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ABSTRACT

MODELING EXCHANGE RATE VOLATILITY USING ARMA-GARCH
APROACH WITH NON-GAUSSIAN DISTRIBUTION

GİRGİN, YEŞİM

M.S., Department of Financial Mathematics

Supervisor : Prof. Dr. A.Sevtap Kestel

Co-Supervisor : Assoc. Prof. Dr. Özlem Türker Bayrak

September 2023, 84 pages

Modeling exchange rate volatility is a major concern for researchers, investors, and
policymakers since it has a wide-ranging impact on the country’s economy, includ-
ing inflation, interest, investment, production, and foreign commerce [46]. Therefore,
the primary goal of this research is to model the volatility of the exchange rate. For
this purpose, the generalized autoregressive conditional heteroscedastic techniques
comprising of symmetrical (GARCH) and asymmetrical (EGARCH, TGARCH, and
APARCH) models are used in this study. Furthermore, aside from the studies con-
ducted in the Turkish literature on that matter regarding models’ distribution, various
distributions which consist of skew normal, skew student t, and skew GED along with
normal, student t, GED distributions are utilized for the error distribution in GARCH
models.The data is taken from CBRT’s closing prices in US dollars consisting of the
period of June 2001 to June 2023, and it is divided into 4 sub-periods according to
Chow Test results. The sub-periods as follows: from June 2001 to July 2013 (Period
1) , from July 2013 to October 2016 (Period 2), from October 2016 to February 2020
(Period 3), and from February 2020 to June 2023 (Period 4).

Convenient models for these periods are put forward based on model selection criteria
such as Akaike (AIC), Schwarz (SC), and Log-Likelihood. In the end of the study, the
results concluded as follows: ARMA(4,3)-EGARCH(1,1) with skew t for the entire
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data, ARMA(1,0)-TGARCH (1,1) with skew t distribution for Period 1, EGARCH
(1,1) with skew t distribution for Period 2, ARMA(0,1)-GARCH (1,1) with t distribu-
tion and ARMA(0,1)-TGARCH (1,1) with skew GED distribution for Period 3, and
ARMA(1,0)-EGARCH (1,1) with t distribution for Period 4 are the best-fitting model
among the proposed models according to the selection criteria.

Keywords: Volatility, EGARCH, TGARCH, APARCH, Skew Distributions
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ÖZ

GAUSSIAN OLMAYAN DAĞILIMLI ARMA-GARCH YAKLAŞIMI İLE DÖVİZ
KURU OYNAKLIĞININ MODELLENMESİ

GİRGİN, YEŞİM

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. A.Sevtap Kestel

Ortak Tez Yöneticisi : Doç. Dr. Özlem Türker Bayrak

Eylül 2023, 84 sayfa

Ülke ekonomisini enflasyon, faiz, yatırım, üretim, dış ticaret gibi birçok yolla etkile-
diği yadsınamaz olduğundan, döviz kuru oynaklığının modellenmesi araştırmacı, ya-
tırımcı ve politika yapıcıların temel kaygısıdır [46]. Dolayısıyla, bu çalışmanın temel
amacı döviz kuru oynaklığının modellenmesidir. Bunu sağlamak için bu çalışmada
simetrik (GARCH) ve asimetrik (EGARCH, TGARCH ve APARCH) modellerden
oluşan genelleştirilmiş otoregresif koşullu değişen varyans yaklaşımları kullanılmış-
tır. Ayrıca bu çalışmada, Türk literatüründe döviz kurlarının dağılımları konusunda
yapılan çalışmalardan farklı olarak, GARCH modellerindeki hata dağılımları için çar-
pık normal, çarpık t ve çarpık GED, normal, t, GED dağılımları kullanılmıştır. Veriler,
Haziran 2001-Haziran 2023 dönemini kapsayan TCMB ABD doları cinsinden kapa-
nış fiyatlarından alınmakta olup, Chow Testi sonuçlarına göre 4 alt döneme ayrılmış-
tır. Alt dönemler şu şekildedir: Haziran 2001 - Temmuz 2013 (Dönem 1), Temmuz
2013 - Ekim 2016 (Dönem 2), Ekim 2016 - Şubat 2020 (Dönem 3) ve Şubat 2020 -
Haziran 2023 (Dönem 4).

Bu çalışmada, Akaike (AIC), Schwarz (SC), Log-Likelihood gibi model seçim kri-
terleri esas alınarak bu dönemlere uygun modeller ortaya konulmaktadır. Çalışma
sonunda şu sonuçlara ulaşılmıştır: Tüm veri seti için çarpık t dağılımlı ARMA(4,3)-
EGARCH(1,1), Dönem 1 için çarpık t dağılımlı ARMA(1,0)-TGARCH (1,1), Dönem
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2 için t dağılımlı ARMA(0,0)-GARCH (1,1) ve t dağılımlı ARMA(0,0)-TGARCH
(1,1), Dönem 3 için t dağılımlı ARMA(0,1)-GARCH (1,1) ve çarpık GED dağılımlı
ARMA(0,1)-TGARCH (1,1) ve Dönem 4 için t dağılımlı ARMA(1,0)-EGARCH
(1,1) seçim kriterlerine göre önerilen modeller arasında en uygun modellerdir.

Anahtar Kelimeler: Oynaklık, EGARCH, TGARCH, APARCH, Çarpık Dağılımlar
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CHAPTER 1

INTRODUCTION

It is well known to say that financial market behavior is almost uncertain. It has ups

and downs, whose fluctuations can be from the market’s state. Tranquil and volatile

states are usually referred to as explaining the movements of a financial asset’s return,

and the existence of these states leads financial institutions and individual investors

to deal with risk issues, which is another research area. Financial risk management

has gained more importance in recent decades. Additionally, it is well known that the

value of a financial asset is determined with respect to its level of risk.

Consequently, financial institutions, investors as individuals, academia, etc. are all

interested in the analysis of financial time series that addresses the theory and practice

of asset valuation throughout time. Tsay [51] mentions that although it is an extremely

empirical discipline, theory serves as the groundwork for inference-making in other

scientific disciplines as well. Thus, it is allowed to state that statistical theory and

procedures constitute the analysis’s core.

As previously stated, the rate of return on a financial asset cannot be predicted pre-

cisely. However, its volatility may be estimated, which is a significant factor in the

financial field. It is known that basic assumptions are made in the classical analysis

of the financial time series, namely, normality and linearity of the log-returns of the

financial time series. However, Arlt [7] remarks that log return distributions are often

skewed and more peaked than normal distributions, and linear models are unable to

adequately capture these time series’ distinct characteristics. As a result of this, so

much research has been done on these characteristics of the financial series, more

specifically, on the exchange rate series.
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The bond market, stock market, commodity market, and exchange market are the four

segments that constitute the financial market. In fact, among all financial markets, it

can be said that the foreign exchange market has the largest volume of transactions.

Tokgoz [50] defines the exchange market as a financial market where all foreign cur-

rencies can be sold and bought except the local currency, i.e., it is a market where the

foreign currency can be changed with the local currency. Hence, one can realize its

importance in terms of future economic activities.

Exchange rates are regulated by supply and demand, and its impact on the country’s

economy is apparent in many ways, including inflation, interest, investment, produc-

tion, and foreign trade [46]. Moreover, Ozdemir [27] points out the fact that keeping

the currency rate stable can lead to economic stability for the country. Thus, one of

the economy’s most important indicators is the currency rate.

Different countries applied different exchange rate regimes over the years. The Bret-

ton Woods Agreement, which was established in July 1944, fixed the currency rates

among the major industrial nations [32]. This system is called fixed Peg (also known

as "hard peg" occasionally). However, in the 1970s, it was collapsed, and the ex-

change rate system was replaced by a more flexible system. This system is called a

flexible exchange rate. In today’s world, the forces of the market, taking into account

supply and demand, set the pricing. Moreover, other exchange rate regimes go be-

tween those two systems in accordance with their own independence levels. From the

least flexibility to the most, the exchange rate regimes are briefly stated as follows:

(i) Monetary union which represents the use of a common currency in an area such

as the Eurozone.

(ii) It has no separate legal tender, i.e., in this regime, another country’s currency is

used.

(iii) The currency board is a formal agreement between more than one currency on

a fixed exchange rate.

(iv) The target zone arrangement which implies the exchange rate is permitted to

vary within specific ranges.
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(v) The crawling Peg signifying that the currency rate is updated on a regular basis.

(vi) Managed (dirty) float denotes a flexible exchange rate system with a certain

amount of government interference.

(vii) Free (clean) float implying that the exchange rate is regulated by the market.

An important feature of the exchange rate is its volatility, which indicates a security’s

variation around its mean or average return over a time [53], i.e it demonstrates how

widely values of the security vary from the average its value, and it is estimated from

the standard deviations. Besides, It is know as a significant measure of the risk of

investment in finance since the magnitude of volatility affects the possibility of a gain

or loss’s magnitude in the short term [36].Thus, many researchers seek to construct

an appropriate, well-built, and plausible model for it.

The effects of fluctuations in exchange rates can be seen across a wide range of sec-

tors, including international trade, global money flows, production, and investment

[56]. For instance, due to the depreciation (appreciation) of the currency brought on

by either domestic or international shocks, undeveloped and developing nations are

more exposed to periods of significant exchange rate volatility [4].

Conversely, some factors have an impact on exchange rate volatility, such as capital

flows, inflation, and interest rates across nations, according to Saglam and Basar [46].

Abdallah [3], however, states that there is no agreement in the literature as to what

causes exchange rate volatility, but macroeconomic factors may generally account for

a major portion of it.

1.1 Stylized Facts about Exchange Rate Volatility

Foreign exchange rates are shaped by nonlinear and non-stationary behavior. Some

of the regularities for exchange rate volatility which can be regarded as stylized facts

because of the significant amount of empirical evidence are as follows:

(i) It is important to note that the standardized fourth moment of the normal dis-

tribution is three, but the kurtosis of the distribution of exchange rate return is

3



generally bigger than three, meaning that it has fatter tails. This feature also

means excess kurtosis.

(ii) Taking into account a financial time series, heteroscedastic behavior often shows

itself in volatility clustering. One can observe that there are some periods in the

series whose variance is high, whereas some others have low volatility. Re-

garding this issue, Mandelbrot [42] mentioned that "large changes tend to be

followed by large changes-of either sign-and small changes tend to be followed

by small changes". Hsieh[38] also finds that the mean and variance in an em-

pirical experiment on daily foreign exchange rates vary over time. Therefore,

it is crucial to understand that the variance in financial data could vary rather

than remains constant.

(iii) Observing high persistence, also known as long memory, which is the long-

lasting effect of shocks on volatility, is a common phenomenon in the financial

time series. Therefore, it is crucial for policymakers, in the event of shocks, to

take precise action in accordance with their level of persistence [13].

(iv) According to many studies, such as Black’s [15] study, volatility and price

changes have a negative correlation. It means that, when compared to positive

shocks of the same magnitude, volatility is greater after negative shocks. This

was also concluded in the study of evidence of leverage effects and volatil-

ity spillover among exchange rates of selected emerging and growth-leading

economies by Panda et al [40].

(v) Abdallah [3] remarks that large fluctuations in one currency are sometimes

matched by large changes in another when comparing exchange rate returns

for various currencies. Therefore, multivariate models in different markets are

suggested when modeling cross-correlations for this regularity.

(vi) Weekends and holidays can affect volatility. The reason is that the information

that is gathered on non-trading days accumulates and has an impact on volatility

on trading days.
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1.2 Objective of The Thesis

This thesis focuses on modeling the USD/TL exchange rate because of its importance

emphasized in the previous sections. It is seen that different GARCH models are

applied in various periods when similar studies are examined [45, 20, 48, 27, 46, 34,

56, 57]. In addition, it has been observed that the Normal and t distributions are

utilized as distributions in the literature, and the application of skewed distributions is

recent. Besides, there has not been a study that compares all models under different

exchange rate distributions. Therefore, in this thesis, GARCH, EGARCH, TGARCH,

and APARCH models are utilized under normal, skewed normal, t, skewed t, GED,

and skewed GED, and it is aimed to find the best model according to AIC, BIC, and

log-likelihood criteria. In line with the results obtained, this study is expected to

contribute to understanding the volatility structure of the exchange rate by analyzing

it accurately. Moreover, it may help forecast better the volatility.

The study is organized as follows: Chapter 2 summarizes the idea of the GARCH

models as well as the literature regarding the studies and applications of GARCH

models and their performance on the matter of modeling exchange rate volatility.

Subsequently, Chapter 3 presents preliminary informations, proposed GARCH mod-

els, the distributions, and their features. Chapter 4 examines the USD/TRY exchange

rate used in the study. Besides, it compares the models and provides final remarks

and outcomes. Finally, Chapter 5 finalizes the thesis with concluding comments.
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CHAPTER 2

LITERATURE REVIEW

For modeling the financial time series, firstly Engle [28] suggests the autoregressive

conditional heteroscedasticity (ARCH) model, introducing it as a mean-zero, serially

uncorrelated process with non-constant variance conditional on the past but constant

unconditional variance. This model also displays persistence of the volatility shocks

over time through its autoregressive part, so providing the variance as a function of

past error makes it a desirable model. Although this idea has found many applications,

ARCH has the drawback of having so many parameters and a long lag structure that

leads to violations of the non-negative coefficients.

Afterwards, to get rid of these drawbacks, Bollerslev [16] introduces the generalized

autoregressive conditional heteroscedasticity (GARCH) model offering a consider-

ably more flexible lag structure with much fewer parameters than the ARCH model.

Furthermore, these models have been developed, employed, and utilized in a wide

range of fields, including the modeling and forecasting of exchange rate volatility

[43, 41, 47, 22, 3].

Weiss [55] introduces a heteroscedastic model which can be reduced to the ARCH

model and gives the asymptotic properties of the estimates as well as the sufficient

conditions for them to hold.

