
A STUDY ON CRYSTALS-KYBER AND ITS MASKED IMPLEMENTATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SILA ÖZEREN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

SEPTEMBER 2023

Approval of the thesis:

A STUDY ON CRYSTALS-KYBER AND ITS MASKED IMPLEMENTATIONS

submitted by SILA ÖZEREN in partial fulfillment of the requirements for the de-
gree of Master of Science in Cryptography Department, Middle East Technical
University by,

Prof. Dr. A. Sevtap Selçuk Kestel
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Oğuz Yayla
Head of Department, Cryptography

Assoc. Prof. Dr. Oğuz Yayla
Supervisor, Cryptography, METU

Examining Committee Members:

Prof. Dr. Zülfükar Saygı
Mathematics, TOBB University of Economics and Technology

Assoc. Prof. Dr. Oğuz Yayla
Cryptography, Middle East Technical University

Prof. Dr. Barış Bülent Kırlar
Mathematics, Süleyman Demirel University

Assist. Prof. Dr. Buket Özkaya
Cryptography, Middle East Technical University

Assist. Prof. Dr. Erdem Alkım
Computer Science, Dokuz Eylül University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: SILA ÖZEREN

Signature :

v

vi

ABSTRACT

A STUDY ON CRYSTALS-KYBER AND ITS MASKED IMPLEMENTATIONS

Özeren, Sıla
M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Oğuz Yayla

September 2023, 128 pages

As we transition into the quantum computing era, the security of widely-used cryp-
tographic algorithms is facing significant challenges. This is attributable to Shor’s
algorithm, enabling quantum computers to break conventional cryptosystems such
as RSA, DSA, and elliptic curve cryptosystems. This thesis provides a comprehen-
sive study on the CRYSTALS-Kyber key encapsulation mechanism (KEM), the only
KEM algorithm that was a third-round finalist in NIST’s PQC Standardization effort.
We begin with a detailed examination of the foundational concepts of lattices, intro-
ducing the inherent hard problems in lattice cryptography, including Learning with
Errors (LWE), Ring-LWE, and Module-LWE. We subsequently delve into the three
components of Kyber.CPAPKE and detail the Fujisaki-Okamoto transform version
of each algorithm necessary to achieve IND-CCA2 security. An extensive study is
conducted on existing masking methods for the compression function in Kyber, and
their shortcomings due to prime modulo design are highlighted. We propose two
methods for masking this compression function: one integrating a look-up-table, and
the other utilizing a double-and-check method. Additionally, we introduce potential
compression functions for various prime numbers.

Keywords: post-quantum cryptography, lattice cryptography, CRYSTALS-KYBER,
key encapsulation mechanism, side-channel attacks, masking countermeasures

vii

viii

ÖZ

CRYSTALS-KYBER VE MASKELENMİŞ UYGULAMALARI ÜZERİNE BİR
ÇALIŞMA

Özeren, Sıla
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Oğuz Yayla

Eylül 2023, 128 sayfa

Kuantum hesaplama çağına geçiş yaparken, RSA, DSA ve eliptik eğri kriptosistem-
leri gibi birçok yaygın kullanılan kriptografik algoritmanın güvenliği önemli zorluk-
larla karşı karşıya kalıyor. Bu tezde, NIST’in kuantum-sonrası kriptografi standardi-
zasyon sürecinin finalistlerinden biri olan CRYSTALS-Kyber anahtar kapsülleme me-
kanizması üzerine kapsamlı bir inceleme sunmaktayız. Kafes-tabanlı kriptografinin
temel kavramlarının detaylı bir açıklamasıyla başlayarak, bu alanda bilinen zor prob-
lemleri tanıtıyoruz. Daha sonra, Kyber.CPAPKE’nin üç bileşenini detaylıca inceliyo-
ruz ve her bir algoritmanın IND-CCA2 güvenliği için gerekli olan Fujisaki-Okamoto
dönüşüm versiyonlarını sunuyoruz. Kyber’deki kompresyon fonksiyonu için mevcut
maskeleme yöntemleri üzerine detaylı bir çalışma yürütüyoruz ve bunların asal modül
tasarımı nedeniyle birtakım niteliklerden yoksun olduğunu belirtiyoruz. Bu kompres-
yon fonksiyonunu maskelemek için iki yöntem öneriyoruz. Biri bir arama tablosunu
entegre ederken, diğeri bir çiftle-ve-kontrol et yöntemini kullanıyor. Ek olarak, çeşitli
asal sayılar için potansiyel kompresyon fonksiyonlarını sunuyoruz.

Anahtar Kelimeler: kuantum sonrası kriptografi, kafes-tabanlı kriptografi, CRYSTAL-
Kyber, anahtar kapsülleme mekanizması, yan kanal saldırıları, maskeleme karşı ön-
lemleri

ix

To my cherished cat, Gülben, a deeply missed member of our family, whose warm
embraces and charming round face, outlined by naturally kohled green eyes,

continue to grace my dreams even after all these years.

x

ACKNOWLEDGMENTS

I would like to express my utmost gratitude to my supervisor, Assoc. Prof. Dr. Oğuz
Yayla. His guidance and expertise have been invaluable throughout my master’s pro-
gram.

I am also deeply grateful to TUBİTAK for their support during the challenging times
of the COVID-19 pandemic through the "2210-A National MSc/MA Scholarship Pro-
gram". Their financial assistance has been crucial in enabling me to sustain myself
during especially the first year of my master’s program.

I would like to extend my heartfelt thanks to my parents Abdurrahman Özeren and
Yıldız Özeren for their unwavering love and patience. Their constant support has
played a pivotal role in completing this thesis.

I’d like to extend my heartfelt thanks to Yasemin Sipahi. Even though you were nearly
10 thousand km away from me, you were right there with me in spirit. I’m especially
reminded of you by the ring we bought from that eccentric woman with a shop in
Kızılay.

I would also like to express my profound gratitude to Melike Çakmak. Her unwa-
vering support has been a constant source of strength throughout this journey. In
moments of frustration and challenge, she has been my rock, providing an empa-
thetic shoulder to lean on. Her presence has made this journey more manageable and
I am deeply thankful for her support.

I would like to extend my heartfelt gratitude to Dr. Süleyman Özarslan for his invalu-
able guidance, profound expertise, and unwavering patience during our interactions
at the office.

Finally, I express my deepest gratitude to my significant other, Gökhan Hacıoğlu. His
steadfast devotion and continual encouragement have been the bedrock upon which
my success has been built. Even when I grappled with self-doubt, burdened by my
high expectations, he never faltered in his belief in me. He saw the best in me when
I was at my worst, and his unwavering faith propelled me forward even when the
journey seemed unbearable. His love and support served as an enduring source of
motivation, inspiring me to persevere through every challenge and complete my the-
sis.

xi

xii

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xi

TABLE OF CONTENTS . xiii

LIST OF TABLES . xix

LIST OF FIGURES . xx

LIST OF ABBREVIATIONS . xxii

CHAPTERS

1 INTRODUCTION . 1

2 INTRODUCTION TO LATTICE-BASED CRYPTOGRAPHY 7

2.1 Introductory Definitions and Theorems for Lattice-based Cryp-
tography . 7

2.2 Lattice-based Hard Problems 9

2.3 Short Integer Solution (SIS) Hard Problem 10

2.4 Learning With Error (LWE) Hard Problem 11

2.4.1 Matrix Representation of the Learning-With-Error
(LWE) Problem 13

xiii

2.5 The Ring Learning With Error Problem (Ring-LWE) 14

2.5.1 Search Ring Learning With Error Problem 15

2.5.2 Decision Ring Learning With Error Problem 16

2.5.3 Matrix Representation of the Ring Learning With
Error Problem . 16

2.6 Module Learning with Errors Problem (Module-LWE) 18

2.6.1 The Hardness of the Module Learning with Errors . 19

2.6.2 Matrix Representation of the Module-LWE 21

3 TECHNICAL BACKGROUND . 23

3.1 Indistinguishability Under Chosen Plaintext Attacks (IND-
CPA) . 23

3.2 Indistinguishability Under (Adaptive) Chosen Ciphertext At-
tacks (IND-CCA) . 24

3.3 Masking: Dividing a Sensitive Value into Uniformly Se-
lected Shares . 25

3.3.1 Need for Masking 25

3.3.2 Circuits and Gadgets They Are Working on 26

3.3.3 Arithmetic Encoding of a Sensitive Variable x ∈ Zq 26

3.3.3.1 A Toy Example for an Arithmetic En-
coding 27

3.3.4 Boolean Encoding of a Sensitive Variable x ∈ Zk
2 . 28

3.3.4.1 A Toy Example for Boolean Encod-
ing of a Sensitive Variable x ∈ Z2k . . 28

3.3.5 Security Definitions for Shared Implementations . 29

xiv

3.3.5.1 t-NI Security Notion 30

3.3.5.2 t-SNI Security Notion 30

4 CRYSYALS-KYBER KEY ENCAPSULATION MECHANISM (KEM) 33

4.1 Parameters to be Used . 33

4.2 Notations and Background Knowledge for the CPAKEM and
CCAKEM Secure CRYSTAL-Kyber Algorithms 35

4.2.1 Byte and Byte Arrays 35

4.2.2 The Polynomial Ring Rq Represented as Zq[X]/(Xn+

1) . 38

4.2.3 Modular Reduction 40

4.2.4 Rounding . 40

4.2.5 Compression and Decompression Functions 40

4.2.5.1 A Toy Example for the Compression
Function 41

4.2.5.2 Motivations Behind Compression and
Decompression Functions 42

4.2.6 Encoding and Decoding Functions 43

4.2.7 Symmetric Primitives 44

4.2.8 Number-Theoretic Transform (NTT) 44

4.2.8.1 The 256th Roots of Unity for the Defin-
ing Polynomial X256 + 1 44

4.2.8.2 How to Prove that the Defining Poly-
nomial Has 256th Roots of Unity? . . 45

4.2.8.3 Defining Polynomial X256+1 Factors
into 128 Quadratic Polynomials 45

xv

4.2.8.4 Performing NTT on Polynomial f ∈
Rq: Representation as 128 First-Degree
Polynomials 46

4.2.8.5 Efficient Multiplication of Two Poly-
nomails with NTT. 49

4.2.9 Uniform Sampling From the Ring of Polynomials
Rq . 49

4.2.10 Sampling from a Binomial Distribution 50

4.3 Kyber.CPAPKE.KeyGen() Algorithm 51

4.3.1 Length of the Secret and Public Keys 56

4.4 Kyber.CPAPKE.Enc(pk,m, r) 57

4.5 Kyber.CPAPKE.Dec(c, sk) 63

4.6 Kyber.CCAKEM.KeyGen() 64

4.6.1 Length of the Secret and Public Keys 65

4.7 Kyber.CCAKEM.Encaps(pk,m, r) 66

4.8 Kyber.CCAKEM.Enc(pk) 66

4.9 Kyber.CCAKEM.Decaps(c, sk) 68

4.9.1 Explanation of the Length of Certain Algorithmic
Components . 71

4.9.2 Leakage Risk Point of the Algorithm 72

5 DEEP DIVE INTO THE HIGHER-ORDER ONE-BIT COMPRES-
SION ALGORITHM . 75

5.1 Introduction to the Algorithm 75

5.2 Unmasked Compression in Kyber.CPAPKE.Dec() Algorithm 77

xvi

5.2.1 Toy Example for Unmasked Compression Function 79

5.3 Trivial Masking Approach for Algorithms that Uses Power-
of-Two Modulo Like Saber 79

5.4 Higher-Order One-Bit Compression 82

5.4.1 The Case 1: Where the First Bit is Set to 1 (x11 = 1) 85

5.4.2 The Case 2: Where (x11 = 0, x10 = 0) 86

5.4.3 The Case 3: Where (x11 = 0, x10 = 1, x9 = 0) . . 86

5.4.4 The Case 4: Where (x11 = 0, x10 = 1, x9 =

1, x8 = 1) . 87

5.4.5 The Case 5: Where (x10 = 1, x9 = 1, x8 = 0, x7 =

1) . 88

5.5 Probing Security of the Algorithm 13 90

5.5.1 Gadgets: The Fundamental Units in Cryptographic
Systems . 91

5.5.2 Gadgets Employed in the Higher-Order One-Bit
Compression Algorithm 13 91

5.5.3 t-SNI Security of the Algorithm 13 93

5.5.4 Proof of the Theorem 1 [14] 94

6 ALTERNATIVE MASKING . 99

6.1 Introduction . 99

6.2 The Double and Check Compression Method 100

6.2.1 Pseudo-code of the Double and Check Algorithm . 101

6.2.2 Toy Example for the Double and Check Algorithm 102

6.2.3 Final Notes On the Double and Check Method . . 103

xvii

6.3 Look-Up-Table (LUT) Based Compression Algorithm (32
Entities) . 105

6.3.1 Pseudo-code of the Look-Up-Table (LUT) Based
Compression Algorithm 107

6.3.2 Toy Example for the Look-Up-Table (LUT) Based
Offset and Check Algorithm 109

6.3.3 Notes On the Look-Up-Table-based Approach . . . 110

6.4 Potential Prime Numbers for Non LUT-Based Compression
Functions . 111

6.4.1 Masked Compress Functions for Potential Prime
Numbers . 111

7 CONCLUSION . 115

REFERENCES . 117

APPENDICES

A PYTHON IMPLEMENTATION . 123

A.1 Python Implementation of the Algorithm 13 123

A.2 Python Implementation of the Double and Check Algorithm
as the Toy Example . 124

A.3 Python Implementation of the LUT Integration as the Toy
Example . 125

A.3.1 Constructing the Look-Up-Table (LUT) 126

A.3.2 The Look-Up-Table (LUT) 126

A.3.3 Python Code of the Toy Example 127

xviii

LIST OF TABLES

Table 4.1 Parameters of Kyber With Three Levels of Security 33

Table 6.1 Bit Representation, Index, and Values 107

Table 6.2 Analysis for the Prime Number 1153 112

Table 6.3 Analysis for the Prime Number 1409 113

Table 6.4 Analysis for the Prime Number 7681 114

xix

LIST OF FIGURES

Figure 2.1 A Two-Dimensional Lattice With Two Different Basis Vectors (b1, b2). 8

Figure 2.2 Generating the s in the Kyber.CPAPKE.KeyGen() [13]. 19

Figure 4.1 Polynomial Multiplication [37] 49

Figure 4.2 Generating the A in the KeyGen() Algorithm [13]. 54

Figure 4.3 Generating the s in the KeyGen() [13]. 55

Figure 4.4 Generating the e in the KeyGen() [13]. 55

Figure 4.5 Generating the (pk, sk) in the KeyGen() [13]. 55

Figure 4.7 Bob Generating the u and v [13]. 61

Figure 4.6 How Does Bob Computes the polynomial v ∈ Rq [13]? 61

Figure 4.8 Decryption of Message m [13]. 64

Figure 4.9 Explanation of the Decryption Phase Done by Alice [13]. 64

Figure 4.10 Reading the pk from sk . 71

Figure 4.11 Reading the H(pk) from sk . 71

Figure 4.12 Reading the z from sk . 72

Figure 4.13 Fujisaki-Okamoto Transform for Kyber Key Encapsulation Mech-
anism (KEM) . 73

Figure 4.14 K
′
as a Secret Key Dependent Value 73

Figure 5.1 Kyber.CCAKEM.Decaps() in Detail, Updated from [14]. 75

Figure 5.2 1-Bit Conversion [14] . 77

Figure 5.3 Two Disjoint Interval to Compress a Polynomial Coefficient into a
Single Bit [15] . 78

xx

Figure 5.4 Toy Example for Unmasked Compression Function of CRYSTALS-
Kyber . 79

Figure 5.5 Shifting the Polynomial Coefficient with Certain Offset to Mask It
[14] . 80

Figure 5.6 Saber (q = 2k), Shifted Compresssq Function [14] 80

Figure 5.7 Offset Between the MSB and q
2

[14] 81

Figure 5.8 Bitslicing the Sensitive Coefficient x [14] 85

Figure 5.9 When the Most Significant Bit Is Set to 1 [14] 85

Figure 5.10 An example, where a coefficient x is (110001110100)2. This coef-
ficient x ∈ [0, q − 1] is directly compressed to 1 [14]. 85

Figure 5.11 An Example Coefficient Compressed to 1 87

Figure 5.12 Compression: Mapping Each Coefficient to a Single Bit. [14] . . . 88

Figure 5.13 Gadgets in the Algorithm 13 in [14]. 92

Figure 6.1 Shifting the Polynomial Coefficient with Certain Offset to Mask It
[14] . 100

xxi

LIST OF ABBREVIATIONS

ApproxSVPλ The Approximate Shortest Vector Problem

CBD Central Binomial Distribution

CCA Chosen Ciphertext Attack

CPA Chosen Plaintext Attack

D-LWE Decision Learning With Error

Dec Decryption

Decaps Decapsulation

Enc Encryption

Encaps Encapsulation

GAPSVPλ The Gap Shortest Vector Problem

IND-CCA2 Indistinguishability Under Adaptive Chosen Ciphertext Attack

IND-CPA Indistinguishability Under Chosen Plaintext Attack

KeyGen Key Generation

KEM Key Encapsulation Mechanism

LUT Look Up Table

LWE Learning With Error

MLWE Module Learning With Error

Mod-SIVP The Module Shortest Independent Vectors Problem

Mod-SVP The Module Shortest Vector Problem

MSB Most Significant Bit

NTT Number Theoretic Transform

PKE Public Key Encryption

PQC Post Quantum Cryptography

PRF Pseudo-Random Function

RLWE Ring Learning With Error

SCA Side-Channel Attack

SIS The Shortest Integer Solution Problem

XOF eXtendable-Output Function

xxii

CHAPTER 1

INTRODUCTION

In our current digital lives, we rely on public key cryptography, whose security is

based on the complexity of specific mathematical problems. For example, RSA de-

pends on the difficulty of integer factorization, while the foundation of elliptic curve

cryptography (ECC) is the discrete logarithm problem. Unfortunately, both cryp-

tosystems are susceptible to polynomial-time quantum computer attacks, as demon-

strated in P.W. Shor’s foundational studies like [45, 53].

For this reason, in 2016, the National Institute of Standards and Technology (NIST)

initiated the Post-Quantum Cryptography Standardization (PQC) process [35]. At the

conclusion of the third round, CRYSTALS-Kyber was selected for standardization as

a public-key encryption and key-establishment algorithm. Additionally, three other

digital signature algorithms, CRYSTALS-Dilithium, FALCON, and SPHINCS+, were

chosen for standardization.

Of the algorithms chosen for standardization, only SPHINCS+ doesn’t depend on the

hardness of lattice-based problems. This suggests a preference by algorithm design-

ers for utilizing the hardness of lattice-based problems. Although CRYSTALS-Kyber

is resistant to quantum computer attacks due to its reliance on the Module-Learning-

with-Error problem in module lattices [30], implementation security remains a con-

cern, particularly regarding vulnerability to side-channel attacks.

Side-channel attacks (SCA), a concept first coined by [29], present an increasing

threat to the security of emerging post-quantum cryptography algorithms like Kyber.

These attacks exploit meta-data, often derived from tactics like timing analysis [55]

1

or electromagnetic analysis [59], aiming to recover the secret key during algorithm

execution [14]. In fact, various implementations types of Kyber including software

and hardware are already succesfully targeted by side-channel attacks [19, 28, 61].

Among the countermeasures against side-channel attacks, masking stands out the

most prominently used technique, as highlighted by foundational studies such as [18]

and [46]. However, while block ciphers like AES can be protected using only Boolean

masking [24, 32], adapting masking technique to post-quantum cryptography algo-

rithms often necessitates transitions between arithmetic and Boolean masking (A2B).

This introduces a challenge, emphasizing the need for efficiently implementing casts

between these two masking methods [4].

Building on this, the first masked implementation of a Ring-Learning With Error

only masks the CPA decryption of the algorithm [51]. To achieve IND-CCA2 se-

curity, the Fujisaki-Okamoto transform [21] should be applied, as demonstrated by

its use in Kyber [13]. This accentuates the importance of not only masking the Ky-

ber.CPAPKE.Dec (See Alg. 6), but also the entire CCA scheme (See Alg. 11).

Further advancements in the domain of masked implementation of Ring-LWE saw

refinements such as those in [38], which proposed a first-order masking of a KEM.

This not only integrated the concepts of [51] but also introduced improvements like

new decoding algorithms [4, 34].

Notably, as countermeasure against side-channel attacks, many popular schemes, in-

cluding Kyber, adopted prime modulo q, which, as observed in [34] and [8], intro-

duced significant performance overheads in comparison to the more efficient power-

of-two moduli (2k), necessitating adaptations in many prior algorithms. However,

these masked implementations faced challenges in security, with identified vulnera-

bilities to side-channel attacks [11].

On a different note, while the Saber scheme used power-of-two modulo and demon-

strated an efficient first-order masking scheme, it wasn’t immune to attacks, as ev-

idenced by a subsequent deep learning power analysis attacks [36]. Importantly,

this attack didn’t entirely negate the protective measures of [6], but rather exploited

higher-order leakages, suggesting alternative approaches for increasing the resistance

2

against side-channel attacks. For this reason, cryptographic algorithms have been in-

creasingly studied to be masked against higher-order side-channel leakage attacks

[14].

At the epicenter of this effort is the CRYSTALS-Kyber Key Encapsulation Mecha-

nism (KEM). Previous research has successfully masked multiple Kyber components,

such as polynomial operations (most notably, the NTT multiplication [20]), addition,

and subtraction, as seen in Alg. 5. Kyber.CPAPKE.Enc() and Kyber.CPAPKE.Dec()

algorithms are also already masked such that they operate on each share of each poly-

nomial coefficient separately and in parallel. Moreover, symmetric operations like the

hash function G (referenced in Alg. 11) and PRF (seen in Alg. 5) have been refined

using the Keccak masking method, a procedure detailed in [3]. For tasks centered on

the central binomial distribution (CBDη) in Alg. 5, the masking methodology from

[52], later expounded in [14], was adopted.

In the evolving landscape of masking CRYSTALS-Kyber against higher-order side

channel attacks, one component posed a distinct challenge and remained largely un-

addressed: the compression function, as delineated in Line 4 of Alg. 6. The function,

defined as:

Encode1(Compressq(v − NTT−1(ŝT ◦ NTT(u)), 1)) (1.1)

Masking this function is especially critical, given its direct processing of the secret

key s. With the vector of polynomials u and a polynomial v publicly known, adver-

saries could target this function in hopes of reverse-engineering to extract the secret

vector of polynomials s making it a pivotal point of vulnerability.

Previous studies, working on power-of-module schemes like Saber, followed a trivial

approach called the "Most Significant Bit" (MSB). However, when attempting this

method to Kyber, challenges emerged due to Kyber’s distinctive prime modulo q =

3329. The MSB method, tailored for algorithms with a modulo of the form q = 2k,

doesn’t neatly fit Kyber’s coefficient domain because Kyber’s modulo isn’t a power

of two. To understand this better, Kyber’s MSB is computed as 2⌈log2(q)⌉−1, which

evaluates to 2⌈log2(3329)⌉−1 = 2⌈11.7⌉−1 = 212−1 = 211 = 2048. However, half of

Kyber’s modulo is ⌊q/2⌋ = ⌊3329/2⌋ = ⌊1664.5⌋ = 1664. This difference results

in an offset of 2048 − 1664 = 832, causing the MSB method to be unsuitable for

3

CRYSTALS-Kyber. Because, in this case, there are 832 numbers which needs to be

compressed to 1, but compressed to 0 (Refer to Fig. 5.7).

To address this, subsequent researches [17, 25] ventured into fully-masked imple-

mentations of Kyber, deriving their techniques from the compression function as in-

troduced in [14]. Yet, even as the bit-sliced masking methods generally stood firm

against side-channel attacks, revelations from recent investigations [60] spotlighted

their vulnerabilities.

Building upon the research [14], we propose two alternative approaches for masking

the compression function in Kyber.

First, we delve into the intricacies of the Double and Check method. At its core,

this method is driven by motivation of adding another layer of obfuscation. Here’s

how it works: each coefficient of a polynomial is divided into "shares", which, when

summed up in modulo q, equals the original value. Then, each share (let us denote

the k-th share of a polynomial coefficient as (a(k)Bi) is shifted by a certain offset

(a(k)Bi ← a
(k)B
i + ⌊ q

4
⌋ mod q) to have a symmetry around the ⌊ q

2
⌋ in the coefficient

domain ([0, q − 1]). Next, the algorithm add each share to itself (a(k)Bi + a
(k)B
i), to

check whether

a
(k)B
i + a

(k)B
i

?
= a

(k)B
i + a

(k)B
i mod q.

If this is the case, we say that the share is less than ⌊ q
2
⌋, and therefore compressed to

0. Otherwise, it is compressed to 1. The benefit of this algorithm is that the result of

the masked compression function is derived from the outcome of an if-else statement,

which does not depend on the secret vector of polynomial s, and therefore does not

require masking. In fact, since we do not directly double the share but instead add it to

itself, it still yields a polynomial-time result, further protecting against time-analysis-

based side-channel attacks.

Secondly, we delve into the time-honored memory/time trade-off through the Look-

Up-Table (LUT) integration with 32 entities. The motivation here is rooted in the

demands of cryptographic applications where computational speed is paramount. By

adopting the LUT-based method, we have managed to expedite the compression pro-

cess while retaining precision, thus catering to scenarios where rapid response times

are essential. The integration of LUT showcases our commitment to striking a balance

4

between swift computations and optimal memory utilization, making it a quintessen-

tial asset for time-sensitive cryptographic operations.

In our study of the bit-wise compression function presented in [14], we questioned

whether there exists a prime number q for which, when examining the most significant

bit (MSB) of the binary representation of ⌊ q
2
⌋, it would suffice to inspect only the 3rd,

4th, or 5th MSB bits. While we couldn’t identify any prime numbers for the 3rd and

4th MSB bits, we did find a few for the 5th MSB bits. Among these, 7681 emerged

as the best prime number for a new fast masked compression function. Additionally,

it provides the smallest prime number satisfying q ≡ 1 mod 2n where n = 256,

making it ideal for fast NTT multiplication. Notably, the prime number 7681 is also

suggested by the main article on CCA2-secure CRYSTALS-Kyber [13], leading us to

develop the new compression function.

In essence, our contribution lies in secret-value independent working mechanism of

the Double and Check method with the efficiency of the LUT integration, offering a

twofold approach that augments both security and performance in the realm of cryp-

tographic compression.

The thesis is structured into seven chapters.

