way that these r modes

capture the most significant energy, aligning with the largest eigenvalues (λ1,

. . . , λr). The complete representation of the field variables can then be ex-

pressed as follows:

ur = ū(x) +
r∑

k=1

ak(t)φk(x)

• Conduct an orthogonal Galerkin projection by multiplying the governing equa-

tion with the POD basis functions and integrating across the domain Ω. This

process leads to the dynamic GROM system for âk as in Equation 2.29.

• Numerically solve the above equation using an appropriate time integration

method, such as the Runge–Kutta method, to predict either the time evolution

of the system or the dynamic behavior of the system at an unknown parameter.
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2.3 Closure Modelling

As outlined in Section 1.4, there exist primarily two approaches for enhancing the

accuracy of Galerkin projection-based ROMs (GROMs). The initial method involves

augmenting the number of retained modes, i.e., expanding the ROM’s dimension

during the procedure. Yet, owing to the non-linearity inherent in the resultant ROM,

the computational cost of the GROM scales with O(r3), thereby imposing significant

limitations on the practical use of larger ROM dimensions. Therefore, a secondary

approach will be employed in this thesis, which entails introducing a low-dimensional

closure term predicted by the artificial neural network (ANN).

A basic feed-forward ANN composed of multiple layers is employed in closure mod-

eling. The physics-constrained Galerkin projection-based ROM (GROM) is main-

tained to effectively capture the behavior of the larger scales within the system, and

the closure model is built as an extension of the GROM. This decision enhances the

framework’s interpretability and extends its applicability across diverse control pa-

rameters.

The training process of an ANN involves minimizing the error between the intended

target and the input values to determine an optimal set of parameters. This approach

is called supervised learning, wherein labeled data is employed for optimizing the

model using gradient-based techniques. The optimized parameters encompass biases

and linear weights that effectively encapsulate the underlying correlation between the

input values and the intended targets. Subsequently, these parameters can be utilized

to predict target values for new input data.

In contrast to traditional statistical regression models, the notable advantage of utiliz-

ing the ANN methodology is its ability to yield accurate results even with relatively

smaller training data sets. In the following sections, we will present the specific com-

ponents of the ANN architecture that pertain to our particular test case.
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2.3.1 Artificial Neural Networks

An artificial neural network is a computational technique that constructs multiple

interconnected processing units. These units, also known as neurons or nodes, form

a network with various cells, linking input data to the desired output. Neurons are

tightly interconnected and arranged in layers within the neural network. The input

layer takes in the initial data, while the output layer produces the outcome. One or

more hidden layers are usually situated between these two layers.

The artificial neuron is designed to replicate the fundamental traits of a biological

neuron’s behavior. Similar to its biological counterpart, the artificial neuron accepts

multiple inputs representing other neurons’ outputs. Each input is scaled by a spe-

cific weight, akin to the strength of synapses in biological neurons. These weighted

inputs are summoned and subjected to an activation function, ultimately deciding the

neuron’s output as in Figure 2.4.

Figure 2.4: Schematic of an Artificial Neuron

The most basic form of a neural network, often called a fully connected network or

multilayer perceptron (MLP), comprises multiple interconnected artificial units. The

term "perceptron" denotes an artificial neuron that takes multiple input values, each

multiplied by a corresponding weight, and produces an output through an activation

function, while "multi" in multilayer perceptron indicates the incorporation of multi-

ple concealed layers, enabling the network to comprehend intricate data relationships.

The mathematical representation of the artificial neuron can be expressed as follows:

y = σ

(
N∑
k=1

wkxk + b

)
, (2.42)
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Here, σ denotes the activation function, and N represents the number of preced-

ing data units. Both the synaptic weights and the activation function influence the

performance of the artificial neuron. The activation function brings non-linear char-

acteristics to the neuron’s output. The absence of such a function restricts a neural

network to linear mappings. Typical activation functions include the rectified linear

unit (ReLU), hyperbolic tangent, sigmoid, and swish. They are represented in Figure

2.5.
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Figure 2.5: Plots depicting frequently used activation functions

Nonlinear activation functions are applied within the hidden layers. However, an

identity function serves as the activation function in the output layer. This choice is

because the variable in the output layer typically represents real-valued targets for

regression or class scores for classification. In general, an L-layered network can be

written as:

N 0(x) = x (2.43a)

N i(x) = σ(WiN i−1(x) + bi) (2.43b)

N L(x) = WLN L−1(x) + bL, (2.43c)

Here, W denotes the weight matrix, and b represents the bias vector. The matrix W

is of size (m × n), where n represents the input vector’s length, and m indicates the
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length of the output vector. b is a vector with dimensions (m×1). This multiplication

yields an output vector y with dimensions (m× 1). In a matrix representation, inter-

layer calculations can be expressed as follows:
y1

y2
...

ym

 = σ




w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

...
... . . . ...

wm,1 wm,2 . . . wm,n




x1

x2
...

xn

+


b1

b2
...

bm



 (2.44)

In the majority of neural networks, a portion of historical data with known correct

outputs is employed to establish the weights, biases, or, in other words, hyperparam-

eters through a procedure known as neural network training. This involves assigning

initial values to the hyperparameters and systematically adjusting them step by step

until a satisfactory parameter configuration is achieved. The core technique used for

this purpose is referred to as Backpropagation.

The concept involves treating the loss resulting from incorrect classifications the neu-

ral network makes as a function related to the network’s hyperparameters. The goal is

to select hyperparameter values that minimize this loss. A widely used loss function

is the mean squared error (MSE), which calculates the average of the squared differ-

ence between the predicted and actual values. It can be mathematically represented

as:

LMSE =
1

Nd

Nd∑
i=1

|ŷi − yi|2, (2.45)

Given the primary objective of accurately predicting the exact value, the main focus

is to minimize the loss. This optimization problem can be depicted as follows:

θ∗ = argmin
θ
J(θ;x), (2.46)

Here, J represents the objective function, as seen in Equation 2.45. The hyperpa-

rameters can be refined in consecutive iterations by approximating solutions to this

minimization problem. Gradient Descent is an iterative optimization method exten-

sively applied in this process to reduce a loss function.

