
SPECIES CLASSIFICATION FROM SHORT GENOMIC READS USING FEEDFORWARD
NEURAL NETWORKS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRE ÖZZEYBEK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
BIOINFORMATICS

SEPTEMBER 2023

Species Classification from Short Genomic Reads using Feedforward Neural Networks

submitted by EMRE ÖZZEYBEK in partial fulfillment of the requirements for the degree of Master
of Science in Health Informatics, Middle East Technical University by,

Prof. Dr. Banu Günel Kılıç
Dean, Graduate School of Informatics

Assoc. Prof. Dr. Yeşim Aydın Son
Head of Department, Health Informatics

Assist. Prof. Dr. Aybar Can Acar
Supervisor, Health Informatics

Examining Committee Members:

Assoc. Prof. Dr. Yeşim Aydın Son
Health Informatics, METU

Assist. Prof. Dr. Aybar Can Acar
Health Informatics, METU

Assoc. Prof. Dr. Tunca Doğan
Computer Engineering, Hacettepe University

Date: 11.09.2023

I hereby declare that all information in this document has been obtained and presented in ac-
cordance with academic rules and ethical conduct. I also declare that, as required by these rules
and conduct, I have fully cited and referenced all material and results that are not original to
this work.

Name, Surname: Emre Özzeybek

Signature :

iii

ABSTRACT

SPECIES CLASSIFICATION FROM SHORT GENOMIC READS USING FEEDFORWARD
NEURAL NETWORKS

Özzeybek, Emre

M.S., Bioinformatics Program

Supervisor: Assist. Prof. Dr. Aybar Can Acar

September 2023, 45 pages

With the cost of Next Generation Sequencing technologies in decline, the need for fast and efficient
classification of genomic findings has become of utmost importance. Due to the output length limi-
tations of most Second Generation Sequencing techniques, it is important that we are able to classify
short reads of DNA. In this research, we trained a basic Artificial Neural Network model with three
hidden layers on short reads(50-500 bp) taken from two species’ reference genomes. We selected
Escherichia Coli and Saccharomyces Cerevisiae for their short and well-studied reference genomes.
Their taxonomic difference makes them ideal candidates for ascertaining the viability of using the
whole genome for species classification. We then classified these short reads. We achieved moderate
success with a classification accuracy of 80%− 91% corresponding to differing hyperparameters and
read lengths. We documented the encountered issues and considered future directions.

Keywords: Bioinformatics, Classification, Machine Learning, Neural Networks

iv

ÖZ

BESLEMELİ SİNİR AĞLARI KULLANARAK GENOMİK KISA OKUMALARDAN TÜR
SINIFLANDIRMASI

Özzeybek, Emre

Yüksek Lisans, Biyoenformatik Programı

Tez Yöneticisi: Dr. Öğr. Üyesi. Aybar Can Acar

Eylül 2023, 45 sayfa

Yeni Nesil Dizileme teknolojilerinin maliyetlerinin düşmesi ile genomik bulguların hızlı ve verimli
sınıflandırılmasının önemi artmıştır. İkinci Nesil Dizileme tekniklerinin çıktı uzunluklarındaki kısıt-
lamalardan dolayı, kısa DNA okumalarını sınıflandırabilmemiz önem taşımaktadır. Bu çalışmada iki
türe ait referans genomlardan alınan kısa okumalar(50-500 bp) ile üç saklı katmana sahip temel bir
Yapay Sinir Ağı modelini eğittik. Kısa ve iyi çalışılmış referans genomlara sahip olduklarından Esc-
herichia Coli ve Saccharomyces Cerevisia türlerini seçtik. Bu türlerin taksonomik olarak farklı olması,
sınıflandırmada tüm genomu kullanma üzerine bir araştırmanın konusu olmak bakımından onları ideal
adaylar haline getirdi. Daha sonra referans genomlardan alınan bu okumaları sınıflandırdık. Çeşitli üst
değişkenler ve okuma uzunlukları kullanarak elde ettiğimiz modellerin eğitim süreçleri sonunda uy-
gulanan sınıflandırma işlemlerinde %80−%91 aralığında doğruluğa eriştik. Karşılaştığımız sorunları
belgeledik, geleceğe yönelik önerilerde bulunduk.

Anahtar Kelimeler: Biyoenformatik, Sınıflandırma, Makine Öğrenmesi, Sinir Ağları

v

To my beloved family and friends...
Aileme ve dostlarıma...

vi

ACKNOWLEDGMENTS

Assist. Prof. Dr. Aybar Can Acar for all their support throughout my thesis and master’s program.

Assoc. Prof. Dr. Yeşim Aydın Son for their guidance.

Assoc. Prof. Dr. Tunca Doğan for their invaluable feedback.

Prof. Dr. Tolga Can for their enthusiastic lectures that introduced and lead me to Bioinformatics.

This thesis would not have come together if not for the unyielding support and constant push I got
from my friends and family, so I am indebted to them.

vii

TABLE OF CONTENTS

ABSTRACT. iv

ÖZ . v

DEDICATION . vi

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Scope and Goal . 2

1.3 Contributions of the Study . 2

1.4 Structure of the Thesis . 3

2 BACKGROUND . 5

2.1 Discovery of DNA . 5

2.2 Sequencing . 5

viii

2.2.1 PCR . 5

2.2.2 Sanger sequencing . 5

2.2.3 Next Generation Sequencing(NGS) . 7

2.2.3.1 Second Generation Sequencing . 7

2.2.3.2 Third Generation Sequencing . 8

2.2.4 Gene sequence file types . 8

2.3 DNA Barcoding . 8

2.4 Machine Learning . 9

2.4.1 Underfitting . 9

2.4.2 Overfitting . 9

2.5 Neural Networks . 9

2.5.1 Encoding . 10

2.5.2 Gradient Descent . 11

2.5.2.1 Vanishing Gradients Problem . 11

2.5.2.2 Exploding Gradients Problem . 12

2.5.3 Hyperparameters in Deep Learning . 12

2.5.3.1 Model (Structure) Related Parameters . 12

2.5.3.2 Training(Optimization) Related Parameters . 13

2.5.4 Specialized Neural Networks . 14

2.6 Related Work . 15

3 MATERIAL AND METHOD . 17

3.1 Data Preparation . 17

3.2 Model structure . 18

ix

3.3 Hyperparameters . 19

3.4 Training . 19

3.5 Testing . 20

4 RESULTS . 21

4.1 Experiments . 21

4.1.1 Testing Number of Hidden Layers . 21

4.1.2 Testing Read Length and Layer Sizes . 22

4.1.3 Testing Learning Rates . 22

4.1.4 Testing Different Activation Functions . 24

4.1.5 Testing Different Activation Functions for the Output Layer 24

4.1.6 Testing Initializer Specs for Normal Distribution . 24

4.1.6.1 Standard Deviation . 24

4.1.6.2 Mean . 26

4.1.7 Testing Different Sample Species Representation Methods 26

5 DISCUSSION AND CONCLUSION . 27

5.1 Issues Encountered . 27

5.1.1 Loss Selection . 27

5.1.2 Gradients in Activation Function Selection . 27

5.1.3 Achieving Determinism . 28

5.1.4 Using Keras’ Own Metrics . 28

5.1.5 Memory/Time Issues in Training . 29

5.2 Representation of Species in the Data . 29

5.3 Using Synthetic Short Reads vs. Real-life Sequencing Outputs . 30

x

5.4 Specifications of the Output Layer . 31

5.5 Multi-species Classification . 32

5.6 Comparison to similar work . 32

5.7 Conclusion . 33

5.8 Future Work . 34

REFERENCES . 35

APPENDICES

A CONTENTS OF FILE PREP.PY . 39

B CONTENTS OF FILE TRAIN_TEST.PY . 41

C LIST OF INSTALLED PACKAGES AND VERSIONS . 45

xi

LIST OF TABLES

Table 1 Sequencing Technologies and Specifications . 6

Table 2 Result Comparison on Different Test and Validation data setups 20

Table 3 Accuracy Test for Different Activation Functions . 24

Table 4 Accuracy Test for Different Activation Functions on Output Layer 24

Table 5 Accuracy Test for Different Sampling Methods regarding Species Representation . . . 26