Additionally, Bollerslev et al. [17, 18], Bera and Higgins [14], and others focus on

a wide range of proposed ARCH processes in their surveys. For instance, Engle and

Bollerslev proposed integrated variance, often known as IGARCH, in 1986 [11]. The

Exponential GARCH (EGARCH) model, proposed by Nelson [44], aims to reflect
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the asymmetric effects. The Asymmetric Power ARCH (APARCH) model, which

was developed by Ding et al. [25], is used for determining asymmetric adjustment,

and lastly, Glosten et al. [33] introduce the GJR-ARCH model.

Regarding the parameter estimation of the models, Engle [28] suggests a two-step

procedure, and it is generally seen as Maximum Likelihood Estimation (MLE) as-

suming a conditional normal distribution.

Furthermore, Fiorentini et al. [31] analyze the fact that maximum likelihood in

GARCH estimation typically depends on a numerical approximation to the log-

likelihood derivatives because a precise analytic differentiation is just time-consuming.

Then they show that this is not the case in their study. On the other hand, when deal-

ing with the analytical solution of maximization of the likelihood function, it is clear

that the Berndt–Hall–Hall–Hausman (BHHH) algorithm has some advantages with

regard to other numerical optimization techniques [8]. Besides this, some methods

are proposed. For example, Hall and Yao [35] develop percentile-t, subsample boot-

strap approximations to estimator distributions.

2.1 Studies on Exchange Rate Modeling

Normal (Gaussian) distribution is considered for the ARCH model’s disturbance part

in the beginning. However, various distributions are observed through empirical ex-

periments since financial time series are often found to be very heavy-tailed and typ-

ically leptokurtic [16], [18]. In addition, there might be a case of having no informa-

tion on error distribution as well. Thus, semiparametric ARCH-GARCH models are

proposed for this problem [29].

Besides modifications to the models, Milhøj [43] remarks that when modeling vari-

ance in the daily exchange rate, using a Gaussian conditional distribution is not

severely contradicted by evidence. Moreover, in the study carried out by Bollerslev

and Wooldridge in 1992 [19], where a conditional Gaussian function was used on a

quasi-likelihood estimator, even when the true distribution is fat-tailed, the estimation

of the GARCH model with a normal distribution is viewed as consistent.
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On the contrary, Bollerslev [16] notes that taking account of the true distribution in

GARCH models could lead to results that are more efficient. Moreover, to cope with

this issue, he utilizes the student’s t-distribution for the foreign exchange rates. Af-

ter that, Nelson [44] used the General Error Distribution (GED) with the EGARCH

model. On top of that, Hsieh [39] modeling heteroscedasticity in daily foreign ex-

change rates gives estimates for ARCH and GARCH models in five foreign curren-

cies, and conclude that non-normal densities such as GED, student-t, the normal-

lognormal, and normal-Poisson with the EGARCH model fitted very well, as an ex-

ample, for the Canadian dollar.

Nonetheless, Calzolari et al. [21] argue that the widely used Student’s t-distribution

and GED are problematic and propose the a-stable distribution, but the second mo-

ment of the a-stable distribution does not exist in most cases, so using this distribution

in GARCH models will result in problematic interpretation. Moreover, Feng and Shi

[30] employ the tempered stable distribution for the GARCH model and maintain that

it surpasses both the Gaussian and the commonly used Student’s t and GED.

On exchange rate modeling, the asymmetric volatility models (TGARCH, APARCH,

GJR-GARCH, and EGARCH) are utilized in the literature such as the study of Long-

more et al. [41]. As a result of the study, they remark that shocks to the exchange rate

have a long memory, which means they last for a very long time, i.e., the exchange

rate shows persistence. This persistence, asymmetry effect, and leverage effect can

also be detected in the study of Yoon and Lee [47], who conduct the research on the

daily won/dollar exchange rate regarding the asymmetry and volatility of exchange

rates. Therefore, they use the TARCH model, which explains the asymmetry of the

conditional variance about shocks, and the EGARCH model, which makes the condi-

tional variance sign positive irrespective of the sign of the parameter in its equation,

along with the GARCH model.

Jonathan Chipili’s [22] work seeks to ascertain what causes the volatility. Thus, he

uses the actual and nominal exchange rates of the key trading partners’ currencies

against the Zambian Kwacha. GARCH (1, 1), TGARCH (1,1), and EGARCH (1,1)

are employed. The result concludes that EGARCH model gives the best fit to the

data. Moreover, it is noted that different conditional volatility dynamics define the
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analyzed exchange rates. Therefore, he recommends that exploring the other GARCH

specifications is also necessary instead of implementing a standard GARCH model if

a large sample of currencies is taken into account.

Moreover, the daily returns of the currency rate series for 19 Arab countries are ana-

lyzed in Abdallah and Zakaria’s article [3]. As a result of this study, it is found that

GARCH models (symmetric and asymmetric) can sufficiently model volatility and

capture the leverage effect and volatility clustering.

2.2 Studies on Turkish Exchange Rate Modeling

In Turkey, as in other countries, there have been several research on currency rates

and their volatility using GARCH models. Aysoy et al. [9] conduct an empirical

study on daily variations in the volatility- and day-of-week-effect on the Turkish for-

eign exchange market for the period from January 4, 1988, to December 29, 1995,

employing the GARCH model. They conclude, aside from the periods of instability

in 1988 and the financial crisis in 1994, there is little variation in Turkish daily for-

eign currency prices. Moreover, they demonstrate that the foreign exchange returns

are subject to seasonal impacts, namely day-of-the-week effect, and have an ARCH

effect as long as their model is not misspecified.

Agcaer [5] investigates as a whole and separately the impact of CBRT auctions and di-

rect interventions in foreign exchange markets on the level and volatility of exchange

rates. Then, he considers the daily data for the period February 2001 to November

2003 and employs the EGARCH model, which also provides information regarding

the different effects of foreign exchange buying and selling transactions. As a result

of this analysis, a positive effect is generally observed on the level of exchange rates

through CBRT’s auctions and direct intervention transactions.

Similar to Agcaer [5], Ozturk [45] expresses concern about the decisions and mea-

sures taken by CBRT affecting the level and volatility of the exchange rate. She also

aims to show whether the Student-t distribution has greater explanatory power than

the normal distribution or not. As a result of the empirical study, the leptokurtic prop-

erty could not be captured by the Student-t distribution more successfully than the
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normal distribution. Another note from this study is that there is a considerably high

leverage effect. In this regard, a huge difference between the GARCH and EGARCH

variance equations is observed and when the volume of spot market trade is taken into

account, the EGARCH model is found to produce significantly better results than the

GARCH model does.

Like in the above articles, symmetric and asymmetric models were employed for

modeling the volatility of the exchange rate return of the Organization for Economic

Co-operation and Development (OECD) countries to find the best model for it in

Caglayan and Dayoglu’s article [20] for the period January 1993 to December 2006.

On top of that, they aimed to find the best distribution for the data, which is character-

ized by excess kurtosis and fat tails. The results suggest that asymmetric conditional

variance models with Student-t or GED distributions perform better for appropriate

models.

Soytas et al. [48] deal with the daily TRY/USD, TRY/EUR, and TRY/GBP series for

the period April 2002 to March 2009 in Turkish foreign exchange markets through

moving average models, autoregression models, and ARCH models. It is observed

that the GJR-GARCH (1, 1) model for the USD and GBP series and the EGARCH

(1, 1) model for the EUR series performed better under the RMSE criteria. For the

USD, GBP, and EUR series, AR models had the best performances based on the MAE

criterion. Lastly, it is found that the volatility forecasting models’ rankings were not

much impacted by the financial crisis, but their performances tend to converge on the

model that performed the worst during the crisis.

Another study concerning this issue belongs to Ozdemir [27], who aims to model

the volatility of the exchange rate through the data set obtained by using the CBRT’s

daily closing prices in US dollars from January 2, 2009, to January 25, 2014. The

EGARCH (1, 1), TGARCH (1, 1), and APARCH (1, 1) models are utilized in the

study together with the symmetrical models ARCH (1) and GARCH (1, 1). In order

to more accurately describe the thick-tailed aspect of the series, each model is also

modeled under the Student-t and GED distributions, which are different from the nor-

mal distribution since the kurtosis coefficient was larger than 3 in the models under

consideration. As the other studies resulted, asymmetric models provided the best re-
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sults according to AIC, SC, and log-likelihood criteria. Lastly, as a result of empirical

study, the TGARCH (1, 1) model under the student-t distribution is found to be the

best model.

Saglam et al. [46] focus on the best volatility forecasting models for time series in

the US dollars, British pounds, and euro using the ARCH, GARCH, EGARCH, and

TARCH approaches. For this study, daily USD, GBP, and EUR observations be-

tween January 1, 2010 and November 31, 2015 are obtained from the Central Bank’s

Electronic Data Delivery System. They note that the exchange rates are shown to be

impacted by the bad news in the market since market participants overreact to the

bad news than the good news. Additionally, at the end of the empirical study, they

concluded that EGARCH (1, 0), TGARCH (1), and ARCH (2) are the best models

for the USD, EUR, and GBP, respectively.

Guler [34] carries out additional research on this subject. The indicative foreign

currency-selling rate in Turkish Lira, which is equal to 1 US dollar, is collected for the

study’s exchange rate data. The data covers the dates January 1, 2006, through De-

cember 30, 2016, excluding weekends and federal holidays. To assess the exchange

rate return volatility structure and to find out whether the volatility is influenced by

return shocks and overnight interest rates, the GARCH (2, 1) and TARCH (2, 1)

models were employed. Consequently, the TARCH (2, 1) model provided the best

performance in terms of modeling the volatility of the exchange rate return according

to the Akaike and Schwarz information criteria.

As a recent survey regarding the exchange rate volatility on GARCH Models under

skew distribution, the study of Yıldırım et al. [57] can be given. The daily data is

taken, and it covers the period of January 2016 to December 2018. ARMA-GARCH

and ARMA-GARCH (M) models under t and skew t distributions are used. Results,

for modeling the USD/TRY exchange rate, show that ARMA-GARCH models out-

perform ARMA-GARCH (M). Additionally, ARMA-NAGARCH model with skewed

student t distribution is the best-fitted model, and ARMA-EGARCH model with stu-

dent t distribution is the second best.

In summary, using different distributions in various volatility models for the exchange

rate return is seen such as in the studies of Ozturk [45], Caglayan et al. [20], Ozdemir
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[27], and lastly Yıldırım et al. [57] which are similar to the purpose of this thesis.

However, in Turkish literature on the modeling volatility of the exchange rate return,

it is not so common to utilize the models with skew distributions. Hence, in this study,

skew normal, skew student t, and skew GED, along with normal, student t, and GED

distributions, are used to model the volatility of the exchange rate return.
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CHAPTER 3

METHODOLOGY

In this chapter, the modeling strategy and the corresponding methodology that are

used in the analysis are discussed briefly. The first step of the modeling is investi-

gating the data anomalies and investigating the stationarity of the series. In the liter-

ature, many stationarity tests are suggested. The most commonly used ones are the

Augmented Dickey-Fuller (ADF) where the null hypothesis that a time series sample

contains a unit root or the series is non-stationary, and the Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) where the null hypothesis that a series is stationary. So, they

are employed in Chapter 4. Based on the test results, appropriate transformation is

applied to make the series stationary-like differencing. Furthermore, based on the au-

tocorrelogram (ACF) and partial autocorrelogram (PACF) functions, and appropriate

ARMA model is fitted for the mean of the data.

The model should be revised until the model residuals become serially uncorrelated

which can be tested by the Ljung-Box Q test where the null hypothesis is that a series

of residuals shows no autocorrelation for a certain number of lags, and the test statistic

is:

Q(l) = k(k + 2)
l∑

j=1

c2j
k − j

(3.1)

where l is the time lag, k is the lenght of the series, and c is the accumulated sample

autocorrelations. Thus, if the test statistic which chi-square distributed has a signifi-

cant p-value, the null hypothesis is rejected.
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After fitting an appropriate mean model, the residuals are tested for the ARCH effect

by the ARCH-LM test, where the null hypothesis is that a series of residuals show

no ARCH effect and the test statistic is the standard F statistic used for regression

on squared residual. If an ARCH effect is found, then it is modeled by one of the

volatility models described through the Section 3.1. The model is revised until the

residuals become uncorrelated.

Both in the mean and volatility modeling stages, the best model can be determined

via AIC, BIC, and Log-Likelihood Criteria given in Section 3.2. The flow chart of

the model fitting process can be found in Figure 3.1.

Besides, since financial time series hardly appear to be normal as demonstrated in

many applications, normal, skew normal, t, skew t, GED, and skew GED distributions

used in this study are discussed in Section 3.3.
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Figure 3.1: Flowchart of the Procedure to Construct ARMA-GARCH Models
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3.1 Volatility Models

Engle [28] mentions that allowing for the conditional mean leads to a significant

improvement in forecasts resulting from time series models. Consider the first-order

autoregression, i.e., AR (1) process is expressed as

yt = γyt−1 + ϵt (3.2)

where yt is a random variable at time t, ϵt is a white noise with V (ϵt) = σ2. According

to Equation 3.2, the unconditional mean is zero, and the conditional mean, which is a

forecast of today’s value based on prior data is given by

E(yt) = γyt−1. (3.3)

Thus, this makes the conditional mean attractive to use as a forecasting tool. Further-

more, it is crucial to consider better forecasts and forecast intervals. The variance is

useful to consider in this scenario. Although, the variance is treated as unconditional

in traditional econometric methods, conditional variance, like conditional mean, can

be a better tool when previous data is utilized to forecast variance.

The conditional variance is:

Vt−1(yt) = Et−1((yt − Et−1(yt))
2)

= Et−1((yt − γ(yt))
2)

= Et−1(ϵ
2
t−1)

= σ2
t

(3.4)

where σ2
t is the conditional variance of ϵt. Besides, if white noise is homoscedastic

then the result becomes

Vt−1(yt) = E(σ2
t ) = σ2. (3.5)

The unconditional variance is:
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V (yt) = V (γyt−1 + ϵt)

= γ2v(YT ) + V (ϵt)

=
σ2

(1− γ2)
.