θ = θ − η · ∇θJ(θ;x), (2.47)

where η is the learning rate.
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Gradient descent aims to locate the nearby minimum of the loss function through

successive steps in the direction that minimizes loss the most. The learning rate is

pivotal in this mechanism, as it defines the step size and can impact convergence speed

and algorithm stability. A commonly employed method for incorporating learning

rates is known as learning rate decay. This strategy initiates with a higher learning

rate during initial iterations (epochs) and subsequently decreases the learning rate

gradually according to a specific pattern:

η(t) = η0d
t/T , (2.48)

Here, t represents the iteration count, T represents the number of steps for decay,

and d denotes the decay rate. This decay aims to begin with a higher rate in the early

iterations, which helps prevent the memorization of noisy data, and then gradually de-

creases the rate to a smaller value. This adjustment is made to prevent the occurrence

of oscillations around a local minimum, as noted in [90]

Various versions of gradient descent, like stochastic gradient descent (SGD) and mini-

batch gradient descent, utilize data subsets to calculate gradients in each step. These

variations enhance efficiency, particularly when handling extensive datasets.

The ADAM optimizer is incorporated in this study as a fundamental element in the

training process of the neural network model. The selection of ADAM was motivated

by its established track record of providing efficient and proficient optimization solu-

tions. ADAM, known as Adaptive Moment Estimation, is remarkably esteemed for

its ability to fine-tune learning rates on individual parameters adaptively. In each iter-

ation of the Adam algorithm, the process begins by computing the gradient, denoted

as gt, based on the gradients from the preceding iteration ((t− 1)).

gt = ∇θJ(θ
(t−1)). (2.49)

Next, the biased first (mt) and second raw moment (vt) estimates are updated:

mt = β1 ·mt−1 + (1− β1)gt (2.50a)

vt = β2 · vt−1 + (1− β2)g
2
t . (2.50b)
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Then, the biases are corrected for the first and second raw moment estimates:

m̂t =
mt

1− βt
1

(2.51a)

v̂t =
vt

1− βt
2

. (2.51b)

Lastly, the parameters are updated:

θt = θt−1 − η
m̂t

ϵ+
√
v̂t
. (2.52)

β1 and β2 serve as hyperparameters dictating the exponential decay rate for the mov-

ing averages of the gradient (mt) and squared gradient (vt), respectively. The param-

eter ϵ is chosen to be a small number to avoid division by zero.

2.3.2 ANN Training

In our approach to the closure problem, the main idea is to enhance the parameters

obtained from model reduction. Therefore, we initially implement a projection onto

the full-order data instead of formulating our learning task within the complete high-

dimensional space. This projection yields coefficients within a reduced subspace,

subsequently serving as the foundation for building our learning framework.

The closure model employed in this thesis is an extension of the Galerkin projection-

based ROM (GROM). In this model, the output of GROM at each time step is used

as an initial prediction for the time coefficient rather than treating it as the final ap-

proximation. To elaborate, a correction term will be introduced to guide the time

coefficients {âk}rk=1 obtained directly from the Galerkin projection to form a more

accurate representation of the time coefficient.

{ak}rk=1 = {âk}rk=1 + {ck}rk=1 (2.53)

where c is a correction (closure) term defined as

ck = ak − âk (2.54)

In the ANN training phase, we assume we can access true field data at various time

points, which can be derived from experiments or numerical simulations. This allows

us to acquire the true modal coefficients ak associated with these data. Galerkin pro-

jection is used to calculate the time progress of each time coefficient âk based on the
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Figure 2.6: ANN architecture to map time coefficients calculated from Galerkin pro-

jection to correction term

basis functions obtained from the POD. The difference between true time coefficients

and those obtained from the Galerkin projection leads to a correction term. Therefore,

an ANN is trained to map âk to ck. Here, it is important to highlight that both input

and output features are normalized within the range of their minimum and maximum

values, and these normalization parameters are retained for deployment purposes.

2.3.3 JAX: High-Performance Array Computing

JAX [68] stands as a Python library tailored for efficient numerical computations,

leveraging XLA library to execute code on diverse accelerators such as CPUs, GPUs,

and TPUs. Its primary focus is supporting automatic differentiation, making it suit-

able for machine learning tasks. Notably, JAX includes a fully differentiable variant

of the well-known NumPy library, referred to as JAX NumPy. Python and NumPy

are extensively utilized and offer user-friendly features.

JAX introduces the Just-In-Time (JIT) compilation option for functions, substantially

enhancing their performance. The static compilation, often called "ahead-of-time

compilation," seeks to transform a high-level programming language program into a
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more basic representation in object code or assembly language. This conversion oc-

curs before the actual execution of the program. During JIT compilation, an abstract

version of the function is cached, designed to operate for any conceivable argument

values. The function is not compiled for specific input values but to accommodate the

entire spectrum of potential input values, with only the array’s shape and type being

fixed.

For example, we define a matrix multiplication function intended for JIT compila-

tion. During the initial call, compilation occurs, and if we provide two floating-point

matrices with dimensions (200, 100) and (100, 250), this specific matrix shape and

floating-point data type information are stored in the cache. This results in the avail-

ability of a JIT-compiled version of the function, which can be efficiently reused for

diverse matrices sharing the same (200, 100) and (100, 250) shape.

Just-In-Time (JIT) compilation in JAX entails particular prerequisites and limita-

tions that must be met for the smooth functioning of JIT mechanics. Fulfilling these

conditions ensures optimal performance of JIT-compiled functions during execution.

Firstly, the function intended for JIT compilation should be a pure function, mean-

ing that it yields identical outputs for identical input arguments and does not produce

any side effects. Secondly, control flow statements within the function must not rely

on the values of input arguments. When the JIT compiler encounters a line of code

containing an if - statement, it tries to assess this expression using the abstract

value of the input variable x. However, due to the absence of a definite or concrete

value, the evaluation process encounters a setback, leading to the termination of the

tracing process at that point.

JAX is compatible with the Flax [91] and Optax [92] libraries. Flax is a versatile neu-

ral network library tailored for JAX, prioritizing high performance and adaptability.

flax.linen.Module is the base class for all neural network modules. Layers and

models are subclasses of this class. Arbitrary forward pass methods can be defined

within the flax.linen.Module subclass. Although no methods are treated as ex-

ceptional cases, the call method is commonly favored, as it permits the utilization

of module instances in a manner similar to functions. The init operation initializes

the module by applying variables and subsequently provides the modified variables
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as its output, while the apply method is responsible for performing the network’s

feedforward operation.

Optax, on the other hand, is a JAX library focused on processing gradients and op-

timization. Its purpose is to provide optimization methods, such as the Adam opti-

mizer, that can be flexibly combined to create customized approaches for optimizing

parametric models.
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CHAPTER 3

APPLICATION TO BURGERS EQUATION

3.1 Governing Equations

This section employs the viscous Burgers equation as the first benchmark to evaluate

the proposed model reduction approach.