Table 6 Decreased Loss Reduction in Vanishing Gradient Problem . 28

Table 7 Packages in environment tf_gpu . 45

xii

LIST OF FIGURES

Figure 1 Sanger Sequencing Pipeline . 7

Figure 2 Example FASTA file . 8

Figure 3 Example FASTQ file . 8

Figure 4 Neural Network Activation . 10

Figure 5 One-hot Encoding for Hair Color Data . 10

Figure 6 Dummy Encoding for Hair Color Data . 11

Figure 7 Label Encoding for Weight Data . 11

Figure 8 Label Encoding for non-ordinal Hair Color Data . 11

Figure 9 Encoding of the Data . 18

Figure 10 Overview of the Neural Network . 18

Figure 11 Testing Number of Hidden Layers . 21

Figure 12 Test of Layer Sizes . 22

Figure 13 Test of Learning Rates on Read Length 50 . 23

Figure 14 Test of Learning Rates on Read Length 500 . 23

Figure 15 Test of Standard Deviations for Initializer . 25

Figure 16 Test of Standard Deviations for Initializer on read length 500 25

Figure 17 Test of Means for Initializer . 26

Figure 18 Visual representation of different sampling cases in case of the inclusion of
Drosophila melanogaster as a third species . 30

xiii

LIST OF ABBREVIATIONS

WGS Whole Genome Sequencing

DNA Deoxyribonucleic Acid

RNA Ribonucleic Acid

FNN Feedforward Neural Networks

ANN Artificial Neural Networks

NN Neural Networks

RNN Recurrent Neural Networks

CNN Convolutional Neural Networks,

PCR Polymerase Chain Reaction

NGS Next Generation Sequenci

LSTM Long Short Term Memory

GRU Gated Recurrent Unit

GPU Graphics Processing Unit

PCR Polymerase Chain Reaction

ddNTP Dideoxyribonucleotide

NaN Not a Number

xiv

CHAPTER 1

INTRODUCTION

Identifying species has been around since there were cave paintings. Primitive classification criteria
included; size, colour, number of limbs, mobility etc. It also was limited to the species the people
encountered, which was not much. The first great generalizer in classification was Aristotle, who vir-
tually invented the science of logic, of which classification was a part for 2,000 years. The Aristotelian
method dominated classification until the 19th century. Carolus Linnaeus, who is usually regarded as
the founder of modern taxonomy and whose books are considered the beginning of modern botanical
and zoological nomenclature, drew up rules for assigning names to plants and animals and was the first
to use binomial nomenclature consistently. [1] There was something that differentiated all the species
but it was yet unknown.

Discovery of DNA was a big step in uncovering this unknown factor. This was followed by the discov-
ery of the central dogma. Genes were identified and linked to proteins. These proteins were observed
inside and outside of the cells and were found to be responsible for almost every single function any
living organism has.

In later years, the world continued to embrace digital technologies and the field of bioinformatics
emerged. Computers offered analysis humankind could not perform by hand, and provided visual-
ization that made concepts easier to understand. As the sequencing technologies evolved and costs
reduced, getting a species’ whole genome became a regular task. This led to the collection of a large
amount of genomic data.

The advancement in digital technologies in other fields entailed the collection of large amounts of data
in those fields as well. This led to the introduction of the term big data. The sheer size of big data
led to the development and refinement of machine learning methods. Genomic data, despite not being
macro-scale, has been classified as big data due to its immense size. Advancement in the classification
and compression of such data is critical to allow scientific progress in bioinformatics.

1.1 Motivation

The task of species classification has been tackled in the past in a few ways. The most basic solution
was the alignment of sequences to compare differences and to determine a species. In order to be
deterministic, this required the use of a large sequence.

1

Then Hebert et al.[2] proposed a system where one would select a specific position in the sequence
where the nucleotides differed interspecies but were mostly unchanged intraspecies. Then this gene
could be used as a DNA barcode. Some genes that fit this criterion were found for animals(COI[3],
Cytob[4], 12S[5], 16S[5]). Most of these were mitochondrial genes and were selected because they
lacked intronic regions, were haploidically inherited, and had limited recombination. For some king-
doms other than the animal kingdom, a combination of genes was selected to successfully apply this
technique. For some others, no such combination was found. The weakness of using DNA barcod-
ing was the requirement of a reliable reference library, which was extremely difficult to create in a
comprehensive manner. It also lacked a standard protocol to use.

The use of deep learning allowed the classification task itself to evolve from basic alignment of the
sequences to computing distances and training neural network models. These models were trained
most commonly on the genes that were formerly selected to be used in DNA barcoding, since such
genes were already shown to be present in multiple species and to be mostly unique interspecies.
However, this method was still held back by the limitations of DNA barcodes, because they were
performing the classification by using only certain parts of the DNA.

DNA barcoding requires either annotated data or large sequences to work, so that an alignment can be
performed to determine the barcode area in the sample. But second generation sequencing machines
can output sequences ranging from 75 to 400 base long sequences. Therefore we need a network that
can classify reads of these length.

1.2 Scope and Goal

In this study we are taking the whole reference genomes for two species: Saccharomyces Cerevisiae
(Baker’s Yeast) [6] and Escherichia Coli (E. Coli) [7] and training a deep learning model to identify
short reads(50-500 bases) taken from the reference genomes using an artificial neural network. The
goal is to successfully identify the species of any short read we have sampled out of the reference
genomes themselves.

1.3 Contributions of the Study

This study provides a neural network model that can handle the task of binary classification using
short(50-500 bp) reads taken from the reference genomes of two species to successfully(∼ 83% accu-
racy for 50 bp,∼ 91% accuracy for 500 bp) classify similarly generated reads.

This network can be extended to classify more than two species. In which case, it can prove to be
a strong tool to classify certain reads where other methods in the literature fall short. Classifying
regions where comprehensive DNA barcode information is lacking has not been explored extensively.
Research on short reads of non-barcode regions is even less common. For some domains viable DNA
barcodes have not yet been discovered.

2

1.4 Structure of the Thesis

Chapter 2 contains the background information for the subjects included in the thesis. Chapter 3
considers the specifications of the neural network model and the details of the training process. Chapter
4 presents the test results. Chapter 5 discusses the results, compares this study to other similar studies
and offers the conclusions of the thesis and possible future directions. In Appendices A and B are the
python code files used to prep the data and build, train and test the neural network, respectively. In
appendix C is the table with software versions installed in the conda environment.

3

4

CHAPTER 2

BACKGROUND

2.1 Discovery of DNA

The origins of the discovery of hereditary similarities date back as far as Ancient Greece, where Hip-
pocrates built a foundation for what is now known as Charles Darwin’s Pangenesis(1868) [8]. Mendel’s
work(1866) [9] solidified the existence of a genetic structure housed within living creatures and is
passed down using a dual encoded method to offsprings. Around the same time, Meisner discovered
an irregular phosphorus-rich compound, unlike any protein, calling it nuclein. This nuclein would later
go on to be called DNA(Deoxyribonucleic acid). With the help of X-ray crystallography and former
various theories, Watson and Crick theorized a shape for what this genetic material could be, giving
birth to the double-helix structure DNA is known to be today [10].

2.2 Sequencing

Sequencing is the process of experimentally determining the sequence of bases that construct an or-
ganism’s genetic materials. There are different methods used to sequence the genetic materials, an
extensive list of used machines can be found in Table 1.

2.2.1 PCR

It is a commonly used molecular biology technique that aims to make multiple copies of a region of
DNA. A double-stranded DNA molecule is broken apart and is built back together using the primers
that are provided. Therefore effectively replicating the DNA molecule.

2.2.2 Sanger sequencing

Also known as the chain termination method, the dideoxynucleotide method, or the sequencing by
synthesis method. First discovered by Frederick Sanger[11] and his colleagues in 1977. It played an
important role in the Human Genome Project.

As illustrated in Figure 1[12], Sanger Sequencing is composed of three steps.

5

Generation Platform Instrument Reads per run Avg Read Length (pb) Year
First Generation ABI Sanger 3730xl 96 400–900 2002

Second Generation

454 GS20 200 100 2005
454 GS FLX 400 250 2007
454 GS FLX Titanium 1M 450 2009
454 GS FLX 1M 700 2011
454 Titanium+ 1M 700 2011
454 GS Junior 100 400 2010
454 GS Junior+ 100 700 2014

Illumina MiniSeq 25M (max) 150 2013
Illumina MiSeq 25M (max) 300 2011
Illumina NextSeq 400M (max) 150 2014
Illumina HiSeq 5B (max) 150 2012
Illumina HiSeq X 6B (max) 150 2014
SOLiD 5500 W 3B 75 2011
SOLiD 5500xl W 6B 75 2013

Ion Torrent PGM 314 chip v2 400,000-550,000 400 2011
Ion Torrent PGM 316 chip v2 2M-3M 200 2011
Ion Torrent PGM 318 chip v2 4M-5.5M 400 2013
Ion Torrent Ion Proton 60M-80M 200 2012
Ion Torrent Ion S5/S5XL 520 3M-5M 400 2015
Ion Torrent Ion S5/S5XL 530 15M-20M 400 2015
Ion Torrent Ion S5/S5XL 540 60M-80M 400 2015

Third Generation

PacBio RS C1 432 1300 2011
PacBio RS C2 432 2500 2012
PacBio RS C2 XL 432 4300 2012
PacBio RS II C2 XL 564 4600 2013
PacBio RS II P5 C3 528 8500 2014
PacBio RS II P6 C4 660 13500 2014
PacBio Sequel 350 10000 2016

Oxford Nanopore MinION Mk 100 9545 2015
Oxford Nanopore PromethION NA 9846 2016

Table 1: Sequencing Technologies and Specifications

6

Figure 1: Sanger Sequencing Pipeline

• 1) PCR with fluorescent, chain-terminating ddNTPs

Chain-terminating PCR is applied. Similar to standard PCR the goal is to replicate the sequence,
but with one major difference: the addition of modified nucleotides (dNTPs) called dideoxyri-
bonucleotides (ddNTPs). In the extension step of standard PCR, DNA polymerase adds dNTPs
to a growing DNA strand by catalyzing the formation of a phosphodiester bond between the free
3’-OH group of the last nucleotide and the 5’-phosphate of the next Figure 1.

