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Cryptography, METU

Date:



iv



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: MUSTAFA HAKAN SOLMAZ

Signature :

v



vi



ABSTRACT

FLEXIBLE HARDWARE DESIGN FOR ELLIPTIC CURVE METHOD OF
INTEGER FACTORIZATION

Solmaz, Mustafa Hakan
Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ersan Akyıldız

July 2023, 87 pages

In most of the electronic communication devices that surround us, advanced cryp-
tographic algorithm needs are implemented on special hardware. These specialized
hardware are divided into application-specific integrated circuit (ASIC) and field pro-
grammable gate arrays (FPGA). In this thesis we have designed and implemented all
arithmetic primitives used in elliptic curve method (ECM) for integer factorization in
FPGA platform. These primitives include point addition, point doubling and scalar
multiplication of a point on elliptic curve. The curves used for this purpose are de-
fined on prime fields. In the lowest layer there exists modular arithmetic, modular
addition, subtraction and multiplications. As the most crucial and time-consuming
operation modular multiplication is further studied. A memory and hard multiplier
based Montgomery multiplier is designed. These low-level primitives are controlled
by a novel micro-instruction controller to obtain scalar point multiplication results.
ECM is a factorization method that can be implemented in parallel. To use this fact
multiple instances of the whole coprocessor are instantiated in a Zynq based process-
ing subsystem. By this way the ECM cores were easily accessible by an application.
We achieved higher synthesis frequencies than similar studies in the literature. By the
obtained scalable design it is possible to run the ECM in different FPGAs and obtain
as much throughput as the FPGA resources permit.
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Keywords: elliptic curve method, prime factorization, Montgomery modular multi-
plier, modular exponentiation FPGA, elliptic curve co-processor

viii



ÖZ

ELİPTİK EĞRİ YÖNTEMİ İLE ÇARPANLARA AYIRMA İÇİN ESNEK
DONANIM TASARIMI

Solmaz, Mustafa Hakan
Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ersan Akyıldız

Temmuz 2023, 87 sayfa

Çevremizi saran elektronik haberleşme cihazlarının çoğunda, gelişmiş kriptografik
algoritma ihtiyaçları özel donanımlar üzerinde uygulanmaktadır. Bu özel donanım-
lar, uygulamaya özel tümleşik devre (ASIC) ve sahada programlanabilir kapı dizileri
(FPGA) olmak üzere ikiye ayrılmıştır. Bu tez çalışmasında tamsayı çarpanlara ayırma
için eliptik eğri yönteminde(ECM) kullanılan tüm aritmetik ilkelleri FPGA platfor-
munda tasarladık ve uyguladık. Bu ilkel öğeler, eliptik eğri üzerindeki bir noktanın
nokta toplaması, nokta ikiye katlama ve skaler çarpımını içerir. Bu amaçla kullanılan
eğriler asal alanlar üzerinde tanımlanır. En alt katmanda modüler aritmetik, modüler
toplama, çıkarma ve çarpma işlemleri bulunur. En önemli ve zaman alıcı işlem olan
modüler çarpma daha fazla incelenmiştir. Bir bellek ve sabit çarpan tabanlı Mont-
gomery çarpıcısı tasarlanmıştır. Bu düşük seviyeli ilkel öğeler, skaler nokta çarpma
sonuçları elde etmek için yeni bir mikro komut denetleyicisi tarafından kontrol edil-
miştir. ECM, paralel olarak uygulanabilen bir çarpanlara ayırma yöntemidir. Tüm
yardımcı işlemcinin birden çok örneği, Zynq tabanlı bir işleme alt sisteminde çağ-
rılmıştır. Bu sayede ECM çekirdeklerine bir uygulama ile kolayca erişilebilmekte-
dir. Literatürdeki benzer çalışmalardan daha yüksek sentez frekansları elde edilmiştir.
Elde edilen ölçeklenebilir tasarım sayesinde, ECM’yi farklı FPGA’lerda çalıştırmak
ve FPGA kaynaklarının izin verdiği ölçüde verim elde etmek mümkündür.
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Anahtar Kelimeler: Eliptik eğri yöntemi, asal çarpanlara ayırma, Montgomery modü-
ler çarpıcı, modüler üs alma, FPGA, eliptik eğri yardımcı işlemcisi
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CHAPTER 1

INTRODUCTION

With the advancement of technology in many fields and especially in semiconductor

manufacturing area, new communication channels became widespread. It is esti-

mated that 7.33 billion people have mobile phones, 6.92 of which are smartphones

with touch screen, mobile applications and internet access [8]. This respectively con-

stitutes 91.53% and 86.41% of total number of human being in the World. Along

with this environment the need for securing personal data and communication be-

came an evident fact. In the case of mobile communication, the embedded micropro-

cessors need to consume low power, have low price, hence will have limited com-

puting power. While this is the case, they need to comply with the cryptographic

protocols which demand computationally expensive execution costs. In the mean-

time these cryptographic protocols need to evolve such that they do not consume data

bandwidth, hence have low latency. All these constraints created an immense re-

search area for mathematicians, electrical and computer engineers. Special purpose

hardware implementations of cryptographic algorithms came into play as a solution.

Custom hardware implementations of cryptographic algorithms can be designed more

favorable with respect to microprocessor-based implementations. There are two types

of special purpose implementations. These are Field Programmable Gate Array

(FPGA) and Application Specific Integrated Circuit (ASIC). Actually the name, Field

Programmable Gate Array, defines the technology in a very accurate way. On the

one end there are programmable microcontrollers where there is a fixed hardware on

which different programs are “programmed” to solve different problems. On the other

hand there are custom-built application specific integrated circuits where there is a cir-
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cuit which is built to solve a dedicated problem. This circuit consists of thousands

to billions of “gate arrays” to accomplish the desired functionality. FPGAs combine

these two desired properties: programmability and gate arrays. By the help of hard-

ware description languages, one can define a circuit for a desired functionality. This

definition process is almost the same for ASIC and FPGA technologies. However,

ASIC chips are very expensive to produce, and their production cycle is very long,

from weeks to months. In FPGA technology the designed circuit is programmed and

becomes ready to work in a few minutes.

While cryptography is aiming to satisfy security needs, cryptanalysis on the other

hand is known as the art of revealing secret information. Although cryptanalysis

seems to be destructive effort it is an essential concept for maintaining the effective-

ness of cryptographic algorithms. It may be considered as an NCAP test of crypto-

graphic algorithms, where they are evaluated under stress.

This thesis focuses on hardware implementations of both cryptographic and crypt-

analysis applications. For the case of cryptographic application a flexible coprocessor

is implemented for elliptic curve cryptography. The implementation is suited for dif-

ferent FPGA platforms and adjustable for different FPGA resources. It is also suitable

for different elliptic curve equations and also prime field arithmetic.

For the case of cryptanalysis application elliptic curve method (ECM) is implemented

on FPGA platform for integer factorization. ECM, invented by H.W. Lenstra, is a

prime factorization method which can be made parallel to solve the problem. Ad-

vancement in the semiconductor industry resulted in new opportunities for these par-

allel execution alternatives. FPGA technology is one such alternative that makes it

possible for an end-user to run his or her application in a very high speed and high

throughput fashion.

1.1 Summary of Thesis Contributions

We studied hardware design for cryptanalysis applications during the course of this

PhD thesis. Two applications have come to the forefront in the last two decades when

we discuss cryptanalysis: brute force attacking the DES algorithm (data encryption

2



standard) and prime factorization of large composite numbers. In the first case the

whole key space is exhaustively searched for the correct key when a plain text and

corresponding ciphertext is given. For the second case, prime factors of a large com-

posite number are “searched” through different mathematical algorithms. In both

cases dedicated computers, where sometimes we can define them as dedicated elec-

tronic circuits, are used to accomplish the result. The common point in two cases is

that the solution algorithms are stated so that parallel execution of smaller parts of the

algorithm is possible.

In this thesis we focused on the solution of the second problem, integer factorization,

on FPGA platforms. As mentioned above, FPGAs are very convenient platforms for

parallel execution of different instances of a task. Because of this an algorithm which

permits parallelization is chosen, namely the elliptic curve method. Implementation

of integer factorization based on the elliptic curve method (ECM) has been studied

in the literature before but the most recent work dates back to the 2010s [19, 54].

In the meantime FPGA technology has drastically advanced. One contribution of

this study will be to obtain benchmarks on new FPGA architectures. As part of the

FPGA technology new arithmetic accelerators are introduced inside FPGAs for signal

processing and other applications. These accelerators also found application areas in

prime factorization architectures. Another contribution of the thesis will be to show

the affect of these primitives in the whole architecture.

As the size, type and vendors of FPGAs grow their design methodologies also have

expanded especially in the last five years. Hardware and software co-design method-

ologies are introduced by different FPGA vendors. In this study these tools and meth-

ods are used to obtain working solutions.

As part of the above studies we have made a full implementation of elliptic curve

arithmetic primitives using generic FPGA resources. The lowest layer of arithmetic

primitives, modular addition, subtraction and multiplication are implemented on FPGA

resources with hard-wired control logic. The above arithmetic layer which includes

point addition, point doubling and scalar multiplication are implemented with an in-

digenous micro-instruction architecture. This architecture has a basic set of instruc-

tions for register transfers and flow control of elliptic curve point operations. By the

3



use of this micro-instruction architecture different curve equations were realizable on

hardware with minimal effort.

For cipher breaking and massive parallel implementations the processing cores need

to be instantiated many times. In recent years specially designed platforms like Co-

pacabana [26] or RIVYERA X-32G1 [7] are introduced as examples of these plat-

forms. As new FPGAs which contain embedded processors inside them, the same

solutions can be applied with commercially of the shelf (COTS) FPGA platforms. As

a demonstration of this idea we have developed a brute-force attacking implementa-

tion with Kintex-6 family of FPGAs [38]. In this thesis we will also use COTS FPGA

platforms and propose hardware-software architectures for integer factorization by

elliptic curve method.

1.2 Thesis Structure

The thesis is structured as follows: Chapter 2 gives basic definitions and facts about

mathematical background. Chapter 3 introduces FPGA architectures and technolo-

gies that are used in the implementations. In Chapter 4 we investigate the details

of Montgomery modular multiplication and propose an architecture which reads and

writes operands and modulus from block memories. By this way a compact solution

which can do any practical size of modular multiplication is obtained. An expo-

nentiation controller is also included in the design to demonstrate the Montgomery

modular multiplication in a real application. In Chapter 5 the previous architecture is

enhanced to enable computations of elliptic curve field operations. A flexible novel

micro-instruction controller is designed for scheduling point addition, point doubling

and scalar point multiplication. The design space of FPGA resources are explored

in this section. Different versions of scalar multiplier core are obtained, their per-

formances are explored. Chapter 6 explores the employment of scalar multiplication

circuit as a peripheral to embedded processors in FPGAs. Multiple instances of ECM

cores are instantiated as peripherals and their performance results are measured. Fi-

nally, Chapter 7 concludes the thesis and gives an outlook to future work.
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CHAPTER 2

MATHEMATICAL BACKGROUND

In this chapter we present mathematical background that is used in the rest of the the-

sis. The chapter begins with an introduction of cryptography basis. Relation between

private and public key cryptosystems are mentioned. An overview of group theory

and number theory is presented. Later mathematical background of RSA and Elliptic

Curve Cryptography are described. Definitions, descriptions of arithmetic operations

are stated.

2.1 Cryptography Basis

Cryptography deals with design of mathematical techniques that enable some form of

secure communication between two parties A and B (Alice and Bob) in the presence

of malicious opponent (Oscar) who wants to eavesdrop the communication channel.

The communication channel may be detailed for different types of scenarios in which

one or more of the major security concerns are addressed.

• Confidentiality: Keeping the data secret from all but those authorized to have

it.

• Data Integrity: Preventing other parties from data manipulation. If the data sent

by Alice is modified by Oscar, Bob should be able to detect this modification

• Authentication: Making sure that either Alice or Bob identify each other in the

case of communicating over the insecure channel.

5



• Non-repudiation: Preventing from either Alice or Bob from denying previous

commitments or actions.

secure channel

Alice Bob

Oscar

encrypter decrypter
x y x

shared key shared key

unsecure channel

Figure 2.1: Communication model for secret-key cryptosystems

While the other security concerns are also important in today’s wide range of cryp-

tographic applications, confidentiality can be defined as the most known and historic

purpose of cryptography. To enable confidentiality Alice encrypts plaintext message

x by using a secret key k. By this conversion ciphertext y is obtained. Oscar who can

observe ciphertext, should not obtain any meaningful information related to x. Bob

receives the ciphertext and decrypts the message with the help of the same secret key

k. Since the both parties needs the same key information this family of algorithms

are called symmetric key cryptography.

As an adversary model it is assumed that Oscar has all the information about the en-

cryption and decryption functions. It is also assumed that Oscar can read and record

all data transmitted over the channel, change or modify this data. The only excep-

tion to Oscar’s knowledge is the key information k. Due to this fact, this family of

communication is also called secret key cryptography. The security of these types of

communication is based on the secrecy of the key. In fact this concept is stated as

a principle by Dutch linguistic and cryptographer Auguste Kerckhoff as “a crypto-

graphic system should be designed to be secure, even if all its details, except for the

key, are publicly known” [2].

Very efficient algorithms exist for symmetric key cryptography like DES, AES etc.

These algorithms satisfy the above principle, they remain resistive against all the

computation power of our age. As indicated in Figure 2.1 a secure channel is needed

for key sharing or key distribution.
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A secure channel can be established offline with a key transfer device, also called

fillgun, which has been widely used in military communication [3]. A set of secret

keys are loaded into these devices at a facility called key management center. Then a

courier physically transfers the device to locations of Alice and Bob. Key transfer de-

vices are tamper-proof devices, if one tries to open or tamper the device, an electronic

or mechanical prevention system destroys the keys.

Alice Bob

Oscar

encrypter decrypter
x y x

receiver s public key

unsecure channel

receiver s private key

Figure 2.2: Communication model for public-key cryptosystems

Fortunately there is another method for key exchange without the establishment of a

secure channel. It is called public key cryptography or asymmetric key cryptography,

where there are two different keys for encryption and decryption, see Figure 2.2.

Given only the encryption key (public key), it is hard to obtain the decryption key

(private key). By the use of these algorithms, key exchange problem of symmetric

key cryptosystems are solved. Public key crypto systems computationally cost more

than secret key cryptosystems. Any modern cryptosystem uses both of the public and

private key algorithms in their communication protocols.

There are three main types of public-key cryptosystems whose underlying computa-

tional problems are as follows.

• Integer Factorization based algorithms: Public-key schemes based on the

fact that factoring large integers is difficult. The most known member of this

family is the RSA algorithm.

• Discrete Logarithm based algorithms: In real numbers loga b is a number x

such that ax = b i.e. log2 8 = 3 In any group G powers of a, b = ak, can be

defined for all group elements. Discrete logarithm problem (DLP) is finding

k only when b and a are given. Diffie-Hellman key exchange and ElGamal
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encryption algorithms are DLP based public-key schemes.

• Elliptic Curve Discrete Logarithm based algorithms: Elliptic curve cryp-

tosystems form an additive group with point addition operation. For Q = k · P
it is difficult to find k when only P and Q are given. This problem is known

as elliptic curve discrete logarithm problem (ECDLP). Algorithms in this fam-

ily are Elliptic Curve Diffie-Hellman key exchange (ECDH) and Elliptic Curve

Digital Signature Algorithm (ECDSA).

The most prominent public-key cryptosystem is RSA algorithm invented by three

professors from MIT, Ron Rivest, Adi Shamir, and Leonard Adleman in 1977. It

uses a pair of public and private keys to encrypt and decrypt the data. The algorithm

consist of the following steps:

• Public and private keys are generated.

• Public keys are published or sent to participants.

• Participants encrypt plaintext messages using the public key and send this ci-

phertext over unsecure channel.

• After receiving the message, only the receiver can decrypt the ciphertext and

obtain the plaintext.