Chapter 2 offers essential background on lattice-based cryptography. This founda-

tion is crucial for comprehending the Module Learning-With-Error problem upon

which the security of CRYSTALS-Kyber rests. Chapter 3 delineates the definitions

of IND-CPA and IND-CCA2 security. It also elucidates the intrinsic nature of mask-

ing, supplemented by illustrative examples that cover both Boolean and arithmetic

masking. In Chapter 4, we detail the parameters and functions inherent to CCA2 se-

cure CRYSTALS-Kyber, and present the three principal components (KeyGen, Enc,

Dec) pertaining to both IND-CPA and IND-CCA2 secure Kyber. Chapter 5 delves

into the unmasked compression function employed in Kyber, explores existing tech-

niques to mask a compression function operating in 2k modulo, why they cannot be

applied to Kyber, and discusses the bit-sliced binary search method, as proposed by

[14], to mask the compression function with any prime number. Chapter 6, the core

contribution of this thesis, introduces the Double-and-Check algorithm (See Alg. 14),

in addition to the Look-Up-Table integration for masking (See Alg. 15). We also

5

introduce how the prime number q = 7681 facilitates fast NTT multiplication and

introduces a new fast masked compression function. Finally, Chapter 7 concludes the

thesis, offering closing remarks on our proposed algorithms.

6

CHAPTER 2

INTRODUCTION TO LATTICE-BASED CRYPTOGRAPHY

In the forthcoming chapters, we will be using definitions related to lattice-based cryp-

tography. To provide a comprehensive understanding, this section will briefly sum-

marize these definitions. For those interested in gaining a more in-depth introduction

to lattices and lattice-based cryptography, refer to the lecture notes by Chris Peikert

[41] and Oded Regev [49], and following survey papers [33, 40, 44].

2.1 Introductory Definitions and Theorems for Lattice-based Cryptography

A brief definition of a lattice is given as follows.

Definition 2.1.1 (Lattice and Basis in Euclidean Space). A lattice is a discrete set of

points in space that can be generated by taking linear combinations of a set of basis

vectors, where the coefficients are integers.

More formally, given a set of m linearly independent vectors (bi)1≤i≤m in Rn, we can

create a lattice L ⊆ Rn by taking all possible linear combinations of these vectors

with integer coefficients, i.e., by forming the following set:

L(b1, . . . ,bm) = x ∈ Rn : x = {
m∑
i=1

zibi, . . . , zi ∈ Z}

In this way, we obtain discrete subgroup of n-dimensional Euclidean space.

The set (bi)1≤i≤m is called basis of the lattice L. We can represent this basis as a

matrix B, where B is an n × m matrix whose columns are b1,b2, ...,bm. We can

also represent the lattice L as L(B) = L(b1, ...,bm). The rank of the lattice L is

7

equal to m, and its dimension is equal to n. When n = m, we refer to the lattice as a

full-rank lattice.

It is important to note that a lattice can have many possible bases. However, any two

bases B1, B2 ∈ Rn×m will generate the same lattice if and only if B2 = B1 · U ,

where U is an integer matrix whose determinant is either 1 or −1. This is known as a

unimodular transformation.

b1

b2

b1 + b2

2b1 + b2

Figure 2.1: A Two-Dimensional Lattice With Two Different Basis Vectors (b1, b2).

Definition 2.1.2 (Lattice Determinant and Minimal Vector Norm). Let L be a lattice

and (bi)1≤i≤m be a basis of L. The determinant of L is defined as the square root

of the determinant of the matrix whose entries are the pairwise inner products of the

basis vectors, i.e.,

det(L) =
√

det (⟨bi,bj⟩)1≤i,j≤m.

This definition is equivalent to the volume of the parallelepiped spanned by the basis

vectors and is independent of the choice of basis.

8

For any p ∈ N∗∪{∞} and any lattice L ⊂ Rn, λp(L) denotes the p-th power of the p-

norm (ℓp) of the shortest non-zero vector in L. In particular, when p = 2, which is the

most commonly used norm, λ1(L) is simply the length of the shortest non-zero vector

in L when measured in the usual way with a ruler, as we usually do with vectors in

two or three dimensions.

Theorem 2.1.1 (Minkowski’s First Theorem on Lattice Vector Lengths). Let L be

a full-rank lattice in Rn with determinant det(L). Minkowski’s First Theorem states

thatL contains a non-zero vector v of length at most
√
n·| det(L)|1/n. In other words,

there exists a non-zero vector v in L such that

λ1(L) = ||v||2 ≤
√
n · | det(L)|1/n.

The bound implies that for a given lattice, the shorter the shortest non-zero vector,

the better the lattice. This quantity is a fundamental tool in the analysis and design of

lattice-based algorithms, where the quality of the lattice directly affects the efficiency

and security of the algorithms.

2.2 Lattice-based Hard Problems

Minkowski’s bound, which is a theorem that provides an upper bound on the norm of

the shortest nonzero vector in a lattice, is often not tight. Therefore, it is of interest

to find ways to compute or approximate the norm of the shortest nonzero vector in a

lattice. We can formalize this problem using two definitions:

Definition 2.2.1 (The Approximate Shortest Vector Problem (ApproxSVPγ)). Given

a lattice L ⊆ Rn, the goal of the ApproxSVPγ problem is to find a non-zero vector

v ∈ L such that its Euclidean norm ||v|| is at most γ times the length of the shortest

nonzero vector in L, which is denoted as λ1(L).

Definition 2.2.2 (The Gap Shortest Vector Problem (GapSVPγ)). Given a latticeL ⊆
Rn and a positive real number d, the GapSVPγ problem is to determine whether the

inequality λ(L) ≤ d or the inequality λ(L) > γ · d holds, where γ is a positive real

number greater than 1 and λ(L) denotes the length of the shortest nonzero vector in

L.

9

In the 2002 study by Micciancio and Goldwasser, it was found that the GapSVPγ and

ApproxSVPγ problems become equivalent when the parameter γ is set to 1 [22].

However, for γ greater than 1, the GapSVPγ problem gets easily reduced to the

ApproxSVPγ problem [22]. It is possible to reduce the ApproxSVPγ problem to

the GapSVPγ′ problem with a randomized reduction that preserves the dimension

of the lattice. The resulting GapSVPγ′ problem has a parameter γ′ that is poly-

nomially related to γ and the dimension n of the lattice in the following manner,

γ′ = γ′(O(n/logn))[58].

2.3 Short Integer Solution (SIS) Hard Problem

The Short Integer Solution (SIS) problem is a foundational challenge in lattice-based

cryptography. It revolves around finding a non-zero vector with a small Euclidean

norm that, when multiplied by a given full-rank matrix, yields the zero vector modulo

some integer q. This problem’s complexity and structural intricacies provide the basis

for numerous cryptographic constructions, acting as a stepping stone to understanding

advanced problems like Learning With Error (LWE).

Definition 2.3.1 (The Short Integer Solution (SIS) Problem). Given a matrix A ∈
Zn×m

q and a positive integer β > q, the Short Integer Solution (SIS) problem is to find

a non-zero vector x ∈ Zm such that Ax ≡ 0 (mod q) and the norm ||x|| is less than

β.

In the SIS problem as defined, the matrix A is usually assumed to be a "full-rank"

matrix, which means that its columns are linearly independent. This assumption is

necessary for the problem to be well-defined and have a unique solution. In other

words, the columns of A are independent vectors that span a subspace of dimension

m, which is the column space of A. This subspace is sometimes denoted as Col(A).

The SIS problem asks to find a non-zero vector x that belongs to the nullspace of

A (i.e., satisfies Ax ≡ 0 (mod q)) and has small Euclidean norm ||x|| < β (e.g.

x ∈ 0,±1′), where the Euclidean norm of a vector x = (x1, x2, . . . , xm) is defined as

||x|| =
√
x2
1 + x2

2 + · · ·+ x2
m.

If we were to use the usual matrix notation to simplify the notation, we would have

10

the following mathematical representation, where A is a full-rank matrix (n = m).
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...

am1 am2 · · · amn

×

x11

x21

...

xm1

 ≡ 0 ∈ Zn
q

In the next section, we are going to talk about a complimentary problem called Learn-

ing With Error (LWE).

2.4 Learning With Error (LWE) Hard Problem

Introduced by Oded Regev in his seminal 2005 paper "On lattices, learning with er-

rors, random linear codes, and cryptography" [48], the Learning with Errors (LWE)

problem has since become a cornerstone in the field of lattice-based cryptography.

Definition 2.4.1 (Search Learning With Errors (Search-LWE) Problem). Consider

positive integers n, m, and q and distributions χs and χe over the finite field Zq. The

search-LWE problem, given the tuple (n,m, q, χs, χe), is defined as follows: Sample

a vector s from χn
s , s $← χn

s , and for each i ranging from 1 to m, sample a vector ai

uniformly from Zn
q , ai

$← U(Zn
q), and a scalar ei from χe, ei

$← χe. Then compute

bi = ai · s + ei (mod q). The task is to recover the secret vector s given the pairs

(ai, bi) for i = {1, . . . ,m}.

Specifically, for a given algorithm A, we define the associated advantage [56].

Advlwe
n,m,q,χs,χe

(A) = Pr

[
s

$← χn
s ; a

$← U(Zn
q); e

$← χe;

bi = ⟨ai, s⟩+ ei mod q : A((ai, bi)
m
i=1) = s

]
.

The search-LWE problem asks us to find a secret vector s ∈ Zn
q with given inner

products and noise. If we were to have no noise introduced into these equations or

if we were to now these errors, the problem would be easily solved with the Gaus-

sian elimination. However, the presence of the noise term makes this problem much

11

harder. To model the noise term in the search-LWE problem, we need to introduce

the Learning With Errors (LWE) distribution.

Definition 2.4.2 (LWE Distribution). Let n ≥ 1 be a positive integer, and let q be a

prime power such that q = poly(n). The LWE distribution, with parameters (n, q, χ),

is a probability distribution over Zn
q × Zq, defined as follows:

Given an error distribution χ over Zq (Gaussian, i.e., α · q >
√
n) with an error rate

α ≪ 1, we generate a uniformly random secret key si ∈ Zn
q and an error vector

ei ∈ Zn
q , the components of which are independently sampled from χ. The LWE

distribution then outputs the pair (ai, bi), where ai ∈ Zn
q is a uniformly random vector,

and bi = ⟨ai, si⟩+ ei represents the inner product of ai and si with the addition of the

error term ei.

Definition 2.4.3 (Decision Learning With Error (D-LWE) Problem). Suppose that

n and q are given as positive integers, and let χs and χe be defined as distributions

over the integers, Z. We choose s according to the error distribution χn
s , denoted as

s
$← χn

s . We further define two oracles:

• The oracle Oχe,s: we select a uniformly at random from Zn
q , and e from χe,

denoted as a $← U(Zn
q) and e

$← χe, respectively. The oracle then returns the

pair (a, ⟨a, s⟩+ e mod q).

• The oracle U : we select a uniformly at random from Zn
q , and u uniformly at

random from Zq, denoted as a $← U(Zn
q) and u

$← U(Zq), respectively. The

oracle then returns the pair (a, u).

The decision version of the LWE problem with parameters (n, q, χs, χe) involves dis-

tinguishing between outputs from the oracle Oχe,s and the oracle U . For a specific

algorithm A, we define the advantage as follows [56]:

Advdlwe
n,q,χs,χe

(A) =
∣∣∣Pr(s $← Zn

q : AOχe,s() = 1)− Pr(AU() = 1)
∣∣∣ .

The decision-LWE problem is considered hard if it is computationally infeasible to

distinguish between the two cases with non-negligible advantage. Under certain con-

ditions on the parameters, which have been studied by various researchers including

12

[39, 49], the search and decision variants of the LWE problem are equivalent. This

means that the problem of finding a secret value given certain constraints is essentially

the same as the problem of distinguishing between outputs from the oracle Oχe,s and

the oracle U .

2.4.1 Matrix Representation of the Learning-With-Error (LWE) Problem

The Learning With Error problem can be succinctly represented in terms of matrix-

vector multiplication, offering a clear visualization of its parameters and their inter-

actions. Here, the multiplication of an n × n matrix A with the secret vector s is

perturbed by a noise vector e, yielding the vector t. This matrix representation encap-

sulates the core challenge: to recover the secret vector s in the presence of the noise

introduced by e.

a00 a01 · · · a0,n−1

a10 a11 · · · a1,n−1

...
...

an−1,0 an−1,1 · · · an−1,n−1

 ·

s0

s1
...

sn−1

+

e0

e1
...

en−1

 =

t0

t1
...

tn−1

In this context, we’re dealing with an n× n matrix, denoted by A, which consists of

n2 elements or coefficients. Additionally, we have a secret vector s ∈ Zn
q and noise

vector e ∈ Zn
q with small coefficients. The result of multiplying the matrix A by

vector s, and then adding the error vector e, is given by t =< A · s > +e ∈ Zn
q .

Given the matrix A is composed of n2 elements, it is evident that it would require

O(n2) storage space. Moreover, to calculate the multiplication of the matrix A and

the secret vector s, it would necessitate n2 multiplication operations. This implies that

computational complexity is O(n2). As the value of n increases, the required storage

and number of multiplications become significant, potentially posing challenges for

systems with limited resources, such as Internet of Things (IoT) devices.

To overcome this computational overhead, researchers come with different methods

like Ring Learning with Error (Ring-LWE) problem.

13

2.5 The Ring Learning With Error Problem (Ring-LWE)

The Ring-Learning with Errors (Ring-LWE) problem was first introduced by Lyuba-

shevsky, Peikert, and Regev in 2010 [31]. It is an extension of the Learning With

Error problem, distinguished by its replacement of the underlying vector space with

a ring structure. This pivotal alteration paves the way for enhanced computational

efficiency, as we will see in the following sections. Rooted deeply in cryptography,

Ring-LWE focuses on discerning a secret from noisy samples present within a ring.

Given that CRYSTALS-Kyber [13] operates within the polynomial ring defined over

Z3329[x]/⟨x256 + 1⟩,

we begin by detailing its definition.

Definition 2.5.1 (Ring of Polynomials Over Zq). Rq = Zq[x]/⟨xn + 1⟩ defines a ring

of polynomials over the finite field Zq, modulo the ideal generated by the polynomial

xn+1. Within Rq, polynomials have a degree d such that d < n, and their coefficients

are selected from a uniform distribution of elements in Zq. Polynomials in Rq are

deemed equivalent if their difference can be expressed as a multiple of xn + 1.

For example, if q = 7 and n = 3, then R7 = Z7[x]/⟨x3 + 1⟩ contains polynomials of

the form a(x) = a0 + a1x + a2x
2 ∈ Rq, where a0, a1, a2 are elements of Z7, and x3

is identified with −1 in Rq. This means that, in Rq, we have x3 = −1, so x3 + 1 = 0,

and any polynomial that is a multiple of x3 + 1 is considered to be equivalent to the

zero polynomial.

The choice of the modulus q and the polynomial xn+1 is important for ensuring that

Rq is a ring with nice algebraic properties. Specifically, the condition q ≡ 1 mod 2n

ensures that every element in Rq has a unique inverse modulo q, and the polynomial

xn + 1 is irreducible over Zq, which means that Rq is a field. These properties are

important for the security and efficiency of cryptographic schemes based on Ring-

LWE.

14

2.5.1 Search Ring Learning With Error Problem

The search Ring Learning With Errors (Ring-LWE) problem is a mathematical chal-

lenge central to many cryptographic systems, offering a blend of efficiency and strong

security assumptions. In the search variant of this problem, the task is to determine

a secret value when provided with purposely perturbed (noisy) samples, with the

"noise" being integral to the security of the underlying system. This noise acts as an

obfuscating element, making it computationally difficult to discern the secret, even

when multiple samples are available.

Specifically, we consider a ring

Rq = Zq[x]/⟨xn + 1⟩

of polynomials modulo the ideal generated by xn + 1, where n is a power of two

(n = 2k) and q is a prime modulus satisfying

q ≡ 1 mod 2n.

The ring Rq is equipped with the canonical basis {1, x, x2, . . . , xn−1}, and we identify

xn with −1. Suppose that χs and χe are distributions over the Rq, where is s and e

are sampled as following: s $← χs and e
$← χe. In addition, the matrix a is uniformly

sampled from the distribution Rq as follows: a $← U(Rq).

Definition 2.5.2 (Search Ring Learning-With-Error Problem). In the Ring-LWE prob-

lem, an adversary receives noisy samples of the form (a, b = a · s + e) ∈ Rq × Rq.

Here, s is drawn from the distribution χs over Rq, a is uniformly selected from Rq,

and the small noise vector e is sampled from the error distribution χe over Rq. The

primary challenge for the adversary is to deduce the secret s from these samples with

a high likelihood of success. If we denote the advantage of the adversary as A, then

the search version of the Ring-LWE problem can be characterized accordingly [56].

Advrlwe
n,q,χs,χe

(A) = Pr
[
s

$← χs; a
$← U(Rq); e

$← χe; b = a · s+ e : A(a, b) = s
]

15

2.5.2 Decision Ring Learning With Error Problem

In the realm of Learning With Error problems, alongside the well-known search-

LWE, the decision Ring-LWE emerges as another significant variant. Research has

demonstrated that the search Ring-LWE problem and the decision Ring-LWE prob-

lem are equivalent, both under average-case reduction and direct worst-case reduction

[12, 42, 43].

(n/α)− approx worst case ≤ search-LWE ≤ decision-LWE

Delving deeper into the problem structure, let’s assume that we’re provided with pos-

itive integers n and q. We also have χs and χe, which are distributions defined over

Rq. We select the secret s and noise e such that s $← χs, e
$← χe.

Two distinct oracles can be established:

• Oracle Oχe,χs,e,s: This oracle selects the secret vector s from the distribution χs

over Rq and noise vector e from χe over Rq, and returns the pair (a, b = a·s+e).

• Oracle U : This one chooses a and u uniformly from Rq, a← U(Rq) and gives

back the pair (a, u).

Definition 2.5.3 (Decision Ring-LWE Problem). The goal of the decision Ring-LWE

problem, given (n, q, χs, χe), is to differentiate between the output from oracle Oχe,s

and that of oracle U .

To be more specific, when considering algorithm A, we compute its advantage as:

Advdrlwe
n,q,χs,χe

(A) =
∣∣∣Pr(s $← Rq : A

Oχe,s()) = 1)− Pr(AU() = 1)
∣∣∣ .

2.5.3 Matrix Representation of the Ring Learning With Error Problem

The Ring Learning With Error (Ring-LWE) problem presents an intriguing twist on

the classic LWE problem, incorporating unique matrix structures that offer both stor-

age and computational efficiencies. The matrix in the Ring-LWE problem exhibits a

16

special structure, where each column is derived from a simple rotation and negation

of its predecessor. This unique setup allows for the entire matrix to be represented

merely by its first column, leading to significant savings in storage.

a0,0 −an−1,0 −an−2,0 · · · −a1,0
a1,0 a0,0 −an−1,0 · · ·
a2,0 a1,0 a0,0 · · ·

a3,0 a2,0 a1,0 · · · . . .
...

...
... a0,0

an−2,0

an−1,0 an−2,0 an−3,0 · · · a0,0

·

s0

s1

...

sn−1

+

e0

e1

...

en−1

=

t0

t1

...

tn−1

The first column of the matrix a is chosen to begin with. The creation of subsequent

columns involves a shift from the first column by one, followed by the application of

a negative sign to the last coefficient, resulting in −an−1,0 as the first coefficient of

the second column. This implies that given just the first column, one can reproduce

the entire matrix. This significantly reduces the necessary storage to n, thus bringing

down the storage complexity to O(n2).

Moreover, the columns of the matrix aren’t entirely independent of each other; rather,

each is a shifted version of another. This interrelation offers avenues for reducing the

computational burden of the multiplication operation between the matrix a and the

vector s. The computational complexity of the Ring-LWE problem, therefore, is

O(n · log n).

In [31], a hardness result was established for the search version of ring-LWE, which

follows the same outline as that in [49]. The main issue in adapting the proof of for

ideal lattices is the error distribution ([50], p.9), which is a non-spherical Gaussian

distribution in ring-LWE. Unlike LWE, we cannot hit any fixed noise distribution by

simply adding more noise because the error distribution has n parameters. Instead, we

must assume that the ring-LWE oracle works for a whole range of noise parameters.

However, for simplicity, we assume that the error is taken from a spherical Gaussian

distribution, which is shown to be hard in [57] or can be derived from [31].

17

2.6 Module Learning with Errors Problem (Module-LWE)

Security of the CRYSTALS-Kyber is built upon the hardness of the Module Learning

With Error (LWE) problem in module lattices [16]. This scheme can be adjusted

based on a specified security parameter k, detailed in Table 4.1. In this section, we

delve into what is meant by the term "Module-LWE".

The The Module-LWE problem generalizes the Ring-LWE problem. While LWE

and Ring-LWE operate over vector spaces or single polynomial rings, respectively,

Module-LWE is based on modules over polynomial rings. To clarify, in Ring-LWE,

elements are individual polynomials with coefficients derived from the modulus of

the constructed ring. However, in the Module-LWE structure, upon which Kyber re-

lies, elements can be either individual polynomials or vectors of polynomials. When

we have Rk=1
q , it denotes a ring of polynomials where each polynomial’s coefficients

are drawn from Zq. In other words, the problem become Ring-LWE. Meanwhile, ele-

ments from Rk=2 or Rk=3 represent vectors of polynomials. From a computer science

perspective, this can be viewed as an array comprising polynomials with coefficients

from Zq. This shift to a vectors of polynomials structure means that we work with

modules, not just individual polynomials.

The generation of these k modules can be observed in Lines 9-12 of Alg. 4.

for i = 0 to k − 1 do

s[i]← CBDη1(PRF(σ,N)) ▷ Sample s ∈ Rk
q from Bη1

N ← N + 1

end for

As you can see, the secret vector s ∈ Rk
q is actually a vector of polynomials, meaning

there are k polynomials in a single module. The visualization of an element from Rk
q

is as the following.

18

Figure 2.2: Generating the s in the Kyber.CPAPKE.KeyGen() [13].

If we consider q = 5 and k = 3 (for simplicity) with ideal polynomial xn + 1, an

example element from Rk
q would be a 3-tuple of polynomials where each coefficient

is from Z5. Below, you will find a representation of this toy example.

3x2 + 2x+ 1

4x2 + x

2x2 + 3x+ 4

In conclusion, Rk
q is not a ring but rather a module of rank k. In fact, Rk

q consists

of k-tuples of elements from Rq. Below, you will find the list indicating what the

security parameter k corresponds to in CRYSTALS-Kyber:

• Kyber512, k = 2.

• Kyber768, k = 3.

• Kyber1024, k = 4.

2.6.1 The Hardness of the Module Learning with Errors

The Module-Learning with Error problem requires an adversary to distinguish be-

tween the real and uniformly selected pairs (A,b). The problem is considered as

hard as there is no polynomial-time algorithm to solve with a non-negligible advan-

tage.

19

(a, b)← Rk
q × Rq,

a← Rk
q , and b = aT s + e,

s← βk
η , and e← βm

η .

Advmlwe(A) =

∣∣∣∣∣∣∣∣∣
Pr

[
b′ = 1 : A← Rm×k

k ; (s, e)← βk
η × βm

η ;

b = As + e, b′ ← A(A, b)]

− Pr
[
b′ = 1 : A← Rm×k

q , b← Rm
q , b

′ ← A(A, b)
]
∣∣∣∣∣∣∣∣∣

To explain this more formally, the hardness of the Module-LWE problem is anchored

in its underlying complexity, stemming from lattice problems, specifically the Module

Shortest Independent Vectors Problem (Mod-SIVP) and the Module Shortest Vector

Problem (Mod-SVP). The two presented theorems establish a formal connection be-

tween the hardness of these lattice problems and M-LWE.

In the work of Langlois and Stehlé (2005) [30, Theorem 4.7], lays out the quantum

reduction from Mod-GIVP to M-LWE. The complexity is dependent on parameters

such as the ring dimension (d), modulus (q), and the noise distribution (χ). When

these conditions are satisfied, there exists a quantum algorithm that reduces the Mod-

GIVP problem to an M-LWE problem, establishing its quantum hardness.

Langlois and Stehlé (2005) [30, Theorem 4.8] further extends this relationship, de-

scribing a classical polynomial-time reduction from the M-LWE problem defined over

one modulus (q) to another M-LWE problem defined over a different modulus (p).

Here, the transformation depends on the size of the modulus and the specific distri-

bution of errors.

These reductions, under certain constraints on modulus size, ring dimension, and er-

ror distribution, demonstrate that as these parameters increase, the complexity and

therefore the difficulty of solving the M-LWE problem also escalates. As such, M-

LWE serves as a solid foundation for cryptographic schemes, owing to the conjec-

tured hardness of these lattice problems

20

2.6.2 Matrix Representation of the Module-LWE

To understand the mathematical underpinnings of the Module-LWE problem, a ma-

trix representation provides an insightful perspective. This section breaks down this

representation and contrasts it with the familiar Ring-LWE setting.

A0,0(X) · · · A0,k−1(X)

· · ·
...

...

Ak−1,0(X) · · · Ak−1,k−1(X)

 ·

s0(X)

s1(X)
...

sk−1(X)

+

e0(X)

e1(X)
...

ek−1(X)

 =

t0(X)

t1(X)
...

tk−1(X)

In the Module-LWE problem, the system employs a set of matrices A, each analogous

to the structure used in the Ring-LWE setting. The key distinction is that instead of

one ring dimension, the Module-LWE expands it to a module of rank k.

The structure of these matrices is particularly noteworthy. Despite the fact that we

deal with k2 matrices, we only need to store the first column of each matrix (n co-

efficients to be exact), thanks to their cyclical nature. This is exactly the case of

Ring-LWE where the first row generates the whole ring matrix. Therefore, despite

the added complexity of multiple dimensions in the module, the storage complexity

becomes O(k2 · n), making it manageable and practical for larger dimensions.

Remember how the computational complexity of the Ring-LWE was O(n · logn).
Now, we have not 1, but k2 matrices. Consequently the complexity of the Module-

LWE becomes O(k2 · nlogn).

21

22

CHAPTER 3

TECHNICAL BACKGROUND

3.1 Indistinguishability Under Chosen Plaintext Attacks (IND-CPA)

In the field of cryptography, the security of a public key encryption scheme is a

fundamental consideration. A public key encryption scheme, denoted by PKE =

(KeyGen(),Enc(),Dec()), is a "triple of probabilistic algorithms together with a

message spaceM" [13]. In this standard notion of the PKE, the KeyGen() algorithm

outputs a public, pk, and a secret sk key pair:

(pk, sk)← KeyGen().

The encryption algorithm Enc() takes the public key pk and a message m ∈ M as

inputs to output the ciphertext, c. Then, we can say that a PKE scheme is (1 − δ) −
correct [26] if

E[maxm∈MPr[Dec(sk,Enc(pk,m)) = m] ≥ 1− δ,

where E denotes the expectation over randomly chosen public and secret keys gener-

ated by the KeyGen() algorithm.