The Burgers equation can be expressed as

∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2
, x ∈ [0, 1], t ∈ [0, 1] (3.1)

where Re is a non-dimensional Reynolds number and x refers to the spatial coordi-

nates, t is the time.

3.2 Full Order Model

The PDE represented by Equation 3.1 can be exactly solved, leading to an analytical

expression for the time-dependent behavior of the field variable u(x, t) [93]. This

solution is expressed as follows:

u(x, t) =
x

t+1

1 +
√

t+1
t0

exp
(
Re x2

4t+4

) , (3.2)

where t0 = exp
(
Re
8

)
. For our upcoming model order reduction analysis, snapshot

data is produced using this exact solution in Equation 3.2, employingNx = 1024 spa-

tial collocation points for each snapshot. The snapshots in our database were captured

at 10 equidistant Reynolds number points, specifically Re = [100, 200, . . . , 1000].

The spatial and temporal characteristics of the four illustrative solutions are illus-

trated in Figure 3.1 across different Reynolds number values.
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Figure 3.1: Spatial-temporal solution of the Burgers equation across different

Reynolds numbers in our dataset

3.3 Proper Orthogonal Decomposition

Any arbitrary scalar field variable u can be used to create a representative POD basis

at different points in time. These snapshots are typically obtained using a standard

FOM approach to solve the governing equations we are trying to model. FOM can be

considered the exact solution in this case, given in Equation 3.2 to the Burgers equa-

tion. The index k denotes a specific point in time. We use M snapshots for the field

variable, i.e. u(x, tk) for k = 1, 2, . . . ,M in the POD approach. The snapshot matrix
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is given below. The snapshot matrix comprises the data collected across various Re.

S =


u11 . . . u1M

u21 . . . u2M
...

...

uNx1 . . . uNxM

 (3.3)

The ensemble mean of the snapshots is subtracted from each snapshot to obtain the

instantaneous fluctuating velocity components:

S =


u′ (x1, t

1) . . . u′
(
x1, t

M
)

u′ (x2, t
1) . . . u′

(
x2, t

M
)

...
...

u′ (xNx , t
1) . . . u′

(
xNx, t

M
)

 (3.4)

Then, the discrete representation of the correlation between instantaneous fluctuations

is formed in a matrix denoted as C.

Cij :=
(
u′
(
x, ti

)
, u′
(
x, tj

))
Ω

(3.5)

Here, Ω represents the complete spatial domain, and the indices i and j refer to the ith

and jth snapshots. The time correlation data matrix C is a symmetric square matrix

of size M ×M . The eigenvalue problem can be formulated as follows:

CW = ΛW (3.6)

A collection of eigenvectors, along with associated eigenvalues, are found in the pro-

cess of eigendecomposition applied to the correlation matrix.

To find the POD modes required to reconstruct the flow field, fluctuating velocity

components must be projected into the eigenvectors (by taking the dot product of the

fluctuating velocity with eigenvectors).

φ =


φ1 (x1) . . . φr (x1)

φ1 (x2) . . . φr (x2)
...

...

φ1 (xNx) . . . φr (xNx)

 (3.7)
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Figure 3.2: Eigenvalues originating from the temporal correlation matrix (a) are

paired with their corresponding RIC indices (b) for the space-time solution of the

viscous Burgers equation. We retain only the 6 most dominant POD modes in our

ROM.

which leads to a reduced order space spanned by POD modes.

Xr := span {φ1, . . . , φr} , (3.8)

Examining the characteristics and distribution of eigenvalues concerning their modal

index is a fundamental step in the analysis of POD since it guides dimensionality

reduction and aids in interpreting the physical significance of the modes.

For that purpose, the relative information content (RIC) is calculated using Equation

2.21 and it is shown in Figure 3.2 along with the eigenvalues of the time correlation

matrix C.

It becomes apparent that a limited set of modes suffices to illustrate the spatial and

temporal characteristics of the system accurately. Hence, our analysis employs the

leading r = 6 modes, representing the highest energy content and encapsulating

roughly 98.82% of the overall energy. The associated POD basis functions employed

for our investigation are illustrated in Figure 3.3.

Subsequently, the time coefficients are obtained through the inner product of two
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Figure 3.3: Illustration of the most energetic POD basis functions for viscous Burgers

Equation
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vectors: one encompassing the fluctuating velocity components at any Re and the

other containing the POD modes. We will call these true time coefficients since they

result directly from the projection of the FOM.

a =


a1 (t1) . . . ar (t1)

a1 (t2) . . . ar (t2)
...

...

a1 (tM) . . . ar (tM)

 (3.9)

Consequently, the field variables and their progression over time can be estimated us-

ing these POD basis functions alongside their associated time coefficients. Notably,

the value of r is significantly smaller than M . Introducing the mean velocity sub-

tracted at the initial stage of our analysis, a reconstructed flow field can be generated.

3.4 Galerkin System

The most energetic POD basis functions can model the fundamental behavior of the

underlying governing equations. Once these empirically derived POD basis func-

tions are obtained, they can be utilized to formulate a set of nonlinear ODEs through

Galerkin projection. We simplify the system by considering only the first r most sig-

nificant POD basis functions to construct a ROM based on projection. These modes

correspond to the r largest eigenvalues.

To create the GROM, we must first rewrite the Burgers equation 3.1 in the following

form
∂u

∂t
= L[u] +N [u;u] (3.10)

where L[f ] = 1
Re

∂2f
∂x2 is the linear operator and N [f ; g] = −f ∂g

∂x
is the nonlinear

operator. We obtain the GROM by applying this projection to our nonlinear system

(i.e., multiplying 3.10 with the basis functions and integrating over the domain by

replacing u with ur as in Equation 2.18).

dâk
dt

= Bk +
r∑

i=1

Likâi +
r∑

i=1

r∑
j=1

Nijkâiâj, for k = 1, 2, . . . , r, (3.11)
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where

Bk = (L[ū] +N [ū; ū], φk)

Lik = (L [φi] +N [ū;φi] +N [φi; ū] , φk) ,

Nijk = (N [φi;φj] , φk) .