Modular exponentiation is the main operation in RSA cryptosystems as will be de-

tailed in the following subsections. The other popular public-key cryptosystem is

Elliptic Curve Cryptography, where scalar point multiplication primitive exists anal-

ogous to modular exponentiation.

In the following subsections we present basic information about public key cryptosys-

tems and cryptographic primitives used in these algorithms. But before that we will

give definitions and theorems from Algebra and Number Theory as they will be the

underlying nomenclature in the thesis.
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2.2 Algebraic Structures and Number Theory Basics

Addition and multiplication defined over integers are two well-known operations.

Given two integers a, b ∈ Z, c = a+b and d = a·b are all∈ Z, which is said as closure

property of the operation. Given an arbitrary set G a binary operation is a mapping

from G×G into G where G×G consits all the ordered pairs (g, h) such that g, h ∈ G.

An algebraic structure is called a set together with one more operations defined on

the set. Groups are algebraic structures with only one associative operation.

Definition 2.2.1. A group (G, ∗) is a set G together with a binary operation ∗ which

has the following three properties:

• Identity element: For all g ∈ G there exist an e ∈ G, such that g ∗ e = e∗g = g

• Inverse element: For each g ∈ G there exist an inverse g−1 ∈ G, such that

g ∗ g−1 = g−1 ∗ g = e

• Associativity: For all g, h, k ∈ G , (g ∗ h) ∗ k = g ∗ (h ∗ k)

With this definition we may give examples and counter examples of groups. (Z,+) is

an additive group of Integers, while (Z,×) does not form a group since multiplicative

inverse of integers other than 0 and 1 are not integers. However, (Q,×) forms a group

under rational numbers. Thinking of addition and multiplication associativity seems

to be a natural part of operation. If the binary operation is defined as a ∗ b = ab then

the operation would not be associative, i.e. (23)4 ̸= 2(3
4), hence it does not have a

group structure.

The associative property enables us to write a1 ∗ a2 ∗ · · · an with ai ∈ G in any order,

the expression represents the same element. If we use a multiplicative notation for ∗ ,

a1a2 · · · an = an. If an additive notation is used in place of ∗ we write a1+a2+ · · ·+
an = n · a. The inverse elements are also denoted 1/a and −a in these cases. When

every other element of the group can be written as power of a fixed element we reach

to the below definition

Definition 2.2.2. A group (G, ∗) is called as cyclic if there is an element g ∈ G such

that G = {gn : n ∈ Z}. Such an element g is called a generator of the group. We

write G = ⟨g⟩ and read as “group G is generated by g.”
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Although the term cyclic inherently has a periodicity meaning, in this context there

can be cyclic groups which has infinite elements. For example the group (Z,+) can

be written as (Z,+) = ⟨1⟩ = ⟨−1⟩. So let’s write the definition related to group size.

Definition 2.2.3. A group (G, ∗) is called as finite if G is a set with exactly n distict

elements. In that case the number of elements in the group is called order of the group

and written as |G| = n. Otherwise, the group is called infinite.

We skip to congruence definition before giving more group examples:

Definition 2.2.4. For a, b ∈ Z and n ∈ Z+, positive integer, we say a is congruent

to b modulo n (or just mod n) if a − b is divisible by n. In this case we write a ≡ b

mod n. The same condition is also expressed as a = b+ kn for some integer k.

Congruence modulo n is an equivalance relation on Z since it is
reflexive : a ≡ a mod n,

symmetric : If a ≡ b mod n, then b ≡ a mod n

transitive : a ≡ b mod n and b ≡ c mod n then a ≡ c mod n

The equivalence classes of congruence mod n are denoted as [0], [1], · · · [n − 1]. It

can be shown that the equivalence classes form a group with the operation + such

that [a] + [b] = [a+ b].

Definition 2.2.5. The set {[0], [1], · · · [n − 1]} of equivalence classes modulo n with

the operation [a] + [b] = [a + b] is called additive group of integers modulo n and

denoted by (Zn,+) or (Z/nZ,+).

In Example 2.2.1, this group is presented in the Cayley table where rows and columns

form the ordered pairs (g, h) of G×G, the elements in the intersection show the value

of g ∗ h, modular addition result in the example. The identity element 0, the inverse

elements can be traced from the table. Further inspection of the table reveals that

the subsets {[0], [2], [4], [6], [8]} and {[0], [5]} form their own groups under the same

operation. This opens the door to subgroups which we will not cover.

Example 2.2.1. Cayley table for the group (Z10,+). The elements of the group [i]

are denoted as i for the sake of simplicity.
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+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 0

2 2 3 4 5 6 7 8 9 0 1

3 3 4 5 6 7 8 9 0 1 2

4 4 5 6 7 8 9 0 1 2 3

5 5 6 7 8 9 0 1 2 3 4

6 6 7 8 9 0 1 2 3 4 5

7 7 8 9 0 1 2 3 4 5 6

8 8 9 0 1 2 3 4 5 6 7

9 9 0 1 2 3 4 5 6 7 8

The commutative property of group can be extracted from the symmetry of the table.

The property is not a group requirement but due to its importance it will be given as

a definition.

Definition 2.2.6. Given a group (G, ∗), g, h ∈ G, if for all g ∗ h = h ∗ g the group is

called commutative or Abelian after the Norwegian mathematician Niels Henrik Abel

who has died at the age of 26 from tuberculosis [5].

While addition is nice and smooth, let’s try to observe modular multiplication op-

eration for the same set in Example 2.2.2. We observe that 0 vanishes the first row

and column. So we may remove 0 from the set. Ignoring the first row and column

there are still other problems, for example in 5× 2 = 0 the operation violates closure

property. These elements are called zero-divisors and they prevent from defining the

group. Carefully inspecting these elements and removing them also from the input

set we obtain the table in Example 2.2.3.

Example 2.2.2. Cayley table for the group (Z10,×). The elements of the group [i]

are denoted as i for the sake of simplicity.
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× 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7

4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4

7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

Example 2.2.3. Cayley table for the group (Z∗
10,×).

× 1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

Let’s give the definition of this group:

Definition 2.2.7. Z∗
n is the subset of integers in Zn between 1 and n that are relatively

prime to n. The operation · is defined in this set as [a] · [b] = [a · b]. is called

multiplicative group of integers modulo n and denoted by (Z∗
n, ·) or (Z/nZ∗, ·).

Number of integers relatively prime to n is an important concept.

Definition 2.2.8. Number of integers in Zn relatively prime to n is called as Euler’s

phi function and denoted as Φ(n).

The example we studied was a composite even number, n = 10 = 2.5, so we needed

to eliminate more than half of the set. If n is chosen as a product of two very big

primes p and q, then we would need to eliminate only a few elements from the set. If

n is chosen as a prime number p all the integers up to p− 1 would be relatively prime

with p, and we would not need to eliminate any number for multiplicative group

12



construction. Actually this is the case when we obtain prime fields. An important

theorem related to primality, factorization, and multiplicative groups is Fermat’s Little

Theorem:

Theorem 2.2.1. Let a be an integer and p be a prime. We have

ap ≡ a mod p

if a is relatively prime to p then ap − 1 is an integer multiple of p,

ap ≡ 1 mod p

A general form of the theorem applicable to and modulus n not necessarily prime is

known as Euler’s theorem

Theorem 2.2.2. Let a and n be integers relatively prime, gcd(a, n) = 1 then

aΦ(n) ≡ 1 mod p

, where Φ(n) is the number of relatively prime numbers smaller than n.

In Example 2.2.3 we found that Φ(10) = 4 by careful inspection.

So far we dealt with structures with a single operation. Sets binded with two opera-

tions constitute Rings and Fields. We directly go with field definition:

Definition 2.2.9. A field (F,+, ·) is a set F on which two binary operations are

defined such that (F,+) is an Abelian group, with identity element 0. (F ∗, ·) ≡
(F\{0}, ·) is an Abelian group under multiplication. The identity element in this

group is denoted by 1. Distributive of · over + is defined as g, h, k ∈ F we have

(g + h) · k = (g · k) + (h · k).

The last theorem is about the order or cardinality of fields.

Theorem 2.2.3. A field with order q only exists if q = pn where p is a prime number

and n is a positive integer.

In this formula n = 1 forms a special class of field with the below definition.
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Definition 2.2.10. The field of integers modulo p denoted as GF (p) is defined as

prime field or Galois field with a prime number of elements. All non-zero elements

of the field has multiplicative inverse. The field has the modulo p arithmetic (Zp,+)

and (Z∗
p , ·)

Galois field is named in honor of French mathematician Évariste Galois, who died in

the age of 21 after a duel. He has laid the foundations of Galois theory and group

theory, two major branches of abstract algebra [11].

As a last example we give the Cayley table of GF(5) in Table 2.1

Table 2.1: Cayley table of GF(5)
+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

2.3 Square-and-Multiply Modular Exponentiation

Modular exponentiation operation is the main operation in RSA algorithm. It is

achieved by the square and multiply algorithm as given below:

Algorithm 1 Left-to-right square and multiply algorithm

Require: A, e ∈ ZM , e = (en−1en−2en−3 . . . e1e0)2

Ensure: C = Ae mod M

1: S ← 1

2: for i = n− 1 to 0 do

3: C ← C . . . C mod M

4: if ei = 1 then

5: C ← C . . . A

6: end if

7: end for

8: return C
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2.4 Elliptic Curves

Definition 2.4.1. An elliptic curve E(Fp) over the finite field Fp where p is a prime

number can be defined as the set of solutions to the equation

y2 = x3 + ax+ b (2.1)

This form of equation is called simplified Weierstrass Equation after the German

mathematician who lived in 19th century. A tuple (x1, y1) satisfying the equation is

called a point P1 on the curve. The set of all points satisfying the equation together

with the identity element∞ is denoted as E(Fp). Having two points P1 and P2 on the

curve, it is possible to reach to a third point P3 = P1+P2 when P1 ̸= P2 through point

addition formula. When P1 = P2, P1+P1 = 2P1 is called point doubling, and it also

has a formula. Having the points and addition operation, we have the closed under

addition property. The identity element has the property P1 = P1 +∞ = ∞ + P1.

Every point P = (x, y) has a negative −P = (x,−y).

k · P = P + P + P + . . . + P is defined as the scalar multiplication of a point.

Scalar multiplication is done by using point addition and point doubling repeatedly.

This method is called double-and-add algorithm which is analogous to square-and-

multiply method in Algorithm 1.

Definition 2.4.2. Let E be an elliptic curve defined over a finite field Fp. Assume P

and Q are two points on E such that Q = k · P . The elliptic curve discrete logarithm

problem (ECDLP) is to find k given P and Q.

Further details of mathematical background will be given inside the chapters when

implementations are described.
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CHAPTER 3

TECHNICAL BACKGROUND

With advancements in semiconductor technology, ever more complex systems be-

came possible. At the same time demands of society on the computing capacity is

still increasing. While microprocessors are considered as central processing units as

early as 1960s, reconfigurable logic became relevant as a data processing element in

the late 1980s, namely by the companies Xilinx and Altera. The main difference be-

tween a processor and programmable logic device (PLD) is that the processor’s flex-

ibility is achieved through the use of software, while PLDs map processing functions

at the hardware level. PLDs are made up of large matrix of logic blocks which can be

flexilibly interconnected. While processors can be considered as state machines that

process commands sequentially, PLDs exploit the parallelism of the structure. The

best example for this case can be given as the implementation of a block-cipher algo-

rithm, for example AES. In a microprocessor the software of the algorithm runs the

operations of each block with a different instruction and with a number of cycles de-

pending on the arithmetic logic unit (ALU) size, 8,16,32 or at most 64bits. In a PLD

the algorithm can run 128-bit block within a single clock cycle due to the available

parallelism. PLDs evolved in the form of PALs, CPLDs and FPGAs. Since FPGAs

are the dominant member of the programmable logic devices, also called reconfig-

urable logic devices, we will be using term FPGA interchangeable with PLD.

Application specific integrated circuits (ASICs) also has the above parallelism. They

even out-perform FPGAs in terms of better speed, lower power consumption and

lower unit price. However, the initial costs for ASIC production are very high, so it

makes economic sense for large quantities. The design-to-production time of ASIC
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chips is also high, in the order of months, compared with an FPGA. For FPGA the

time to generate the design file and programming it into the FPGA takes in the order

of minutes to hours depending on the size of the design. One thing FPGAs and ASICs

have in common is that a fixed time limit can be determined for the processing of a

task. By this way, the real-time requirements for the calculation time can be achieved.

On the other hand, processor systems require software architectures such as operating

systems which do not have a chronologically deterministic nature.

FPGAs stands between the two extremes, highly flexible processors that use software

on the one hand, and the highly efficient but highly specialized ASIC implementations

on the other hand. Modern FPGAs have been building a bridge between the processor

side by installing processors inside FPGA unit. Xilinx started this era with PowerPC

processor cores into Virtex-II, Virtex-4 and Virtex-5 Family of FPGAs. These were

hard-processor cores, so that they are physically present in the FPGA silicon die even

if you don’t use them. Later Microsemi introduced Arm Cortex-M3 processors in

their SmartFusion-2 family FPGAs and Intel introduced Arm Cortex-A9 processors

in Cyclone-V family FPGAs. There are also various soft-processor options from these

FPGA vendors. Soft-processors do not exist physically in the FPGA die, if you want

to use them they are compiled and placed into FPGA fabric. Last but not least, there

are Risc-V processor options which have been widely spreading in the industry in the

last years.

By the use of processor systems FPGA resources are used as accelerator for time-

critic and performance demanding parts of the problem. Processor subsystems are

used for high-level management of these accelerators.

In this chapter, firstly, FPGA and ASIC design flow will be presented. After that

digital logic design basics used in both ASIC and FPGA implementations will be

summarized. When applicable the differences between ASIC and FPGA are also go-

ing to be mentioned. FPGA specific constructs such as math blocks, memory blocks

are going to be presented. Processor-based solutions and terminology will also be

introduced in this chapter.
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3.1 Development Flow of FPGA and ASIC

In digital logic design four levels of structural abstractions are considered after [21].

These are, transistor level, gate level, register level and processor level. While these

are the structural levels of digital systems, a corresponding behavioral resolution is

also given. Differential equations, boolean equations, register transfer operations and

algorithms are the levels of abstractions in the behavioral domain of digital systems.

Verification Flow

FPGA Design Flow

Design 
Specification

HDL Design 

HDL Design
Description

Testbench Design

TestBench
Description

SimulationSynthesis

Netlist

Implementation

Bitstream

Device 
Configuration

Verify Design on 
FPGA

ASIC Desing Flow

Netlist

Gate Level 
Simulation

Floorplan

Placement

Design For Test Routing

Clock Tree Synthesis

Signoff & Fabrication

Silicon Chip Data File

Process

Legend:

Figure 3.1: FPGA and ASIC design flow

As transistors in a chip reaches hundreds of millions, it is impossible to process the

data directly on the lowest level. FPGA and ASIC design begins in an abstraction of

register level. Translation of the information into lower layers is done by electronic

design automation (EDA) software. A combined flow of FPGA and ASIC design is

given in Figure 3.1. Design entry can be considered common for ASIC and FPGA

flow. The flows differ after synthesis.

FPGAs are physical parts that have a finite number of carefully gathered resources.

There is no physical implementation in the FPGA design flow. FPGA implementation
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phase is placing the synthesis output into FPGA resources, and then connecting (rout-

ing) the resources to enable desired functionality. This place and route information

is called as configuration information or bitstream. When this configuration is loaded

into FPGA the flow is finished after testing the design on real hardware.

On the other hand ASIC flow includes tedious steps necessary to generate a successful

chip fabrication. Design for test is the step which is a very important aspect in ASIC

design. The purpose of this step is to detect defects in the fabrication process. Built-

in self-test and scanning control circuits are added into the design for testing after

fabrication. In ASIC design there is no infrastructure like FPGA, so everything is

built from ground. For a detailed coverage of ASIC design flow we refer to CMOS

VLSI Design book by Neil Weste and David Harris [50].