(3.6)

As 1
(1−γ2)

> 1, the unconditional variance is clearly bigger than the average con-

ditional variance. On top of that, the realized variation in financial time series is

frequently different from the average conditional variance. Thus, the results obtained

in the research undertaken are likely to be incorrect, as indicated by the disparity

described above.

Due to the importance of conditional volatility modeling, various models are con-

structed. For instance,

yt = ϵtxt−1 (3.7)

where V (ϵt) = σ2. However, the problem with the above model is that the conditional

variance of its error is dependent on only one exogenous variable, x, and it must be

determined what causes the variance to change. Thus, the other model 3.8 is

yt = ϵtyt−1. (3.8)

It leads to the unconditional variance of its error being either zero or infinity. There-

upon, Engle (1982) introduced ARCH model to have a more attractive one.

3.1.1 ARCH(p) Model

This model was first used for modeling the variance of inflation observations in Eng-

land. ARCH process permits the volatility to change over time depending on the past

error terms, and it keeps the unconditional variance constant. The standard ARCH(p)

model is expressed as follows:

Consider yt = ϵth
1
2
t where V (ϵt) = 1 and assume yt|ψt−1 ∼ N (0, ht), ARCH model

19



is given by

ht = α0 + α1y
2
t−1 + ...+ αpy

2
p−1

= α0 + Σp
i=1αiϵ

2
t−i

= α0 + α1(L)ϵ
2
t

(3.9)

where ψt−1 is the information set available at time t, p is the order of the ARCH

process, α = (α0, α1, . . . , αp) is a vector of unknown parameters, ht is σ2
t , and L is

the lag operator.

For example, ARCH (1) model is,

σ2
t = ht = α0 + α1ϵ

2
t−1. (3.10)

For this process, the constraints α0 ≥ 0 and α1 ≥ 0 are imposed to avoid nega-

tive variance. If analyzing the error term process further, the orthogonality of it is

observed, meaning that

E(ϵt|ϵt−1) = 0, t > 1. (3.11)

Consequently, the errors that are serially uncorrelated. Moreover, they are not inde-

pendent because they are linked by their second moment.

This ARCH(p) model has a number of flaws. Firstly, the given rule restricts coef-

ficient " α", which shows that it is not so flexible when it comes to the parameter.

Secondly, the model squares the past periods, resulting in the same volatility reaction

for both negative and positive shocks, i.e., not showing the leverage effects. Thirdly,

ARCH models react slowly to changes in shocks. Finally, the parameters of ARCH(p)

are not easily estimated. The reason is that a large number of lagged squared error

terms in the conditional variance have a tendency to be significant when determin-

ing the order of the ARCH process. These factors lead researcher to find or modify

ARCH type models.
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3.1.2 GARCH(p, q) Model

Due to the flaws of ARCH model mentioned in 3.1.1, of the ARCH model, general-

ized ARCH model (GARCH) is introduced by Bollerslev [16]. The GARCH (p, q)

model is expressed as

ht = α0 + Σp
i=1αiϵ

2
t−i + Σq

j=1βjh
2
t−j

= α0 + α1(L)ϵ
2
t + β1(L)ht

(3.12)

where p ≥ 0, q ≥ 0, α=(α0, α1, . . . , αp) and β = (β1, . . . , βq) is a vector of unknown

parameters, and α, β ≥ 0.

Therefore, this model shows two distributed lags. One is to capture high frequency

impacts on preceding squared residuals, while the other is to capture longer term

impact on lagged variance itself. For illustrative purposes, GARCH (1, 1) model is

shown by

σ2
t = ht = α0 + α1ϵ

2
t−1 + β1ht−1. (3.13)

The unconditional variance of the GARCH model is

σ2 =
α0

1− α1 − β1
. (3.14)

Through this adjustment, if it is defined, one can conclude that

Σ
max(p,q)
i=1 (αi + βi) < 1 (3.15)

which means that the conditional variance changes over time, and unconditional vari-

ance becomes finite. That means covariance stationary, and high α would mean that

volatility is reacting strongly to the market changes, and high β would mean volatility

persistence.
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3.1.3 EGARCH Model

Lack of consideration for the leverage effect, parameter constraints, and the burden of

determining whether shocks on conditional variance persist or not are among GARCH

models’ three key drawbacks. Due to these challenges, Nelson [44] suggests that the

exponential GARCH (EGARCH) which is described as

Let ϵt = σtzt where zt ∼ i.d.d with E(zt) = 0 and V (zt) = 1 given g(zt) = θzt +

γ[|zt| − E|zt|],

ln(ht) = α0 + Σp
i=1αig(zt) + Σq

j=1βjln(ht−j). (3.16)

The parameter θ denoting the sign of error has an impact on the conditional variance

as the multiply of zt. Thus, if θ is zero, the positive and negative shocks would have

the same effect on the variance. Besides, γ enables for a different size effect by mul-

tiplying |zt|. So, the asymmetric effect on the series is considered on the contrary to

GARCH (p,q) model. Moreover, there are no limitations on the parameters, and they

can be either positive or negative because of the logarithm of the variance. Addition-

ally, because ln(ht) is a linear process, its stationarity and ergodicity may be easily

verified.

EGARCH (1, 1) model can be expressed as

ln(ht) = α0 + α1[θzt + γ[|zt| − E|zt|]] + β1ln(ht−1). (3.17)

Note that by inserting ϵt = σtzt, zt =
ϵt
σt

= ϵt√
ht

in Equation3.17, we obtain

ln(ht) = α0 + α1[θ
ϵt√
ht

+ γ[| ϵt√
ht
| −

√
2

π
]] + β1ln(ht−1). (3.18)
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3.1.4 GJR-GARCH and TGARCH Models

Despite the apparent benefits of EGARCH, empirical estimate of the model is techni-

cally difficult due to the use of extremely non-linear techniques [54].The distinction

between positive shocks and negative shocks is concerned in this model, as well. The

GJR-GARCH model is introduced by Glosten, Jagannathan, and Runkle [33]

ln(ht) = α0 + Σp
i=1(αiϵ

2
t−1 + γiDt−iϵ

2
t−1) + Σq

j=1βjht−j (3.19)

where

Dt−i =

1 if ϵt−i < 0

0 if ϵt−i ≥ 0.
(3.20)

According to this model, a dummy variable Dt−i has an important role for reflecting

the leverage effects. When the shocks are positive Dt−i takes value 0, and the model

becomes GARCH(p,q) model. Furthermore, when the shocks are negative, it would

be 1. Additionally, γ parameter in the model denotes the leverage effect.

GJR-GARCH (1, 1) model is given as

ln(ht) = α0 + α1ϵ
2
t−1 + γ1Dt−1ϵ

2
t−1 + β1ht−1. (3.21)

Furthermore, the threshold GARCH (TGARCH), introduced by Zokaian [59], demon-

strates the asymmetry effect of the shocks on the variance, as well. Threshold ARCH

(TARCH) or TGARCH model is similar to the GJR model. It differs mainly by using

the standard deviation rather than the variance as given in Equation 3.22

Given ϵt = σtzt

σ2
t = α0 + Σp

i=1αi(|ϵt−i| − γiϵt−i) + Σq
j=1βjσt−j

where Zt is i.d.d, EZt = 0, V Zt = 1, Zt independent of ϵt−1 for all t.

(3.22)

Here, where (αi)i=1,p and (βj)j=1,q are real scala squences.
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3.1.5 APARCH Model

The Asymmetric Power ARCH (APARCH) model, proposed by Ding et al. [25] is

utilized in determining the asymmetric effect. What this model offers is that leverage

effect, thick tail, and excessive kurtosis can be detected. Additionally, this model

covers some ARCH models as a special case. APARCH model is:

σδ
t = α0 + Σp

i=1αi[|ϵt−i − γϵt−i]
δ + Σq

j=1βjσ
δ
t−1

(3.23)

where δ is the power parameter, γ is the leverage parameter, and the other parameters

(α0, α1 and βj) are the same as the GARCH parameters. Besides, it has some certain

conditions to be fulfilled. Firstly, α0 > 0, α ≥ 0, i = 1, ..., p and βj ≥ 0, i = 1, ..., q.

Moreover, if αi = βj = 0, then α0 > 0 to guarantee the conditional variance be

positive. Lastly, for the stationary purposes, 0 ≤ Σp
iαi+Σq

jβj ≤ 1 should be satisfied.

3.2 Model Selection Criteria

In this study, the Akaike information criterion (AIC), Bayesian information crite-

rion (BIC), and Log-Likelihood are considered when selecting the best statistical

model among a set of candidate models. After defining the candidate models, the

log-likelihood of each model is calculated using estimated parameters. Subsequently,

a score is assigned to each model according to the creation that is used, and based on

the score of the models, the best model whose score is the lowest determines the best

fitting model [49].

For a particular model, the log-likelihood value may vary between negative infinity

to positive infinity [58]. It, like the other criterion, can be used to compare candidate

models. Finally, the higher the log-likelihood number, the better a model matches a

dataset.

The maximum likelihood estimate and the number of parameters, independent vari-

ables, in the model are used to calculate a relative value according to the Akaike
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information criterion (AIC) which is

AIC = 2K − 2ln(L) (3.24)

where K denotes the number of independent variables employed and L denotes the

likelihood value estimated at parameter estimates. The score measures the model’s

goodness-of-fit alongside imposing penalties it for over-fitting the data, so a lower

AIC score suggests better goodness-of-fit and less over-fitting [1].

Similar to AIC but unlikely, the Bayesian information criterion (BIC) considers the

number of data observations and shown as

BIC = ln(n)K − 2ln(L) (3.25)

where n is the number of data points.BIC values can be used to test the models. A

model with a lower BIC value has smaller penalty terms and is, therefore, better [23].

After the adequacy of the models is discussed, model selection is used to determine

which empirical model is the best fit for modeling the variance.

3.3 The Skewed Non-Gaussian Distributions

Literature suggests that it is need to use different distributions other than normal dis-

tribution for the exchange rate series. For this reason, in this thesis, various distribu-

tions are used, and they are presented in the following sections.

3.3.1 Normal Distribution

The normal distribution, also known as the Gaussian distribution, is the most fre-

quently assumed form of distribution in technical stock surveys and other types of

statistical investigations [2].

Moreover, the Central Limit Theorem (CLT), which is one of the prominent theorems,

states that regardless of the distribution of the population, the sampling distribution

of the mean will always be normally distributed as long as the sample size is large

enough [52]. Thus, it can be said that its importance cannot be denied.
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The mean and standard deviation are the only two parameters that can describe all

normal distributions. The p.d.f. of the distribution is the following:

f(x|µ, σ) = 1

σ
√
2π
e

−1
2
(x−µ

σ
)2 (3.26)

where µ is the mean and σ is the standard deviation. Normal distribution is symmet-

rical around the mean so that the mean, median, and mode are all the same. Addition-

ally, the kurtosis of the normal distribution 3.

Normal distribution has a skewness of zero, so that means it is symmetric. On the

other hand, if the skewness is not zero, then the density function is according to

Azzalini [10] as follows:

f(x;λ) = 2ϕ(x)Φ(λx), (x ∈ R), (3.27)

where X ∼ N(0,1), λ ∈ R is skewness parameter, ϕ is the normal PDF, and Φ is the

normal cumulative density function (CDF).

3.3.2 The t Distribution

Known as the Student’s t-distribution, the tails are heavier than the normal distribu-

tion’s tail, so this distribution can be utilized for more extreme cases. This distribution

is also used to estimate population parameters when the sample size is small or the

population variance is unknown [37]. The p.d.f. is given as

f(x) =
Γ(v+1

2
)

√
vπΓ(v

2

(1 +
t2

v
)
−(v+1)

2 (3.28)

where v is the number of degrees of freedom, v > 0, and x ∈ (−∞,∞).

Similar to the normal distribution, the t distribution is symmetric around the mean

and is bell-shaped. If the parameter v is bigger than 1, then the mean of it equals 0,

otherwise, it is undefined. Its median and mode are zero. Moreover, its skewness is

zero if v>3, and its excess kurtosis is 6
v−4

if v>4, ∞ for 2<v ≤ 4.
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If the skewness of it is not zero, then the p.d.f of the skew t distribution becomes

f(x|µ, σ, λ, q) =
Γ(1

2
+ q)

vσ(πq)
1
2Γ(q)[1 + |x−µ+m|2

q(vσ)2(1+λsgn(x−µ+m))2
](

1
2
+q)

(3.29)

where m = σ
2q

1
2Γ(q − 1

2
)

π
1
2Γ(q)

(3.30)

v =
1

q
1
2

√
(1 + 3λ2) 1

2q−2
− 4λ2

π
(
Γ(q− 1

2
)

Γ(q)
)2
, (3.31)

where sgn is the sign function.

3.3.3 The Generalized Error Distribution (GED)

This distribution is also referred to as generalized normal distribution or exponen-

tial power distribution since it is a symmetrical unimodal member of the exponential

family. Nelson [44] developed and utilized for the EGARCH process. The p.d.f. of it

is:

f(x|µ, σ, p) = pe
1
2
|x−µ

σ
|p

2p(1+
1
p
)σΓ(1

p
)

(3.32)

where domain of the x ∈ (−∞,∞), µ is location parameter, σ is scale parameter, p

is shape parameter, and Γ(x) is the gamma function given by

Γ(x) =

∫ t

0

tx−1e−tdt. (3.33)

If the p parameter is taken as 2, then Equation 3.32 becomes the p.d.f. of the Normal

distribution. Moreover, if the p is taken as 1, then Equation 3.32 becomes the p.d.f.

of the Double Exponential, or Laplace, distribution. Also, it should be noted that the

distribution is leptokurtic if p is smaller than 2.