(3.12)

The GROM depicted by Equation 3.12 comprises a set of r interconnected ordinary

differential equations (ODEs), which can be effectively solved numerically using

standard techniques (such as the third-order Runge-Kutta method employed in this

thesis). As a result of this approach, the system’s degrees of freedom are significantly

reduced. Equation 3.12 contains pre-computed vectors, matrices, and tensors con-

tributing to the formulation of a dynamic system that can be efficiently solved. The

spatial derivatives required for the computation of these pre-computed operators are

calculated using second-order accurate central differences within the interior points

of the spatial domain, along with second-order accurate one-sided (forward or back-

ward) differences at the domain boundaries. The initial condition is established by

applying the following projection to finalize the representation of the dynamic sys-

tem defined by Equation3.11:

âk(t = 0) = (u(x, t = 0)− ū(x), φk) , (3.13)

where u(x, t = 0) is the physical initial condition of the problem.

However, the modal truncation process and the introduced errors and instabilities

within the Galerkin projection-based ROM (GROM), as elaborated in Section 1.4,

lead to prediction inaccuracies. To address this issue, a closure model should be

constructed to increase the ROM’s accuracy and eliminate the instabilities caused by

the Galerkin projection while preserving computational efficiency.

3.5 Closure Model

ANN will be employed to predict a low-dimensional closure term to improve our

ROM. Table 3.1 summarizes the adopted hyperparameters. We observed that the

neural networks we created display a degree of robustness towards hyperparameters.

However, it is important to note that various methods, such as grid search, can be
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employed for fine-tuning to achieve the best possible selection of hyperparameters,

which is out of the scope of this thesis.

Table 3.1: A list of hyperparameters utilized to train the ANN for Burgers Equation

Variables 1D Burgers Equation

Number of hidden layers 4

Number of neurons in each hidden layer 40

Epochs 1000

Activation functions in the hidden layers ReLU

Loss function MSE

Optimizer ADAM

Learning rate 0.01

True time coefficients are obtained by projecting the FOM to the POD modes at

Re = [100, 200, . . . , 1000]. They form the input variables for our ANN model. The

correction term is found by subtracting the time coefficients obtained through the

Galerkin projection from the true time coefficients. These are then used as the output

variables for the ANN model. Details for the training procedure of the ANN have

been described in Section 2.3.2.

The ANN methodology is created using Flax, as explained in Section 2.3.3. This

choice is due to Flax’s smooth integration with JAX, facilitating efficient compu-

tations and automatic differentiation. Flax also provides essential support for dis-

tributed training across multiple GPUs and TPUs, a significant advantage for acceler-

ating the training of expansive models.

3.6 Results

Here, we provide data on the temporal evolution of modal coefficients for our test

case and evaluate the comparative effectiveness of the GROM and GROM(6) + Clo-

sure. While assessing the error in temporal evolution may not align precisely with

measuring errors in conventional function norms or quantities of interest, we noticed
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that this approach clarifies our presentation and offers a convenient means to compare

the proposed methods against the standard GROM model. Therefore, in addition to

the reconstructed fields for different frameworks, the evolution of the temporal coef-

ficients will also be presented.

3.6.1 Re = 650: demonstrating ability for interpolation

It should be emphasized that the subsequent results are derived from Reynolds num-

ber values that lie outside the range covered by the snapshot dataset. In other words,

following the derivation of the basis functions using snapshot data acquired for Re =

[100, 200, . . . , 1000], a Galerkin projection is executed to compute the time coeffi-

cients for Re = 650 and the correction term is predicted using the ANN. The FOM

solution is given in Figure 3.4.
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Figure 3.4: Exact solution obtained from the full order model at Re = 650

Figure 3.5 illustrates the progression of the initial 6 POD temporal coefficients across

distinct frameworks. GROM(6) struggles to capture accurate dynamics due to con-

siderable mode truncation. Conversely, GROM(12) and GROM(6) + Closure yield

favorable outcomes, yet GROM(12) demands higher computational resources.

Regarding the reconstruction of the field, we show the temporal evolution in Fig-
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Figure 3.5: Numerical assessments of time coefficients provided by different frame-

works applied to the Burgers equation for an interpolatory out-of-sample parameter

Re = 650
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ure 3.6, encompassing snapshots from the exact solution, true projection, as well as

GROM(6) + Closure, GROM(6), and GROM(12). The field reconstruction performed

by GROM(6) + Closure demonstrates notably accurate predictions compared to the

reconstructed field by GROM(6).

In Figure 3.7, we present a visualization depicting the magnitudes of errors in the

proposed model. These errors were computed by taking the difference between the

flow field generated by the GROM + Closure model and the true projection. The

errors are prominently visible in regions where the flow experiences rapid changes.
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(b) Reconstruction with 6 modes
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(c) Reconstruction with 12 modes
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(d) Reconstruction with 6 modes + Closure

Figure 3.6: Illustration of the temporal evolution of velocity fields for Burgers prob-

lem at Re = 650 obtained from GROM and GROM(6) + Closure
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Figure 3.7: Difference between the reconstructed flow fields obtained from GROM +

Closure and true projection models for Re = 650

3.6.2 Re = 1250: demonstrating ability for extrapolation

The upcomingRe = 1250 test extrapolation capabilities for the GROM and GROM(6)

+ Closure models. Figure 3.8 shows the exact solution obtained from the FOM.

Our examination of the given test cases reveals that utilizing a greater number of

modes becomes necessary as the Reynolds number increases. At Re = 650, it was

observed that increasing the number of modes led to improvements in the results.

However, this enhancement came at the expense of increased computational expenses.

The closure model we introduced proved to be advantageous in this context. It pro-

vided a level of accuracy comparable to that of the model utilizing many modes while

maintaining relatively lower computational costs.

The discrepancy between the reconstructed fields and the time evolution of the tem-

poral coefficients becomes more evident at Re = 1250. In a similar study in Figure

3.9, we first employed 6 POD modes to predict the flow field. Then, we increased the

number of modes to 12. As expected, the results showed improvements as in the case

ofRe = 650. However, examining the final 2 time coefficients depicted in Figure 3.9,

it becomes apparent that the suggested closure model produced outcomes that closely
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Figure 3.8: Exact solution obtained from the full order model at Re = 1250

resemble the actual projection. Also, the reconstructed fields in Figure 3.10 show

that utilizing even the 12 most dominant POD modes might not adequately capture

the underlying transient behavior. By adopting the GROM(6) + Closure method, we

achieve an accuracy comparable, even higher to that of GROM(12), but with minimal

computational overhead.

Stability is also achieved compared to closure models incorporating only non-intrusive

methods because the physics-based GROM approach provides a base for the proposed

framework, with ANN utilization required only for the correction terms.

