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ABSTRACT

A NOVEL APPROACH TO
REACHABILITY ANALYSIS OF AERODYNAMIC INTERCEPTORS

Bayoglu Akalin, Tugba
Doctor of Philosophy, Aerospace Engineering
Supervisor: Asst. Prof. Dr. Ali Turker Kutay

September 2023, 172 pages

An algorithm for reachability analysis has been developed to address the evolving
challenges faced by air defense systems due to the increasing diversity of potential
threats. The expansion of target sets that pose threats necessitates the development
of enhanced defense mechanisms to effectively counter numerous targets, some of
which are challenging to detect and track. To address these challenges, the
coordinated use of interceptor kinematic capabilities to create a defended airspace

shows promise.

To implement this strategy effectively, accurate forecasting of interceptor kinematic
capabilities, referred to as reachable sets, is crucial. This study presents a novel
reachability analysis algorithm with a specific focus on aerodynamic interceptors.
The algorithm employs a directional search technique to determine reachable set
boundaries along predefined search directions under various flight conditions and

durations, while accounting for input constraints.

Key factors considered include energy dissipation during maneuvers, energy

augmentation from thrust profiles, variable acceleration limits due to dynamic flight



conditions, and autopilot dynamics. Leveraging Model Predictive Static
Programming, the algorithm offers input-constrained suboptimal midcourse
guidance law. This law assesses reachability, generates energy efficient trajectories,
and addresses physical limits.

The resulting boundaries represent achievable minimum and maximum ranges under
different conditions, aiding interceptor capability estimation. Furthermore, the
research conducts a comparative analysis, highlighting the significance of input
constraints in control system design. Comparing reachable sets with and without
input constraints provides insights into system behavior, emphasizing the role of

input constraints in guidance algorithm design.

Keywords: Reachable Set Computation, Reachability Analyses, Model Predictive
Control, Optimal Control
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0z

AERODINAMIK ONLEYICILERIN ULASILABILIRLIK ANALIZINE
YENI BiR YAKLASIM

Bayoglu Akalin, Tugba
Doktora, Havacilik ve Uzay Miihendisligi
Tez Yoneticisi: Dr. Ogr. Uy. Ali Turker Kutay

Eylul 2023, 172 sayfa

Potansiyel tehditlerin artan ¢esitliligi nedeniyle hava savunma sistemlerinin karsi
karsiya kaldig1 gelisen zorluklari ele almak igin erisilebilirlik analizi algoritmasi
gelistirilmistir. Tehdit olusturan hedef setlerinin genislemesi, bazilarinin tespit
edilmesi ve izlenmesi zor olan bir¢ok hedefi etkili bir sekilde karsilamak igin
gelismis savunma mekanizmalarmin  gelistirilmesini ~ gerektirmektedir. Bu
zorluklarin Ustesinden gelmek i¢in, savunulan bir hava sahasi olugturmak amaciyla

onleyici kinematik yeteneklerinin koordineli kullanimi imit vericidir.

Bu stratejiyi etkili bir sekilde uygulamak i¢in Onleyici kinematik yeteneklerinin,
"ulagilabilir kiime" olarak adlandirilan, dogru bir sekilde tahmin edilmesi kritik
onem tasimaktadir. Bu ¢alisma, 6zellikle aerodinamik 6nleyicilere odaklanan yeni
bir erisebilirlik analizi algoritmasi sunmaktadir. Algoritma, girdi kisitlamalarim
hesaba katarak, ¢esitli ugus kosullar1 ve siireleri altinda belirli arama yonleri boyunca

erigilebilir kiime sinirlarini belirlemek i¢in yonlii arama teknigini kullanmaktadir.

Dikkate alinan temel faktorler arasinda manevralar sirasindaki enerji kaybi, itki
profillerinden gelen enerji artis1, dinamik ugus kosullarindan kaynaklanan degisken

ivme sinirlart ve otopilot dinamikleri yer almaktadir. Model Tahminli Statik

vii



Programlamadan yararlanan algoritma, girdi kisitlamali altoptimal ara satha giidiim
yasas1 sunmaktadir. Bu yasa, erisilebilirligi degerlendirir, enerji verimli yoriingeler

olusturur ve fiziksel sinirlari ele alir.

Elde edilen smnirlar, farkli kosullar altinda ulasilabilir minimum ve maksimum
menzilleri temsil etmektedir ve dnleyici kabiliyetinin tahmin edilmesine yardimci
olmaktadir. Ayrica, arastirma, kontrol sistem tasariminda girdi kisitlamalarinin
onemini vurgulayan Karsilagtirmali bir analiz gergeklestirmektedir. Girdi
kisitlamalarini iceren ve igermeyen erisilebilir kiimeleri karsilagtirarak, sistem
davranisina dair i¢goriiler sunmaktadir ve giidiim algoritmasi tasarimindaki girdi

kisitlamalarinin roliinii vurgulamaktadir.

Anahtar Kelimeler: Erisebilirlik Kiimesi Hesaplamasi, Erisebilirlik Analizleri,

Model Ongorilti Kontrol, Optimal Kontrol
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CHAPTER 1

INTRODUCTION

In recent years, the expansion of threats faced by air defense systems has presented
a formidable challenge. The deployment of multiple threats with varying capabilities
has become a prevalent tactic, aimed at overwhelming the capabilities of air defense
systems. Additionally, the coordination among targets, uncertainties in target states,
and unpredictable target maneuvers further compound the difficulties in defending
specific airspace when interceptors are allocated in a one-to-one fashion.
Consequently, there is an urgent need to develop new air defense capabilities that
can effectively handle both single and multiple threats. To achieve this, it is essential
to consider the physical limitations and kinematic capabilities of aerodynamic
interceptors within the air defense strategy.

The significance of midcourse guidance for aerodynamic interceptors lies in its
critical role in achieving successful target interception and ensuring an effective air
defense strategy. Among the various guidance phases, midcourse guidance is
particularly crucial for medium or long-range aerodynamic interceptors due to its
extended duration. Throughout the midcourse phase, multiple sources of information
are employed to guide the interceptor towards an optimal kinematic state that enables
target acquisition by the seeker. This phase plays a crucial role in finalizing the
allocation of interceptors to incoming targets, as well as ensuring their successful
interception during the terminal phase. Consequently, the development of efficient

midcourse strategies for each interceptor is of utmost importance.

A plethora of midcourse guidance strategies for aerodynamic interceptors can be
found in the academic literature. Many of these strategies are derived from optimal
control methodologies and Proportional Navigation (PN) based principals. While
PN-based methods take into account target velocity and position information, they



often overlook the evaluation of potential target maneuvers when designing the
guidance law. On the other hand, optimal control-based guidance laws [1] primarily
aim to achieve energy efficiency by minimizing total control effort during flight and
maximum control command demand during the terminal phase. They are commonly

employed to optimize interceptor flight parameters at the moment of interception.

However, existing applications in this field often neglect to consider if the interceptor
can feasibly get to the desired destination with the available input set throughout the
flight. To enhance the robustness of guidance laws against uncertainties in target
information, a reachable set-based approach [5] has been proposed in recent
literature. This approach takes into account not only the current trajectories of
interceptors but also the potential trajectories resulting from changes in target
kinematics. Consequently, this guidance law exhibits greater resilience in the face of

uncertainties.

To facilitate the development of reachability-based midcourse guidance laws [5], it
is crucial to conduct realistic and detailed computations of the reachable set. These
computations aim to create a map of the attainable area, taking into account not only
the kinematic capabilities of the aerodynamic interceptor but also the physical

limitations imposed by the aircraft's design and the constraints of its actuators.

1.1  Reachability Concept

A reachable set can be defined as the set of states obtained by the application of
different possible admissible control sequences from a given initial state.
Reachability analysis is utilized to assess the reachable set over a specified time
interval. The reachable set (admissible set of states) consists of state variables that
include not only position but also other attributes such as velocity, orientation, or
internal states. By focusing on reachable positions in the reachable set, refined
analysis can be particularly relevant in applications where the position is the primary

concern, such as path planning, obstacle avoidance, or spatial coverage. In this study,



a specific focus is placed on the positions within the reachable set, which exclusively
consists of positions that can be reached. The reachable zone is concerned with
examining whether a designated point can ultimately be reached by a system

originating from a specified point.

Figure 1 shows an example of a representative 2D reachable set (only spatial data)

which is a set of positions that the interceptor can reach at ty, duration while

following different trajectories.

)
A1
h
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Figure 1: Reachable Set in 2D

Reachability analysis encompasses two complementary approaches: (1) Forward

reachability, and (2) Backward reachability.

The aim of the forward reachability computation is to identify the final set of states
at tgor set of states in a time frame 0 < t < t; which start from a given initial state
X, and initial time ty,and applying a sequence of control inputs. For example, the
forward reachability analysis yields reachable sets which show the terminal target
positions for a given initial condition, nonlinear system dynamics, and constraints as

shown in Figure 2.



R(tr|x(t0), to)

Figure 2: An illusrative forward reachable set

On the other hand, the aim of the backward reachability computation is to identify

the initial set of states or previous set of states in a time frame 0 < t < t; by using

given target reachable set R (tf | xX(ty), to ). Similarly, for the same example, the set
contains terminal target positions could be reachable with the given dynamical
system if the initial state is inside the backward reachable set. Figure 3 shows the

graphical representation of a backward reachable set as an example.
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Figure 3:An illusrative backward reachable set

Numerous methodologies exist for computing reachable sets, each with its own
strengths and limitations in terms of solution accuracy, computational requirements

and class of the system.

One of the key factors in selecting an appropriate method is the accuracy of the

solution. Different techniques offer varying levels of precision in representing the



reachable sets, and the choice depends on the specific requirements of the problem
at hand.

Another crucial factor is the computational power necessary for executing the
method. Reachable set computations can be computationally intensive, particularly
for nonlinear systems with complex constraints. Therefore, researchers must
carefully evaluate the computational demands of each method and assess whether
the available computational resources are sufficient for their application.

Additionally, the capability of the method to handle the specific class of systems is
another key consideration. Given the focus on nonlinear dynamics in this study, it is
essential to select a method that is tailored to these characteristics. Such methods
should effectively capture the intricate behavior of nonlinear systems and properly
account for the presence of constraints to ensure accurate and reliable reachable set

computations.

This study concentrates on nonlinear system dynamics with bounded input limits,
emphasizing the need for methods capable of accurately representing such nonlinear

systems.

1.2 Problem and Objectives

The midcourse phase is the longest phase of the interceptor for long and medium
range missions. Depending on the concept of operation, there can be several
objectives for the design of the midcourse guidance algorithm. For one to one
engagement case, five different objectives for the midcourse guidance can be listed

as follows:

e Bring the interceptor to the best terminal handover point by using the target
state supplied by external sources. The best terminal handover point is the
point that ensures a successful interception at the terminal phase.

e Minimize the energy loss to maximize the warhead effectiveness and/or to

gain high maneuverability for the terminal homing guidance.



e Minimize the flight time to intercept the target before attacking its objective.

e Maximize target coverage by the reachable set of pursuers at intercept.

e Protect and defend an area against the attacking target.
There have been different approaches proposed in order to develop a guidance law
that satisfies the objectives listed above. The common approaches are; (1) Pursuit
guidance such as pure pursuit, deviated pursuit, (2) PN based approaches such as
true PNG, augmented PNG, biased PNG, (3) Optimal guidance, and (4) Artificial
intelligence. The reachability-based guidance laws [5] that benefit from the
reachable set analysis may not be categorized into any of aforementioned
approaches. This approach has been recently studied in midcourse guidance
algorithms to maximize target coverage at intercept (dynamic coverage theory)

and/or defended area.

The guidance approaches listed above do not take the reachability of interceptors
into account explicitly. Instead, the interceptor’s speed advantage is assumed to be
sufficient for ensuring reachability at the intercept point. However, there exists such
a possibility that the interceptor cannot reach the target when uncertainty in target
states is high or the target changes its strategy during flight; such as changing flight
speed and heading. Moreover, coordination between numerous targets can decrease
the possibility of an effective response by the air defense system. As a result,
different from the traditional cooperative guidance approaches, application of
dynamic coverage theory [18], [25], [26] for the cooperative guidance problem is
being investigated by researchers. The objective of such an approach is to maximize
the coverage of the region of possible target locations in the reachable set of the

pursuer.

Dynamic coverage theory is proposed to maximize target coverage by the reachable
set of pursuers at intercept. This approach is adapted if the target states’ uncertainty

is high and accurate target position information is not available.

Figure 4 illustrates an example of reachability-based air defense scenario. Each target

can reach different positions at a certain duration depending on its maneuver, speed,



and heading. Therefore, interceptors’ reachable set should be able to cover possible

target positions at the interception in the reachability-based air defense concept.
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Figure 4: Example of Dynamic Coverage for Multiple Interceptors Against

Multiple Targets

Apart from dynamic coverage theory, the area defense approach [11], [12], which is
also different from the traditional guidance approaches, is proposed to guarantee
interceptors to reach incoming targets before they can reach the defending area. This
approach also utilizes reachable set of pursuers at intercept. The earliest intercept
line (EIL) [20], which is computed by using the reachable set of interceptors and
target is utilized to defend a given area. Figure 5 illustrates an example of intercept
line computed from reachability set of interceptor and target and Figure 6 shows an
example of intercept line control concept. Target and interceptor reachability set
should be developed by considering different flight conditions such as different
speed, maneuver, heading and by considering different time of flight durations for

intercept line control concept.



~

~.
/
—~

Figure 5: Intercept Line Developed From Reachability Sets

Control Interception

Geometry
—
‘,
/
Interceptor Defended
©
Zone Target
\

Figure 6: Example of Intercept Line Control

The traditional approach to the development of an interceptor guidance system is to
design estimator, guidance algorithm and autopilot. It must be acknowledged that
this kind of design approach has been successfully applied to various interceptor
guidance systems for decades. However, the steady increase in performance

requirements and the tendency to reduce unit costs for each new generation of



interceptors leads to more demanding designs and continues to motivate researchers
for more efficient guidance algorithms. The reachability-based guidance system in
an interceptor can be described as shown in Figure 7: The traditional guidance
system of an interceptor requires designing an estimator, guidance algorithm and
autopilot. The reachability-based guidance system requires additional items: (1)
Reachability Analysis Module and (2) Reachability Set Database.
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Figure 7: Reachability Based Guidance System

The Reachability Analysis Module is responsible for performing reachability
analysis computations based on the system dynamics and constraints. It calculates
the reachable sets and determines the set of achievable states for the interceptor.
Reachability Analysis Module requires information regarding system dynamics,
initial states, system constraints and time horizon. This data is utilized in reachability
analysis algorithm to compute reachability information for the aerodynamic
interceptor. The computed reachable sets for different initial conditions and

constraints are stored in a database. This database serves as a reference for the



guidance system to access the kinematic capabilities of the interceptor during the

midcourse phase.

The reachability-based guidance approaches discussed in literature have been
predominantly based on certain assumptions that neglect important factors such as
speed variation of the interceptor and target due to aerodynamic drag and thrust, as
well as system nonlinearities including acceleration limits. However, these
assumptions can result in unacceptable interception lines and reachable sets,
particularly in real-world applications where constant speed may not be satisfied or
there are limitations in the system actuators. Hence, it becomes crucial to ensure
realistic computations of reachable sets in the design of reachability-based

midcourse guidance laws.

By addressing the aforementioned challenges, the computation of reachable sets
offers valuable insights to the guidance and control algorithm, serving as a tool for
various aspects such as mission design, target allocation, and performance
assessment. To address the need for accurate and practical reachability analysis, this
research focuses on the development of a reachability analysis algorithm. This
algorithm aims to provide answers to key research questions that arise in the context

of reachability-based midcourse guidance:

1. Theoretical Maximum and Minimum Reachable Set Boundaries: What are
the maximum and minimum reachable set boundaries that can be achieved
by the aerodynamic interceptor considering factors such as speed variation

and system limitations?

2. Effect of Parameter Variations: How do variations in system parameters
impact the shape and boundaries of reachable set?

3. Impact of Input Limits: How does the presence of limitations on system
inputs, including acceleration limits, influence the characteristics of the

reachable set?

The outcomes derived from the reachability analysis algorithm serve various

purposes. Reachable set computations are conducted for all possible initial
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conditions, providing insights into the kinematic capabilities of the aerodynamic
interceptor under different flight conditions. By satisfying defined performance
criteria, calculation of minimum and maximum range reachability boundaries based

on specified initial condition and search direction.

Importantly, the reachability analysis algorithm takes into consideration the
limitations on system inputs. This aspect plays a crucial role in generating accurate
and reliable reachable sets. By incorporating constraints on the system's inputs, such
as acceleration limits, the algorithm ensures that the reachable set reflects the

practical limitations of the interceptor's capabilities.

It is important to note that the reachability boundaries, representing the interceptor's
kinematic capabilities, are assumed to be generated offline. These boundaries are
then stored in a database embedded within the guidance computer for subsequent

utilization in the guidance approach.

1.3 Scope and Principal Contributions

In this study, the reachable set computation approach for a nonlinear system is
presented. The focus is on obtaining kinematic capabilities of an aerodynamic

interceptor for reachability based guidance approaches.

This work has several contributions for both to the guidance and control fields.
Basically, it derives a nonlinear dynamical model for the aerodynamic interceptor,
where variations in velocity (due to aerodynamic drag and thrust) and acceleration
limits are not disregarded. In addition, it develops a guidance algorithm for the given
system dynamics of an aerodynamic interceptor to find feasible trajectories using
optimal control. Model predictive static programming technique has been used to
propose effective input constrained suboptimal midcourse guidance laws for
engaging incoming targets. Apart from being energy efficient by minimizing the
lateral acceleration demands throughout the trajectory, it enforces constraints on
input parameters. The handling of inequality constraints pertaining to the input

11



vector is achieved through the utilization of Hildreth's procedure [10]. These
constraints are specifically defined based on the acceleration limits of the

aerodynamic vehicle.

A novel method is introduced to create reachable sets for the nonlinear system. The
problem of reachable set computation is solved by constrained model predictive
static programming with different desired final conditions. By considering various
flight conditions and durations, the boundaries of the reachable set in terms of

minimum and maximum ranges are determined.

To illustrate the reachable set calculation procedure for the lateral plane, Figure 8.
demonstrates an example for reachable set calculation procedure. The minimum and
maximum boundary points of the reachable set for a specific search direction are
calculated using a directional search approach, which checks the reachability at each
calculation step. Notably, only one initial reachable position and its corresponding
input history are required for each search direction. The reuse of previous terminal
points as the initial estimate for subsequent points eliminates the need for predefining
approximate geometries or defining grid point positions in the initial feasible set for
reachability set computation.

Furthermore, the algorithm employed in this study leverages the reuse of optimal
control information from previous terminal points, leading to improved
computational efficiency by minimizing redundant calculations. This utilization of
prior knowledge allows for a seamless integration of complex state constraints and

boundary conditions, enabling more realistic and accurate modeling of the system.

Another noteworthy advantage of the proposed method is the elimination of
cumbersome set operations, such as Minkowski sum [39] and convex hull
computations, which are common in other reachability analysis approaches. By
circumventing these complex set operations, the proposed method streamlines the
computational process and mitigates the potential propagation of approximation

errors.
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Figure 8: Reachable Set Boundary Calculation Procedure

A more realistic reachable set calculation is performed by considering the inclusion
of autopilot dynamics with bounded acceleration responses. Additionally, a

minimum total control command effort criterion is enforced to ensure the attainment
of desired final conditions.

The effect of input constraint on the kinematic capabilities of the interceptor is
explored by comparing the reachable sets obtained by input constrained and
unconstrained cases. This analysis aims to assess the implications of input constraints
on the interceptor's performance and capabilities. Additionally, the effect of initial

state parameters on the reachability boundaries are investigated.

13



To ensure the robustness of the developed algorithm in the presence of parameter

variations, a sensitivity analysis is conducted. Specifically, reachable sets for an

aerodynamic interceptor are obtained while considering variations in system

parameters.

During this study, the following tools were developed for creating and analyzing

reachable sets:

Guidance Algorithm: A guidance algorithm was developed specifically
tailored to the system dynamics of an aerodynamic interceptor. This
algorithm utilized optimal control techniques to find feasible trajectories,
taking into account the constraints and objectives of the system.