The IND − CPAA
PKE game is a well-known game used to formally define the se-

curity of PKE in terms of indistinguishability [9, 54]. In this game, a probabilistic

polynomial-time adversary A aims to win the game in two stages. In the first stage,

A is given access to an encryption oracle Enc() to encrypt a polynomially bounded

number of messages of its choice. In the second stage, A submits two distinct fresh

plaintext messages m0 and m1 from the message spaceM such that |m0| = |m1|, and

23

receives the ciphertext of one of the messages, cb, where b← {0, 1}. The adversary’s

goal is to decide which message mb is encrypted in the given ciphertext.

Game IND − CPAA
PKE:

(pk, sk)← KeyGen()

b← {0, 1}

(m0,m1)← ADec(·)(pk)

cb ← Enc(pk,mb)

b′ ← ADec(·)(pk, cb)

return b
?
= b′

For a PKE scheme to be IND-CPA-secure means that for all efficient adversaries A,

there exists some negligible function negl(n) of the security parameter n such that the

advantage of A in winning the IND−CPAA
PKE game is negligible, i.e., significantly

less than 1
2
. Formally, the advantage of A in winning the game is defined as follows.

AdvIND−CPA
PKE (A) =

∣∣∣∣Pr[IND − CPAA
PKE = 1]− 1

2

∣∣∣∣ < negl(n).

3.2 Indistinguishability Under (Adaptive) Chosen Ciphertext Attacks (IND-

CCA)

Indistinguishability under adaptive chosen ciphertext attacks is a primary concern in

ensuring the security of Key Encapsulation Mechanisms (KEM) [47].

This means that an adversary is given access to an encapsulation oracle Encaps() dur-

ing the attack, which allows them to encapsulate any number of keys of their choice.

Additionally, the attacker has access to a decapsulation oracle, Decaps(). Compared

to the standard security notion of indistinguishability under chosen plaintext attacks

(IND-CPA), IND-CCA security provides even stronger security guarantees.

The IND-CCA game is used to formally define this security notion. In this game, a

probabilistic polynomial-time adversary attempts to win the game in two stages. First,

24

the adversary generates a public and secret key pair using a key generation algorithm

KeyGen(). In the second stage, the adversary submits two distinct bits (b and b′) and

receives an encapsulation of one of the keys, (c′, K ′
0). The adversary then attempts to

determine which bit was used to encapsulate the key by submitting (pk, c′, Kb′) to the

decapsulation oracle Decaps().

Game IND − CCAA
KEM :

(pk, sk)← KeyGen()

b← {0, 1}

K ′
1 ← K

(c′, K ′
0)← Encaps(pk)

b′ ← ADecaps()(pk, c′, Kb′)

return b
?
= b′

By demonstrating that an efficient adversary’s probability of winning the IND-CCA

game is negligible, a KEM can be considered IND-CCA-secure. Specifically, given

some negligible function negl(n) of the security parameter n, the advantage of an

adversary in winning the game is defined as:

AdvIND−CCA(A) =
∣∣∣∣Pr[IND − CCAA

KEM = 1]− 1

2

∣∣∣∣ < negl(n)

3.3 Masking: Dividing a Sensitive Value into Uniformly Selected Shares

Masking serves as an essential and intuitive countermeasure to safeguard lattice-based

post-quantum cryptography (PQC) implementations against side-channel attacks.

3.3.1 Need for Masking

Let’s assume we have a sensitive value x ∈ Zq that needs to be masked. Funda-

mentally, masking separates this sensitive value x into multiple shares (suppose it is

divided into ns shares) to make sure that the underlying circuit (the algorithm itself)

will process these shares in a secure way.

25

3.3.2 Circuits and Gadgets They Are Working on

For the first algorithm we will examine (see Algorithm 13 by [14]), the sensitive

values that require masked processing are the coefficients of a polynomial a ∈ Zq[X].

Each coefficient of a secret polynomial is split into uniformly sampled shares and

processed securely through a sequence of operations within the circuit. The al-

gorithm is transformed into a circuit by representing each operation with a corre-

sponding set of interconnected logical gates and components. Gadgets, which are

specialized sub-circuits, perform these operations on the shares of sensitive values.

The figure 5.13 displays the underlying circuit for the Masked Compressq(x, 1) Al-

gorithm 13. The algorithm takes a sensitive coefficient x (in this case, each 256

coefficient, as n = 256, See 4.1) of a polynomial a that needs to be compressed into

a bit-string of length 256 in a masked manner), splits it into shares, and conducts a

series of operations on them using gadgets. These gadgets represent distinct opera-

tions that process the shares securely, ultimately producing the following circuit. This

circuit ensures that the sensitive values, such as the coefficients of polynomials, are

protected from side-channel attacks throughout the computation process.

The resulting tuple (ns-tuple: as x is split into ns shares, we call it a tuple now) is

denoted as the following [14]:

ns − tuple : x(·)

3.3.3 Arithmetic Encoding of a Sensitive Variable x ∈ Zq

This encoding represents a variable x ∈ Zq as a set of ns arithmetic shares, denoted

by x(·)A . Each individual share is represented as x(i)A , where 0 ≤ i < ns, and is an

element of the ring Zq [14].

The key property of this arithmetic encoding is that the sum of all shares modulo q

reconstructs the original variable,

x ≡ x(0)A + x(1)A + · · ·+ x(ns−1)A mod q

This encoding scheme provides a secure means to process sensitive information by

26

breaking the variable into multiple shares. Each share only reveals information about

itself. For example, if the sensitive variable x is divided into ns shares, the algorithm

exposes information related only to its specific share, such as x1, x2, and so forth.

This makes it difficult for an adversary to extract meaningful data. Moreover, because

the shares are uniformly selected from Zq and a new secret key and noise vectors are

generated each time, repeatedly running the algorithm does not offer any advantage

to the adversary, as the arithmetic encoding varies with each iteration.

3.3.3.1 A Toy Example for an Arithmetic Encoding

Let’s assume we have a sensitive variable x ∈ Zq with x = 42. We will use a prime

q = 7 as the modulus for our arithmetic encoding. We will also choose the number

of shares, ns, to be 3. The goal is to represent x as a set of ns arithmetic shares such

that the sum of all shares modulo q reconstructs the original variable. To create the

shares, we can use the following process:

• Uniformly select two shares from Zq, say x(0)A and x(1)A .

• Compute the third share, x(2)A , by subtracting the sum of the other shares from

x modulo p.

For example, let’s randomly choose the first two shares as x(0)A = 2 ∈ Z7 and

x(1)A = 5 ∈ Z7. To compute the third share, we can use the following equation:

x(2)A ≡ x− x(1)A − x(0)A mod q

Plugging in the values, we get:

x(2)A ≡ 42− 2− 5 mod 7

≡ 35 mod 7

≡ 0

27

So, the three shares for x = 42 are x(0)A = 2, x(1)A = 5, and x(2)A = 0. Now, let’s

check if the sum of these shares modulo q = 7 reconstructs the original variable:

x ≡ x(0)A + x(1)A + x(2)A mod 7

42 ≡ 2 + 5 + 0 mod 7

42 ≡ 7 mod 7

42 ≡ 0 mod 7

3.3.4 Boolean Encoding of a Sensitive Variable x ∈ Zk
2

Building on foundational studies such as [18] and [46], which highlight the signifi-

cance of masking in countering side-channel attacks, it’s evident that masking Post-

Quantum Cryptography (PQC) algorithms like Kyber necessitates not just one form

of masking like arithmetic encoding. Instead, a blend of both Boolean and arith-

metic masking is required. Consequently, we will introduce the concept of Boolean

masking.

In the Boolean masking case,

a = a(0)B
⊕

a(1)B
⊕
· · ·

⊕
a(ns−1)B mod Zk

2

the ns-tuple representation of a secret coefficient a ∈ Zk
2 can be denoted as a(·)B =

(a(0)B , · · · a(ns−1)B), which comprises ns Boolean shares a(i)B with 0 ≤ i < ns.

3.3.4.1 A Toy Example for Boolean Encoding of a Sensitive Variable x ∈ Z2k

Consider a sensitive variable x ∈ Z2k , where x = 26. Define k = 5 to represent

values ranging from 010 to 3110, or in binary from 000002 to 111112. Therefore,

x = 110102. Let the number of shares, ns, be 3. The aim is to represent x as ns

Boolean shares so that the bitwise XOR of all the shares reconstructs the original

variable x.

To generate the shares, we can adopt the following procedure:

• Randomly select two binary shares from the space Z2k , denote these as x(0)B

and x(1)B .

28

• Calculate the third share, x(2)B , by performing a bitwise XOR operation on x

and the two previously generated shares.

Suppose the first two shares are randomly selected as x(0)B = 101012 and x(1)B =

001002. The third share is computed using the bitwise XOR equation:

x(2)B = x⊕ x(0)B ⊕ x(1)B

x(2)B = 110102 ⊕ 101012 ⊕ 001002

x(2)B = 010112

Hence, the three shares for x = 26 are x(0)B = 101012, x(1)B = 001002, and x(2)B =

010112. Validating the correctness of these shares, we can verify:

x = x(0)B ⊕ x(1)B ⊕ x(2)B

110102 = 101012 ⊕ 001002 ⊕ 010112

110102 = 110102

3.3.5 Security Definitions for Shared Implementations

To explain the security of these shared implementations in a more formal way, re-

searchers Ishai, Sahai, and Wagner developed the t-probing model, which they intro-

duced in their paper [27].

The t-probing model in cryptography represents an adversary with access to up to

t intermediate variables in the system. This model is essential for evaluating the

security of masked circuits against side-channel attacks, where the goal is to ensure

that any combination of t variables within the circuit does not reveal information

about the secret.

The t-NI and t-SNI security notion was first introduced in [2] and [3], and the notions

used in the article [14] were derived from [10].

29

3.3.5.1 t-NI Security Notion

Suppose we have a single gadget G (See the 13 gadgets labeled in the comments

given in the Algorithm 13, and to the Figure 5.13 for an example).

This gadget G receives x(·) (ns − tuple) as its input and produces y(·) as its output.

Here, x(·) represents an (ns)-tuple, which means it is a sequence or an ordered list of

ns elements. For instance, if we consider a simple case where ns = 3, an example of

such (3)-tuple would be: x(·) = (x(1), x(2), x(3)). The same case applies to the y(·).

We say that G is t-NI (Non-Interference ([2, 3]) secure if it pertains to the following

properties:

For any collection of tG intermediate variables (where tG ≤ t), there exists a subset

I contained within the index range [0, ns − 1] of input indices. This subset I must

satisfy the condition that its size is less than or equal to tG (|I| ≤ tG).

So far we have

tG ≤ t

|I| ≤ tG where I ⊂ [0, ns − 1].

The crucial aspect is that tG can be perfectly simulated [14] from the x(I) input in-

dices.

In simpler terms, this means that even if an adversary gets access to up to tG ≤ t in-

termediate variables in the gadget, they can’t gain any more information than what is

already available from a subset of the input shares. This is crucial for maintaining the

security of the gadget as it prevents sensitive information from being leaked through

side-channel attacks.

3.3.5.2 t-SNI Security Notion

Given a gadget G, which receives x(·) as its input and produces y(·) as its output, the

t-SNI (Strong Non-Interference ([3])) security level refers to the following properties:

30

For any set of tG intermediate variables (where tG ≤ t) and any subset O of output

indices within the index range [0, ns - 1], provided that tG + |O| ≤ t, there exists a

subset I contained within the index range [0, ns− 1] of input indices. The size of this

subset |I| should be less than or equal to tG.

Crucially, given only the input shares x(I) (i.e., the inputs corresponding to the indices

in the subset I), it is possible to perfectly simulate the values of these tG intermediate

variables and the output variables y(O).

In simpler terms, the gadget G is t-SNI secure if, even if an attacker gets access

to up to t values, which may include any tG intermediate variables and any output

shares y(O), they can’t gain any more information than what is already available from

a subset of the input shares.

31

32

CHAPTER 4

CRYSYALS-KYBER KEY ENCAPSULATION MECHANISM

(KEM)

In this section, we will explore CRYSTALS-Kyber, setting aside discussions of masked

implementation for now.

4.1 Parameters to be Used

CYRSTALS-Kyber is a Post-Quantum Cryptography (PQC) key encapsulation mech-

anism (KEM) that employs a prime modulus, denoted by

q = 3329

in its operations. In contrast, Saber utilizes a power-of-two modulus (for example,

2k). This design choice introduces a significant computational overhead in masked

implementations compared to a 2k modulus, as evidenced by the study of [34]. Ta-

ble 4.1 below lists the corresponding parameters for given security levels k. In this

section, we will discuss each of these parameters and their roles within the Ky-

ber.CPAPKE.Enc() algorithm (See Alg. 5).

Table 4.1: Parameters of Kyber With Three Levels of Security
n k q η1 η2 (du, dv) δ

KYBER512 256 2 3329 3 2 (10,4) 2−139

KYBER768 256 3 3329 2 2 (10,4) 2−164

KYBER1024 256 4 3329 2 2 (11,5) 2−174

• The δ denotes the failure probability of decryption [1]. Note that the δ prob-

33

ability can be computed by an publicly available Python script, which can be

accessed from here 1.

• The value of n is set to 256, implying that Kyber operates with polynomials

a(x) from Z[X]3329 consisting of 256 coefficients, with each coefficient drawn

from the finite field Z3329. The key aspect of the Kyber cryptosystem is efficient

polynomial multiplication which is achieved by using the Number Theoretic

Transform (NTT). The NTT requires the modulus, represented by the parameter

q, to be a specific kind of prime number such that n divides q − 1. The choice

of q = 3329 satisfies this condition with n = 256. There are indeed two

smaller primes, 257 and 769, which satisfy this criterion, but they would lead

to a non-negligible failure probability. This would be unacceptable as it could

compromise the CCA2 security level that Kyber aims to maintain.

• The parameter η1 dictates the generation of the secret vector s in Rk
q and the

noise vector e in Rk
q , as seen in Kyber.CPAPKE.KeyGen() (refer to Lines 10

and 14 in Alg. 4, respectively). It also governs the noise in r in Rk
q in the Ky-

ber.CPAPKE.Enc() (see Line 5 in Alg. 5). It should be noted that the vectors s

and e in CRYSTAL-Kyber are sampled from a Centered Binomial Distribution

(CBD) (refer to Alg. 2). Later in this section, we will provide a comprehensive

explanation of this. Vectors are denoted in bold.

s
$← Bη1

e
$← Bη1

r
$← Bη1

• The η2 manages the noise in variables e1 ∈ Rk
q and e2 ∈ Rq.

e1
$← Bη2

e2
$← Bη2

• (du, dv) are related to the compression and decompression functions, denoting

in how many bits that the message/polynomial will be compressed.

1 https://github.com/pq-crystals/security-estimates.

34

4.2 Notations and Background Knowledge for the CPAKEM and CCAKEM

Secure CRYSTAL-Kyber Algorithms

In this section, we will provide the necessary notation that is used in the pseudo-code

of the algorithms given below.

• Kyber.CPAKEM.KeyGen() - Refer to Algorithm 4

• Kyber.CPAPKE.Enc(pk,m, r) - Refer to Algorithm 5

• Kyber.CPAPKE.Dec(c, sk) - Refer to Algorithm 6

• Kyber.CCAKEM.KeyGen() - Refer to Algorithm 7

• Kyber.CCAKEM.Enc(pk) - Refer to Algorithm 9, and

• Kyber.CCAKEM.Dec(c, sk) - Refer to Algorithm 11

4.2.1 Byte and Byte Arrays

The set B is defined as {0, . . . , 255}, representing 8-bit integers. An element in this

set, termed a byte, consists of 8 binary digits (bits). As these bytes are unsigned, they

solely denote non-negative integers.

Bk denotes the set of all byte arrays of length k. Essentially, a byte array is a

sequence containing k bytes. For instance, in Alg. 4, we see that output of Ky-

ber.CPAPKE.KeyGen() is secret key such that sk ∈ B12·k·n/8. If we were to examine

that in great detail, we would see that s is actually a vector of k polynomials (s ∈ Rk
q)

sampled from Bη1 , each with n coefficients; given that a coefficient from mod 3329

is 12-bit long, then we multiply by k × n× 12 and divide by 8 to get the byte length.

In other example, if k were to be 3, B3 refers to the set of all possible byte arrays that

have a length of 3 bytes. Here are a few examples of byte arrays that belong to B3:

• [0, 0, 0]: This array consists of three bytes, all set to the minimum value of 0.

• [255, 255, 255]: This array consists of three bytes, all set to the maximum value

of 255.

35

• [0, 127, 255]: This array consists of three bytes with different values (0, 127,

and 255).

Each byte in the array can have a value from 0 to 255, as explained earlier. In other

words, each element of the array is a byte (an element of B). So, there are 2563 =

16, 777, 216 unique byte arrays with a length of 3 bytes in the set Bk.

The expression m ∈ B32 indicates that the message m is uniformly drawn from the

set {0, 1}256. See how Alg. 5 takes input message m ∈ B32 to encypt it. Given that

each byte has 8 bits, the total bit-length of the message m is 32× 8 = 256 bits.

m ∈ B32 = m← {0, 1}256

B∗ denotes the set of byte arrays of arbitrary length, also known as byte streams. This

set includes byte arrays of any length, from empty arrays to arrays with an infinite

number of elements.

The (a||b) notation represents the concatenation of two byte arrays a and b. The

resulting byte array has a length equal to the sum of the lengths of a and b. For

instance, the output of Kyber.CPAPKE.Enc() algorithm is the two public ciphertext

c← (c1 ∥ c2) (Refer to Line 23 in Alg. 5).

When working with byte arrays, you may need to extract a portion of the array or

refer to a specific byte within the array. In this context, the notation "a+ k" is used to

represent the byte array that starts at the k-th byte of the original byte array "a" (with

indexing starting at zero).

• Let "a" be a byte array of length l.

• Let "b" be another byte array.

• Let "c" be the concatenation of "a" and "b", denoted as (a||b).

Now, if we look at the concatenated byte array "c", the first part of "c" consists of the

bytes from "a". The second part of "c" consists of the bytes from "b". Since "a" has

a length of l, the byte array "b" starts at the (l + 1)-th position in "c" (remember that

36

indexing starts at zero).

In this case, "a + l" refers to the byte array starting at the l-th byte of "a". Since "b"

starts at the l-th byte of the concatenated byte array "c", we can say that "b = a + l"

in this particular example.

In summary, the notation "a + k" is used to denote a byte array that starts at the

k-th byte of the original byte array "a". In the example provided, "b" is found in the

concatenated byte array "c" starting at the l-th byte, so "b = a+ l".

The Byte to Bits Function function converts a byte array of length l into a bit array

of length 8l. Each byte in the input array is converted into 8 bits in the output ar-

ray. The function computes each bit βi at position i of the output bit array from the

corresponding byte bi/8 at position i/8 of the input array using the formula:

βi = (bi/8/2
(i mod 8)) mod 2 (4.1)

Now let’s go through an example.

• Input byte array (in hexadecimal): A5

• Input byte array (in binary): 10100101

We have l = 1 (one byte), so the output bit array will have 8l = 8 bits. We’ll use

(4.1) for i ranging from 0 to 7.

• i = 0

– i/8 = 0/8 = 0

– i mod 8 = 0

– 2(i mod 8) = 20 = 1

– bi/8 = b0 = A5 (in decimal: 165)

– β0 = (165/1) mod 2 = 1

37

• i = 1

– i/8 = 1/8 = 0 - integer division

– i mod 8 = 1

– 2(i mod 8) = 21 = 2

– bi/8 = b0 = A5 (in decimal: 165)

– β1 = (165/2) mod 2 = 1

Continuing the process for i = 2 to 7, we get the output bit array β = [1, 0, 1, 0, 0, 1, 0, 1].

This matches the binary representation of the input byte array A5 to (10100101)2.

4.2.2 The Polynomial Ring Rq Represented as Zq[X]/(Xn + 1)

R is the quotient ring Z[X]/(Xn + 1). Here, R is a polynomial ring wherein its

elements are polynomials with coefficients in Z. This ring is formed by taking the

quotient of the polynomial ring Z[X] by the ideal generated by Xn +1. Any polyno-

mial in the ring R can be reduced modulo Xn+1, and any two polynomials that differ

by a multiple of Xn+1 are considered equivalent in this ring. So, the polynomials in

R are of the form

f(X) = a0 + a1X + ...+ a(n−1)X
(n−1),

where ai are integers, and f(X) is considered equivalent to g(X) if their difference

(f(X)− g(X)) is divisible by Xn + 1.

Rq, on the other hand, is the ring Zq[X]/(Xn + 1). Rq is also a polynomial ring,

but its elements have coefficients in the integers modulo q (Zq). Similar to R, the

ring Rq is constructed by taking the polynomials in Zq[X] and imposing the relation

Xn + 1 = 0. Polynomials in Rq have the same form as in R, but the coefficients ai

are integers modulo q.

Let’s take a simple example with a smaller value of n and q to illustrate the concept.

Suppose n = 2 and q = 5. Then, we have the ring R5 = Z5[X]/(X2 + 1). In this

ring, the relation X2 + 1 = 0 is imposed. So, any polynomial that has a term with a

38

power of X2 or higher can be reduced modulo X2 + 1. For example, let’s consider

the polynomial f(X) = 3X2+2X+4 in Z5[X]. In the ring Rq, we can reduce f(X)

modulo X2 + 1 as follows:

f(X) = 3X2 + 2X + 4

≡ −2X + 2X + 4 (mod X2 + 1)

≡ 3X + 4 (mod X2 + 1)

So, in the ring Rq, the polynomial f(X) is equivalent to the polynomial 3X + 4, and

any operation involving f(X) in Rq will use this reduced form.

Note that n is a power of 2. In the context of CCA2-Secure CRYSTAL-Kyber, n =

256, which is 28. The choice of n is significant because it determines the structure of

the polynomial rings R and Rq.

Xn+1 is the cyclotomic polynomial associated with the 2n′-th roots of unity. Cyclo-

tomic polynomials are distinguished by having primitive roots of unity as their roots.

Specifically, when n′ = 9, Xn + 1 is associated with the 29-th roots of unity, indi-

cating that its roots are the 512th roots of unity. Note that a cyclotomic polynomial

itself doesn’t satisfy X512 = 1. Instead, it has roots (let’s call one of these roots z)

that satisfy z512 = 1.

When we talk about the polynomial Xn+1 being the 2(n′)-th cyclotomic polynomial,

we’re referring to the polynomial whose roots are the primitive 2(n
′+1)-th roots of

unity with the following properties:

• z512 = 1: When the complex number z is raised to the power of 512, the result

is 1.

• zk ̸= 1 for any positive integer k less than 512: The complex number z, when

raised to any power less than 512, does not equal 1. In other words, it takes

exactly 512 "multiplications" of z by itself to reach the value of 1, and no

fewer.

So, the focus is on the roots of the polynomial and their properties, not the polynomial

itself.

39

Vectors are assumed to be column vectors by default. The transpose of a vector v or

a matrix A is denoted by vT or AT , respectively. Note that a vector and a matrix are

denoted as bold.

4.2.3 Modular Reduction

When computing modular reductions for a positive integer α, there are two types of

reductions: balanced and standard.

For an even positive integer α, r′ = r mod ±α is defined as the unique element r′

within the interval −α
2
< r′ ≤ α

2
. In the case of odd α, the range becomes −α−1

2
≤

r′ ≤ α−1
2

, ensuring that r′ = r mod α.

For any positive integer α, we introduce r′ = r mod +α as the distinct element r′

within the range 0 ≤ r′ < α so that r′ = r mod α.

4.2.4 Rounding

For a given element x ∈ Q, we use the notation ⌈x⌋ to denote the rounding of x to its

nearest integer. Further, the ⌈·⌉ notation signifies rounding up to the nearest integer.2

Finally, ⌊·⌋ rounds down to the nearest integer. Taking the number 4.3 as an instance:

⌈4.3⌉ = 5

⌊4.3⌉ = 4

4.2.5 Compression and Decompression Functions

Definition 4.2.1 (Compression Function). In CCA-Secure CRYSTAL-Kyber [13],

authors define a compression function

Compressq(x, d) = ⌈(2d/q) · x⌋ mod+ 2d (4.2)

2 Rounding up entails selecting the higher integer when a number is equidistant between two integers. This
scenario arises when a number is equidistant from the two nearest integers.

40

which takes an element x ∈ Zq as an input and returns an integer within the range

{0, . . . , 2d − 1}, where d < ⌈log2(q)⌉.

Hence, when using the compression function Compressq(x, d = 1), it takes an ele-

ment x ∈ Zq as input and maps it to an integer within the range {0, . . . , 2d=1 − 1},
which is simply the set {0, 1}. Therefore, the result of Compressq(x, 1) will be either

0 or 1.

4.2.5.1 A Toy Example for the Compression Function

In the following, we present a concise demonstration of the compression function.

Through this example, we aim to elucidate how the value x undergoes compression

to yield c = (53248)10.

Starting with the value

123456789010 = 10010011001011000000010110100102,

which spans 31 digits, the compression process condenses it into a 16-bit representa-

tion. This compact representation retains the essence of the original value x, but with

significantly reduced size.

1 def CompressionFunction(x, d):

2 c = (2**d // q) * x % (2**d)

3 return c

4

5 x = 1234567890

6 d = 16

7 c = CompressionFunction(x, d)

8

9 print(c)

Authors [14] also define a decompressing function such that

x′ = Decompressq(Compressq(x, d), d),

where x′ is an element in close proximity to x, more specifically,

|x′ − x mod±q| ≤ B := ⌈ q

2d+1
⌋.

41

The functions that fulfill these criteria are defined as:

Compressq(x, d) = ⌈(2d/q) · x⌋ mod+ 2d

and

Decompressq(x, d) = ⌈(q/2d) · x⌋.

4.2.5.2 Motivations Behind Compression and Decompression Functions

The main goal of using these functions is to reduce the ciphertext size by discarding

some low-order bits that do not significantly impact the probability of correct

decryption. In other words, the compression function is used to reduce the size of

the ciphertext by discarding the least significant d bits of the value x. This results in

a more efficient and compact representation of ciphertexts.

In the line 20 of Algorithm 5, the Decompressq function is utilized to create error

tolerance gaps by mapping the message bit 0 to 0 and 1 to ⌈q/2⌉ [1]. This process

ensures that there is a significant gap between the two possible values, allowing

for error correction during decryption.

Let’s examine that. The particular line we are talking about is 20:

v := NTT−1(t̂T ◦ r̂) + e2 + Decompressq(Decode1(m), 1)

Here, the term Decompressq(Decode1(m), 1) is responsible for creating the error tol-

erance gaps. Let’s examine this in more detail. Recall that the Decompressq function

is defined as:

Decompressq(x, d) = ⌈(q/2d) · x⌋.

When d is set to 1, as in the case of line 20, the function becomes

Decompressq(x, 1) = ⌈(q/2) · x⌋

Now, let’s consider the two possible values of a single message bit, m ∈ {0, 1}1.