The magnitudes of the errors shown in Figure 3.11 have noticeably increased com-

pared to the previous case. This observation aligns with our earlier discussions, where

we mentioned that the performance of the ROMs tends to decrease as the Re in-

creases.
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Figure 3.9: Numerical assessments of time coefficients provided by different frame-

works applied to the Burgers equation for an extrapolatory out-of-sample parameter

Re = 1250
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(b) Reconstruction with 6 modes
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(c) Reconstruction with 12 modes
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(d) Reconstruction with 6 modes + Closure

Figure 3.10: Illustration of the reconstructed temporal evolution of velocity fields for

Burgers problem at Re = 1250 obtained from GROM and GROM(6) + Closure
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Figure 3.11: Difference between the reconstructed flow fields obtained from GROM

+ Closure and true projection models for Re = 1250
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CHAPTER 4

APPLICATION TO VORTICITY-STREAMFUNCTION EQUATION

4.1 Governing Equations

In vector form, we have

∇2ψ = −ω (4.1)

where ψ s the streamfunction and ω is the vorticity and ∇2 is the 2D Laplacian oper-

ator. vorticity-streamfunction formulation of the 2D Navier–Stokes equations can be

written as
∂ω

∂t
+ (u · ∇)ω = v∇2ω (4.2)

where the vortex stretching term can be seen to vanish. We can also write

u · ∇ = u
∂

∂x
+ v

∂

∂y
=
∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y
(4.3)

The vorticity equation in two dimensions then becomes

∂ω

∂t
+

(
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y

)
= v∇2ω (4.4)

4.2 Full Order Model

To put the 2D vorticity-function equation into practical use, we investigate a phe-

nomenon known as the vortex merger problem. This scenario involves merging a pair

of vortices that rotate in the same direction. When these vortices have parallel axes

and come within a specific critical distance of each other, they merge to form a single

vortex that is nearly axisymmetric. To explore this problem, we start with an initial

vorticity field that consists of two vortices [94]. These vortices are distributed in a
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Figure 4.1: Initial field for the 2D vorticity - streamfunction equation

Gaussian pattern, carrying a unit circulation.

ω(x, y, 0) = exp
(
−ρ
[
(x− x1)

2 + (y − y1)
2])

+ exp
(
−ρ
[
(x− x2)

2 + (y − y2)
2]) (4.5)

The interaction constant, denoted by the symbol ρ, is established at a specific value of

π. Initially, the centers of the vortices are positioned at coordinates (x1, y1) =
(
3π
4
, π
)

and (x2, y2) =
(
5π
4
, π
)
. The initial field is shown in Figure 4.1.

The domain is discretized into 150 × 150 points, with periodic boundary conditions.

We gather a total of 200 snapshots spanning the time interval t ∈ [0, 20] by using the

source code provided in [66], adjusting the Reynolds number across a range of values:

Re ∈ [300, 500, 700, 900]. The snapshot matrix consists of all the data obtained at

different Reynolds numbers.

S =


| | |
ω1 ω2 · · · ωM

| | |

 . (4.6)
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Figure 4.2: Singular values originating from the snapshot matrix (a) are paired with

their corresponding RIC indices (b) for the space-time solution of the vorticity -

streamfunction equation. We retain only the 12 most dominant POD modes in our

ROM.

4.3 Proper Orthogonal Decomposition

Since the domain is considerably larger than that of the Burgers problem, comput-

ing times of the eigenvalue problem resulted from the correlation matrix dramati-

cally increased. Therefore, the POD modes are calculated using the built-in function

numpy.linalg.svd without decomposing the vorticity field into its mean and

fluctuating parts. The singular values resulting from the SVD can be seen in Figure

4.2.

Our analysis focuses on the top r = 12 modes, encompassing the most dominant

features and approximately 98.72% of the total energy. Only the first 6 vorticity

modes will be presented in Figure 4.3 for illustration purposes.

It is evident from Figure 4.3 that POD Mode 1 represents the mean vorticity field that

we did not subtract at the beginning of our analysis.

The true time coefficients are obtained by projecting the snapshots taken at the pre-

scribed Reynolds numbers to the POD modes as in the case of the Burgers equation.
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(d) POD Mode 4

0 25 50 75 100 125 150
x

0

25

50

75

100

125

150

y

-0.03

-0.02

-0.01

-0.01

0.00

0.01

0.01

0.02

0.03

0.04

(e) POD Mode 5
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Figure 4.3: Illustration of the 6 most energetic POD basis functions for vorticity -

streamfunction equation.
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It is important to observe that the vorticity and streamfunction share identical time

coefficients, owing to their connection through the kinematic relationship defined

in Equation 4.1 [66]. Additionally, due to the linear characteristics preserved by

the POD, the spatial modes for the streamfunction can be derived from the vortic-

ity modes by solving the Poisson equations.

4.4 Galerkin System

To create the GROM, we must first rewrite the vorticity-streamfunction formulation

given in Equation 4.4 in the following form:

∂ω

∂t
= L[ω]− J [ω, ψ] (4.7)

where L[u] is the linear operator and J [ω, ψ] is the non-linear operator defined as:

J [f ; g] =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

L[f ] =
1

Re

(
∂2f

∂x2
+
∂2f

∂y2

) (4.8)

multiplying Equation 4.7 with the basis functions and integrating over the domain

and by replacing ω with POD modes:

dâk
dt

=
r∑

i=1

Likâi +
r∑

i=1

r∑
j=1

Nijkâiâj, for k = 1, 2, . . . , r, (4.9)

where

Lik = (L [φω
i ] , φ

ω
k ) ,

Nijk =
(
−J
[
φω
i ;φ

ω
j

]
, φω

k

)
.

(4.10)

and φω represents the POD modes obtained for the vorticity field. The operators will

be calculated in a manner similar to how the Burgers equation is handled, employing

second-order central differencing methods for the derivatives. The reconstruction

process will be applied to the vorticity field exclusively, meaning that the Galerkin

projection will only concern the vorticity modes. For the time integration, the third-

order Runge-Kutta method will be employed.
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4.5 Closure Model

A similar ANN algorithm using Flax for the closure model is developed here utilizing

JAX properties. The hyperparameters utilized are outlined in Table 4.1.