• 2) Size separation by capillary gel electrophoresis

The oligonucleotides are put in a gel matrix and applied an electrical current. Because DNA is
negatively charged, the oligonucleotides are pulled, at different speeds due to their size. This
helps order them by size.

• 3) Laser excitation & detection by sequencing machine

Since DNA polymerase starts its work from the provided primer, by reading the gel bands from
smallest to largest, the 5’ to 3’ sequence of the original DNA strand can be determined.

This method was revolutionary at its time but proved too slow and too expensive as alternative ap-
proaches emerged.

2.2.3 Next Generation Sequencing(NGS)

2.2.3.1 Second Generation Sequencing

Second Generation Sequencing saw the introduction of massively parallel sequencing with Illumina.
Soon followed by Ion Torrent. They excelled at sequencing many small parts quickly and at a low cost.
For this reason, they excelled at resequencing projects and SNP calling. Their shortcoming was their
short reads of ∼ 50− 200bp.

7

2.2.3.2 Third Generation Sequencing

Third generation sequencing technologies allow for much longer read lengths.

2.2.4 Gene sequence file types

Gene data has different formats it can be stored in depending on the specific information it contains. It
can contain sequence data, annotation data, quantitative data and read alignments.

• FASTA[13]

Can be used to represent either nucleotide or amino acid sequences. Can have the following
extensions: .fasta, .fna, .ffn, .faa, .frn, .fa.

>BK006935.2 TPA_inf: Saccharomyces cerevisiae S288C chromosome I, complete sequence
ccacaccacacccacacacccacacaccacaccacacaccacaccacacccacacacacacatCCTAACACTACCCTAAC
ACAGCCCTAATCTAACCCTGGCCAACCTGTCTCTCAACTTACCCTCCATTACCCTGCCTCCACTCGTTACCCTGTCCCAT

Figure 2: Example FASTA file

• FASTQ:

This is an extension of FASTA. Also includes the quality score for the elements indicating how
confident the measurement is of that value.

@2fa9ee19-5c51-4281-abdd-eac8663f9b49 runid=f53ee40429765e7817081d4bcdee6c1199c2f
91d sampleid=18S_amplicon read=109831 ch=33 start_time=2019-09-12T12:05:03Z
CGGTAGCCAGCTGCGTTCAGTATGGAAGATTTGATTTGTTTAGCGATCGCCATACTACCGTGACAAGAAAGTTGTCAGTCT
TTGTGACTTGCCTGTCGCTCTATCTTCCAGACTCCTTGGTCCGTGTTCAATCCCGGTAGTAGCGACGGGCGGTGTATGTAT
TATCAGCGCAACAGAAACAAAGACACC
+
%&&-&%$%%$$$#)33&0$&%$''*''%$#%$%#+-5/---*&&%$%&())(&$#&,'))5769*+..*&(+28./#&122
8956:7674';:;80.8>;91;>?B=%.**==?(/'($$$$*'&'**%&/));807;3A=;88>=?9498++0%"%%%%'#
&5/($0.$2%&0'))*'%**&)(.%&&

Figure 3: Example FASTQ file

2.3 DNA Barcoding

With the idea put forward by Hebert et al.[2], the mitochondrial gene cytochrome c oxidase I (COI)
was established as the core of a global bio identification system for animals. Finding such an identifier
for plants wasn’t as easy, since mutation in plants was a much rarer occurrence. For other species,
there are systems using multiple genes to create a barcode.

8

2.4 Machine Learning

With the increase in processing power of computers, it became possible to analyze whole genomes.
Pattern recognition, anomaly detection, clustering,and classification were tasks that could be auto-
mated. Which led to even more information to be extracted from genetic materials.

The goal of most machine learning models is to construct a model and fit that model to the task/input
at hand in a way that can produce the desired outcome. This fitting process needs to be adjusted
according to the results it produces with both its original training set and similar yet non-identical test
set. According to its scores on these tests, its fit is determined.

2.4.1 Underfitting

If the machine learning model can not successfully learn, it can be seen on its scores. If the model
underperforms in both the training and the test set, it is said to be underfit. Underfitting can be due to
an insufficient learning time, a simple model structure or over regularization. It can be overcome by
changing these.

2.4.2 Overfitting

If the machine learning model performs well specifically on the set it was trained on, and underper-
forms in the test set; it is said to be overfit, meaning that it captured the specifications of the training
set too well when it was desired to be more accommodating of a wider range of data. The training set
could be enriched with more diverse data points.

2.5 Neural Networks

As the technology advanced, humankind analyzed what makes intelligence, or even consciousness,
and tried to mimic it. The trials of simulating the biological neural networks of the brain tissue led
researchers to Artificial Neural Networks. The core structure of Neural networks is as follows:

• There is an input layer and an output layer. There may be varying numbers of "hidden layers" in
between.

• Each layer contains a certain number of nodes. These nodes are connected to other nodes in
adjacent layers. This enables the flow of information.

• These connections each have weights and associated activation functions. This manipulates
the flow of information to, hopefully, extract, store and infer a certain piece of information
that belongs to the input. (This piece of information can be positive/negative for a sentence,
containing a cat for an image, belonging to a specific species for DNA in our case)

• These weights are the main holders of information. The other specifications of the model are
called "hyperparameters" and are configured according to the specific model structure and input
data type used to extract the intended information out of the input data.

9

• Since numbers and mathematical operations are used throughout the model, the values of the
output layer can be represented in terms of the values of the input layer, the weights of the con-
nections between nodes, the activation function and a correcting value called bias. By feeding
the desired outcome and the input to the model, one can tell the model to resemble that outcome.

• In this case, a function to calculate resemblance/difference/distance is needed. This is where the
loss function comes in. Using the loss function, one can determine how alike the model is to the
ideal model. The weights can then be adjusted in a way so that the model is more similar to this
ideal model. How much change each learning step makes is called the learning rate.

a
(0)
1

a
(0)
2

a
(0)
n

a
(1)
m

a
(1)
1

w1,1w1,1

w1,2w1,2

w1,nw1,n...

...

= σ
(
w1,0a

(0)
0 + w1,1a

(0)
1 + . . .+ w1,na

(0)
n + b

(0)
1

)
= σ

(
n∑

i=1

w1,ia
(0)
i + b

(0)
1

)

a
(1)
1

a
(1)
2
...

a
(1)
m

 = σ

w1,0 w1,1 . . . w1,n

w2,0 w2,1 . . . w2,n

...
...

. . .
...

wm,0 wm,1 . . . wm,n

a
(0)
1

a
(0)
2
...

a
(0)
n

+

b
(0)
1

b
(0)
2
...

b
(0)
m

a(1) = σ

(
W(0)a(0) + b(0)

)
Figure 4: Neural Network Activation

2.5.1 Encoding

Encoding is used to represent categorical(specifically nominal in our case) data so that it can be used
in a mathematical fashion.

• One-hot Encoding

Blonde Brown Grey{1, 0, 0} {0, 1, 0} {0, 0, 1}

Figure 5: One-hot Encoding for Hair Color Data

Useful for nominal data where one cannot quantify the difference between the classes. Can
also be used for ordinal data with ease, however, capturing the actual distances between values
will be out of the question. Increases the dimensions of the data significantly. Easy to quantify
differences and calculate distances due to its high dimensional nature. Every class increases the
dimensions, which can lead to issues, so not very useful when the classes are high in number.
A dummy case can be added where all the values are 0 which would reduce the total number of
dimensions by 1.

• Label/Ordinal Encoding

Useful for ordinal data where you can order the classes. Even though the difference/distance
between the points will not be accurate when calculated, they will be comparable to each other
and will be statistically indicative.