When m = 0:

Decompressq(0, 1) = ⌈(q/2) · 0⌋ = 0

42

When m = 1:

Decompressq(1, 1) = ⌈(q/2) · 1⌋ = ⌈q/2⌋

As you can see, the Decompressq function maps the message bit 0 to 0 and the mes-

sage bit 1 to ⌈q/2⌋. This creates a gap between the two possible values, which helps

ensure that errors can be tolerated and corrected during the decryption process.

4.2.6 Encoding and Decoding Functions

Decodel function converts a byte array B of size 32l into a polynomial f = f0 +

f1X + · · · + f255X
255. Each fi in the polynomial f is represented in l bits from the

byte array B.

Mathematically, for each i from 0 to 255, we have:

fi :=
l−1∑
j=0

βil+j ∗ 2j

where βil+j represents the bits in the byte array B.

Algorithm 1 Decodel : B32l → Rq

1: Input: Byte array B ∈ B32l

2: Output: Polynomial f ∈ Rq

3: (β0, ..., β256l−1) := BytesToBits(B)

4: for i from 0 to 255 do

5: fi :=
∑l−1

j=0 βil+j2
j

6: end for

7: return f0 + f1X + f2X
2 + · · ·+ f255X

255

The Encodel function converts a polynomial f into a byte array of size 32l. Each fi

in the polynomial f is converted to l bits and stored in the byte array.

Mathematically, the encoding process can be seen as the inverse operation of the

decoding. For each fi in f , we calculate l bits and store them in the byte array. Note

that the factor l is indicative of the level of precision used in the encoding process. A

larger l results in a larger byte array and subsequently higher precision.

43

4.2.7 Symmetric Primitives

Kyber’s architecture incorporates a pseudorandom function, represented as PRF :

B32 × B → B∗, along with an extendable output function denoted as XOF : B∗ ×
B × B → B∗. Additionally, Kyber utilizes two distinct hash functions, H : B∗ →
B32 and G : B∗ → B32 × B32, as well as a key-derivation function expressed as

KDF : B∗ → B∗ [1].

4.2.8 Number-Theoretic Transform (NTT)

In this section, we will give a detailed information about the NTT transform used in

CCA-Secure CYRSTALS-Kyber algorithm.

4.2.8.1 The 256th Roots of Unity for the Defining Polynomial X256 + 1

First, we should understand that X256 + 1 is the defining polynomial we’re working

with.

When this polynomial is set to 0, its solutions form the 256th roots of unity. The

"roots of unity" are a concept from complex number theory that satisfy the equation

zn = 1. In other words, the roots of unity are complex numbers that, when raised to

the power of 256, equal 1.

X256 + 1 = 0

X256 = −1

So, in our polynomial equation X256 + 1 = 0, the solutions are 256th roots of -1. So,

when these complex numbers are raised to the power of 256, they will indeed equal

-1.

For the polynomial X256 + 1 = 0, its roots are the 256th roots of -1, which are just

as numerous and evenly distributed on the unit circle, but they are rotated half a unit

counterclockwise compared to the 256th roots of 1.

44

4.2.8.2 How to Prove that the Defining Polynomial Has 256th Roots of Unity?

In the base field Z3329, we are looking for the existence of primitive n-th roots of

unity.

It is a mathematical fact that a finite field (like Zq=3329) can have a primitive n-th root

of unity if and only if n divides q − 1. So, the existence of a primitive n-th root of

unity in Zq is tied to the factorization of q − 1.

Given

q − 1 = 3329− 1

= 28 · 13,

we can see that any number n that divides 28 ∗ 13 can have primitive n-th roots of

unity in Zq. As 256 (n = 28) divides 28 ∗ 13, there are primitive 256th roots of unity

in Zq. But 512 doesn’t divide 28 ∗ 13, so there are no primitive 512th roots of unity

in Zq.

Why does it matter? The existence of a primitive 256th root of unity but not a 512th

means that when we try to find solutions to the equation X256 + 1 = 0 in Zq, we find

256 solutions.

4.2.8.3 Defining Polynomial X256 + 1 Factors into 128 Quadratic Polynomials

In the complex plane, an n-th root of unity refers to a complex number that, when

raised to the power n, equals 1. That is, if zn = 1, then z is an n-th root of unity.

These roots lie on the unit circle in the complex plane, and they are evenly distributed

around the circle. For the 256-th roots of unity, there will be 256 points on this unit

circle.

Now, the defining polynomial we have is X256 + 1 = 0. The roots of this polynomial

are the complex numbers that, when raised to the power 256, yield -1, not 1. These

are different from the usual 256-th roots of unity; we can say they are "negated" 256th

roots of unity.

Now, suppose we have a number, we’ll call it ζ , that when raised to the power 256

45

gives −1 (hence a 256-th root of unity). This is a special type of number because it

possesses a unique property: no matter how many times you square it, it will remain

a 256-th root of unity. That’s because (−z)2 = z2, so (−1)2 = 1. That is, if ζ is a

256-th root of unity, so is ζ2.

Using these special numbers, we can break our original polynomial into smaller

chunks. These chunks look like (X2 − ζ2i+1). Here i is just a counter that ranges

from 0 to 127. This is where our 128 different pieces come from. Putting it all

together, we can write:

X256 + 1 = (X2 − ζ) ∗ (X2 − ζ3) ∗ (X2 − ζ5) ∗ · · · ∗ (X2 − ζ255).

Each of these quadratic factors is of the form (X2 − ζ2i+1), where ζ is a primitive

256-th root of unity modulo q.

X256 + 1 =
127∏
i=0

(X2 − ζ2i+1)

4.2.8.4 Performing NTT on Polynomial f ∈ Rq: Representation as 128 First-

Degree Polynomials

The Number Theoretic Transform (NTT) is a tool that’s used for efficient polynomial

multiplication. In this particular context, the NTT is being used to decompose the

polynomial f with respect to the 128 distinct quadratic factors of the polynomial

X256+1 (modulo q). Each of these quadratic factors is of the form X2−ζ2i+1, where

ζ is a primitive 256th root of unity modulo q, and i ranges from 0 to 127.

In other words, we’re taking our polynomial f , and seeing how it ’behaves’ when we

consider it relative to each of these 128 distinct factors.

So when we take f mod (X2− ζ2i+1), we are dividing f by X2− ζ2i+1 and looking

at the remainder. That’s the "remainder of the polynomial f when divided by each

quadratic factor" part. This remainder will be a polynomial of degree less than 2, i.e.,

a linear polynomial or a constant.

Hence, the NTT of f will be a vector of these 128 remainders. Each element of this

vector is a polynomial of degree one (or a constant), and it represents the ’component’

46

of f relative to one of the quadratic factors of X256 + 1.

Thus, the NTT of f ∈ Rq can be written as the following.

(f mod X2 − ζ2·(0)+1, . . . , f mod X2 − ζ2·(127)+1).

After you’ve taken your polynomial, f ∈ Rq, and applied the Number Theoretic

Transform (NTT), you get a vector of polynomials3. These polynomials are the re-

mainders when f is divided by each of the 128 quadratic factors of the defining poly-

nomial X256 + 1. This gives you the list (or vector): (f mod X2 − ζ2·0+1, ..., f

mod X2 − ζ2·127+1). This is essentially seeing how f behaves when plugged into

each of these quadratic equations.

Thus, the Number Theoretic Transform (NTT) transforms the polynomial f from the

coefficient domain to the point-value domain, where each element of the result vector

represents the value of the polynomial at a specific root of the defining polynomial.

To illustrate, let’s consider an extremely simplified example with smaller numbers.

Let’s say we have a defining polynomial X4 + 1 which can be factored into X2 − i

and X2 + i over the complex numbers, where i is the imaginary unit.

If we consider a polynomial f = X3 + 2X2 + 3X + 4, then the NTT of f would

consist of the remainders of f when "divided" by each of these factors. So, we would

compute f mod (X2 − i) and f mod (X2 + i), and the result would be a vector of

two polynomials of degree one, which are the remainders of these operations.

In the context of X256+1, we’re doing the same thing, but with 128 different quadratic

factors, and we’re working modulo q, not over the complex numbers.

Each element of the output vector is the remainder of f when "divided" by each of

these quadratic factors. This is essentially what’s happening when the authors [1]

say "the NTT of a polynomial f ∈ Rq is a vector of 128 polynomials of degree

one." It’s a way to decompose f into simpler parts relative to the roots of the defining

polynomial.
3 In this context, when we say a "vector of polynomials," we don’t mean it in the strict linear algebra sense of

"vector," which might imply that we could perform certain operations like vector addition or scalar multiplication
on these polynomials. Rather, we’re using "vector" more loosely to simply mean a list or ordered collection of
polynomials.

47

Next, this vector of linear (degree one) polynomials is converted into a form that

is easier to handle computationally. This is what the phrase "serialized to a vector

in Z256
q in the canonical way" is referring to. This means that we view each linear

polynomial ax + b as two elements a and b in Zq (the integers modulo q), and so the

128 polynomials are "flattened" into a single vector of 256 elements.

For this, the NTT : Rq → Rq is defined to be a bijection (a one-to-one correspon-

dence) that maps f in Rq to a new polynomial that has the coefficient vector we

mentioned above. This is essentially a representation change. You’re changing the

representation of the polynomial from being in the domain of Rq to a form that’s

easier to compute with.

The NTT (f) is denoted as f̂ , and is represented as a polynomial of degree 255

NTT(f) = f̂ = f̂0 + f̂1X + . . .+ f̂255X
255,

with the coefficients defined as:

f̂2i =
127∑
j=0

X2jf · ζ(2(i)+1)j, (4)

f̂2i+1

127∑
j=0

X2j+1f · ζ(2(i)+1)j. (5)

There is one thing to note here. After the NTT is applied to f , the result is another

polynomial we’re calling f̂ . However, f̂ is not just a simple polynomial; it’s a collec-

tion of 128 polynomials, each of degree 1.

NTT(f) = f̂ = (f̂0 + f̂1X, f̂2 + f̂3X, . . . , f̂254 + f̂255X)

means that f̂ is made up of 128 separate polynomials, each one looking like f̂2i +

f̂2i+1X . In other words, the NTT of f is a complex object with 128 separate parts,

each part being a degree-1 polynomial.

It’s also important to note that this representation is purely algebraic, which means it’s

a mathematical construct used for the purposes of calculation and analysis. The actual

polynomial f̂ does not have any algebraic meaning on its own; its meaning comes

from its role in the number theoretic transform and its relationship to the original

polynomial f .

48

4.2.8.5 Efficient Multiplication of Two Polynomails with NTT.

f · g = INTT(NTT(f) ◦ NTT(g))

where the graph includes

• CT butterfly-based NTT point-wise multiplication [37], and

• GS butterfly-based INTT [37].

Figure 4.1: Polynomial Multiplication [37]

4.2.9 Uniform Sampling From the Ring of Polynomials Rq

Uniform sampling in Kyber is a key process used to generate elements in Rq. This

is achieved via a deterministic approach employing the function Parse : B∗ → Rq,

which operates on an arbitrary input byte stream such that B = b0, b1, b2, · · · ∈ B∗.

This function computes the NTT-representation

â = â0 + â1x+ â2x
2 + ...+ â255x

255

in Rq of a ∈ Rq.

In other words, the Parse function is used to convert a byte stream into a polynomial

in Rq. Each byte (or a combination of bytes in this case) in the stream is used to

form a coefficient of the polynomial. This process helps in transforming arbitrary

49

Algorithm 2 Parse: B∗ → Rn=256
q=3329

1: Input: Byte stream B = b0, b1, b2 . . . ∈ B∗

2: Output: NTT-representation â ∈ Rq of a ∈ Rq

3: i := 0

4: j := 0

5: while j < n do

6: d1 := bi + 256 · (bi+1 mod 16)

7: d2 := ⌊bi+1/16⌋+ 16 · bi+2

8: if d1 < q then

9: âj := d1

10: j := j + 1

11: end if

12: if d2 < q and j < n then

13: âj := d2

14: j := j + 1

15: end if

16: i := i+ 3

17: end while

18: return â0 + â1X + . . .+ ân−1X
n−1

byte streams into a format (a polynomial in Rq) that can be utilized effectively in

the computations of the cryptosystem, such as polynomial multiplication in the NTT

domain.

It’s important to note that the use of uniform sampling is central to ensuring the sta-

tistical indistinguishability of the output from a truly random selection, an attribute

that bolsters the cryptographic strength of CRYSTAL-Kyber.

4.2.10 Sampling from a Binomial Distribution

For Central Binomial Distribution (CBD) function in Kyber (See Lines 10 and 14 in

Alg. 5) is used to generate the secret vector s and error (noise) vector e in the form

of polynomials whose coefficients follow a centered binomial distribution. This dis-

50

tribution is chosen for its symmetric and mean-zero properties, which help to ensure

that the noise doesn’t bias the cryptographic computations.

The function takes as input a byte array B of length 64η. It then converts these bytes

to bits. For each index from 0 to 255, it forms two groups of η bits, interpreted as

integers to give a and b. The difference between a and b gives the coefficient fi of

the polynomial. Thus, each fi is a random variable following the centered binomial

distribution.

Finally, CBD outputs a polynomial f which is a sum of fi times corresponding pow-

ers of X . This polynomial is used as noise in the cryptosystem. This ensures that

every coefficient in the polynomial f is derived deterministically from 64η bytes of

pseudorandom function output, following the binomial distribution 64η.

Algorithm 3 CBDη: B64η → Rq

Input: Byte array B = (b0, b1, ..., b64η−1) ∈ B64η

Output: Polynomial f ∈ Rq

1: (β0, ..., β512η−1)← BytesToBits(B)

2: for i from 0 to 255 do

3: a←
∑η−1

j=0 β2iη+j

4: b←
∑η−1

j=0 β2iη+η+j

5: fi ← a− b

6: end for

7: return f0 + f1X + f2X
2 + . . .+ f255X

255

4.3 Kyber.CPAPKE.KeyGen() Algorithm

In this section, a detailed examination of Kyber.CPAPKE.KeyGen() will be provided.

The pseudo-code of the algorithm is directly taken from the Supporting Documenta-

tion of the CRYSTAL-Kyber [1].

51

Algorithm 4 Kyber.CPAPKE.KeyGen()
Input: None

Output: Secret key sk ∈ B12·k·n/8

Output: public key pk ∈ B12·k·n/8+32

1: d← B32

2: (ρ, σ)← G(d) ▷ Generate ρ and σ

3: N ← 0 ▷ Initialize N

4: for i = 0 to k − 1 do ▷ Generate the matrix Â ∈ Rk×k
q in NTT domain

5: for j = 0 to k − 1 do

6: Â[i][j]← Parse(XOF(ρ, j, i))

7: end for

8: end for

9: for i = 0 to k − 1 do

10: s[i]← CBDη1(PRF(σ,N)) ▷ Sample s ∈ Rk
q from Bη1

11: N ← N + 1

12: end for

13: for i = 0 to k − 1 do

14: e[i]← CBDη1(PRF(σ,N)) ▷ Generate e ∈ Rk
q from Bη1

15: N ← N + 1

16: end for

17: ŝ← NTT(s) ▷ Perform NTT

18: ê← NTT(e) ▷ Perform NTT

19: t̂← Â ◦ ŝ+ ê ▷ Calculate t̂

20: pk ← (Encode12(t̂ mod q) ∥ ρ) ▷ Encode public key

21: sk ← Encode12(ŝ mod q) ▷ Encode secret key

22: return (pk, sk)

Let’s explain the algorithm line by line.

• Line 1 & 2:

The function G : B∗ → B32 × B32 is a cryptographic hash function that takes an

input from the set of all binary strings B∗ and generates an output which is a pair of

52

32-byte binary strings. In other words, the output is a 2-tuple, where each element is

a binary string of length 32 bytes.

In the context of the CRYSTALS-Kyber cryptographic protocol, G yields two distinct

32-byte sequences, denoted as ρ and σ. This function G is typically instantiated with

SHA3-512 [1], a cryptographic hash function that provides a 64-byte (or 512-bit)

result.

Mathematically, given a binary input d to the function G, it can be expressed as:

G(d) = SHA3-512(d)

This results in a 64-byte output. Subsequently, this output is divided into two 32-byte

outputs:

(ρ, σ) = (g[0 : 32], g[32 : 64])

In this arrangement, if G is implemented as SHA3-512, ρ becomes the first 32 bytes

of the SHA3-512 hash of d, and σ becomes the remaining 32 bytes.

Within the Kyber protocol, these outputs serve different functions. The seed ρ is

utilized by the XOF function to create pseudorandom elements of the public matrix

A (Refer to Line 6), while the seed σ is employed by the PRF function to generate

the secret key s and the error vector e (Refer to Line 10).

• Line 4, 5, 6, 7 & 8:

In the given part of the algorithm, we’re constructing k × k matrices Â ∈ Rk×k
q

(exactly k2 of them) with entries in the polynomial ring Rq.

Rk×k
q denotes a k × k matrix where each element is a polynomial from Rq.

Notice how the k denotes how many matrices that the algorithm is going to use.
A0,0(X) · · · A0,k−1(X)

· · ·
...

...

Ak−1,0(X) · · · Ak−1,k−1(X)

 ·

s0(X)

s1(X)
...

sk−1(X)

+

e0(X)

e1(X)
...

ek−1(X)

 =

t0(X)

t1(X)
...

tk−1(X)

53

Each of these matrices (Â) are in the form of Rk×k
q in NTT domain. The statement

that the matrix is in the Number Theoretic Transform (NTT) domain suggests that

the polynomials filling this matrix have undergone an NTT. This makes computations

more efficient while preserving cyclic convolution properties, which are crucial in

polynomial multiplication, an essential operation in the Kyber protocol.

Figure 4.2: Generating the A in the KeyGen() Algorithm [13].

a0,0 −ak−1,0 −ak−2,0 · · · −a1,0
a1,0 a0,0 −ak−1,0 · · ·
a2,0 a1,0 a0,0 · · ·

a3,0 a2,0 a1,0 · · · . . .
...

...
... a0,0

ak−2,0

ak−1,0 ak−2,0 ak−3,0 · · · a0,0

The values of each entry in this matrix, ÂT [i][j], are determined by an Extendable

Output Function (XOF : B∗ ×B ×B → B∗) applied on the seed ρ, and the indices i

and j.

XOF is a type of cryptographic hash function that can produce output of arbitrary

length, unlike traditional hash functions that have a fixed output length. This makes

XOFs particularly useful in applications that require variable-length output.

In the Support Document [1], it is written that XOF is instantiated with SHAKE-128

algorithm. SHAKE-128 is a specific instance of an XOF. It is part of the SHA-3 fam-

ily of cryptographic hash functions, which were selected as the winners of the NIST

hash function competition. The name "SHAKE" stands for "Secure Hash Algorithm

and KEccak," reflecting its origins in the Keccak algorithm.

54

• Line 9, 10, 11 & 12:

This piece of the algorithm refers to the generation of the secret key s.

Figure 4.3: Generating the s in the KeyGen() [13].

• Line 13, 14, 15 & 16:

This piece of the algorithm refers to the generation of the error e.

Figure 4.4: Generating the e in the KeyGen() [13].

• Line 17, 18 & 19:

In this piece of the code, Kyber.CPAPKE.KeyGen() performs an NTT transformation

to the vectors s ∈ Rk
q and e ∈ Rk

q .

Notice that the matrix Â and ŝ gets polynomially multipled in the NTT domain and

the error vector ê is added to the result. As the reader can see, this is the core of the

Learning with Error problem.

Figure 4.5: Generating the (pk, sk) in the KeyGen() [13].

55

• Line 20, 21 & 22:

In the end, we have a public key pk := As+ e = t, and a secret key sk := s.

You can see this as one part’s (let us say Alice) generating a secret key sk, and the

public key pk. The public key is then sent to Bob. In Kyber, the secret key sk is

represented as a byte array, and its length is determined by the parameters k and n.

Here, k represents the number of polynomials in the secret key, and n is the degree

of the polynomials. The factor 12 comes from the encoding used in Kyber, where

each element in the polynomial takes up 12 bits (1.5 bytes).

4.3.1 Length of the Secret and Public Keys

Before closing this section, it is pivotal to understand the structure and the rationale

behind the lengths of the secret key, sk, and the public key, pk. Here is a succinct

breakdown of the lengths of these keys and the reasoning behind them:

• Secret Key sk Length:

– Comprised of a vector with k polynomials.

– A polynomial in Kyber has 256 coefficients taken from Z3329.

– Each coefficient is 12-bits long, due to being derived modulo 3329. The

Boolean representation of any number taken from this coefficient domain

[0, q − 1] is denoted by 12-bits.

– Consequently, the length of sk is calculated as:

Length of sk =
12 · n · k

8
bytes

where n = 256 represents the number of coefficients in each polynomial.

• Public Key pk Length:

– Structurally similar to sk but is concatenated with an additional 32-byte

entity ρ.

– ρ is a 32-byte binary string derived from the function G.

56

– Thus, the length of pk is given by:

Length of pk =

(
12 · k · n

8

)
+ 32 bytes

which accounts for the encapsulated information essential for secure cryp-

tographic communication.

4.4 Kyber.CPAPKE.Enc(pk,m, r)

This section presents a detailed analysis of the Kyber.CPAPKE.Enc() algorithm, a

central element of the CRYSTALS-Kyber cryptographic protocol. The pseudo-code

of the algorithm is directly taken from the Supporting Documentation of the Kyber

[1].

Let us examine the Alg. 5 line by line.

• Line 2:

Remember the Line 19 and Line 20 of the Kyber.CPAPKE.KeyGen() Algorithm 4.

This is where Alice generates her public and secret key-pair (pk, sk).

t̂← Â ◦ ŝ+ ê (4.3)

pk ← (Encode12(t̂ mod q) ∥ ρ) (4.4)

Thus, upon receiving Alice’s public key ’pk’, Bob decodes this into a polynomial

vector t̂ in the Number Theoretic Transform (NTT) domain.

t̂← Decode12(pk) (4.5)

• Line 3:

To obtain the seed ρ that Alice used in generating her public key, Bob uses the public

key that Alice shared with him, denoted as

ρ = pk + 12 · k · (n/8). (4.6)

• Line 4, 5, 6, 7 and 8:

57

This ρ serves as input to the Extendable Output Function (XOF), which is instantiated

using SHAKE-128 according to the FIPS-202 standard in the context of Kyber (as

discussed earlier in the explanation of the Algorithm 4).

Through this process, Bob is able to generate the same matrix Â as Alice initially did,

using the same ρ value and the consistent instantiation of the XOF with SHAKE-128.

• Line 9, 10, 11, and 12:

To introduce randomness into the process (which enhances security), Bob generates

a random vector r ∈ Rk
q that follows a discrete binomial distribution Bη1 . The byte

string ’r ∈ B32’ is used as a seed (or let’s say random coins) to generate this vector

of polynomials. The inclusion of such randomness ensures that the encryption pro-

cess yields different ciphertexts even for the same plaintext, strengthening the overall

security.

• Line 13, 14, 15 & 16:

In the context of Kyber encryption, the error vector e1 ∈ Rk
q is generated by drawing

samples from a centered binomial distribution Bη2, defined as follows:

• For a fixed η, we sample (a1, ..., aη, b1, ..., bη) uniformly at random from the

binary set {0, 1}2η.

• We then compute the difference between the sum of the ai and the sum of the

bi, i.e.,
∑η

i=1 ai −
∑η

i=1 bi.

• This sampling operation is represented as CBDη2 , and each of its outcome will

be a number in the set −η,−η + 1, ·, η − 1, η, and is symmetric around 0.

• For each element of the error vector e1, we run the CBDη2 operation using the

pseudorandom function (PRF) applied to the random byte string r ∈ B32 and a

nonce N .

It’s important to note that η is set to either 2 or 3, depending on the security level of

the Kyber variant in use.

58

In a sense, each entry in the vector e1 is the result of a "random walk" process where

each step is either forward (counted as positive) or backward (counted as negative),

each with equal probability. The total number of steps is equal to η. The use of the

binomial distribution for this purpose is due to its desirable cryptographic properties,

such as its symmetry, and the fact that it approximates the Gaussian distribution for

large η while being easier to sample from in a cryptographic setting.

• Line 17:

The difference between e1 and e2 arises from their roles in the encryption scheme,

which demands different types of variables.

e1 is a vector because it’s used in the matrix-vector multiplication ÂT ◦ r̂ during the

encryption process. Specifically, it’s added to the result of this multiplication. The

multiplication of a matrix with a vector results in a vector, hence e1 must be a vector

of the same dimension to make the addition possible. Each element of e1 vector is

generated by calling the CBDη2 function with the PRF applied to r and N . This is

repeated for i = 0 to k−1, hence generating k elements, which forms a k-dimensional

vector e1 ∈ Rk
q .

The polynomial e2 on the other hand, is used directly in the computation of v and

hence it doesn’t need to be a vector. The computation of v involves polynomial

multiplications and additions where e2 is added to the result. In this case, e2 is a

single polynomial sampled from the same CBDη2 function with the PRF applied to r

and N .

In summary, the necessity for e1 to be a vector and e2 to be a polynomial arises

naturally from their respective roles in the encryption process.

• Line 18:

Line 18 applies the Number Theoretic Transform (NTT) to the randomization vector

r ∈ Rk
q .

The reason r ∈ Rk
q is transformed via the NTT before proceeding with further compu-

tations is because the subsequent operations (specifically, the multiplications in line

59

19 and 20) require its operands to be in the NTT domain to exploit the speedup in

polynomial multiplication.

The application of the NTT to r results in r̂. This transformed version of r, i.e., r̂, is

in the NTT domain, which allows for efficient polynomial multiplications with other

polynomials in the NTT domain (like Â and t̂ in this case).

• Line 19, 20, 21, 22 & 23:

In the next phase of the encryption process, Bob calculates the vectors u and v.

The process begins with Bob performing a fast polynomial multiplication, which is ef-

fectively multiplication in the Number Theoretic Transform (NTT) domain, between

the matrix Â and the vector r̂. After this multiplication, Bob applies the Inverse Num-

ber Theoretic Transform (INTT) to the result to bring the data back into the coefficient

domain.

Once in the coefficient domain, Bob adds a noise vector e1 ∈ Rk
q drawn from the

distribution Bη2 to introduce some randomness. This forms the vector u, adding a

level of security to the encryption process.

Meanwhile, Bob computes v by multiplying t̂T with r, adding another noise term (e1

also from Bη1), and adding the decompressed message m. Consequently, the vector v

embeds the actual message m, masked within the noise and complexity of polynomial

arithmetic.

v ← NTT−1(t̂T ◦ r̂) + e2 + Decompressq(Decode1(m), 1) (4.7)

(v := tT · r+ e2 + Decompressq(m, 1)) (4.8)

60

Figure 4.7: Bob Generating the u and v [13].

Figure 4.6: How Does Bob Computes the polynomial v ∈ Rq [13]?

The overall of the Encryption Algorithm can be fut into a figure as follows.

Both u and v are then compressed and encoded, producing two components of the

ciphertext, c1 and c2. This compression reduces the size of these vectors of polyno-

mials and, consequently, the overall ciphertext size. The compression operation is

facilitated by the Compressq function, which converts elements in Zq into integers

within the range {0, . . . , 2d − 1}.