Table 4.1: A list of hyperparameters utilized to train the ANN for 2D vorticity-

streamfunction equation

Variables 2D Vorticity-Streamfunction Equation

Number of hidden layers 6

Number of neurons in each hidden layer 120

Epochs 3000

Activation functions in the hidden layers ReLU

Loss function MSE

Optimizer ADAM

Learning rate 0.01

True time coefficients are obtained by projecting the FOM onto POD modes at dif-

ferent Reynolds numbers, serving as inputs for the ANN, while the correction term,

obtained by subtracting Galerkin projection coefficients from the true coefficients,

serves as outputs for the ANN; additional training specifics can be found in Section

2.3.2.

Due to the significantly nonlinear nature of the temporal evolution of the time coef-

ficients derived from the vorticity-streamfunctıon equation, more hidden layers and

neurons are used.

4.6 Results

To show the characteristics and advantages of the proposed framework, we present

results for the two test cases using Re that are beyond the range of those used during

model training, including both interpolation and extrapolation problems.
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Figure 4.4: Vorticity field obtained from the full order model at t = 20 for Re = 600.

4.6.1 Re = 600: demonstrating ability for interpolation

Galerkin projection has been employed to calculate the temporal coefficients forRe =

600. Then, ANN is utilized to estimate the correction term. The FOM solution taken

at the last time step for this problem can be observed in the provided Figure 4.4.

While the time coefficients illustrated in Figure 4.5 do not exhibit significant varia-

tions, particularly in the lower modes, the differences become noticeable as we move

towards higher modes. The last 6 time coefficients are presented since the most signif-

icant differences are observed around these modes. These higher modes correspond

to the finer scales of motion within the flow. In this context, the results obtained from

the closure model exhibit remarkable similarity to the true projection, showing its ef-

ficiency in approximating the finer details of the flow. As seen from Figure 4.7, since

12 modes can capture the most dominant structures present in the flow field for this

Re, there are no major differences between the reconstructed flow fields at the last

time step. However, minor differences can be observed through the time evolution of

these fields because of the differences in time coefficients. A higher Re case should

be tested to further investigate the framework’s effectiveness.
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Figure 4.5: Numerical assessments of time coefficients provided by different frame-

works applied to the vorticity-streamfunction equation for an interpolatory out-of-

sample parameter Re = 600
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(a) True Projection
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(b) Reconstruction with 12 modes
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(c) Reconstruction with 16 modes
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(d) Reconstruction with 12 modes + Closure

Figure 4.6: Illustration of the vorticity fields at t = 20 for vorticity-streamfunction

equation at Re = 600 obtained from GROM and GROM(12) + Closure
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Figure 4.7: Difference between the reconstructed flow fields obtained from GROM +

Closure and true projection models for Re = 600.

4.6.2 Re = 1100 demonstrating ability for extrapolation

To test the ability of the framework to predict the flow field at higher Re numbers,

Galerkin projection has been employed to calculate the temporal coefficients forRe =

1100. Then, ANN is utilized to estimate the correction term. The FOM solution taken

at the last time step for this problem can be observed in the provided Figure 4.8.

The last 6 time coefficients are provided in Figure 4.9. The major differences are ob-

served at the last 3 time coefficients, as in the case of the lowerRe. The reconstructed

flow fields depicted in Figure 4.10 show that the closure model can predict the flow

field with an accuracy close to the true projection of the FOM. Although all the mod-

els can correctly predict the orientation of the merging vortices, the instabilities in the

models that only use Galerkin projection are more visible. The result obtained from

the closure model shows more similarities with the true projection, indicating that the

accuracy of the true projection can be obtained while using less number of modes.
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Figure 4.8: Vorticity field obtained from the full order model at t = 20 forRe = 1100.
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Figure 4.9: Numerical assessments of time coefficients provided by different frame-

works applied to the vorticity-streamfunction equation for an interpolatory out-of-

sample parameter Re = 1100
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(a) True Projection
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(b) Reconstruction with 12 modes
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(c) Reconstruction with 16 modes
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(d) Reconstruction with 12 modes + Closure

Figure 4.10: Illustration of reconstructed the vorticity fields at t = 20 for vorticity-

streamfunction equation at Re = 1100 obtained from GROM and GROM(12) + Clo-

sure
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Figure 4.11: Difference between the reconstructed flow fields obtained from GROM

+ Closure and true projection models for Re = 1100.
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CHAPTER 5

APPLICATION TO NAVIER-STOKES EQUATION

5.1 Governing Equations

We are interested in the approximation of the constant density incompressible Navier-

Stokes (INS) equations:

∂u

∂t
−Re−1∆u+ u · ∇u+∇p = f

∇ · u = 0

(5.1)

subject to the initial condition

u = u0 for t = 0,x ∈ Ω, (5.2)

and the boundary conditions

u = gD on x ∈ ∂ΩD, t ∈ (0, T ],

∂u

∂n
= 0, p = 0 on x ∈ ∂ΩN , t ∈ (0, T ].

(5.3)

5.2 Full Order Model

The analyses are conducted using libParanumal, which is a high-order discontinuous

Galerkin finite-element flow solver developed by the Parallel Numerical Algorithms

Group at Virginia Tech [67]. For the context of this thesis, more features about spa-

tial and temporal discretization will not be presented here. The reader may refer

to [95] for a more thorough investigation of the mathematical formulation for the

GPU-accelerated version of a high-order discontinuous Galerkin discretization of the

unsteady INS equations.
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Figure 5.1: Geometry of the flow past a square cylinder

Figure 5.1 illustrates the computational region used to simulate a 2D flow around a

square cylinder. The domain is square with dimensions of 25 × 25, and the square

cylinder, centered at the origin (0, 0), has a side length of 1.

No-slip boundary conditions are imposed on both the walls and the cylinder. There is

no forcing, and the flow starts from rest.

5.3 Proper Orthogonal Decomposition

In the context of this 2D problem, a total of 500 snapshots for the field variable, i.e.

u(x, tk) for k = 1, 2, . . . ,M are gathered over the time interval t ∈ [0, 10]. The

index k denotes a specific point in time. The Reynolds number is adjusted across

Re ∈ [100, 200, 300, 400].

The FOM simulations reach a statistically steady state at different time points for the

four Reynolds numbers employed in the numerical study. To eliminate the unsteady

effects for each Re, the last 200 steps correspond to a 10 s. will be stored to generate

the snapshot matrix.