Design Entry: In the old times of digital design, schematic entry of the design had

been used. As the design sizes rapidly increased, hardware description languages

(HDL) are introduced for design entry. There exist two main languages Verilog and

VHDL for hardware description. In both the language has two main class of in-

structions, synthesizable and non-synthesizable. Synthesizable part of the language

describes the part of the design which will go into silicon (ASIC), or FPGA. Non-

synthesizable instructions describe verification of the design.

Verification: Verification is the activity of checking whether a design meets the re-

quirements. Verification has two aspects in the context of digital design functional

and performance. Functional verification checks whether the designed system gener-

ates the intended outputs. Performance of a digital design is that the design produces

the output in accordance with a time constraint. Timing performance is the process

of checking whether the design produces the output within given time limits. Verifi-

cation can be done in different phases of the design flow. Functional verification is

the first stage of verification. It does not consider the timing-delays in the circuit. It

behaves as if the logic elements respond with zero-delay and there is no other delay

in the design.

Simulation: The most commonly used method of verification is simulation which is

emulating real design behavior in a software environment. A model of the real design

is constructed and test patterns representing the inputs of the design are applied to the
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model. The response of the design is evaluated according to the expected references

which are computed again at the simulation environment. Simulation can be applied

in different levels of abstraction and different level of design cycle. Functional sim-

ulation only checks for the correctness of the output. Post-synthesis and post-layout

simulations also considers the placement and routing effects of design cycles. The en-

vironment which provides test-inputs and checks the outputs according to a reference

is called as testbench.

3.2 Basics of Digital Logic Design

Logic circuits deal with digital signals and realized as electronic circuits where the

signal values are bounded to a few discrete values. In binary logic circuits these

values are 0 and 1. The amplitude of the electrical signal may be in a range between

[0− 3.3V ] for example. All the elements in the circuit quantize this signal to 1 if it’s

above a threshold, to 0 if it is below a threshold. This class of circuits are also called

digital circuit. In constract there are analog circuits where the electrical signals may

take values on a continuous range and every other element process that continuous

signal.

3.2.1 Combinational logic circuits

A logic circuit may have one or more binary logic inputs and one or more binary logic

outputs. The simplest logic circuits of interest has one input and one output, called

as inverter and its truth table together with its symbol is shown in Table 3.1. Two-

input binary logic circuits are the main building blocks of combinational circuits.

The output of the function is a combination of inputs but nothing else. They don’t

have internal state or memory. Important two-input binary logic elements also called

logic gates are seen in Table 3.2. In the first row of the table circuit symbols are

also presented. Inspecting the table we see that the latter three functions are binary

opposite of the first three functions. This case is indicated with a bubble in the symbol,

with an overline in the output expression and binary opposite values in the truth table.

We will give one more example of combinational circuit as in Table 3.3 Inspecting
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Table 3.1: Inverter truth table and circuit symbol

x1 x1

0 1
1 0

NOT

Table 3.2: Important two-input binary circuit (logic gates) truth tables and circuit
symbols

x1 x2 x1 · x2 x1 + x2 x1 ⊕ x2 x1 · x2 x1 + x2 x1 ⊕ x2

0 0 0 0 0 1 1 1
0 1 0 1 1 1 0 0
1 0 0 1 1 1 0 0
1 1 1 1 0 0 0 1

AND OR XOR NAND NOR XNOR

the table it is seen that the select signal s selects x1 when s = 0 and selects x2 when

s = 1. It multiplexes one of the inputs to the output depending on the value of the

select signal s. The logic circuit and symbol of multiplexer is given in Figure 3.2. In

the left of the figure, equivalent circuit in terms of two-input logic building blocks are

seen. The circuit reveals the functionality when signal s is traced. When s = 1 the

output of the upper AND gate will be equal to x2, the lower AND gate will produce

zero since inverse of s, s will be connected to below AND gate. So x2 will appear

at the output of OR gate. For s = 0 the reverse path will be active and x1 will

appear at the output. In the right of the figure the corresponding logic symbol of the

multiplexer(mux) is given.

The set of AND, OR and NOT gates can be used in cascade to represent any other

combinational circuit. In this respect NAND gate and NOR gates are by themselves

enough to describe any other logic circuit, so they are called universal gates. In ASIC

technology standart-cell library is a collection of well-defined logic gates that can be

used to implement a digital design.
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Table 3.3: Multiplexer truth table

s x1 x2 f(s, x1, x2)

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

1

0

s

x1

x2

s

x2
x1f f

Figure 3.2: Multiplexer circuit (left) and logic symbol (right)

An example synthesis output of combinational gates is given in Figure 3.3. The exam-

ple generates all the outputs in Table 3.2 and output of mux in Table 3.3 in response

to inputs x1, x2 and s. Observing rtl schematic the basic logic gates and multiplexer

symbols are seen in the Figure 3.3. The synthesis software generates the optimum

combinational circuit by its internal algorithms. In the schematics it is seen that there

is not an explicit NAND or NOR gate, although it was defined in the HDL Definition

Instead of these inverters are concatenated after AND and OR gates. Logic synthesis

software are capable to optimize far more complex circuit descriptions.

The circuit in Figure 3.3 is excited with a series of signals by a testbench. The be-

havior of combinational gates was defined by truth tables in Table 3.2. The testbench

in this example applies the values in the truth tables for different time durations. The

changes of signal values in time can be presented in graphical form known as timing

diagram. The timing diagram in Figure 3.4 applies all combinations of (x1, x2, s) for

6 times (periods). In the first two periods, changes are scheduled at every 100 ns. In

later periods the changes were scheduled for 7 ns. Observing the timing-diagram it

is seen that the output signals are generated instantaneously in response to input sig-
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Figure 3.3: Combinational signals rtl schematics

nals. This type of response or simulation is called functional behavior or functional

simulation.

3.2.2 Synchronous logic circuits

We have covered combinational circuits which have no memory. A sequential circuit

can be defined as a digital circuit which has internal state or memory. As a special

init actv idle

inputs

outputs

0.00000 us+10 0.5 us 1 us 1.5 us 2 us 2.5 us

sim_state init actv idle

sim_actv_s

inputs

x1

x2
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out_xor
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out_xnor

out_mux

0.301 us

Figure 3.4: Combinational signals simulation output
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case of sequential circuit, synchronous sequential circuit is circuit elements which

have internal state or memory and all the updates of these elements are controlled by a

synchronizing signal. This synchronizing signal is known as clock signal and mostly

abbreviated with clk. Circuit symbols and truth tables of important synchronous

gates are given in Figure 3.5. In the truth tables the next value of Q is denoted with

Q∗. Inspecting the D-latch we can say that it is a level triggered sequential element.

When C = 1 the output will follow the input. If C goes to zero, the last state of

the Q will remain at the output. Although latches exist as a sequential element, they

need to be avoided in digital designs. D-type flip-flop (D-FF) is an edge-triggered

sequential element. It only changes state at the rising-edge (middle primitive) or

falling edge of the clock signal. In all the other times it presents the internal value Q

to the output. A D-type flip-flop can only store a single bit. A register is a collection

of D-flip-flops which share the same clock signal. The design methodology based

on synchronous gates is called as synchronous digital design or sequential circuit

design. This methodology is by far the most important and widely used electronic

design technique.

D Q

C

D QD Q

C Q*

0 Q

1 D

CLK Q*

0 Q

1 Q

D

CLK Q*

0 Q

1 Q

D

Figure 3.5: Sequential gates: D-latch, D-flip-flops

The combinational examples given in Figure 3.3 is adapted to synchronous design

technique in Figure 3.6. The same testbench is applied to this circuit, the timing

diagram is given in Figure 3.7. In synchronous design technique all combinational

circuit elements are placed between two D-flip flop. When these flip-flops are driven

by the same clock signal (as marked with line in Figure 3.6) a clock-domain is ob-

tained. In this case the synthesis and timing analysis of the circuit is possible through

extensive electronic design automation (EDA) tools.

In Figure 3.7 the signals x1,x2 and s are grouped as asynchronous inputs, i.e. they
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Figure 3.6: Synchronous signals rtl schematics

are not changing together with a clock. Such signals must not exist inside a syn-

chronous design. So they are synchronized with a double flip-flop before being pro-

cessed. Inspecting the signals with postfixed with _d2 it is seen that they are delayed

by two clocks and synchronous with the rising edge of the clock signal. When these

signals are applied to the circuit the same functional outputs are obtained. Again

carefully inspecting the output signals it can be observed that the outputs are delayed

by one clock cycle with respect to the inputs. This is due to the output registers placed

on the right side of the schematics.

Special case of synchronization can be observed during the fast-changing region of

the timing diagram. In x2_dd signal some periods of the input signal is lost dur-

ing synchronization. Also, the duty-cycle, (duration of high-low regions) of x1_dd

signal is modified after synchronization. The missing signals are due-to the fact that

clock period in this example is 10 nanoseconds(ns), whereas in the fast changing re-

gion the signals are changing with a period of 7 ns. There are such alignments in the
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timing that either a low or high part of the input signal is not sampled or registered

with the rising-edge of the clock.
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{async inputs}

{sync inputs}

{sync outputs}

0.00000 us+10 0.5 us 1 us 1.5 us 2 us 2.5 us
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{sync outputs}

out_and

out_or

out_xor

out_nand

out_nor

out_xnor

out_mux

0.301 us

Figure 3.7: Synchronous signals simulation output

Further digital design and FPGA building blocks are going to be detailed in the later

chapters during design descriptions.
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CHAPTER 4

FLEXIBLE MONTGOMERY MULTIPLIER WITH BLOCK

RAMS

Modular multiplication A · B mod M can be considered as the most crucial primi-

tive in RSA and elliptic curve cryptography. Modular multiplication methods can be

classified into three main categories. The first one is the standard method in which

a division by M is followed after obtaining the product A · B. The second method,

Interleaved Modular Multiplication (IMM), [14] propose that reduction is done while

doing the multiplication. Intermediate results are obtained, added together to reach

the final result. The algorithm targets to obtain directly the remainder of the divi-

sion, the quotient of standard division algorithm is not generated as a result. The

third and most prominent method of modular multiplication is Montgomery Modu-

lar Multiplication (MMM) which is discovered by Peter L. Montgomery [35]. The

method became widely known and both software and hardware implementations are

extensively studied [15, 25].

In this chapter, a flexible digit based Montgomery multiplier which can work with

any modulus and any bit length is described. The multiplier is designed to work as a

coprocessor with an independent clock frequency from the rest of the FPGA design.

Operands of the multiplier are stored in block-rams and hard multiplier macros, DSP

blocks are used for high-radix multipliers. A hard-wired control block is added to this

multiplier to obtain a modular exponentiation circuit to be used in RSA cryptosystem.

Any length of practical exponentiation can be done with the obtained arithmetic core

by run-time configuration.

The rest of the chapter is organized as follows: In Section 4.1 we mention related
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works and necessary algorithms. In Section 4.2 proposed multiplier architecture is

described. Exponentiation design 4.3, test and verification of arithmetic core 4.4,

implementation results 4.5 followed next. The chapter is finalized with conclusion

and future works. 4.6

4.1 Background and Related Work

Modular multiplication, A · B mod M , requires multiplication and division opera-

tions. Division is an expensive operation in computer arithmetic. Montgomery Mod-

ular Multiplication without division is discovered by Peter Montgomery [35], which

is described in the following algorithm.

Algorithm 2 Calculate ABR−1 mod M

Require: A = (an−1, . . . , a0), B = (bn−1, . . . , b0), M = (mn−1, . . . ,m0) where

0 ≤ A,B < 2.M,M < R = βn, β = 2ws, gcd(M,R) = 1,m′ = −m0
−1 mod β

Ensure: S = ABR−1 mod M

1: S ← 0

2: for 0 ≤ i < n do

3: qi ← (s0 + b0 ∗ ai)m′ mod β

4: S ← (S +B.ai +M.qi)/β

5: end for

6: return C

In the formulation w is word size of the number representation. If for example, w = 4

than ai, bi and mi are ith digits of the big numbers, operands A, B and M , respec-

tively. In this case each digit is in base β = 24 = 16. The digits in base-16 is

well-known to be as hexadecimal numbers. In Algorithm 2, there are two big mul-

tiplication operations ai · B and qi ·M . These multiplications require that another

loop with j index access all digits bj and mj , i.e. ai · B =
∑

j ai.bj.β
j The operands

which consist of many digits are denoted by capital letters, their digits are denoted

by small cases as a convention. Furthermore, the subscripts i and j denote outer and

inner loops of the algorithm. If digits of operands are accessed one digit at a time, the

algorithm will require number of steps in the order of n2, where n is the number of

digits of operands in base-β.
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4.2 Flexible Montgomery Multiplier

The data path of Algorithm 2 is seen in Figure 4.1. By examining the graph, we

observe that there are three multipliers in the loop. It is also seen that there are

two two-input adders. In the data path figure the only item which has i subscripts

are ai and qi. This represents the fact that for each digit of operand A, 1
n

of the

result is obtained. When all the digits of A is consumed the final result S is reached.

The implementation of the current mon_mul module is done by using multiplier

macros. By inspecting the Algorithm 2 that the only modulus related parameters are

m′ and n, number of digits for number representation. If these two parameters can

be dynamically configurable for the modular arithmetic core, than the core would be

capable of doing computation on any modular multiplication. This parametrization

of the core will be detailed later in this chapter.

s_j

s_j

a_i

b_j

m_j

j=0

q_i

`

m

Figure 4.1: Montgomery modular multiplication algorithm data path

The Montgomery modular multiplier is shown with the block rams of FPGA as in

Figure 4.2. There are four input and one output operands to the algorithm. When

implemented with dual-port rams, there needs to be at least 3 dual-port RAMs for

continuous data feeding and data writing. Although not shown in the figure, there are

address ports together with data ports. These ports are not denoted in the figure for

the sake of simplicity. 5 of 6 ports of the block rams are driven by mon_mul module.

The 6th port of the block memory is driven by external circuit which wants to make

use of the desired functionality.

In practical FPGA applications there are designs with more than one clock frequen-

cies, where different regions of the design work with different clocks. This is also the

case when there exist soft or hard processors in the design. To be used in such a case
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Figure 4.2: Montgomery modular multiplier with ram blocks

we designed the arithmetic circuit and controlling circuit in two different clocks. The

dashed input line in Figure 4.2 represents the clock other than the arithmetic clock.

Throughout the design interface circuit remains in a slower clock domain, for exam-

ple 100 MHz, while the arithmetic circuit is maintained in a faster clock frequency,

for example 200 MHz. The clock domain crossing of signals are accomplished by the

use an independent dual-port ram and pulse synchronization circuits between clock

domains.

The design described above comes with a cost. Since all parameters and operands are

written from slow clock domain, they need to be moved to other block rams before

starting the computation. The memory map after initialization from the slow clock is

depicted in Figure 4.3. It is seen that the modulus M is located into op_1 location.

A and B are placed into locations op_2 and op_3. As will be explained later, these

locations are not fixed. They change according to n where n is the number of digits

required to represent the numbers in ZM .

The memory map after the computation is shown in Figure 4.4. During the computa-

tion, 5 ports of dual-port rams need to be used concurrently. For this reason A and B

are moved to ram_ab. On the other hand, ram_s is used to save the outer loop re-

sult S and to read them in the next loop. It is seen that only a small portion of ram_s
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Figure 4.3: Memory occupation before execution

is used. The result is copied back to ram_m for the slow clock domain to read for the

next time.

4.3 Modular Exponentiation

In the previous section, a block-memory based Montgomery modular multiplier core

is described. Block memories are organized in different sizes in different FPGA

brands and FPGA part numbers. For Artix7 family of FPGAs one block memory

is 18Kbits. When organized as a 16-bits wide memory, each block memory can hold

up to 1024 digits. Since three operands are necessary for single modular operation

A · B mod M , with a single block memory it is possible to make computations upto

1024/3 = 340 digits, which is 340 ∗ 16 = 5440 bits. The memory blocks in the core

are inferred from VHDL code, by this way the same core can be easily extended to

support the next practical length of 8192-bits operations.