61

Finally, the ciphertext c is formed by concatenating c1 and c2. Bob sends c to Alice,

which represents the encrypted form of his message.

Algorithm 5 Kyber.CPAPKE.Enc(pk,m, r): encryption [14]

Input: Public key pk ∈ B12·k·n/8+32

Input: Message m ∈ B32

Input: Random coins r ∈ B32

Output: Ciphertext c ∈ Bdu·k·n/8+dv ·n/8

1: N ← 0

2: t̂← Decode12(pk)

3: ρ← pk + 12 · k · (n/8)
4: for i from 0 to k − 1 do ▷ Generate the matrix AT ∈ Rk×k

q in NTT domain

5: for j = 0 to k − 1 do

6: ÂT [i][j]← Parse(XOF(ρ, i, j))

7: end for

8: end for

9: for i = 0 to k − 1 do

10: r[i]← CBDη1(PRF(r,N)) ▷ Sample r ∈ Rk
q from Bη1

11: N ← N + 1

12: end for

13: for i = 0 to k − 1 do

14: e1[i]← CBDη2(PRF(r,N)) ▷ Generate the error vector e1 ∈ Rk
q from Bη2

15: N ← N + 1

16: end for

17: e2 ← CBDη2(PRF(r,N)) ▷ Generate the error polynomial e2 Rq

18: r̂← NTT(r) ▷ Perform NTT

19: u← NTT−1(ÂT ◦ r̂) + e1 ▷ u := AT · r+ e1

20: v ← NTT−1(t̂T ◦ r̂) + e2 + Decompressq(Decode1(m), 1) ▷

v := tT · r+ e2 + Decompressq(m, 1)

21: c1 ← Encodedu(Compressq(u, du)) ▷ Compress u

22: c2 ← Encodedv(Compressq(v, dv)) ▷ Compress v

23: c← (c1 ∥ c2) ▷ Concatenate c1 and c2

24: return c ▷ c← (Compressq(u, du),Compressq(v, dv))

62

4.5 Kyber.CPAPKE.Dec(c, sk)

Algorithm 6 Kyber.CPAPKE.Dec(c, sk): decryption [14]

Input: Secret key sk ∈ B12·k·n/8

Input: Ciphertext c ∈ Bdu·k·n/8+dv ·n/8

Output: Message m ∈ B32

1: u← Decompressq(Decodedu(c), du)

2: v ← Decompressq(Decodedv(c+ du · k · n/8), dv)
3: ŝ← Decode12(sk)

4: m← Encode1(Compressq(v − NTT−1(ŝT ◦ NTT(u)), 1)) ▷

m← Compressq(v − sTu, 1)

5: return m

Let us explain the algorithm line by line.

• Line 1 and 2:

Remember Lines 21 and 22 of Algorithm 5, where Bob compresses the vector of

polynomials u and the polynomial v into c1 and c2, respectively. These are the two

parts that are later concatenated into the ciphertext c.

c1 ← Encodedu(Compressq(u, du)) (Compress u)

c2 ← Encodedv(Compressq(v, dv)) (Compress v)

Thus, as these are compressed, Alice decompresses them into, again, u and v.

• Line 3:

In this step, Alice decodes the byte-array secret key as into, again, NTT domain poly-

nomial. This is necessary as in the Line 4, we need to perform an efficient polynomial

multiplication.

• Line 4:

This is where the decryption happens.

63

Figure 4.8: Decryption of Message m [13].

Let us see how the algorithm actually works.

Figure 4.9: Explanation of the Decryption Phase Done by Alice [13].

4.6 Kyber.CCAKEM.KeyGen()

Kyber.CCAKEM (IND-CCA2 [1]) is constructed from the IND-CPA-secure public-

key encryption scheme through Fujisaki-Okamoto [21] transform.

64

Algorithm 7 Kyber.CCAKEM.KeyGen()
Input: None

Output: Public key pk ∈ B12·k·n/8+32, secret key sk ∈ B24·k·n/8+96

1: z ← B32

2: (pk, sk′)← Kyber.CPAPKE.KeyGen() ▷ Generate public and secret keys

3: sk ← (sk′ ∥ pk ∥ H(pk) ∥ z) ▷ Concatenate and hash

4: return (pk, sk)

4.6.1 Length of the Secret and Public Keys

Given the Kyber.CCAKEM.KeyGen() algorithm, we can break down the lengths of

sk and pk as follows, considering the constructions from the CPAPKE.KeyGen()

algorithm and the subsequent concatenations:

• The secret key sk′ is a vector of k polynomials, each containing n coefficients.

Since each coefficient is represented modulo 3329, it is 12-bits long. Therefore,

the length of sk in bytes is:

Length of sk′ =
12 · k · n

8

• The public key pk remains the same as in Kyber.CPAPKE.KeyGen(), compris-

ing a vector of k polynomials each having n coefficients, along with a 32-byte

component, ρ. Thus, its length is:

Length of pk =

(
12 · k · n

8

)
+ 32

• The secret key sk in Kyber.CCAKEM.KeyGen(), denoted as sk′ in the algo-

rithm, is a concatenation of the original secret key from the CPA-secure Key-

Gen() algorithm, the public key pk, the hash of the public key H(pk), and a

32-byte string z. Given that H(pk) is instantiated with SHA3-256, it has a

fixed length of 32 bytes. Therefore, the length of sk is:

Length of sk =

(
12 · k · n

8

)
+

(
12 · k · n

8

)
+ 32 + 32 + 32

Length of sk =

(
24 · k · n

8

)
+ 96

65

In conclusion, these lengths ensure the incorporation of all necessary components

in sk and pk, providing sufficient information and security features required by the

Kyber.CCAKEM cryptographic scheme.

4.7 Kyber.CCAKEM.Encaps(pk,m, r)

Secondly, we have the encapsulation algorithm [1], which encapsulates the secret

message m ∈ B32 using the public key pk4 such that only the party who has posses-

sion of the corresponding secret key to decapsulate the message c← (c1 ∥ c2).

The message m is later used by both parties to drive an ephemeral session key K. In

general, emphemeral keys are not masked as decapsulation is performed using the

long-term secret key.

Algorithm 8 Kyber.CCAKEM.Enc(pk)

Input: Public key pk ∈ B12·k·n/8+32

Output: Ciphertext c ∈ Bdu·k·n/8+dv ·n/8, shared key K ∈ B∗

1: m← B32 ▷ Generate a random message m

2: m← H(m) ▷ Hash m

3: (K, r)← G(m ∥ H(pk)) ▷ Generate K and r

4: c← Kyber.CPAPKE.Enc(pk,m, r) ▷ Encrypt message m

5: K ← KDF(K ∥ H(c)) ▷ Derive shared key K

6: return (c,K)

Note that in the Support Document, the hash function H is instantiated with SHA3-

256 [1].

4.8 Kyber.CCAKEM.Enc(pk)

The algorithm Kyber.CCAKEM.Enc(pk) [1] is meticulously designed to achieve se-

cure key encapsulation, which is pivotal for resisting against various cryptographic

attacks, specifically, chosen-ciphertext attacks.
4 https://www.youtube.com/watch?v=R6lNR3ihVuU&t=363s

66

https://www.youtube.com/watch?v=R6lNR3ihVuU&t=363s

Algorithm 9 Kyber.CCAKEM.Enc(pk): encryption [1]

Input: Public key pk ∈ B12·k·n/8+32

Output: Ciphertext c ∈ Bdu·k·n/8+dv ·n/8, Shared key K ∈ B∗

1: m← B32

2: m← H(m)

3: (K̄, r) := G(m ∥ H(pk))

4: c := Kyber.CPAPKE.Enc(pk,m, r)

5: K := KDF(K̄ ∥ H(c))

6: return (c,K)

• The hashing of m using the SHA3-256 hash function ensures the generation

of a fixed-size, seemingly random string from the plaintext m, augmenting the

security by mitigating the risk of exposure of the original plaintext.

• The concatenation of m and H(pk) and the subsequent application of the func-

tion G facilitate the creation of K̄ and r, incorporating both the hashed plaintext

and the hashed public key, adding an additional layer of security and integrity

to the derived shared secret.

• The ciphertext c is encrypted using Kyber.CPAPKE.Enc, incorporating the pub-

lic key, plaintext, and the random value r, ensuring the encapsulation of the

secret.

• The Key Derivation Function (KDF) takes as input the concatenated K̄ and the

hash of the ciphertext c, processed using SHAKE-256, resulting in the final

session key K. This step is crucial as it ensures that the final session key K is

influenced by both the secret plaintext and the observed ciphertext, fortifying

the scheme against potential alterations by an attacker.

In this algorithm, K̄ is integral and serves as a blinded version of the shared secret.

The term "blinded" here implies that while K̄ is derived partly from a secret (the

plaintext m), it does not serve directly as the session key. This blinding is essential

for maintaining the secrecy of the session key K, even when some information about

K̄ is exposed.

67

Moreover, the verification of the integrity of the ciphertext is inherently built into

the decryption process. If an adversary tampers with the ciphertext c, the decryption

process will derive a different K̄ ′ and subsequently a different c′, invoking the fall-

back mechanism in the decapsulation process. This mechanism alerts the receiver to

the discrepancy, reinforcing the resilience of the algorithm against illicit modifica-

tions and chosen-ciphertext attacks. In essence, the intricate design of this algorithm,

the utilization of secure hash functions such as SHA3-256 and SHAKE-256, and the

meticulous construction of the keys K̄ and K underscore the robustness and security

provided by the Kyber.CCAKEM.Enc(pk) in the realm of post-quantum cryptogra-

phy.

4.9 Kyber.CCAKEM.Decaps(c, sk)

The Kyber.CCAKEM.Decaps(c, sk) algorithm is used to decapsulate the ciphertext c

using the long term secret key [1].

Kyber.CCAKEM.Decaps(c, sk) algorithm happened to be the Fujisaki-Okamoto trans-

form of the Kyber.CPAKEM.Dec(c, sk) algorithm to provide IND-CCA2 security.

The FO transformation ([21], [26]) needed for CRYSTALS-Kyber involves not only

utilizing Algorithms 4, 5, and 6 but also employing two distinct hash functions, H

(refer to Line 8) and G (refer to Line 5), along with a key derivation function (KDF).

Ones who want to learn more about these hash functions are encouraged to visit the

Kyber’s support document [1].

The core concept of this transformation is to verify the legitimacy of the output (ci-

phertext) of the Kyber.CPAPKE.Dec():

m′ ← Kyber.CPAPKE.Dec(s, (u, v)) (4.9)

At this point, reader might find the usage of the parameters (s, (u, v)) confusing, and

wonder why we didn’t use the notation (c := (c1, c2), sk) instead. The truth is that

the parameters (s, (u, v)) are actually coming from the Kyber.CPAPKE.Dec(c, sk)

68

algorithm presented in Algorithm 6.

u← Decompressq(Decodedu(c), du) (4.10)

v ← Decompressq(Decodedv(c+ du · k · n/8), dv) (4.11)

ŝ← Decode12(sk) (4.12)

This FO transformation involves the re-encrpypting (Refer to the Line 6) the output of

the Kyber.CPAPKE.Dec(s, (u, v)) Algorithm (Refer to the Line 4). In Algorithm 11,

a candidate ciphertext c′ is generated through running the Kyber.CPA.Enc(pk,m′, r′)

Algorithm (refer to Line 6), and then compared to the public (and input) ciphertext c

(refer to Line 7) that we actually started with. Since the Kyber.CPAPKE.Dec() and

Kyber.CPAPKE.Enc() algorithms are deterministic, if there is no adversary corrupts

the message m, then c = c′.

This aims to identify and prevent any maliciously created ciphertexts that might be

used to expose the secret key.

Algorithm 10 Kyber.CPAPKE.Dec(c, sk): decryption [1]

Input: Secret key sk ∈ B12·k·n/8

Input: Ciphertext c ∈ Bdu·k·n/8+dv ·n/8

Output: Message m ∈ B32

1: u← Decompressq(Decodedu(c), du)

2: v ← Decompressq(Decodedv(c+ du · k · n/8), dv)
3: ŝ← Decode12(sk)

4: m← Encode1(Compressq(v − NTT−1(ŝT ◦ NTT(u)), 1)) ▷

m← Compressq(v − sTu, 1)

5: return m

Below, you will see the Kyber.CCAPKE.Decaps(c, sk) algorithm that is transformed

from Kyber.CPAPKE.Dec(c, sk) using the FO transform.

69

Algorithm 11 Kyber.CCAKEM.Decaps(c, sk): decryption [1]

Input: Ciphertext c ∈ Bdu·k·n/8+dv ·n/8

Input: Secret key sk ∈ B24·k·n/8+96

Output: Shared ephemeral key K ∈ B∗

1: pk ← sk + 12 · k · n/8
2: h← sk + 24 · k · n/8 + 32 ∈ B32

3: z ← sk + 24 · k · n/8 + 64

4: m′ ← Kyber.CPAPKE.Dec(s, (u, v))

5: (K
′
, r′)← G(m′||h)

6: c′ ← Kyber.CPAPKE.Enc(pk,m′, r′)

7: if c = c′ then

8: K ← KDF(K
′||H(c))

9: else

10: K ← KDF(z||H(c))

11: end if

12: return K

The essence of CCA security is then manifested in the comparison between c and c′.

If they match, the algorithm perceives the ciphertext as valid, deriving the shared key

K from the blinded key K
′

and the hash of c. In cases of mismatch, indicative of

potential tampering or incorrect generation of the received ciphertext c, the algorithm

reverts to a secure fallback mechanism, utilizing the random value z to derive the

session key K.

This comparison method reinforces the security by validating the encryption and de-

cryption symmetry of the provided ciphertext c, without exposing any insights into

the decryption processes or the internal states, even in instances of discrepancies. The

return of a key derived from a random value z in such cases assures the prevention of

information leakage, integral for maintaining CCA security.

70

4.9.1 Explanation of the Length of Certain Algorithmic Components

Recall, in the CCA-secure KeyGen() algorithm, the secret key sk was constructed as

follows:

sk ← (sk′ ∥ pk ∥ H(pk) ∥ z)

Where sk′ was derived from the CPA-secure KeyGen() and represented as:

sk′ ← Encode12(ŝ mod q)

The length of sk′ is 12·k·n
8

and the cumulative length of sk is as follows:

|sk| = (24 · k · n) /8 + 96

Consider sk as a book segmented into four chapters:

• Chapter 1: sk′ ∈ B 12·k·n
8

• Chapter 2: pk ∈ B 12·k·n
8

+32

• Chapter 3: H(pk) ∈ B32

• Chapter 4: z ∈ B32

Acquiring pk via pk ← sk+12·k·n/8 is analogous to opening the book and bypassing

the first chapter, pointing directly to the beginning of pk in the concatenated string:

Figure 4.10: Reading the pk from sk

• pk ← sk + 12 · k · n/8

The next steps, represented by reading through chapters, illustrate the extraction of

H(pk) = h.

Figure 4.11: Reading the H(pk) from sk

71

• h← sk + 24 · k · n/8 + 32 ∈ B32

– The length of sk′: (12× k × n)/8

– The length of pk: (12× k × n)/8 + 32

– The length of sk′ + pk: (24× k × n)/8 + 32

The z from the composed string sk, highlighting the consecutive composition of the

string components.

Figure 4.12: Reading the z from sk

• z ← sk + 24 · k · n/8 + 64

– The length of sk′: (12× k × n)/8

– The length of pk: (12× k × n)/8 + 32

– The length of H(pk): 32

– The length of sk′ + pk +H(pk) : (24× k × n)/8 + 64

4.9.2 Leakage Risk Point of the Algorithm

Now, let us turn our focus to the Kyber.CCAKEM.Decaps(c, sk) algorithm to learn

the steps that are sensitive and requires to be masked to avoid any side-channel leak-

age. On the left, we have the inputs ciphertext c and secret key s. Note that ciphertext

c is the encapsulated secret message m (refer to Line 23). On the right, we derive a

shared ephemeral session key K.

72

Figure 4.13: Fujisaki-Okamoto Transform for Kyber Key Encapsulation Mechanism
(KEM)

Notice that m′ ← Kyber.CPAPKE.Dec(s, (u, v)) is getting re-encrypted using the

fully-deterministic encryption algorithm 5. This encryption process results in a ci-

phertext c′. This ciphertext c′ gets compared with the original ciphertext c that we

have actually started with.

If these two ciphertexts are equivalent (c = c′), then the Key Derivation Function

(KDF) will leverage the hash function H on the secret key-dependent variable K
′

as the output of (K
′
, r′)← G(m′||h).

Figure 4.14: K
′
as a Secret Key Dependent Value

If (c ̸= c′), then a random static number z ← sk + 24 · k · n/8 + 64 is used to drive

the key K ← KDF(z||H(c)).

Note that every component or step given in pink in the Figure 4.13 should be masked

to some degree. The special case here is that we do not have to mask the K
′5 at the

5 Authors put this into different words, "being able to unmask this K
′

[14].

73

moment we realize that (c = c′). In addition, we do not have to mask the comparison

result, whether (c = c′) as it is either 0 or 1.

The central subject of this thesis is the compression function employed within Ky-

ber.CPAPKE.Dec(). Given that this function directly process the secret key as an

input, it presents a substantial risk of being vulnerable to side-channel attacks. There-

fore, the very next section delves more intricately into the segments of CRYSTALS-

Kyber that necessitate masking. We will discuss the deficiencies in the attention ac-

corded to the masking of the Compressq function and the inadequacies inherent in

existing methodologies given Kyber’s choice of prime modulo. Additionally, we will

explore how the bit-slided binary search method [14] elegantly addresses the prevail-

ing issues.

74

CHAPTER 5

DEEP DIVE INTO THE HIGHER-ORDER ONE-BIT

COMPRESSION ALGORITHM

In this chapter we will discuss the "Higher-Order One-Bit Compression" algorithm

proposed by [14]. This chapter does not introduce anything new to the algorithm

itself, but rather provides a detailed explanation. The significance of this algorithm

lies in its novelty. Even though there have been numerous masked implementations

for the functions depicted in Figure 5.1, there were no masked implementations for

the Compressq function (the green box in the Fig. 5.1) prior to this study.

5.1 Introduction to the Algorithm

The algorithm that will be the focus of this chapter is shown in Figure 5.1, specifically,

the green box (Compressq) presented on the right.

Figure 5.1: Kyber.CCAKEM.Decaps() in Detail, Updated from [14].

Earlier, we provided explicit definitions for the Compressq and Decompressq func-

tions used in CRYSTAL-Kyber (refer to Definition 4.2.5). These functions are applied

to a polynomial x ∈ Rq and a vector of polynomials x ∈ Rk
q , with compression or

75

decompression operations being applied to each coefficient individually [1]. Every

coefficient of a polynomial in Kyber is taken from the coefficient domain [0, q − 1].

Finally, the reader must understand that when we talk about compressing x, we mean

compressing each coefficient of each polynomial in the corresponding array of poly-

nomials into a bit-string.

Algorithm 12 Kyber.CPAPKE.Dec(c, sk): decryption [1]

Input: Secret key sk ∈ B12·k·n/8

Input: Ciphertext c ∈ Bdu·k·n/8+dv ·n/8

Output: Message m ∈ B32

1: u← Decompressq(Decodedu(c), du)

2: v ← Decompressq(Decodedv(c+ du · k · n/8), dv)
3: ŝ← Decode12(sk)

4: m← Encode1(Compressq(v − NTT−1(ŝT ◦ NTT(u)), 1)) ▷

Final Result: m← Compressq(v − sTu, 1)

5: return m

The Higher-Order One-Bit Compression algorithm is designed to compression

function that takes place in Kyber.CPAPKE.Dec (refer to Line 4 in Alg. 12). In

this process, each coefficient of the resulting polynomial v − sTu, falling within the

range [0, q − 1], is compressed via the Compressq function into a single bit, either 1

or 01. This approach lends the algorithm its name, 1-bit compression.

However, before we proceed any further, it is imperative to define what high-order

signifies. Higher-order implies that a single coefficient must be divided into more

than two shares (first-order masking). Consequently, in implementations utilizing

higher-order masking, an attacker would need to access more than one intermediate

point (multiple points) related to a sensitive value (e.g., a coefficient) to bypass the

algorithm’s protective measures.

For the sake of simplification, let us say that we have a sensitive value x ∈ Zq such

that it has been divided into ns arithmetical shares (n-tuple) to be processes by various

steps (through multiple gadgets) in a cryptographical algorithm. The resulting ns-

1 The quantity v − sT u is decrypted to 1 if it is closer to ⌈q/2⌋ than to 0. Otherwise, it is decrypted to 0.

76

tuple can be denoted as x(·) [14].

Let us denote x as the arithmetic summation of ns secrets as follows.

x ≡ x(0) + x(1) + x(2) + · · ·+ x(ns−1) mod q.

In that case, if an adversary somehow gains access to t shares such at t > 1, in that

case it means that adversary can leverage a higher-order attack.

Now, we need to explain why the algorithm is called ’1-bit compression’. This is

because each coefficient in a polynomial a ∈ Zq=3329[X](X256 + 1), as a polynomial

in CRYSTAL-Kyber [13], contains 256 coefficients taken from Zq and is compressed

into a single bit for the sake of efficiency. In other words, when this algorithm oper-

ates on a polynomial a from Rq, the output is a message with a string length of 256

bits, which can be denoted as follows: m ∈ Z2256 . This message, denoted as m′,

is subsequently re-encrypted by the Kyber.CCAKEM.Decaps() algorithm, generating

the ciphertext c′, which is then compared with the public ciphertext c to ascertain

whether any alterations have occurred during decryption.

As we keep saying "compression", it is time for is introduce the unmasked compres-

sion method used in Kyber.CPAPKE.Dec() algorithm [13].

Figure 5.2: 1-Bit Conversion [14]

5.2 Unmasked Compression in Kyber.CPAPKE.Dec() Algorithm

The primary purpose and rationale of the Compressq and Decompressq functions in

CRYSTALS-Kyber [13] is to discard some low-order bits in ciphertext, minimizing

77

its size without substantially compromising the security of the scheme (as eliminating

low-order bits doesn’t notably impact the decryption algorithm’s correctness proba-

bility) [1].

This is because the most significant bits (MSB) of the polynomial coefficients are

the most important bits for determining the correctness of the decryption. The least

significant bits, on the other hand, are less important and can be discarded without

significantly affecting the security.

In Kyber.CPAPKE.Dec() algorithm [13], the Compressq function works by taking the

domain of each polynomial coefficient, which is the set of all integers between 0

and q (i.e, [0, q − 1]), and splitting it into two disjoint intervals.

Figure 5.3: Two Disjoint Interval to Compress a Polynomial Coefficient into a Single
Bit [15]

The compression function then assigns a value to each coefficient, depending on

which interval it falls into. For coefficients in the interval of [q
4
, 3q

4
] (the one coloured

in pink in the Figure 5.3), the compression function assigns the value 1. For coeffi-

cients in the second interval [0, q
4
] and [3q

4
, q] (the ones coloured in blue in the Figure

5.3), the compression function assigns the value 0.

Compressq(x, 1) = ⌈(2/q) · x⌋ mod 2 =

1, if q
4
< x < 3q

4
,

0, otherwise.
(5.1)

The Compressq(x, d = 1) takes the element x such that x ∈ Zq and gives an integer

in {0, . . . 2d − 1} as an output such that d < ⌈log2(q)⌉. Hence, the output of the

Compressq(x, 1) function will either be 0 or 1.

Notice that a coefficient x is divided by q and rounded to the closest integer. This is

quite hard to mask as we do not have a masked rounding and masked division oper-

ations [14]. Hence, it becomes evident that we need to come up with some adaptive

and different approaches to mask this function.

78

5.2.1 Toy Example for Unmasked Compression Function

In this section, we will present a toy example of the unmasked compression function,

where q = 11. This creates a coefficient domain with numbers ranging from 0 to

q− 1. Using Eq. (5.1), we will demonstrate into which interval each coefficient falls,

or in other words, how it is compressed.

Figure 5.4: Toy Example for Unmasked Compression Function of CRYSTALS-Kyber
.

• Compressq(1, 1) = ⌈2·111 = 0.18⌋ = 0 ≡ 0 mod 2

• Compressq(2, 1) = ⌈2·211 = 0.36⌋ = 0 ≡ 0 mod 2

• Compressq(3, 1) = ⌈2·311 = 0.54⌋ = 1 ≡ 1 mod 2

• Compressq(4, 1) = ⌈2·411 = 0.72⌋ = 1 ≡ 1 mod 2

• Compressq(5, 1) = ⌈2·511 = 10
11

= 0.90⌋ = 1 ≡ 1 mod 2

• Compressq(6, 1) = ⌈2·611 = 12
11

= 1, 09⌋ = 1 ≡ 1 mod 2

• Compressq(7, 1) = ⌈2·711 = 14
11

= 1, 27⌋ = 1 ≡ 1 mod 2

• Compressq(8, 1) = ⌈2·811 = 18
11

= 1, 45⌋ = 1 ≡ 1 mod 2

• Compressq(9, 1) = ⌈2·911 = 18
11

= 1, 63⌋ = 2 ≡ 0 mod 2

• Compressq(10, 1) = ⌈2·1011
= 20

11
= 1, 81⌋ = 2 ≡ 0 mod 2

5.3 Trivial Masking Approach for Algorithms that Uses Power-of-Two Modulo

Like Saber

In the trivial approach for masking with modulo 2k, the coefficient domain is shifted

by a certain offset to create a new interval with two equal intervals. This is done by

adding ⌊ q
4
⌋ to the polynomial coefficient.

79

This results in a new shifted compression function that determines whether the coef-

ficient will be 0 or 1:

Compresssq(x) :=

0, if x < q
2
,

1, otherwise.
(5.2)

Compressq(x, 1) = Compresssq(x+ ⌊q
4
⌋ mod q) (5.3)

Figure 5.5: Shifting the Polynomial Coefficient with Certain Offset to Mask It [14]

Unlike CRYSTAL-Kyber, many other post quantum (PQC) algorithms like Saber

uses a modulo q such that q = 2k. And for algorithms like Saber, this naive shifting

method can be efficiently implemented.

This is because, the Most Significant Bit of the sensitive coefficient x will be a great

indicator to tell whether the coefficient will fall into the first half of the interval,

MSB(x) = 0 in the case where x < q
2
.

Figure 5.6: Saber (q = 2k), Shifted Compresssq Function [14]

Given that modulo q = 2k, its most significant bit (MSB) will have a value of

2⌈log2(q)⌉−1 = 2k−1. Moreover, q
2
= 2k

2
= 2k−1. As a result, the ability of the in-

terval to be divided into two disjoint intervals of equal spacing by the MSB helps us

determine whether a share x ∈ Zq is greater than or equal to ⌊ q
2
⌋.