Unlike the previous problems, the dataset for INS consists of velocity vector fields

encompassing the x and y directions across a sequence of time steps. After subtract-
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ing the mean velocity field from each snapshot, the arrangement of the data within

the matrix can be illustrated as follows:

S =



u′1 (t
1) . . . u′1

(
tM
)

u′2 (t
1) . . . u′2

(
tM
)

...
...

u′N (t1) . . . u′N
(
tM
)

v′1 (t
1) . . . v′1

(
tM
)

v′2 (t
1) . . . v′2

(
tM
)

...
...

v′N (t1) . . . v′N
(
tM
)



(5.4)

In this context, the subscript N corresponds to the number of nodes present in the

mesh, 34240, and the superscript M represents the number of snapshots, 500. In our

approach, we have incorporated both the velocity components represented by u and v

in the snapshot matrix. Nevertheless, creating individual snapshot matrices for each

component is also possible.

After applying eigenvalue decomposition to the correlation matrix, RIC is calculated

to determine the number of modes required to reconstruct the flow field.

As it is observed from Figure 5.2, eigenvalues do not decrease rapidly, and more

modes are required to reach a certain level of information as opposed to previous

cases.

The same procedure as in Chapter 3 is followed while obtaining the orthonormal

POD modes representing the recurrent spatial structures of the fluctuating flow field.

6 most dominant POD modes for u are depicted in Figure 5.3.

5.4 Galerkin System

Galerkin system for INS can be obtained by replacing the u in Equation 5.1 with ur

approximated within the reduced order space Xr := span {φ1, . . . , φr}.

ur = ū(x) +
r∑

k=1

ak(t)φk(x). (5.5)
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Figure 5.2: Eigenvalues originating from the snapshot matrix (a) are paired with their

corresponding RIC indices (b) for the space-time solution of the Navier-Stokes equa-

tion. We retain the 24 most dominant POD modes in our ROM.

Following this substitution, the ensuing equations are projected onto the ROM space

denoted as Xr. As a result of this projection, the GROM with a dimension of r is

obtained:

((ur)t ,φr) +Re−1 (∇ur,∇φr) + (ur · ∇ur,φr) = 0 ∀φr ∈ Xr. (5.6)

The second term on the left-hand side is obtained from the Laplace term through the

utilization of integration by parts and the Gaussian theorem. The reader may refer to

[25] for the details of the mathematical procedure.

By using a suitable time discretization method, such as the third-order Runge-Kutta

method employed in this thesis, we get the full discretization of the r dimensional

GROM as follows:

dâk
dt

= Bk +
r∑

i=1

Likâi +
r∑

i=1

r∑
j=1

Nijkâiâj (5.7)

for k = 1, 2, . . . , r where âk is the vector of unknown ROM coefficients, B is a r × 1
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(a) POD Mode 1 (b) POD Mode 2

(c) POD Mode 3 (d) POD Mode 4

(e) POD Mode 5 (f) POD Mode 6

Figure 5.3: Illustration of the 6 most energetic POD basis functions for the x compo-

nent of the velocity for incompressible Navier-Stokes equation.
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vector, L is a r × r matrix, and N is a r × r × r tensor for 1 ≤ i, j, k ≤ r.

Bk = (L[ū] +N [ū; ū],φk)

Lik = (L [φi] +N [ū;φi] +N [φi; ū] ,φk) ,

Nijk =
(
N
[
φi;φj

]
,φk

)
.

(5.8)

where L[v] = Re−1∆v is the diffusion operator and N [v;w] = −v · ∇w is the

convection operator derived from Equation 5.1.

Our key assumption here revolves around the absence of a pressure term in Equation

5.5. This can be rationalized by recognizing that the POD modes are constructed as

linear combination snapshots, which inherently obey the continuity equation, ensur-

ing divergence-free behavior. Consequently, these POD modes maintain the property

of being divergence-free. The Galerkin projection of the pressure term is expressed

as follows.:

(∇p,φk) =

∫
Ω

φk · ∇pdx = −
∫
Ω

p · (∇ ·φk) dx+

∫
∂Ω

p · (φk · n) dx

In enclosed flows, the first term becomes null, and the second term equals zero [96].

The pressure term can be disregarded under the conditions of having a sufficiently

large computational domain or appropriate boundary conditions are ensured [46].

However, there are scenarios where omitting this term is not feasible. Consequently,

alternative terms might be introduced [97], or an approach involving the formation of

a pressure basis becomes necessary [50].

5.5 Closure Model

As the non-linearity in the problem increases, the ANN structure adapted for the

closure model should be enhanced. Increasing the number of hidden layers is one way

to deal with this problem. It enhances the neural network’s ability to grasp intricate

patterns and representations within the data, potentially enabling it to closely match

the training data and capture intricate features. Since the true time coefficients we

obtained for this problem show highly non-linear behavior, we increased the number

of hidden layers in the ANN.
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Table 5.1: A list of hyperparameters utilized to train the ANN for 2D Navier-Stokes

Equation

Variables 2D Navier-Stokes Equation

Number of hidden layers 8

Number of neurons in each hidden layer 240

Epochs 5000

Activation functions in the hidden layers ReLU

Loss function MSE

Optimizer ADAM

Learning rate 0.001

5.6 Results

Similarly to the approach adopted for the previous problem, the framework’s perfor-

mance is assessed at Re = 250. The FOM solution taken at the last time step for this

problem can be observed in the provided Figure 5.4.

However, despite POD providing sets of modes that effectively capture the majority

of average turbulent kinetic energy, the importance of the remaining modes remained

evident in the context of the vortex shedding problem. This is because POD does

not inherently decide which modes are critical for the system’s dynamics, and this

becomes apparent when observing the gradual (rather than rapid) decrease in the

eigenvalues of the correlation matrix depicted in Figure 5.2. At approximately 24

modes, the eigenvalues still exhibit relatively high values, remaining in the order of

magnitude of around 102. This indicates that the remaining POD modes still contain

information that can directly impact the solution to the problem.

In Figure 5.7, we depict the error magnitudes within the proposed model. This error

map was generated by calculating the difference between the flow field obtained using

the GROM + Closure model and the true projection. Notably, we observe significant

deviations, particularly in regions with strong vortices.

Even when employing GROM with an expanded number of modes, such as 50 in
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Figure 5.4: u velocity field obtained from the full order model for 2D incompressible

Navier-Stokes equation at t = 10 for Re = 250.

our specific case, it fails to accurately predict the flow field when confronted with

an unknown parameter. The further increase in the number of modes would result

in a dramatic increase in the computational costs because of the complexity of the

problem, i.e., O(r3), and will lead to a decrease in the efficiency of the proposed

framework.

Consequently, the difference between true time coefficients and Galerkin time coeffi-

cients becomes highly complex, making it challenging for relatively simple Artificial

Neural Network (ANN) structures to make accurate predictions.