Reachable Set Computation Tools in Matlab: To perform the computation of
reachable sets, a set of tools were developed using Matlab. These tools
provided a platform for realistic reachable set computation.

Comparative Analysis of Reachable Sets: In order to investigate the impact
of input constraints on the kinematic capabilities of the interceptor, a
comparative analysis of reachable sets was conducted. This analysis involved
comparing the reachable sets derived from scenarios with input constraints
to those without constraints. By quantifying the differences between these
sets, the study was able to evaluate the influence of input limitations on the
achievable trajectories and maneuverability of the interceptor.

Sensitivity Analysis Tool for Reachable Set Computation: a sensitivity
analysis tool was developed to investigate the impact of parameter variations
on the computation of reachable sets. This tool enabled the incorporation of
variations in the system parameters. By systematically varying the parameter
values and computing the corresponding reachable sets, the sensitivity
analysis tool provided insights into the sensitivity of the reachable sets to

changes in the parameter values.
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1.4 Outline of Thesis

The structure of this dissertation is organized as follows.

1) Introduction
2) Literature Survey
3) Example Problem (Nonlinear Dynamical Model for Aerodynamic
Interceptor)
4) Guidance Algorithm Development
a. Suboptimal Midcource Guidance with Terminal Position Constraint
b. Suboptimal Midcource Guidance with Terminal Position Constraint
and Bounded Acceleration
5) Reachable Set Analysis Tool Development
6) Set Computations
7) Sensitivity Analysis
8) Conclusion

The contents of each items listed above are elaborated as follows:

Chapter 1 provides background information for reachability based guidance systems
and reachability concept. The importance of reachability analysis in guidance and
control algorithm development is discussed. Challenges and limitations in traditional
reachability analysis approaches and the need for an enhanced reachable set

algorithm is highlighted.

Chapter 2 provides an theoretical foundations for reachability analysis principals and
concepts. Key concepts such as reachable sets, system dynamics, constraints, and

optimization techniques are explained.

Chapter 3 provides a comprehensive exposition of the nonlinear dynamic model

employed for the representation of an aerodynamic interceptor.

In Chapter 4, the focus of the study shifts towards the design and implementation of

the guidance algorithm utilized within the Reachability Analysis Algorithm. This
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algorithm serves as a pivotal component in the generation of reachable sets for an
aerodynamic interceptor. To accomplish this objective, the concept of constrained
model predictive static programming approach is employed. In the pursuit of
enhancing the capabilities of the model predictive static programming technique, the
incorporation of constraints on the control variable becomes paramount. This step
recognizes the significance of accounting for input limitations imposed on the
interceptor, ensuring a more realistic representation of its behavior. Consequently, a
departure from the direct utilization of the equations associated with model
predictive static programming becomes necessary. Instead, meticulous derivations
are carried out to integrate the core principles of model predictive static
programming with the consideration of input constraints. Moreover, comprehensive
exposition of the Hildreth procedure [10], which is implemented as a vital
component in solving the input-constrained model predictive static programming
approach is provided. This chapter elucidates the underlying principles and
algorithmic details of the Hildreth procedure [10], shedding light on its practical
application within the context of the guidance algorithm.

Chapter 5 shows a comprehensive account of the reachable set computation tool
developed as part of the Reachability Analysis Algorithm. This chapter serves as a
detailed explanation and demonstration of the algorithm employed in generating

reachable sets for the aerodynamic interceptor.

Chapter 6 provides a thorough analysis of the impact of input constraints on the
kinematic capabilities of the interceptor. It explores how the inclusion of constraints
on the control variables, such as maximum acceleration or control effort, influences
the reachable set. It analyzes the changes in the reachable set boundaries, shapes, and

coverage due to the presence of input constraints.

Chapter 7 of the study focuses on sensitivity analysis. The objective of this chapter
is to assess the impact of parameter variations on the computed reachable sets. The
sensitivity analysis involves varying the system parameters within specified ranges

and analyzing the corresponding changes in the reachable sets. By systematically
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investigating the effects of these variations, the study aims to identify critical

parameters and their influence on the reachable set.

Chapter 8 provides a brief summary of the design and implementation of the
Reachability Analysis Algorithm to highlight the key points and identify the
remaining challenges. A discussion of the algorithm’s contributions to the field of
guidance systems is carried out. Then, future research directions and potential
enhancements for the reachability set algorithm are discussed.
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CHAPTER 2

LITERATURE REVIEW

Various methods have been developed for computing reachable sets in the existing
literature. To comprehend the distinctions between these methods, it is important to
establish a proper definition for reachability analysis. Reachability analysis involves
the computation of the reach set, aiming to address requests such as:

1) Determining whether the reach set and a given target set intersect at a specified
time.

2) Finding feasible initial conditions and controls that steer the system from a given
initial condition to a reachable state within a specified time.

3) Analyzing the impact of input constraints, such as limitations on control inputs,
on the size and shape of the reach set.

4) Visualizing the projection of the reach set onto designated 2 or 3 dimensional
subspaces.

By addressing these objectives, reachability analysis contributes to the

comprehensive understanding of controllers for dynamical systems.

2.1  Overview of Reachability Analysis Principles and Concepts

The principles of reachability analysis revolve around the understanding of system
dynamics and constraints. Mathematical models, such as differential equations or
discrete-time equations, are used to describe the evolution of the system over time.
By analyzing these equations using numerical or analytical methods, researchers can

determine the reachable states and trajectories of the system.
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Modelling the dynamics of the system is crucial for reachability analysis. The
system's behavior, including its nonlinearities and time-varying properties must be

properly captured in the mathematical model used for reachability analysis.

Input constraints are another essential consideration in reachability analysis. These
constraints limit the range of inputs that can be applied to the system, taking into
account physical limitations, actuator capabilities, or design specifications.
Incorporating input constraints in the analysis provides a more accurate
representation of the system's behavior and helps identify the feasible states and

trajectories.

Sensitivity is another crucial concept in reachability analysis. Real-world systems
are often subject to parameter variations or disturbances. These variations can

significantly impact the reachable set of the system.

Reachability analysis also considers performance specifications. Performance
criteria measures the quality of the reachable set. Examples of performance metrics
include minimizing the energy consumption, maximizing the covered area, or

optimizing a specific objective function.

Various computational techniques are utilized in reachability analysis, including
numerical methods and optimization algorithms. Careful consideration must be
given to the choice of computational methods and algorithms to ensure efficient and

accurate computation of reachable sets.

The results of reachability analysis provide insights into system behavior,
performance limits, and the design of control strategies. They help to assess the

feasibility of reaching desired states, and evaluating the impact of input constraints.

2.1.1 Reachability

Reachability refers to the property of a system to reach a certain state or set of states
within a given time frame by applying admissable control inputs. It characterizes the
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system's ability to transition from an initial state to a desired or specified target state
under certain constraints. The mathematical expression for reachability can be

defined as:

f(tf)desi‘red € R(tflf(t())' to) Eq 1
X(to) is the initial state of the system, f(tf)desiredis the desired state of the system,

toand ¢ are the initial and target time respectively. R(¢¢|%(to), to) represents the set

of states that can be reached from the initial state x(t,) within the time interval

[to, tr] by applying admissable control inputs

212 Reachable Set

The reachable set is the set of all states that can be reached by a system from a given
initial state under a set of admissible control inputs within a specified time frame. It

represents the set of possible states that the system can occupy.

R(T|x(ty), to) = {x(t)|x(ty),Vu(t) eU,0 <t <T} Eq. 2
R(T|x(ty),ty) is the reachable set at time T, given the initial state x(t,) and
admissable control inputs U. In this study, the positions within the reachable set are
specifically highlighted, with an exclusive composition of positions that can be

reached.

2.1.3 Reachable Set Analysis

Reachable set analysis is a basic technique used to investigate and understand the
capabilities of a given system. It involves the computation and analysis of the
reachable sets of a system, which represent the set of all states computed by
considering systems dynamics, constraints, and other relevant factors. The analysis
may include creating algorithms for the computation of reachable sets, evaluating
the shape of the reachable sets, and assessing their appropriateness for particular

objectives such as traffic management or obstacle avoidance. In the scope of this
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research, reachable set analysis is used for examination of whether a system,

originating from a specified point, can eventually reach a designated point.

2.2  Review of Relevant Techniques for Computation of Reachable Sets

Reachability analysis is a valuable tool applied to various real-world problems. It
provides valuable insights into system behavior, control design, and decision-making
in various real-world applications. Some of the applications in real world problems

can be listed as follows:

e Aerospace and Aviation [45], [46]

e Guidance and control system design for interceptors [38]
e Safe landing problems for spacecrafts [37]

e Robotics [43]

e Traffic Flow [44]

The computation of reachable sets can pose several challenges and problems.Some
of the common issues encountered in the computation of the reachable sets are:

Curse of Dimensionality: Reachable set computation becomes increasingly
challenging as the dimension of the state space increases. The curse of
dimensionality makes it difficult to accurately capture the reachable set in high-
dimensional systems. As the number of dimensions grows, the computations become

more complex and storage requirements are expected to increase.

Nonlinearity: Many real-world systems exhibit nonlinear dynamics and constraints,
which can increase complexity in computing reachable sets. Nonlinearities can lead

to non-convex reachable sets, making their computation more difficult.

Accuracy: System models need to be simplified in some of the cases to make the
reachable set computation easier. However, model simplifications may lead to
inaccurate or incomplete representations of system dynamics, potentially impacting

the accuracy of reachable sets.
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Computational Complexity: Reachable set computation can be computationally
expensive, particularly for large-scale systems or when considering long time
horizons. The numerical algorithms used for reachability analysis may require

substantial computational resources.

Various methodologies exist for obtaining reachable sets (RS) for different classes
of systems. These methodologies aim to strike a balance between solution accuracy
and computational requirements. For linear systems, efficient algorithms have
been recently developed, leading to well-understood methods for RS computation
([e1, [71, 81, [9])- However, RS computation for nonlinear systems poses additional
challenges as the resulting sets are typically nonconvex. As a result, only a limited
number of methods are available for computing RS for nonlinear systems.

In general, three basic approaches can be classified for reachability set computation

which are shown in Figure 9.

Approaches

u Computational ] Predefined Approximate 0 Discretization of the
Complexity Geometries Predefined Area
[ ] Stability Problems || Curse of Dimensionaity

|| Wrapping Effect

Figure 9: Fundamental Methods in Reachability Set Computation
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221 Level Set Method

The prevalent numerical computation method, the Level Set Method [40] involves
solving time-dependent partial differential equations and Hamiltonian equations.
Level set function represents the distance to the boundary of the reachable set. The
surface of the reachable set is defined by a partial differential equation in this
approach. The PDE captures the dynamics of the system and the reachability
properties. The level set function is updated iteratively using numerical techniques
to solve the PDE. The method offers advantages such as capturing the full boundary
of the reachable set. However, the solution procedure of the method introduces
computational complexity, thereby restricting its applicability to smaller
dimensional systems. Furthermore, the reachable set approximation may not
converge to the actual reachable set, leading to potential deviations from the true

solution.

2.2.2 Approximate Geometric Method

Numerical computation techniques are commonly employed in the literature to
compute reachable sets, with a focus on approximating the reachable set using
predefined geometries. These techniques aim to represent the reachable set by fitting
it into predefined geometric shapes or structures.. Approximate Geometric Method
represents the reachable set as using geometric shapes, such as a zonotope [6] or an
ellipsoid [7]. This is based on the assumption that the reachable set for linear systems
is convex in nature. Therefore, these methods employ geometric approximation
techniques to construct convex representations of the reachable set. A consequence
of this method is that the set grows at each iteration, leading to cumbersome
computations of Minkowski sum [39]. Also, these geometric shapes provide a
conservative approximation of the reachable set by bounding the possible states that
the system can reach. Therefore, the method can overestimate the actual reachable

set and this conservative approximation may lead to a larger approximation error
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which grows at each iteration and results in over-approximation of the complete set.
Moreover, the computation of geometric approximations can be computationally
intensive, especially for high-dimensional systems. Figure 10 depicts approximate
geometric method employed for a dynamic system in a two-dimensional space.

Let P and B be two sets in 2 dimension. Assume the dynamic of the system is
represented as follows:

x(k +1) = Ax(k) + Bv(k) Eq. 3
Q is the Minkowski sum of P and VV which is used in the computation of the reachable

set and defined as follows:

Q=PO®V,{x+v|x€ePveV} Eq. 4

An extreme point on Q in a specific direction is the sum of extreme points in the
specified direction on P and V. Affine transformations are applied to all
combinations of vertices, resulting in an approximate convex shape. As the reachable
set expands with each iteration, certain approximations have been proposed in the
literature. Notably, one such approximation involves pushing the face by the element
of Bv, aiming to provide a simplified representation of the reachable set. However,
it is important to acknowledge that this approximation strategy introduces an
inherent accumulation error (Wrapping Effect) as shown in Figure 10.

¥

AP@BV,xePveV Approximation:

/" AP Pushing each face by the element of BV
J (Shaded triangles represents error)
~ BV
Application of affine transformaton to all ﬁ

combination of vertices results vert(P)vet(V)¥
number of vertices after k steps

APOBY Approximations which keep the representation
size small but may accumulate errors to the
point of becoming useless: Wrapping Effect

Figure 10: Application of Approximate Geometric Method
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One approach that addresses the wrapping effect is presented in [6], where the
algorithm utilizes zonotopes to approximate the reachable sets. Zonotopes are
geometric objects that can represent the convex hull of a set of vectors and have been
found to be effective in mitigating the accumulation of errors associated with the

wrapping effect.

In [7], an alternative approach is introduced to address the computational complexity
of polytopic geometric methods. This approach focuses on discrete-time systems and
utilizes ellipsoidal approximations to compute the reachable sets. Ellipsoids are
computationally efficient geometric shapes that can provide approximations of the
reachable sets while reducing the computational complexity. By leveraging
ellipsoidal approximations, [7] offers a practical solution to the computation of

reachable sets for discrete-time systems.

These approaches demonstrate the diversity of techniques employed in the literature
for computing reachable sets. By utilizing zonotopes and ellipsoids, these methods
offer different trade-offs between computational complexity and accuracy. It should

be also noted that these techniques are are well suited for linear systems.

2.2.3 Optimization Based Methods

Optimization Based Methods formulate the computation of reachable sets as an
optimization problem. The objective is to find the set that contains all reachable
states while satisfying system constraints. For general nonlinear systems,
optimization-based methods ([41], [42]) are commonly applied. These approaches
aim to find feasible solutions that capture the reachability properties of nonlinear

systems.

However, it is important to note that the computation of RS for nonlinear systems
remains an active area of research, and further advancements are needed to enhance

accuracy and efficiency.
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2.2.3.1  Optimization Based Methods for Convex Reachable Sets

Another noteworthy method is presented in [8], where the polytopic approximation
of the reachable set is achieved through a set of support hyperplanes derived from an
optimal control formulation. This approach combines the principles of optimal
control theory with polytopic approximations to compute reachable sets. By
formulating the problem as an optimal control problem, [8] provides a systematic
framework for obtaining polytopic approximations that capture the reachable set

boundaries.
The support function of aset X € R" is:

p(LX)y=sup< lLx>x€eX Eq.5
The support function of a set is defined as the inner product between a given direction
vector and any point on the boundary of the set. To approximate the reachable set
using support functions, we define the support function p(l, X) for a set X(t) at time

t in the direction of [.

The set of supporting points of X in [ direction is defined as:

SED = UTx)xex = p" (LX) Eq. 6
In the context of reachable set computation, the support function is used to compute
the outer approximation of the reachable set. By considering a set of direction
vectors, the support function can be calculated in each direction to obtain the
bounding hyperplanes that define the reachable set.

To apply the support function formulation to the reachable set computation for a
simple linear system without constraints, an optimization problem can be formulated

to maximize the support function over a given time horizon.
The optimization problem can be formulated as follows:
maximize: S(t,1) = max 1Tx (¢t)
xXEX

Eq. 7
subject to:x = Ax + Bu
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x(0) € X, (initial condition)
By solving the optimization problem for various direction vectors I, set of support
hyperplanes that bound the reachable set can be determined. Each hyperplane is
defined by its normal vector, which is proportional to the corresponding direction

vector, and an offset.

It should be noted that this approach is only suitable for convex sets.

2.2.3.2  Optimization Based Methods for Nonconvex Reachable Sets

The methods discussed thus far have primarily focused on linear systems, as the
reachable sets for nonlinear systems tend to be nonconvex. Limited research exists
in the literature regarding the computation of reachable sets for nonlinear systems.
Most of these studies are based on the approach outlined in [41]. In [41], the
computation of reachable sets involves selecting a possible region for the reachable
set and discretizing this region into grid points with a chosen step size as shown in
Figure 11. Subsequently, an optimization problem is solved for each grid point to
determine the control input that steers the system from the initial state to the final
grid point. If a control input is found that guides the system to the desired grid point,
then that grid point is considered reachable and included in the reachable set.
Otherwise, the grid point is excluded from the set. The collection of all these final

points forms the reachable set. The computation steps are outlined as follows:

Stepl:Choose aregion G < R™ and discretize G into a grid G,, € G with step size h,

such that each element of G can be approximated by a grid point with error h.
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region G € R™

Discretize by

grid points

Figure 11: Discretization of Reachable Set by Grid Points

Step2: Solve the following optimal control problem for every g, € Gy:

1
Min 3 [1x(T) = gl Eq. 8

The condition shown below should also be satisfied:

x'(t) = f(x(t),u(t)), to<t<T
x(0) = x Eq. 9
u(t) =0

Step3: Define the reachable set approximation by following relation:

Ry (T, tg, xo) = U {x*(T; gn)} Eq. 10

9n€Gh
The approach described earlier has been widely employed in numerous research
studies focusing on nonlinear systems. One notable study, namely [42], presents a
computational method specifically designed to approximate the reachable sets of
nonlinear dynamic systems. This method utilizes grids to effectively cover the region
of interest, and the distance function to the reachable set is evaluated at each grid

point.
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Similarly, in another study referenced as [37], an optimal control-based computation
technique is applied to nonlinear systems. This involves projecting the equidistant
grid points onto a reachable set to determine the maximum attainable landing area.
To accomplish this, the state space is discretized using a set of uniform grid points,
which are subsequently projected onto the plane defined by downrange and

crossrange coordinates.

The primary advantage of the method is its ability to eliminate complex set
operations such as Minkowski sum and convex hull calculations. By employing grid-
based techniques, these operations can be avoided, simplifying the computational

process.

However, it is important to note that this method is subject to the curse of
dimensionality. As the state space dimension increases, the number of grid points
required to accurately capture the system's behavior grows exponentially. This can

result in computationally intensive calculations.

To address this challenge, one possible approach in literature is to compute a subset
of the reachable set (RS) rather than the entire set. By focusing on a reduced set, the
need for extensive computations can be alleviated while still providing valuable

insights into the system's behavior.

2.3 Remarks

The computation of reachable sets (RS) is a crucial aspect in various fields,
particularly in the analysis of nonlinear systems. Optimization-based methods have
emerged as significant tools in RS computations, often combined with approximate
geometric and level set methods for linear systems. However, a novel approach is
proposed in this thesis, which solely relies on optimal control techniques to compute
reachable sets for nonlinear systems. Moreover, an extension to the Model Predictive
Static Programming (MPSP) technique is introduced by incorporating constraints on

the control variable.
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The devised numerical method enables the approximation of reachable sets for
nonlinear problems through the utilization of optimal control techniques. The key
idea is to formulate an optimal control problem that effectively captures the behavior
of the system without explicitly requiring the determination of the feasible set
coinciding with the reachable set. To compute the reachability boundaries, the MPSP
method is employed for different search angles, flight durations, and initial flight
conditions. The approach incorporates terminal constraints in the calculation of
reachable sets. Alongside terminal constraints at the end of the flight time, the
optimization problem encompasses the minimization of acceleration demands
subject to specified acceleration limits at each time step. This objective aims to
reduce the kinematic energy loss of the interceptor, ensuring more efficient and
effective control. By meeting the specified performance criteria, the maximum and
minimum range reachability boundaries are determined. The minimum and
maximum boundary points of the reachable set for a specific search direction are
calculated using a simple directional search approach, which involves moving the
initial guess forward and backward in the search directions while assessing

reachability at each step.