Unfortunately, in Kyber, where the module is prime q = 3329, the interval space is

not equally divided by specific bits as in Saber. The MSB in Kyber has a specific

offset (348) from (348) over q
2

as it is given in the figure below [15]:

80

Figure 5.7: Offset Between the MSB and q
2

[14]

Thus, the most significant bit (MSB) approach does not work for the Kyber.

The reason for this offset is that CRYSTAL-Kyber uses q = 3329. Here, we see that

the value of the MSB (211) corresponds to the "2048" in the coefficient domain.

= 2⌈log2(q)⌉−1

= 2⌈log2(3329)⌉−1

= 2⌈11.7⌉−1

= 212−1

= 211

= 2048

However,

⌊q/2⌋ =

⌊3329/2⌋ =

⌊1664.5⌋ =

1664

So, there is a certain offset value, 2048 − 1664 = 348. Because the interval is not

divided into equal parts as in Saber, the MSB approach cannot be directly applied to

CRYSTALS-Kyber and thus necessitates an update.

81

5.4 Higher-Order One-Bit Compression

As previously emphasized, CRYSTALS-Kyber, in contrast to other PQC schemes

like Saber, employs a prime modulo q, where the latter utilizes a 2k modulo. While

the unmasked compression function in Kyber may seem straightforward, introducing

masking brings about substantial overhead and integrity challenges, particularly when

current methods are applied to mask the compression function.

To overcome this overhead, the authors [14] introduce a novel approach for handling

arbitrary modulo q, including both prime and non-prime ones (such as power-of-two

modulo). This approach offers several advantages over existing methods, particularly

when compared to the approach presented in [38]. Notably, the proposed algorithm

reduces the number of conversions required per coefficient to just one, specifically the

Arithmetic-to-Boolean (A2B) conversion. The significance of this improvement lies

in the efficiency and speed of the algorithm. By minimizing the number of conver-

sions, the computational overhead is reduced, leading to faster execution times.

In this method, the authors has introduced a masking method that leverages a bit-

sliced binary search algorithm. In order to implement a masked compression func-

tion, authors first take the coefficients of a polynomial that needs to be compressed.

For instance, let us say that we have a polynomial a ∈ Zq[X]. As I mentioned above,

a polynomial in CRYSTAL-Kyber has (n = 256) coefficients where each of these

coefficients can be denoted as ai for i = {0, · · · 255} such that

a ≡ a0 + a1X + a2X
2 + ...+ a(255) ∗X255 mod q.

In the proposed algorithm [14], authors split a sensitive value (in this case, a polyno-

mial coefficient that needs to be masked) into ns shares. In other words, a coefficient

ai ∈ Zq is split into ns-tuple where each share is also in Zq. These shares can be split

arithmetically or in a Boolean format when necessary.

For instance, the ns-tuple arithmetic share representation of a value a ∈ Zq is ex-

pressed as

a(·)A = (a(0)A , · · · a(ns−1)A),

which comprises ns arithmetic shares a(i)A with 0 ≤ i < ns. The coefficient a can be

82

written as follows:

a ≡ a(0)A + a(1)A + · · ·+ a(ns−1)A mod q.

In the Boolean case, the ns-tuple representation of a secret coefficient a ∈ Z2
q can be

denoted as

a(·)B = (a(0)B , · · · a(ns−1)B),

which comprises ns Boolean shares a(i)B with 0 ≤ i < ns. This can be written as

follows:

a = a(0)B
⊕

a(1)B +
⊕

+ · · ·
⊕

a(ns−1)B

Now, let’s go back to the algorithm [14]. Having splitting it into ns shares, the algo-

rithm [14] shifts each arithmetic share of the secret coefficient by a certain offset.

(adding an offset ⌊ q
4
= 832⌋ in mod q to each share of a(·)Ai).

The Compresssq(x) function that shifts each coefficient is given below.

Compresssq(x) :=

0, if x < q
2
,

1, otherwise.
(5.4)

Compressq(x, 1) = Compresssq(x+ ⌊q
4
⌋ mod q) (5.5)

Next, having each share (ns) of the secret coefficient shifted by a certain offset, we

apply an Arithmetic-to-Boolean (A2B) conversion to create 12-bit length ns Boolean

shares for the coefficient. The reason why the conversion output is 12-bit length long

is given below.

k = ⌈log2(q)⌉

= ⌈log2(3329)⌉

≈ ⌈11.7067⌉

= 12

Now that we have the Boolean-shares, the algorithm performs a Bitslicing on the

ns-tuple of a Boolean-shared a
(·)B
i bits. In other words, since a

(·)B
i consists of 12-bit

length ns shares, the algorithm slices a(·)Bi into 12 bits.

(a11, a10, a9, a8, a7, a6, a5, a4, a3, a2, a1, a0)2.

83

Here, while a11 is the most significant bit (MSB), a0 is the least significant one (LSB).

Bitslicing process is done to perform an efficient binary search algorithm.

Below, we provide the exact pseudo-code taken from [14]. However, we would like to

address a potential point of confusion in the notation first. From the initial three lines,

a meticulous reader may discern that the for-loop is running 256 times, given that a

polynomial in Rq = Zq[X](X256 + 1) has 256 coefficients. The oddity arises next. It

seems as if the algorithm performs a shifting operation only on the first share (a
(0)A
i)

of each coefficient. It’s important to clarify that this shifting operation is not limited to

the first coefficient share, but is applied to all of them. Additionally, in the main article

[14], the authors state that this shifting operation is not performed iteratively, but

rather in parallel. In other words, it is carried out simultaneously for each coefficient

of a polynomial. The same very thing applies to vectors of polynomials, too.

Algorithm 13 Masked Compress(x, 1) = Compresssq(x+ ⌊ q
4
⌋ mod q)

Input: An arithmetic sharing a(·)A of a polynomial a ∈ Zq[X].

Output: A Boolean sharing m′(·)B of the message m′ = Compressq(a, 1) ∈ Z2256.

1: for i = 0 to 255 do

2: a
(0)A
i ← a

(0)A
i + ⌊ q

4
⌋ mod q) ▷ G1

3: a
(·)B
i ← Arithmetic-to-Boolean(a(·)Ai) ▷ G2

4: end for

5: x(·)B ← Bitslice(a(·)B) ▷ G3

6: m′(·)B ← SecAND(SecREF(¬x(·)B
8), x

(·)B
7)) ▷ G4 : NOT, G5&G6

7: m′(·)B ← SecREF(SecXOR(m′(·)B , x
(·)B
8)) ▷ G7 : SecXOR, G8 : SecREF

8: m′(·)B ← SecAND(m′(·)B , x
(·)B
9) ▷ G9

9: m′(·)B ← SecAND(m′(·)B , x
(·)B
10) ▷ G10

10: m′(·)B ← SecAND(m′(·)B ,¬x(·)B
11) ▷ G11 : NOT, G12 : SecAND

11: m′(·)B ← SecXOR(m′(·)B , x
(·)B
11) ▷ G13

12: return m′(·)B

Now, we are going to examine the cases that proves why this masked compression

function actually works. There are five cases that we are going to study.

84

5.4.1 The Case 1: Where the First Bit is Set to 1 (x11 = 1)

In the Figure 5.8, we see the bits that are set and make up the sensitive value x.

Figure 5.8: Bitslicing the Sensitive Coefficient x [14]

If we see that the eleventh bit is set (x11 = 1),

2MSB = 2k−1 = 211 = 2048 >
q

2
≃ 1664,

we directly say that the coefficient will be compressed to 1. In other words, we are
sure that the coefficient will be in the particular interval given below:

Figure 5.9: When the Most Significant Bit Is Set to 1 [14]

Figure 5.10: An example, where a coefficient x is (110001110100)2. This coefficient
x ∈ [0, q − 1] is directly compressed to 1 [14].

Hence, first part of our formula starts to build up:

85

Compresssq(x) = x11 ⊕ (¬x11 · (. . .))

This is because if the 11th bit is set, it means that x11 = 1. Consequently, ”1 ⊕
anything” will result in the output of the Compresssq(x) function being 1. Otherwise,

if x11 = 0, we need to examine the other bits. Note how the second part begins by

negating the 11th bit to make it 1.

5.4.2 The Case 2: Where (x11 = 0, x10 = 0)

In the second case, the 11th and 10th bits might be set to 0. Notice no matter how rest

of the bits are set to 1, if 11th and 10th bit are set to 0,

(001111111111)2 = (1023)10 <
q

2
≃ 1664,

the coefficient is doomed to be compressed to 0.

If the x11 = 0 but x10 = 1, we can look for the remaining bits. Hence, the formula

for the Compresssq(x) functions continues to build up.

Compresssq(x) = x11 ⊕ (¬x11 · x10 · (. . .))

5.4.3 The Case 3: Where (x11 = 0, x10 = 1, x9 = 0)

In the case of where 11th and 9th bits are not set, but the 10th bit is set, again, the

compression is doomed to be compressed to 0. The reason is that even in the best

scenario,

(010111111111)2 = (1535)10 <
q

2
≃ 1664,

the value of the coefficient is less then q
2
.

If 10th and 9th bit are set, then we can continue looking at remaining bits. Hence, the

formula for the Compresssq(x) functions continues to build up.

86

Compresssq(x) = x11 ⊕ (¬x11 · x10 · x9 · (. . .))

The reason why we keep implying the need for looking at remaining bits is that even

if it is case of (x11 = 0, x10 = 1, x9 = 1), as long as the remaining bits are not set

accordingly, the coefficient can still be compressed to 0.

For instance,

(011000000000)2 = (1536)10 <
q

2
≃ 1664,

gets compressed to 0.

5.4.4 The Case 4: Where (x11 = 0, x10 = 1, x9 = 1, x8 = 1)

In another case, the 11th bit may not be set, but the 10th, 9th, and 8th bits may be set

(x11 = 0, x10 = 1, x9 = 1, x8 = 1).

This particular case implies that the coefficient will be approximately compressed to

an interval given below, which implies to be 1.

Figure 5.11: An Example Coefficient Compressed to 1

It because, even the worst case, where only the 10th, 9th and 8th bits are set, the value

of the share is still bigger than q
2
≃ 1664.

(011100000000)2 = (1792)10

Thus, the Compresssq(x) becomes the following.

Compresssq(x) = x11 ⊕ (¬x11 · x10 · x9 · (x8 ⊕ (¬x8 · (. . .))))

If 8th bit is not set but 10th and 9th bits are set, then we need to look for the 7th bit.

87

5.4.5 The Case 5: Where (x10 = 1, x9 = 1, x8 = 0, x7 = 1)

Let’s look at another example where the 10th, 9th and 7th bits are set to 1. In this

case,

210 + 29 + 27 = 1664 = ⌊q
2
⌋,

the coefficient x should be compressed to 1.

So, the Compresssq(x) becomes the following.

Compresssq(x) = x11 ⊕ (¬x11 · x10 · x9 · (x8 ⊕ (¬x8 · x7))) (5.6)

What we need to understand from these five cases is that when the Most Significant

Bit (MSB) is not set to 1, we need to account the remaining bits. We repeat this

process until each coefficient (of the polynomial being compressed) is mapped to a

single bit: {0, 1}.

Figure 5.12: Compression: Mapping Each Coefficient to a Single Bit. [14]

As the reader might have noticed, in the case of Kyber, where ⌊ q
2
⌋ = 1664, only the

bits 11th, 10th, 9th, 8th and 7th are taken into consideration. Hence, the Compresssq
computation is performed as given in Eq. (5.6).

If x11 = 1, then 211 > 1664, and the coefficient should be compressed to 1. In this

case, the remaining bits are irrelevant, and the function directly maps the coefficient

to 1.

If x11 = 0, we need to consider the remaining bits to determine if the coefficient is

greater than or equal to 1664:

• If x10 = 1 and x9 = 1, then the coefficient is in the range [1536, 2048). Further

analysis of x8 and x7 is required:

88

– If x8 = 1, the coefficient is in the range [1664, 2048) and should be

compressed to 1, regardless of the value of x7.

– If x8 = 0 and x7 = 1, the coefficient is exactly 1664, and it should be

compressed to 1.

• In all other cases (where x10 = 0, x9 = 0), the coefficient is less than 1664, and

it should be compressed to 0.

Now let’s break down the equation 5.6:

• x11: If the 11th bit is 1, the coefficient is already greater than 1664, and the

output is 1.

• ¬x11 · x10 · x9: This term checks if the first three bits are 011. If true, we need

to consider the values of x8 and x7 to determine if the coefficient is greater than

or equal to 1664.

• (x8 ⊕ (¬x8 · x7)): This term evaluates to 1 if either x8 = 1 or x8 = 0 and

x7 = 1. Otherwise, it evaluates to 0.

Therefore, the Compress(x, 1) = Compresssq(x+ ⌊
q
4
⌋ mod q) function is designed to

map the coefficient to 1 if its value is greater than or equal to 1664, and 0 otherwise,

using the conditions we analyzed.

To optimize both security and efficiency of a masked implementation of the compres-

sion function (Compressq(x, 1)), it is essential to address several key components.

• First, standard operations should be replaced with their secure counterparts,

namely SecXOR and SecAND, to ensure robust protection.

• Second, by transforming Boolean shares of the polynomial into a bit-sliced

representation, parallel computation of all coefficients becomes possible, en-

hancing the efficiency based on the target platform’s word size. Moreover, the

utilization of t-SNI secure conversion and t-NI computation for masked bitwise

operations, such as A2B, SecAND, and SecREF, further bolsters security. (In

the upcoming sections, we will introduce the t-NI and t-SNI security notions

and will prove that the Algorithm 13 is in fact t-SNI secure.)

89

• The adaptability of the masked compression algorithm (13) allows for the inte-

gration of various algorithms that fulfill the required properties, such as those

proposed in ([23], [5], and [52]). Additionally, the implementation accounts

for platform-specific capabilities, using sequences of bitshift, bitwise OR, and

bitwise AND operations to rearrange bits share by share, making it highly ver-

satile and suitable for different platforms.

5.5 Probing Security of the Algorithm 13

As stressed before, masking is a countermeasure technique used to mitigate side-

channel attacks by breaking down a sensitive variable into multiple shares. In the

context of "Side-Channel Notation and Notions" presented in (Bos et al., 2021, p.

5) [14], a sensitive variable x ∈ Zq is divided into ns shares, denoted as x ≡
x(0)A +x(1)A + · · ·+x(ns−1)A mod q (referred to as arithmetic shares). These shares

collectively form the ns-tuple x(·)A .

The purpose of this sharing is to enable secure processing of the sensitive variable

by the underlying circuit. (We will present the underlying circuit for the Algorithm

13 in this section. See the Figure 5.13). By representing x as shares, computations

involving x can be performed on the individual shares, reducing the exposure of the

sensitive information.

To ascertain the security of these shared implementations in a comprehensive manner,

we need to refer to the t-probing model, a crucial theoretical construct introduced in

2003 [27].

The t-probing model in cryptography represents an adversary with access to up to

t intermediate variables in the system. This model is essential for evaluating the

security of masked circuits against side-channel attacks, where the goal is to ensure

that any combination of t variables within the circuit does not reveal information

about the secret. The objective is to protect the secret data even when the attacker can

probe t variables.

Proving the security of individual functions or gadgets against probing attacks is a

90

necessary first step. However, when considering compositions of multiple gadgets,

especially at higher orders (t > 1), the security analysis becomes more challenging.

In higher-order scenarios, an attacker can obtain information about more than one

intermediate value at a time, requiring a comprehensive evaluation of the combined

effects of multiple gadgets or functions within the cryptographic algorithm. As the

order t increases, the attacker becomes more powerful, necessitating more complex

security analyses.

To address the security of constructions involving multiple gadgets and higher-order

attacks, authors [14] have relied on the principles of t-Non-Interference (t-NI) and

t-Strong-Non-Interference (t-SNI).

5.5.1 Gadgets: The Fundamental Units in Cryptographic Systems

Before discussing t-probing security, we need to define a fundamental term: the gad-

get. Within the scope of masking and side-channel analysis, a gadget refers to a basic

building block or a small sub-circuit in a larger cryptographic system. Each gadget

is an individual function or operation (e.g., addition, multiplication, or bitwise oper-

ations) that accomplishes a specific task. The combined workings of these gadgets

form the complete cryptographic circuit.

5.5.2 Gadgets Employed in the Higher-Order One-Bit Compression Algorithm

13

In this subsection, we will list the gadgets used in the Algorithm 13. Note that the
Figure 5.13 is directly taken from the [14].

91

Figure 5.13: Gadgets in the Algorithm 13 in [14].

• G1 (t-NI)2: Refers to the subtraction operation in the Line 2. The gadget G1

subtracts a certain offset value ⌊ q
4
⌋ mod q from each share of a(i)A . Remember

this is where the actual shifting (masking) operation happens.

• G2 (t-SNI)3: Refers to the Arithmetic-to-Boolean (A2B) conversion in the Line

3. This gadget converts the arithmetic shares (there are ns of them) a(·)Ai into

Boolean shares a
(·)B
i using the A2B conversion. In arithmetical format, a(·)Ai

can be shown as the following,

ai ≡ a
(0)A
i + a

(1)A
i + a

(2)A
i + · · ·+ a

(ns−1)A
i mod q

a
(·)A
i = (a(0), a(1), a(2), · · · , a(ns−1))

where each arithmetical share is in Z2k . In the Boolean format, a(·)Bi can be

shown as the following:

a
(·)B
i = a

(0)A
i ⊕ a

(1)A
i ⊕ a

(2)A
i ⊕ · · · ⊕ a

(ns−1)A
i

a
(·)B
i = (a(0), a(1), a(2), · · · , a(ns−1))

where each Boolean share is in Z2k

• G3 (NI): Refers to the Bitslicing process in the Line 5. This gadget slices the

Boolean shares a(·)Bi , each consisting of 12 bits, into 12 separate bits.

• G4 (NI): Refers to the "not" operation in the Line 6. This gadget performs the

logical negation (NOT) operation on the shares of x(·)B
8 .

2 NI AND SNI notions will be introduce in this section.
3 Note that the gadgets that hold the t-SNI property are shown with a bold perimeter in the Figure 5.13

92

• G5 (SNI): Refers to the SecREF in the Line 6. This gadget refreshes the secret

shares of x(·)B
7 to prevent information leakage.

• G6 (SNI): Refers to the SecAND in the Line 6. This gadget applies the secret

sharing operation (SecAND) to the shares of x(·)B
7 and the refreshed shares of

x
(·)B
8 .

• G7 (NI): Refers to the SecXOR in the Line 7. This gadget performs the secret

sharing operation (SecXOR) on the shares of m′(·)B and x
(·)B
8 .

• G8 (SNI): Refers to the SecREF in Line 7. This gadget refreshes the secret

shares of m′(·)B to protect against information leakage.

• G9 (SNI): Refers to the SecAND in Line 8. This gadget applies the secret

sharing operation (SecAND) to the shares of m′(·)B and x
(·)B
9 .

• G10 (SNI): Refers to the SecAND in Line 9. This gadget applies the secret

sharing operation (SecAND) to the shares of m′(·)B and x
(·)B
10 .

• G11 (NI): Refers to the "not" in Line 10. This gadget performs the logical

negation (NOT) operation on the shares of x(·)B
11 .

• G12 (SNI): Refers to the SecAND in Line 10. This gadget applies the secret

sharing operation (SecAND) to the shares of m′(·)B and the negated shares of

x
(·)B
11 .

• G13 (NI): Refers to the SecXOR in Line 10. This gadget performs the secret

sharing operation (SecXOR) on the shares of m′(·)B and the shares of the result

of the previous operation.

5.5.3 t-SNI Security of the Algorithm 13

In the article (Bos et al., 2021), Theorem 1 establishes the t-SNI security property of

Algorithm 13 with ns = t+ 1.

In the case where a(·)A represents the input and m′(·)B represents the output of Algo-

rithm 13, Theorem 1 states that for any given set of tA1 intermediate variables and any

subset O ⊂ [0, ns − 1] of the output variables, where the sum of the cardinality of O

93

and tA1 is less than the total number of shares ns (i.e., tA1 + |O| < ns), there exists a

subset I ⊂ [0, ns−1] of input shares. This subset I , with a cardinality no greater than

tA1 (i.e., |I| ≤ tA1), enables the perfect simulation of the tA1 intermediate variables

and the output variables m′(O)B using the corresponding input shares a(I)A .

In other words, by considering a carefully chosen subset of the input shares (I ≤ tA1),

it is possible to perfectly emulate the behavior of the intermediate variables and the

desired output, ensuring that the algorithm’s execution remains secure against probing

attacks.

5.5.4 Proof of the Theorem 1 [14]

Disclaimer: The linear operations in the gadgets G1, G4, G5 and G11 are taken as

t-NI secure gadgets.

In order to prove the t-SNI security of the Algorithm 13, we need to demonstrate

that probes on intermediate and output variables can be perfectly simulated through a

subset of intermediate values.

While tGi
denotes the number of internal probe that an adversary can place internally

for gadget Gi, the oGi
, as one can predict, denote the output probes for a gadget Gi.

• tA13 is the number of probes that an adversary can gain,

• |O| refers to the output shares from the Algorithm 13 [14].

For instance, for the gadget G13, the output probe (output of this particular gadget)

can be denoted as oG13 .

tA13 =
13∑
i=1

tGi
+

12∑
i=1

oGi
, |O| = oG13 .

The main objective of this proof is to show that both internal probes and output shares

can be simulated with less than or equal to tA13 number of probes.

Simulating G13:

94

Let’s dive a bit deeper into the process of simulating the tG13 intermediate and oG13

output probes of the t-NI gadget G13
4

m′(·)B ← SecAND(m′(·)B ,¬x(·)B
11) G11 : NOT,G12 : SecAND

m′(·)B ← SecXOR(m′(·)B , x
(·)B
11) G13 : SecXOR

Here, the two inputs to the gadget G13 are given as follows:

• x
(·)B
11 : One of the input shares.

• The Output of the Gadget G12: This comes from the SecAND operation in the

Line 10 of the Algorithm 13, which is applied to the shares of m′(·)B and the

negated shares of x(·)B
11 .

Hence, when we talk about requiring tG13 + oG13 shares of these two inputs, it means

we need an equivalent amount of information or "share" of these inputs to accurately

simulate the probes of the G13 gadget [14].

Simulating G12:

In the larger context of an algorithm, composed of multiple t-SNI gadgets like G12,

the objective is to minimize the propagation of probes and limit the adversary’s in-

formation access. This process of limiting information access forms the core of t-

SNI (Threshold-Probing Security with Non-Interference) security, and the method of

achieving this is through accurate simulation.

In the case of G12, a t-SNI gadget, its internal probes tG12 and output probes oG12

can be perfectly simulated using only tG12 shares of the outputs of gadgets G10 and

G11. This is possible because of the property of the t-SNI gadgets, which allows the

simulation of their internal and output behavior based only on a restricted number of

input shares [14].

This is significant because it means the simulation of the gadget doesn’t require

4 A probe in this context refers to information that can be obtained from the gadget during the simulation.

95

knowledge of all the output shares (oG12), which are usually assumed to be acces-

sible to an adversary.

Simulating G4−G13: It is important to note that the notation t
x
(·)B
i

is used to denote

the total shares required to accurately simulate a particular bit x(·)B
i .

To emulate the intermediary and final outputs of the devices G4 through G13, we

necessitate the subsequent quantity of shares for the variables x(·)B
7 through to x

(·)B
11 :

• t
x
(·)B
7

= tG6

We need tG6 shares for simulation. This is because G6 is a SecAND gadget that

operates on the shares of x(·)B
7 . The output of G6 is also x

(·)B
7 and as G6 is an SNI

gadget, it needs tG6 internal probes to be simulated correctly.

• t
x
(·)B
8

= tG4 + oG4 + tG5 + tG7 + oG7 + tG8

x
(·)B
8 goes through several gadgets (G4, G5, G7, G8), each of which may have internal

probes (t) or output shares (o).

• G4 is a "not" operation, which logically negates x(·)B
8 . The tG4 and oG4 represent

the internal probes and output shares for this operation.

• G5 is a refresh operation, denoted as t-SNI refresh. The refresh operation is

needed to prevent potential information leakage that could happen due to du-

plications in the number of shares or probes (like the case where you have tG6

shares of both x
(·)B
7 and x

(·)B
8). The tG5 represents the internal probes for the

refresh operation.

• G7 is a secret XOR operation, denoted as SecXOR. This operation computes

the exclusive or of x(·)B
8 with another secret bit m′(·)B . The tG7 and oG7 are the

internal probes and output shares for this operation.

• G8 is another refresh operation. Similar to G5, it is used to avoid potential

information leakage from the SecXOR operation. The term tG8 corresponds to

the internal probes for this refresh operation.

96

In total, to simulate the process of x(·)B
8 correctly through these gadgets, we would

need the sum of all these internal probes and output shares, which is why t
x
(·)B
8

=

tG4 +oG4 + tG5 + tG7 +oG7 + tG8 . This calculation ensures that the simulation doesn’t

exceed the secure information handling capacity of these operations, preventing any

potential information leak that could compromise the protocol’s security.

• t
x
(·)B
9

= tG9

To simulate G9, which is another SecAND operation but this time performed on x
(·)B
9 ,

you need t
x
(·)B
9

shares of x(·)B
9 .

• t
x
(·)B
10

= tG10 :

The simulation of this bit requires the total shares from the gadget G10, which is a

SecAND gadget. Hence, the total number of shares needed for simulation will be the

number of internal probes of G10, denoted as tG10 . So, we have t
x
(·)B
10

= tG10 .

• t
x
(·)B
11

= tG11 :

The simulation of this bit is a bit more complex, as it goes through a series of op-

erations, namely, the "not" operation (G11), SecAND (G12), and SecXOR (G13).

Each of these operations would require a certain number of shares for their correct

simulation. Hence, the total shares needed for simulating x
(·)B
11 would be the sum

of the internal and output probes from these gadgets. Therefore, we have t
x
(·)B
11

=

tG11 + oG11 + tG12 + tG13 + oG11 .

For Bitslice, we add up the total number of shares for each bit to get the total shares

tx(·)B . The simulation can only be performed if there are no duplicate entries in the

sum, otherwise the simulation would require twice the number of shares for certain

bits, which is not feasible. This is why the refresh in G5 is needed, without which, the

simulation would require tG6 shares of both x
(·)B
7 and x

(·)B
8 , effectively needing twice

the shares.

The same reasoning applies for G6 and G9, where the inputs need to be refreshed to

97

prevent duplicate shares. However, for other SecAND gadgets, this issue does not

occur, and hence, there is no need to refresh their inputs.

The t-NI property of Bitslice allows us to simulate the tx(·)B shares of x(·)B with the

corresponding number of shares of a(·)B .

Lastly, following the flow through gadgets G2 and G1, the simulation of Algorithm

1 requires |I| = tG1 + oG1 + tG2 of the input shares a(·)A . The G2, with its t-SNI

property, allows us to simulate the shares of a(·)B with only tG2 of its input. This

stops the propagation of tx(·)B to |I|, making the simulation more efficient.