10

Blonde Brown Grey{1, 0} {0, 1} {0, 0}

Figure 6: Dummy Encoding for Hair Color Data

Underweight Healthy weight Overweight Obese1 2 3 4

Figure 7: Label Encoding for Weight Data

Although it is best suited for ordinal data, label encoding can also be used on non-ordinal data.
In such a case it is prudent to be aware that the distance between Blonde-Brown and Brown-Grey
will be identical and will be the half of Blonde-Grey. This is nonsensical in terms of the data
used, so some metrics should not be given attention.

• Target-Mean Encoding

Compared to other encoding types, Target Encoding encodes the data with values that are in-
dicative of the target. Most commonly the mean of an indicative column is used. Can be used
in a way where the value is calculated without using that specific value, called the Leave one out
method.

• Frequency/Count Encoding

Can be useful in displaying the distribution of a set. Every value is encoded with the count of
instances it has in the dataset, or the overall frequency(count/total count).

2.5.2 Gradient Descent

A gradient is the partial derivatives of a function at a given point. Gradient descent is an optimization
algorithm that tries to minimize the gradient, achieving a local minimum. There are some issues that
can be encountered regarding this algorithm:

2.5.2.1 Vanishing Gradients Problem

During backpropagation, gradients are used to update the weights. In this step, if the gradients keep
getting smaller where they are taken as zero, the weights will not be updated since the algorithm
believes it has reached a local minimum point, when in fact it has not. As a result, the gradient descent
algorithm never converges to the optimal solution. Can be spotted by slow or non-existent learning
process[14]

Blonde Brown Grey1 2 3

Figure 8: Label Encoding for non-ordinal Hair Color Data

11

2.5.2.2 Exploding Gradients Problem

On the other hand, if the gradients become so large they can make the gradient descent diverge instead.
This can occur when the denominator approaches zero, overflowing the gradient, making it NaN at
which point it can no longer be worked on. Can be spotted by large changes at every step or even NaN
valued losses.

2.5.3 Hyperparameters in Deep Learning

A big part of the machine learning process is fine-tuning everything. Split into two model structure
parameters and training (learning) parameters

2.5.3.1 Model (Structure) Related Parameters

• Number of hidden layers/neurons

A neural network model with more than three layers(one input layer, one output layer, one or
more hidden layers) is considered a deep learning method. The number of hidden layers may
depend on the number of features desired to be captured from the input data. Also increasing
the number of hidden layers and neurons tend to increase the accuracy, but can eventually cause
overfitting, just as too few layers can cause underfitting.[15]

• Dropout

The models are trained on specific data, but often times are expected to be effective on similar
yet not identical data. For this reason, it is essential not to overfit. Dropout is a method to
overcome overfitting. Some nodes in the model are temporarily removed from the model so
that some randomness(noise) can be added into the training process. The goal is to break up
situations where network layers co-adapt to correct mistakes from prior layers, in turn making
the model more robust.[16]

• Momentum

Momentum allows the learning process to easily get to where it needs to. It achieves this by
adding the previous update vector into the next batch. This allows for easier convergence.

• Weight initialization

There a few options that can be used to initialize the weights between the nodes. Assigning all
zeros or ones is an option, or to add some noise, like before, random values can be assigned.
But the the general vicinity of this randomness can be controlled, using Normal or Uniform
distributions to select the random values. The specifications of the distributions(mean, standard
deviation, min, max) are then become the hyperparameters to tune the models

• Activation Function

As can be seen on Figure 4 the activation function(σ) is used in the calculation of the nodes
throughout the learning process. They are used to introduce non-linearity to the model. Different
activation functions used:

12

– Tanh

tanh(x). Provides values between (-1,1).

– Sigmoid
1

1+e−x

– Rectified Linear Units (ReLU)

Offers a non-negative value by taking the max(0, x). Produces values between [0, inf)

• Loss function

The loss function determines the fit of the model. The goal of training the model is to minimize
the difference between the desired output and the actual output of the model. The loss function
helps us achieve that. During training the loss function eventually leads into a local minimum.
The local minimum is desired to be a global minimum. Commonly used loss functions are as
follows:

– Mean Squared Error

MSE is calculated by taking a mean of the squares of the distances between points in the
data.

– Cross-entropy

Useful for calculating the distance(difference) between categorical data points. Cross-
entropy loss is also called logarithmic loss, log loss, or logistic loss. Each predicted class
probability is compared to the actual class desired output 0 or 1 and a score/loss is calcu-
lated that penalizes the probability based on how far it is from the actual expected value.
The penalty is logarithmic in nature yielding a large score for large differences close to 1
and small score for small differences tending to 0. [17] Cross-entropy is expressed by the
equation;

l(p, q) = −
∑

p(x)logq(x) (1)

Where x represents the predicted results by ML algorithm, p(x) is the probability distribu-
tion of the “true” label from training samples, and q(x) depicts the estimation of the ML
algorithm.

∗ Categorical Cross-entropy is used for classification tasks where multiple classes are
present.

∗ Binary Cross-entropy is used in binary classification tasks.

2.5.3.2 Training(Optimization) Related Parameters

• Learning rate

Learning rate indicates how much correction will be made in response to the error calculated by
the loss function after each epoch.

• Number of epochs

13

The number of epochs determine how many times the training process will be repeated on the
training data. To achieve convergence, the training process may need to be repeated a number
of times. The rule of thumb to determine the correct number of epochs is to stop when the
validation error starts to increase, which can be an indicator of overfitting.

• Batch size

The batch size determines how many data runs the model will go through before it updates its
weights.

2.5.4 Specialized Neural Networks

In addition to the core design of neural networks explained above, there are more specialized versions
that are more adept at extracting/storing certain patterns in data.

• Convolutional Neural Networks (CNN)

As neural networks tried to mimic the process of learning, Fukushima(1980)[18] tried the same
for the human visual pattern recognition capability. The previous models lacked the ability to
handle inputs of varying shapes. But by moving the learning process through the input this ob-
stacle was overcome. Like the animal visual cortex of the human body, the neurons correspond
to multiple points of the input that are adjacent to them and store them as a single representative
value. By doing this with multiple neurons, the whole data can be covered.

A further simplification process called pooling usually follows. In pooling multiple points are
reduced to one neuron mainly by max() or avg() functions. By repeating these steps multiple
times it is possible for different layers to represent different properties in the input.

CNNs excel at pattern recognition in a variety of data types, specifically image and video data.

Most common example encountered when CNNs are concerned is the MNIST database of hand-
written digits[19]. In this example, the power of CNNs is obvious. By having multiple convolu-
tional layers, it is possible to capture lines->connected lines->numbers in order.

• Recurrent Neural Networks (RNN)

RNNs use sequential or time series data. These deep learning algorithms are commonly used for
ordinal or temporal problems, such as language translation, natural language processing (NLP),
speech recognition, and image captioning. They are distinguished by their “memory” as they
take information from prior inputs to influence the current input and output. The output of recur-
rent neural networks depend on the prior elements within the sequence. There are bidirectional
RNNS that also take into account the outputs that would follow this output in order.

RNNs share parameters across each layer of the network which need to be tuned similarly to
feedforward networks. The weights on the RNNs are adjusted through the processes of back-
propagation and gradient descent to facilitate reinforcement learning.

RNNs utilize a process called backpropagation through time (BPTT) where the errors it has is
summed throughout the training process. Due to this method, RNNs can easily encounter two
problems, known as vanishing gradients and exploding gradients. These issues are defined by
the size of the gradient, which is the slope of the loss function along the error curve. Where
the weights are either too small or too large. In which case the weights become insignificant or

14

not a number(NaN) respectively. One solution to these issues is to reduce the number of hidden
layers within the neural network, eliminating some of the complexity in the RNN model.[20]

– Long-Short Term Memory (LSTM) [21]

Developed to combat the vanishing/exploding gradient problems, LSTMs contain a forget
gate, which can help the model learn better. [22]

– Gated Recurrent Unit (GRU)[23]

GRUs are simpler versions of LSTMs, they have fewer gates(just a reset and update gates
instead of the forget, input, and output gate of LSTM) therefore fewer parameters but they
are less powerful and adaptable.

• Autoencoders[24]

Autoencoders are similar to Artificial Neural Networks in that they essentially have the same
architecture. The difference in Autoencoder architecture is that their network always resembles
an hourglass like shape, with layers getting smaller closer to the middle.

The first half of the network is called the encoding part and the second part the decoding part.
Backpropagation is used to train the network. They are symmetrical and during the training
process the error is calculated as the difference of the output to the input trying to achieve true
symmetry. This means the goal is to encode(compress) the input to fit the smallest middle hidden
layer(s) to then be able to recreate the input as the output.

– Variational Autoencoders[25] VAEs have the same architecture as AEs but they use the
approximated probability distribution to train.

2.6 Related Work

Abd–Alhalem et al.[26] compares DNA sequence classification algorithms that use deep learning.
They split the algorithms in three: alignment based methods, alignment free methods and ML-DSP(Machine
Learning - Digital Signal Processing). They point out the rise in popularity of deep learning in DNA
sequence classification due to their remarkable performance and reduction of challenges. They em-
phasize the need for a high amount of data for deep learning to perform successfully.