The proposed approach offers several advantages over existing methods discussed
in Section 2.2.3.2:. Firstly, it eliminates the need for defining predefined geometries
or grid point positions for reachability set computation, allowing for greater
flexibility and ease of implementation. Additionally, the algorithm leverages the
reuse of optimal control from previous terminal points as the starting guess for
subsequent points. Notably, this approach readily integrates complex state
constraints and boundary conditions, enabling more realistic and accurate modeling.
The elimination of cumbersome set operations and the propagation of approximation

errors is another notable advantage of the proposed method.
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2.4  Exploration of Guidance Methods Incorporating Reachable Set
Analysis

This section delves into the utilization of reachable set analysis within the context of
exploring guidance methods. The study focuses on the midcourse phase of an
aerodynamic interceptor as an illustrative problem. The objective is to develop an
algorithm for reachable set analysis that can be incorporated into reachability-based

midcourse guidance approaches.
One-to-One Engagement Case

The existing literature offers various guidance methods for aerodynamic
interceptors, including Pursuit guidance, PN-based guidance, and Optimal guidance,
which have been proposed to satisfy objectives in midcourse guidance. Recently,
reachability-based guidance approaches have gained attention in midcourse
guidance algorithms with the goal of maximizing target coverage at intercept, as

governed by dynamic coverage theory, and/or defending a specific area.

Dynamic coverage theory deviates from traditional guidance law objectives by
maximizing target coverage through the reachable set of pursuers at intercept. This
approach is particularly useful when uncertainties in target states are high and precise
target position information is unavailable. The target's location is characterized by
probability density functions, and existing literature describes three primary
approaches for guiding interceptors based on the target's probability density
function: (1) the minimum mean square error criterion (MMSE), (2) the maximum a
posteriori probability criterion (MAP), and (3) the highest probability interval
criterion (HP1) [17]. The MMSE estimator aims to find target position that minimizes
mean square error estimate of the target probability density function at interception.
The MAP estimator, on the other hand, seeks the target position that maximizes the
probability density function of the target at interception. Meanwhile, the HPI
estimator strives to find the target position that maximizes the probability of the
target remaining reachable by the interceptor. The following 2 papers propose a
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predictive guidance law that uses HPI as a terminal constraint for the interceptor. For
instance, [17] presents a predictive guidance law that maximizes the probability of
the target being present in the reachable set of the pursuer. The approach is employed
for the scenario where there is uncertain information about the target state. The
suggested method uses the probability density of the predicted target position to find
the terminal constraint for the predictive control. The terminal constraint is chosen
to position the reachable set of the pursuer to maximize the probability of
interception. [18] is an extended study of [17] which is analyzed in the presence of
multiple decoys. When the pursuer could not discriminate between the decoy and the
target, guidance law maintains the undiscriminated target and decoys in the reachable
set of the interceptor for as long as possible. The suggested approach is suitable when
there is partial information on the target state. The benefits of the proposed approach
are that it accounts for the probability density of the system’s state and unknown

future measurements, and the control input of the interceptor is bounded.

In another line of research, [19] proposes EIL concept for midcourse guidance
algorithm to defend the area using Dubins curves. The earliest intercept line (EIL)
which is computed by using the reachable set of interceptor and target is utilized to
defend a given area. The method controls the movement of EIL to enable the area
defended to be shaped during the engagement [19]. While [19] demonstrates how
modifying the EIL can enhance the defended zone, it does not explicitly explain the
real-time utilization, analytical or numerical control manipulation of the EIL within
the midcourse guidance algorithm. To address this limitation, [20] presents an
analytic approach to control and modify the EIL, thereby overcoming the
deficiencies observed in the earlier study [19]. Similar to [19], this paper
demonstrates a midcourse guidance strategy for area air defense based on EIL
guidance. Intercept geometry and defended area are controlled by an analytical
solution. The benefits of the proposed approach are: lateral acceleration saturation in
the terminal phase is decreased and, the approach compensates for unpredictable
target maneuvers. However, it is important to note that the aforementioned

approaches are predicated upon certain assumptions. Specifically, they assume
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constant velocities for both the interceptor, neglecting factors such as energy loss
due to maneuvers, aerodynamic drag, and energy increase resulting from thrust
forces. These assumptions may potentially lead to inaccurate determination of
reachable points, consequently resulting in unrealistic interception lines and
reachable sets. Furthermore, it is worth mentioning that these approaches are
designed for two-dimensional space, specifically in the lateral plane, thereby limiting

their applicability in three-dimensional scenarios.
Many-on-Many Engagement Case

In the context of many-on-many engagements, considerable attention has been
devoted to the utilization of traditional cooperative guidance approaches that impose
constraints on impact time and impact angle at intercept. However, the existing
literature on cooperative guidance incorporating reachability analysis remains
relatively scarce. Many traditional cooperative guidance algorithms are devised
based on time-to-go consensus, which implies that missiles are planned to intercept
the target at the same time. While acceleration commands which are perpendicular
to LOS vector are adjusted to ensure that miss distance converges to zero, the
acceleration command along LOS is designed to guarantee that all interceptors reach
the target simultaneously. The cooperation between interceptors is achieved via a
communication network to reach a consensus on the arrival time. Central and
distributed control architectures have been developed on the basis of consensus
policy. [21] proposes a method to control impact time so that multiple interceptors
can reach the target simultaneously. There are also several studies related to the
impact time control of interceptors. For the aforementioned objective, several
studies adopt different methods such as navigation gain scheduling, PN-based
approaches, and receding horizon control to achieve interception at the specific time.
References between [29]-[35] are notable studies related to cooperative guidance law

for impact time control.

In some studies, the cooperation between interceptors is utilized to restrict the

target’s possible set of evasive maneuvers by controlling the relative geometry. For
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instance, [22] proposes an approach for impact angle control, designing a guidance
law that enables simultaneous interception of the target at a specific impact angle.
[23] proposes an optimal control-based cooperative guidance law that enforces the
desired relative terminal geometry between a team of interceptors. Furthermore, [24]
pursues a different objective such that the cooperative guidance law aims to reduce
variability of the relative look angle between two interceptors who are in
collaboration against the maneuvering target. It is assumed that interceptors are
equipped with a directional antenna, in order to take power consumption,robust
communication and resistance to jamming into consideration. However, variability
of look angle during flight may disturb the communication between interceptors;
therefore, the objective of designed cooperative guidance law is chosen to reduce the

variability of the look angle.

The cooperative guidance approaches mentioned up to this point do not take the
reachability of interceptors into account explicitly. Instead, the interceptor’s speed
advantage is assumed to be sufficient for ensuring reachability at the intercept point.
However, there exists such a possibility that the interceptor can not reach the target
when uncertainty in target states is high or the target changes its strategy during
flight; such as changing flight speed and heading. Moreover, coordination between
numerous targets can decrease the possibility of an effective response by the air
defense system. As a result, different from the traditional cooperative guidance
approaches, application of dynamic coverage theory for the cooperative guidance
problemis being investigated by researchers. The objective of such an approach is to
maximize the coverage of the region of possible target locations in the reachable set
of the pursuer. [25] suggests a coverage-based approach for the cooperative
interception problem. The approach addresses multiple interceptors case against a
maneuvering target with decoys. The joint interception probability of multiple
interceptors is estimated, in order to maximize the probability of destroying a target
vehicle escorted with decoys. Probability density function of the actual target
position for a given interception time is estimated with the Kalman filter. The joint

interception probability obtained with the consideration of the interceptor’s kill
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radius. Interceptor positions for the next time step are calculated by maximizing joint
interception probability. These positions are checked whether they are within the
interceptor’s reachable set. If they are not within their reachable set, then the nearest
point in the reachable set is chosen as the desired interceptor position. The process
is repeated until total flight time is achieved. This approach s developed with the
assumption of linear and planar engagement kinematics. Furthermore, [26]
introduces a cooperative guidance law for multiple interceptors against multiple high
speed maneuvering targets with a centralized control strategy. Possible target
locations due to target state uncertainties and noises are described by a region of
space. Augmented reachable set of interceptors is positioned such that the space
formed by possible positions of all targets is covered as much as possible.
Consequently, the probability of interception is expected to be maximized. The
analysis is performed in the lateral plane. [27] presents a cooperative guidance
algorithm for pursuit and evasion problems. Pursuer’s guidance algorithm employs
the forward reachable set analysis. The union of multiple pursuers’ forward
reachable set is utilized, in order to obtain greater coverage for interception against
a maneuvering evader. A two-dimensional kinematic model in the horizontal plane
and Ackerman steering ground vehicle are used in the analysis. [28] introduces an
asynchronous cooperative guidance law for multiple interceptors against a high
speed maneuvering target. Reachable sets of interceptors are blended in order to
cover possibility space for the target position in an asynchronous way and guarantee

collision between interceptors.

The aforementioned reachability-based guidance approaches have been developed
under the assumption of negligible speed variation for both the interceptor and the
target resulting from factors such as aerodynamic drag and thrust. This assumption
facilitates the analytical representation of interception lines, enabling the explicit
calculation of strategies for the interceptor to control these lines. However, it is
important to note that these assumptions may lead to interception lines and reachable

sets that are deemed unacceptable in real-world applications, primarily due to
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significant errors in calculations, unless the constant speed assumption is reasonably

valid and satisfied.
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CHAPTER 3

NONLINEAR DYNAMICAL MODEL FOR AERODYNAMIC INTERCEPTOR

In order to analyze the reachable set of an interceptor, it is necessary to establish a
mathematical model. This mathematical model is designed to accommodate non-
ideal responses of the interceptor. In this study, a point mass interceptor model is

employed as the basis for the analysis.

The calculation of the interceptor's velocity, position, and flight path angles involves
integrating the derivatives of these state variables. By integrating the derivatives, the

current states of the interceptor can be determined.

3.1  Coordinate Systems and Transformation Matrices

Two coordinate systems are utilized in this study to describe the motion of the
interceptor. These are (1) the inertial coordinate system (F,) and (2) the wind
coordinate system (,,). Each coordinate system provides a distinct reference frame

for analyzing the interceptor's dynamics.

b d B |

In the inertial coordinate system, axes are represented as 1! ,ii}, and i} . The %] axis
points towards the north, the #% axis points the downwards to Earth’s center, and

the 2} axis is the complementing orthogonal axis found by the right hand rule.

On the other hand, the wind coordinate system (Fy,) is attached to the interceptor
and moves along with it. The 1}V axis points toward the interceptor velocity
direction. The @y axis points to the right of the 1}" axis in the horizontal plane. The

1y axis points down.

The related frame definitions and transformation matrices are shown below.
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Figure 12: Representation of Interceptor Velocity Vector

To transition from the inertial frame to the wind frame, a series of rotations is
performed. This transformation involves rotating F; about the %} axis by an angle a,
yielding the intermediate frame F,. Subsequently, F,is rotated about the 1§ axis by

an angle g to obtain the wind frame F,,,. The coordinate axes are depicted in Figure

12, with the interceptor's velocity vector Vy aligned with the %" axis.

F, > R@L, a) » Fy » RS, B) » Fu Eq. 11
Transformation matrix from O (F,) frame to inertial frame is determined by rotating

F, about i} by an angle a. This matrix, denoted as "), is given by:
3

cosa —sina 0
Eq. 12

C1.0) = pliza — [sina cosa 0
0 0 1

Similarly, the transformation matrix from the wind frame to O frame is determined

by rotating F, about 79 by an angle . This matrix, denoted as C©"), is given by:

) ~ cosf 0 sinpf
C(O,W) = euZB = O 1 0 Eq 13

—sinf 0 cospf
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3.2 Ideal Interceptor Kinematics

In the ideal kinematics calculations, the states of a system can be determined by

integrating the derivatives of those states. For example, in the case of the velocity

vector I7M in the inertial frame, its derivative with respect to frame F, is expressed

as:

Here, D; and Dy, represents derivative operations with respect to frame Fy, . Wy, /,
is the angular velocity of F,, with respect to F,. The angular velocity can be
represented using the flight path angles in the following manner:

—asinf

N N g W :
@} { O+ pu (W)} =| B Eq. 15
acospf

The acceleration of the interceptor can be expressed as follows:

w) aM"

{DVy} = aMy VMa cos B Eq. 16
~VuB

The dynamics of the flight path angles a (azimuth angle) and g (climb angle) with

respect to interceptor accelerations can be described as follows:

w
_ My
Vi cos(B)

w
aMZ

Vi

When it is assumed that the rate of change of velocity magnitude depends on the

Eq. 17

p=-

thrust, drag force , and the component of gravity in the direction of the velocity
vector, the rate of change of velocity magnitude can be expressed as follows:
T — O'SpVAgISrefCX(a:ﬁ' 4%)

Vi = — — gsin(B) Eq. 18
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Furthermore, the position derivative of the interceptor in the F; frame can be

computed as:

® ) RMx Vi cos(B) cos (a)
{D;Ry} = {ﬁM} = RMy = lVM cos(B) sin (a) Eq. 19
RMZ -V sin(B)

The state space representation of the ideal interceptor can be described as follows:

[ V3 cos(B) cos(a) T
[Ru,,| Vy cos(B) sin(a)
: —Vy sin(pB)
Ry, 1\2 n B
- 3 M x
X = RMZ = w
v vy
M
i Var cos(B)
il |t geos®
Vu Vm
Vi cos(B) cos(a) T Eqg. 20
Vi cos(B) sin(a)
—Vy sin(B)
T — 0.5pVESyerCx (aM;V, awl Vu)
_ — gsin(p)
= m
aMX']’
Vi cos(B)
_ Gy
Vym

The forward difference approximation is used to calculate the time step At,

discretized ideal interceptor model is as shown below:
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x(k +1) =F(x(k),u(k))

Ry, (k) + Vi (k) cos(ﬁ(k)) cos(a(k)) At

RMy(k) + Vy (k) cos(ﬁ(k)) sin(a(k)) At
Ry ,(k) — Vi (k) sin(B (k) At

T — 0.5pV3SrefCx (aM;",/c(k), any’ (k) VM(k)) Eq. 21

Vi (k) + At — gsin(B(k))At

m
a(k) + (k)
Vi (k) COS(ﬁ (k))
B(k) — VM(I(c)) t

State variables at time ¢, are represented by k for such that Ry, (k) = Ry, (ti).

The input vector is defined for ideal autopilot dynamics as follows:

a a
My c l My l Eq. 22
ayy

aMzc

3.3  Non Ideal Interceptor Kinematics
To incorporate the response delay of the interceptor, a first-order transfer function is
assumed to model the interceptor's response to a given command.

The transfer function is described by the equation:

A,y W(s) aMW(S) 1

aMyC(s) aMZC(s) s+ 1

Eq. 23

Where aMW and aM?’ represent the yaw and pitch plane acceleration responses of
the interceptor, respectively, aM andaMW represent corresponding commanded

accelerations, s is the Laplace variable, and 71 is the time constant of the autopilot

time response.
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The dynamic response of the interceptor can be represented as follows:

Tay () + ayll (£) = apll, () Eq. 24
To solve this differential equation, we can express the solution as a sum of the

homogeneous and particular solutions:

any () = an(t) + a,(t) Eq. 25
a,(t) » Homogeneous solution
Eq. 26
a,(t) - Particular solution
The homogeneous solution can be expressed as:
an(t) = K e*t Eq. 27

Where K; is an arbitrary constant and x is the root of the characteristic equation given

by:

a,(t
i () + hr( ) _ o Eq. 28
K e*t 1 1
Kie*tx + —— = K, et (x + ;) =0-x= —= Eq. 29

Thus, the homogeneous solution becomes:

t
an() = Kot Eq. 30

For the particular solution, a suggested form is:

t
a,(t) = Ky(t)e'~ Eqg. 31

Differentiating a,, (t) with respect to time yields:

. Kp\ Lt
a,(t) = (1(2 —?Z)e G Eq. 32

Substituting a, (¢) into differential equation yields:

Eq. 33

w
a,(t . K, K t .t ay, ()

a,(t) +
p (6 ks

T T

Integrating both sides of the equation yields:
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MACINN
2:[ e erdt + K,

Eq. 34
- discard K3, since it will mix into the homogeneous solution
The particular solution becomes:
My (&) $ t
a,(t) = f% 7dé |e T Eq. 35

0

After finding particular and homogenous solution, the general solution (aMg’(t)) in

Eq. 25 can be expressed as follows:

t ) ¢ t
awmy, W) =Ke T+ jM% wdé |le = Eq. 36
0
t amy(§) ¢ t
Awy, W(ty) = Kie~ T+ j M% Td¢ et = aMK']’(k) Eq. 37

0

t 0 () £
Ky = ay¥ (k)e — j DMyes) ) Eq. 38
0
Then, the general solution becomes:
v ¢
Ay, W) = aMW(k)eT — f yets) etd§
0
Eqg. 39
(&) ¢ t
+ j el ordg |e
T
0
t
(ot am}y (&) _e-p
ayV (@) = ayV(k)e = f’—e T d¢ Eqg. 40
y y T
tk
Fort = ty4q and t, 1 — t, = At:
s [T A" (© o
t t -
aM;/,V(tk+1) = aM;V(k)e_T+ f M%e_ e d Eq. 41
23
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If we assume that aMWC(t) is constant between sampling updates, such that

aMyc(t) = aM;A,/C(k) whent, <t < ty,q:

Tk+1

w
au,, (k) (trs1=9)
ayy (tesr) = aM;"(k)e‘T+—y'TC f e T dE Eq. 42
tk
a (k) tk+1 :
At t
aM;V(tkﬂ) = aM;V(k)e_T + My%e_% f etdé Eq. 43
tk
et

T|le v —ert

w
At ayy, (ke T tevr Eq. 44
¥ () = ol (D77 + =2 ¢ )] q-

Apm,, Y (tksr) = Ap,, (k)e T + aMyC(k) - aMyC(k)e T Eq. 45
T represent a time constant of the autopilot time response. The discretization of the

acceleration time response from time t;, to t;,, given by the following expression:

At
an (k +1) = aMW(k)e T+ a0 (1 —e ) Eq. 46

Similarly, the acceleration response in the pitch plane can be represented as:

At
@ e+ 1) = @y (e + ay?, (k)( - e_T) Eq. 47

In this representation, the acceleration profile in yaw and pitch channels become new
state variables. Therefore, the discretized non-ideal interceptor model can be

demonstrated as:
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Ry, (k + 1)1
Rug,, (k + 1) [F; (2(k), u(k))]
Ry, (k+1) | [F(200), 1K)

_ oy | Ve 1) || B (W0, 1)

B+ D) | (200, 3(K))

@y KDV g (200, 200)]

_aM?/(k + 1))

Ry, (k) + Vay (k) cos(B (k) cos(a(k)) At
Ry, (k) + Vi (k) cos(B(k)) sin(a(k)) At

Ry, (k) — Vi (k) sin(B(k)) At Eq. 48

T — 0.5pV3SyerCx (aMg’(k), an? (k), VM(k))

m

Vi (k) + At — gsin(B(k))At
aM;’,V(k)
At
Va (k) cos(B(k))
aM?/(k)
B(k) — 0

_At _At
aMJV']’(k)e T + aM;’,‘,’C(k) (1 —e T )

_At _At
any (k)e™ T + aMZ',’C(k) (1 —e’ T )

= a(k) +

At

The control input vector is specified as:

aMz,l,/C (k)

Eqg. 49
WA |

(k) = I

3.4 Environment

In this study, the computation of air density and speed of sound is based on the
standard atmosphere model. These quantities are updated in accordance with the

interceptor's altitude. The temperature can be expressed by the equation:

Temp = Ts; + ah Eq. 50
In this equation, h is the altitude (m) and Ty, denotes the sea level temperature which
is 288.16 K and a is the lapse rate. The lapse rate is taken as -0.0065 K/m for

altitudes below 11 km..
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The density can be calculated using the following equation:

Temp)_g/(“‘“"g) £q. 51

p=P5L+(T

Here, ps, is see level density which is 1.225 kg/m?, R, is the specific gas constant
which is 287%. K andg is 9.80665 m/s?