98

CHAPTER 6

ALTERNATIVE MASKING

6.1 Introduction

In this chapter, we will introduce two alternative methods to perform a masked com-

pression for CRYSTALS-Kyber.

• The Double and Check Compression Function (Refer to Section 6.2)

• The Look-Up-Table (LUT) Based Compression Algorithm (Refer to Section

6.3)

Subsequently, we will transition to Section 6.4, in which we will identify a suitable

prime number, specifically q = 7681, and demonstrate that inspecting the five most

significant bits of a number within their corresponding domains [0, q−1] is sufficient.

The choice of a prime number is pivotal, as it directly impacts the effectiveness and

security of the algorithm, thereby necessitating a thorough examination of its proper-

ties and characteristics.

In the end, we’ll lay out the corresponding compression functions and go into detail

about the number of bit-wise operations the algorithm needs. This exploration will

enable a comprehensive understanding of the computational complexity inherent in

the algorithm, offering insights into its efficiency and operational demands. By noting

the number of bit-wise operations, we can discern the algorithm’s resource consump-

tion, allowing for an informed evaluation of its practicality and viability in various

applications.

99

6.2 The Double and Check Compression Method

The Double and Check algorithm provides a method to handle arithmetic shares,

introducing a level of obfuscation. In this approach, everything up to and including

the shifting procedure aligns with Alg. 13. Each coefficient of a polynomial in Zq[X]

is divided into several "shares", with the property that the sum of the shares modulo

q equals the original value. Each share is then shifted by adding ⌊q/4⌋, which makes

the interval symmetric around ⌊q/2⌋.

Figure 6.1: Shifting the Polynomial Coefficient with Certain Offset to Mask It [14]

Retaining the symmetric interval property of the coefficient from Alg. 13 ensures

consistent overflow behavior beyond q = 3329. This allows the algorithm to yield a

Boolean output, indicating if the original share exceeded ⌊q/2⌋.

After the symmetry is achieved, the algorithm doubles each shifted share. This dou-

bling acts as an obfuscated method for indirectly gauging if the shifted share, when

multiplied by two, surpasses the modulo q. If it does, it implies that the original share

was greater than ⌊q/2⌋. This overflow, or surpassing of the modulo, is detected by

checking if the doubled share after taking modulo q is different from the raw doubled

share (before taking modulo). If these two values are not the same, an overflow has

occurred.

Hence, the "Check" in "Double and Check 14" is the procedure of observing whether

this overflow took place. When overflow is detected, the algorithm outputs "1", indi-

cating the original share was above the midpoint ⌊q/2⌋. If no overflow occurred, the

output is "0".

This method of doubling and checking, rather than making a direct comparison to the

midpoint, provides an obfuscated yet effective way to ascertain the position of the

original share relative to ⌊q/2⌋. This is instrumental in preserving the integrity and

security of the polynomial coefficient shares while still enabling efficient computa-

100

tion.

Below is a detailed breakdown of the Double and Check Alg. 14. It’s crucial to

emphasize that the steps outlined are approached in the simplest manner possible,

without any parallelization. For clarity’s sake, we employ for-loops to elucidate the

algorithm’s mechanics.

• Iterate over each coefficient of the polynomial, indexed by i. Given that a poly-

nomial in CRYSTALS-Kyber comprises 256 coefficients, the loop runs from

i = 0 to i = 255.

• For each coefficient, loop over each of its shares (indexed by k).

• For each share, add ⌊q/4⌋modulo q. This "shifts" the share to make the domain

symmetric around ⌊q/2⌋.

• Double the shifted share, assign it to a variable called "raw_double_share."

• Take the modulo q of the raw_double_share, assign the value to a variable

called "double_share."

• If double_share does not equal the raw_double_share, this means there was an

overflow over q, which in turn means the share must have been greater than

⌊q/2⌋. This information is stored in a Boolean form. In other words, the result

will be either 1 or 0.

• The algorithm outputs a vector, such as "[1, 0, 1, 1]," when the number of

shares for a coefficient is set at 4. Subsequent components of the algorithm,

like masked encryption, will use this vector as an input.

6.2.1 Pseudo-code of the Double and Check Algorithm

The Double and Check algorithm (Refer to Alg. 14), introduces an obfuscated method

to evaluate polynomial coefficients. Rather than directly comparing to ⌊ q
2
⌋, this ap-

proach employs a doubling operation to determine if a shifted share exceeds ⌊ q
2
⌋.

While this method preserves integrity and promotes computational efficiency, it does

necessitate modular addition, which might be more computationally intensive than a

101

Algorithm 14 Double and Check algorithm

Input: An arithmetic sharing a(·)A of a polynomial a ∈ Zq[X], with each coefficient

is masked by ns shares such that a(·)Ai = a
(0)A
i + a

(1)A
i + · · ·+ a

(ns−1)A
i mod q.

Output: A Boolean sharing m′(·)B indicating if each share is greater than q/2 with

m′ = Compressq(a, 1) ∈ Z2256 .

1: for i = 0 to 255 do

2: for k = 0 to ns − 1 do

3: a
(k)A
i ← a

(k)A
i +

⌊
q
4

⌋
mod q

4: raw_double_share← a
(k)A
i + a

(k)A
i

5: double_share← raw_double_share mod q

6: if double_share = raw_double_share then

7: m
(k)B
i ← 0

8: else

9: m
(k)B
i ← 1

10: end if

11: end for

12: end for

13: return m(·)B

bit-wise operation. Nevertheless, this approach offers a naive, obfuscated alternative

for coefficient evaluation. Detailed steps of this algorithm are clearly presented in the

pseudo-code of Alg. 14.

6.2.2 Toy Example for the Double and Check Algorithm

To better exemplify the algorithm, let us consider a simple example with ns = 4

shares and a modulus q = 3329. For clarity, we will focus solely on the coefficient

2419 of the polynomial

p(x) = 2419 · x255 + 2289 · x254 + · · ·+ 1723 · x+ 3187 ∈ Z3329[X].

Given the arithmetic shares [678, 1162, 2406, 1502], their summation modulo 3329

yields 2419, consistent with our polynomial coefficient.

102

To achieve symmetry around ⌊q/2⌋ = 1664, we adjust each share by adding ⌊q/4⌋ =
832. This results in the updated shares: [1510, 1994, 3238, 2334].

The Double and Check algorithm (Refer to 14) then proceeds by doubling each of

these offset shares and reducing mod q. The final step is to check if doubling the

offset share overflows q. This is done by comparing if the doubled offset share equals

2 times the original offset share. We calculate the doubled shares modulo 3329 as

follows:

• Double 1510 mod 3329 ≡ 3020. As this is less than (q = 3329), it does not

overflow q when doubling, and thus the result for this share is 0.

• For the other shares (1994, 3238, 2334), when doubled, they all exceed 3329,

so the doubling overflows q. This means the original offset shares were greater

than ⌊q/2⌋ = 1664, and thus the results for these shares are all 1.

• Result of whether offset shares are greater than 1664: [0, 1, 1, 1]

Essentially, the Double and Check algorithm is providing a mask to reveal whether

each share, when shifted by a certain offset and then performed modular addition, is

larger than ⌊q/2⌋. If the double of the offset share isn’t equal to 2 times the original

offset share when reduced modulo q, it means the value has overflowed q, which can

only happen if the original offset share is greater than ⌊q/2⌋.

6.2.3 Final Notes On the Double and Check Method

The “Double and Check” method, as illustrated, is predicated on the self-addition of

an arithmetic share, followed by a comparison between the doubled value, with and

without the application of the modulo operation, to discern whether an overflow has

transpired. From a computational standpoint, the following are reflections on this

method:

• Polynomial-Time Addition Operation

103

Adding a share to itself (raw_double_share ← a
(k)A
i + a

(k)A
i), we are essentially

performing an addition operation. Addition of two numbers (or in this case, adding a

number to itself) is a fundamental arithmetic operation that can be done in polynomial

time, specifically, it has a linear time complexity, O(n) is the number of bits in the

binary representation of the numbers.

When the Double and Check algorithm performs the addition operation to calculate

raw_double_share, it is inherently secure in the sense that it does not expose the sys-

tem to side-channel leakage risks, due to the polynomial-time nature of the addition

operation. Operations that take polynomial time, especially those with lower-degree

polynomials, are generally quick and do not allow for substantial variance in exe-

cution time, which could potentially be exploited to gather information about the

system’s state or the data being processed.

In contrast, if the operation were to have a higher time complexity, especially with

significant variability, it might create discernible patterns in terms of execution time,

power consumption, etc., that could potentially be exploited for side-channel attacks.

To conclude, the polynomial-time addition operation in the Double and Check algo-

rithm is efficient and does not expose the system to side-channel leakage risks due

to its consistent and fast execution, thus contributing to the overall security of the

algorithm in a computational context.

• Modulo Reduction

The operation double_share← raw_double_share mod q does incorporate a mini-

mal computational overhead, but it is typically considered negligible, especially with

modern computational resources.

When the modulus is a prime number (q = 3329) and not a power of two (2k), the

operation may not be optimized to a simple bit-wise operation and may thus incur a

bit more computational cost, but given the indispensability of the operation in main-

taining numerical ranges and preventing overflow, the benefits derived from its appli-

cation significantly outweigh the minor overhead introduced, preserving the integrity

and manageability of the computational process.

104

• Comparison Operation

The comparison within the given algorithm, specifically

double_share = raw_double_share,

is inherently computationally inexpensive, serving as a mere bitwise comparison.

if double_share = raw_double_share then

m
(k)B
i ← 0

else

m
(k)B
i ← 1

end if

The complexity associated with such a comparison is deemed negligible, owing to

its simplistic nature and execution efficiency. A bit-wise comparison operates at the

level of individual bits, making it one of the most fundamental and swift operations

in computer science.

Furthermore, the merit of this comparison extends to its security attributes; given that

it does not hinge on the comparison of secret or sensitive values, there is no requisite

for implementing masking, thus mitigating potential vulnerabilities associated with

the exposure of sensitive data.

In essence, the minimal computational expense and the non-reliance on sensitive val-

ues imbue the algorithm with both operational efficiency and an enhanced level of

security.

6.3 Look-Up-Table (LUT) Based Compression Algorithm (32 Entities)

In this section, we are going to introduce a Look-Up-Table (LUT) integration, which

represents a classic trade-off between time (computational speed) and space (memo-

ry/storage). In many scenarios, especially in cryptography, where speed is paramount,

this trade-off is acceptable.

105

CRYSTALS-Kyber uses a prime modulo q = 3329. The masked Compresssq(x) func-

tion introduced by [14] first splits polynomial coefficients into random arithmetical

shares. Then, to divide the coefficient domain into to symmetric interval (symmetric

to ⌊ q
2
⌋), it shifts each share by ⌊ q

4
⌋. This concept is illustrated in Fig. 5.5.

Then, Alg. 1 in [14] checks each share whether it is bigger then ⌊ q
2
⌋, or not. If it is,

assigns to 1, otherwise, assigns to 0.

⌊q
2
⌋ = ⌊3329

2
⌋

= ⌊1664.5⌋

= 1664

= 210 + 29 + 27

= (011010000000)2

Hence, to check whether a 12-bit number in the [0, q− 1] domain is bigger then 1664,

it is enough for the algorithm to check the 5 most significant bit of the number that

needs to be compared against 1664.

k = ⌈log2(q)⌉

= ⌈log2(3329)⌉

= ⌈11.7067⌉

= 12

Then, the Alg. 1 [14] runs the following dedicated function for each share of every

coefficient.

Compresssq(x) = x11 ⊕ (¬x11 ∗ x10 ∗ x9 ∗ (x8 ⊕ (¬x8 ∗ x7)))

Notice, how looking at the first 5 most significant bits is enough to decide whether a

number in [0, q − 1] is bigger than 1664, or not. Thus, instead of doing this bit-wise

operations for each and every share within the algorithm, we can leverage a Look-up-

Table (LUT) of at most 25 = 32 entities.

In this technique, we uphold the fundamental principle of masking: splitting a sen-

sitive value x ∈ Zq into smaller shares (x0, x1, · · ·xns−1), and performing the oper-

ations on these shares. The reason behind this is stressed in the work [7]. Carrying

106

out the operations of an algorithm in the domain defined by the masking effectively

blocks any potential information leakage associated with the variable x, as it is not

directly handled at any point. Rather, the only detectable leakage in the side-channel

measurements originates from calculations that involve either x1 or x2 [7]. As both

arithmetical and Boolean shares of a coefficient x are defined randomly for each run,

leakage caused by x1 and x2 does not reveal anything about the coefficient x to an

attacker. This is why we wanted to preserve the masking nature of the Compresssq
algorithm, even while integrating a LUT.

6.3.1 Pseudo-code of the Look-Up-Table (LUT) Based Compression Algorithm

To provide clarity on the implementation of the Look-up-Table (LUT) based masked

compression, we present Alg. 15. The algorithm takes a secret coefficient x ∈
Z3329[X] and splits it into its ns shares, shifts each share by ⌊ q

4
⌋ = 832, and casts

each share into its 12-bit Boolean representation to decide if the share is greater than

or equal to 1664. This decision is made using a Look-Up-Table.

The table might look like the following, but to have a more detailed look, refer to

Table A.3.2).

Table 6.1: Bit Representation, Index, and Values

5-bit Index Value
00000 0 0
00001 1 0

. . .
01100 12 0
01101 13 1

. . .
11110 30 1
11111 31 1

The algorithm requires only 32 entities because we compare a number in the coef-

ficient domain [0, 3329 − 1] to determine if it’s greater than or equal to 166410 =

(011010000000)2. Thus, it’s sufficient to look at the 5 most significant bits of a

number when comparing it to 1664. As previously mentioned, Alg. 15 integrates

107

Algorithm 15 LUT-based Compression Algorithm

Input: An arithmetic sharing a(·)A of a polynomial a ∈ Zq[X], with each coefficient

is masked by ns shares such that a(·)Ai = a
(0)A
i + a

(1)A
i + · · ·+ a

(ns−1)A
i mod q.

Output: A Boolean sharing m′(·)B indicating if each offset share is greater than q/2.

1: Pre-compute LUT with indices from 0 to 31 where each index is a binary rep-

resentation of an integer i with bits x11, x10, x9, x8, x7 and LUT[i] is set to x11

XOR (NOT x11 * x10 * x9 * (x8 XOR (NOT x8 * x7))) as introduced by [14] in

the Algorithm 13.

2: for i = 0 to 255 do

3: for k = 0 to ns − 1 do

4: a
(k)A
i ← a

(k)A
i + ⌊ q

4
⌋ mod q

5: a
(k)B
i ← A2B(a(k)Ai)

6: Extract a 5-bit index from the most significant bits of a(k)Bi

7: m
(k)B
i ← LUT[index] ▷ Use the LUT to determine if the offset share is

greater than ⌊q/2⌋
8: end for

9: end for

10: return m(·)B

a pre-computed table of 32 entities (refer to Table A.3.2). Each entity is indexed by

the decimal value of its Boolean representation. To generate the LUT as quickly as

possible, we used the bit-sliced binary search method proposed by [14]. For details

on how the table can be generated with Python, refer to A.3.1.

To exemplify this: assume we have a Boolean representation (011110111001). How

does the algorithm leverages the LUT to decide whether it is bigger then or equal to

1664. To determine whether this is greater than or equal to 1664 using the LUT, the

algorithm first takes the 5 most significant bits, which are (01111). It then determines

that the index is 15. At index 11, it observes a value of 1. Consequently, Algorithm

15 concludes that the number is greater than or equal to 1664.

108

6.3.2 Toy Example for the Look-Up-Table (LUT) Based Offset and Check Al-

gorithm

To provide a more solid understanding, we implemented a trivial Python implemen-

tation for a toy example, which integrates the LUT.

Let’s start by understanding the lut_based_comparison function. (Refer to

Code A.3.3, the lines 26 − 31). The main goal of this function is to determine, for

each compressed share, whether its value (based on the first 5 most significant bits)

is greater than or equal to 1664. Instead of conducting a full comparison with the

threshold value (1664), the function efficiently uses the LUT. Each entry in the LUT

encapsulates the outcome for specific 5-bit patterns, allowing for a faster decision-

making process.

Here is the detailed explanation of the function:

• The function initializes an empty list called results.

• For each bits (which refers to each compressed share) in the shares list, the

function performs the following steps:

– Extracts the 5 most significant bits of the current compressed share to

form a 5-bit index (Refer to Line 29 in A.3.3).

– Using this 5-bit index, it fetches the corresponding value from the LUT

and appends this value to the results list.

• Once all shares have been processed, the function returns the results list.

Let’s take an example:

Assume we have shares = [2035, 725, 287, 1282] (these are shares that have been

calculated previously) and a given lookup table lut (as we’ve provided).

• For the sake of efficiency, we focus our energy on the first share: 2035, convert

it into binary, it becomes (01111111011)2.

• Next, we extract the 5 most significant bits: 01111 (or 15 in decimal).

109

• We then check the value in lut at index 15 which is 1.

• So, the corresponding Boolean value for the share 2035 is 1.

• The function repeats these steps for every shifted share in the list and returns a

list of Boolean values.

Finally, the lut_based_comparison([2035, 725, 287, 1282], LUT) call would

return [1, 0, 0, 0], indicating which shares are greater than ⌊ q
2
⌋. The function is effi-

cient because it uses the top 5 bits to directly look up the result in a pre-computed

table.

6.3.3 Notes On the Look-Up-Table-based Approach

The LUT-based approach is more efficient than the Double-and-Check method be-

cause it replaces multiple bitwise operations (including an inversion, multiplications,

and an XOR operation) with a single lookup operation. The lookup operation has a

constant time complexity, meaning it takes the same amount of time regardless of the

input size, which is generally faster than performing multiple bitwise operations.

There are some potential concerns or limitations with this approach:

• Pre-computation Overhead

The generation of the Look-Up-Table, despite being a one-time procedure, does re-

quire computation resources. Although it’s relatively negligible given the fixed size

of the LUT, this overhead might be taken into account, especially in contexts with

constrained computational resources.

• Reduced Flexibility

The Look-Up-Table method is tailor-made for the particular problem at hand with a

specific q. If any alterations to the problem parameters or related problems are to be

addressed, the Look-Up-Table and the corresponding parts of the algorithm would

likely need to be restructured.

110

• Memory Consumption

The storage of the Look-Up-Table, albeit not significant due to its small size, will

incur some memory overhead.

In summary, while the Look-Up-Table-based approach affords greater computational

efficiency, these potential caveats and considerations should be evaluated in deciding

whether to adopt this approach.

6.4 Potential Prime Numbers for Non LUT-Based Compression Functions

As we studied earlier, in their work [14], (Bos et al., 2021, p. 7) proposed the

Compressqs(x) function. This function only checks the 5 most significant bits (MSB)

of a number from the [0, q − 1] domain, where q = 3329 and using the ⌊ q
2
⌋ = 1664

and (011010000000)2. Since only the 5 MSB of the 1664 are set, Alg. 13 can perform

a bit-sliced binary search, only examining the 5 most significant bits of a number in a

coefficient domain.

This led us to consider whether there exist prime numbers for which examining half

of the prime, denoted as ⌊ q
2
⌋, would allow us to only check the first 4 or 3 most

significant bits (MSB) of a number to determine if it is greater than or equal to ⌊ q
2
⌋.

However, we were unable to find such prime numbers that have a bit length of 11, 12,

or 13.

Therefore, we redirected our efforts towards finding prime numbers for which half

would yield a value that requires only the inspection of the 5 most significant bits

(MSB) of a number in the coefficient domain to determine if it is greater than or

equal to ⌊ q
2
⌋.

6.4.1 Masked Compress Functions for Potential Prime Numbers

In this section, we delve into an exploration of potential compression functions for

CRYSTAL-Kyber, not strictly within the context where the prime number q is fixed at

111

Table 6.2: Analysis for the Prime Number 1153
Attribute Value
Number 1153
k 11
⌊ q
2
⌋ 576.5 ≃ 576

Binary representation of 576 (01001000000)2
Compresssq(x) x10 ⊕ (¬x10 · x9 · x8 · x7 · (x6 ⊕ (¬x6 · x5)))

Number of XOR operations 2
Number of AND operations 5
Number of NEG operations 2

3329. Instead, we broaden our perspective to consider a diverse set of prime numbers:

{1153, 1409, 7681}

Our goal is to uncover and understand the array of compression functions that may

arise and be suitable under varying prime number circumstances within this specified

set.

Table 6.2 delineates the compress function formulated for the prime number 1153,

spotlighting the binary representation of 576, which is half of 1153. The articulated

Compresssq(x) function manifests a moderate level of intricacy, primarily character-

ized by the prevalence of AND operations. The quantity of XOR and NEG operations

fall within conventional bounds, contributing to the overall complexity.

Nevertheless, despite the congruent levels of complexity, the prime number q retains

a relatively diminutive magnitude. Consequently, this results in the polynomial coef-

ficients also being comparably smaller. This phenomenon potentially jeopardizes the

security of the algorithm, especially considering that the s and e vectors are derived

through central binomial distributions. The smaller coefficients could inadvertently

introduce vulnerabilities or reduce the robustness of the cryptographic processes, em-

phasizing the crucial balance between computational efficiency and security integrity

in algorithm design and implementation.

Table 6.3 illustrates a seemingly more computationally efficient compression function

for the prime 1409, with a diminished count of AND operations compared to the

method outlined in [14]. This reduced complexity could potentially be advantageous

in scenarios where operational efficiency is paramount. However, it’s pivotal to note

112

that the utilization of a smaller prime number, such as 1409, inherently incurs security

vulnerabilities. To date, there is a conspicuous absence of implementations utilizing

such a low prime, indicating that the possible computational advantages are likely

overshadowed by the resultant security compromises.

Table 6.3: Analysis for the Prime Number 1409
Attribute Value
Number 1409
k 11
⌊ q
2
⌋ 704.5 ≃ 704

Binary representation of 704 (01011000000)2
Compresssq(x) x10 ⊕ (¬x10 · x9 · (x8 ⊕ (¬x8 · x7)))

Number of XOR operations 2
Number of AND operations 3
Number of NEG operations 2

Lastly, for the prime 7681, Table 6.4 elucidates its compress function derived from

the binary design of 3840.

Given the prime q = 7681, which is the smallest prime fulfilling 1 ≡ q mod 2n

for n = 256, it was originally suggested by CCA secure CRYSTALS-Kyber [4] and

exemplifies efficiency in Table 6.4. This prime ensures swift NTT multiplication, a

pivotal property for lattice-based cryptographic schemes, where polynomial multipli-

cation is notably computation-intensive. The characteristics of q = 7681 make it an

exemplary candidate, allowing for a compression function with fewer XOR and NEG

operations compared to the method proposed by [14]. This results in an enhance-

ment in operational speed and effectiveness, balancing computational efficiency and

security needs. The specific selection of q is crucial for leveraging the benefits of the

fast NTT multiplication property, and it facilitates the existence of a 2n-th primitive

root of unity in the finite field, aligning the computational requisites and algorithmic

executions for optimal cryptographic robustness.

Building upon the foundational work by [14], we introduce a modified masked com-

pression function, depicted in Alg. 16, adapted to operate with q = 7681. This en-

hanced function enables an efficient and secure transformation of an arithmetic shar-

ing of a polynomial a ∈ Zq[X] into a Boolean sharing of the compressed message

113

Table 6.4: Analysis for the Prime Number 7681
Attribute Value
Number 7681
k 13
⌊ q
2
⌋ 3840.5 ≃ 3840

Binary representation of 3840 (0111100000000)2

Compresssq(x) x13 ⊕ (¬x13 · x12 · x11 · x10 · x9)

Number of XOR operations 1
Number of AND operations 4
Number of NEG operations 1

Algorithm 16 Modified Masked Compress(x, 1)

Input: An arithmetic sharing a(·)A of a polynomial a ∈ Zq[X].

Output: A Boolean sharing m′(·)B of the message m′ = Compressq(a, 1) ∈ Z2256 .

1: for i = 0 to 255 do

2: a
(0)A
i ← a

(0)A
i + ⌊ q

4
⌋ mod q

3: a
(·)B
i ← Arithmetic-to-Boolean(a(·)Ai)

4: end for

5: x(·)B ← Bitslice(a(·)B)

6: m′(·)B ← SecAND(x
(·)B
9 , x

(·)B
10)

7: m′(·)B ← SecAND(m′(·)B , x
(·)B
11)

8: m′(·)B ← SecAND(m′(·)B , x
(·)B
12)

9: m′(·)B ← SecAND(m′(·)B ,¬x(·)B
13)

10: m′(·)B ← SecXOR(m′(·)B , x
(·)B
13)

11: return m′(·)B

m′ = Compressq(a, 1) ∈ Z2256 . The selection of q = 7681 is pivotal in this context

as it is the smallest prime conforming to 1 ≡ q mod 2n for n = 256, fostering swift

NTT multiplication, a crucial attribute in lattice-based cryptographic schemes. This

modification aims to optimally balance computational overhead and cryptographic

resilience, while retaining the essence of the masked compression function proposed

by [14].

114

CHAPTER 7

CONCLUSION

In conclusion, our research has delved into formulating techniques aimed at mitigat-

ing the risk of side-channel leakage of sensitive polynomial coefficients during the

compression step in Kyber.CPAPKE.Dec() Algorithm. In this thesis, we’ve intro-

duced two innovative strategies: the "Double and Check" algorithm and the LUT-

based method.

The "Double and Check" algorithm aspires to uphold data integrity and offers com-

putational efficiency, being grounded in polynomial-time addition. This approach,

entailing conditional checks, seems promising as it doesn’t process the secret data

directly, potentially minimizing side-channel vulnerabilities. While it manifests a

straightforward interaction with data, it might, theoretically, consume more resources

in comparison to the bit-wise operations explicated in [14]. Consequently, exhaustive

research and practical implementation are requisite to validate its efficacy and to per-

form a comparative analysis. On the other hand, the LUT-based approach, grounded

on modular arithmetic and supported by pre-computed tables, aims to strike a balance

between data protection and computational efficiency. Its premise is straightforward,

leveraging tables to facilitate quicker operations. However, the simplicity also in-

troduces a dilemma—memory utilization. Even though the tables are compact, they

might present challenges when integrated into settings with limited memory, particu-

larly some hardware contexts.

As side-channel attack techniques become increasingly sophisticated, our research

is not a definitive answer but rather a simple suggestion. The techniques we’ve in-

troduced here are initial proposals. Each holds potential but also demands further

115

research. They serve as contributions that, with further refinement and testing, could

play a role in the broader narrative of side-channel risk mitigation within CRYSTALS-

Kyber. We hope that this discourse stimulates further research and validation, ensur-

ing that any implementation is both informed and resistant.

116

REFERENCES

[1] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, Crystals-kyber algorithm specifi-
cations and supporting documentation, NIST PQC Round, 2(4), pp. 1–43, 2019.