As mentioned in Chapter 2.2.1, the POD modes are obtained from a snapshot matrix,

which consists of solutions at different Re. This allows us to construct an ODE,

which can then be used to find the solution to control parameters not included in the

snapshot matrix. If we aimed to predict only the temporal behavior of the dynamical

system beyond the range covered by the available data, the snapshot matrix would

exclusively consist of solutions corresponding to the specific control parameter of

interest. In that case, the decrease in the eigenvalues would be more sudden, and a

limited number of modes, such as 10, would be enough to create a ROM.
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Figure 5.5: Numerical assessments of time coefficients provided by different frame-

works applied to the Navier-Stokes equation for an interpolatory out-of-sample pa-

rameter Re = 250
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(a) True Projection (b) Reconstruction with 24 modes

(c) Reconstruction with 50 modes (d) Reconstruction with 24 modes + Closure

Figure 5.6: Illustration of reconstructed the u velocity fields at t = 10 for Navier-

Stokes equation at Re = 250 obtained from GROM and GROM(24) + Closure

84



Figure 5.7: Difference between the reconstructed flow fields obtained from GROM +

Closure and true projection models for Re = 250
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CHAPTER 6

CONCLUDING REMARKS

6.1 Summary and Discussions

In this thesis, we have outlined the application of proper orthogonal decomposition

(POD) for creating low-dimensional ordinary differential equation (ODE) models in

the context of fluid flows. The POD method helps identify empirical eigenfunctions,

known as POD modes, that efficiently capture the predominant patterns observed in

experimental or numerical data. By projecting the governing partial differential equa-

tions (PDEs) of fluid flow onto these POD modes and applying truncation techniques,

we can derive simplified, low-dimensional ODE models for the numerical fluid dy-

namics simulation. In addition to providing a general overview of this methodology,

various approaches for numerically calculating the POD modes are presented in this

thesis. We have discussed how exploiting the method of snapshots and singular value

decomposition (SVD) can simplify and provide insights into these modes. We have

presented how Galerkin projection can be used to capture the essential features of the

solution while reducing the dimensionality of the problem.

Although reduced order models (ROMs) have been acknowledged as promising in

significantly decreasing computational costs while maintaining an acceptable level

of accuracy, the complex nature of the flows under consideration necessitates im-

plementing suitable closure modeling strategies. Therefore, we have introduced a

closure modeling approach to enhance the conventional Galerkin projection reduced

order modeling (GROM) based on artificial neural networks (ANN). First, we pro-

vided a brief overview of JAX-based ANN and explained its application in predicting

the correction term resulting from the differences between time coefficients obtained
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from the true and Galerkin projections. This method can be viewed as a hybrid tech-

nique, combining aspects of physics-based and purely data-driven approaches since it

builds upon Galerkin projection, thereby improving the model’s generalizability and

interpretability.

To assess the proposed model‘s performance, we employed three test cases repre-

senting convection-dominated flows, the first in a 1D scenario and the others in a

2D. These test cases allowed us to evaluate the proposed ROM under different condi-

tions by examining its performance with two out-of-sample control parameters, which

helped us assess its abilities in interpolation and extrapolation scenarios.

In each test case, we first developed GROM from snapshots obtained either through

the exact solution of the governing equation or the numerical solution of the problem

at different control parameters, i.e., Reynolds number. While the method of snap-

shots is utilized for computing the POD modes for the 1D Burgers equation and for

the 2D incompressible Navier-Stokes equation in Chapters 3 and 5, SVD is used for

the same purpose for 2D vorticity-streamfunction equation in Chapter 4. The snap-

shots are then projected into these POD modes to obtain the true time coefficients, and

the ODE resulting from the Galerkin projection was utilized to calculate the Galerkin

time coefficients for each Re number. The difference between the actual time coeffi-

cients and those acquired through the Galerkin projection results in a correction term.

As a closure model, ANN is trained to establish a mapping between Galerkin time

coefficients and correction terms.

We observed that the combination of GROM and ANN-based closure model exhib-

ited better performance compared to the GROM approach without any closure model

for the first two cases. This performance improvement is maintained across various

testing scenarios, demonstrating its effectiveness in interpolating and extrapolating

when dealing with simulations featuring different control parameters. We attained a

level of accuracy that was previously only achievable by employing a larger number

of modes. However, for the 2D incompressible Navier-Stokes equation, this proce-

dure was not entirely straightforward. Even though POD provided sets of modes that

capture the most average turbulent kinetic energy, the significance of the remaining

modes persisted for the vortex shedding problem. This is because POD does not in-
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herently identify which modes are essential for the system’s dynamics, and this fact

becomes evident when examining the gradual (definitely not rapid) decrease in the

eigenvalues of the correlation matrix. Even the GROM with an increased number of

modes fails to estimate the flow field at an unknown parameter. As a result, the differ-

ence in true time coefficients and Galerkin time coefficients becomes highly complex

for simple ANN structures to predict.

6.2 Future Work

Constructing ROMs is a powerful technique that balances computational efficiency

with reasonable accuracy, making it applicable to various scientific, engineering, and

decision-making tasks. These capabilities will become increasingly important in the

future when the numerous engineered systems will be equipped with huge amounts

of sensor data, necessitating rapid, real-time simulation. Therefore, in this thesis,

our focus has been on enhancing the performance of POD-based ROM by applying

machine learning strategies. The results of our proposed models have demonstrated

a noteworthy improvement in performance in simple problems. However, when ad-

dressing more complex problems, a couple of limitations have been identified. At this

point, as a natural extension of this research, the following studies can be considered:

• For estimating POD modes related to an unknown control parameter, more

advanced techniques like Grassmann manifold interpolation can be employed

[98].

• To simplify calculating derivatives, our framework was designed to accommo-

date structured meshes exclusively. However, we can incorporate support for

unstructured meshes within the framework to expand its applicability to more

complex geometries.

• JAX is a remarkably powerful library, particularly in its parallel and distributed

computing capabilities and its seamless integration with Graphics Processing

Units (GPUs) and Tensor Processing Units (TPUs). These features make it

a valuable tool for tackling computationally intensive tasks in machine learn-

ing, scientific computing, and beyond. However, transitioning from an object-
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oriented programming approach to a functional one can be challenging, re-

quiring a shift in programming paradigms and thinking. Therefore, only the

framework in the 1D Burgers equation is completely written in JAX. Transition-

ing other problems can lead to more modular, maintainable, and parallelizable

code.

.
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