Rizzo et al.[27] use 16S gene sequences to taxonomically classify bacteria species down to the genus
level. They randomly select 1000 sequences from each of the three most common bacteria phyla,
Actinobacteria, Firmicutes, Proteobacteria, collecting in total 3000 sequences. All the sequences have
length greater than 1200 bp, They use short reads of length 500 bases. They use a Convolutional
Neural Network on spectral representations of the genomes. They have very high accuracy on higher
(Phylum, class) taxonomic levels, but as they approach the genus level, they require the use of full
length sequences to achieve > 50% accuracy. But when using full length sequences, they achieve
> 85%.

Busia et al.[28] also use 16S gene sequence but for a much wider range of species. They also use a
CNN. They have 19, 851 sequences with 13, 838 from 2, 768 genera. They tested their model on read
lengths L = 25, 50, 100, 150, 200. They used 16S mock community sequencing data and they also
test on synthethic data they simulate base-flipping noise on. Their results suggests that their approach
of injecting random base-flipping noise at train time allows the DNNs to learn a more robust noise

15

model than the one implicitly incorporated by aligners like BLAST and BWA by allowing gaps and
mismatches to be tolerated. Overall, this study acts as a first step towards their long-term goal of
developing a general-purpose deep learning model that can successfully perform any task framed as
the assignment of labels to short biological sequences.

Weitschek et al.[29] introduce BLOG(Barcoding with LOGic) 2.0 it uses a supervised machine learn-
ing approach that extracts species-specific positions of the DNA Barcode sequences from the training
set and formulates rules on these positions. Since it is learning its rules on specific positions of the
data, it requires a complete reference library of polymorphisms for each species in the training set to
avoid false negatives. They use DNA barcode sequence files in FASTA format that are either of the
same region or have been pre-aligned. They achieve 92% accuracy on fungi and 100% accuracy on
algae.

Yang et al.[30] use DNA barcode sequences to classify species. They use convolutional methods,
treating one-hot encoding as its own dimension and convoluting and pooling in 2D. Afterwards taking
the flattened pooling results through hidden layers. Using ReLu as its general activation function and
softmax in the last layer to compute the probabilities of the species.

Cui et al.[31] propose a genomic sequence compression algorithm based on a deep learning model and
an arithmetic encoder. Their deep learning model is structured as a convolutional layer followed by an
attention-based bi-directional long short-term memory network, which predicts the probabilities of the
next base in a sequence. The arithmetic encoder employs the probabilities to compress the sequence.

16

CHAPTER 3

MATERIAL AND METHOD

The neural network model was implemented using the Keras toolkit, which is based on TensorFlow
libraries in Python programming language.[32] [33] [34] The data is prepared and dumped into files
using pickle. This preparation step will especially be useful should there be new genes added to the
dataset. Because, since it won’t be possible to fit all the data in the memory at once, batches will need
to be implemented due to the increase in the space required. As the species selected had exceptionally
small DNA lengths, any addition to the dataset (which would likely involve species with longer DNA)
will significantly increase the size.

A virtual environment was used to perform the training and testing using Anaconda[35]. We used its
package and environment manager for the command line interfacing tool Conda(version 4.12.0). The
list of installed relevant packages and their versions can be found on Table C.

3.1 Data Preparation

Two reference genomes were used to train and test the model: Saccharomyces Cerevisiae(Baker’s
Yeast)[6] and Escherichia Coli(E. coli)[7]. These species were selected mainly due to their small
sized and more importantly well-studied DNA sequences. They are also taxonomically very different
which makes them ideal candidates for ascertaining the viability of using the whole genome for species
classification. Saccharomyces cerevisiae is a eukaryote whereas eschericia coli is a prokaryote. We
wanted to span a wider range of species. The genomes were extracted out of their FASTA files and
preprocessed to contain nothing but the genome sequences.

E. coli reference genome consists of 4,699,673 nucleotides and is 4.48 MB in size.

Baker’s Yeast reference genome consists of 12,309,078 nucleotides and is 11.7 MB in size.

Uniform distribution is used to randomly select short reads of length 50 to 500 out of the DNA data.
Equal number of samples are collected out of both samples. This decision is discussed further in 5.2.

The files were reformatted to contain only lowercase letters for a unified representation of each nu-
cleotide (thus disregarding the information for repeating sequences indicated by the uppercase letters).
Then the data is encoded into a one-hot encoding format. With the special case of the character "N"
which can be used to represent the existence of a non-specific nucleic acid, 5 categories were used for
the encoding process. The transformation matrix is shown on Figure 9.

17

a-A

t-T

c-C

g-G

n-N

{1, 0, 0, 0, 0}

{0, 1, 0, 0, 0}

{0, 0, 1, 0, 0}

{0, 0, 0, 1, 0}

{0, 0, 0, 0, 1}

Figure 9: Encoding of the Data

3.2 Model structure

The model consists of six layers as can be seen on Figure 10. One input layer, one flatten layer, three
hidden dense layers, and one output layer.

0 0 0 1 0

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0
...

...
...

...
...

0 0 0 1 0

50

5

0

0

0

1

0

0

0

1

0

0
...

0

250

x1

x2

x3

x4

x5

x250

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
100

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
20

...

a
(3)
1

a
(3)
2

a
(3)
5

...

y1

y2

input layer flatten layer hidden layers output layer

(50,5) (250) (100) (20) (5) (2)

Figure 10: Overview of the Neural Network

The data is taken through a Flatten() layer to reformat the data back into a 1D format. The model
consists of three fully connected hidden layers. The hidden layers are separated by activation layers.

18

3.3 Hyperparameters

The number of layers determines the information that can be extracted from the data. We initially
selected three hidden layers for our model. When we tested whether lower number of layers was
feasible, we saw that three layers gives us the best results(Figure 11).

We selected our output layer to have two nodes, one for each species. After every test case we check
the output layer and select the highest value to be the result of our classification. We can also compare
the outputs of our network to determine how confident the classification has been.

We use initializers to assign certain values to the weights in the network to jump-start the learning.
We used Keras’ initializer that samples Random Normal distribution. Its default specifications are
mean=0.0, stddev=0.05, further tests on these values were performed. The values that gave the best
results were 0.09 for standard deviation. The mean did not seem to affect the model in a sensible way.
For this reason the mean was kept as 0.0 since it gave as good a result as any value (4.1.6).

The activation functions determine the flow of information in the network. The activation functions
we considered for our network are as follows: Tanh, Sigmoid, ReLU, Exponential. We opted to use
Tanh activation function as trying different activation functions proved difficult with our setup(4.1.4).
We tried different activation functions for the last layer, the one that improved the accuracy best was
ReLU.(4.1.5)

Loss functions help the network learn by providing a metric with which can be optimized to get the
desired outcome. Because we have categorical data, the loss functions we considered were: Cate-
gorical Cross-entropy and Binary Cross-entropy. We used categorical cross-entropy initially since it
allowed us to later add new classes. We then found out that using categorical cross-entropy for binary
classification resulted in us getting inconsistent results(further discussed in 5.1.1).

The learning rate determines how much each batch is going to affect the model. It can be adjusted
to overcome certain convergence issues. We used Keras’ Adam optimizer which defaulted to 0.001
learning rate. As we tested multiple learning rates, 0.0006 was seen to provide better results(4.1.3).

3.4 Training

Initially, we set a seed to achieve reproducibility of the results. We used tf.keras.utils.set_random_seed
(seed) since it sets seeds for Python, Numpy and TensorFlow’s randomized operations. Despite
setting these seeds, some variance between runs persisted. Further investigation revealed that us-
ing the GPU introduced some randomness due to order of operations. To circumvent this issue
tf.config.experimental .enable_op_determinism() was used. This option makes the training process
deterministic, eliminating some parallel qualities therefore reducing the overall performance of the
training process.

The time required to train the model ranges from 15 seconds to 250 seconds with five epochs. The
main factor affecting the training times is Read Length. We take our reads in a way that the total length
of the reads will be double the size of the original DNA. Therefore as the read length increases number
of reads decrease. With less reads to train, the training process naturally takes shorter. We were unable

19

to find a direct correlation of anything else with the training time. This could be due to the noise in the
training time data since the other processes running in the device can alter the training times.

We tried three devices throughout the project. Even though the devices had similar setups, the training
times were changed tenfold. Rather than investigate the cause of this issue, we continued using the
fastest device.

3.5 Testing

The testing process is aimed towards adjusting the hyperparameters in the network. We used Accuracy
Score(Equation 2) and F1 Score(Equation 3) to measure test success. F1 score is effective in indicating
a class imbalance in some cases where accuracy seems to have increased.