Montgomery modular multiplication is efficient if repeated computations are done

in the Montgomery domain. One major application of repeated computation is the

modular exponentiation operation

Ae mod M,

33



..

..

0
m

..

..

..

..

..

..

ram_m

op_0

op_1

op_2

op_3

op_..

ram_ab

op_0

op_2

op_3

op_..

op_1

..

..

..

..

..

..

..

..

..

..

ram_s

op_0

op_2

op_3

op_..

op_1

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

m
1

m
n-1

0
a

a
1

a
n-1

0
b

b
1

b
n-1

..

..

..

..

0
a

a
1

a
n-1

0
b

b
1

b
n-1

0
s

s
1

s
n-1

0
s

s
1

s
n-1

Figure 4.4: Memory occupation after execution

where A and e are integers in ZM . The modular exponentiation can be computed with

the algorithm known as square and multiply method given in Algorithm 1.

For controlling the consecutive calls of Montgomery multiplier block, a hard-wired

control module called mon_manager is designed. The block diagram of the expo-

nentiation mon_manager , mon_mul and block RAMs are seen in Figure 4.5. As

stated before dashed lines correspond to other clock domains of FPGA which can not

be controlled. The solid lines show the clock_math domain. Other than the mem-

ory interface, there are trig signals which initiates multiplication and exponentiation

operations. There are three type of interface to this core. These are initialization,

memory copy and start arithmetic operation.

One novelty of our multiplier design is its run-time configurable property for different

modulus numbers, M , and for different digit lengths. This design property is also

shown in Figure 4.5 with green rectangles. Referring to 2 there is a pre-computation

value m′ which is related to m. The Algorithm needs multiples of digit lengths, which

are saved in registers indicated with green rectangles. When a configuration data is

written to interface RAM, ram_m, init command is triggered to the core. After this

trig, the new modulus, and operand size namely number of digits n_digs is loaded

into different registers. After the configuration of the core, operands are loaded into
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Figure 4.5: Exponentiation control block

interface ram with memory copy operation. As the last step start arithmetic operation

is triggered after which the core either does a single modular multiplication or a series

of squaring and multiplications which correspond to exponentiation operation.

The internal state machines inside mon_manager module is shown in Figure 4.6.

The first machine on top-left corresponds to parameter initialization which runs after

init command. The machine on top-right corresponds to main states of mon_manager

for each of three interface commands. The below machine starts with and idle state,

then goes to trailing zero state where it searches for the first non-zero bit of the ex-

ponent. After the first 1, the state machine does squaring at each state. it also does

multiplication if a 1 occurs in exponent. There is one other novelty of this module

which is indicated with red lines in Figure 4.5. The exponent control machine needs

to get exponent parameter from RAM. Since our design is RAM-based, the whole

operand remains in RAM. Exponent control circuit updates an e_ptr value which

points to a specific 16-bit portion of exponent. This portion of the exponent is read

into mon_manager module from the RAM port. By this way the exponent control
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Figure 4.6: Exponentiation control state machine

circuit can work on any length of exponent without affecting logic resource usage.

From implementation point of view, this functionality can be realized easily with a

shift-register. However using a shift-register will violate our length-independent de-

sign criteria. By placing this parameter into block memory, any-length of operand

can be represented with a change of pointer.
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4.4 Testing of the Exponentiation Core

Testing and verification of an FPGA design may be very hard in case of simulation

mismatches, timing violations or long implementation times. Design implementation

of a big FPGA may take a long time so that one can only try a few designs in a day.

Due to these reasons a test environment which talks with the exponentiation core is

designed as shown in Figure 4.7. The test environment targets to verify functionality

of the core in a more controlled small environment.

cmd_handler_top

mult_two_clock

clk_gen

mul_wram_topinit/run

clk_math

mon_mul

mon_manager

cmd_receiver cmd_handler

arith_handler

cmd_sender

memory_bus

uart_tx

uart_rx

clk_com

ready

Figure 4.7: Test interface of the exponentiation core

In Figure 4.7, details of mul_wram_top module are blurred since they are already

explained. cmd_handler_top module consists of four main sub-modules. Two of

them are cmd_receiver and cmd_sender which communicate with a personal com-

puter through serial ports. The command packets are saved in FIFO blocks in receiver

and sender. Cmd_handler module moves arithmetic payload from these buffers

to blockrams of mul_wram_top module. Arithmetic_handler module gen-

erates and receives control signals between cmd_handler and cmd_wram_top

modules. Furthermore, there is a timer inside the module which counts number of

clocks between start and ready signals of any operation which is requested from mul-
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tiplier core.

For communication with the test module a TLV (type, length, value) [10] based packet

structure is defined. One byte is reserved for type field, two bytes for length field, and

variable length is used for value or payload field. Two bytes are reserved for cyclic

redundancy check. The details of packet structure is seen in Figure 4.8. Packets start-

ing with 0x8 are transferred to test module, packets starting with 0x5 are transferred

from test module.

type length value crc

type Description

0x86

0x87

0x88

0x89

0x83

Memory write

Memory write and run multiplication

Memory write and init parameters

Memory write and run exponantiation

Run multiplication

0x53 Acknowledge

0x59 Arithmetic result

Figure 4.8: Communication interface with the test module

Figure 4.9: Qt test program 192 bits modular multiplication running example

A simple Qt based graphical user interface(GUI) is designed to test the implemented

design through serial port. A screen capture of the test program is seen Figure 4.9

and 4.10. The program opens with a predefined input parameters. It can further be
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Figure 4.10: Qt test program 512 bits modular multiplication running example

programmed according to the command structure in Figure 4.8. In the first example

a 192 bits multiplication is seen. In the second example the core is configured for

512 bits modulus and a known test vector is applied through the GUI. The test circuit

which manages the multiplier also measures the elapsed time between request and

reply of the multiplier. Notice the serial communication or other computer-related

delay is not included into time computation. The elapsed time counter is transmitted

to the host computer inside communication packets. This section of the packets is en-

circled in the examples. The hexadecimal cycle counts, 00000068 and 00000213

are later translated to time in terms of nanoseconds. The resolution of the timer is 10

ns, working frequency of the command handler module.

Each command’s duration is measured by this way and transmitted to GUI for analy-

sis. Timing diagram of this time-measurement related part is depicted in Figure 4.11.

When a start signal is captured from the command handler, the timer starts count-

ing until ready signal is generated. A 32-bit register is reserved to timer which can

measure quite long period of time.
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Figure 4.11: Elapsed time counter design for each arithmetic operation

4.5 Implementation Results and Comparisons

The multiplier with exponentiation support is implemented in Xilinx Zynq7020 FPGA.

The hierarchical resource utilization of the design together with the test circuit is

given in Figure 4.12. The test circuit which consumes 180 slices of logic (448 LUTs+

403 registers) is not related to multiplier so, they will not be counted in multiplier

cost. The multiplier consumes total of 198 slices, 3 DSP and 3 memory blocks.

In this family of FPGAs the memory blocks are placed in dual-tiles, each block of

18Kbits memory is counted as 0.5 tile. Together with the exponentiation module

(mon_manager), total logic cost reaches to 257 slices. The synthesis frequency ob-

tained for this circuit is 225 MHz. In this version 3 DSP multipliers and 3 block

memories are used.

Figure 4.12: Utilization results of Montgomery multiplier with 3 DSP, 3 block rams

FPGAs are platforms which have predefined resources of configurable logic, block
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rams, DSP block and other special hardware resources. These resources are either

utilized for some function or remain unused if they are not configured. Logic re-

sources are the common elements which can be utilized as memory or arithmetic

function. To observe the effect of this conversion three different variants of the core

is realized. This study can be considered as the design space exploration of FPGA

resources. The first variant is using logic resources instead of DSP multipliers. The

second variant is using logic resources instead of block memories. Total of four im-

plementations are evaluated in Table 4.1. V0 to V3 are these versions. For block

memory- distributed memory conversion we only converted one of the block memo-

ries into distributed memory. In this case one block memory slightly increased logic

slice consumption. The same synthesis frequency is obtained between V0 and V1.

When DSP multipliers are moved to logic resources, there is a considerable increase

in the number of logic resource usage. Furthermore, synthesis frequency is decreased

to 1
3

of the DSP version. This directly affected the throughput of the multiplier. We

confirmed the efficiency of DSP multipliers by this comparison.

Table 4.1: Performance of proposed Montgomery multiplier alternatives (Throughput
computed for 1024 bits)

.
width Option Time Area Macros Th.put

bits DSP MEM FREQ PERIOD SLICE LUT REG BRAM DSP Mbps

V0 16 true block 225 4.44 262 616 797 3 3 53.05
V1 16 true disrib 225 4.44 266 667 772 2 3 53.05
V2 16 false block 75 13.33 500 1453 934 3 0 17.65
V3 16 false disrib 75 13.33 506 1504 941 2 0 17.65
V4 32 true block 130 7.69 574 1648 1031 6 11 130.72

[39] 34 true block 119 8.4 1553 - - 4 10 133.8
[37] 64 true block - - - 704 337 8 33 242.66
[37] 32 true block - - - 425 177 4 11 60.23

Two typical previous work is compared with our design. The work in [39] used a

Spartan3 FPGA. They used a systolic-like architecture. With two processing elements

their implementation is equivalent to processing 34-bits in one clock cycle. As a

consequence their DSP multiplier consumption is higher than ours.For the V4 version

where we also used a 32-bit data-path our solution is almost the same as [39]. In [37],

different multiplier widths are studied. As the DSP multiplier width is increased, the
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throughput of the multiplier increased proportionally.

4.6 Conclusion and Future Work

In this section a block-memory and DSP-multiplier based Montgomery multiplier

is proposed. As a demonstration of the multiplier modular exponentiation support is

also designed as an additional unit. The designed multiplier can be defined as compact

comparing with the other implementations in the literature. The multiplier is run-time

configurable for different modulus values and modulus lengths. The implementation

is tested on real FPGA with a test circuit. The test circuit is controlled from a host

computer. A graphical user interface is designed to analyze the response time of the

circuit.

Our design is structured around the DSP-multiplier which has an internal 25x18 hard

multiplier. Since wanted to use the multiplier with the closest standard width, we

designed the core as a 16-bit module. We further implemented a 32-bit version of

the multiplier. Since the data-width of the memories are doubled, block memory

usage is increased by a factor of two. For obtaining 32-bit multipliers we used FPGA

tool’s generator. This generator produced synthesis result of 130 Mhz by using 4 DSP

blocks for a latency of 3 clock cycles. One of the multipliers in the solution requires

2 cycles of latency which resulted in 3 DSP block.
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CHAPTER 5

FLEXIBLE COPROCESSOR FOR ELLIPTIC CURVE

CRYPTOGRAPHY

Elliptic Curve Cryptography (ECC) [24, 33] became the predominant public-key

scheme in the last four decades due to its smaller key sizes compared with other

alternatives. It is reported in [17] Table 3 that elliptic curve over 160-bit prime field

provides equivalent security of 1024-bit RSA Algorithm. Today there are also ma-

ture ECC standards from different organizations [17], [13] [12] and [18]. Being the

dominating standard for public-key cryptography, there is a vast amount of research

on the implementation of ECC on different software and hardware platforms includ-

ing application specific integrated circuits (ASIC) and field programmable gate arrays

(FPGA).

Together with the improvements in the semiconductor technology and cryptology

there is always room for research. While some studies focus on high performance,

they miss efficient use of resources. Studies which focus on efficient use of resources

put some limitations on their implementation. Fair comparison of architectures and

implementations is also an important issue which cannot be satisfied due to evolving

technologies in FPGA industry. In this work, while doing a balanced design between

area and performance, we will be focusing on the flexibility of the architecture.

In this chapter, we propose an ECC architecture over prime fields which is flexible

in various aspects. First flexibility is about the curve equation, we do not restrict the

architecture to a specific curve like NIST P-224 or P-256. A novel, small footprint

microcontroller is designed and employed for point addition, doubling operations and

scalar multiplication operations. Second flexibility is about the length of prime field
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GF(p). The architecture that we propose is run-time configurable to different and any

prime field sizes, including 192, 384 and 521 which are the generally used bit lengths

in the context of elliptic curves over GF(p). Although we utilize vendor dependent

hard-multiplier macros, called DSP blocks, it is easy to modify the design to other

vendors FPGAs since all of them has some version of multiplier blocks.

The rest of the chapter is organized as follows: In Section 5.1 we mention previously

published related architectures. We describe mathematical background of ECC and

give information about algorithms that are subject to this chapter. In Section 5.2 we

discuss the main architectural ideas that we propose. Later we discuss implementa-

tion results and compare with other works Section 5.3 after which we conclude with

Section 5.4.

5.1 Related Work

A survey of hardware implementations of elliptic curve cryptosystems can be found

in [43]. High-radix Montgomery modular multiplications were considered for ASIC

world in [45] where implementations independent of operand length are introduced.

Early microcode based architectures were introduced in [30], which was based on

Xilinx Virtex XCV300. In [32] they implemented a systolic array implementation

of Montgomery modular multiplication in the finite field GF (2m) by using Virtex

XCV800. Embedded multipliers in Virtex2 family FPGAs are used in [31]. Later

in [23] they used Virtex-4 FPGAs’ resources generously for NIST-224 and NIST-

256 curves. In the same years, the paper [55] made use of the same FPGA re-

sources, Virtex-4 SX35 in COPACOBANA platform for prime factorization with El-

liptic Curve Method. This work is related to [20] in which that used Spartan-3 FPGAs

without DSP resources. More compact, microcode based recent design include [47]

where they used Virtex2 resources in different scales. In [46] Virtex2 and Microsemi

SmartFusion FPGAs were used to include different levels of HW multipliers for Vir-

tex2 and pure logic for SmartFusion. Their implementation were confined to NIST

curves since they used fast reduction algorithm which only works for special form of

prime fields. In [42] the same design is enhanced to include RSA algorithm and side-

channel protection countermeasures on a Virtex-5 FPGA. In [52] they targeted for
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lightweight ASIC implementation which consist of no platform dependent hardware

multipliers. While our DPRAM architecture is similar to [46], our micro-instruction

architecture used the ideas in [52]. In [46] they also used block memories for all

operand storing. They explicitly stated this as a design principle. Variable length

instruction architecture, is similar to [52].

5.2 Flexible Microcontroller Based Arithmetic Architecture

The block diagram of the architecture that we propose is given in Figure 5.1. mon_mul

and mon_managermodules were detailed in Chapter 4. They remain the same as an

interface but, their functionalities have differences. Compared with the architecture

in Figure 4.5 a micro-instruction controller is designed to control elliptic curve field

operations up to scalar point multiplication. In the previous architecture there were

state machines to control multiplication and exponentiation operation. In this archi-

tecture desired functionality is loaded into program memory. Initialization operation

again exists to configure modulus and prime field size. After that phase the inter-

face memory is loaded with the operands, then a host_start signal is triggered

from external design. When the execution of the internal program finishes, it raises

an acknowledge signal host_ack to the external design. Receiving this signal the

external design may read the result from the external memory interface.

5.2.1 Microcontroller Design Details

The details of the microcontroller will be described over the instruction set summary.