3.5 Modelling of Aerodynamic Drag

In the model of the interceptor, the consideration of aerodynamic drag is crucial, as
it relies on both the acceleration response and the Mach number. Consequently, the
drag model incorporates the kinematic energy loss of the interceptor resulting from
acceleration and base drag. The aerodynamic drag model can be expressed as

follows:

’ 2 2
CX (aM;//V, aMZV, VM) == CXO(VM) + CXa(VM) aAM/I/y + aKI,I/Z Eq 52

In this equation, Cx,(Vy) represents base drag coefficient at a given velocity and

Cx (Vi) represent drag experienced by the interceptor due to acceleration. The term

/a}(,,"yz + a}(}’zz accounts for the magnitude of the acceleration response in the lateral

and vertical directions.

Since drag coefficients are typically available only for discrete flight variables, the
drag coefficients for intermediate values of the flight variables are obtained through
linear interpolation. This allows for the estimation of drag coefficients at specific

points within the range of flight variables.

By incorporating both the acceleration response and the Mach number into the drag
model and utilizing linear interpolation for estimating drag coefficients, the
interceptor model takes into account the effects of aerodynamic drag on the

interceptor's performance and the resulting kinematic energy loss.

48



CHAPTER 4

GUIDANCE ALGORITHM DEVELOPMENT

This chapter presents the guidance algorithm design that employs the MPSP
approach. Specifically, the implementation of the Suboptimal Midcourse Guidance
with Terminal Position Constraint method (4.1), which has shown promising
performance in the literature [4], is investigated for an aerodynamic interceptor. By
incorporating this method into the research, the aim is to enhance the guidance
capabilities of aerodynamic interceptors and further investigate their operational

effectiveness.

To improve upon the existing guidance algorithm, the equations are extended to
incorporate input constraints, particularly bounded acceleration (4.2). These
constraints reflect the physical limitations of the interceptor's propulsion system and
impose restrictions on the maximum achievable acceleration during its trajectory. By
accounting for these constraints, the modified guidance algorithm aims to provide
more realistic and practical guidance commands, leading to improved interceptor

performance.

In order to assess the performance of the modified suboptimal midcourse guidance
algorithm with input constraint, a comparative analysis is conducted against the
previously implemented Suboptimal Midcourse Guidance with Terminal Position
Constraint method. By evaluating the performance of these two algorithms, the
improvements achieved by incorporating the input constraint can be quantitatively
measured, and the algorithm's ability to meet equalitty constraint on terminal

position can be ascertained.

49



4.1  Suboptimal Midcource Guidance with Terminal Position Constraint

The output for the nonlinear system discussed in Chapter 3 is expressed as a linear

combination of various state and control variables.

[ R, (k)T
R, (k)
Rur, (k)
Va (k)
a(k)
B (k)
aMZ,V (k)
_aMZV (k)]

The primary goal is to compute the control input vector %(k) at each time step,

Eq. 53

<

=

Il
o oOR
o RO
_ o o
oo o
o oo
o oo
oo o
o oo

ensuring that the final output reaches to desired value ¥¢ with minimal control
action. This optimization problem can be formulated with a cost function that
quantifies the control effort and constraints that ensure the output reaches the desired

value.

Hence, the optimization objective can be succinctly described as follows:
N-1
inj () = 5 Y TR,
min j(ug) = 5 Up R Uy,
uk 2 L Eq. 54
subject to the following constraints: yy — y% = 0

To facilitate the optimization process, initial control input vector history is used to
linearize the nonlinear system and its output. This linearization is performed to

approximate the system dynamics and output behavior.

dyy £ Yy — VN Eq. 55
dxy, = X, — Xy, Eq. 56
duy, = U, — Uy Eq. 57
dyy = Adx; + B;du; + B,du, + -+ By_;duy_4 Eq. 58
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Since x7 is set equal to the initial condition x;, dx; becomes zero. Therefore, dyy

in Eq. 58 simplifies to:

dyy = Z B, di, Eq. 59
Oyn1[0Fy_1][0Fy_ oF.
J’N N-1 _N 2| _1 Eq. 60
axN 0Xyn_1||0XN_2 dx,
aYN 0Fy_4 a}_?zv—z a€k+1 al_:_k =B£ a_l_?'k Eq. 61
axN 0Xn_1]||0XNn_> 0X1| |0y 0y,

The linearized equations can be represented in matrix form, where the matrices A
and B, capture the dependencies between the variables. The matrix A represents the
partial derivatives of the output with respect to the state variables. The matrix By

represents the partial derivatives of the output with respect to the control variables.

ay
These matrices are calculated iteratively starting from B _ az > ]
AF (% (k),u(k OF (x(k),u(k
Note that 22EELE) oy SFEMEK) (on he expressed as follows:
ax(k) au(k)
aF (x(k), u(k))
0z (k)
1 0 0 dtcos(B)cos(a) —dtVycos(B)sin(a) —dtVy, sin(B)cos(a) 0 0
0 1 0 dtcos(B)sin(a) dtVycos(B)cos(a) —dtVy sin(B)sin (a) 0 0
0 0 1 —dtsin (B) 0 —dtVycos (B) 0 0
0.5pVZCy al 5pV2C, a¥
00 0 1-a?ml 0 —dtgcos(B) _ar P xaty _, 05PViiCrq O, Eq.
m m /a,'(',’yz + a,'ﬂ,’zz m /aM + aLVZZ 62
) 0 0 any 1 dti i dt 0
V2 cos(B) Vy cos(B)? sin (B) V,, cos
Ay, W+ gcos(B) g . dt
000 dt”T 0 1+dtﬁsm ® 0 -
00 0 0 0 0 oTdt 0
lo 0 0 0 0 0 0 et
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OF (x(k), a(k))

(k) Eq. 63

I
0O coo o oo
cocoocooo

—tdt 0
0 1 —e ™

By utilizing the definitions provided above, the cost function can be formulated

using diiy:

N-1
1
] = Ez (uy, — dig) TRy (wy; — diiy,) Eq. 64
k=1

To simplify the optimization process, the equality constraint is formulated in terms
of dii. In order to achieve the desired output value ¥¢, the following equality

must be satisfied:

dyn = Vi = In Eq. 65
The difference in input vector history has to meet dy, condition specified in Eq.
65. By leveraging the connection between the input vector history and dyy,
equality constraint can be formulated with respect to du,, as depicted below:

N-1

dyy — z B,dii, = 0 Eq. 66
k=1

To solve the optimization problem, a Hamiltonian function J* is defined using the

cost function (Eq. 64) and the equality constraint (Eg. 66):

* — 23 1N_1 — % — \T — % —
I (6, 7) =5 ) @ — )" Re(@, - i)

k=1

k=N-1
+,TT<d37N - Z Bkdﬁk>

k=1

Eq. 67

where 1, is the Lagrange multiplier. The necessary conditions for optimality are

applied, which involve setting the partial derivatives of the Hamiltonian function
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with respect to the control variables and Lagrange multipliers to zero. By solving

these equations, the optimal control input for each time step is obtained:

k=N—1
aJ*
— =90 d_=ZBd_ Eqg. 68
EYi —|aYyn L kAU q
aJ* _

— =0 - |duy, = u + Ry (Bf1)},
ad, o = i + R (Bid) Eq. 69

k=12,(N-1)

The determination of the Lagrange multipliers involves expressing the equality

constraint in terms of the control variables and solving for the multipliers. The

process for determining the related Lagrange multipliers is illustrated below:

k=N-1
dyy = By (@ + Ri*(BEA)) - |1 = —A3(dyy — ba)
k=N-1

k=N- -1
where A; = —( Z B R,;lB,Z> ,by = Z B, it}
k=1 k=1

The updated expression for the control input (Eq. 71) is obtained by substituting

Eq. 70

1

the Lagrange multipliers (Eg. 70) into the equation in Eq. 69:

diy, = iy, — Ry *BLA;(dyy — by) Eq. 71
It should be noted that the derivation of the closed-form control update relies on
small error approximations, which may not always hold true. Therefore, an iterative
process is often required to refine the control input and converge to the optimal
solution. The convergence is defined when the desired output value is closely

approximated by the actual output value.

Overall, the process involves linearizing the nonlinear system, formulating an
optimization problem with a cost function and constraints, deriving the necessary
conditions for optimality, updating the control input based on the Lagrange

multipliers, and iteratively refining the solution until convergence is achieved.
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4.2  Suboptimal Midcource Guidance with Terminal Position Constraint

and Bounded Acceleration

This part of the study provides a detailed derivation of the equations governing the
modified guidance algorithm, considering both the terminal position constraint and
the input constraint of bounded acceleration. The resulting equations capture the
intricate relationships between the interceptor's position, velocity, and acceleration,
as well as the desired terminal position. Through this derivation, a solid foundation
is aimed to be established for the subsequent analysis and evaluation.

4.2.1 Derivations of Equations for the Design of Midcource Guidance

Algorithm with Terminal Position and Input Constraints

The optimization problem, which is solved using the model predictive static
programming, involves determining the inputs at time steps k =1,2,---,(N — 1)

that satisfy the conditions specified below:
e The output at final time step,( ¥y), should be equal to the desired output:

In =N Eq. 72
e The inputs should satisfy the inequality constraints defined for the each time

step , where G, and W, represent the constraint matrices:

1 0 a(k)
Gl < Wy, where G, = _01 2 and W, = ZEB Eq. 73
0 -1 b(k)
e The calculation of inputs needs to minimize the cost function defined as
follows:
1 N-1
JQy, Uz, - Uy—1) = Ez Uy Ry Ty, Eq. 74
k=1
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Thus, the goal of the optimization problem can be summarized in the following

manner:

min J (iy, Uy, -, Uy-1)
U

Eq. 75

= subject to the following constraints:
In—In=0 Eq. 76
Gl =Wy <0, k=12,-,(N-1) Eq. 77

To calculate the inputs that solve the optimization problem, Hilderth’s procedure

[10] for solving inequality constraints on inputs is employed in conjunction with the

model predictive static programming method [4]. Prior to constructing the

Hamiltonian function, which is a prerequisite for the application of the approach, the

nonlinear interceptor model needs to be linearized with respect to the initial input

values (i1),, k = 1,2,---, (N — 1)) as shown below:

o7
Vv =¥y + [%] (Xy — Xy) + HigherOrderTerms Eq. 78
N
= T =% —% aFk — —%
X1 = F (e wp) + 0% ||[5eem (o — %)
X=X},
. e Eq. 79
F
+ Tkl . (uy —uy) + HigherOrderTerms
(')uk X=X}
=1}
dyn =Yy —In Eq. 80
dXy = X, — Xy, Eg. 81
duy, = U, — Uy Eq. 82

By utilizing the definitions dyy (Eg. 80) , dx; (Eq. 81) and du; (Eg. 82), and under
the assumption that the higher-order terms in Eq. 78 and Eq. 79 can be neglected due

to the small error assumption, the final time step can be expressed as shown below:

dXxy Eq. 83
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- =% —x% aFN_l — —x%
Xy = F(xy_q1, ty—1) + la = I CO Y
XN-1]|Xn-1=Xn—1
Uy_1=Uy—
) N-1=UN—-1 Eq. 84
0Fy_1
+ |— Uy_1 — Uyn_
Oty ||z =5y (ty—1 N-1)
Uy-1=Uy—1
OF (x(k), u(k))
9% (k)
1 0 0 dtcos(B)cos(a) —dtVy cos(B)sin(a) —dtVy, sin(B)cos(a) 0 0
0 1 0 dtcos(B)sin(a) dtVycos(B)cos(a) —dtVysin(B)sin () 0 0
0 0 1 —dtsin (8) 0 —dtVycos (f) 0 0
pVyyCy 0.5pV;iCx ,air, 0.5pVyiCx ,aiv,
0 00 1—dt———= 0 —dtgcos(B) —dt —dt o
mn m /a}(,,"yz + a}(,,"zz m /a,'{,vyz + a,\"‘l’z2 Eq 85
- any w dt
y y .
0 0 O —dt V2 cos(B) 1 dtivM cos(B) sin (B) V cosp 0
Wi dt
00 0 dt%vi‘zzlws(ﬁ) 0 1+dtl‘/iMsin ®) 0 -
000 0 0 0 e ™t 0
0 0 0 0 0 0 0 et
0 0
0 0
B 0 0
oF (x(k),u(k)) 0 0 Eq. 86
o (k) 0 0 '
0 0
1— e—‘L‘dt 0
0 1— e—‘L’dt_

For the sake of simplicity in notation, the following abbreviations are employed as

shown below:
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OFy] , [0F& ] . [y 0F
afk an Xk= xk ('?YN axN %y — auk
Up= uk
Eq. 87
_[0Fy
- oy, || k=%
U =1y,

By substituting the conjugates of the state variables corresponding to the other time
steps, as expressed in Eq. 79, into Eq. 84 represented at the final time step, equation

for dyy (Eq. 83) can be expressed as follows:

_ Oy ([0Fn-1 0Fy_1] _
dyy = |=— dx diy_
Yn 9%y ( P Xn-1 T Frn Uy-1
_ Oy [0Fn-1] ([0FN-2 0Fy_,] _
d =[ _] — dx — diy_
Yn dxyl|0xy_1|\|0Xy_2 -2+ Jiy_, Un-2
ayN] 0Fy_4 Eq. 88
OxN 0Uy_1

d:)_]N = Adfl + Bldﬁl + Bzdaz + -+ BN_ldﬁN_l

The A and By, can be calculated as shown below:

a)’N aFN—l OFy_, oF;

a}’N] 0Fy_1][0Fy_; . 0F; 41 aFk
dxyl|0xy_1||0XN_2 0% | |0tk

The matrix BY can be recursively calculated as shown below:

J[F,
k|91,

oyn
By, = |22
N-17 5%,
dFy_4
Biv-z = By laf,v 1] Eq. 90
0F41
B = 8. 5|
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As the initial condition x; is always set equal to x;, dx; becomes always zero.
Therefore, the equation for dyy (Eg. 88) can be expressed as the sum of the products
of By and duy fork = 1,2,...,(N — 1).

d%, = 0 Eq. 91
d)_/N = Bldﬂl + Bzdaz + -+ BN_ldﬂN_l Eq 92
N-1
dyy = z B, di, Eq. 93
k=1

In the given context, we can express the cost function, equality constraints, inequality
constraints, and Hamiltonian function using the defined terms. The cost function,

denoted by J expressed in Eq. 74, can be described with respect to du;, (Eg. 82):

N-1
1
] = Ez (uy, — dig) TRy (wy, — diiy,) Eq. 94
k=1

Likewise, the equality and inequality constraints can be formulated in relation to
dit,. The equality constraint, which ensures that the desired output value yg is
reached, can be expressed as:

dyy =5 — In Eq. 95
Here, dy, represents the difference between the desired output and the actual output.
To satisfy the equality constraint, the difference in input vector history (dyy) can be
related to the input increments (d,,) using the following expression:

N-1

Ay — z B, dii = 0 Eq. 96
k=1

Inequality constraints in Eq. 77 can be formulated with respect to du; (Eg. 82) as

demonstrated below:

Gy (i — dig) — W, <0, k=12,-,(N—-1) Eq. 97
These inequality constraints define limits or boundaries within which the

optimization variables (du;) must operate.
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Furthermore, we can express the Hamiltonian function, denoted by J*, by using
definitions in Eq. 95, Eq. 96, Eg. 97. The Hamiltonian function combines the cost

function, equality constraint, and inequality constraints as demonstrated below:

]*(dﬂk'A_' :51) :52' ) p_N—l)

N-1
1
=5 (@, — dug)" Ry (uy, — dty,)
k=1
kN1 Eq. 98
+ AT dyy — B, diiy
k=1

+ (Z i Gy (T, — dit) — Wk))
k=1

where A, p;, p2, -+, Py—1 are Lagrange multipliers associated with the equality
constraint and inequality constraints, respectively. The Hamiltonian function

represents the objective that needs to be minimized in the optimization process.

To facilitate the application of Hildreth's procedure, it is essential to represent the
Hamiltonian function J* solely in terms of Lagrange multipliers of inequality
constraints (py, p,, -+, Py—1)- This reduction of variables enables the application of
necessary conditions for optimality. Necessary conditions for optimality can be

described as follows:

k=N-1

a *
AN P z B, di, Eq. 99
k=1

o1

aJ* _
—_:0—> G(l_l*—dl_l)—W :0,
EER KTk Tk i Eq. 100

k=12 ,(N—1)

aJ* _
— =0 > |duy, = iy + R;Y(BEA+GEpy))
ddii, « = Wi+ RN (Bid + Gipi) Eq. 101

k=12--,(N—-1)

The related Lagrange multipliers for inequality constraints can be computed by using

the equality condition for du,:
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pr = —(GxR*GH) Y (W), + G R *BEA) Eq. 102
By employing the equality condition for di, (Eq. 101) in the optimality condition
concerning the equality constraints (Eq. 99), the related Lagrange multipliers can be
determined as illustrated below:

k=N-1

dyy = Bi (T + R (BEZ + GE i)
= Eq. 103

il /T = _A)L(d)_}N - l_),'[ — Ep)

k=N—-1 -1 k=N-1
4@=—< mR;%>,@= Ezmﬂjb
k=1

k=t Eq. 104
k=N-1

= By Ri;* Gy py.
k=1
Furthermore, the expression for du;, (Eq. 101) can be updated as follows:

diy, = Ey + Ri'Bi AxC, + Ry ' G i,
_ T o Eqg. 105
Ey = u;, — R;'Bi A;(dyy — b))
By applying the optimality condition as depicted in the above equations, the
variables d#i, and A are computed in terms of the Lagrange multipliers
(p1, P2, -+, Py—1) associated with the input inequality constraints. Consequently, the
Hamiltonian function J* in Eq. 98 can be expressed in the same form

(p1, P2+, Py—1) as shown below:

]*(ﬁlf ,521 fﬁN—l)

_ 1 _ _ — _
=C— ECZA;LCP — (—dyy + b} )Asc,

1N—l N-1
== > PLGRIGLp — ) AL
k=1 k=1

Inserting ¢, expressed in Eq. 104 into above cost function equation and assuming

Eq. 106

Ry, is symmetric matrix yields:
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N-1
Z (dulRydi, — 21} R diy )
k=1

k=N-1
wy (dy,v _ z Bkdﬁk) Eq. 107

k=1

+ (Z Pie (G (@ — diy) — Wk))
k=1

N| =

C +

—
*
Il

Bkdak> Eq. 108
1

Inserting A = —A;(dyy — by —¢,)into Egq. 108 and evaluating —(dyy —

b;)ALdyy term in the constant C term gives:

N-1
Z 2" Ry diiy,
k=1

N-1
_ - -\T —
+ (dyy — by — ¢,) (A,{ z B, diiy
k=1

N =
N =

N-1
J =C+ Z ATl R, di;, —
k=1

Eq. 109
N-1
+C, A dyy + <z e (G, — Wk))
k=1
N

1
z Pk GredTy

=1

=

Note that:

dﬁk == Ek + RllezAlEp + R;lGZﬁk Eq 110
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=2
Jay

N-1
1 _ _ — _ _
5 ) EIREc+ ) EL(BLA, + L)
k=1

Eq. 111

=

=
[N

+ (Ri*BEA;z¢,

N[ =

&
Juy

— - \T - — — _
+ Ri.' G i) Ric(Ric* B Axcy + R ' Gt by )

N-1

IO =7y = _ _ _

> E{RcE + ) Eg(BiAac, + Gipr)
=1

=
=

zZ =
o
moR

((R;lB{AquTRk(R;lBEAAqJ) Eq. 112

+
N| =
=2 =
| I}
= [l

((RE*GEpOT R (REMGE i) )

+
N =
]

b

=

o
=

- —\T - —
+ ((Rk 1B£Alcp) Rk(RleI{pk))
=1

By putting the term %2%;11 diiy R, diu, in Eq. 112 into Eq. 109 and evaluating

=

%Z’,ﬁ;} ET' R, E, term in the constant C term, the expression for J*gives:
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N-—
J=C+ Z L(BL4, + GLp)
k=1

+

N =
T
(=Y

((Re*BEAG,) R(RiBE4:6,))