We take the Baker’s Yeast as the positive outcome in our tests. This is due to it being the first species
in the species list.

Accuracy =
TruePositives+ TrueNegatives

TruePositives+ FalsePositives+ TrueNegatives+ FalseNegatives
(2)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TruePositives

2 ∗ TruePositives+ FalsePositives+ FalseNegatives
(3)

We use sklearn.model_selection.train_test_split(test_size=0.20) to reserve 20% of our initial data to
use for validation and testing. The validation set is fed to the network during its training. After the
training is done, we run this test data through Keras’ predict() function to get its predictions. By
comparing these predictions to the actual classes we can judge the performance of our model.

After all of our tests was performed, it was pointed out that our validation test being the same as our
test set could lead to overfitting. So we compared the results of an 80/20/20 split and an 80/10/10 split.
The results can be seen on Table 2. It is important to point out that in these cases when splitting the
data into 80/20/20 the validation set and the test set becomes identical but when splitting the data into
80/10/10 the validation set and the test set are separate. The results of this adjustment didn’t prompt
us to perform all of our previous tests again since it had a minimal effect on the network results where
accuracy and F1 scores are concerned.

Train Set Test Set Validation Set Accuracy F1 Score
80% 20% 20% 0.894 0.886

80% 10% 10% 0.896 0.888

Table 2: Result Comparison on Different Test and Validation data setups

20

CHAPTER 4

RESULTS

4.1 Experiments

4.1.1 Testing Number of Hidden Layers

As an initial decision, the number of hidden layers was set to be three. In this experiment we tested
different numbers of hidden layers in a similar model structure. In Figure 11 we can see their highest
performing specifications’ accuracy values.

Figure 11: Testing Number of Hidden Layers

21

4.1.2 Testing Read Length and Layer Sizes

As can be seen on Figure 12, the increase in the length of the reads of DNA we used correlates with
an increase in accuracy, which was to be expected. However, since the goal was to find solutions for
short reads of data, reads of 50 were kept in all other tests.

Layer sizes of 200/100/20 was found to be the best performing for read length 50. 1000/100/20 for
500 read length.

Figure 12: Test of Layer Sizes

4.1.3 Testing Learning Rates

Figure 13 clearly shows an ideal range of learning rate values to use([0.005, 0.01]). As the values differ
from this range the performance of the model decreases.

On a network of input size(read length) 500, the optimal learning rate seemed to be much lower than the
initial values as Figure 14 shows. We selected 0.00003 to be the optimal value, since it was surrounded
by more consistent results.

22

Figure 13: Test of Learning Rates on Read Length 50

Figure 14: Test of Learning Rates on Read Length 500

23

4.1.4 Testing Different Activation Functions

Table 3 has the results of the different activation function test. The only viable option here is tanh. The
other cases are due to vanishing and exploding gradients. This is further discussed in chapter 5.

Function Accuracy F1 Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Tanh 0.8361 0.8266
Loss 0.5786 0.5485 0.5390 0.5353 0.5330

Val Loss 0.5568 0.5442 0.5426 0.5359 0.5362

Sigmoid 0.4989 0.6657
Loss 0.6931 0.6931 0.6931 0.6931 0.6931

Val Loss 0.6932 0.6932 0.6932 0.6932 0.6932

ReLU 0.5017 0.6682
Loss 0.6268 0.6134 0.6087 0.6064 0.6050

Val Loss 0.6172 0.6123 0.6089 0.6078 0.6074

Exponential 0.5002 0.6668
Loss NaN NaN NaN NaN NaN

Val Loss NaN NaN NaN NaN NaN

Table 3: Accuracy Test for Different Activation Functions

4.1.5 Testing Different Activation Functions for the Output Layer

Activation Function Accuracy F1 Score
tanh 0.827 0.821

sigmoid 0.827 0.826
relu 0.835 0.829

exponential 0.828 0.826
softmax 0.829 0.826

Table 4: Accuracy Test for Different Activation Functions on Output Layer

Table 4 shows us that a final layer with ReLu activation performs slightly better.

4.1.6 Testing Initializer Specs for Normal Distribution

4.1.6.1 Standard Deviation

The standard deviation values keras.initializers.RandomNormal(stddev, mean) uses to set the initial
node weights seems to have a range in which it lets the network train the best [0.07, 0.09].(Figure 15)

When testing on read length 500 reads we found [0.03, 0.05] to be the optimal range of values as can
be seen on Figure 16.

24

Figure 15: Test of Standard Deviations for Initializer

Figure 16: Test of Standard Deviations for Initializer on read length 500

25

4.1.6.2 Mean

The mean values keras.initializers.RandomNormal(stddev, mean) uses to set the initial node weights
doesn’t seem to have a significant effect on the model’s performance.(Figure 17

Figure 17: Test of Means for Initializer

4.1.7 Testing Different Sample Species Representation Methods

In Table 5 Different representation of species in the samples were investigated. This test was conducted
for two different read lengths: 50 and 500. When the samples are taken proportional to the length of
the reference genomes of the species, the accuracies seem to increase. But the decrease in F1 score
show us that this is in fact not the case. This leads us to think that there is a big imbalance of results
between classes/species.

Read Length
Number of Samples

Accuracy F1 Score
Ecoli Yeast

50
185666 486284 0.869 0.746
486284 486284 0.836 0.826

500
18566 48628 0.919 0.849
48628 48628 0.903 0.900

Table 5: Accuracy Test for Different Sampling Methods regarding Species Representation

26

CHAPTER 5

DISCUSSION AND CONCLUSION

We have explained our network and presented our results in the previous chapters. Now we will talk
about some of the issues we have encountered throughout the development process and some things to
consider in further development.

5.1 Issues Encountered

5.1.1 Loss Selection

We were stuck randomly getting inverted accuracy scores. This issue persisted for a long time. The
accuracy would, seemingly randomly, switch between ∼ 80% and ∼ 20%.

This looked similar to a labelling issue we previously had where the labels of the classes were mixed
and we were getting all the results as ∼ 20%. But the differences were that the switch between positive
and negative scores were at random and not in batches unlike our previous problem. Also the Accuracy
scores weren’t exactly complementary. In our previous problem the labels in the test set were mixed
so the training process was untainted, which led to accuracy scores that would add exactly up to 1. But
that wasn’t the case here.

During random tests we discovered that the issue resulted from the use of tf.keras.losses.Categorical
Crossentropy. We had used Categorical Crossentropy so we could, in the future, add more classes to
the network. But as it stands our task is binary classification. Our assumption was that both Binary
Crossentropy and Categorical Crossentropy would give us the same results in a binary classification
task. Apparently Categorical Crossentropy is not suitable for use with only two classes. A switch to
tf.keras.losses. BinaryCrossentropy resolved our issue.

5.1.2 Gradients in Activation Function Selection

During our tests to find the most suitable activation function for the network, we encountered some
nonsensical results. As can be seen on 4.1.4 Tanh function was the only feasible option. We think
these nonsensical results are due to vanishing and/or exploding gradients.

As explained in 2.5.2, a vanishing gradient problem can be spotted by a slow or non-existent learning
process. For our test on Sigmoid function, we can see from the losses that the network hasn’t learned

27

at all. In case of ReLU function, as illustrated in Table 6 when compared to the first epoch of Tanh
function’s losses, the reduction in loss (which usually indicates learning) is very low. We can deduct
from this slow loss reduction and low accuracy that the model doesn’t seem to be learning, ∼ 50%

accuracy that the gradients are vanishing. For Exponential function the losses are all NaN which is
probably an indicator of integer overflow. This means that the value of the loss has become so high
that the value can not be represented by the programming language. This is most probably due to
exploding gradients. Gradient clipping can be performed to overcome this issue but since Tanh is a
perfectly acceptable option, we did not explore the other options further.

Function Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Tanh 0.5786 0.5485 0.5390 0.5353 0.5330
ReLU 0.6268 0.6134 0.6087 0.6064 0.6050

Table 6: Decreased Loss Reduction in Vanishing Gradient Problem

−5% −2% −0.7% −0.4%

−2% −0.7% −0.4% −0.2%

However, we continued to observe outcomes similar to those of the vanishing gradient problem. These
happened mostly on edge cases while we were performing wide range of values on our hyperparam-
eters. We tracked this particular issue to our loss function. Loss functions in Keras/TensorFlow have
from_logit = False as default. This option makes the loss function assume that all the values it gets
will be (−1, 1). But since we are using Tanh activation function for intermediary nodes and ReLU for
our output layer, therefore not normalizing our weights, we needed to set from_logit = True for our
loss function. This makes the loss function apply the softmax function to normalize the output values
before it uses them.