The micro-instructions are 16-bits wide which have one of the three structures as

shown in Figure 5.2. In the first set, ARITH_OP, there are three instruction, mmm,

msub and madd which are Montgomery modular multiplication, modular addition and

modular subtraction operations, respectively. RES_PTR is the index of result location

in ram_ab, whereas OP1_PTR and OP2_PTR are index locations of operands. The

details of arithmetic instructions are as below. Notice that modulus M and R−1 are

inherent in the instructions.
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Figure 5.1: Microcontroller based ECC Architecture Block Diagram

• mmm : Montgomery modular multiplication

Syntax example : mmm ram_xp ram_t1 ram_t0

Function : xp ← mmm(t1, t0)

Arithmetic : xp = t1 · t0 ·R−1 mod M

• madd : Modular Addition

Syntax example: madd ram_t1 ram_xp ram_zp

Function : t1 ← madd(xp, zp)

Arithmetic : t1 = xp + zp mod M

• msub : Modular Subtraction

Syntax example: msub ram_t2 ram_xp ram_zp
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ARITH_OP RES_PTR OP1_PTR OP2_PTR

014589121315

MEM_OP DES_PTR SRC_PTR

04589121315

JMP_OP JCOND COND_ACTION

056910121315

JMP ADDRESS

Figure 5.2: Micro-instruction formats

Function : t2 ← msub(xp, zp)

Arithmetic : t2 = xp − zp mod M

The second instruction group consists of memory copy operations. Due to our dual-

clock design, arithmetic operands are written from an independent clock domain to

ram_m. These operands need to be copied into ram_ab before arithmetic operations

begin. cpei, cpie, and cpii are copy external-to-internal, copy internal-to-external

and copy internal-to-internal instructions move operands from ram_m to ram_ab

etc. These instructions have two operands, the first operand is destination index, the

second operand is the source index.

The third instruction group actually consists of a single instruction and it is the jump

instruction. The instruction executes the following statement:

if JCOND is true then do COND_ACTION and goto JMP_ADDRESS

With versatile jump conditions and conditional actions, this instruction is used to

represent NOP, CALL, RETURN, SET or RESET internal flags and counters of the

microcontroller.

Table 5.1: some examples of JMP instruction
# Instruction Meaning
1. jmp alwy none next jump always, do nothing, goto next address (NOP)
2. jmp alwy cj_set next jump always, set counter j, goto next address (SET)
3. jmp alwy cj_dec next jump always, decrement counter j, goto next address
4. jmp zcntj sr_dec skip_nxt jump if cntj is zero , decrement sr, goto address +2
5. jmp alwy push ptmlt jump always, save return addr in stack, goto ptmlt (CALL)
6. jmp alwy pop ret_addr jump always, get return addr from stack, goto return addr (RET)
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The microcontroller waits for host_strt signal after reset. When it receives start

signal, it begins execution of instructions by instruction decoder, ins_decoder.

Each instruction is run in three phases, fetch, decode and execute in a pipelined man-

ner. In fecth phase, the instruction is read from program memory. In decode phase,

the instruction is decoded in instruction decoder and necessary control signals are

generated. In execution phase, the decoded functionality is realized. Only JMP in-

structions have constant latency of 3 clock cycles. For the other group of instructions

the microcontroller generates run signals, and then wait for the executing module,

mon_mul to generate ready signals. For this reason they have variable clock cycle

latencies depending on the instruction and number of digits in an operand.

The microcontroller is able to support any length of elliptic curve arithmetic. How-

ever, the micro-instruction structure is independent of the length of operands: the

same assembly code is used for any field length. The length and real addresses of

operands are managed in mon_manager module. Real addresses of operands are

translated in mon_manager.

Although its name remained as mon_mul, the arithmetic module in this chapter also

supports modular addition and subtraction. Subtraction is obtained on the same adder

circuit by using 2’s complement notation. The algorithm is given by Algorithm 3.

Similar memory access operations are handled for modular adder and subtractor cir-

cuits.

5.2.2 Scalar Point Multiplication

An efficient algorithm known as Montgomery Ladder for scalar point multiplication

was proposed in [36]. The algorithm makes all the computations with only x and z-

coordinates. Binary bits of scalar k is scanned from left-to-right. In the algorithm we

want to emphasize that trailing zeros before the first 1 is not relevant to the output. The

algorithm is analogous to square and multiply algorithm of modular exponentiation

in the sense of operand scanning. Unlike from square and multiply, this algorithm is

constant-time. For equal-length k’s, the latency of the algorithm is independent of the

number of 0’s or 1’s in k. Observing Algorithm 4 it is seen that for each bit the same

arithmetic is realized: P +Q and 2Q or 2P .
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Algorithm 3 Calculate A±B mod M

Require: Modulus M = (mn−1, . . . ,m0), Integer A,B ∈ ZM op = ±,

Ensure: S = A±B mod M

1: S ← 0

2: if op = + then

3: S ← A+B −M

4: else if op = − then

5: S ← A−B

6: end if

7: if S ≥ 0 then

8: return S

9: else

10: return S +M

11: end if

Algorithm 4 Left-to-right Montgomery Ladder Algorithm to obtain Q = k · P0

Require: P0 = (x0 : : z0) , k = (00 . . . 01kn−2 . . . k0)

Ensure: Q = k · P0

1: Q← P0, P ← 2 · P0

2: for i = n− 2 downto 0 do

3: if ki = 0 then

4: Q← 2Q, P ← P +Q

5: else

6: Q← P +Q, P ← 2P

7: end if

8: end for

9: return Q
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The elliptic curve group operation P +Q, and 2P are given in (5.1) and (5.2), respec-

tively. In the addition formulas, for the coordinates of (xP+Q : : zP+Q) one needs to

know the coordinates of (xP : : zP ), (xQ : : zQ) and (xP−Q : : zP−Q). Analyzing

the equations it is seen that point addition requires 6 modular multiplications whereas

point doubling requires 5 modular multiplications. It can also be observed that if the

initial coordinate of z0 in (x0 : : z0) is chosen as 1, one multiplication can be saved in

point addition.

xP+Q = zP−Q [(xP − zP )(xQ + zQ) + (xP + zP )(xQ − zQ)]
2

zP+Q = xP−Q [(xP − zP )(xQ + zQ)− (xP + zP )(xQ − zQ)]
2

(5.1)

4xP zP = (xP + zP )
2 − (xP − zP )

2

x2P = (xP + zP )
2(xP − zP )

2

z2P = 4xP zP
[
(xP − zP )

2 + 4xP zP (A+ 2)/4
] (5.2)

The algorithm is traced for an example of 29 ·P0 in Example 5.2.1. If a 1 is observed

in k, the summation is done on point Q, else the summation is done on point P . The

algorithm is defined in such a way that the difference P − Q is always constant and

equal to initial point P0. Due to this construction, the coordinates zP−Q and xP−Q can

be replaced by x0 and y0 in (5.1).

Example 5.2.1. Computation of 29 · P0, where k = (11101)2 by Algorithm 4

i ki Q P P −Q

4 1 P0 2P0 P0

3 1 3P0 4P0 P0

2 1 7P0 8P0 P0

1 0 14P0 15P0 P0

0 1 29P0 30P0 P0

Point Multiplication in microcontroller

The computation of scalar multiplication requires the mapping of Montgomery Lad-

der Algorithm into the microcontroller assembly. Before the computation begins all
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input operands are loaded into their respective locations in ram_mwhich is illustrated

in Table 5.3. A host_start signal is triggered to start scalar-point multiplication. The

micro instruction code moves operands into internal ram as they are necessary. Al-

though ram_m is writable from microcontroller side, it is only accessed for reading

the modulus M and scalar k during arithmetic operations. Due to this fact it is named

as rom (read only memory) in the context of microcontroller assembly. For assembly

to hex conversion a batch find and replace script is used.

Table 5.2: ram_m memory map
index assembly symbol arith. value

0 – –
1 rom_M M

2 rom_r2 r2 mod M

3 rom_x0 x0

4 rom_z0 z0
5 rom_a2 (A+ 2)/4

6 rom_1 1

7 rom_k k

8 rom_xq xq

9 rom_zq zq
10 – –
11 – –
12 – –
13 – –
14 – –
15 – –

Table 5.3: ram_ab memory map
index assembly symbol arith. value

0 – –
1 ram_x0 x0

2 ram_z0 z0
3 ram_a2 (A+ 2)/4

4 ram_t0 t0
5 ram_t1 t1
6 ram_t2 t2
7 ram_t3 t3
8 ram_t4 t4
9 ram_t5 t5

10 ram_xq xq

11 ram_zq zq
12 ram_xp xp

13 ram_zp zp
14 ram_x1 x1

15 ram_z1 z1
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Figure 5.3: Flexible elliptic curve coprocessor RTL schematics

A schematic output of the flexible coprocessor is shown in Figure 5.3. Not all the

memory interfaces are shown in the schematics to make the figure more traceable.

In the figure it is seen that mon_manager stands between the microcontroller and
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multiplier. All the memory ports except one port of ram_m is connected to multiplier.

5.3 Implementation Results and Comparisons

The flexible coprocessor which can compute elliptic curve scalar multiplication is

implemented in Xilinx Zynq7020 FPGA. The hierarchical resource utilization of the

design together with the test circuit is given in Figure 5.4. The test circuit which

consumes 190 slices of logic (466 LUTs+ 400 registers) is not related to coprocessor

so, they will not be counted in cost. The multiplier consumes total of 325 slices, 3

DSP and 3 memory blocks. In this family of FPGAs the memory blocks are placed in

dual-tiles, each block of 18Kbits memory is counted as 0.5 tile. Together with the ad-

dress translation module (mon_manager), and microcontroller module (ecm_micro)

total logic cost reaches to 509 slices. The synthesis frequency obtained for this circuit

is 225 MHz. In this version 3 DSP multipliers and 3 block memories are used.

Figure 5.4: Utilization results of ECC scalar multiplication with microcontroller

The same test capability used in Chapter 4 is also employed here. A sample run of

the ECM scalar point multiplication is given in Figure 5.5. The memory map is filled

according to Table 5.2, then a start signal is sent to the ECM core. The result of

the scalar point multiplication is sent back to the GUI together with an elapsed time

counter. This is indicated with blue rectangle, the point coordinates of xp and zp are

indicated in green rectangles in Figure 5.5.
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Figure 5.5: Qt test program 192-bits scalar point multiplication running example

5.4 Conclusion and Future Work

In this chapter we presented a microcontroller based design to perform arithmetic

operations in prime fields with an operand-length independent Montgomery modular

multiplication engine. Since we want to use the coprocessor for integer factorization

with elliptic curve method, we configured the core with a scalar point multiplication

code. The code is written with a special assembly language. The assembly is trans-

lated into binary and saved in a ROM near microcontroller. A curve-independent and

prime-size independent design is obtained with a similar area performance of [46].

In the next chapter the use of this coprocessor in an embedded FPGA processor will

be deployed.
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CHAPTER 6

ELLIPTIC CURVE METHOD AS A PERIPHERAL TO

EMBEDDED FPGA PROCESORS

The design and implementations in the previous chapters of this thesis constructed a

base for different numerical algorithms in prime fields, Fp, and especially on elliptic

curves, E(Fp). In this chapter we will propose the use of this infrastructure for elliptic

curve method of factoring large integers.

The FPGA core which is designed as a peripheral to an embedded processor is em-

ployed for elliptic curve method. A hardware-software partitioning of the factoring

algorithm is proposed. Multiple instances of the core is instantiated in the processing

sub-system. The whole FPGA solution is constructed to work with minimal commu-

nication need to a remote main controller computer.

The outline of the Chapter is as follows: In Section 6.1 we outline the ECM algorithm

and give numerical examples from software implementation. A closely related fac-

toring algorithm, Pollard’s (p-1)-method is also mentioned in this section. In Section

6.2 the use of ECM peripheral will be described in a processing subsystem. The main

time-consuming part of the algorithm is the scalar point multiplication. The ECM

peripheral is responsible for scalar point multiplication. However, pre-computations

and post-computations of the algorithm exist. Implementation alternatives for these

operations are also mentioned in this section. In Section 6.3, multiple instances of

the peripheral is discussed and management of these units in software is proposed. In

Section 6.4, the results of resource usages and time latencies are summarized.
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6.1 Integer Factorization with Elliptic Curve Method

Lenstra published the Elliptic Curve Method (ECM) paper in 1984. The paper de-

scribes the powerful algorithm for factoring large integers [29]. Before ECM, a

closely related algorithm, Pollard(p-1) method, is described [41].

6.1.1 Pollard’s (p-1) Method of Factoring

ECM method is inspired by Pollard’s (p-1) method which we describe in this subsec-

tion. For describing the method some number theory definitions are stated.

Theorem 6.1.1 (Fundamental theorem of arithmetic). Every integer larger than 1 can

be written uniquely as a product of primes up to the order of factors.

For example 1200 = 24·31·52. The theorem states that however the factors are written,

there will be four 2s one 3 and two fives. Since primes are required according to the

theorem, 20 · 30 · 2 is not a valid factorization.

Definition 6.1.1. Let n be a positive integer, n =
∏

pi
ein =, then n is B-powersmooth

if piei ≤ B for all i.

For example 1200 is 25-powersmooth where as 640 = 27 · 5 is 128-powersmooth.

The Pollard’s (p-1) algorithm works as follows. Let N be a number that we want to

factorize. We suppose that N has a prime divisor p. Due to Fermat’s Little Theorem,

it is known that

ap−1 ≡ 1 mod p.

Any multiple of p− 1 also satisfies the relation:

a(p−1)m ≡ 1 mod p

Converting these equivalence relations to divisibility expressions we obtain

p | (ap−1 − 1).

Any multiple of p− 1 also satisfies the relation:

p | (a(p−1)m − 1)
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Therefore,

p | gcd(a(p−1)m − 1, N).

If we could calculate gcd(a(p−1)m − 1, N) we could find p or some multiple of it.

However, p is what we are looking for. For some primes this difficulty can be over-

come and gcd(a(p−1)m − 1, N) can be computed without knowing p. Suppose that

p − 1 is the product of small primes to small powers, in other words p − 1 is B-

powersmooth. We can obtain a number k that is the product of many small primes to

small powers. By this way we may reach to a number such that k = (p − 1)m for

some m. If gcd(ak−1, N) < N is found then a nontrivial factor of N is reached. If a

gcd of 1 is reached some higher smoothness bound should be chosen and tried again.

The number k in the above paragraph is called least common multiples of numbers

up to B where it is called the smoothness bound. For example lcm_upto(10) =

23 · 32 · 5 · 7 = 2520. For numerical examples we have employed Pari-GP interpreter

which is an open-source computer algebra system. It can be installed with a small

binary or can be used through different online versions. An example online Pari-GP

interpreter is shown in Figure 6.1. Here

Figure 6.1: LCM upto smoothness bound computation with Pari-GP

The algorithmic steps of Pollard’s (p-1) method for factoring N can be summarized

as follows.

• Compute lcm : Choose a smoothness bound B and compute k
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• Set a = 2, compute x = ak mod N and g = gcd(x,N)

• if q ̸= 1 or q ̸= N a factor of N is obtained

• if q = 1 or q = N try with a different a and larger B

The Pari-GP function can be seen in the Listing 6.1 together with the lcm computation

of prime powers up to smoothness bound B. This and some other example codes of

this thesis will be available at [44].

1 lcm_upto(B) =

2 {

3 my(k,e,p);

4 k = 1;

5 p = 1;

6 while (p < m,

7 p = nextprime(p+1);

8 if (p <= m,

9 e = logint(m,p);

10 k = k * p^e;

11 );

12 );

13 \\ printf("k= %i = 0x%X\n",k,k);

14 k;

15 }

16 pollard(n,a,b)=

17 {

18 k = lcm_upto(b);

19 a= Mod(a,n);

20 g=gcd(a^k-1,n);

21 g;

22 }

Listing 6.1: Listing Pollard’s (p-1) Method

As an example if Pollard’s method is run for N = 38057, a = 2, B = 8 no factor is

found. But if the smoothness bound B is set to 9, the factor 19 is found. Inspecting

the example we see that 38057 = 19 · 2003, where p− 1 values are 18 and 2002. 18

of powersmooth of 9. Lcm up to 8 is 840, where lcm upto 9 is 2520. While 2520

contains (p − 1) = 18 inside itself, 840 does not contain 18. Because of this B = 8

is not enough for this example.
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6.1.2 Elliptic Curve Method of Factoring

Pollard’s (P-1) method relies on the possibility of smoothness p − 1 and q − 1 of

N = p.q. If the numbers p − 1 and q − 1 are not smooth, the method fails for the

defined bound B. As a numerical example take N = 22523 = 101 · 223 where

p − 1 and q − 1 are 100 and 222. These numbers are decomposed as 100 = 22 · 52,

and 222 = 2 · 3 · 37. We observe that they are 25-powersmooth, 37-powersmooth

respectively. Pollard’s (P-1) does not work with a smoothness bound of, let’s say,

B = 20 for this case. However, p− 2 = 99 and q− 2 = 221 are 11-powersmooth and

17-powersmooth respectively. If there was a way to formulate the Fermat’s Theorem

with these numbers, we would be able reach a factor with the same smoothness bound

B = 20.