Furthermore, the non-centered skewed GED is given by
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f(x|µ, σ, λ, p) = pe
−1
p
| x−µ+m
vσp(1+psgn(x−µp+m))

|p

2vp(1+
1
p
)σΓ(1

p
)

(3.34)

where sgn is the sign function that provides -1 for negative values of the argument

and +1 for the positive values of it. Additionally, m and v are as follows:

m =
2

2
pvσpλpΓ(

1
2
+ 1

p
)

√
π

, (3.35)

v =
π(1 + 3λ2p)Γ(

3
p
)− 16

1
pλ2pΓ(

1
2
+ 1

p
)Γ(1

p
)

πΓ(1
p
)

. (3.36)
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CHAPTER 4

THE EMPIRICAL RESULTS

We implement the proposed approach on real life data set which known to have high

volatility. So, daily closing prices in US dollars from June 2001 to June 2023 are ob-

tained from the CBRT’s database. The fundamental reason for selecting June 2001 as

a starting point is that the floating exchange rate regime began at that time. It is impor-

tant to consider the frequency of the data since, in 1988, Diebold [24] mentions that

when implementing quarterly data instead of monthly data in an integrated process

that is point-sampled, ARCH effects tend to decline as the sampling period grows.

Moreover, Drost and Nijman [26] illustrate how the volatility structure changes with

frequency and report that the GARCH (1, 1) model is not resistant to sampling inter-

val specification. For this reason, the daily data of 5536 observations is used where

holidays and weekends are excluded from this study. All analysis and applications of

the proposed models for this study are done using R Studio 2023.06.1 and a computer

with a 64-bit operating system.

Exploring the descriptive statistics of the data before observing the movement of the

exchange rate may assist in comprehending its structure more thoroughly. Thus, they

are reported in Table 4.1. As can be seen a Jarque-Bera value greater than 5, as well as

p-value lower than 0.05, strongly suggest that this series does not have a normal distri-

bution. Moreover, right-skewness (Skewness=2.47>0) and fat tails (Kurtosis=5.61>3)

are observed, as mentioned in the literature regarding the exchange rate.
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Table 4.1: The Descriptive Statistics

Mean 3.7

Median 1.79

Mode 1.35

Standard Deviation 4.16

Sample Variance 17.34

Kurtosis 5.61

Skewness 2.47

Range 19.52

Minimum 1.14

Maximum 20.66

Sum 20509.5

Count 5536

Jargue-Bera 12922.9

P-value 0

Figure 4.1: Histogram of the Exchange Rate

Further investigation for the distribution of the data can be done by the histogram

given in Figure 4.1 which supports that the series violates a normal distribution, as

well. Additionally, outliers and right-skewness are observed in the histogram, as in

the descriptive statistics.

In Figure4.2, the time series of the data is given. The comments on the movement

of the exchange rate and the story behind them are explained briefly in Section 4.3

period by period.
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Figure 4.2: The Time Series Plot of the USD/TRY Exhange Rate

It is known that volatility exhibits itself on deviations from the mean caused by

crises.So, outliers and shocks in the data are left the same without applying any pro-

cedures on them except for six sudden shocks which are shown in Figure 4.3, because

they are troublesome and prevent the data from being modeled. The sudden shocks

and the reasons for these shocks are as follows:

• (i) 30-31 October 2008 : The US Federal Reserve’s decision to reduce interest

rates to 1 percent and other countries following this had a positive impact on

the stock markets. A sudden positive shock is observed for Turkish Lira.

• (ii) 14-15 August 2018 : Because of the Brunson case, the US placed economic

sanctions on Turkey. After, a negative shock for the Lira is seen.

• (iii) 20-21 December 2021: Turkish government announced the exchange rate-

protected deposit account (Kur Korumalı Mevduat Hesabı). Subsequently, a

positive shock is noticed for the Turkish Lira.
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Figure 4.3: The Time Series Plot with the Shocks

In order to handle them, they are removed from the data set shown in Figure 4.4.

Figure 4.4: The Time Series Plot of the Data after Cleansing

4.1 Time Series Analysis for the Series

It is observed that the series is not stationary according to Figure 4.2. To specify the

integration order ADF test for unit root and KPSS test for stationary are used. The

results are given in Table 4.3.
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Table 4.2: ADF and KPSS Test Results for the Entire Data
ADF Test Statistic P-value

With constant ADF test statistic 13.8313 0.99

Critical Values -3.43 0.01
-2.86 0.05
-2.57 0.10

With constant and trend ADF test statistic 8.7858 0.99

Critical Values -3.96 0.01
-3.41 0.05
-3.12 0.10

KPSS
With Constant 27.69 0.01*

With Constant and Trend 7.85 0.01*

Note: (*) indicates significant at 5% significance level

The null hypothesis that the series has a unit root cannot be rejected with respect to

the ADF result given in Table 4.3. Besides, the statistic value of the ADF test for the

constant and trend model is also insignificant. So, it is seen that there is a stochastic

trend in the data. This result is provided by the KPSS test, whose null hypothesis

is that the series is stationary. The process is not stationary (p-value= 0.01<0.05)

according to the KPSS test, and a stochastic trend is seen with respect to the model

with constant and trend (p-value=0.01<0.05). For this reason, the difference in the

logarithm of the series is considered for the empirical experiment in order to get rid

of the unit root. The return series of the data set is constructed as follows:

rt = log(
Pt

Pt−1

) (4.1)

where rt represents the return rate at time t.

In regards to that Figure 4.5, there is obviously volatility clustering in the series due to

the fact that are some high volatility and low volatility clusters, and evidence indicates

the time-varying volatility in daily USD/TRY returns.
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Figure 4.5: The Log-Return Series of the Exchange Rate Series

The ADF& KPSS tests are applied to the log-return data. The results are given in

Table 4.10

Table 4.3: ADF and KPSS Test Results for the Log-Return Series
ADF Test Statistic P-value

With constant ADF test statistic -51.99 0.01*

Critical Values -3.43 0.01
-2.86 0.05
-2.57 0.10

With constant and trend ADF test statistic -52.16 0.01*

Critical Values -3.96 0.01
-3.41 0.05
-3.12 0.10

KPSS
With Constant 1.47 0.01*

With Constant and Trend 0.08 0.10

Note: (*) indicates significant at 5% significance level
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As can be seen from Table 4.10, the ADF test statistics are significant at 0.01 signif-

icance level for both models indicating the series does not have a unit root anymore

which is shown by the KPSS test by an insignificant test statistic indicating stationar-

ity of the series by a model including constant and trend. It must be noted that if only

constant is considered, KPSS test result conflicts with the rest by indicating the series

is not stationary (p-value=0.01).

Further, the acf and pacf plots of the data given in Figure 4.6, and it seems stationary.

Figure 4.6: ACF-PACF Plots of the Return Series

The descriptive statistics and the histogram are given in Table 4.4 and Figure 4.7 in

order to have an idea about the distribution of the log-return data. With respect to

the JB test given in Table 4.4, the normality is rejected at 0.01 significance level for

the series. The distribution is leptokurtic according to the kurtosis value, and the

Histogram indicates fatter tails than the normal distribution. Moreover, although not

severe, there might be a slight skewness. So, the models can be tried with symmetric

non-normal distributions like t-distribution as well as skewed distributions to see the

best-fitting one.
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Table 4.4: The Descriptive Statistics of the Log-Return Data

Mean 0.0005

Median 0.00007

Sample Variance 0.00009

Kurtosis 26.24836

Skewness -0.1747

Range -0.2507

Minimum -0.1554

Maximum 0.0954

Sum 2.8409

Count 5529

Jargue-Bera 158751

P-value <2.2e-16

Figure 4.7: Histograms of the Log-Return Series
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4.2 ARMA-GARCH Models for the Series

Autocorrelation in the ACF-PACF plots of the exchange rate return series is inves-

tigated, the mean equation was proposed as ARMA(4,3), and it is fitted to the data.

According to the Box-Ljung test statistic ARMA(4,3) yields residuals having no serial

correlation (p-value= 0.81). Additionally, ARCH effect is tested with the ARCH-LM

test, whose null hypothesis is that there is no ARCH effect, and the test statistic for

the model is found to be significant (p-value=0 for all lags) indicating there is a sig-

nificant ARCH effect. This result is supported by the Ljung-Box-Pierce Q statistic of

the squared residuals for both models, whose null hypothesis is that there is no ARCH

effect (p- value=0 for all lags). Therefore, the model is obtained as a candidate mean

model.

After finding ARCH effect in the model, we utilized the following models: GARCH

model that ignores the asymmetry impact; EGARCH, TARCH, and APARCH models

that consider the asymmetry impact. Furthermore, a practical distribution for the

model estimate was attempted to be chosen among normal, skew-normal, t, skew-t,

GED, and skew-GED, since it is observed that the data has fat tails and might have

slight skewness. Generally, it is seen in the literature that GARCH (1,1), EGARCH

(1,1), TGARCH (1,1), and APARCH (1,1) models are reported as adequate to remove

ARCH effects.

2 out of 24 suggested models are found to be adequate according to the diagnostic

checking for the log-return data. They are shown in bold in Figure4.5.
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Table 4.5: The Empirical Models
The Empirical Models

ARMA(4,3)-GARCH(1,1) with normal distribution
ARMA(4,3)-GARCH(1,1) with skew normal distribution

ARMA(4,3)-GARCH(1,1) with student t distribution
ARMA(4,3)-GARCH(1,1) with skew student t distribution

ARMA(4,3)-GARCH(1,1) with GED distribution
ARMA(4,3)-GARCH(1,1) with skew GED distribution
ARMA(4,3)-EGARCH(1,1) with normal distribution

ARMA(4,3)-EGARCH(1,1) with skew normal distribution
ARMA(4,3)-EGARCH(1,1) with student t distribution

ARMA(4,3)-EGARCH(1,1) with skew student t distribution
ARMA(4,3))-EGARCH(1,1) with GED distribution

ARMA(4,3)-EGARCH(1,1) with skew GED distribution
ARMA(4,3)-TGARCH(1,1) with normal distribution

ARMA(4,3)-TGARCH(1,1) with skew normal distribution
ARMA(4,3)-TGARCH(1,1) with student t distribution

ARMA(4,3)-TGARCH(1,1) with skew student t distribution
ARMA(4,3)-TGARCH(1,1) with GED distribution

ARMA(4,3)-TGARCH(1,1) with skew GED distribution
ARMA(4,3)-APARCH(1,1) with normal distribution

ARMA(4,3)-APARCH(1,1) with skew normal distribution
ARMA(4,3)-APARCH(1,1) with student t distribution

ARMA(4,3)-APARCH(1,1) with skew student t distribution
ARMA(4,3)-APARCH(1,1) with GED distribution

ARMA(4,3)-APARCH(1,1) with skew GED distribution

For the adequate models the estimates and diagnostic checking are given in the fol-

lowing Tables 4.6 and 4.7, and for the inadequate models are shown in Tables A.1

and A.2.

From Table 4.6, the estimates of the all parameters of both models are found all

significant at 0.05 significance levels, and both models hold the stationary condition

since β < 1. Besides, an asymmetric effect in the series demonstrated by significant

and positive γ in EGARCH models, and it indicates the fact that positive shocks have

a bigger impact on increasing volatility than negative shocks. Furthermore, The shape

and skewness parameters in skew t and GED are seen as a significant. They indicate

the presence of the thicker tails since the shape value (degree of freedom) is around

4.5 for the skew t, and it is smaller than 2 in GED.
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Table 4.6: The Estimate of the Models
Period : June 2001 -June 2023

ARMA(4,3)-EGARCH(1,1)
st GED

c 0.000* 0.000*
ϕ1 -0.597* -0.827*
ϕ2 0.983* 0.964*
ϕ3 0.563* 0.814*
ϕ4 -0.0385* -0.074*
θ1 0.695* 0.932*
θ2 -0.899* -0.853*
θ3 -0.614* -0.875*
ω -0.141* -0.177*
α 0.070* 0.063*
β 0.986* 0.982*
γ 0.345* 0.321*
δ - -

shape 4.400* 1.156*
skew 1.130* -

(*) indicates significant at 5% significance level.

According to Table 4.7, it can be concluded that there is no ARCH effect or autocor-

relation in the standardized residuals since all p-values are bigger than the 10% sig-

nificance level. All in all, they are adequate models and seem to capture the volatility

clustering.

Table 4.7: P-Values of the Diagnostic Tests for the Models
EGARCH

st GED
Lags Q Q2 ARCH-LM Q Q2 ARCH-LM

1 0.18 0.48 0.50 0.45 0.28 0.27
5 0.51 0.81 0.76 0.47 0.72 0.68

10 0.68 0.68 0.51 0.62 0.54 0.45
20 0.75 0.74 0.57 0.71 0.71 0.60

Finally, the selection criteria are reviewed in Table 4.8, and the lowest AIC and BIC

and the maximum Log-Likelihood belong to the ARMA (4,3)-EGARCH (1,1) with

skew t distribution model.

Table 4.8: Fit Measures of the Models
Log-Likelihood AIC BIC

EGARCH-st 19901.74 -7.1940 -7.1772
EGARCH-GED 19832.94 7.1694 -7.1539
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According to the results, only two models passed all tests successfully at the end of

the experiment, which can be attributed to the structural changes in the series, since

the abrupt changes are observed in the series. It can be said that they may effect the

modeling the entire series. Therefore, it is crucial to investigate the presence of the

breakpoints carried out in Section 4.3.

4.3 Breakpoint Detection

It is possible to see how certain changes appear smoothly and others emerge abruptly

in a time series. External and internal effects can cause sudden and permanent change,

leading to a structural breakpoint occurring in the series. The mean or in other pa-

rameters of the process that generates the series can change. So, the series may not

be smooth throughout because of the breakpoints.

Modeling long-term data with structural breakpoints is possible, but prediction, es-

timation, and establishing relations can be problematic. Moreover, it can result in

significant forecasting errors and model unreliability [6]. Thereupon, in this study

before modeling, structural break tests are carried out on the data. For this reason,

the "strucchange" package in R is utilized. In this package, the Chow test, whose null

hypothesis says that there is no structural change point in the series, is applied, and

it is found that its null hypothesis is rejected (p-value < 2.2e-16). Hence, there is a

structural break in the series. After the test, "breakpoints" function in R is employed

and optimal structural breakpoints are obtained given in Figure 4.8.