5.1.3 Achieving Determinism

As we mentioned before, we used keras.utils.set_random_seed() to set seeds for python, numpy and
tensorflow. But we still weren’t able to get deterministic results. Runs with same specifications were
providing similar yet non-identical results. Upon further investigation we found that the randomness
was due to the randomness introduced by the order of processes in the GPU. To overcome this we
set tf.config.experimental.enable_op_determinism(). With this option we achieved true deterministic
results. This determinism came at a cost of training time since the GPU was no longer using multiple
cores to optimize the process.

5.1.4 Using Keras’ Own Metrics

Keras has its own metrics that can be used to track the learning process. We encountered various
errors when trying to use them. We later found these errors to be caused by two things: one of them
is because we set tf.config.experimental.enable_op_determinism(), and the other is due to our use of

28

logits, since these metrics were incompatible with logits. These issues are fixed in newer versions of
Tensorflow but due to some dependencies we have, we were unable to upgrade Tensorflow.

5.1.5 Memory/Time Issues in Training

When training our network, our code took a very long time, and in some specifications the device
would run out of memory. We then realized that since we were using numpy.append() to read the data
into an array, at every step a new array would be created which increased the time and space it took.
Creating an empty array first and then filling it resolved this issue.

With the current two species setup, batching isn’t required. Should there be more species added to the
dataset, there will become a need for batching the data, since it may not be possible to load all of the
data into memory all at once.

Similarly, initially we would read the data file, sample, train and test all in the same file. We then
separated the files. prep.py(A) file reads and samples the data. It then dumps the sampled reads into a
pickle file. test.py(B) reads the sampled reads from the pickled file, creates and trains the network and
tests and outputs the specifications of the test and its results.

As pointed out before, we tried three different devices throughout the project. One of the devices was
10 times slower without any apparent differences that could cause this. We continued the tests using
the fastest device.

5.2 Representation of Species in the Data

We initially selected the number of samples for each species to be proportional to their length. This
decision was due to the possible addition of different species to the data. Because in such a case,
the size of the samples would increase exponentially. The sampling size differences in a hypothetical
inclusion of the species Drosophila Melanogaster can be found on Figure 18. Drosophila Melanogaster
reference genome consists of 145,523,498 nucleotides and is 138 MB in size therefore the lengths of
the genomes in the figure closely represent a real-life case.

In Case A, the space the samples take up is
∑n

i=0 li where n is the number of species in the data, and
li is the length of the genome of the ith species in the data. With the introduction of the third species
Drosophila, 3n total data size would increase to 31n.

However, in Case B, the space the samples take up is lmax ∗ n where n is the number of species in the
data, and lmax is the length of the longest genome. 4n total data size would increase to 84n.

This is indicated in the prep.py(A) file with a flag species_length_equalized. 0 for Case A and 1 for
Case B.

In Table 5 we see Case A results have their accuracy higher but their F1 score lower. This indicates
a class imbalance because we are testing the species with test data proportional to their training set.
Therefore there are more test cases for Yeast than E. coli. Which makes Yeast more dominant in the
overall accuracy result. Since E. coli’s training set was smaller, the network was also more overfit on

29

Figure 18: Visual representation of different sampling cases in case of the inclusion of Drosophila
melanogaster as a third species

yeast. So when the more trained Yeast has a bigger weight in the overall score the accuracy becomes
higher.

F1 score takes into account precision and recall and is more informative in cases of class imbalance.
F1 scores clearly show that the Case B is significantly better at classification. That is why we have
opted to use the same number of samples for both species.

As we previously stated we took Baker’s Yeast as our positive outcome. During the tests we performed,
F1 Score was always lower than the Accuracy Score. This can lead us to believe that the negative
outcome which means classifying a read as E. coli is more likely. Since we performed these tests using
Case B; E. coli is more represented in the training and test set which could cause this. Another reason
might be due to the simplicity of the E. coli genome. This can be further investigated by comparing
different species with genome simplicity in mind.

5.3 Using Synthetic Short Reads vs. Real-life Sequencing Outputs

We have tested our network on synthetic short reads taken from the reference genomes of the selected
species. This was because our initial goal was fast classification of a long genome by taking multiple
short reads and taking an average of the results we got. But more tests can be performed on real-life
short reads to see how the network performs in such cases. Another option is to introduce base-flipping
noise as elaborated on (Busia et al., 2019)[28].

Upon using such real-life sequences, the following topics should be considered:

30

• Reads of Different Sizes

Most sequencers do not produce fixed length results. The lengths of the reads produced can
vary. Due to the nature of non-recurrent neural networks, the read length of the input on this
network is fixed. However, there is a fifth category in the one-hot encoding that can be used in
such an occasion. All the reads can be aligned to the left and padded with the character "N" In
such a case, the model would need to be trained on such padded reads in the first place, or else
it wouldn’t know how to handle them.

• Possibly Mutated Sequences

All genetic material mutates in some way or another. This is not reflected on this study. Reads
that are not exactly present in the trained set can affect the performance of the network. It will
however, classify the read as the species it finds it to be closer to. Therefore especially SNPs
should not propose a big challenge for this network.

• Assay Contamination

Due to the small nature of the DNA, there is always a possibility of a contamination in the assay.
Since we are training our model on labeled data, if the label is incorrect, it could worsen the
performance of the model.

• Sequencing Errors

The error rates of NGS technologies have been shown to be around 0.1% [36]. This can obvi-
ously affect the performance of the model.

5.4 Specifications of the Output Layer

We have two nodes on our output layer, one for each species the network has trained on. We feed
the desired outputs the same way we do our one-hot encoded inputs. [1, 0] for first class(Yeast), [0, 1]
for second class(E. coli). Another option we had was to use one layer for binary classification [0] for
yeast, [1] for e. coli. But using one node for each species gives us the opportunity to measure how
confidently the network has classified a certain read.

We have used ReLU activation function on the output layer since it provided us with the best results.
ReLU function maps our tanh function’s [−1, 1] range into [0, inf). Since we have two species that
do not have much in common genomewise, almost all of the results provide very similarly symmetric
results when tanh function is used on the output layer(eg. 0.91 and -0.89). So even when using ReLU
function, we can take the positive output as our confidence score. This would of course not be the case
on multi-species classification and possibly not the case on binary classification with more common
regions.

The linear nature of ReLU function may result in some outcomes where the comparison between
certain outputs may not make as much sense.

31

5.5 Multi-species Classification

The network can be extended to go beyond binary classification and be trained on and classify multiple
species data. The loss would need to become categorical cross-entropy, the number of nodes on the
output layer would need to be adjusted to the number of species in the data.

The classification results’ metrics would need to be adjusted to accommodate multiple classes. Accu-
racy and F1 scores exist also for multi-species classification.

If more similar species are selected to classify, or more species are added to the model, the outputs will
need to be closely monitored since more than one positive/negative outputs may be present. In such a
case the best scoring classification may be taken or any classification that pass a certain threshold may
be shown.

5.6 Comparison to similar work

Rizzo et al.[27] use randomly selected 1000 sequences from each of the three most common bac-
teria phyla, Actinobacteria, Firmicutes, Proteobacteria, collecting in total 3000 sequences. All the
sequences have length greater than 1200 bp. They all belong to 16S genes. We are using all parts of
the DNA for two species. They use sequences that are 500 bases long and also experiment with the
full-length sequences of the genes. We also use 500 base long sequences but have also experimented
with 50 base long sequences.

They use spectral sequence representations of the sequences. They extract k-mers where k = 5 from
the sequence and list out their frequencies. They use this frequency data to train the model and perform
the classifications on the test sets. This approach disregards any long distance correlations the sequence
may hold. The frequency data is fixed in size which is important since they are using convolutional
layers in their network. They have two convolutional and pooling layers followed by a hidden layer.
We use the one-hot encoded genome sequences to train and test. We have three hidden layers.

They use tanh activation function throughout the network. We also use tanh function but on the output
layer we switch to ReLU.

They are classifying the sequences down to the genus level. We are only interested in the species level
of the classification. But since we have only two species that separate at the domain level, it could be
said that we are classifying our sequences at the domain level.

Using 500 base long sequences, they achieve ∼ 100% accuracy on phylum and class level, ∼ 90%

on order level, ∼ 75% on family level and ∼ 50% on genus level. We achieve ∼ 91% accuracy on
domain level.

Busia et al.[28] use 16S rRNA sequences. They have 19, 851 sequences with 13, 838 from 2, 768

genera. They use read lengths L = 25, 50, 100, 150, 200. We use short reads taken from the whole
genome that have read length 50 to 500. We use two species.

32

To test their network, they used 16S mock community sequencing data and also synthetic data they
simulated base-flipping noise on. We used synthetic small reads taken from the reference genome to
train and test our network. They used one-hot encoding to encode the data similar to us.

They use three convolutional layers followed by two to three fully connected layers depending on the
read length. They use an extra average pooling layer afterwards and use softmax activation function
on the output layer. We use three hidden layers.