Elliptic Curve Method replaces the multiplicative field of (F∗
p), which has group order

p− 1 by the group of points on elliptic curve E over (Fp). According to the Hasse’s

theorem the number of points on a curve, i.e the group order of the curve, is bounded

in the range [p+ 1− 2
√
p, p+ 1 + 2

√
p]. For the above examples of p = 101 and

q = 223 we can have curves of orders in the range [82, 122] and [195, 253]. Again

following the previous argument it is possible to obtain elliptic curves of group orders

of 99 and 221 since they are inside the Hasse bound. As an example, curve y2 =

x3 + x+ 40 in (F101) of order 99 is depicted in Figure 6.2.

The algorithmic steps of Elliptic Curve Method of factoring N can be summarized as

follows.

• Compute lcm: Choose a smoothness bound B and compute k

• Choose random elliptic curve : Set a ∈ ZN , such that 4a3 + 27 ∈ Z∗
N , then

P = (0, 1) is a point on the elliptic curve y2 = x3 + ax+ 1 over ZN

• Scalar point multiplication: Compute k · P . If at some point sum of points

is not possible because modular inverse with respect to N does not exists, we

compute the greatest common divisor of this number with N and return it as a

nontrivial factor of N

• If k · P can be computed without any problem, repeat the steps with other
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Figure 6.2: Online elliptic curve demonstration tool [6]

curves.

A second phase of the algorithm is later proposed by Brent [16] and Montgomery

[36]. If a factor with the smoothness bound B = B1 is not found, a second larger

bound B2 is chosen. The last point obtained in the first phase is multiplied with the

primes between B1 and B2. The same gcd computation is done when an inversion

computation fails.

The curve of the form

y2 = x3 + ax+ 1

is called the Weierstrass form and the original algorithm is defined with this form.

Later in [36] Montgomery suggested the below form of curve, later called as Mont-

gomery’s form:

by2 = x3 + ax2 + x

where b ̸= 0 and a2 ̸= 4 with all operations are implicitly implied as modulo N .

The curves are also defined with the assumption that N is a prime. Weierstrass to

Montgomery’s form conversion can be done with the change of variables

x→ (3x+ a)/(3b),
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y → y/b,

a→ (3− a2)/(3b2),

b→ (2a3/9− a)/(3b3).

Furthermore, homogeneous form of the curve is used in computer implementations.

by2z = x3 + ax2z + xz2.

In this case the triple (x : y : z) projective coordinates corresponds to the affine

coordinates (x/z : y/z), if it is not the point of infinity. The curve parameters are

determined by Suyama’s Parametrization method. The method starts with a σ > 5

value obtains a, b, x0 and y0 values

u = σ2 − 5, v = 4σ

x0 = u3, z0 = v3

a =
(v − u)3(3u+ v)

4u3v
− 2

This method is widely used, and it is possible to reproduce factorization between

different platforms. The parameters of b and y are not needed for ecm algorithm.

All the operations include x and z only. We only use x and z coordinates and write

P = (x :: z) as was discussed in Section 5.2.2.

As a reference software implementation we employed GMP-ECM by Paul Zimmer-

mann et al. [53]. The implementation is done in C language to support various pro-

cessor platforms. As a typical computing platform we ported the implementation to

a 64 bit Intel 7 processor laptop. As a compiler we used Visual Studio 2019. The un-

derlying arithmetic library was GMP[9] for GMP-ECM where the name implies. For

better Visual Studio and Microsoft compatibility we used MPIR library [4] instead of

the GMP. MPIR is a fork from GMP which is aimed to natively support Microsoft C

compilers.

We further modified the source code to output debug information through different

stages of implementation.
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Example 6.1.1. Consider N = 13797571561113416891362973019785509897197587

45674878923 = 0xE67C4280000000000000000000000000000001B028FCB for fac-

toring with GMP-ECM. Two different results are going to be displayed for analysis.

ecm -v -v -inp b180 -param 0 -sigma 7 960 50000

ecm -v -v -inp b180 -param 0 -sigma 10 960 50000

In this example b180 is a text file which has the above N value which is around 180

bits. The algorithm rounds up to 192 bits for computations. The results for σ = 7

and σ = 10 are given in Listings A.1 and A.2. For σ = 7, Phase 1 (Stage 1) of the

algorithm does not reach to a solution with the given bounds. For σ = 10, the selected

curve reaches to solution in Phase 1.

Examining the reduced execution logs in Listings A.1 and A.2, we see that point

multiplication algorithm is independently called for each prime. Another property

of the software implementation is that point multiplication for primes larger than

3 are computed with an adder chain method, PRAC [34], instead of Montgomery

ladder method. This method saves the number of multiplications in the expense of

more calls to the scalar multiplication function. In software implementation increased

number of calls does not affect the performance since the function is called through

memory pointers and there is a single memory between the arithmetic logic unit and

the computer memory.

In FPGA implementation there are two different memory regions. One is connected

to the embedded processor, the other is inside the coprocessor. Since we will run

the ECM scalar multiplication in parallel, each coprocessor will have its independent

memory region. Moving curve parameters from embedded processor memory to co-

processor memory will be done by embedded software. Because of this architecture

difference we want to decrease the calls to the coprocessor. In the above particular

example the lcm up to B1 = 960 is a huge number which is 1374 bits as seen in

Listing A.1, big_r, starting with 2810, ending with f600. This big number is far

beyond the field size, 192 bits, in this example. For reaching the k.P result, we divide

number k into smaller parts that can fit into field size. The details will be described

in the next section.
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6.2 Use of ECM peripheral in a Processing Subsystem

The coprocessor in the previous chapter was designed as a general scalar point multi-

plication design specialized for elliptic curve cryptography. In this chapter this copro-

cessor will be employed as a peripheral to embedded processors inside FPGAs. These

processors are widespread among FPGA vendors. As an easily accessible member of

this class, we used a Zynq based processing system as development environment.

Other processing subsystems can also be considered for evaluation.

In this chapter we verified the ECM peripheral first with two instances connected to

the Zynq processor as in Figure 6.3. Later the performance will be measured with

more cores. The red blocks in Figure 6.3 are two instances of ECM cores which

has 16-bit data-path width. The peripherals are connected to processor through AXI

bus interface [1]. Each peripheral has two axi connection, one of which is used for

register interface, the other is used as block memory interface. Each core also has two

clocks. One of the clock is a AXI interface clock the other is the processing clock of

arithmetic operations as was discussed in previous chapters. The core have different

outputs for diagnosis purposes. The critical output of the core is the ready_o output

which is used as interrupt input to the processor IRQ (interrupt request) input.
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Figure 6.3: Zynq SOC(System on Chip) with two instances of ECM coprocessors

The more blue block in Figure 6.3 corresponds to Zynq processing subsystem. Since

we are using only limited capability of the subsystem, it has a few connections. A de-
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tailed picture of the Zynq processing subsystem is seen in Figure 6.4, wherre the Pro-

cessing System (PS) is detailed. It has a dual Arm Cortex-A9 Application Processing

Units, several I/O peripherals, memory interface controllers and several interconnect

blocks are present in the PS side. In the lower part of the figure, Programmable Logic

(PL) part of the FPGA is seen. Since the figure is focusing on the PS side, most of

the figure’s area is allocated by PS. In real world implementations, PL part dominates

most of the area of FPGA.
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Figure 6.4: Zynq 7000 SOC(System on Chip) Overview [51]

Before feeding scalar point multiplication inputs, the ECM peripheral core needs to

be initialized with the modulus, and number of digits. The modulus related parameter

m′ is written to register-space of the peripheral. Once this initialization is done, mem-

ory map of the peripheral is filled with data according to the Table 5.3. Then the run

trigger of the peripheral is set through register space. The peripheral will generate the

results and output an interrupt when the result is ready. By the interrupt mechanism

64



the software on the embedded processor will not need to poll the output of multiple

cores. Once the result is ready the processor will either read the result or will generate

another point multiplication request. For a k value of around 1374 bits as in Example

6.1.1, the k value will be divided into smaller parts like k = k0 · k1 · · · k7. The mem-

ory map of the peripheral is organized so that only new k value is written for multiple

calls. For B = 960 an example set of initializations of a 192-bits core is seen as below

char ram_mod[] = "000E67C4280000000000000000000000000000001B028FCB";

char ram_r2mp[] = "00008191D000000000000000000384000000000000F2F166";

char ram_x0[] = "00002B018A8AD278E8DCEBD930835BCD3F70B3201832C839";

char ram_z0[] = "000000000000000000000000000000000000000000000001";

char ram_a24[] = "0001DB5E4E84D2789F5D56943586474641FFB9A8E9A04C9F";

char ram_one[] = "000000000000000000000000000000000000000000000001";

char kparams[numof_k][48] = {

"000048560dd908d23f1bf9510081e21e5a7dd5d5207d5600",

"000060946cd4ae17f452d0e3542a24b11c4dee78abc24131",

"000b91f95bd45d3da8850514c26f81cf6caab0407400584b",

"00003f3c80ae2354787ad750798f36af240cee2b94164915",

"0000173b8f66ed0a1b971dd2f6b29321912ae7665d2e3367",

"0003f7970e696052440a31d5fe43a81615d35bade4a1fe35",

"000025be4dbbef0c97aa21dbb4bb1324cf799cbcb7eb002d",

"000000000009ad638c152bd2e71f865bb2887d73170f7141"};

char xref[] = "000B14718F87E6D4D6CF4ABD33475D34401080253A13398D";

char zref[] = "0005707D48825FDBD2C2A0A0E224B6AAFADEBDC9BB041924";

For verification purposes these values are generated in GMP-ECM implementation

and the outputs xref and zref are checked at the end of 8 successive calls of the

core in this case. In this example a point P = (x0, z0) is multiplied with a k value

which is composed of 192-bits values is in kparams.

The peripheral core generates a hardware controlled timer value together with the in-

terrupt. By this way the latency of the computation is measured with a precision of

10 nanoseconds, one of the clock periods of Zynq embedded processor. The software
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log of the above vectors are as shown below:

:::::: ECM 0 ref ::::::

k = 0: smul time = 2442.7000 us pnding_core[0] 0

k = 1: smul time = 2440.2300 us pnding_core[0] 0

k = 2: smul time = 2508.1500 us pnding_core[0] 0

k = 3: smul time = 2423.3600 us pnding_core[0] 0

k = 4: smul time = 2401.1300 us pnding_core[0] 0

k = 5: smul time = 2473.1000 us pnding_core[0] 0

k = 6: smul time = 2410.3200 us pnding_core[0] 0

k = 7: smul time = 2057.6800 us pnding_core[0] 0

xp strings match

zp strings match

:::::: ECM 1 ref ::::::

k = 0: smul time = 2442.7000 us pnding_core[1] 0

k = 1: smul time = 2440.2400 us pnding_core[1] 0

k = 2: smul time = 2508.1500 us pnding_core[1] 0

k = 3: smul time = 2423.3500 us pnding_core[1] 0

k = 4: smul time = 2401.1300 us pnding_core[1] 0

k = 5: smul time = 2473.1000 us pnding_core[1] 0

k = 6: smul time = 2410.3200 us pnding_core[1] 0

k = 7: smul time = 2057.6800 us pnding_core[1] 0

xp strings match

zp strings match

In results section we will summarize the results. However, we want to emphasize the

precision of the timers. The first and second groups correspond to different peripher-

als. Since the last k parameters in this example is smaller than the others, it returned

faster than the other k values. The configuration in this case corresponds to 192-bit

modulus, 16-bits data-width, 200 Mhz arithmetic processor clock.

Pre-computations and post-computations: The number to be factorized must be

given definitely as an input to FPGA design. The smoothness bound is also a design

parameter. It is not practical to transfer the k number which is computed as described
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above. For k computation and other pre-computations we need to do big-integer

arithmetic on the embedded processor inside FPGA. For this purpose we have chosen

to use the big-integer library described in the book Cryptography in C and C++[48].

The library was available at [49].

ECM-Peripheral Variants: The modulus and number of digits are run-time parame-

ters that can be adjusted without compiling the source code. As discussed in Chapter

5, use of multipliers, use of block memories are compile-time parameters which can

be decided when the core is being instantiated. In this chapter we also incorporated

the data-width as a compile-time parameter. It is possible to instantiate the core in

either 16-bits or 32-bits mode. The parametrization can be done with a drop-down

menu in FPGA design tool as shown in Figure.

Figure 6.5: ECM peripheral compile-time parameters
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6.3 Parallel Instantiation and Managing ECM Cores

We have already verified two cores in design shown in Figure 6.3. To see the per-

formance of the solution with more peripherals in the processing subsystem 8 cores

are instantiated similar to Figure 6.3. All these cores are continuously updated with

fresh parameters for one second with a function feedCore as in Listing 6.2. Each

core’s running counts are printed at the end of one second. It is observed that 8 cores

can work without having any degradation. In other words, when all the cores are run,

each core’s count is equal to the number when only a single core is active.

1 // 1 second measurement loop /////////////

2 XTime_GetTime(&bef);

3 int cont = 1;

4 xil_printf("Entering 1 second Loop\n\r");

5

6 while (cont == 1) {

7

8 //usleep(1);

9 feedCore(0, ec_x0, ec_z0, xref, zref);

10 feedCore(1, ec_x0, ec_z0, xref, zref);

11 feedCore(2, ec_x0, ec_z0, xref, zref);

12 feedCore(3, ec_x0, ec_z0, xref, zref);

13 feedCore(4, ec_x0, ec_z0, xref, zref);

14 feedCore(5, ec_x0, ec_z0, xref, zref);

15 feedCore(6, ec_x0, ec_z0, xref, zref);

16 feedCore(7, ec_x0, ec_z0, xref, zref);

17

18 XTime_GetTime(&aft);

19 durat = aft - bef;

20 tcost = (double) durat / (COUNTS_PER_USECOND);

21 if (durat > 325000000) //counter measured for 1 second

22 cont = 0 ;

23 }

24

25 xil_printf("Exiting 1 Second Loop\n\r");

26

27 for (core_i = 0; core_i < NUMOF_CORES; core_i++) {

28 printf("count_%i : %i \n",core_i, core_run_count[core_i]);

29 }

30 cleanup_platform();

31 return 0;

Listing 6.2: Running ECM cores in parallel
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6.4 Implementation Result and Comparisons

To the best of our knowledge our ECM core is the only design which can do any

(practical) length of scalar multiplication without FPGA reconfiguration. All the pre-

vious results concentrate only for 200-bit long composite numbers. Our solution can

run other lengths with a register configuration. Once the core’s register is loaded for

a particular modulus and for a particular number of digits, it is able to run for that

setting. Other than this dynamic configuration we also provide a design-time param-

eter of multiplier width. Either a 16-bits or a 32-bits version of the core is possible

to be instantiated as shown in Figure 6.5. All the ECM Phase 1 timing results of

widely used prime field sizes, 192, 256, 384 and 512, are measured on two different

FPGA implementations in Table 6.1. One major difference between 16-bits and 32-

bits implementations is that the synthesis frequencies of the designs are 200 Mhz and

130 Mhz respectively. Because of this the 32-bit design did not yield an order of 4

enhancement. There is one more special case which appears in 32-bits version is that,

the latency of our Montgomery modular multiplication is 12 cycles. When 16-bits

multiplier is used in 192-bits field, 192/16 = 12 cycles are needed for a whole num-

ber to be processed. At this time the result is just ready and the pipeline delay does

not affect latency. In the case of 32-bits multiplier, the whole number is processed in

192/32 = 6 cycles. In these cases the 32-bit multiplier needs to wait for the result to

appear at the end of pipeline. As a result of this case the advantage of 32-bits process-

ing is fully-benefited for field sizes of 384-bits. This result is also seen in Table 6.1.