According to Figure 4.8, 3 breaks in the series occur. One of them is on the 1st of July

2013. This break is caused by an internal event called the Gezi Protests. The second

one is on the 10th of October, caused by a coup attempt in July 2016. After the

attempt, political measures for the safety of the country were taken and, of course,

affected investors and financial markets in the country. The last break is observed

on the 11th of February 2020 due to the COVID-19 Pandemic. Considering these

breakpoints, the data set is divided into 4 sub-periods given in Figure 4.9 displaying

the daily exchange rate (USD/TRY) for four different time periods.

(a) From June 2001 to July 2013 (Period 1): Ups and downs around the mean are
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Figure 4.8: Breakpoints in the Data Set

Figure 4.9: The Time Series of the Periods

observed in this interval. This shows that there may be a stochastic trend in the period.

In 2001, a recession is observed in the international economy. Surely, it affected the

whole world, but especially developing countries like Turkey. In February, a major

economic downturn is provoked by a political event. The rapid capital withdrawals

that accompanied the economic crisis, the increasing uncertainties in the economy,

particularly in the exchange rate, and the loss of confidence in economic units all
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contributed to the decline of domestic demand and, as a result, the economy [12].

The currency rate fluctuation, which had declined significantly after April, increased

with the negative events in the Argentine economy on July 16 and the potential of

delaying the IMF loan tranche.

After the financial crisis in 2001, the Iraqi conflict in March 2003 happened, and

again, economic uncertainty at that time caused another unexpected movement in the

data. Following that, a period of stability was recorded until April of 2006. However,

the volatility in global markets and the rise in risk aversion tendencies resulted in

fluctuations in Turkey’s financial markets and led to an increase in exchange rates

in the second quarter of 2006, and the movement at the halfway point of the year

can be defined as the sharpest depreciation beginning in the currency in the graph.

Afterwards, the Turkish Lira appreciated to values similar to those seen in 2001 until

June 2008.

Furthermore, there is apparent evidence of a trend, and the depreciation of the Turkish

Lira that began with the financial crisis in 2008 continued until the end of 2014. In

2008–2009, the global financial crisis occurred, which is the most severe financial

crisis since 1929.

(b) From July 2013 to October 2016 (Period 2): In December 2013- 2014, political

events happened. Moreover, as a result of FED Chairman Yellen’s remark concerning

the rate hike in May 2015 and domestic events in September 2015, higher fluctuations

are observed. So, the volatility in the rate was getting even higher. After a coup

attempt in July 2016, political measures for the safety of the country were taken,

which, of course, affected investors and financial markets, too. At the beginning of

the following year, terrorist attacks, CBRT, and FED statements made the rate more

volatile than ever.

(c) From October 2016 to February 2020 (Period 3): In March 2017, a political crisis

occurred between Holland and Turkey. After that, a referendum was held in April. In

the following year, the Brunson crisis was the biggest event since it affected relations

between the USA and Turkey. So, this caused the depreciation of the Lira against

the Dollar. In 2019, there was a local election, and its political environment caused

another event. In the first half of the year, high variations are observed due to this
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uncertainty. In the second half of 2019, FED statements and a military operation in

Syria in October 2019 played the biggest roles in the other variations of that period.

(d) From February 2020 to June 2023 (Period 4): This last period has the highest

depreciation of the Lira and the fastest-growing trend among the given periods. The

COVID-19 Pandemic lasted between the years 2020 and 2022, and during periods

of political instability, the CBRT and FED decisions in terms of the rate appeared to

reflect the exchange rate negatively. Especially during CBRT’s monetary policy de-

cisions, outliers can be observed. As a result, a graph with the most volatile currency

of all time and the greatest depreciation of the Lira is observed in this period. In De-

cember 2021, the series is the most volatile period of the year since, at that time, the

government announced the exchange rate-protected deposit account (Kur Korumalı

Mevduat Hesabı). So, after a climbing trend, the sharpest decrease in the value of the

exchange rate was observed. After that, due to the unstable economic and political

situations, a trend can be seen in the graph until the end of April 2023.

4.4 Time Series Analysis for the Sub-Periods

From Figure 4.9, it is noticed that the series over the periods are clearly non-stationary.

To determine the integration order (ADF) test for unit root and (KPSS) test for sta-

tionary are utilized for all periods, whose results are given in Table 4.9.
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Table 4.9: ADF and KPSS Test Results
ADF Period 1 Period 2 Period 3 Period 4

With Constant
(0.346)
-1.9119

(0.785)
-0.737

(0.591)
-1.256

(0.958)
0.027

Critical Values (0.01)
-3.43

(0.05)
-2.86

(0.10)
-2.57

and trend
With constant

( 0.438)
-2.332

(0.45)
-2.303

(0.361)
-2.513

(0.478)
-2.238

Critical Values (0.01)
-3.96

(0.05)
-3.41

(0.10)
-3.12

KPSS With Constant (0.01*)
10.559

(0.01*)
11.416

(0.01*)
10.571

(0.01*)
11.435

and Trend
With Constant

(0.01*)
4.1562

(0.01*)
1.0022

(0.01*)
0.82654

(0.01*)
1.8859

Note: P-values are given in the parenthesis, and (*) indicates significant at 5%
significance level

According to the ADF results given in Table 4.9, the null hypothesis that the series has

a unit root cannot be rejected, and the statistics value of the ADF tests for the constant

and trend models are also insignificant for all periods. Thus, it is observed that there

is a stochastic trend in all series. Besides, these results are supported by the KPSS

test. The process is not stationary (p-value=0.01<0.05) for all periods according to the

KPSS test results. Additionally, stochastic trends are seen with respect to the model

with constant and trend (p-value=0.01<0.05) in all periods.

Thus, the series in the spans don’t seem stationary. For this reason, the difference in

the logarithm of the series in all periods is considered for the empirical experiment

in order to get rid of the unit root. The return series of each period are formed as

follows:

rt = log(
Pt

Pt−1

) (4.2)
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where rt represents the return rate at time t.

Figure 4.10: The Log-Return Series of the Periods

In all periods, there is certainly volatility clustering according to Figure 4.10 since

there are some high volatility and low volatility clusters, and time-varying volatility

in daily USD/TRY returns is empirically demonstrated.

The ADF& KPSS tests are carried out for the log-return data. The results are given

in Table 4.10

As can be seen from Table 4.10, in all periods, the ADF test statistics are significant

at 0.01 significance level for both models indicating the series does not have a unit

root anymore which is supported by the KPSS test by an insignificant test statistic

indicating stationarity of the series by both models (p-value=0.1 for all models in all

periods).

Further, by the acf and pacf plots of the periods given in Figure 4.11, it can be seen

that the series in all periods are stationary.

45



Table 4.10: ADF and KPSS Test Results for the Log-Return Series
ADF Period 1 Period 2 Period 3 Period 4

With Constant
( 0.01*)
-13.184

(0.01*)
-20.031

(0.01*)
-20.695

(0.01*)
-18.131

Critical Values (0.01)
-3.43

(0.05)
-2.86

(0.10)
-2.57

and Trend
With Constant

( 0.01*)
-13.184

(0.01*)
-20.022

(0.01*)
-20.6965

(0.01*)
-18.1204

Critical Values (0.01)
-3.96

(0.05)
-3.41

(0.10)
-3.12

KPSS With Constant (0.10)
0.066

(0.10)
0.058

(0.10)
0.105

(0.10)
0.075

and Trend
With Constant

(0.10)
0.057

(0.10)
0.049

(0.10)
0.073

(0.10)
0.074

Note: P-values are given in the parenthesis, and (*) indicates significant at 5%
significance level

To figure out the distribution of the log-return data, the descriptive statistics and the

histogram are given in Table 4.11 and Figure 4.12, respectively. According to the

JB test given in Table 4.11, the normality is rejected at 0.01 significance level for all

periods. The distribution of them is leptokurtic according to the kurtosis value, and

the Histogram indicates fatter tails than the normal distribution. Besides, although not

severe, there might be a slight skewness in the first two periods. However, the last two

periods are seem extremely skewed. Thus, the models can be tried with symmetric

non-normal distributions like t-distribution as well as skewed distributions to see the

best-fitting one.
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Figure 4.11: ACF-PACF Plots of the Return Data in the Periods
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Table 4.11: The Descriptive Statistics of the Log-Return Data in all Periods

Periods Period 1 Period 2 Period 3 Period 4
Mean 0.00015 0.00057 0.0008 0.00149

Median -0.00045 0.00014 0.00026 0.00048

Sample Variance 0.00009 0.0005 0.00011 0.00022

Kurtosis 16.9353 3.49513 30.6626 200.4857

Skewness 0.01608 0.1312 2.0597 -9.2689

Range -0.20077 -0.07792 -0.19329 -0.37843

Minimum -0.11936 -0.03897 -0.06476 -0.29398

Maximum 0.08142 0.03895 0.12853 0.08445

Sum 0.46864 0.46802 0.66556 1.2374

Count 3044 829 829 830

Jargue-Bera 36376 424.34 33062 1401944

P-value <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

4.5 ARMA-GARCH Models for the Periods

In this section, the procedure to construct ARMA-GARCH Models given in Figure

3.1 is applied for all periods. The empirical results are presented as the following.

4.5.1 The Results of Period 1

For the first step, the mean model needs to be constructed.According to ACF-PACF

plots, ARMA(1,0) is fitted to the data, it is observed that ARMA(1,0) yields residuals

having no serial correlation according to the Box-Ljung test statistic (p-value= 0.994).

Additionally, after it is fitted to the data, ARCH effect is tested with the ARCH-LM

test, whose null hypothesis is that there is no ARCH effect, and the test statistic

for the model is found to be significant (p-value=0 for all lags) indicating there is a

significant ARCH effect. This result is supported by the Ljung-Box-Pierce Q statistic

of the squared residuals, whose null hypothesis is that there is no ARCH effect (p-

value=0 for all lags). Therefore, the model is obtained as a candidate mean model.

After finding ARCH effect in the models, GARCH type models are proposed.
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Figure 4.12: Histograms of the Log-Return Series in the Periods

19 out of 24 suggested models are found to be adequate according to the diagnostic

checking for the log-return data. They are shown in bold in Figure4.12.
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Table 4.12: The Empirical Models for Period 1
The Empirical Models

ARMA(1,0)-GARCH(1,1) with normal distribution
ARMA(1,0)-GARCH(1,1) with skew normal distribution

ARMA(1,0)-GARCH(1,1) with student t distribution
ARMA(1,0)-GARCH(1,1) with skew student t distribution

ARMA(1,0)-GARCH(1,1) with GED distribution
ARMA(1,0)-GARCH(1,1) with skew GED distribution
ARMA(1,0)-EGARCH(1,1) with normal distribution

ARMA(1,0)-EGARCH(1,1) with skew normal distribution
ARMA(1,0)-EGARCH(1,1) with student t distribution

ARMA(1,0)-EGARCH(1,1) with skew student t distribution
ARMA(1,0)-EGARCH(1,1) with GED distribution

ARMA(1,0)-EGARCH(1,1) with skew GED distribution
ARMA(1,0)-TGARCH(1,1) with normal distribution

ARMA(1,0)-TGARCH(1,1) with skew normal distribution
ARMA(1,0)-TGARCH(1,1) with student t distribution

ARMA(1,0)-TGARCH(1,1) with skew student t distribution
ARMA(1,0)-TGARCH(1,1) with GED distribution

ARMA(1,0)-TGARCH(1,1) with skew GED distribution
ARMA(1,0)-APARCH(1,1) with normal distribution

ARMA(1,0)-APARCH(1,1) with skew normal distribution
ARMA(1,0)-APARCH(1,1) with student t distribution

ARMA(1,0)-APARCH(1,1) with skew student t distribution
ARMA(1,0)-APARCH(1,1) with GED distribution

ARMA(1,0)-APARCH(1,1) with skew GED distribution

For the adequate models the estimates and diagnostic checking are given in the fol-

lowing 4.13 and 4.14, and for the inadequate models are shown in Tables A.3 and

A.4.
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From Table 4.13, it is seen that the estimates of the variance equations and the ϕ pa-

rameter of all models are all significant at 0.05 significance levels except the constant

term in the variance equations.

In GARCH models, all parameters that are in the variance equation are positive, and

α + β is close but less than 1 indicating stationary and a high degree of persistence.

Moreover, in EGARCH and APARCH models, the stationary condition is provided

(β <1 for all EGARCH models and −1 < γ < 1 for all APARCH models), as well.

Furthermore, there is an asymmetric effect in the series, and it is provided by EGARCH,

TGARCH and APARCH models. For instance, γ is significant and positive in EGARCH

models, meaning that positive shocks have a greater impact on increasing volatility.

In TGARCH models, the impact of negative news for the series is seen as α+ γ, oth-

erwise, it could have seen impact as α. It is observed that γ is significant and negative

in TGARCH models for the series. Thus, it also implies that positive shocks have

a bigger impact on increasing volatility than negative shocks like APARCH models

due to negative leverage parameters. Besides, it is seen that the power parameter, δ,

in APARCH models is also significant (p-value is smaller than 5% significant level).

On top of that, the shape and skewness parameters in t, skew t, GED, and skew GED

are found significant. Moreover, shape parameters in these distributions confirm that

they have thicker tails than normal distribution as mentioned in Table 4.4 since the

shape value (degree of freedom) is around 6-8 for the t and skew t. Also, it is smaller

than 2 in GED and sGED. Therefore, considering the skewness and kurtosis may help

to capture these behaviours of the log-return data.

According to Table 4.14, which shows the diagnostic results (p-values) on the stan-

dardized residuals of the fitted values, it can be concluded that there is no ARCH ef-

fect or auto-correlation in the standardized residuals since all p values are bigger than

the 10% significance level except 2 p-values which are bigger than the 5% signifi-

cance level. Hence, they are adequate models, and they seem to capture the volatility

clustering.
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Lastly, the selection criteria are considered given in Table 4.15 , and it is observed

that the minimum AIC, BIC, and maximum log-likelihood belong to the ARMA (1,

0)-TGARCH (1, 1) with skew t distribution model among all models.