=z =
[
I

+
N =
M

((RZ*GLA)™R(RLGER))

|2

=

o
-

—+
Y

- -\T — _
(Ri'BfA;c,) Rk(Rle,{pk)) Eq. 113

&
> 1l
I =
=

Zﬁ}iTdeuk

|
N| =

=
1l
=

N-1

_ - _\T _ _ _
+ (dyy — by —¢,) (A)TL Z Bkduk> + C,A) dyy
k=1

N-1 N-1
+ <z Pk (Gyliy, — Wk)> - Z Pk G Ay,

Inserting Eqg. 110 into Eq. 113 and evaluating Y. ¥= (Za,*(TRkEk) in constant C term

gives the modified expression for J*:
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k=1
N-1
1 B T .
+5 ((Rle,fA;ch) Rk(Rle,ZA,lcp)>
k=1
N-1
1 -1,~T = \T —1,T =
+ZZ((R1< Gi Pr)" R (R kak))
k=1
N-1
— _\T _ _
+ ((RlezfAch) Rk(RleIIPk)>
k=1
N-1
L (Zﬁ*TRk(R‘lBTA;LE +R‘1GTﬁk))
24\ fo TrsATp T e T Eq. 114
+ (dyy — by

N-1
-c,)" <A§ Z (BiEy + BxRi*BLAC,
k=1

+ BkR,gla,{ﬁk)> + A dyy

N-1
+ < Pic (G — Wk))
k=1
N-1
- (p_lsz(Ek + Ri'BrA;c, + REIGIZﬁk))
=1

The term (dyy — by — c‘p)T(A§ YR=1(BiEy + BxRi*BLAsC, + BxRi*GJ py)) can

be simplified by grouping terms as shown in Eq. 115:

64



N-1

(dyy — by — 6p)T (A}{ z (BxEy + BxR*BLA;¢

k=1

©

+ By R; Gy m))

N-1

_ - _\T —
= (7w —Br = 6)) AF | > BiFi
k=1
Eq. 115

N-1 N-1 \‘
+ Z(BkR,QlBZAlC‘p) + Z By R:*GE py

k=1 k=1

Cp

N—-1

_ - _\T _

= (dyy — by —¢,) A (Z ByEy
k=1

N-1
+ Z(BkR,QlBZAlC‘p) + c-p>
k=1

The expression for J* can be further elaborated as follows:
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N-—
] =C_' z EkB]?;A)LCp +EkG Pk)

k=1 Terml_1xTerml_2 Term?2
1N—1
_ _\T _ _
+ §Z ((Rk 'B{AC,) Ri(Ri 1313141%))
k=1
N—-1
1 1T T 1
+§Z((Rk Gy Pi)" Rie(Ry, kak))
k=1
N-1
_ _\T _ _
+ z <(Rk "B As¢,) Rk(Rlegpk)>
k=1 Term3
N-1
- <_*TBI€AJLCp + Uy kak>
k=1 Term4

T N-1
+ | dyy — by :,C:fB (ZAZ{B,(FR

Termil_1 k=1 Terml_2

2
r—n

N-1
+ < (Pk Gy, — P Wk))
k=1 Term4

—1
<Pk GrEx + pi Gy Ry ' Bit Az

k=1 Term2 Term3

+ pr. Gy R Gf, p‘k>

Eq. 116

The terms indicated in above equations cancels each other and resulting in a

simplified form of J*:
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N-1
JF=C+ Z( cr AL By (R )T B, Alcp)

k=1

N| =

1N—1 N-1
5 ) GIGREY 6T — ) (3BT AW,)
k=1 k=1

Eq. 117
N-1
_ = NT _ _
+ (dyn — b = G) 4] (Z (BkRlezAacp)>
k=1
N-1
N _ _
— Z prWi — (b +¢,) Ajc, +2c0 AL dyy
k=1

Assuming Ry, is a symmetric matrix, it follows that R;* = (R;1)T. The objective

function J*can be expressed as follows:

_A)_,1

z (BxR'By)

k=1

1
] —C+ CA;L A/’ch

N-1
1 — - — —*
_EZ(ngkRlegpk) —[ +'BY)
=1

Eq. 118

-1
_Aﬂ.

N-1

z (BiRi'By)

k=1

+(dyy — by —¢,) AL Are,

N-1
— (by + c‘p)TAﬁc‘p + 205 Ajdyy — z prWy
k=1
Since (BxRy'BL) is symmetric due to R), being symmetric, the summation
SN-L(BxR;*Bl) is also symmetric. Therefore, A;* and A, is also symmetric,

resulting in A, = AL. The expression of J* in Eq. 118 can be further simplified as:
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]*(p_lr ,521 rp—N—l)

= C_'—lC A)LC —( d}717\;+b/1)A;1C
2P g Eq. 119
= N-1
—5 /[, Pr GkRi'Gip — ) pr Wy
k=1 k=1

It is possible to further simplify Eq. 119 as follows:

]*(p_lr p_ZJ rp—N—l)

1 N—1 N-—1
=C- 5< ﬁzckR,:le)Az (Z BkR,:lc,zﬁk)
k=1

k=1
Terml
N-1
— (—dyy" +b})4A; (Z Ble?lGIZP_k> Eq. 120
k=1
Term?2
1 N-1 N-1
- EZ (Pk GrRic ' G pre) — z i Wy
k=1 k=1
Term3 Term4

Terml in Eq. 120 can be expressed as follows:

N-1 N—-1
(Z ﬁgGkRElB£>AA <Z BkRz?lG;ﬁk)
=1

k=1
= (p] GyRT'B + -+ + pj_1Gn-1RN 1By 1) A (B1RT*GY py + -+ + By_1 RN, Gl _1pn—1)

_ T — — — — _ _ _
,0{ (GlRl IBI)AA(BlRl IGI) (GlRl 1B{)A/1(BZR2 16;) (GlRl 1BI)AA(BN—1RN11G;—1) /31

_| A3 | |(GoR;'BAZ(BiRT'GT)  (G2R7'B])A;(BoR;'G) - (G,R7'B})A;(By-1RN11GR—1) P2 Eq
Pi-1 (Gn-1RyL1B-1)A3(By-1Ry1GY-1) PN-1 121

=p5"Zp

Z11 Ziy Z1,N—1]
Zaq Zap

|
e

Zmn = (GmR‘r_nlBr’Irﬂl)Al (BnRglarﬂf)

Term2 in Eq. 120 can be expressed as follows:

68



N-1
(=dyn" +b])4 (z BieRic" Gi ﬁk)
k=1

S Eq. 122
= (=dyn' +bi)Ar(BiRT G py +
+ By-1Ry11GR_1n-1)
Since A, is symmetric:
N-1
(~dgn" +B])4s (Z BiRi G ﬁk)
k=1
p T
ﬁl GRT'B] ) Eqg. 123
= 2 A/l(d}_/N + bﬂ)
5 GN—1R1§11B£—1
PN-1
— —TD
N-1
(—dyn" + b} )A; (Z BiRi Gy, ﬁk) =p'D Eq. 124
k=1
GiRy'B] _
D= : A;(dyy + by) Eq. 125
GN—lRIT/llBIT\;—l
Term3 in Eq. 120 can be expressed as follows:
N-1
> @GR GLp) = X5,
k=1
X
Eq. 126
G,R{*GT 0 0
_ 0 G,R;'GT - 0
: : 0
0 0 0 Gy_1RyYL,GE_4
Term4 in Eq. 120 can be expressed as follows:
N-1 W1
=T 1A/ T .
Zpka=p E,E=| : ]
£ Wy Eq. 127
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When the Lagrange multipliers associated with the input inequality constraints at all
time steps are combined into a single vector, /* can be expressed in the form shown

below, achieving a concise representation:

_ s
J'@)=C~5p'Zp~p'D~p'Xp~p'E

1 Eqg. 128
J@)=C—sp"Z+X)p—p"(D+E) = C_—EﬁTHp—pTK
H K
P1
__ | P2 - 4 = - pa(N-1)
p=|". |, where p, ER*,DER for m
B " Eq. 129
PN-1
=12, (N—1)
[ Hy4 H,, Hl,(N—l) ]
H : : :
g=| Mo . l,Hmn
| : : Hp, : | g
lH(N—l),l H(N—l),Z H(N—l),(N—l)J Eq' 130
_ {(GmR%lB%)Az(BmRrilGrﬁ) + GuRY' G,  m=n
B (GmR;llB;l)A)L(BmR;thrj;L); m+n
K1
K=| Kn |, Kn = (GuRBL)A(—dyy + by) + W, Eq. 131
Kn-1
where Hy,, € R¥*4 H € RAWN-Dx4N-D e R4 K € R*W-DXL for m,n
=12,--,(N—-1)

The components of the Hamiltonian function that are not dependent on Lagrange
multipliers are combined into the term C. As this term remains constant, it is

disregarded in the optimality computations.

1 _
I @) =5 (pTHp) + pT(K) Eqg. 132
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4.2.2 Implementation of Hildreth Procedure

To solve the modified equations and determine the optimal guidance commands, the
Hildreth procedure, which leverages the principles of Lagrange multipliers, is
utilized. This procedure effectively addresses the input constraint by determining the
appropriate values of the input Lagrange multipliers that satisfy the system
constraints while optimizing the overall guidance objective. The utilization of the
Hildreth procedure further contributes to the rigor and effectiveness of the guidance
algorithm design.

Once the matrices H and K are constructed, the Lagrange multipliers vector p, the

Hamiltonian H and the K matrix are reformulated using their scalar elements for ease

of computation:

p= [pi] Jfori=1,2,---,4(N—-1) Eq. 133
[ hia hy hiav-1 ]
h : : : —
H=| > . K
: hi,j H
han-1 haov-12 = hav-pav-1)
Eq. 134
ky
k;,

=|:| forij=12-,4N—-1)
k;

Since H is a symmetric matrix, it implies that H,, , is symmetric for all values of

(m,n). Consequently,h; ; = h; ;. By utilizing the optimality conditions for p;:

o _
=~ =

0 Eq. 135

i
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P1
ki + hipi + iy Raonya] pz
Pi-1

Eq. 136
Pi+1 q
Pi+2
+ [ha+na1 0 hav-1)a] : =0
Pan-1)
i-1 N-1
k; + hi,ipi + Z hl,]p] + z hl,]p] =0 Eq. 137
j=1 j=i+1
1 i-1 N-1
Wit = = ki + z h ol + Z hejp! Eq. 138
. j=1 j=i+1

It should be noted that r is p iteration number. Lagrange multiplier vector at 2"

iteration p? is obtained from p* by minimizing the cost function with respect to p} for
i =1,2,,4(N —1). Similarly, p"*1 is obtained from p" by setting %@ =0.A

continuous function can be defined for the relation between g and p"** as shown

below:

o(p") =p"t Eq. 139
The operator 0; updates the ith element of the Lagrange multiplier vector p which
has p"*1 in the first i — 1 elements and p" in the last (4N — 4) — (i + 1) elements.
In order to complete rth iteration and obtain Lagrange multiplier values at (r + 1)

iteration step, one complete cycle fori = 1,2,---,4(N — 1) must be finished.

20N N 2
pyt! pyt
;):T r:+1
l 2
0@ =0:|| pra | | = PF1 Eq. 140
Pis2 Pisz
Lpin -4 Lpan -4
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pi*t = 0,(p]) = max(0,w;*") Eq. 141
Hildreth’s quadratic programming procedure [10] is employed in an iterative manner

to identify and eliminate inactive inequality constraints as outlined below:

[pi* ]
pytt
(P =p"" = p_r:+1 = Oan-4(p) ... 02(p)01(P) Eq. 142
L
Lpinlal
0,(p}) = pi**
( " i-1 N—-1
0, lf - h_ ki + 2 hi,jp;+1 + Z hl’jp]r <0
3 bt j=1 j=i+1
= | i-1 N—1 ) i-1 N-1
_h_ ki + Z hi,jp;+1 + z hl,]p; , lf - h_ ki + 2 hi’jp;.q—l + Z hl,jp; =0
. j=1 j=it1 v j=1 j=i+1
pl = Lagrange multipliers for the r'!* iteration

The initial iterations begin with assuming that all constraints are inactive.

Consequently, the Lagrange multipliers are initialized with zero values as follows:

p? =0,for i=12,,4(N—-1) Eq. 143
The iteration process halts at the r'" iteration step when when the specified condition

is met.

pl =pl Y for i=12,--,4(N — 1) Eq. 144
The specified termination condition, as indicated in Eq. 145, is applied with a certain

convergence criterion (g,) due to numerical errors and the resolutions of data types:

r rl
pPi — P
r—1 =€
Pi

<e, Eq. 145
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4.3  Application

Figure 13 illustrates the flowchart of the midcourse guidance approach, as discussed
in Section 4.1. Initially, an input vector history is generated based on PN-based
simulation. This history serves as the basis for improving the solution to achieve the
objective outlined in Section 4.1. Consequently, an iterative solution procedure is
employed, where an error history of the control variable is computed at each iteration
to facilitate the achievement of the objective. In this study, the iterations are
terminated either upon the convergence of the solution (&), which measures the
proximity between the final and desired terminal positions, or when the maximum

limit of iteration steps (iy/p¢) is reached in terms of the number of iterations.

In cases where convergence to a solution is not attained within the specified error
band &,, indicating the inability to satisfy the output equality constraint, the
computed current inputs are used to proceed to the next recursive step in the
unconstrained scenario. If the upper limit of the recursive step count (iypc) iS
reached and the output equality constraint still cannot be approached, it signifies the

inability to obtain a solution even in the absence of input constraints.
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Initialization:

uy fork = 1:N,

j=1, yi

Integration in forward time:

A

fk+1 — F(fk,ﬁ;{MPC YES END
Calculate By, dyy
NO NO
YES
' & A= —A;(dyy — by)
: : Ay
tvpc = Impctl N1 -1
I = - Z Bk szlB:z: ’ Eﬁ
k=1
Control Update k=N-1
ﬁi{MPCJrl _ ﬂ}iMPc = L Bkﬂfjc
- dﬁk
k=1:N

Calculate du,:
dit, = @, + R 'BLA
k=1.N

Figure 13: Optimization Steps for Unconstrained Input Case

Figure 14 presents the flowchart of the midcourse guidance approach, which is

discussed in Section 4.2. The effectiveness of the linearization processes utilized in
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this method, applicable to nonlinear systems, diminishes as the solution deviates
from the assumed solution. Therefore, the optimization problem primarily focuses
on solving the case where input constraints are disregarded. Failure to do so may

result in a significantly reduced convergence rate of the numerical solution.

If the control input solution (%, iy, -+, ty—1) COnverges to a solution within the
specified error band &, without activating the input constraints at any time step, it can
be concluded that an optimization solution complying with the input constraints has
been achieved. In the event that the upper limit of the recursive step count (iypz) IS
reached while the output equality constraint still cannot be approached, it signifies
the inability to obtain a solution even in the absence of input constraints. Under such
circumstances, it is inferred that achieving an optimization solution under input

constraints is infeasible.

In cases where the control input solution obtained without considering input
constraints activates the input constraints at one or more time steps, efforts are made
to obtain a solution for the input-constrained case using Hildreth's algorithm in the

current and subsequent recursive steps.
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Figure 14: Optimization Steps for Input Constraint Case
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The equations pertaining to input-constrained calculations are depicted in Figure 15.
The comprehensive derivations and explanations of these equations can be found in
Section 4.2 of the thesis.

Input Constrained Calculations

Calculate p, fork =1:N -1
!
/1_ - —A;[(d_')_/N - EA - C_p)

-1

k=

Ay =— B.R:'BI' | , b, = Z By i)
k=1 k=1

=
=

k=N-1

k=N-1
6= Y BeR:GIA:

Calculate duy,:

di, = @y, + R Y(BEA + Gl py,

Control Update:
ol = al - dm,
fork=1.N—-1

|

Calculate dyy

Figure 15: Input Constrained Calculations
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Figure 16 illustrates the implementation of Hildreth's algorithm in this study for
calculating Lagrange multipliers associated with input constraints. It is crucial to
terminate the algorithm when the obtained multipliers p; converge to specific values.
In each recursive step, the algorithm aims to minimize the cost function and satisfy
the output equality constraint by updating the control inputs. To prevent the inability
to proceed to the next recursive steps due to the failure of the termination condition
of Hildreth's algorithm, an upper limit (7;,,4,) is set on the number of iterations within

the algorithm.

Calculation of gy, fork=1;:N — 1
Start Hildreth'’s p iteration with r=1:

1
pI*1 = max (0’_h_u(ki +

Cihopi Tt + 25N hi,jP;)) L=

1,2,-,4(N — 1)

r=r+1 5
NO

YES

=% __ [= = r+1

p'=1p1pz e Pual" =p

Figure 16: Lagrange Multipliers (Related to Input Constraint ) Computation

4.4 Results

In this section, the results obtained in several scenario conditions will be examined.

In all scenarios, the aerodynamic interceptor possesses the following characteristics:

e The aerodynamic interceptor’s initial position is at the origin of the inertial

frame.
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e The values of the drag coefficient components are determined based on Mach

number.
e The reference area of the aerodynamic interceptor is the same in all scenarios.

e The autopilot dynamics of the aerodynamic interceptors are the same in all
scenarios and under all flight conditions.

e The initial acceleration commands required to start the solution are obtained
using the proportional navigation guidance law in all scenarios, without any

acceleration command constraints.

44.1 Unconstrained Input Case

To clarify the approach, an example test case will be presented. The scenario

information is shown in Table 1.

Table 1: Scenario Initial Conditions

Va [0m,5167 m, —2983.2m]"
Bo 30 deg

hg Om

Vg 200 m/s

tgo 15s

Figure 17 and Figure 18 present outcomes of the guidance algorithm for desired
terminal condition y; = [0 m,5167 m, —2983.2 m] . It is worth noting that a total
of 10 iterations were executed, and the output of the final iteration is depicted in the
figures. In the figures, the blue and red lines correspond to the results obtained from
the proportional navigation guidance (PNG) simulation and the Model Predictive
Programming (MPP) approach, respectively. Additionally, the circle symbolizes the
desired terminal position. Notably, MPP solution successfully achieves the
interception, as demonstrated by the comparison between the desired terminal

position and the MPP trajectory.
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Figure 17: Positions of Interceptor for PNG and MPP Output
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Figure 18: Positions of Interceptor for PNG and MPP Output (Zoomed)

Lateral acceleration commands are illustrated in Figure 19 and Figure 20 for desired
terminal condition ¥, = [0 5167 2983]T m after 10 iterations. In the figures,

the red and blue lines correspond to the results derived from the proportional
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navigation guidance (PNG) and MPP methods, respectively. MPP approach
demonstrates its capability to adapt the initial input vector to meet the constraint

associated with the terminal position.
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Figure 19: Y Axis Commanded Acceleration for Wind Frame - aM;‘fC (MPP-PNG)

100 aMz Command(mlsz) vs time(s)

MPP
PNG

aMz Command(m/sz)
o
o

o

-50

time(s)
Figure 20: Z Axis Commanded Acceleration for Wind Frame - aME’C (MPP-PNG)

Figure 21 provides an analysis of the convergence process towards the desired

terminal position. The first subplot depicted presents the magnitude of the terminal
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position error, showcasing the deviation from the target position. In the second
subplot, the cost function magnitude is depicted. The cost function serves as a
measure of the optimization objective. As depicted in the graph, it is evident that the
magnitude of the output error converges to nearly zero after five iterations. As the
iterations progress, the cost function value decreases, indicating a continuous

improvement in achieving the optimization objective.
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Figure 21: Convergence of Algorithm

Figure 22 and Figure 23 present commanded accelerations (aM;VC, aMZVC) obtained

from the model predictive programming (MPP) iterations. Each figure corresponds
to a specific MPP iteration, showcasing the evolution of the acceleration commands
throughout the optimization process. It can be observed lateral acceleration
commands gradually converge to nearly identical values as the number of iterations
increases. This convergence behavior indicates the refinement and optimization of
the control inputs over successive iterations, resulting in consistent acceleration

commands being applied to the system to achive the desired performance.
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Figure 22: Y Axis Commanded Acceleration for Wind Frame — aM;VC
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Figure 23: Z Axis Commanded Acceleration for Wind Frame Z AXis - aME’C

Figure 24, Figure 25 and Figure 26 exhibit the evolution of the interceptor's position
throughout the model predictive programming (MPP) iterations. These figures
provide a visualization of the interceptor's trajectory during the optimization process.
In each figure, the interceptor's position is depicted, with the final position indicated

by a dotted line. The remaining lines represent the initial and intermediate paths that
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gradually converge to the final trajectory. The desired terminal position is denoted
by a circle, representing the intended destination. It is shown that the interceptor's
trajectory undergoes refinement and convergence over the course of the MPP
iterations. After approximately 5 iterations, the interceptor's path significantly aligns
with the desired terminal position. This convergence in the interceptor's position
reflects the iterative refinement of control inputs and the optimization of the control

strategy during the MPP process.
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Figure 24: Interceptor Position and Desired Terminal Position in the x-axis
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Figure 25: Interceptor Position and Desired Terminal Position in the y-axis
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Figure 26: Interceptor Position and Desired Terminal Position in the z-axis

It is critical to emphasize that the accuracy and reliability of these calculations
heavily rely on the proximity of the desired output value to the initial output, which
is established by the initial control input vector. Specifically, the validity of the MPP
approach is contingent upon the acceptability of linearization approximations
employed in the optimization process. When the desired output value deviates
significantly from the initial output, the assumptions made in linearizing the system
may become inadequate, thereby diminishing the validity of the MPP calculations.
In such cases, it becomes challenging to descend to a local minimum of the cost

function or achieve convergence of iterations towards a feasible solution.