For 384 and 512-bits the 32-bit core performed exactly two times better than 16-bit

version. For 192-bits field, the benefit is almost 10%.

Table 6.1: Summary of timing performance of flexible ECM core
Multiplier Width Composite length Point add double time Phase 1 time #Phase 1 per s.

16

N = 192 14.7 µs 19.254 ms 50
N = 256 21.7 µs 29.147 ms 34
N = 384 41.6 µs 56.136 ms 18
N = 512 68.2 µs 92.768 ms 11

32

N = 192 13.5 µs 17.716 ms 55
N = 256 16.6 µs 22.047 ms 44
N = 384 22.3 µs 29.448 ms 33
N = 512 33.5 µs 44.602 ms 22

The utilization results of our design together with previous works is given in Table
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6.2. These are the three major implementations in the literature. Our design is similar

to [40] in the elliptic field layer: The modular multiplier is serially used. By this way

point addition and doubling time is about 10 times of multiplication time. 796-8200

vs 192-2925. This order is smaller in [19] 216-1212. This is achieved by using two

Montgomery multipliers in elliptic layer. The study in [56] does not report utilization

results, only timing performance is reported. We obtained the BRAM and DSP usage

from the thesis report of the same people in [22]. Our results are better than the first

two studies, comparable with the third study since we are using smaller amounts of

DSP blocks, see Table 6.2. As discussed in the above paragraph, the performance of

32-bit version is not apparent for 192-bit field. It is two times faster for large field

sizes.

Table 6.2: Comparison of ECM Phase 1 implementations for composite N of 192 bits
with smoothness bound B1 = 960 (Result in (*) are taken from [22])

Simka et.al. KrisGaj Zimmermann this work this work
[40] [19] [56] 16-bits 32-bits

Timing Performance Summary
Montgomery Mult.cycles 796 216 201 192 108
Montgomery Mult.time 20.7 µs 4.1 µs 1.005 µs 0.960 µs 0.830 µs

Point add + doub.cycles 8200 1212 N/A 2925 1676
Point add + doub.time 213.2 µs 23.0 µs N/A 14.62 µs 12.892 µs

Phase 1 cycles 11,266,800 1,713,576 1,473,596 4,021,875 2,304,500
Phase 1 time 292.9 ms 31.7 ms 7.37 ms 20.10 ms 17.726 ms

Utilization Summary per One ECM unit
FPGA Model Name Virtex-2000 Virtex-2000 Virtex4 Zynq7020 Zynq7020
CLB Slices N/A 3102 N/A 564 692
Slice LUTs 1754 4933 N/A 1476 1798
Slice registers 506 3129 N/A 1354 1839
BRAMs 44 2 9 (*) 3 6
DSP 0 0 22 (*) 3 11
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CHAPTER 7

CONCLUSION AND FUTURE WORK

FPGAs are reconfigurable devices which are located in between ASIC and general

purpose processors. In this thesis we have implemented the elliptic curve method of

integer factorization on reconfigurable hardware. For this implementation we started

with a modular multiplier implementation which is based on hard multipliers, called

DSP blocks, which are widely available in modern FPGAs. Later this multiplier core

is controlled with a micro-instruction controller to obtain field operations of elliptic

curve, point addition and point doubling. The processor had the capability to make

two level nested function calls. With this property a special for-loop implementation

is used to obtain scalar point multiplication result by using Montgomery Ladder al-

gorithm. The ECM coprocessor is later connected to embedded processors which are

widely available in modern FPGAs. By this way the ECM cores were easily accessi-

ble by an application. The obtained design can be scaled by instantiating it as many

as FPGA resources permits.

The main novelty of the ECM coprocessor is its run-time and compile-time flexibility.

As a run-time flexibility the ECM core can process any practical length of prime field,

including the range of practical RSA sizes of 2048 and 4096. To obtain this flexibility,

operands are saved in block memories including the scalar multiplier coefficient k.

Dual-port property of the block memory is used to isolate the operating frequency of

the arithmetic modules from the rest of the design. As a compile-time flexibility the

data-path of the ECM core can be chosen as either 16-bit or 32-bit. All the control

logic and memory instantiations are designed to embrace this change. As a result a

generic-parameter of VHDL 16 or 32 was enough to obtain either versions. Although
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we are able to synthesize the 16-bit version of the core with a frequency of 200 Mhz,

32-bit version was synthesized with a frequency of 130 Mhz. If it were possible

to have the same frequency we would gain a factor of 4 since the latency cost is

proportional to n2 where n is the number of digits in an operand. Nevertheless, a gain

of two factors is obtained with this parametrization.

The final aim of this design is to be used as an accelerator for integer factorization.

As the most mature software implementation we inspected the GMP-ECM library and

made our FPGA design to work in coherency with the software implementation. To

make this possible a big-integer library is ported into embedded processor on FPGA.

Pre-computations and post-computations of the ECM can be done with this library.

Studying on an area related to semiconductor technology is prone to Moore’s Law,

Number of transistors in an integrated circuit doubles about every two years. As part

of this law, we need to update software versions and FPGA models through the course

of the thesis. However, there are much more advancements in high performance

computing than we can catch.

FPGA based cloud services have been widely available in the recent years [28]. These

platforms can be used as accelerator of integer factorization.

Another recent topic in the FPGA arena is the high-level synthesis technologies. This

technology directly converts a high-level description of an algorithm into FPGA con-

figuration. By this way design abstraction is raised one level higher. The solutions

are becoming widely available and surprisingly productive [27]. HLS can be another

direction for further studies.

Embedded processors were limited to vendor provided models when we started this

thesis. RISC-V is an open standard instruction set architecture based on the princi-

ples of reduced instruction set computer(RISC). There are many companies providing

hardware and operating system solutions to RISC-V. The embedded processor solu-

tion of this study can be switched to a RISC-V architecture as a further study.
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APPENDIX A

ELLIPTIC CURVE METHOD APPENDICES

A.1 192 Bit factorization with GMP-ECM with σ = 7

1 D:\devsoft\ecm\bin\x64\Debug>ecm -v -v -inp b180 -param 0 -sigma 7

960 50000↪→

2 GMP-ECM 7.0.6-dev [configured with MPIR 3.0.0, --enable-openmp] [ECM]

3 Tuned for x86_64/corei7/params.h

4 Input number is

1379757156111341689136297301978550989719758745674878923 (55

digits)

↪→

↪→

5 Using MODMULN [mulredc:0, sqrredc:0]

6 ecm:after mpmod_init_MODMULN

7 modulus->orig = E67C4280000000000000000000000000000001B028FCB

8 modulus->bits = 192

9 modulus->repr = 3

10 modulus->R2 = 8191D000000000000000000384000000000000F2F166

11 modulus->R3 = 4CACA1FFFFFFFF9688000000000000000000008FC3AFC

12 modulus->tmp1 = 1000000000000000000000000000000000000000000000000

13 modulus->multiple= 10008485EF00000000000000000000000000001E00F87B202

14 modulus->tmp2 = EB1977672D36F62F50E0E8B8150DEE8AFC6109FC17BE621D

15 modulus->Nprim = dcdaf0

16 modulus->Nprim = FC6109FC17BE621D

17 last A = 2ED4A7BF6A86E90E97111020F8D41EA9F8B6BD53D2CB9

18 Using B1=960, B2=50000, polynomial x^1, sigma=0:7

19 dF=32, k=6, d=240, d2=7, i0=-2

20 modulus : x0=E67C4280000000000000000000000000000001B028FCB

21 R^2 : x0=8191D000000000000000000384000000000000F2F166

22 R^2 : x0=8191D000000000000000000384000000000000F2F166

23 R^3 : x0=4CACA1FFFFFFFF9688000000000000000000008FC3AFC

24 Nprime : x0=14473968

25 *Nprime : x0=FC6109FC17BE621D

26 Bits : x0=192

27 BefA->=2ED4A7BF6A86E90E97111020F8D41EA9F8B6BD53D2CB9

28 BefA. =2ED4A7BF6A86E90E97111020F8D41EA9F8B6BD53D2CB9

29 A=76D793A1349E27D755A50D6191D1907FEE6A3A681327A
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30 Bef_x0. =1D5F089C5C8C509B3DF290CB023D337FA00300F6235AB

31 starting point: x0=2B018A8AD278E8DCEBD930835BCD3F70B3201832C839

32 Bef z=1.R mod n =0

33 Aft z=1.R mod n =61f6537fffffffffffffffffffffffffffe200b7addc9

34 Bef A =2ed4a7bf6a86e90e97111020f8d41ea9f8b6bd53d2cb9

35 A+2 =c450c3f6a86e90e97111020f8d41ea9f87abd1305880

36 b=(A+2)*/4 =311430fdaa1ba43a5c444083e3507aa7e1eaf44c1620

37 ecm_stage1:Montgomery Curve :

1db5e4e84d2789f5d56943586474641ffb9a8e9a04c9f.Y^2= X^3 +

76d793a1349e27d755a50d6191d1907fee6a3a681327a.X^2 + X

↪→

↪→

38 default x0,z0 x=1d5f089c5c8c509b3df290cb023d337fa00300f6235ab

z=61f6537fffffffffffffffffffffffffffe200b7addc9 go=1↪→

39 normal x0,z0 x=2b018a8ad278e8dcebd930835bcd3f70b3201832c839 z=1

go=1↪→

40 montgo x0,z0 x=1d5f089c5c8c509b3df290cb023d337fa00300f6235ab

z=61f6537fffffffffffffffffffffffffffe200b7addc9 go=1↪→

41 ecm_stage1:x2 x=1461619737E78F7A4AE1D80FD217DB01429E63A137B6D

z=AD3017728F8FDDCD78CAAC735B346E8D7613AF1501EF1 p=2 big_r=2↪→

42 ecm_stage1:x2 x=89203D122C4816EA002AFAEC850B859159AB56DCEB643

z=3403A28C8FBC2D72BB76250EBCAA109A842451BD3CB2B p=2 big_r=4↪→

43 ecm_stage1:x2 x=A948280C40EB9EF40705F872406CC7CAE0689F8066BE9

z=1F3455EF9A48D8702DA726AC374129C0E44A27E3B186C p=2 big_r=8↪→

44 ecm_stage1:x2 x=E49A5A16668F1A0445C33C3203FB61FD0ABE9315AE15B

z=80E8AB8DB649F599B6638455D77A39B4B3D09C8B2515E p=2 big_r=10↪→

45 ecm_stage1:x2 x=A4271ED85297E13E4A504E85444BBE69994917B118203

z=92D32E506841D6898958D4B19894823020010A075755A p=2 big_r=20↪→

46 ecm_stage1:x2 x=55DD70EC15660C048AA27C2CB79B9228DABF2C76705A1

z=AFB3CB00B2129D38D4EBA9820CD985A0255BFF0B6E7C2 p=2 big_r=40↪→

47 ecm_stage1:x2 x=5C0033BE99BA118F12A312749D9CDFFF04F12D3E43EBF

z=BE271EE98627286DD2D208A26016DC775D4C26FC6141A p=2 big_r=80↪→

48 ecm_stage1:x2 x=7052F1A0EEE92DE769171DEB151A93268C4F6269271AA

z=97B4A8A6DBDF24BC0324D1AA8CF1D286F0404DA10FC0D p=2 big_r=100↪→

49 ecm_stage1:x2 x=12152BF8E7ED45E26B58327650070729416E5B0928F1E

z=5B390F08D6CCE287E463E09389917CE8BD7F676B4438F p=2 big_r=200↪→

50 ecm_stage1:x3 x=AC4B7206F1427F6E94F55E6ECF5E34042B1960316732B

z=C12405AA83444952758F74223585964F285AD90168098 p=3 big_r=600↪→

51 ecm_stage1:x3 x=AA929D5D0363F716703ED794FD68F0B6C92C42D048052

z=54962066AF840EA9D4869658C976446DAA1AF193AA48A p=3 big_r=1200↪→

52 ecm_stage1:x3 x=CD860D9CC798EB88C7DC56265FE562E12B801D097FB91

z=49791A1F06638D87DF2F1DEB6219886F2386125BB24E1 p=3 big_r=3600↪→

53 ecm_stage1:x3 x=DF972BDBB15D5137A39FD65C994CE2B15438274AA49B6

z=119685A3CD4349FE700F02A5FCE2BEDBF5E359AAA06C5 p=3 big_r=A200↪→

54 ecm_stage1:x3 x=CBA42D9154A711B31BF4E9AB41E73132F2470FAA71A8B

z=A914E569F2D70BE3C63A3C67DDE8D308860E27AC45B p=3 big_r=1E600↪→

55 ecm_stage1:x3 x=1CC19B52D0F969B90DFC5B1964451A803DE442F33C44C

z=150177EAFB4F0AFD6377CEC0D44C82A7A06E16392BAAB p=3 big_r=5B200↪→

56 ecm_stage1:prac x=7C3FAAA13BDA1FEEF9A20DEBB787C5FA0556B6AF30F9A

z=70119A93380FC8E3459D4E40D1F844A9690A0C6939F23 p=5 r=5↪→

57 ecm_stage1:prac x=7F68582AF536C2FAD59D8FF4DD5A14226E0A680E56916

z=1D1F4BE702F2E6CD79AB9DC498DE973303DA413E6B5C2 p=5 r=25↪→
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58 ecm_stage1:prac x=1A3E8257D5300DA2E8BDF645AE4A6DA3A2E62505CA464

z=C20EAB4C15527A8D904EB2231D14ABC625BA8361E4163 p=5 r=125↪→

59 ecm_stage1:prac x=D090382B61560BB730370779C20D5B518EFB72C343BFF

z=3981D00D376FF5D33DE795280F26FA31F6BCC383A7E6C p=5 r=625↪→

60 ecm_stage1:prac x=60AEEA6A63193F1AEE82D0B6E619F08A9731758F2A8E7

z=B449695AC130448667C1A0A620AB265C6AA3C4ECF06D2 p=7 r=7↪→

61 ecm_stage1:prac x=336546C38D1FDB11FB09CBA48F3367A333090EDCC8B7F

z=719FA51B1DCF7F1811244E38598534ED6C8929CF80539 p=7 r=49↪→

62 ecm_stage1:prac x=D572629471E737A5BAA2175EE4EEFC4C5AF5AAB170204

z=DF03E0D116F84C44AB6E127210E9FA929AE93D8595CC8 p=7 r=343↪→

63 ...

64 ...