Log-Likelihood AIC BIC
GARCH-norm 10576.77 -6.9460 -6.9361
GARCH-snorm 10606.16 -6.9646 -6.9528

GARCH-t 10659.97 -7.0000 -6.9881
GARCH-GED 10644.61 -6.9899 -6.9780

EGARCH-norm 10574.33 -6.9437 -6.9318
EGARCH-snorm 10600.82 -6.9605 -6.9466

EGARCH-t 10668.93 -7.0052 -6.9914
EGARCH-GED 10648.4 -6.9917 -6.9779
EGARCH-sGED 10671.47 -7.0062 -6.9904
TGARCH-norm 10547.41 -6.9260 -6.9142
TGARCH-snorm 10568.58 -6.9393 -6.9254

TGARCH-t 10659.16 -6.9988 -6.9849
TGARCH-st 10678.72 -7.0110 -6.9952

TGARCH-GED 10635.65 -6.9833 -6.9695
TGARCH-sGED 10657.08 -6.9968 -6.9809
APARCH-norm 10583.12 -6.9488 -6.9350
APARCH-snorm 10600.41 -6.9595 -6.9437

APARCH-t 10661.23 -6.9995 -6.9837
APARCH-GED 10647.56 -6.9905 -6.9747

Table 4.15: Fit Measures of the Models for Period 1

4.5.2 The Results of Period 2

In this period, according to ACF-PACF plots as a mean model ARMA(0,0) is sug-

gested since the series is white noise. After, it is found that there is ARCH effect

according to ARCH LM test (p-value=0 for all lags) and he Ljung-Box-Pierce Q

statistic of the squared residuals (p-value=0 for all lags). After, heteroscedastic mod-

els are proposed.
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14 out of 24 suggested models are found to be adequate according to the diagnostic

checking for the log-return data. They are shown in bold in Figure 4.16.

Table 4.16: The Empirical Models for Period 2
The Empirical Models

GARCH(1,1) with normal distribution
GARCH(1,1) with skew normal distribution

GARCH(1,1) with student t distribution
GARCH(1,1) with skew student t distribution

GARCH(1,1) with GED distribution
GARCH(1,1) with skew GED distribution
EGARCH(1,1) with normal distribution

EGARCH(1,1) with skew normal distribution
EGARCH(1,1) with student t distribution

EGARCH(1,1) with skew student t distributio
EGARCH(1,1) with GED distribution

EGARCH(1,1) with skew GED distribution
GARCH(1,1) with normal distribution

TGARCH(1,1) with skew normal distribution
TGARCH(1,1) with student t distribution

TGARCH(1,1) with skew student t distribution
TGARCH(1,1) with GED distribution

TGARCH(1,1) with skew GED distribution
APARCH(1,1) with normal distribution

APARCH(1,1) with skew normal distribution
APARCH(1,1) with student t distribution

APARCH(1,1) with skew student t distribution
APARCH(1,1) with GED distribution

APARCH(1,1) with skew GED distribution

For the adequate models the estimates and diagnostic checking are demonstrated in

the fol- lowing Tables 4.17 and 4.18, and for the inadequate models are shown in

Tables A.5 and A.6, respectively.

The estimates and diagnostic checking of the models are given in the following Tables

.
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Period
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H
(1,1)
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M
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(0,0)-E
G

A
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(1,1)
A

R
M

A
(0,0)-T
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A

R
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H
(1,1)

norm
snorm

t
st

G
E

D
sG

E
D

norm
snorm

t
st

G
E

D
snorm

st
sG

E
D

c
0.000

0.000
0.000

0.000*
0.000

0.000*
0.000

0.000*
0.000

0.000*
0.000

0.000
0.000*

0.000*

ω
0.000*

0.000*
0.000*

0.000*
0.000*

0.000*
-2.001*

-1.78
-1.19*

-0.112*
-1.48

0.000*
0.00

0.000*

α
0.161*

0.153*
0.12*

0.105*
0.129*

0.109*
0.082*

0.08*
0.081*

0.072*
0.076*

0.029*
0.035*

0.032*

β
0.57*

0.591*
0.715*

0.758*
0.68*

0.748*
0.798*

0.82*
0.88*

0.989*
0.852*

0.956*
0.952*

0.953*

γ
-

-
-

-
-

-
0.221

0.205*
0.18*

-0.042*
0.198*

-1.00*
-1.00*

-1.00*

δ
-

-
-

-
-

-
-

-
-

-
-

-
-

-

shape
-

-
4.55*

4.572*
1.188*

1.174*
-

-
4.54*

4.010*
1.194*

-
4.524*

1.180*

skew
-

1.049*
-

1.096*
-

1.086*
-

1.059*
-

1.130*
-

1.095*
1.127*

1.117*

(*)indicates
significantat5%

significance
level.
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From Table 4.17, the estimates of the variance equations and the ϕ parameter of all

models are all significant at 0.05 except the some of the constant terms in the variance

equations.

In GARCH models, all parameters that are in the variance equation are positive, and

α+β is less than 1 indicating stationarity and it is not seen a high degree of persistence

oppossed to Period 1. Moreover, in EGARCH, the stationarity condition is provided

(β <1 for all EGARCH models ), as well.

Additionally, there is an asymmetric effect in the series, and it is provided by EGARCH

and TGARCH models. For instance, γ is significant and positive in EGARCH mod-

els, meaning that positive shocks have a greater impact on increasing volatility. It is

observed that γ is significant and negative in TGARCH models for the series. So, it

also implies that positive shocks have a bigger impact on increasing volatility than

negative shocks.

Besides, the shape and skewness parameters in t, skew t, GED, and skew GED are

found significant, and confirm that they have thicker tails than normal distribution as

mentioned in Table 4.4 since the shape value (degree of freedom) is around 4.5 for

the t and skew t. Also, it is smaller than 2 in GED and sGED.

According to Table 4.18, it can be concluded that there is no ARCH effect or auto-

correlation in the standardized residuals since all p values are bigger than the 10%

significance level except 4 p-values which are bigger than the 5% significance level.

Hence, they are adequate models, and they seem to capture the volatility clustering

well.
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Finally, the selection criteria are investigated given in Table 4.19, It is observed that

the minimum AIC, BIC, and maximum log-likelihood belongs to the EGARCH (1,

1) with skew t distribution model.

Table 4.19: Fit Measures of the Models for Period 2
Log-Likelihood AIC BIC

GARCH-norm 2953.224 -7.1151 -7.0924
GARCH-snorm 2954.022 -7.1146 -7.0862

GARCH-t 2989.995 -7.2014 -7.1730
GARCH-st 2991.919 -7.2037 -7.1695

GARCH-GED 2988.807 -7.1986 -7.1701
GARCH-sGED 2991.26 -7.2021 -7.1679
EGARCH-norm 2955.152 -7.1174 -7.0889
EGARCH-snorm 2956.306 -7.1177 -7.0836

EGARCH-t 2991.862 -7.2035 -7.1694
EGARCH-st 3002.573 -7.2270 -7.1871

EGARCH-GED 2990.212 -7.1995 -7.1654
TGARCH-snorm 2956.849 -7.1191 -7.0849

TGARCH-t 2992.696 -7.2055 -7.1714
TGARCH-GED 2990.204 -7.1995 -7.1654

59



4.5.3 The Results of Period 3

Outliers in all periods are left the same without applying any procedures to them,

except for two outliers caused by the political crisis on August 14 and 15, 2018.

Additionally, these two anomalies in the log-return data are apparent ( the log-return

value of these consecutive days is bigger than the value |0.2|), and they are replaced

by the average of their previous and next observations.

Subsequently , as a mean model ARMA(0,1) is suggested based on the ACF-PACF

plots, and fitted to the data. After specifying, it is obtained that ARMA(0,1) model

provides residuals having no serial correlation according to the Box-Ljung test statis-

tic (p-value= 0.92). Moreover, it is found that there is ARCH effect according to

ARCH LM test (p-value=0 for all lags ) and the Ljung-Box-Pierce Q statistic of the

squared residuals (p-value=0 for all lags). Therefore, this model is obtained as a

candidate mean model.
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After, 11 out of 24 suggested models are found to be adequate according to the diag-

nostic checking for the log-return data. They are shown in bold in Figure 4.20

Table 4.20: The Empirical Models for Period 3
The Empirical Models

ARMA(0,1)-GARCH(1,1) with normal distribution
ARMA(0,1)-GARCH(1,1) with skew normal distribution

ARMA(0,1)-GARCH(1,1) with student t distribution
ARMA(0,1)-GARCH(1,1) with skew student t distribution

ARMA(0,1)-GARCH(1,1) with GED distribution
ARMA(0,1)-GARCH(1,1) with skew GED distribution
ARMA(0,1)-EGARCH(1,1) with normal distribution

ARMA(0,1)-EGARCH(1,1) with skew normal distribution
ARMA(0,1)-EGARCH(1,1) with student t distribution

ARMA(0,1)-EGARCH(1,1) with skew student t distribution
ARMA(0,1)-EGARCH(1,1) with GED distribution

ARMA(0,1)-EGARCH(1,1) with skew GED distribution
ARMA(1,0)-TGARCH(1,1) with normal distribution

ARMA(0,1)-TGARCH(1,1) with skew normal distribution
ARMA(0,1)-TGARCH(1,1) with student t distribution

ARMA(0,1)-TGARCH(1,1) with skew student t distribution
ARMA(0,1)-TGARCH(1,1) with GED distribution

ARMA(0,1)-TGARCH(1,1) with skew GED distribution
ARMA(0,1)-APARCH(1,1) with normal distribution

ARMA(0,1)-APARCH(1,1) with skew normal distribution
ARMA(0,1)-APARCH(1,1) with student t distribution

ARMA(0,1)-APARCH(1,1) with skew student t distribution
ARMA(0,1)-APARCH(1,1) with GED distribution

ARMA(0,1)-APARCH(1,1) with skew GED distribution

For the adequate models the estimates and diagnostic checking are shown in the fol-

lowing Tables 4.21 and 4.22, and for the inadequate models they are displayed in

Tables A.7 and A.8.
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From Table 4.21, the estimates of the variance equations and the θ parameter of all

models are all significant at 0.05 significance levels except the some constant terms

in the variance equations.

In GARCH models, all parameters that are in the variance equation are positive, and

α + β is close but less than 1 indicating stationary and a high degree of persistence

like in Period 1. Moreover, since β < 1 for all EGARCH models and −1 < γ < 1 for

all APARCH models, EGARCH and APARCH models hold the stationary condition,

as well.

Besides, an asymmetric effect in the series demonstrated by EGARCH, TGARCH

and APARCH model’estimates. Significant and positive γ in EGARCH models, sig-

nificant and negative γ in TGARCH models, and significant and negative leverage

parameter γ in APARCH models indicate not just the leverage effect but also the

fact that positive shocks have a bigger impact on increasing volatility than negative

shocks.

Additionally, it is seen that the power parameter, δ, in APARCH models is also sig-

nificant (p-value is smaller than 5% significant level).

Considering the shape and skewness parameters in t, skew t, GED, and skew GED,

they all are found significant, and indicate that they have thicker tails than normal

distribution since the shape value (degree of freedom) is around 4 for the t and skew

t. Also, it is smaller than 2 in GED and sGED.

According to Table 4.22, which shows the diagnostic results (p-values) on the stan-

dardized residuals of the fitted values, it can be concluded that there is no ARCH

effect or auto-correlation in the standardized residuals since all p values are bigger

than the 10% significance level except two p-values which are bigger than the 5%

significance level. Hence, they are adequate models, and they seem to capture the

volatility clustering.
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Finally, the selection criteria are considered given in Table 4.23 , and it is seen that

the minimum AIC and the maximum Lo-Likelihood belong to the ARMA (0,1)-

TGARCH (1, 1) with skew GED distribution model, and the minimum BIC belongs

to the ARMA (0,1)-GARCH (1, 1) with t distribution model among all models. These

two models are competing.

Table 4.23: Fit Measures of the Models for Period 3
Log-Likelihood AIC BIC

GARCH-norm 2795.608 -6.7325 -6.7040
GARCH-snorm 2806.448 -6.7562 -6.7220

GARCH-t 2854.867 -6.8730 -6.8389
GARCH-st 2857.232 -6.8763 -6.8365

GARCH-sGED 2853.787 -6.8680 -6.8281
EGARCH-norm 2812.091 -6.7698 -6.7357
EGARCH-snorm 2819.396 -6.7850 -6.7452
TGARCH-norm 2816.435 -6.7803 -6.7461
TGARCH-GED 2856.149 -6.8737 -6.8338
TGARCH-sGED 2859.606 -6.8796 -6.8341
APARCH-norm 2816.441 -6.7779 -6.7380
APARCH-sGED 2859.832 -6.8778 -6.8265

4.5.4 The Results of Period 4

Firstly, according to ACF-PACF plots as a mean model ARMA(1,0) is suggested and

fitted to the data, and the result is obtained that ARMA(1,0) provides residuals hav-

ing no serial correlation according to the Box-Ljung test statistic (p-value=0.8017).

Moreover, it is found that there is ARCH effect according to ARCH LM test (p-

value=0 for all lags). Therefore, this model is obtained as a candidate mean model.
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8 out of 24 suggested models are found to be adequate according to the diagnostic

checking for the log-return data. They are shown in red color in Figure4.24.

Table 4.24: The Empirical Models for Period 1
The Empirical Models

ARMA(1,0)-GARCH(1,1) with normal distribution
ARMA(1,0)-GARCH(1,1) with skew normal distribution
ARMA(1,0)-GARCH(1,1) with student t distribution

ARMA(1,0)-GARCH(1,1) with skew student t distribution
ARMA(1,0)-GARCH(1,1) with GED distribution

ARMA(1,0)-GARCH(1,1) with skew GED distribution
ARMA(1,0)-EGARCH(1,1) with normal distribution

ARMA(1,0)-EGARCH(1,1) with skew normal distribution
ARMA(1,0)-EGARCH(1,1) with student t distribution

ARMA(1,0)-EGARCH(1,1) with skew student t distribution
ARMA(1,0)-EGARCH(1,1) with GED distribution

ARMA(1,0)-EGARCH(1,1) with skew GED distribution
ARMA(1,0)-TGARCH(1,1) with normal distribution

ARMA(1,0)-TGARCH(1,1) with skew normal distribution
ARMA(1,0)-TGARCH(1,1) with student t distribution

ARMA(1,0)-TGARCH(1,1) with skew student t distribution
ARMA(1,0)-TGARCH(1,1) with GED distribution

ARMA(1,0)-TGARCH(1,1) with skew GED distribution
ARMA(1,0)-APARCH(1,1) with normal distribution

ARMA(1,0)-APARCH(1,1) with skew normal distribution
ARMA(1,0)-APARCH(1,1) with student t distribution

ARMA(1,0)-APARCH(1,1) with skew student t distribution
ARMA(1,0)-APARCH(1,1) with GED distribution

ARMA(1,0)-APARCH(1,1) with skew GED distribution

For the adequate models the estimates and diagnostic checking of the models are

given in the following Tables 4.25 and 4.26, and for the inadequate models they are

shown in Tables A.9 and A.10, respectively.