44.2 Input Constraint Case

This part presents outcomes obtained when considering acceleration limits
throughout the entire flight of the interceptor. The imposed constraints on
acceleration values are contingent upon the specific flight conditions of the
interceptor, such as Mach number and altitude. In this particular analysis,
acceleration limits are incorporated to showcase the activation of constraints at the

beginning and middle stages of the flight.
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Figure 27 and Figure 28 depict the commanded accelerations derived from the
unconstrained optimization problem illustrated in Figure 19 and Figure 20. The red
and blue lines represent the simulation results obtained using the proportional
navigation guidance (PNG) and the model predictive programming (MPP)
approaches, respectively. The black lines represent the maximum and minimum
limits of the acceleration values imposed by the constraints. It can be noticed that the
MPP solution, when formulated without considering the input constraints, leads to
commanded accelerations that surpass the prescribed acceleration limits for this

specific test case.
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Figure 27: Y Axis Commanded Acceleration for Wind Frame (MPP-PNG)
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Figure 28 Z Axis Commanded Acceleration for Wind Frame (MPP-PNG)

Figure 29 illustrates results obtained from the input constrained MPP result for
desired terminal condition y; = [0,5167,—2983.2] m after 10 iterations. The red

and blue lines represent the MPP solutions for the cases with and without input

constraints, respectively. The circle denotes the desired terminal position. It can be

noticed that the MPP solution considering input constraints generates control

commands that facilitate a successful interception of the target.
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Figure 29: Positions of Interceptor with and without Input Constraints
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A comparison of the lateral commanded acceleration obtained from the input
constrained optimization problem, unconstrained optimization problem, and
proportional navigation guidance (PNG) is presented in Figure 30 and Figure 31.
The red, blue, and green lines represent the results obtained from PNG,
unconstrained input case solution, and solution of the input-constrained problem
respectively. The black lines depict the maximum and minimum limits of the
acceleration constraints. Based on the information provided, it can be mentioned that
the approach with input constraints alters the initial input vector to meet both the
terminal position constraint (Figure 29) and the input constraint. By considering the
input limits, the solution ensures that the generated control commands fall within the

permissible range, thereby avoiding impractical or unsafe maneuvers.
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Figure 31: Z Axis Commanded Acceleration for Wind Frame (MPP-PNG)

Figure 32 presents the convergence analysis of iterations towards the desired
terminal position for the scenario with input constraints. The first subplot in Figure
32 depicts the error in the terminal position, while the second subplot displays the
value of the cost function. Examining the first subplot, it can be observed that the
terminal position error decreases progressively as the iterations proceed. The error
tends to approach zero after approximately 5 iterations, indicating that the approach
effectively guides the interceptor towards the desired terminal position. In the second
subplot, the magnitude of the cost function is presented. The cost function represents
a measure of the overall optimization objective, which is minimizing energy effort.
The plot shows a significant decrease in the cost function after the first iteration. By
iteratively refining the control commands, the algorithm achieves the dual objectives
of minimizing the terminal position error and optimizing the cost function for this

test case.
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Figure 32: Convergence of Algorithm

Figure 33 and Figure 34 show commanded accelerations during each optimization
iteration. It is important to note that the input constrained calculation commences
when the terminal position deviation of the unconstrained solution falls below a
specified tolerance value, and the resulting input vector surpasses the acceleration
limits. Conversely, if the position deviation in the current iteration surpasses the
tolerance threshold, the iterations continue until the unconstrained solution
approximates the target position within the maximum allowable iterations. The
rationale behind this approach is grounded in the understanding that if the interceptor
fails to reach the desired position with unconstrained acceleration commands, it is
unlikely to achieve the same objective under constrained conditions. Thus, if the
interceptor gets close to the desired position during the current iteration, the
Lagrange multipliers for input constraints are computed to determine the input

constrained solution.

In Figure 32, the terminal position deviation exceeds the specified tolerance
threshold of 50 meter during the first three iterations of the optimization process.

Consequently, the acceleration commands calculated during these iterations are
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obtained using the unconstrained approach, leading to acceleration values that
surpass the imposed limits, as depicted in the accompanying figures. However,
starting from the fourth iteration, when the terminal position deviation falls below
the tolerance threshold, the acceleration commands are recalculated considering the
input constraints. The algorithm then focuses on finding a feasible solution that
satisfies both the terminal position constraint and the input constraints. The rapid
convergence of the acceleration commands towards a viable solution, while adhering

to the input constraints, can be observed in Figure 33 and Figure 34.
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Figure 34: Z Axis Commanded Acceleration for Wind Frame

The MPP iterations in this study are conducted until the terminal position error falls
below a specified threshold. Once this criterion is met, the iterations are stopped, and
the p iterations associated with the final MPP iteration are performed until
convergence of p or reaching maximum p iterations. However, in this particular test
case, the MPP iterations are not terminated for the purpose of demonstration, and the
iterations for calculating the Lagrange multipliers p iterations are conducted solely
when the terminal position error falls below a pre-defined threshold. The Lagrange
multipliers associated with input constraints for each MPP iteration are illustrated in
Figure 35 , where distinct colors indicate varying p values for different MPP

iterations. For every time step, acceleration limits are specified for each input
component (a,‘C,’y o a,‘(,‘,’zc), resulting in the establishment of four constraints for each

time step. In the given scenario, considering a sampling time of 0.2 s, the 15-second
scenario is partitioned into 75 time steps, resulting in a cumulative count of 300
Lagrange multipliers corresponding to input constraints. The graph employs the x-
axis to represent constraint counters (up to 300) and the y-axis to signify Hilderth's
p iterations. The z-axis shows the components of the p vector. The process of

determining Lagrange multipliers associated with input constraints is carried out
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iteratively using Hildreth's procedure. This iterative process continues until the p
vector converges for each MPP iteration. Based on Figure 35, it can be observed that
the p vector converges within four iterations for the fourth and fifth MPP iterations
(turquoise and green), two iterations for the sixth, seventh, and eighth MPP iterations
(light green, yellow, orange), and one iteration for the ninth and tenth MPP iterations
(red, blue). It can be inferred that, the convergence of the Lagrange multipliers
related to the input-constrained algorithm becomes easier when the output error is
lower in the unconstrained case. In other words, a smaller discrepancy between the
desired output and the unconstrained output facilitates the convergence of the

Lagrange multipliers.

Rho Values 3D (in Rho Iteration)
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Figure 35: Rho Values for each MPP iteration
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45 Discussions

There are several approaches in the literature for solving the optimization problem
in guidance. A significant majority of these approaches involve significant
simplifications or assumptions in the relative kinematic equations or the model of
the guided object in order to enable analytical solutions to the problem. As these
simplifications or assumptions deviate from describing the real system, it becomes
increasingly challenging to make judgments about the optimality of the obtained
solution for the relevant system. The general simplifications or assumptions made

can be summarized as follows:

e The magnitude of the interceptor's velocity is assumed to be constant.

e The maneuvers performed by the intreceptor are assumed to have no effect
on the magnitude of velocity or the rate of increase of velocity.

e The maneuver capability of the interceptor is assumed to be unlimited or to
have the same maneuver constraint under all flight conditions.

e The acceleration commands are assumed to be executed by an ideal autopilot
dynamics.

e The flight mechanics of the interceptors are completely neglected.

e Atmospheric conditions are not modeled.

e Approximate relative kinematic equations valid for small angle states are

used.

Existing approaches for solving model predictive static programming for nonlinear
systems have been used for the case of input constraints with inequality bounds. In
order to determine which inequality constraints are active or inactive, all Lagrange
multipliers need to be solved simultaneously. There are two main challenges for

directly performing such a computation:

e The need for high-dimensional matrix operations.
e The requirement for Lagrange multipliers associated with inequality

constraints to be either zero or positive.
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Due to these reasons, determining which inequality constraints are active and the
corresponding Lagrange multipliers is solved recursively following Hildreth's
directive [10]. It should be noted that if the inequality constraints on the input make
it impossible to satisfy the equality constraint on the output, the convergence of
Hildreth's directive to any solution is not possible, regardless of the cost function.
Additionally, if both the inequality constraints on the input and the equality
constraint on the output result in a very limited solution space, the convergence of
Hildreth's procedure to a solution may take a long time. Therefore, an upper limit is
imposed on the number of recursive steps in the implementation of Hildreth's
procedure, in addition to the convergence criterion specified in Section 4.2. This

upper limit can be determined based on the following considerations:

e Acceptable computational time length.

e Acceptable magnitude of error for the optimization solution.

In this study, a guidance solution for the equality constraint on the target position
and inequality constraints on commanded acceleration is demonstrated. By
modifying the definitions of the outputs, cost function, and inequality conditions or
introducing new definitions, solutions for different guidance problems (such as
impact angle, linear velocity at arrival, acceleration command at arrival or realized
acceleration, reduction of total drag force, avoidance of restricted zones) can also be

obtained. The online applicability of this approach depends on the following factors:

e Complexity of the system model (e.g., as the system order increases, the
number of computations will increase).

e Time step of the solution and flight duration (e.g., as the time step becomes
smaller and the flight duration becomes longer, the number of computations
will increase).

e Narrowness of the solution space that satisfies both the inequality constraints
on the input and the equality constraint on the output (e.g., if it is almost

impossible to reach the solution that satisfies the output constraint due to the
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given input constraints, the recursion of Hildreth's directive may take a very
long time or may not converge at all).
In addition, it should be noted that this approach does not guarantee finding the

globally optimal solution and it is possible to converge to local optima. Therefore,

this approach should be considered as a solution method within the class of "best

proximity" rather than a globally optimal solution method.
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CHAPTER 5

REACHABLE SET ANALYSIS TOOL DEVELOPMENT

The key purpose of performing reachable set calculations for an interceptor is to
evaluate its kinematic capabilities throughout a finite flight duration under diverse
initial flight conditions. This study examines the kinematic capabilities by defining
the lower and upper bounds of reachability for flight ranges which are influenced by
the flight duration and initial flight conditions. To accomplish this, a reachable set
computation procedure based on input-constrained model predictive programming
approach is proposed. The procedure aims to minimize a cost function, enabling the
generation of optimal control commands that result in a reduced total control action
throughout the entire flight duration. Additionally, the procedure ensures adherence
to both inequality constraints associated with control command magnitudes and

equality constraints concerning the final position.

To calculate the reachable set, it is crucial to begin by defining search directions and
minimum and maximum range reachability boundaries. Specifically, the reachable
set is characterized by the boundaries of maximum and minimum reachability, which

are computed for different search angles and flight conditions.

The minimum and maximum range reachability boundaries represent the range
limits that an interceptor can achieve from its initial position within a specified flight

duration under specific flight conditions and for different search directions.

By effectively storing and consolidating the reachable points obtained through the
computation process, the boundaries of the reachable set are systematically
constructed, accommodating different flight conditions. Subsequently, a logical
framework is developed to facilitate the comprehensive exploration of the reachable
set boundaries, allowing for a thorough analysis of the interceptor's kinematic

capabilities within the given flight duration.
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Finally, the reachable set boundaries are determined by applying the proposed
reachable set computation procedure, which involves the optimization of the cost

function and the satisfaction of both inequality and equality constraints.

5.1 Reachability Boundary and Search Direction Definitions

In this section, definitions for minimum and maximum reachability boundaries and
search directions are provided. The minimum range reachability boundary refers to
the shortest distances an interceptor can reach from its initial position within a given
flight duration, considering different search direction.

Conversely, the maximum range reachability boundary represents the farthest
distance that the interceptor can reach from its initial position within the specified
flight duration, considering different search direction.

To determine the minimum and maximum range reachability boundaries, a range of
desired terminal positions is defined relative to the current position and search

directions by the following relation:

0
_ho

These desired terminal positions are obtained by considering different ranges (R )
from the current position and applying search angles with respect to the unit vector

of the interceptor's velocity (i,).

By exploring the reachability of the interceptor to these desired terminal positions,

the minimum and maximum range reachability boundaries are identified.

Figure 36 provides an illustrative example depicting the maximum and minimum
boundaries in different search directions. Additionally, it showcases the unit vector
of the interceptor's velocity (i, ) and the search direction unit vector (i) which is

obtained by 2 succecessive rotations.
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Py,
[} Minimum range reachability
boundary point in %, search direction
0 Maximum range reachability
boundary point in i, search

Figure 36: Maximum and Minimum Boundaries in Search Directions

The search directions for determining the boundaries of the reachable set are
expressed relative to the frame Fy,. The terminal position is determined along the
first unit vector of the frame Fs (ﬁf) which is acquired through successive rotations

about the frame F, as described by the Rodrigues formulation.
The rotational sequence for obtaining i is as follows:

Fuw = R, a5) » Fy - R, Bs) - F Eq. 147
Here, R(ul, B,) represents a rotation matrix that defines the transformation from
frame Fy to frame Fs. It is given by the matrix:
cos(Bs) 0 sin(Bs)
0

Ry, Bs) = 0 1
—sin(Bs) 0 cos(Bs)

Eq. 148
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Similarly, the rotation matrix R (13, a,) represents the rotation matrix obtained by
rotating frame F,,, along 1} of frame F,. It is computed using the Rodrigues

formulation as:

1 0 O 0 -1 0
R@L,a)=[0 1 0|+sin(as)|1 0 0O
0 0 1 0O 0 O

Eq. 149
0 —1 0”0 -1 0

+(1—cos(,85))[1 0 Ol|lt 0 O
0O 0 olo 0 O

By utilizing these rotational transformations, the target terminal position in the

inertial frame can be represented in relation to the range (R) , R(u}, ay), R(u4, B),
ag and Bs. This representation allows for the determination of the terminal position

in relation to the flight parameters and search directions.

Figure 37 shows successive rotations between Fy,, and Fs. ,highlighting the

transformation process involved.

Figure 37: Search Direction
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5.2

Reachable Set Boundary Search Procedure

In this section, the search logic which is employed to determine the reachable set

boundaries for an interceptor is explained. The search logic follows a systematic

procedure, taking into account various flight conditions and constraints, to guide

the interceptor towards the desired position while considering the terminal position

error and input constraints.

The procedure is summarized in the flowchart shown in Figure 38 and the detailed

steps involved in the reachable set boundary search logic are as follows:

1)

2)

3)

4)

Define Flight Conditions for Reachable Set Computation: Before initiating
the reachable set computation, it is crucial to define the search direction and
specific flight conditions under which the analysis will be conducted. These
flight conditions encompass a range of parameters, including altitude, Mach
number, and other relevant factors that significantly impact the flight
characteristics and performance of the interceptor.

Define a Terminal Desired Position and Generate Initial Input Vector: A
terminal desired position is established as the target location that the
interceptor aims to reach within the specified flight duration.The generation
of the terminal desired positions is explained in 5.1. Initially, the interceptor
is guided towards this desired position by employing the Proportional
Navigation Guidance (PNG) approach. This approach provides an initial
trajectory for the interceptor, utilizing guidance laws that minimize the line-
of-sight (LOS) rate between the interceptor and the target.

Compute the Solution using Model Predictive Static Programming: Once the
initial input vector is generated through the PNG approach, it is incorporated
into the Model Predictive Static Programming (MPSP) approach. The MPSP
algorithm optimizes a cost function to compute a refined solution that
minimizes the control effort required throughout the complete flight duration.
Check Terminal Position Error and Input Constraints: After computing the

solution using the MPSP approach, it is essential to evaluate the terminal
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position error to determine whether it falls below a predefined threshold.
Additionally, the activation of input constraints, such as acceleration limits,
is examined. If the terminal position error is within the desired threshold and
the input constraints are not violated, it signifies that the computed solution
meets the predefined criteria.

5) Execution of Reachability Boundary Calculations: If the conditions specified
in step 4 are not satisfied, it is not necessary to execute the calculations for
the minimum and maximum reachability boundaries for the current flight
condition. In such cases, the analysis proceeds to another flight condition,
adjusting the parameters as necessary. However, if the conditions specified
in step 4 are satisfied, indicating that the computed solution meets the desired
criteria, the calculations for the minimum and maximum reachability

boundaries are executed.

By following this search logic, the reachable set boundaries for the interceptor can
be determined under different flight conditions. The procedure ensures that the
boundaries are calculated only when the terminal position error is within the desired
range and the input constraints are not violated. This approach provides a systematic
method for exploring the kinematic capabilities of the interceptor and obtaining

valuable insights into its performance and limitations.
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Define flight conditionsw‘ PASS NEXT FLIGHT CONDITION

for Reachable Set - -
Computation:
Bo. ho. to, if‘gorVM,,r as, Bs
Ruinreach = {Rminreun‘hl J_’g'};
Create empty set: Rinaxreach = {Rmaxreachr 375} MinimumBoundary
Rodnreach = {}JRma.xreach = {} U =0 Computation
A 4
Guidance to the CalculateMinimumBoundary=1 MaximumBoundary
desired position by CalculateMaximumBoundary =1 Computation
PNG
U I TRUE
v
- =d o
Compute the HyN yNHz < &y U=vu
solution using MPC A CalculateMinimumBoundary=0

approach
Grilg — Wi < &, FALSE CalculateMaximumBoundary =0

Figure 38: Reachable Set Computation Procedure

5.3  Reachability Boundary Determination for Maximum and Minimum

Flight Range

In this section, the procedure employed to determine the reachability boundaries for
the maximum and minimum flight range of an interceptor is explained. The
procedure involves propagating an initial guess of the interceptor's terminal position,
assessing the reachability for the updated desired position, and iterating the process
until the range limits are reached. Figure 39 depicts a flowchart illustrating process
of reachability boundary computation. The flowchart provides a visual
representation of the procedure, highlighting the iterative nature of the process and

the various stages involved in determining the reachability boundaries.
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Figure 39: Flowchart of Reachability Boundary Computation

53.1 Reachability Boundary for Maximum Flight Range

To determine the reachability boundaries for the maximum flight range, the

procedure commences by propagating an initial estimate of the interceptor's terminal

position in the forward search direction. This forward search direction corresponds

to an increase in flight range. The initial guess is obtained by taking a step in a chosen

direction, considering factors such as target location and flight conditions.

Subsequently, the Model Predictive Static Programming (MPSP) approach is

employed to assess the feasibility of reaching the updated desired terminal position.
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By evaluating the terminal position error of the interceptor, it is determined whether

the updated desired position is achievable within the specified flight duration.

In the event that position error at the terminal point of the interceptor falls below a
predetermined tolerance threshold and the resulting input vector does not surpass the
specified acceleration limit, the updated terminal position is considered a candidate
for the reachability boundary for the maximum flight range. This implies that the
interceptor can successfully reach the updated position while satisfying the imposed
constraints. For each MPP computation, the input vector history that has been
recently updated is utilized, ensuring that the calculations are based on the most up-

to-date information.