[2] G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, B. Grégoire, and P.-Y.
Strub, Verified proofs of higher-order masking, in Advances in Cryptology–
EUROCRYPT 2015: 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, pp. 457–485, Springer, 2015.

[3] G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and
R. Zucchini, Strong non-interference and type-directed higher-order masking,
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 116–129, 2016.

[4] G. Barthe, S. Belaïd, T. Espitau, P.-A. Fouque, B. Grégoire, M. Rossi, and
M. Tibouchi, Masking the glp lattice-based signature scheme at any order, in
Advances in Cryptology–EUROCRYPT 2018: 37th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29-May 3, 2018 Proceedings, Part II 37, pp. 354–384, Springer,
2018.

[5] A. Battistello, J.-S. Coron, E. Prouff, and R. Zeitoun, Horizontal side-channel
attacks and countermeasures on the isw masking scheme, in Cryptographic
Hardware and Embedded Systems–CHES 2016: 18th International Confer-
ence, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, pp. 23–39,
Springer, 2016.

[6] M. V. Beirendonck, J.-P. D’Anvers, A. Karmakar, J. Balasch, and I. Ver-
bauwhede, A side-channel resistant implementation of saber, Cryptology ePrint
Archive, Paper 2020/733, 2020, https://eprint.iacr.org/2020/
733.

[7] M. V. Beirendonck, J.-P. D’anvers, A. Karmakar, J. Balasch, and I. Ver-
bauwhede, A side-channel-resistant implementation of saber, ACM Journal on
Emerging Technologies in Computing Systems (JETC), 17(2), pp. 1–26, 2021.

[8] S. Belaïd and T. Güneysu, Smart Card Research and Advanced Applications:
18th International Conference, CARDIS 2019, Prague, Czech Republic, Novem-

117

https://eprint.iacr.org/2020/733
https://eprint.iacr.org/2020/733

ber 11–13, 2019, Revised Selected Papers, volume 11833, Springer Nature,
2020.

[9] M. Bellare and P. Rogaway, The security of triple encryption and a framework
for code-based game-playing proofs, in Advances in Cryptology-EUROCRYPT
2006: 24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, St. Petersburg, Russia, May 28-June 1, 2006. Pro-
ceedings 25, pp. 409–426, Springer, 2006.

[10] L. Bettale, J.-S. Coron, and R. Zeitoun, Improved high-order conversion from
boolean to arithmetic masking, IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 22–45, 2018.

[11] S. Bhasin, J.-P. D’Anvers, D. Heinz, T. Pöppelmann, and M. Van Beirendonck,
Attacking and defending masked polynomial comparison for lattice-based cryp-
tography, IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, pp. 334–359, 2021.

[12] A. Blum, M. Furst, M. Kearns, and R. J. Lipton, Cryptographic primitives based
on hard learning problems, in Annual International Cryptology Conference, pp.
278–291, Springer, 1993.

[13] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, Crystals-kyber: a cca-secure module-
lattice-based kem, in 2018 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 353–367, IEEE, 2018.

[14] J. W. Bos, M. Gourjon, J. Renes, T. Schneider, and C. Van Vredendaal, Masking
kyber: First-and higher-order implementations, IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pp. 173–214, 2021.

[15] J. W. Bos, M. Gourjon, J. Renes, T. Schneider, and C. van Vredendaal, Masking
kyber: First- and higher-order implementations, YouTube video in TheIACR
Conference Recording, 2023, [Online; accessed 28-June-2023].

[16] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, (leveled) fully homomorphic
encryption without bootstrapping, ACM Transactions on Computation Theory
(TOCT), 6(3), pp. 1–36, 2014.

[17] O. Bronchain and G. Cassiers, Bitslicing arithmetic/boolean masking conver-
sions for fun and profit: with application to lattice-based kems, IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, pp. 553–588, 2022.

[18] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, Towards sound approaches to
counteract power-analysis attacks, in Advances in Cryptology—CRYPTO’99:
19th Annual International Cryptology Conference Santa Barbara, California,
USA, August 15–19, 1999 Proceedings 19, pp. 398–412, Springer, 1999.

118

[19] E. Dubrova, K. Ngo, J. Gärtner, and R. Wang, Breaking a fifth-order masked im-
plementation of crystals-kyber by copy-paste, in Proceedings of the 10th ACM
Asia Public-Key Cryptography Workshop, pp. 10–20, 2023.

[20] T. Fritzmann, M. Van Beirendonck, D. B. Roy, P. Karl, T. Schamberger, I. Ver-
bauwhede, and G. Sigl, Masked accelerators and instruction set extensions for
post-quantum cryptography, Cryptology ePrint Archive, 2021.

[21] E. Fujisaki and T. Okamoto, Secure integration of asymmetric and symmetric
encryption schemes, in Advances in Cryptology—CRYPTO’99: 19th Annual
International Cryptology Conference Santa Barbara, California, USA, August
15–19, 1999 Proceedings, pp. 537–554, Springer, 1999.

[22] S. Goldwasser and D. Micciancio, Complexity of lattice problems: a crypto-
graphic perspective, 2002.

[23] D. Goudarzi, A. Journault, M. Rivain, and F.-X. Standaert, Secure multiplication
for bitslice higher-order masking: Optimisation and comparison, in Construc-
tive Side-Channel Analysis and Secure Design: 9th International Workshop,
COSADE 2018, Singapore, April 23–24, 2018, Proceedings, pp. 3–22, Springer,
2018.

[24] H. Groß, S. Mangard, and T. Korak, An efficient side-channel protected aes
implementation with arbitrary protection order, in Cryptographers’ Track at the
RSA Conference, pp. 95–112, Springer, 2017.

[25] D. Heinz, M. J. Kannwischer, G. Land, T. Pöppelmann, P. Schwabe, and
D. Sprenkels, First-order masked kyber on arm cortex-m4, Cryptology ePrint
Archive, 2022.

[26] D. Hofheinz, K. Hövelmanns, and E. Kiltz, A modular analysis of the fujisaki-
okamoto transformation, in Theory of Cryptography: 15th International Con-
ference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings,
Part I, pp. 341–371, Springer, 2017.

[27] Y. Ishai, A. Sahai, and D. Wagner, Private circuits: Securing hardware against
probing attacks, in Advances in Cryptology-CRYPTO 2003: 23rd Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August
17-21, 2003. Proceedings 23, pp. 463–481, Springer, 2003.

[28] Y. Ji, R. Wang, K. Ngo, E. Dubrova, and L. Backlund, A side-channel attack
on a hardware implementation of crystals-kyber, in 2023 IEEE European Test
Symposium (ETS), pp. 1–5, IEEE, 2023.

[29] P. C. Kocher, Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems, in Advances in Cryptology—CRYPTO’96: 16th Annual Interna-
tional Cryptology Conference Santa Barbara, California, USA August 18–22,
1996 Proceedings 16, pp. 104–113, Springer, 1996.

119

[30] A. Langlois and D. Stehlé, Worst-case to average-case reductions for module
lattices, Designs, Codes and Cryptography, 75(3), pp. 565–599, 2015.

[31] V. Lyubashevsky, C. Peikert, and O. Regev, On ideal lattices and learning with
errors over rings, Journal of the ACM (JACM), 60(6), pp. 1–35, 2013.

[32] T. S. Messerges, Securing the aes finalists against power analysis attacks, in
International Workshop on Fast Software Encryption, pp. 150–164, Springer,
2000.

[33] D. Micciancio and O. Regev, Lattice-based cryptography, Post-quantum cryp-
tography, pp. 147–191, 2009.

[34] V. Migliore, B. Gérard, M. Tibouchi, and P.-A. Fouque, Masking dilithium: Effi-
cient implementation and side-channel evaluation, in Applied Cryptography and
Network Security: 17th International Conference, ACNS 2019, Bogota, Colom-
bia, June 5–7, 2019, Proceedings 17, pp. 344–362, Springer, 2019.

[35] National Institute of Standards and Technology (NIST), Status report on the
third round of the nist post-quantum cryptography standardization process,
Technical Report NIST IR 8413, National Institute of Standards and Technol-
ogy, 2022.

[36] K. Ngo, E. Dubrova, Q. Guo, and T. Johansson, A side-channel attack on a
masked ind-cca secure saber kem implementation, IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, pp. 676–707, 2021.

[37] M. B. Niasar, Lattices and kyber pqc presentation, YouTube, 2022, [Online;
accessed 28-June-2023].

[38] T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu, Practical cca2-secure
and masked ring-lwe implementation, Cryptology ePrint Archive, 123(4), pp.
101–120, 2016.

[39] C. Peikert, Public-key cryptosystems from the worst-case shortest vector prob-
lem, in Proceedings of the forty-first annual ACM symposium on Theory of com-
puting, pp. 333–342, 2009.

[40] C. Peikert, Lattice cryptography for the internet, in Post-Quantum Cryptogra-
phy: 6th International Workshop, PQCrypto 2014, Waterloo, ON, Canada, Oc-
tober 1-3, 2014. Proceedings 6, pp. 197–219, Springer, 2014.

[41] C. Peikert, EECS 598: Lattices in Cryptography, 2015, university of Michigan,
Course notes for EECS 598.

[42] C. Peikert, The learning with errors problem and cryptographic applications, in
Lattices: Algorithms, Complexity, and Cryptography Boot Camp, The Simons
Institute for the Theory of Computing, Calvin Lab Auditorium, Jan 2020, no
abstract available.

120

[43] C. Peikert, O. Regev, and N. Stephens-Davidowitz, Pseudorandomness of ring-
lwe for any ring and modulus, in Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pp. 461–473, 2017.

[44] C. Peikert et al., A decade of lattice cryptography, Foundations and Trends® in
Theoretical Computer Science, 10(4), pp. 283–424, 2016.

[45] J. Proos and C. Zalka, Shor’s discrete logarithm quantum algorithm for elliptic
curves, arXiv preprint quant-ph/0301141, 2003.

[46] E. Prouff and M. Rivain, Masking against side-channel attacks: A formal secu-
rity proof, in Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pp. 142–159, Springer, 2013.

[47] C. Rackoff and D. R. Simon, Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack, in Annual international cryptology confer-
ence, pp. 433–444, Springer, 1991.

[48] O. Regev, 0368.4282: Lattices in Computer Science, Course notes for
0368.4282, 2009, school of Computer Science, Tel Aviv University.

[49] O. Regev, On lattices, learning with errors, random linear codes, and cryptogra-
phy, Journal of the ACM (JACM), 56(6), pp. 1–40, 2009.

[50] O. Regev, The learning with errors problem (invited survey), in 2010 IEEE 25th
Annual Conference on Computational Complexity, pp. 191–204, IEEE, 2010.

[51] O. Reparaz, S. Sinha Roy, F. Vercauteren, and I. Verbauwhede, A masked ring-
lwe implementation, in International Workshop on Cryptographic Hardware
and Embedded Systems, pp. 683–702, Springer, 2015.

[52] T. Schneider, C. Paglialonga, T. Oder, and T. Güneysu, Efficiently masking
binomial sampling at arbitrary orders for lattice-based crypto, in Public-Key
Cryptography–PKC 2019: 22nd IACR International Conference on Practice
and Theory of Public-Key Cryptography, Beijing, China, April 14-17, 2019,
Proceedings, Part II 22, pp. 534–564, Springer, 2019.

[53] P. W. Shor, Algorithms for quantum computation: discrete logarithms and fac-
toring, in Proceedings 35th annual symposium on foundations of computer sci-
ence, pp. 124–134, Ieee, 1994.

[54] V. Shoup, Sequences of games: a tool for taming complexity in security proofs,
cryptology eprint archive, 2004.

[55] J. H. Silverman and W. Whyte, Timing attacks on ntruencrypt via variation in
the number of hash calls, in Topics in Cryptology–CT-RSA 2007: The Cryptog-
raphers’ Track at the RSA Conference 2007, San Francisco, CA, USA, February
5-9, 2007. Proceedings, pp. 208–224, Springer, 2006.

121

[56] D. Stebila, Post-quantum cryptography from the learning with errors problem,
in 2021 IEEE North American School of Information Theory, University of Wa-
terloo, 2021.

[57] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, Efficient public key encryp-
tion based on ideal lattices, in Advances in Cryptology–ASIACRYPT 2009: 15th
International Conference on the Theory and Application of Cryptology and In-
formation Security, Tokyo, Japan, December 6-10, 2009. Proceedings 15, pp.
617–635, Springer, 2009.

[58] N. Stephens-Davidowitz, Search-to-decision reductions for lattice prob-
lems with approximation factors (slightly) greater than one, arXiv preprint
arXiv:1512.04138, 2015.

[59] R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma, Curse
of re-encryption: A generic power/em analysis on post-quantum kems, IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp. 296–322,
2022.

[60] R. Wang, M. Brisfors, and E. Dubrova, A side-channel attack on a bitsliced
higher-order masked crystals-kyber implementation, Cryptology ePrint Archive,
2023.

[61] Z. Xu, O. Pemberton, S. S. Roy, D. Oswald, W. Yao, and Z. Zheng, Magni-
fying side-channel leakage of lattice-based cryptosystems with chosen cipher-
texts: The case study of kyber, IEEE Transactions on Computers, 71(9), pp.
2163–2176, 2021.

122

APPENDIX A

PYTHON IMPLEMENTATION

In this section, we present the Python implementation of toy examples designed for

the following algorithms.

• Algorithm 13 - Bit-sliced binary search method proposed by [14]. See the code

A.1.

• Algorithm 14 - Double and Check Algorithm. See the code A.2.

• Algorithm 15 - Integration of the Look-Up-Table (LUT). See the code A.3.3.

A.1 Python Implementation of the Algorithm 13

1 import numpy as np

2 import random

3 import math

4 import time

5

6 def split_into_random_shares(coefficient, num_shares, q):

7 shares = [random.randint(0, q) for _ in range(num_shares-1)]

8 last_share = (coefficient - sum(shares)) % q

9 shares.append(last_share)

10 return shares

11

12 def offset_and_compress(share, q, k):

13 offset_share = (share + math.floor(q/4)) % q

14 return [int(x) for x in '{0:0{1}b}'.format(offset_share, k)]

15

16 def compress_s(bits):

17 x11, x10, x9, x8, x7 = bits[0], bits[1], bits[2], bits[3], bits[4]

18 not_x11 = 1 - x11

19 not_x8 = 1 - x8

123

20 return x11 | (not_x11 & x10 & x9 & (x8 | (not_x8 & x7)))

21

22 def bit_sliced_binary_search(shares):

23 results = []

24 for bits in shares:

25 results.append(compress_s(bits))

26 return results

27

28 def main_algorithm(coefficient, q, num_shares):

29 k = math.ceil(math.log2(q))

30 shares = split_into_random_shares(coefficient, num_shares, q)

31 print("The shares are:", shares)

32 print("The sum of shares mod q is:", sum(shares) % q)

33

34 offset_shares = [(share + math.floor(q/4)) % q for share in shares]

35 print("The shares after offset:", offset_shares)

36

37 compressed_shares = []

38 for share in shares:

39 compressed_shares.append(offset_and_compress(share, q, k))

40

41 results = bit_sliced_binary_search(compressed_shares)

42 return results

43

44 coefficient = 2419

45 q = 3329

46 num_shares = 4

47 start = time.time()

48 result = main_algorithm(coefficient, q, num_shares)

49 end = time.time()

50 print("Time result:",end - start)

51 print("Bit sliced binary search result:", result)

A.2 Python Implementation of the Double and Check Algorithm as the Toy

Example

1 import numpy as np

2 import random

3 import math

4 import time

5

6 def split_into_random_shares(coefficient, num_shares, q):

7 shares = [random.randint(0, q) for _ in range(num_shares-1)]

8 last_share = (coefficient - sum(shares)) % q

9 shares.append(last_share)

10 return shares

124

11

12 def offset_share(share, q):

13 return (share + math.floor(q/4)) % q

14

15 def is_greater_than_half(share, q):

16 double_share = (2 * share) % q

17 return double_share != (2 * share)

18

19 def main_algorithm(coefficient, q, num_shares):

20 shares = split_into_random_shares(coefficient, num_shares, q)

21 print("The shares are:", shares)

22 print("The sum of shares mod q is:", sum(shares) % q)

23

24 offset_shares = [offset_share(share, q) for share in shares]

25 print("The offset shares are:", offset_shares)

26

27 results =

28 [is_greater_than_half(share, q) for share in offset_shares]

29 return results

30

31 coefficient = 2419

32 q = 3329

33 num_shares = 4

34 start = time.time()

35 result = main_algorithm(coefficient, q, num_shares)

36 end = time.time()

37 print("Time result:",end - start)

38 print("Whether shares are greater than original q/2:", result)

39

40 ***
41 The shares are: [678, 1162, 2406, 1502]

42 The sum of shares mod q is: 2419

43 The offset shares are: [1510, 1994, 3238, 2334]

44 Time result: 2.9802322387695312e-05

45 Result of whether offset shares are greater than original q/2:

46 [False, True, True, True]

47

48 ** Process exited - Return Code: 0 **
49 Press Enter to exit terminal

A.3 Python Implementation of the LUT Integration as the Toy Example

In this section, we will suggest an alternative way to perform a masked compression

function, with an integrated Look-Up-Table (LUP).

This code piece given below (create_lut()) is used to create a lookup table of

125

size 32 with entries of type int8 (8-bit integer), which stores the results of certain

bit-wise operations on the indices of the table.

A.3.1 Constructing the Look-Up-Table (LUT)

1 def create_lut():

2 lut = np.zeros(32, dtype=np.int8)

3 for i in range(32):

4 bits = [(i >> j) & 1 for j in range(4, -1, -1)]

5 x11, x10, x9, x8, x7 = bits

6 not_x11 = 1 if x11 == 0 else 0

7 not_x8 = 1 if x8 == 0 else 0

8 lut[i] = x11 ^ (not_x11 * x10 * x9 * (x8 ^ (not_x8 * x7)))

9 return lut

Notice that we choose to construct my table using the Compressqs function giving the

Algorithm 13 introduced by [14], but this can be constructed in any other ways. As

this LUT is constructed only one time before the actual compression algorithm starts,

there is a trade off between memory and run-time of the algorithm.

A.3.2 The Look-Up-Table (LUT)

Below, you will see the constructed table, with a corresponding index for each 32

entity.

1 5-bit: 00000 : Index: 0, Value: 0

2 5-bit: 00001 : Index: 1, Value: 0

3 5-bit: 00010 : Index: 2, Value: 0

4 5-bit: 00011 : Index: 3, Value: 0

5 5-bit: 00100 : Index: 4, Value: 0

6 5-bit: 00101 : Index: 5, Value: 0

7 5-bit: 00110 : Index: 6, Value: 0

8 5-bit: 00111 : Index: 7, Value: 0

9 5-bit: 01000 : Index: 8, Value: 0

10 5-bit: 01001 : Index: 9, Value: 0

11 5-bit: 01010 : Index: 10, Value: 0

12 5-bit: 01011 : Index: 11, Value: 0

13 5-bit: 01100 : Index: 12, Value: 0

14 5-bit: 01101 : Index: 13, Value: 1

15 5-bit: 01110 : Index: 14, Value: 1

126

16 5-bit: 01111 : Index: 15, Value: 1

17 5-bit: 10000 : Index: 16, Value: 1

18 5-bit: 10001 : Index: 17, Value: 1

19 5-bit: 10010 : Index: 18, Value: 1

20 5-bit: 10011 : Index: 19, Value: 1

21 5-bit: 10100 : Index: 20, Value: 1

22 5-bit: 10101 : Index: 21, Value: 1

23 5-bit: 10110 : Index: 22, Value: 1

24 5-bit: 10111 : Index: 23, Value: 1

25 5-bit: 11000 : Index: 24, Value: 1

26 5-bit: 11001 : Index: 25, Value: 1

27 5-bit: 11010 : Index: 26, Value: 1

28 5-bit: 11011 : Index: 27, Value: 1

29 5-bit: 11100 : Index: 28, Value: 1

30 5-bit: 11101 : Index: 29, Value: 1

31 5-bit: 11110 : Index: 30, Value: 1

32 5-bit: 11111 : Index: 31, Value: 1

A.3.3 Python Code of the Toy Example

Below, you will see the Python implementation of an integrated LUT.

1 import numpy as np

2 import random

3 import math

4 import time

5

6 def split_into_random_shares(coefficient, num_shares, q):

7 shares = [random.randint(0, q) for _ in range(num_shares-1)]

8 last_share = (coefficient - sum(shares)) % q

9 shares.append(last_share)

10 return shares

11

12 def offset_and_compress(share, q):

13 offset_share = (share + math.floor(q/4)) % q

14 return offset_share

15

16 def create_lut():

17 lut = np.zeros(32, dtype=np.int8)

18 for i in range(32):

19 bits = [(i >> j) & 1 for j in range(4, -1, -1)]

20 x11, x10, x9, x8, x7 = bits

21 not_x11 = 1 if x11 == 0 else 0

22 not_x8 = 1 if x8 == 0 else 0

23 lut[i] = x11 ^ (not_x11 * x10 * x9 * (x8 ^ (not_x8 * x7)))

24 return lut

25

127

26 def lut_based_comparison(shares, lut):

27 results = []

28 for bits in shares:

29 index = (bits >> 7) & 0x1F # Extract the 5-bit index

30 results.append(lut[index])

31 return results

32

33 def main_algorithm(coefficient, q, num_shares):

34 shares =

35 split_into_random_shares(coefficient, num_shares, q)

36 print("The shares are:", shares)

37 print("The sum of shares mod q is:", sum(shares) % q)

38

39 compressed_shares =

40 [offset_and_compress(share, q) for share in shares]

41 print("Shares after shifting q/4 are:", compressed_shares)

42

43 results = lut_based_comparison(compressed_shares, lut)

44 return results

45

46 coefficient = 2419

47 q = 3329

48 num_shares = 4

49 lut = create_lut() #assume that it is pre-computed.

50

51 start = time.time()

52 result = main_algorithm(coefficient, q, num_shares)

53 end = time.time()

54 print("Time result:", end - start)

55 print("Bit sliced binary search result:", result)

128

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Introduction to Lattice-based Cryptography
	Introductory Definitions and Theorems for Lattice-based Cryptography
	Lattice-based Hard Problems
	Short Integer Solution (SIS) Hard Problem
	Learning With Error (LWE) Hard Problem
	Matrix Representation of the Learning-With-Error (LWE) Problem

	The Ring Learning With Error Problem (Ring-LWE)
	Search Ring Learning With Error Problem
	Decision Ring Learning With Error Problem
	Matrix Representation of the Ring Learning With Error Problem

	Module Learning with Errors Problem (Module-LWE)
	The Hardness of the Module Learning with Errors
	Matrix Representation of the Module-LWE

	Technical Background
	Indistinguishability Under Chosen Plaintext Attacks (IND-CPA)
	Indistinguishability Under (Adaptive) Chosen Ciphertext Attacks (IND-CCA)
	Masking: Dividing a Sensitive Value into Uniformly Selected Shares
	Need for Masking
	Circuits and Gadgets They Are Working on
	Arithmetic Encoding of a Sensitive Variable x in Z q
	A Toy Example for an Arithmetic Encoding

	Boolean Encoding of a Sensitive Variable x in Z 2 to k
	A Toy Example for Boolean Encoding of a Sensitive Variable x in Z 2 to the power of k

	Security Definitions for Shared Implementations
	t-NI Security Notion
	t-SNI Security Notion

	CRYSYALS-Kyber Key Encapsulation Mechanism (KEM)
	Parameters to be Used
	Notations and Background Knowledge for the CPAKEM and CCAKEM Secure CRYSTAL-Kyber Algorithms
	Byte and Byte Arrays
	The Polynomial Ring The Polynomial Ring R q Represented as Z q[X]/(X to the power of n + 1)
	Modular Reduction
	Rounding
	Compression and Decompression Functions
	A Toy Example for the Compression Function
	Motivations Behind Compression and Decompression Functions

	Encoding and Decoding Functions
	Symmetric Primitives
	Number-Theoretic Transform (NTT)
	The 256th Roots of Unity for the Defining Polynomial X^256 + 1
	How to Prove that the Defining Polynomial Has 256th Roots of Unity?
	Defining Polynomial X^256 + 1 Factors into 128 Quadratic Polynomials
	Performing NTT on Polynomial f in R_q: Representation as 128 First-Degree Polynomials
	Efficient Multiplication of Two Polynomails with NTT.

	Uniform Sampling From the Ring of Polynomials R_q
	Sampling from a Binomial Distribution

	Kyber.CPAPKE.KeyGen() Algorithm
	Length of the Secret and Public Keys

	Kyber.CPAPKE.Enc(pk, m, r)
	Kyber.CPAPKE.Dec(c, sk)
	Kyber.CCAKEM.KeyGen()
	Length of the Secret and Public Keys

	Kyber.CCAKEM.Encaps(pk, m, r)
	Kyber.CCAKEM.Enc(pk)
	Kyber.CCAKEM.Decaps(c, sk)
	Explanation of the Length of Certain Algorithmic Components
	Leakage Risk Point of the Algorithm

	Deep Dive into the Higher-Order One-Bit Compression Algorithm
	Introduction to the Algorithm
	Unmasked Compression in Kyber.CPAPKE.Dec() Algorithm
	Toy Example for Unmasked Compression Function

	Trivial Masking Approach for Algorithms that Uses Power-of-Two Modulo Like Saber
	Higher-Order One-Bit Compression
	The Case 1: Where the First Bit is Set to 1 (x11 = 1)
	The Case 2: Where (x11 = 0, x10 = 0)
	The Case 3: Where (x11 = 0, x10 = 1, x9 = 0)
	The Case 4: Where (x11 = 0, x10 = 1, x9 = 1, x8 = 1)
	The Case 5: Where (x10 = 1, x9 = 1, x8 = 0, x7 = 1)

	Probing Security of the Algorithm 13
	Gadgets: The Fundamental Units in Cryptographic Systems
	Gadgets Employed in the Higher-Order One-Bit Compression Algorithm 13
	t-SNI Security of the Algorithm 13
	Proof of the Theorem 1

	Alternative Masking
	Introduction
	The Double and Check Compression Method
	Pseudo-code of the Double and Check Algorithm
	Toy Example for the Double and Check Algorithm
	Final Notes On the Double and Check Method

	Look-Up-Table (LUT) Based Compression Algorithm (32 Entities)
	Pseudo-code of the Look-Up-Table (LUT) Based Compression Algorithm
	Toy Example for the Look-Up-Table (LUT) Based Offset and Check Algorithm
	Notes On the Look-Up-Table-based Approach

	Potential Prime Numbers for Non LUT-Based Compression Functions
	Masked Compress Functions for Potential Prime Numbers

	Conclusion
	REFERENCES
	APPENDICES
	Python Implementation
	Python Implementation of the Algorithm 13
	Python Implementation of the Double and Check Algorithm as the Toy Example
	Python Implementation of the LUT Integration as the Toy Example
	Constructing the Look-Up-Table (LUT)
	The Look-Up-Table (LUT)
	Python Code of the Toy Example