From Table 4.25, except some of the constant components in the variance equations,

the estimates of the variance equations and the ϕ parameters of all models are all

significant at 0.05 significance levels.

All parameters that are in the variance equation are positive, and α + β is close but

less than 1 indicating stationary and a high degree of persistence in GARCH models.
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Table 4.25: The Estimate of the Models for the Period 4
Period 4 : February 2020-June 2023

ARMA(1,0)-GARCH(1,1) ARMA(1,0)-EGARCH(1,1)
t st GED sGED t st GED sGED

c 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00* 0.00*
ϕ 0.329* 0.331* 0.294* 0.335* 0.331* 0.326* 0.298* 0.316*
ω 0.000 0.000 0.000 0.00 -0.156* -0.153* -0.221* -0.239*
α 0.309* 0.307* 0.262* 0.263* 0.154* 0.163* 0.07* 0.081*
β 0.686* 0.692* 0.738* 0.734* 0.984* 0.984* 0.98* 0.978*
γ - - - - 0.999* 1.035* 0.51* 0.547*
δ - - - - - - - -

shape 3.496* 3.534* 0.802* 0.805* 2.132* 2.122* 0.716* 0.7*
skew - 1.058* - 1.039* - 0.975* - 0.937*

(*) indicates significant at 5% significance level.

Moreover, all EGARCH models hold the stationary condition since β < 1.

Besides, an asymmetric effect in the series demonstrated by significant and positive

γ in EGARCH models, and it indicates the fact that positive shocks have a bigger

impact on increasing volatility than negative shocks.

The shape and skewness parameters in t, skew t, GED, and skew GED are observed,

and they all are seen significant. They indicate that they have thicker tails than normal

distribution since the shape value (degree of freedom) is around 2-4 for the t and skew

t. Also, it is smaller than 2 in GED and sGED.

According to Table 4.26, it can be concluded that there is no ARCH effect or auto-

correlation in the standardized residuals since all p-values are bigger than the 10%

significance level except one p-value which is bigger than the 5significance level. All

in all, they are adequate models and seem to capture the volatility clustering.
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Table 4.26: P-Values of the Diagnostic Tests for the Models in Period 4
GARCH

t st GED sGED
Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM

1 0.99 0.87 0.87 0.99 0.87 0.87 0.78 0.96 0.96 0.78 0.95 0.95
5 0.12 0.99 0.99 0.10 0.99 0.99 0.05 0.99 0.99 0.08 0.99 0.99

10 0.45 1.00 1.00 0.35 0.99 0.99 0.22 0.99 0.99 0.31 0.99 0.99
20 0.73 1.00 1.00 0.67 1.00 1.00 0.52 1.00 1.00 0.62 1.00 1.00

EGARCH
t st GED sGED

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.24 0.89 0.89 0.25 0.88 0.88 0.46 0.89 0.89 0.30 0.87 0.87
5 0.18 0.99 0.99 0.19 0.99 0.99 0.19 0.99 0.99 0.25 0.99 0.99

10 0.44 0.99 0.99 0.48 0.99 0.99 0.49 0.99 0.99 0.6 0.99 0.99
20 0.8 1.00 1.00 0.83 1.00 1.00 0.81 1.00 1.00 0.88 1.00 1.00

Lastly, the selection criteria are reviewed in Table 4.27, and the ARMA (1,0)-EGARCH

(1,1) with t distribution model has been found the lowest AIC and BIC of all mod-

els, but it is seen the maximum Log-Likelihood value belongs to the ARMA (1,0)-

EGARCH (1,1) with skew t distribution model. It is because of the the number of the

parameters in the model.

Table 4.27: Fit Measures of the Models for Period 4
Log-Likelihood AIC BIC

GARCH-t 3423.651 -8.2353 -8.2012
GARCH-st 3425.389 -8.2371 -8.1973

GARCH-GED 3408.929 -8.1998 -8.1657
GARCH-sGED 3408.052 -8.1953 -8.1555

EGARCH-t 3438.828 -8.2695 -8.2296
EGARCH-st 3439.081 -8.2677 -8.2222

EGARCH-GED 3421.216 -8.2270 -8.1872
EGARCH-sGED 3420.935 -8.2239 -8.1784
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4.6 Summary

The empirical results for each time interval are presented the best models for their

own period as the following.

The Entire Period (June 2001- June 2023)

ARMA(4,3)-EGARCH(1,1) with skew t

Period 1 (June 2001- July 2013)

ARMA(1,0)-TGARCH(1,1) with skew t

Period 2 (July 2013- October 2016)

EGARCH(1,1) with skew t

Period 3 (October 2016- February 2020)

ARMA(0,1)-GARCH(1,1) with t

ARMA(0,1)-TGARCH(1,1) with skew GED

Period 4 (February 2020- June 2023)

ARMA(1,0)-EGARCH(1,1) with t
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CHAPTER 5

CONCLUSION

Modeling exchange rate volatility is an important concern for scholars, investors,

and regulators. Therefore, modeling exchange rate volatility is necessary. So, in

this study, volatility models are presented, and the best-fitting models are suggested.

GARCH-type models are employed to accomplish the goal since the return rate has

an ARCH effect, as Aysoy et al. [9] showed nearly four decades ago. The models

used are GARCH as a symmetrical model, and EGARCH, TGARCH, and APARCH

as asymmetrical models.

Besides, skew normal, skew student t, and skew GED distributions, as well as normal,

student t and GED distributions for return errors are utilized to capture the leptokurtic

behavior and the leverage effect of the CBRT’s closing prices in US dollars from June

2001 to June 2023. However, after an investigation of breakpoints in the data, it is

divided into four periods. Thus, four periods are studied separately, and the results

are presented in Chapter 4.

It is observed that asymmetric models provide the best fitting, and there is a clear

indication that leverage effects are present in the series for all sub-periods including

the entire data set, since TGARCH and EGARCH models in the time intervals are

found as the best-fitting model. This finding is in line with the findings of Oztürk [45],

Caglayan et al. [20], Soytas et al. [48], Ozdemir[27], Saglam et al. [46], Guler [34],

Yaman et al. [56], and Yıldırım et al. [57]. Added to that, as illustrated in Periods 3,

a symmetric model like GARCH has the potential to offer a competing depending on

the period characteristic. Because of that, analyzing of their forecasting performance

can be beneficial for determining which model is the best model between two models.
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Aside from selecting GARCH-type models, the distribution of residuals plays a key

role when modeling volatility, as well. Non-normal and skew distributions are gen-

erally at the forefront of modeling regarding their performance since it is known that

skewness and kurtosis can frequently be seen in the daily exchange rate of return.

Table 4.4 which shows the descriptive statistics of all periods and the results of the

non-normal and skew distributions given in Table 4.13 4.17 4.21 and 4.25, with re-

spect to their significant shape and skewness parameters, revealed that using various

distributions other than normal distribution to capture excess kurtosis, skewness and

volatility clustering is beneficial. Moreover, we obtain that, as summarized in Sec-

tion 4.6, the model with t, skew t, and skew GED specifications can provide the best

model among the other models.

Another issue is in terms of the time intervals, since a whole and its sub-periods are

separately taken in the research. Each time interval has its own scenarios mentioned

in Section 4.3, and in this thesis, we are not only attempting to model the overall

picture, but also period by period, i.e., scenario by scenario, so that it can be used in

the future when dealing with a time span such as the sub-periods. In the beginning,

the whole data set is taken into account, and only two models are found as a adequate

model among 24 models that are proposed. Additionally, the high order in the mean

model is seen. On the contrary, each sub-period has the mean model with the low

order. Furthermore, distribution in the periods are different , since based on their

features, for example, skew t distribution outperforms t distribution in the entire data

set, Period 1 and Period 2. However, the reverse is true for Period 3 and 4.

In the study of Yıldırım [57], it is demonstrated that ARMA(1,1)-EGARCH (1,1) with

t distribution is a better model than the skew ones after the ARMA(1,1)-NGARCH(1,1)

with skew t distribution, and the data in this study covers January 2016 to Decem-

ber 2018. Furthermore, the empirical results in this thesis show that ARMA(0,1)-

GARCH(1,1) with t and skew t specifications are found to be better than ARMA(0,1)-

EGARCH (1,1) model with t distribution for the Period 3. The disparities between

the two research could be attributed to the different time intervals. Yıldırıms’ work

covers from January 2016 to December 2018, whereas the data for Period 3 in the

thesis covers from October 2016 to February 2020.
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Additionally, as observed in the articles of Guler [34] and Ozdemir [27], TGARCH

model plays an important role when modeling volatility since it is seen in Period 3

and 4 in this study with skew t and sGED, respectively.

Modeling exchange rate volatility is important since it has a broad impact on the coun-

try’s economy. The volatility behavior may affect the behavior of the investors,especially

in a country where they decide whether the investment should be made or not. In re-

cent years in Turkey, it has been witnessed that unexpected high volatility can have

severe consequences in all industries. Therefore, the studies on modeling and fore-

casting of it should be considered, and it is a need to take a measurement regarding

the volatility of the exchange rate return. Furthermore, it is known that the positive

shock means the depreciation of the Turkish Lira, and the leverage effect, in which it

is concluded that positive shocks have a bigger effect than the negative shocks in all

times, is observed in all time intervals. The reason behind the presence of this kind

of leverage effect in the series is because of the past economic crisis and bad policies

that make investors react suddenly and extremely. Therefore, policymakers need to

take into account this stylized fact revealed in this research and take measures for the

behavior of the market

Since this thesis has carried out the study of modeling the volatility of the USD/TL

exchange rate return, it may pave the step for further research regarding volatility

modeling and forecasting. Moreover, based on the findings, this study is expected to

contribute to a better understanding of the volatility structure of the exchange rate.
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APPENDIX A

INADEQUATE MODELS

The models that are found inadequate according to the procedure 3.1 are reported in

the following sections.

A.1 The Entire Data Set

Period : June 2001-June 2023
ARMA(4,3)-GARCH(1,1) ARMA(4,3)-EGARCH(1,1)

norm snorm t st GED sGED norm snorm t sGED
c 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*
ϕ1 -0.368* -1.326* 0.129* -0.275* -0.285* -0.377* -0.203* -0.479* 0.041* 0.254*
ϕ2 -0.426* 0.027* 0.912* 0.073* -0.087* 0.924* -0.510* -0.472* -0.491* 0.676*
ϕ3 -0.946* 0.469* -0.174* -0.569* -0.564* 0.388* -0.707* -0.925* -0.655* -0.006
ϕ4 0.072* -0.036* 0.043* 0.0581* 0.067* -0.009 0.065* 0.061* 0.084* 0.021*
θ1 0.439* 1.382* -0.037* 0.362* 0.387* 0.451* 0.287* 0.556* 0.069* -0.167*
θ2 0.456* 0.032* -0.929* 0.0432* 0.118* -0.895* 0.537* 0.514* 0.503* -0.691*
θ3 0.975* 0.496* 0.108* 0.573* 0.579* -0.433* 0.727* 0.953* 0.714* -0.042*
ω 0.000 0.000 0.000 0.000 0.000 0.000 -0.175* -0.160* -0.152* -0.162*
α 0.112* 0.106* 0.138* 0.134* 0.124* 0.122* 0.066* 0.063* 0.053* 0.066*
β 0.886* 0.893* 0.861* 0.864* 0.875* 0.877* 0.981* 0.982* 0.985* 0.984*
γ - - - - - - 0.274* 0.255* 0.361* 0.305*
δ - - - - - - - - - -

shape - - 5.631* 5.768* 1.190* 1.188* - - 4.410* 1.156*
skew - 1.124* - 1.109* - 1.114* - 1.117* - 1.125*

Period : June 2001-June 2023
ARMA(4,3)-TGARCH(1,1) ARMA(4,3)-APARCH(1,1)

norm snorm t st GED sGED norm snorm t st GED sGED
c 0.000* 0.000* 0.000* 0.000* 0.000* NA 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*
ϕ1 -0.183* -0.156* -0.845* -0.502* -0.846* NA 0.565* -0.334* -0.849* -0.869* -0.854* 2.774*
ϕ2 -0.489* 0.320* 0.961* 0.972* 0.959* NA 0.075 -0.286* 0.959* 0.960* 0.954* -2.763*
ϕ3 -0.774* 0.793* 0.830* 0.469* 0.835* NA 0.327* -0.750* 0.834* 0.859* 0.841* 1.046*
ϕ4 0.097* -0.038* -0.074* 0.028* -0.079* NA -0.006 0.049* -0.072* -0.058* -0.077* -0.061*
θ1 0.278* 0.240* 0.956* 0.602* 0.953* NA -0.492* 0.397* 0.957* 0.964* 0.959* -2.696*
θ2 0.529* -0.306* 0.838* -0.900* -0.843* NA -0.118* 0.299* -0.839* -0.850* -0.840* 2.562*
θ3 0.808* -0.834* -0.885* -0.522* -0.896* NA -0.334* 0.758* -0.886* -0.898* -0.901* -0.858*
ω 0.000* 0.000* 0.000* 0.000* 0.000* NA 0.000 0.000* 0.000 0.000 0.000* 0.000
α 0.143* 0.133* 0.187* 0.177* 0.169* NA 0.086* 0.088* 0.171* 0.164* 0.166* 0.174*
β 0.892* 0.893* 0.865* 0.872* 0.876* NA 0.901* 0.903* 0.875* 0.879* 0.876* 0.874*
γ -0.254* -0.272* -0.201* -0.217* -0.205* NA -0.141* -0.117* -0.202* -0.205* -0.190* -0.162*
δ - - - - - - 2.239* 2.164* 1.087* 1.100* 1.134* 1.421*

shape - - 4.270* 4.324* 1.122* NA - - 1.087* 4.442* 1.129* 1.131*
skew - 1.105* - 1.124* - NA - 1.104* 4.342* 1.124* - 1.123*