The above process is reiterated until the interceptor is unable to reach the updated
terminal position. This iterative approach allows for a thorough exploration of the
reachability boundaries for the maximum flight range, taking into account different

flight conditions, target locations, and system constraints.

532 Reachability Boundary for Minimum Flight Range

Similarly, the procedure is also applied to determine the reachability boundary for
the minimum flight range. In this case, the backward search direction is considered,
corresponding to a decrease in flight range. The same principles and steps outlined

for the maximum flight range analysis are applied in this context.

By propagating an initial estimate of the terminal position in the backward search
direction, the procedure aims to assess the reachability of the updated desired
terminal position for the minimum flight range. The MPSP approach is utilized to
optimize the cost function, taking into account input constraints and system
dynamics. The terminal position error is evaluated, and if it falls below the
predetermined tolerance threshold and the resulting input vector satisfies the
acceleration limit, the updated position is considered a candidate for the reachability

boundary for the minimum flight range.
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Through an iterative process, similar to that described for the maximum flight range,
the reachability boundary for the minimum flight range is determined. This iterative
approach allows for a comprehensive exploration of the interceptor's capabilities in
terms of the minimum flight range under different flight conditions and system

constraints.

108



CHAPTER 6

REACHABLE SET COMPUTATION

6.1  Unconstrained Input Case

In this section, the calculation procedures for obtaining the reachable set boundaries
in the unconstrained input case are described. The maximum range reachability
boundary is established by gradually advancing the previous reachable point in the
search direction, while the minimum range reachability boundary is obtained through
a process of regression from the prior reachable point. For this study, a boundary
iteration step size of 300 meters is employed, as it allows for acceptable linearization
approximations and convergence to a solution. However, in the event that the
algorithm fails to attain a satisfactory solution for the desired terminal position
during the current boundary iteration, a stepwise reduction of the boundary iteration
step size is implemented, reducing it to 100 meters. This adjustment aims to to
discern whether the convergence issue arises from limitations in the interceptor's
capability or the potential invalidity of the linearization approximations utilized in

the optimization process.

In Figure 40 and Figure 41, the points that can be reached in the inertial reference
frame are depicted based on the initial conditions specified in Table 1. The red circle
and blue marker points depict the points achieved via calculations for the maximum
and minimum boundaries, respectively. In this particular test case, the reachable
points lie in the y-z plane since the desired terminal position components align with

the inertial y and z axes.

The reachability boundary for the maximum range is approximately 6.8 kilometers,
while for the minimum range, it is around 16 meters. Comparing these boundaries
with those obtained from the PNG scenario, we observe that the maximum range

reachability boundary is approximately 1 km greater. Additionally, the minimum
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range reachability boundary is situated near the initial position. It is worth noting
that the distance between two reachable points is reduced as the process advances
during the iterations of the maximum range reachability boundary calculation

because of the decrease in boundary step sizes, as discussed earlier.
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Figure 40: Y-Z plane Reachable Points Along Search Direction
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Figure 41: Reachable Points Along Search Direction

Figure 42 consists of two subplots. The first subplot displays the range encompassed

by the reachability analysis, considering at most 6 boundary iterations in the

110



specified search direction. The terminal position error at the conclusion of the final
MPP iteration is presented in the second subplot for each of the 6 maximum
boundary iterations. In the first subplot, the initial point represents the range that the
interceptor can reach through PNG. During the second boundary iteration for the
maximum range reachability boundary, the first reachable point from the initial
iteration is advanced 300 meters further. The ability of the interceptor to reach the
new terminal point is then assessed. However, the third boundary iteration presents
challenges in finding a viable solution for the interceptor to reach the desired
terminal point, as the terminal position error exceeds 50 meters. As a response, in
the fourth iteration, the final reachable point from the second boundary iteration is
advanced an additional 100 meters, adopting a smaller boundary iteration step size
of 100 meters. This adjustment aims to differentiate between the underlying causes
of the convergence issue, whether it relates to the interceptor's performance or the
linearization approximation. It is important to note that convergence problems may
arise when the desired output value is significantly distant from the initial output, as
the linearization assumption in calculations may not hold under such circumstances.
During the fourth boundary iteration, the MPP gradually approaches a solution with
the reduced step size, as the desired terminal position error approaches zero. The
subsequent boundary iterations continue with a step size of 100 meters until an MPP
solution is no longer achievable, thereby determining the maximum range
reachability boundary. For this specific test case, the maximum range reachability
boundary is approximately 6800 meters, with a resolution of 100 meters for both the

maximum and minimum range reachability boundaries due to the chosen step size.
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Figure 42: Range and Terminal Position Deviation During Each Maximum
Boundary Iteration

Figure 43 and present the cost function values and the desired terminal position error
concerning the MPP iterations for each maximum range boundary iteration. Notably,
the algorithm exhibits a lack of convergence for the 3rd and 6th boundary iterations.
However, for the rest of the boundary iterations, the terminal position error

approaches zero after a few iterations.
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Figure 43: Terminal Position Deviation vs. MPP Iteration
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Figure 44: Evolution of Cost Function Across MPP lIterations

Figure 45 and Figure 46 show the cost function values and the desired terminal
position error for the 15 MPP iteration case. It is evident that the algorithm fails to
converge to a solution for the 3rd and 6th boundary iterations, despite the increased
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number of iterations. The issue of convergence at the 3rd iteration has been explained
previously, and reducing the step size solves the convergence problem up to the 6th

boundary iteration.
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To investigate whether the issue of convergence at the 6th iteration is because of the

interceptor's capability, the 6th boundary iteration is rerun with the drag force
coefficient associated with lateral acceleration (Cyx,) set to zero. Figure 47

demonstrates the convergence results for this case. The results show that the
algorithm successfully finds a viable solution when the drag force due to lateral

acceleration is neglected. The value of cost function decreases after a few iterations.
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Figure 47: Convergence of Algorithm

Figure 48 and Figure 49 showcase the commanded accelerations on lateral plane
derived from the MPP approach during the 6th boundary iteration. The accelerations
are represented by red and blue lines, where red indicates the exclusion of drag force
impact, and blue represents the inclusion of drag force. The red line indicates that
the interceptor can achieve the desired terminal position by utilizing increased
acceleration commands. This is because no additional drag force is present due to
the greater lateral acceleration, preventing a reduction in the velocity magnitude. The

challenge encountered in the 6th maximum range boundary iteration is due to the
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extra dissipation of the interceptor's kinetic energy as a consequence of the lateral

acceleration requirements.
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Figure 49: Y Axis Commanded Acceleration for Wind Frame

Figure 50 and Figure 51 present the trajectories of the interceptor in the x-y-z and y-

z planes at different minimum boundary iterations. It can be observed that aggressive
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maneuvering is required to achieve termination points in close proximity to the initial

position within a flight duration of 15 seconds.
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In Figure 52 and Figure 53, the values of the cost function and terminal position
deviation for various iterations corresponding to the minimum range reachability
boundary are depicted. It can be observed that the terminal position error gradually
decreases to zero during the MPP iterations. The cost function value experiences an
increase in the second iteration due to the MPP enforcing higher acceleration
command magnitudes to satisfy the terminal position equality constraint. In the
subsequent iterations, the control effort in terms of acceleration commands gradually

decreases while still adhering to the terminal position constraint.
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Figure 53: Terminal Position Deviation vs. MPP Iteration

Figure 54 and Figure 55 display the lateral acceleration commands at different
minimum boundary iterations. We can observe that higher acceleration commands
are required to get to terminal points in close proximity to the initial position. The
acceleration commands in the inertial y-axis are higher than those in the z-axis, as
the desired terminal points lie along the inertial y-axis. The figures also show that
the acceleration commands approach a viable solution within approximately 5

iterations.
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Figure 56 and Figure 5

7 demonstrate the flight path angles at different minimum

boundary iterations. It is evident that higher path angles are required as the minimum

boundary iteration increases to reach terminal points in close proximity to the initial

position. After the 10th boundary iteration, the yaw angles exceed 180 degrees,

indicating that the interceptor maneuvers in the reverse direction.
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6.2 Input Constraint Case

In this section, the comparison is made between the reachable points achieved using
the solution of input constrained problem and those derived in the unconstrained
input case. Additionally, the performance evaluation of the input constrained
approach includes an analysis of the output error magnitude plot, convergence plot
for the Lagrange multipliers of input constraints, and the solution of the input vector
(acceleration commands). Notably, the optimization problem for unconstrained input
case is initially solved until the desired terminal error decreases below a specified
threshold. Subsequently, the resulting input vector is compared against the
acceleration limit, which varies based on the Mach number and altitude. Should the
input vector exceed the acceleration limit during the flight, the p vector is iteratively
computed using Hildreth's procedure and applied to update the input vector. Finally,
the confirmation of the interceptor's ability to reach the desired terminal position is

carried out through the implementation of the resultant input vector.

Figure 58 illustrates the points that can be reached in the inertial reference frame for
the initial conditions provided in Table 1. Within the figure, the red and blue points
portray the achieved positions for the constrained and unconstrained input scenarios,
respectively. The figure distinctly illustrates that the kinematic capabilities of the
interceptor are influenced by the interceptor's acceleration limit, as anticipated. For
the selected search direction, the maximum range reachability boundary is
approximately 6.8 km for the unconstrained input case whereas for the constrained
input case, it is approximately 6.2 km. Nonetheless, the most notable distinction
between the constrained and unconstrained input cases is observed in the minimum
range reachability boundary. The minimum range reachability boundary for the
constrained input case, within the selected search direction, is approximately 1.7 km
farther than that of the unconstrained input case. These results highlight the critical
importance of considering input constraints in order to derive realistic reachability

boundaries.
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Figure 58: Y-Z plane Reachable Points Along Search Direction

Figure 59 depicts the terminal position deviation for the iterations of the input
constrained MPP approach at the 5th, 7th, 10th, and 15th minimum range boundary
iterations. Also, the figure shows that the terminal position error meets the chosen
tolerance threshold of 50 meters after just 2 MPP iterations for each reachability
boundary iteration. The interceptor reaches the desired terminal position during the
5th minimum range reachability boundary iteration without triggering any input
constraints. At the 7th, 10th, and 15th reachability boundary iterations, the MPP
iteration for the unconstrained input case concludes after the 2nd iteration, as the
terminal position error satisfies the defined tolerance. After the second iteration, the
input vector solution is used to initialize the calculations for input constrained
solution. Subsequently, the input vector solution from the 3rd iteration is applied to

validate the terminal position deviation and ensure the reachability.
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Figure 59: Terminal Position Deviation vs. MPP Iteration

Figure 60 illustrates commanded accelerations at the 5th, 7th, 10th, and 15th
minimum range boundary iterations. The red and blue lines represent the lateral and
longitudinal accelerations, respectively, while the black lines demonstrate the
acceleration limits of the interceptor under the corresponding flight conditions. The
figure demonstrates that higher acceleration commands are necessary to achieve
points closer to the initial position. Consequently, the input constraints are activated
in proximity to the initial points, and the interceptor generates the maximum
acceleration command that it is capable of within the constraint activations. As the
interceptor approaches the initial points, it generates acceleration commands at the

acceleration limit for an extended period.
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Figure 60: Commanded Accelerations in Wind Frame

To evaluate the convergence behavior of the Hildreth's procedure, the discrepancy
between successsive iterations of the o vector (denoted as pg;ff) is examined. Figure
61 displays the dot product of p,;¢¢ obtained during the iterations of the p vector for
the 7" , 10" , 15" minimum range reachability boundary iterations From the
iterations, it can be deduced that the p vector converges within 4, 6, 29 iterations, for
the 7", 10" and 15" boundary iterations, respectively. The iteration of /5 is stopped
when it reaches the maximum allowable iteration number at the 16th boundary
iteration, which represents the limit of the minimum boundary. At this point, the

interceptor struggles to reach the desired final position while meeting the input
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constraints throughout the flight. As a result, the convergence of o values slows
down at the boundary limits or may not converge to values that indicate the
interceptor's capability has already been reached in previous iterations. The p values
at the end of the total p iteration in the 15th boundary iteration are used in the final
calculation of the input vector, and error plot for output and input vector are

presented in Figure 59 and Figure 60, respectively.
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Figure 61: Difference in Rho Values between Consecutive Rho Iterations

Figure 62, Figure 63 and Figure 64 present the progression of p elements for the 71",
10" and 15" minimum range reachability boundary iterations respectively. The
figures show a reduction in the disparity between successive p iterations, indicating
p converges to the solution after an adequate number of iterations. Figure 62 to
Figure 67 depict the evolution of the elements of the p vector for the 7th, 10th, and

15th minimum range reachability boundary iterations. These figures demonstrate
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that the difference between subsequent iterations of the p vector decreases,
indicating the convergence of p to the solution after a considerable number of
iterations. The p values for each iteration are presented in Figure 65 to Figure 67,

revealing that the p values become closer with each iteration.
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Figure 62: Three-Dimensional Rho Values at 7" Boundary Iteration

Rho Values 3D (in Rho Iteration)

Optlter#2 Rholter#1
Optlter#2 Rholter#2
Optlter#2 Rholter#3

50

Optlter#2 Rholter#4
40 Optlter#2 Rholter#5
Optlter#2 Rholter#6
o
> 30
©
>
o 20
e
o
10
0.l

300
200

2 100

Rho lteration 0 o Constraint Counter

Figure 63: Three-Dimensional Rho Values at at 10" Boundary lteration

127



Rho Values

140

120

100

80

60

Rho Values 3D (in Rho Iteration)

Rho lteration 0

M Il I

Optlter#2 Rholter#1
Optlter#2 Rholter#2
Optlter#2 Rholter#3
Optlter#2 Rholter#4
Optlter#2 Rholter#5
Optlter#2 Rholter#6
Optlter#2 Rholter#7
Optlter#2 Rholter#8
Optlter#2 Rholter#9
Optlter#2 Rholter#10
Optlter#2 Rholter#11
Optlter#2 Rholter#12
Optlter#2 Rholter#13
Optlter#2 Rholter#14
Optlter#2 Rholter#15
Optlter#2 Rholter#16
Optlter#2 Rholter#17
Optlter#2 Rholter#18
Optlter#2 Rholter#19
Optlter#2 Rholter#20
Optlter#2 Rholter#21
Optlter#2 Rholter#22
Optlter#2 Rholter#23
Optlter#2 Rholter#24
Optlter#2 Rholter#25
Optlter#2 Rholter#26
Optlter#2 Rholter#27
Optlter#2 Rholter#28

Optlter#2 Rholter#29

Constraint Counter
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Figure 65: Rho Values for each Rho Iteration at 7" Boundary Iteration
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Figure 66: Rho Values for each Rho Iteration at 10" Boundary Iteration
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Figure 68 and Figure 69 showcase the reachable set boundaries and reachable set
points for the scenario provided in Table 2. Within the left figures, the red and blue
points portray the achieved positions for the minimum and maximum range
reachability boundaries, respectively. The reachable points are indicated by the blue
and black lines in the middle figures for different search directions. Within the right
figure, the trajectories related to minimum range reachability boundary computation
is illustrated for ay = 5 = 0° and related acceleration responses are displayed in
Figure 69 .

Table 2: Scenario Initial Conditions (Input Contsraint Case)

Bo 40 deg

hg Om

Vi, 200 m/s

tgo 15s

Qg 0°,20°,40°,60° 80°
Bs —30°,—15°,0°,15°,30°

Reachable Set Boundaries

Trajectories (Lower

Boundary ) for

o =p, =0

Missile PosXYZ in 3D

4000

Reachable Set Boundaries

2

MissiePosXYZ -Optiter#1
MissiePosXYZ -Optiter#2
Desired Terminal Point

Figure 68: Visualization of Reachable Set and Trajectories for a Specific Search
Direction
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Figure 69: Visualization of Reachable Set Boundaries and Acceleration Response
for a Specific Search Direction

6.3 Initial Condition Variations

In this section, the reachability boundaries for different combinations of initial
conditions, namely ¢4, (flight duration), h (altitude) and g (climb angle), are
examined. By exploring these variations, insights into how the kinematic capabilities
of the interceptor are affected by changes in these parameters are gained.

6.3.1 Unconstrained Input Case

In this section, the analysis of reachability boundaries in the absence of input
constraints is presented. The reachability boundaries are examined for different test

cases and search angles.
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To conduct the analysis, five test cases are defined, each representing a unique
combination of initial conditions. Table 3 provides a summary of the initial

conditions for each test case, including the values of g, hand ty,

Table 3: Initial Conditions

Test Case Bo ho Vug tgo
1 30 deg Om 200 m/s 15s
2 30 deg Om 200 m/s 25s
3 30 deg 3 km 200 m/s 15s
4 30 deg 3 km 200 m/s 255
5 10 deg om 200 m/s 155

Figure 70 and Figure 71 showcase the reachable points for test cases 1 and 2 when
as = 90°and S, = 0°. The reachable points are indicated by the blue and black lines.
The figures illustrate that the maximum reachable boundary for the 25-second case
extends approximately 2-2.5 kilometers beyond the boundary of the 15-second test
case. Evidently, as the flight duration increases, the interceptor can cover longer
distances as long as it possesses sufficient energy. However, reaching terminal
positions in close proximity to the initial position becomes more challenging as the

flight duration increases.
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Figure 70: Visualization of Reachable Points
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Figure 71: Visualization of Reachable Points (Zoomed)

Moving on to test cases 3 and 4, Figure 72 display reachable points for a;, = 90° and
Bs = 0°. Comparing the reachability boundaries in Figure 72 to those in Figure 70,
it is evident that the maximum range reachability boundary expands with an increase
in initial altitude. This observation indicates that the interceptor's reachability is
influenced by the initial altitude, enabling the interceptor to cover larger distances

when operating at higher altitudes.
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Figure 72: Visualization of Reachable Points
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Shifting the focus to a different set of search angles, Figure 73 to Figure 77 depict
the reachable sets and reachability boundaries for test case 1. Figure 73 showcases
the reachable points for ag = 0°, 5, = 30°, providing insights into the reachability

in the X-Z plane.
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Figure 73: Visualization of Reachable Points

Figure 74 presents the overall reachability zone, while Figure 75 specifically displays
the reachability boundary for test case 1. These figures demonstrate the reachability
boundaries obtained for different search angle values (ag = 0°,15°,---,75°,90° and
Bs = —90°,—75°,---,75°90°). The reachable points are represented by black

markers, while the blue line indicates the reachability boundaries.
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Figure 75: Visualization of Reachable Set Boundary

Furthermore, Figure 76 to Figure 81 present the reachable sets and reachability
boundaries from different perspectives, such as the inertial X-Y, X-Z, and Y-Z
planes. Each line in these figures represents the reachability boundary for a specific
a, value, with the markers representing the reachable points for different g values.
It is notable that the limits of reachability within the inertial X-Y plane exhibit
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symmetry in terms of the search direction line of ag =, = 0°, as expected.
However, the reachability boundaries in the X-Z and Y-Z planes deviate from
symmetry due to the influence of B, values, altitude changes, and aerodynamic drag
forces. The variations in altitude affect atmospheric properties and aerodynamic drag
forces, thereby altering the path along the Z-axis and impacting the reachability

boundaries.
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Figure 76: Visualization of Reachable Points
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Figure 77: Visualization of Reachable Set Boundary
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Figure 78: : Visualization of Reachable Points (X-Z plane)
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Figure 79: : Visualization of Reachable Set Boundary (X-Z plane)
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Figure 80 : Visualization of Reachable Points (Y-Z plane)
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Figure 81: : Visualization of Reachable Set Boundary (Y-Z plane)
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Finally, Figure 82 provides an overview of the reachability boundaries for test cases
1 and 5, represented by the blue and red lines corresponding to 8, = 30° and B, =

10°, respectively.
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Figure 82: : Visualization of Reachable Set Boundary For Different Initial Path
Angle

Subsequently, Figure 83 to Figure 86 present the reachability boundaries for specific
a, values separately. These figures highlight the impact of different a¢ angles on the
reachability boundaries, with the blue lines indicating the 30-degree cases and the
red lines representing the 10-degree cases. The reachability boundaries expand with

higher B, angles, particularly in terms of reaching higher altitudes.
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Figure 83: Visualization of Reachable Set Boundary For ag = 15°
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Figure 84: Visualization of Reachable Set Boundary For oy = 30°
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Figure 85: Visualization of Reachable Set Boundary For ag = 45°
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Figure 86: Visualization of Reachable Set Boundary For oy = 60°
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6.3.2 Input Constraint Case
In this section, the analysis of reachability for input constraint case is presented. The
reachability boundaries are examined for different test cases and search angles.