65 ecm_stage1:prac x=DC7921FB8ADAAA90C40814CAEAD7DE4E4169BD49DDE2B

z=41109E62A16F19B0E27D3A04CAC575D786CDA7C2EE169 p=877 r=877↪→

66 ecm_stage1:prac x=E4FB55B32079C5C659762AB77FA3F85EC2D394FD9ED86

z=B819976F1C2A9D9488551AB866DDA035ED0B542D01529 p=881 r=881↪→

67 ecm_stage1:prac x=323CF80AFF9EA908D6101F1B8768DABFA0827AB533D5E

z=10BB2744493354F952D9705C18A78D3BD4B79B2C900B3 p=883 r=883↪→

68 ecm_stage1:prac x=1B101600B5F63A370AF3A2C6B13CD77F4482C67EDDFB

z=22D7E3DBC200725C6B618B8F2E576A42B586B272C5512 p=887 r=887↪→

69 ecm_stage1:prac x=21AD93F5C207DF19C2A0B5ADB6FA5AD76B2DA0EC19842

z=13FE3B6E6853C14D30711E3FEFA0802F2E94466E2A1F2 p=907 r=907↪→

70 ecm_stage1:prac x=824CCB69E4AD4702A59F0C57AD8B376D95FF8AA8B416A

z=22563A12AE401D76C706941CC2318E9DE7CD3170B3548 p=911 r=911↪→

71 ecm_stage1:prac x=D6007E273CB68C6FC953E56ABB6D0CC75796A95DE9988

z=32963F51969560098FBD610FF2E4AB41442150E2B670B p=919 r=919↪→

72 ecm_stage1:prac x=C6DC8D2275966EFAFE37607095088948AAE4E78D93B6D

z=96BF85CD0049ADA1B20B24AF28D06913248245AA01993 p=929 r=929↪→

73 ecm_stage1:prac x=73394CFCEF610796C96067210BDA67AEA4D98AA52292A

z=55FF7E4E252D49CF5DA0747453568E58B51687835B757 p=937 r=937↪→

74 ecm_stage1:prac x=52DA16E3772A59D02206EDAE4AECFD654E1087D534951

z=7FF28390CFED6DD0F091BEDDCFA91C8F97FA4B8C4C07E p=941 r=941↪→

75 ecm_stage1:prac x=A72102CD8D1D0A680995D3B65EEBFA6B981B20B2E2AB4

z=C4168D1843F77167E5C3EB32ED39F93E096FEA85901CA p=947 r=947↪→

76 ecm_stage1:prac x=C1B201EC35AA85BC116FA073FECF9E7884E4E91DA182C

z=BD32A1176121C768DFAD6BD8A9E5CB80337B1119AD2D5 p=953 r=953↪→

77 ecm:ecm_stage1:ecm_mul result:

x=afbd13db4798059de86be952465d19cc8eef928e9793b

z=bed0782c1b39b8f58d218795a5ef1af9ae9453a3e8e80

↪→

↪→

78 Prac result of ecm stage1 =========================>>>>>>>>x/z in

norm form: c35a0ca1152a657b5e84b6b6ac8b95034d6d5db2dc28e↪→

79 ecm_stage1:big_r

281091188610b1a7d57f82e293e9aefe96cde6a215fd76eb40f25393070f92↪→

80 64a49b76730d8c265aa850558dfeda6e831629c8cfe5c610562e03311728173b32

81 c61c69e9573cf2438fe26bc7a3a09d85751ba39fd5085a3713e7fee9db6c2a9e0d

82 e0eefeb7523e3b3dd9cd8edb073c475c476470e17d9f00345fbc988a3306b548ae

83 1b5e64e768cfb47408cb73bacd1c68ae0d56ca6430f631a3dfe3870d5bc2125fca

84 2f5a139c079c32f600

85 x=1169436303729143464727131019324100207024715083537040014

86 After switch to Weierstrass form,

P=(cec8aef85e008ffbe656481589ccd8928437a312d63b9,

71eb541db9f480c69958063889aa7821b7bd62e3fa43)

↪→

↪→
81



87 on curve Y^2 = X^3 + 2a00285ec8c54990488458c5824a1fd23a143a062fb09 *
X + b↪→

88 ********** Factor found in step 2: 30210181

89 Found probable prime factor of 8 digits: 30210181

90 Probable prime cofactor

45671926166590716193865151022383844364247891983 has 47 digits↪→

91 Peak memory usage: 5MB

92

93 D:\devsoft\ecm\bin\x64\Debug>

94

95

Listing A.1: GMP-ECM reduced output for σ = 7, B1 = 960, B2 = 50000

A.2 192 Bit factorization with GMP-ECM with σ = 10

1 D:\devsoft\ecm\bin\x64\Debug>ecm -v -v -inp b180 -param 0 -sigma 10

960 50000↪→

2 GMP-ECM 7.0.6-dev [configured with MPIR 3.0.0, --enable-openmp] [ECM]

3 Tuned for x86_64/corei7/params.h

4 Input number is

1379757156111341689136297301978550989719758745674878923 (55

digits)

↪→

↪→

5 Using MODMULN [mulredc:0, sqrredc:0]

6 ecm:after mpmod_init_MODMULN

7 modulus->orig = E67C4280000000000000000000000000000001B028FCB

8 modulus->bits = 192

9 modulus->repr = 3

10 modulus->R2 = 8191D000000000000000000384000000000000F2F166

11 modulus->R3 = 4CACA1FFFFFFFF9688000000000000000000008FC3AFC

12 modulus->tmp1 = 1000000000000000000000000000000000000000000000000

13 modulus->multiple= 10008485EF00000000000000000000000000001E00F87B202

14 modulus->tmp2 = EB1977672D36F62F50E0E8B8150DEE8AFC6109FC17BE621D

15 modulus->Nprim = cce0c0

16 modulus->Nprim = FC6109FC17BE621D

17 last A = 3262CD21F20A86703190B3BFA79E5CC9193FF385D9825

18 Using B1=960, B2=50000, polynomial x^1, sigma=0:10

19 dF=32, k=6, d=240, d2=7, i0=-2

20 modulus : x0=E67C4280000000000000000000000000000001B028FCB

21 R^2 : x0=8191D000000000000000000384000000000000F2F166

22 R^2 : x0=8191D000000000000000000384000000000000F2F166

23 R^3 : x0=4CACA1FFFFFFFF9688000000000000000000008FC3AFC

24 Nprime : x0=13426880

25 *Nprime : x0=FC6109FC17BE621D

26 Bits : x0=192

27 BefA->=3262CD21F20A86703190B3BFA79E5CC9193FF385D9825
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28 BefA. =3262CD21F20A86703190B3BFA79E5CC9193FF385D9825

29 A=537F39F9BA5AD840322993FC90F6A1C2447367E289B27

30 Bef_x0. =457052FFFFFFFFFFFFFFFFFFFFFFFFFFFE6E1B82329BA

31 starting point: x0=72CAE31EC00000000000000000000000000000D73C6AB

32 Bef z=1.R mod n =0

33 Aft z=1.R mod n =61f6537fffffffffffffffffffffffffffe200b7addc9

34 Bef A =3262cd21f20a86703190b3bfa79e5cc9193ff385d9825

35 A+2 =fd331a1f20a86703190b3bfa79e5cc91903f3450c3ec

36 b=(A+2)*/4 =3f4cc687c82a19c0c642cefe9e797324640fcd1430fb

37 ecm_stage1:Montgomery Curve :

4e7edf1e6e96b6100c8a64ff243da870911cda64acabd.Y^2= X^3 +

537f39f9ba5ad840322993fc90f6a1c2447367e289b27.X^2 + X

↪→

↪→

38 default x0,z0 x=457052fffffffffffffffffffffffffffe6e1b82329ba

z=61f6537fffffffffffffffffffffffffffe200b7addc9 go=1↪→

39 normal x0,z0 x=72cae31ec00000000000000000000000000000d73c6ab z=1

go=1↪→

40 montgo x0,z0 x=457052fffffffffffffffffffffffffffe6e1b82329ba

z=61f6537fffffffffffffffffffffffffffe200b7addc9 go=1↪→

41 ecm_stage1:x2 x=A5BFD1FFFFFFFFFFFFFFFFFFFFFFFFF16B92D1F0D08DE

z=D976567FFFFFFFFFFFFFFFFFFFFFFFFC5C27AE55F0E23 p=2 big_r=2↪→

42 ecm_stage1:x2 x=5980751D3AF60869F4328FD9D35B585ECBFB3657CDFF6

z=6532A27B3EA28AC3D347874B5D775E0645F6D3195DD76 p=2 big_r=4↪→

43 ecm_stage1:x2 x=5E7ADDCB22A7B6CE0C13DCC26F76272B38B0770BFB8AD

z=B52D84641FC6FDA2BC5B1355786C7ACB1424A6A4E3FF1 p=2 big_r=8↪→

44 ecm_stage1:x2 x=4440A83BCCE663EF95642D46E8311F1C0C809EB3304E1

z=60B2E9839BE010941C9DCACFDC4E70DCA58DBC707EBD1 p=2 big_r=10↪→

45 ecm_stage1:x2 x=BE362FF2300BA8F7652B7C85E4F440FE4BBD3A46AECFE

z=DD2BD4956B6EA4681799071829588C543BFD3FB3F1D53 p=2 big_r=20↪→

46 ecm_stage1:x2 x=1C33AE8F2B3D9D10E9D279F9B5D26FE5DBE8B909383A9

z=1EED1B190C533DD0BE121705C32B3BD93919C5ABAF173 p=2 big_r=40↪→

47 ecm_stage1:x2 x=AF5F03E2DCBD962D8E5710F9424346E94BED8487C6B17

z=D233B287EBFB32BD8EF41AA827E001A141006FD0D4366 p=2 big_r=80↪→

48 ecm_stage1:x2 x=2E546874F151ACBBD82E8CD6BE8B78AB09DF01EAAB556

z=82DA9905EA778904C1CD1AD6A88312B340387AA823B38 p=2 big_r=100↪→

49 ecm_stage1:x2 x=23DD0B3EFCE5AF676A76F45E3179321798B54DDB981DB

z=B8178735E55A05F63CFD630A65B2BDBCA0482D6C71BC2 p=2 big_r=200↪→

50 ecm_stage1:x3 x=E2D304769505A47A47A6454E352114D4B0D0EDD3A5B20

z=C5CFC365BC0E345BE8657D0AFE0C9818EE4ACBA4B920D p=3 big_r=600↪→

51 ecm_stage1:x3 x=D90AECDFEA786C87BB764D9AAC93896E22E2B6B422A13

z=363EF78B0224B55905030CBBC8E72F411B1B0F6169CC7 p=3 big_r=1200↪→

52 ecm_stage1:x3 x=E12056429B89C8EAAD9344EE4F440E624918B2CCE35B0

z=54D18DCB52195CC2B99A3CA494F2EA02AE0E8992FAA87 p=3 big_r=3600↪→

53 ecm_stage1:x3 x=7CA5D1011B554FBD7F5F690E53670C40DDFFE759E684

z=46F59AAC5E0473D12A777DF2098522170B28CF16C7108 p=3 big_r=A200↪→

54 ecm_stage1:x3 x=69A5F8F5091BC2A624EE6FD4DA306AC70253217282DBD

z=58221F556C6570F465ADE38223ED180FB7CC399464850 p=3 big_r=1E600↪→

55 ecm_stage1:x3 x=A6C882C26CC4866D12EB85B9D821EAB5E52F3492C5598

z=38F6374288691B958F8A232D21679BE4E98F7CD0E6F93 p=3 big_r=5B200↪→

56 ecm_stage1:prac x=7309AD5BDF71F468CA2B2EA7D82E69E64B83786CFE483

z=77A20DC4A70D4A3F9928A903BF81AAABD80CF3BDA3BC2 p=5 r=5↪→
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57 ecm_stage1:prac x=B06B8860FCFA465F963A9DAAEA7701D553B2E65BE0B18

z=AFF7E244514D97F13F06FF2A939E7A2BF2CC975FA14E2 p=5 r=25↪→

58 ecm_stage1:prac x=C6C219CFB56CBE07217DED3F453AF1F8DF07399DBF750

z=96723C29EE896FE30DC38A4445B67CB8B80FAF7D7D660 p=5 r=125↪→

59 ecm_stage1:prac x=437E9BAE034406E158C640773C02588360D3C3AA27308

z=E14F8A054405DA7D7DF10B0621087FF3AFFEFC1B73759 p=5 r=625↪→

60 ecm_stage1:prac x=601C8172675D737EAC351F527A50D9D6C06DABA192E4A

z=8FC322B6B61CE7DA1D6611420F4F22F8B5E583786DA66 p=7 r=7↪→

61 ecm_stage1:prac x=698297CC247CA77FD796B671B06F93B23BC108F093400

z=C6B25A91BDC58CEDD8B3FE613AB398DC21EEE0C99DA7B p=7 r=49↪→

62 ecm_stage1:prac x=96499030E19D555807541FED9C7B43608F74DA0AD6885

z=257223D5BAFA480734FAC341EF7FF37BBA3F46161BD06 p=7 r=343↪→

63 ...

64 ...

65 ecm_stage1:prac x=AFA653617D1F497999C82F9027FFCE93B855D32E7B581

z=4B7793800600E4CDB06B60EC95A66A4667CE28815479 p=877 r=877↪→

66 ecm_stage1:prac x=30ACACFFFC653FA97940C9A84EC97E472E96AC238C710

z=C987029B13EA9E92A1CCCAD0506EF915EF5E02B990E2F p=881 r=881↪→

67 ecm_stage1:prac x=755F487DBB933797B680A75A65496293D0E1CF797F5F6

z=A0930E560FB23CFF0B0F6006B2BE09234648BB8A1C7AB p=883 r=883↪→

68 ecm_stage1:prac x=D9A1BCA7CD6EE18AF2C3FCE66657E612BFE909D31116D

z=D0058DFB575EB696D359BBB6CEC63F264DFB1B94BF5D6 p=887 r=887↪→

69 ecm_stage1:prac x=D78F26E792E4F2D8BED73D971D726277AE0FD7998D01F

z=2728C517D57A2CB3F2263894FD665B7BF77F50DD7A3AD p=907 r=907↪→

70 ecm_stage1:prac x=731C3F493E367A0352C8AF5B8180F54D151CA11BA6CEF

z=6032DC2363A2EFFDF27760D038021478AE4139F2A4C8F p=911 r=911↪→

71 ecm_stage1:prac x=A67EE90B988A0119B866DB9D92E7C496E4B56EEE9AE46

z=7AF587BC6E88AE812DBA61ABA842DA2799970BFFD8C0F p=919 r=919↪→

72 ecm_stage1:prac x=47959946EF946E2ADD5D2C1D95A3C699F38F240E36969

z=525728DD80184134654BFBB189B4EE7B0E23DB2ED2C45 p=929 r=929↪→

73 ecm_stage1:prac x=86E0D20A1F48DFD7501E94A5AAFC99DFD811A257F799B

z=A7F288D1084AE121414E79B39FE9812A79D22D43F131C p=937 r=937↪→

74 ecm_stage1:prac x=6FCF5CD72A0665DD15E4677BE8273378AEC28A384ACED

z=D4E0113E8F088D5B72950ADA7FE2E6400F80D56FF63A0 p=941 r=941↪→

75 ecm_stage1:prac x=B0187D7A9154F1B43887036F44429793403F882C4F2DA

z=CBDF3162C1C66ECCCA084BCBBFEC0C88C5900A44928D4 p=947 r=947↪→

76 ecm_stage1:prac x=84F4247064AC524A678CD34BA8D869615CDC301DDD937

z=D2E5F642F83F2AFB85645750A5FBD3CFE6E0E3FF4C5A6 p=953 r=953↪→

77 ecm:ecm_stage1:ecm_mul result:

x=8b9744e5e22c899de630b52971eae817d7a5f400bae72

z=650d4c930662f2ae42aecd3e68c9ec9e3b63362a5f636

↪→

↪→

78 Prac result of ecm stage1 =========================>>>>>>>>x/z in

norm form: 633294cb7d5c9b91960839af924a29621c3925dc8129e↪→

79 ecm_stage1:big_r

281091188610b1a7d57f82e293e9aefe96cde6a215fd76eb40f25393070f92↪→

80 64a49b76730d8c265aa850558dfeda6e831629c8cfe5c610562e03311728173b32

81 c61c69e9573cf2438fe26bc7a3a09d85751ba39fd5085a3713e7fee9db6c2a9e0d

82 e0eefeb7523e3b3dd9cd8edb073c475c476470e17d9f00345fbc988a3306b548ae

83 1b5e64e768cfb47408cb73bacd1c68ae0d56ca6430f631a3dfe3870d5bc2125fca

84 2f5a139c079c32f600

84



85 ********** Factor found in step 1: 30210181

86 Found probable prime factor of 8 digits: 30210181

87 Probable prime cofactor

45671926166590716193865151022383844364247891983 has 47 digits↪→

88 Peak memory usage: 5MB

89

90 D:\devsoft\ecm\bin\x64\Debug>

Listing A.2: GMP-ECM reduced output for σ = 10, B1 = 960, B2 = 50000

85
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