(*) indicates significant at 5% significance level.
Table A.1: The Estimate of the Inadequate Models
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GARCH
norm snorm t st GED sGED

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.01 0.02 0.02 0.15 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.05 0.04 0.00 0.03 0.02 0.00 0.00 0.00 0.00 0.01 0.00

10 0.00 0.01 0.00 0.00 0.00 0.00 0.04 0.07 0.03 0.00 0.05 0.03 0.00 0.02 0.01 0.00 0.03 0.01
20 0.00 0.08 0.06 0.00 0.03 0.02 0.15 0.14 0.09 0.00 0.11 0.08 0.00 0.07 0.05 0.02 0.08 0.05

EGARCH
norm snorm t sGED

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.05 0.04 0.03 0.01 0.02 0.01 0.54 0.51 0.51 0.07 0.17 0.16
5 0.00 0.25 0.21 0.00 0.12 0.10 0.02 0.80 0.76 0.28 0.59 0.07

10 0.00 0.40 0.25 0.00 0.26 0.16 0.00 0.63 0.42 0.48 0.54 0.35
20 0.00 0.66 0.53 0.00 0.55 0.45 0.00 0.71 0.49 0.66 0.66 0.51

TGARCH
norm snorm t st GED sGED

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.19 0.00 0.00 0.07 0.00 0.00 0.31 0.02 0.02 0.10 0.00 0.00 0.33 0.00 0.00 NA NA NA
5 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.17 0.00 0.00 0.15 0.00 0.00 NA NA NA

10 0.00 0.00 0.01 0.00 0.00 0.02 0.45 0.03 0.00 0.38 0.00 0.00 0.32 0.01 0.00 NA NA NA
20 0.00 0.05 0.11 0.02 0.03 0.19 0.50 0.18 0.08 0.47 0.07 0.02 0.46 0.09 0.03 NA NA NA

APARCH
norm snorm t st GED sGED

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.05 0.00 0.00 0.28 0.01 0.00 0.01 0.02 0.02
5 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.7 0.00 0.00 0.16 0.00 0.00 0.02 0.02 0.01

10 0.00 0.02 0.01 0.00 0.00 0.00 0.24 0.00 0.00 0.19 0.00 0.00 0.28 0.03 0.0 0.09 0.12 0.02
20 0.00 0.10 0.09 0.00 0.06 0.05 0.30 0.02 0.00 0.24 0.00 0.00 0.45 0.11 0.04 0.25 0.21 0.06

Table A.2: P-Values of the Diagnostic Tests for the Inadequate Models
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A.2 Period 1

Period 1 : June 2001-July 2013
ARMA(1,0)-GARCH(1,1) ARMA(1,0)-EGARCH(1,1) ARMA(1,0)-APARCH(1,1)

st sGED st st sGED
c 0.000 0.000 0.000 0.000 0.000
ϕ 0.027 0.025 0.045* 0.039* 0.035
ω 0.000 0.000 -0.357* 0.00* 0.000
α 0.148* 0.141* 0.069* 0.148* 0.095*
β 0.849* 0.853* 0.964* 0.847* 0.857*
γ - - 0.285* -0.172* -0.094*
δ - - - 1.763* 2.602*

shape 6.834* 1.399* 6.492* 6.751* 1.437*
skew 1.181* 1.176* 1.181* 1.179* 1.171*

(*) indicates significant at 5% significance level.
Table A.3: The Estimate of the Inadequate Models for the Period 1

GARCH EGARCH
st sGED st

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.02 0.63 0.62 0.02 0.53 0.51 0.08 0.86 0.85
5 0.14 0.56 0.43 0.13 0.53 0.4 0.32 0.79 0.7

10 0.08 0.89 0.79 0.07 0.88 0.76 0.15 0.92 0.89
20 0.12 0.96 0.9 0.11 0.96 0.9 0.18 0.08 0.03

APARCH
st sGED

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.049 0.99 0.99 0.04 0.57 0.56
5 0.26 0.74 0.63 0.24 0.66 0.6

10 0.13 0.95 0.91 0.12 0.91 0.88
20 0.18 0.99 0.95 0.17 0.99 0.98

Table A.4: P-Values of the Diagnostic Tests for the Inadequate Models in Period 1
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A.3 Period 2

Period 2 : July 2013 -October 2016
EGARCH(1,1) TGARCH(1,1) APARCH(1,1)

sGED norm st sGED norm snorm t st GED sGED
ω -0.11* 0.000 0.000 0.00 0.000 0.000 0.000 0.00* 0.000 0.000
α 0.06* 0.032 0.035* 0.03* 0.045 0.052 0.044 0.05* 0.04* 0.04*
β 0.99* 0.94* 0.95* 0.94* 0.88* 0.89* 0.88* 0.86* 0.89* 0.89*
γ -0.05 -1.00 -1.00 -1.00 -0.125 -0.11* -0.26* -0.19 -0.21 -0.229
δ - - - - 2.89* 2.76* 2.85* 2.85* 2.79* 2.74*

shape 1.16* - 4.51* 1.19* - - 4.19* 4.69* 1.14* 1.13*
skew 1.11* - - - - 1.09* - 1.1* - 1.11*

(*) indicates significant at 5% significance level.
Table A.5: The Estimate of the Inadequate Models for the Period 2

EGARCH TGARCH
sGED norm st sGED

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.20 0.01 0.01 0.26 0.13 0.13 0.23 0.13 0.13 0.23 0.12 0.12
5 0.79 0.05 0.05 0.89 0.55 0.54 0.86 0.52 0.50 0.87 0.50 0.49

10 0.61 0.22 0.32 0.66 0.6 0.62 0.62 0.56 0.58 0.63 0.55 0.57
20 0.73 0.75 0.86 0.86 0.94 0.93 0.85 0.93 0.91 0.85 0.93 0.92

APARCH
norm snorm t st GED sGED

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.15 0.42 0.42 0.15 0.42 0.42 0.20 0.48 0.48 0.19 0.53 0.53 0.20 0.37 0.37 0.19 0.43 0.43
5 0.74 0.94 0.94 0.74 0.94 0.94 0.81 0.95 0.95 0.79 0.97 0.97 0.82 0.93 0.92 0.80 0.94 0.93

10 0.62 0.74 0.77 0.62 0.74 0.77 0.61 0.80 0.81 0.63 0.84 0.85 0.63 0.78 0.80 0.62 0.79 0.81
20 0.87 0.98 0.97 0.87 0.97 0.96 0.85 0.98 0.97 0.86 0.98 0.98 0.86 0.98 0.97 0.86 0.97 0.96

Table A.6: P-Values of the Diagnostic Tests for the Inadequate Models in Period 2
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A.4 Period 3

Period 3 : October 2016- February 2020
ARMA(0,1)-GARCH(1,1) ARMA(0,1)-EGARCH(1,1) ARMA(0,1)-TGARCH(1,1) ARMA(0,1)-APARCH(1,1)

GED t st GED sGED snorm t st snorm t st GED
c 0.000 0.000 0.000* 0.000* 0.000 0.000 0.000* 0.000 0.000* 0.000 0.000* 0.000
θ 0.102* 0.093* 0.094* 0.096* 0.108 0.066 0.089* 0.090* 0.077 0.091* 0.093* 0.096
ω 0.000 -0.361 -0.330* -0.298 -0.282 0.000* 0.000 0.000 0.000 0.000 0.000 0.000
α 0.167 0.052 0.054 0.074* 0.075 0.118* 0.151* 0.146* 0.119* 0.152* 0.147* 0.136*
β 0.831* 0.963* 0.966* 0.970* 0.971* 0.890* 0.874* 0.887* 0.865* 0.87* 0.872* 0.874*
γ - 0.313 0.307* 0.262 0.253 -0.530* -0.246 -0.255 -0.492* -0.227 -0.234 -0.332*
δ - - - - - - - - 1.197* 1.157* 1.158* 1.146

shape 1.106* 4.285* 4.367* 1.138* 1.157 - 4.410* 4.474* - 4.410* 4.488* 1.153
skew - - 1.108* - 1.109 1.155* - 1.113* 1.165* - 1.113* -

(*) indicates significant at 5% significance level.
Table A.7: The Estimate of the Inadequate Models for the Period 3

GARCH EGARCH
GED t st GED sGED

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.25 0.70 0.70 0.22 0.62 0.62 0.21 0.59 0.59 0.33 0.51 0.51 0.47 0.45 0.45
5 0.44 0.97 0.97 0.37 0.96 0.96 0.36 0.95 0.95 0.40 0.91 0.92 0.43 0.87 0.87

10 0.29 0.95 0.95 0.25 0.96 0.96 0.23 0.95 0.96 0.32 0.93 0.94 0.30 0.90 0.93
20 0.69 0.99 0.99 0.67 0.68 0.70 0.64 0.76 0.80 0.73 0.78 0.85 0.72 0.82 0.84

TGARCH
snorm t st

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.12 0.25 0.25 0.23 0.42 0.42 0.25 0.37 0.37
5 0.19 0.46 0.50 0.33 0.74 0.75 0.32 0.65 0.67

10 0.18 0.62 0.71 0.26 0.83 0.87 0.23 0.77 0.83
20 0.54 0.71 0.78 0.68 0.83 0.86 0.66 0.84 0.88

APARCH
snorm t st GED

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.25 0.37 0.37 0.25 0.48 0.48 0.26 0.44 0.44 0.37 0.44 0.44
5 0.32 0.65 0.67 0.35 0.82 0.83 0.34 0.77 0.79 0.39 0.77 0.78

10 0.23 0.77 0.83 0.27 0.87 0.90 0.25 0.84 0.88 0.33 0.83 0.87
20 0.66 0.84 0.88 0.69 0.90 0.90 0.66 0.90 0.92 0.74 0.86 0.88

Table A.8: P-Values of the Diagnostic Tests for the Inadequate Models in Period 3
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A.5 Period 4

Period 4 : July 2013 -June 2023
ARMA(1,0)-GARCH(1,1) ARMA(1,0)-EGARCH(1,1) ARMA(1,0)-TGARCH(1,1) ARMA(1,0)-APARCH(1,1)
norm snorm norm snorm norm snorm t st GED sGED snorm t st GED

c 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.00* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000*
ϕ 0.036 0.035 0.133* 0.133* 0.104* 0.127* 0.313* 0.311* 0.295* 0.281* 0.131* 0.06* 0.308* 0.294*
ω 0.000 0.000 -0.091* -0.086* 0.000* 0.000* 0.000* 0.000* 0.000* 0.00* 0.000 0.000* 0.000 0.000
α 0.166* 0.163* 0.0919* 0.094* 0.148* 0.140* 0.563* 0.567* 0.391* 0.13* 0.137* 0.563* 0.456* 0.343*
β 0.833* 0.836* 0.985* 0.986* 0.881* 0.888* 0.701* 0.700* 0.748* 0.87* 0.893* 0.706* 0.748* 0.781*
γ - - 0.402* 0.391* -0.446* -0.485* -0.079 -0.083 -0.081 -0.25* -0.537* -0.059* -0.102 -0.042
δ - - - - - - - - - - 0.801* 0.701* 0.569* 0.757*

shape - - - - - - 2.470* 2.460* 0.731* 0.724* - 2.314* 2.287* 0.699*
skew - 1.076* - 1.033* - 1.077* - 0.988* - 0.985* 1.075* - 0.975* -

(*) indicates significant at 5% significance level.
Table A.9: The Estimate of the Inadequate Models for the Period 4

GARCH EGARCH
norm snorm norm snorm

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.00 0.21 0.21 0.00 0.519 0.19 0.00 0.57 0.57 0.00 0.51 0.51
5 0.00 0.57 0.56 0.00 0.54 0.53 0.00 0.96 0.96 0.00 0.95 0.95

10 0.00 0.89 0.89 0.00 0.87 0.88 0.00 0.99 0.99 0.00 0.99 0.99
20 0.00 0.98 0.98 0.00 0.98 0.97 0.00 0.99 0.99 0.00 0.99 0.99

TGARCH
norm snorm t st GED sGED

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.01 0.05 0.05 0.01 0.05 0.05 0.90 0.93 0.93 0.90 0.93 0.93 0.94 0.98 0.98 0.93 0.97 0.97
5 0.00 0.25 0.25 0.00 0.25 0.25 0.56 0.99 0.99 0.56 0.99 0.99 0.30 0.99 0.99 0.31 0.99 0.99

10 0.00 0.69 0.71 0.00 0.69 0.71 0.93 1.00 1.00 0.93 1.00 1.00 0.77 1.00 1.00 0.78 1.00 1.00
20 0.00 0.97 0.98 0.00 0.97 0.98 0.98 1.00 1.00 0.98 1.00 1.00 0.93 1.00 1.00 0.93 1.00 1.00

APARCH
snorm t st GED

Lags Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM Q Q2 ARCH-LM
1 0.02 0.03 0.03 0.89 0.96 0.96 0.89 0.96 0.96 0.85 0.86 0.86
5 0.00 0.12 0.13 0.63 1.00 1.00 0.63 1.00 1.00 0.15 0.99 0.99

10 0.00 0.49 0.51 0.95 1.00 1.00 0.95 1.00 1.00 0.49 1.00 1.00
20 0.00 0.92 0.94 0.99 1.00 1.00 0.98 1.00 1.00 0.82 1.00 1.00

Table A.10: P-Values of the Diagnostic Tests for the Inadequate Models in Period 4
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