To conduct the analysis, five test cases are defined. Table 4 provides a summary of

the initial conditions for each test case, including the values of Sy, ho,Vy,and tg,.

Table 4: Initial Conditions (Input Constraint Case)

Test Case Bo ho Vi, tgo
1 40 deg Om 200 m/s 155
2 40 deg Om 200 m/s 10s s
3 40 deg Om 200 m/s 75s
4 30deg 0 km 200 m/s 15s
5 45 deg 0 km 200 m/s 155
6 55 deg Om 200 m/s 155
7 40 deg 7 km 200 m/s 155
8 40 deg 7 km 600 m/s 155

In this section, the results of the analysis of maximum and minimum range
reachability boundaries for various flight durations (test cases 1,2,3) are presented,
as shown in Figure 87. These figures demonstrate the reachability boundaries
obtained for different search angle values (ag = 0°20°---,80° and B, =
—30°,—15°,---,30°). As previously observed in Section 6.3.1, it is noted that the
interceptor's capability to travel longer distances increases with the extension of
flight time, provided it possesses sufficient energy. Consequently, the maximum
range reachability boundary expands correspondingly with the rise in flight duration.
Additionally, Figure 88 and Figure 89 depict the reachability boundaries for different
initial path angles (test cases 4,5,6). These figures demonstrate the reachability
boundaries obtained for different search angle values (ag = 0°,15°,---,80° and 5, =
—25°,-10°,10°,25°,30°). It is evident from these figures that the reachability
boundaries expand significantly with higher S, angles, particularly concerning
reaching greater altitudes. Furthermore, it is essential to emphasize that both the area

and shape of the reachable set are subject to substantial influence by variations in ¢4,
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(time to go) and fS,. Hence, it becomes imperative to define the reachable set for

different initial B, values, as well as time to go parameters when integrating it into

the guidance computer.
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Figure 87: Visualization of Reachable Set Boundary for Different Flight Duration
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Figure 90 and Figure 91 demonstrates the reachability boundaries for different initial
altitudes (test cases 1,7) and initial velocities (test cases 7,8). These figures
demonstrate the reachability boundaries obtained for different search angle values
(ag = 0°,15°,---,80° and B, = —25°,—10°,10°,25°,30°). It is evident from these
figures that the reachability boundaries shift and expand with higher initial atitude

and velocity. Furthermore, it is essential to emphasize that both the area and shape
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of the reachable set are subject to substantial influence by variations intial altitude

and velocity.
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Figure 90: Visualization of Reachable Set Boundary for Different Initial Altitudes
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Figure 91: Visualization of Reachable Set Boundary for Different Initial Speeds
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6.4  Reachable Set Comparison Between Unconstrained Input Case and

Input Constraint Case

In this section, a comparison is made between test cases 1 and 5 (Table 2) to
investigate how the presence or absence of input constraints affects the reachability
boundaries. The reachability boundaries are for various search angles, specifically
as = 0°,15°...90°and B, = —90°,—75°, ... 75°,90°.

For test case 1, Figure 92 llustrates the reachability set boundary. The red line
represents the reachable boundary acquired for the constrained input case with
different a, values , while the the blue line depicts the reachability boundaries in the
scenario without input constraints. The figures highlight that the minimum range
reachability boundaries contract when considering the acceleration limits.
Furthermore, the difference between the constrained and unconstrained input cases
in terms of minimum range reachability boundaries can reach up to 3500 meters for
these specific test cases. These results emphasize the necessity of considering the

acceleration capability of the interceptor to obtain a realistic reachability boundary.
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Figure 92: Visualization of Reachable Set For Test Case 1 and 5
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Subsequently, the reachability set boundary for test case 1 is examined individually
for each a, value in Figure 93 to Figure 95. These figures reveal that, in addition to
the shrinkage in the minimum reachability boundary, the maximum reachability
boundary narrows, particularly at higher S, angles, as expected. The interceptor
requires greater acceleration commands to reach the desired terminal position at
higher S, values. Consequently, the maximum reachability boundary obtained
through the input-constrained MPP approach differs from the boundary obtained
through the unconstrained input case due to the activation of acceleration limits at

higher £, values.
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Figure 93: Visualization of Reachable Set Boundary For agegpren, = 0°
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Figure 96 presents the reachability boundaries for test case 5, where the red line
represents the reachability boundaries acquired for the constrained input case with
different ag values, and the blue line represents the reachability boundaries for the
unconstrained input case. The figures illustrate that both the minimum and maximum
range reachability boundaries exhibit significant discrepancies when considering the
acceleration limits. The disparity between the constrained and unconstrained input
cases concerning the minimum range reachability boundaries can reach up to 3500
meters. Additionally, for the maximum range reachability boundaries, the difference
may escalate to 1000 meters, particularly for higher ag values. These findings
underscore the importance of considering input constraints to ensure a realistic

calculation of the reachability boundary.
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Figure 96: Visualization of Reachable Set Boundary for the Test Case 5

6.5 Discussions

The analysis of the constrained input cases in this study has revealed the significant
influence of input constraints on the reachability boundaries. A comparison between
the unconstrained and constrained input cases for test cases 1 and 5 (Table 2) clearly
demonstrates the notable variations in both the minimum and maximum range

reachability boundaries when considering acceleration limits. These findings
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underscore the critical importance of incorporating input constraints into the

reachability boundary calculations to ensure accurate and realistic results.

The effect of parameter variation on the reachability set can also be discussed in
relation to the presented results. By examining the variations in the initial conditions,
such as the angle S, and initial altitude h,, one can observe their impact on the
reachability boundaries. These variations can influence the interceptor's kinematic
capabilities, ultimately affecting the achievable flight ranges within the specified
flight duration. Furthermore, the time parameter t,, also plays a crucial role in
determining the reachability boundaries, as different flight durations yield distinct

ranges that the interceptor can cover.
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CHAPTER 7

SENSITIVITY ANALYSIS

In this chapter, a sensitivity analysis and reachability set computation are presented,
considering parameter perturbations in an aerodynamic interceptor system. The
objective is to explore and address the variations in system dynamics, which can
potentially lead to substantial changes in the reachable set. By conducting
simulations that consider different scenarios with variations in system parameters, it
is aimed to generate robust reachable maps that can capture variations in the system.
The main emphasis of this study is to understand how parameter variations influence
the minimum and maximum boundaries of the reachable set, which are key
indicators of the interceptor's kinematic capabilities. By tabulating the sensitivity of
the reachable set with respect to system parameters, it might be possible to quantify
the extent to which each parameter affects the reachable set, providing a

understanding of the system's behavior under different operating conditions.

7.1 Perturbed Parameters

A sensitivity analysis was conducted to evaluate the impact of different parameters
on the reachable set. The study involved a series of simulations with perturbations
introduced to drag coefficients, thrust, and the autopilot time constant, as outlined in
Table 5. These variations enable an examination of the impact of parameter changes

on the characteristics of the reachable set.

151



Table 5: Different Perturbation Cases

Scenario Perturbed ] Perturbation
o Scenario #
Description Parameter Percentage
Nominal - 1 -
2 -20%
Base Drag
o 3 -10%
Coefficient Cxo
o 4 +10%
Variation
5 +20%
Acceleration 6 -20%
Related Drag c 7 -10%
Coefficient o 8 +10%
Variation 9 +20%
10 -20%
Pulse 1
11 -10%
Thrust Tpe
o 12 +10%
Variation
13 +20%
Autopilot 14 -20%
Time 15 -10%
Tap
Constant 16 +10%
Variation 17 +20%
7.2 Investigation of Base Drag Coefficient and Acceleration Related Drag

Coefficient Effects on Reachable Sets

In this section, the impact of base drag coefficient and acceleration related drag
coefficient variations on the reachable sets of the aerodynamic interceptor is
analyzed. Figure 97 and Figure 98 present the the variations in reachable sets
resulting from different base drag and acceleration related drag values, respectively.

The figures demonstrate that the maximum reachability boundary expands for
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specific scenarios denoted as Sc2 and Sc3 in Figure 97 and Sc6 and Sc 7 in Figure
98. This expansion is attributed to lower drag values, which reduce the drag

experienced by the interceptor, thus enabling it to maintain higher energy levels.
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Figure 97: Effect of Base Drag Coefficient Variation on Reachability Boundaries
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Figure 98: Effect of Acceleration Related Drag Coefficient Variation on
Reachability Boundaries

To quantify the deviations from the nominal condition (Scl), Table 6 and Table 7
present the mean percentage variations of the minimum and maximum boundary
values, respectively. It is important to note that parameter variations significantly
impact both minimum and maximum range reachability boundaries, with the
maximum boundaries experiencing relatively smaller effects. This phenomenon can
be attributed to the activation of inequality input constraints more frequently for the
minimum range reachability boundaries. As a result, the system generates higher
acceleration commands to reach closer terminal positions (with respect to the initial
position) for the same flight duration. Furthermore, the study reveals that the
minimum and maximum boundary variations are nearly identical in all directions of
the inertial frame. This finding suggests that the minimum and maximum range
reachability boundaries undergo uniform scaling in all directions, preserving their

shapes while expanding or contracting the overall area of the reachability boundaries.

154

Reachable Set Boundaries for Acc. Related Drag Coeff. Variation

-3000



Table 6: Percentage of Minimum Boundary Variations for Drag Coefficient
Perturbation Cases

Sc X y z

2 6.58 6.58 6.58
3 5.10 5.10 5.10
4 5.02 5.02 5.02
5 6.49 6.49 6.49
6 6.49 6.49 6.49
7 2.59 2.59 2.59
8 3.95 3.95 3.95
9 581 581 5.81

Table 7: Percentage of Maximum Boundary Variations for Drag Coefficient
Perturbation Cases

Sc X y z

2 5.50 5.50 5.50
3 2.80 2.80 2.80
4 2.24 2.24 2.24
5 4.98 4.98 4.98
6 2.17 2.17 2.17
7 1.29 1.29 1.29
8 1.23 1.23 1.23
9 1.80 1.80 1.80

7.3 Effect of Thrust Variation

Figure 99 illustrates the reachable set boundaries for different thrust magnitudes,
providing information about the interceptor's kinematic capabilities under varying
propulsion conditions. The reachability boundaries are represented by the maximum

and minimum limits within which the interceptor can maneuver while satisfying the
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defined constraints. Upon close examination, it becomes evident that the maximum
reachability boundary expands significantly for Sc12 and Sc13 scenarios, where
higher thrust magnitudes are applied. This observation aligns with the anticipated
behavior, as higher thrust levels empower the interceptor to accumulate greater
energy during flight, resulting in an extended reachability boundary. Consequently,
the interceptor gains the ability to cover longer distances and reach more distant
targets with increased thrust, thus enhancing its mission effectiveness in long-range
engagements. The insights obtained from Figure 99 are crucial for optimizing the
interceptor's performance and mission planning, as they provide valuable
information on the impact of thrust variations on the achievable reachability
boundaries. By considering different thrust scenarios, designers can better
understand the trade-offs between energy consumption and range, enabling them to

make informed decisions to enhance the interceptor's overall operational capabilities.
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Figure 99: Effect of Thrust Variation on Reachability Boundaries

Table 8 and Table 9 shows the variations in boundary values expressed as
percentages compared to the nominal condition (Scl). The results reveal the
sensitivity of the reachable set's minimum and maximum boundaries to parameter
perturbations. The analysis demonstrates that parameter variations significantly

affect both the minimum and maximum range boundaries of the reachable set. Each
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scenario (Scl10, Scll, Scl2, and Scl13) is assessed, and the mean percentage
deviations of the minimum boundary values in the X, y, and z directions are reported,
shedding light on the system's response to different perturbations. Furthermore,
another observation is that the influence of parameter variations is uniformly
distributed across all directions of the inertial frame. This phenomenon implies that
the minimum and maximum range reachability boundaries experience proportional
adjustments in all directions, retaining their fundamental shapes while adapting to
the changes in parameter values. As a result, the reachability boundaries exhibit
consistent enlargement or contraction, determined by almost identical scale factors,
ensuring the preservation of their overall shape during variations.

Table 8: Percentage of Minimum Boundary Variations for Thrust
Perturbation Cases

Sc X y z

10 6.88 6.88 6.88
11 6.08 6.08 6.08
12 6.90 6.90 6.90
13 7.84 7.84 7.84

Table 9: Percentage of Maximum Boundary Variations for Thrust
Perturbation Cases

Sc X y z

10 10.12 10.12 10.12
11 5.46 5.46 5.46
12 5.51 5.51 5.51
13 9.85 9.85 9.85




7.4  Effect of Autopilot Dynamics

In, Figure 100 , the impact of the autopilot time constant on the reachable set
boundaries for different autopilot configurations is presented. It is observed that the
effect of the autopilot time constant is relatively smaller compared to the influences
of thrust and drag parameters. The system's responsiveness to changes in the
autopilot time constant is highlighted, although its impact is not as pronounced as

that of other critical parameters.

3000 Reachable Set Boundaries for Autopilot Time Constant Variation
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Figure 100: Effect of Autopilot Time Constant Variation on Reachability
Boundaries

An analysis of the percentage variations of the minimum and maximum boundary
values is provided in Table 10 and Table 11 , respectively, in comparison to the
nominal condition (Scl). Notably, the results reveal that variation in autopilot time
constants has a limited impact on the maximum range reachability boundaries.
However, its influence becomes more apparent when considering the minimum
range reachability boundaries. This observation is attributed to the inherent difficulty

in compensating for variations in the autopilot dynamics concerning maximum range
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reachability cases. The saturation of acceleration commands to limits occurs more
frequently for the minimum range reachability boundaries, leading to a relatively
higher sensitivity to autopilot time constant variations.

Table 10: Percentage of Minimum Boundary Variations for Different
Autopilot Dynamic Cases

Sc X y z

14 491 491 491
15 3.94 3.94 3.94
16 2.96 2.96 2.96
17 3.65 3.65 3.65

Table 11: Percentage of Maximum Boundary Variations for Different
Autopilot Dynamic Cases

Sc X y z

14 0.89 0.89 0.89
15 0.38 0.38 0.38
16 0.21 0.21 0.21
17 0.58 0.58 0.58

7.5  Effect of All Variations for a Specific Test Case

In Figure 101, a presentation is made of the yaw and pitch channel acceleration
commands for specific conditions of a; = 60° and S, = —25°. The solid lines in
the figure indicate the acceleration commands for a wide range of parameter
variation scenarios (Scl, Sc2, ..., Scl6, Scl17). Black dashed lines in the figure

demonstrate upper and lower limits of acceleration command.

The analysis reveals an observation, wherein the input constraints are consistently
more active when dealing with the minimum range reachability boundary cases.
Furthermore, for the specific test condition considered in this study the acceleration

commands are found to be distributed within a distinct region around the nominal

159



case. This behavior suggests that the interceptor's response to parameter variations

remains confined to a certain range, signifying a certain level of robustness in its
performance under these conditions.
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CHAPTER 8

CONCLUSION

In conclusion, this study has presented an analysis of the optimization-based method
for guidance algorithm and the computation of reachability boundaries. The
optimization problem in guidance algorithms has been addressed through the use of
model predictive static programming, considering both equality and inequality

constraints.

The optimization problem in guidance algorithms has been extensively studied in the
literature. However, many existing approaches rely on simplifications and
assumptions in the kinematic equations and models of guided objects to make the
problem analytically solvable. While these simplifications may allow for
mathematical tractability, they deviate from accurately representing the real system,
making it challenging to assess the optimality of the obtained solutions. The common
simplifications and assumptions include assuming constant velocity or rate of
velocity increase, neglecting the effects of maneuvers on velocity, assuming
unlimited maneuverability, ideal autopilot dynamics, neglecting flight mechanics,
not modeling atmospheric conditions, and using approximate kinematic equations
for small angles. The suggested approach overcomes the limitations of existing
methods that rely on simplifications and assumptions, providing a more accurate and

realistic modeling of the system.

To address the optimization problem with input constraints, model predictive static
programming has been employed, specifically for cases involving inequality
constraints on the inputs. However, directly solving for all Lagrange multipliers
simultaneously poses challenges due to high-dimensional matrix operations and the
requirement for the multipliers to be either zero or positive values. Therefore, a

recursive solution based on Hildreth’s procedure is utilized to determine active
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inequality bounds and their corresponding Lagrange multipliers. In cases where the
input constraints prevent the satisfaction of the output equality constraint,
convergence to a solution may not be possible regardless of the cost function.
Moreover, when both the input inequality bounds and the output equality constraint
are satisfied within a limited solution space, convergence may take a considerable
amount of time. To address these issues, an upper limit on the number of iteration

steps is imposed in addition to convergence criteria.

The applicability of the approach described in this thesis depends on various factors,
including the complexity of the system model, the solution time step and flight
duration, the width of the solution space for optimization, and the update frequency
of the solution during the flight. These factors affect the computational requirements
and the ability to converge to a solution within acceptable time limits. Additionally,
it is important to note that the proposed approach does not guarantee finding the
globally optimal solution across the entire solution space. Instead, it may converge
to local optimal solutions. Therefore, this approach should be considered as a method

that provides solutions in the “best proximity” class.

The reachable set algorithm developed in this study leverages the model predictive
static programming technique and effectively incorporates input constraints. By
employing a directional search approach, the algorithm computes the minimum and
maximum boundary points of the reachable set, eliminating the need for predefined

geometries or grid point positions.

The results obtained from the reachability analysis highlight the significance of
considering input constraints. Comparisons between reachability sets computed with
and without input constraints demonstrate the impact of acceleration limits on the
shape and area of the reachability boundaries. Moreover, it is shown that the area of
the RS was increasing with the increasing final time. Furthermore, the initial
angle,altitude and velocity of the interceptor is shown to influence the shape of the
reachability boundary.
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It should be noted that practical implementation of the proposed method can be
facilitated by storing the computed reachability boundaries in a guidance computer
with an embedded database. This allows for online applications and reduces the
computational load for real-time scenarios. The method's computational feasibility
depends on factors such as sampling time, prediction horizon, dimensions of
matrices, and the number of constraints. Efforts to systematically identify and

eliminate inactive constraints can further enhance computational efficiency.

In order to investigate the sensitivity of the results, a sensitivity analysis was
conducted by introducing variations in the initial states and system parameters. To
generate feasible input vectors, an input-constrained model predictive static
programming approach was employed. Incremental changes were then applied to the
system parameters. Specifically, the value of each parameter was modified by
multiplication factors of 0.8, 0.9, 1.1, and 1.2. The aim was to observe the effect of
these variations on the reachable set's area and shape. By comparing the reachable
sets obtained for each modified parameter value, the sensitivity of the results is
evaluated.The analysis revealed that the area of the reachable set was most sensitive
to variations in the thrust and base drag coefficient. These parameters had a

significant impact on the overall size and extent of the reachable set.

The proposed method offers advantages such as the elimination of cumbersome set
operations and the avoidance of approximation errors. By directly incorporating
input constraints within the optimization process, the method ensures realistic and
accurate reachability boundary calculations. Additionally, the flexibility of the
approach allows for the inclusion of control and state constraints, as well as boundary

conditions, making it applicable to a wide range of systems.

Despite its effectiveness, the proposed method does not guarantee finding the
globally optimal solution. Instead, it converges to local optimal solutions within the
solution space. Moreover, while the proposed method is effective in finding
nonconvex reachable sets along search directions, it does have a limitation in that it

does not identify unreachable zones along those search directions. The search
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process is terminated once an unreachable point is observed, and further points along
the search direction are not investigated for reachability. This limitation arises from
the termination criterion employed in the method, which prioritizes identifying
reachable points rather than exploring the entire search direction. As a result, the
algorithm may not provide information about regions that are completely

unreachable along a particular search direction.

In conclusion, the findings of this study have provided information about the
performance and limitations of the developed algorithm. Through the examination

of various scenarios, the results of the algorithm were demonstrated.
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