Weitschek et al.[29] use DNA barcodes (COI for animals, rbcL and matK for plants). They require
the sequences to be of the same region or at least to be pre-aligned so that the barcode regions can be
extracted. We use short reads taken from the whole genome.

Since it is learning its rules on specific positions of the data, it requires a complete reference library of
polymorphisms for each species in the training set to avoid false negatives. They achieve 92% accuracy
on fungi and 100% accuracy on algae. We achieve 91% accuracy when classifying at the domain level.

Yang et al.[30] use DNA barcode sequences to classify species. They use COI for animals, trnD-trnT
and ITS for plants with 621 species in total. We use short reads taken from the whole reference genome
for two species.

They use a convolutional network, treating one-hot encoding as its own dimension and convoluting
and pooling in 2D. They then take the flattened pooling results through hidden layers, using ReLU as
its general activation function and softmax in the last layer to compute the probabilities of the species.
We have three hidden layers and use tanh activation function with ReLU function on the output layer.

5.7 Conclusion

Using DNA barcodes to classify DNA sequences is a common practice today. This method is lacking
in situations where the sequence might not be accessible as a whole. Since most second generation
sequencing machines tend to output reads of around 75 - 400 bp long, we need to be able to classify
sequences of this length.

In this study, we set out to develop a deep learning method that could be trained on short reads taken
from two reference genomes that can then successfully identify the origin of any short read taken from
these reference genomes.

We have selected the two species to be Escherichia Coli and Saccharomyces Cerevisiae, due to their
short and well-studied reference genomes. These two species are taxonomically very different, hence
lack many identical DNA regions. This makes them ideal candidates to test the viability of using the
whole genome for species classification.

We trained the network on short reads we randomly sampled from the reference genomes. The lengths
of the reads were 50 to 500 for different networks. We performed our tests with same length reads.
The model can accommodate the use of variable length reads. The nature of ANNs do not allow for
variable length input but a recurrent layer can be introduced to combat this issue. Also the variable
length reads can be padded with the character ’N’ to be made the same length. If variable length test
cases will be encountered, the training set should also contain similar padded reads.

33

We tried different specifications for the neural network and achieved ∼ 83% accuracy when predicting
the species of short reads of 50 bases long. As we increased the read length up to 500 bases, we
achieved ∼ 91% accuracy.

5.8 Future Work

The inclusion of different deep learning techniques (RNNs, CNNs, transformers) could capture se-
quential correlations a simple ANN could not and might improve accuracy further.

The network can be extended to classify more than two species.

Finally, once reliable multiple species classification is achieved, further methods can be used to com-
press the data using the result of the classification. An autoencoder can be used to compress the data
using the reference genome that belongs to that species. The compressed data would consist of the
model, weights corresponding to the model and the difference the decompression of the compressed
data would have with the reference genome.

34

REFERENCES

[1] A. J. Cain, taxonomy. Encyclopædia Britannica, inc., Jan 2011.

[2] P. Hebert, A. Cywinska, S. Ball, and J. DeWaard, “Biological identifications through dna bar-
codes,” Proceedings of the Royal Society B: Biological Sciences, vol. 270, no. 1512, p. 313–321,
2003.

[3] P. D. N. Hebert, S. Ratnasingham, and J. R. deWaard, “Barcoding animal life: cytochrome c
oxidase subunit 1 divergences among closely related species.,” Proceedings of the Royal Society
B: Biological Sciences, vol. 270, p. S96–S99, Aug 2003.

[4] H. A. Yacoub, M. M. Fathi, and W. M. Mahmoud, “Dna barcode through cytochrome b gene
information of mtdna in native chicken strains,” Mitochondrial DNA, vol. 24, p. 528–537, Oct
2013.

[5] F. Yang, F. Ding, H. Chen, M. He, S. Zhu, X. Ma, L. Jiang, and H. Li, “Dna barcoding for
the identification and authentication of animal species in traditional medicine,” Evidence-based
Complementary and Alternative Medicine: eCAM, vol. 2018, p. 5160254, Apr 2018.

[6] “Saccharomyces cerevisiae organism reference genome.” Available at
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/4932/.

[7] “Escherichia coli organism reference genome.” Available at
https://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/Escherichia_coli/reference/GCF_000005845.2_ASM584v2/.

[8] Y. Liu and X. Li, “Darwin’s pangenesis and molecular medicine,” Trends in Molecular Medicine,
vol. 18, p. 506–508, Sep 2012.

[9] S. Abbott and D. J. Fairbanks, “Experiments on Plant Hybrids by Gregor Mendel,” Genetics,
vol. 204, pp. 407–422, 10 2016.

[10] “Pray, l. (2008) discovery of dna structure and function: Watson and crick. nature education
1(1):100.”

[11] F. Sanger, S. Nicklen, and A. R. Coulson, “Dna sequencing with chain-terminating inhibitors,”
Proceedings of the National Academy of Sciences of the United States of America, vol. 74,
p. 5463–5467, Dec 1977.

[12] “Sanger sequencing steps & methods.” Available at
https://www.sigmaaldrich.com/TR/en/technical-documents/protocol/genomics/sequencing/sanger-
sequencing.

[13] D. J. Lipman and W. R. Pearson, “Rapid and sensitive protein similarity searches,” Science (New
York, N.Y.), vol. 227, p. 1435–1441, Mar 1985.

35

[14] K. Y. Li, “Vanishing and exploding gradients in neural network models: Debugging, monitoring,
and fixing,” Jul 2022.

[15] M. Uzair and N. Jamil, “Effects of hidden layers on the efficiency of neural networks,” in 2020
IEEE 23rd International Multitopic Conference (INMIC), p. 1–6, Nov 2020.

[16] J. Brownlee, “A gentle introduction to dropout for regularizing deep neural networks,” Dec 2018.

[17] N. S. Chauhan, “Loss functions in neural networks,” Aug 2021.

[18] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position,” Biological Cybernetics, vol. 36, p. 193–202,
Apr 1980.

[19] Y. LeCun, C. Cortes, and C. J. Burges, “Mnist handwritten digit database.” Can also be accessed
at: https://www.kaggle.com/datasets/hojjatk/mnist-dataset.

[20] “What are recurrent neural networks?.” Available at https://www.ibm.com/topics/recurrent-
neural-networks.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
p. 1735–1780, Nov 1997.

[22] F. V. VEEN, “Neural network zoo.” Available at https://www.asimovinstitute.org/overview-
neural-network-zoo/.

[23] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using rnn encoder-decoder for statistical machine translation,”
2014.

[24] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons and singular value de-
composition,” Biological Cybernetics, vol. 59, p. 291–294, Sep 1988.

[25] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2022.

[26] S. M. Abd –Alhalem, E.-S. M. El-Rabaie, N. F. Soliman, S. E. S. E. Abdulrahman, N. A. Ismail,
and F. E. Abd El-samie, “Dna sequences classification with deep learning: A survey,” Menoufia
Journal of Electronic Engineering Research, vol. 30, p. 41–51, Jan. 2021.

[27] R. Rizzo, A. Fiannaca, M. La Rosa, and A. Urso, “A deep learning approach to dna sequence clas-
sification,” in Computational Intelligence Methods for Bioinformatics and Biostatistics (C. An-
gelini, P. M. Rancoita, and S. Rovetta, eds.), Lecture Notes in Computer Science, (Cham),
p. 129–140, Springer International Publishing, 2016.

[28] A. Busia, G. E. Dahl, C. Fannjiang, D. H. Alexander, E. Dorfman, R. Poplin, C. Y. McLean,
P.-C. Chang, and M. DePristo, “A deep learning approach to pattern recognition for short dna
sequences,” p. 353474, Aug 2019.

[29] E. Weitschek, R. Van Velzen, G. Felici, and P. Bertolazzi, “Blog 2.0: a software system for
character-based species classification with dna barcode sequences. what it does, how to use it,”
Molecular Ecology Resources, vol. 13, no. 6, p. 1043–1046, 2013.

36

[30] C.-H. Yang, K.-C. Wu, L.-Y. Chuang, and H.-W. Chang, “Deepbarcoding: Deep learning for
species classification using dna barcoding,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 19, p. 2158–2165, Jul 2022.

[31] W. Cui, Z. Yu, Z. Liu, G. Wang, and X. Liu, Compressing Genomic Sequences by Using Deep
Learning, vol. 12396 of Lecture Notes in Computer Science, p. 92–104. Cham: Springer Inter-
national Publishing, 2020.

[32] F. Chollet et al., “Keras.” https://keras.io, 2015.

[33] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015. Software available from tensor-
flow.org.

[34] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum voor Wiskunde en Infor-
matica Amsterdam, 1995.

[35] “Anaconda software distribution,” 2020. Available at https://docs.anaconda.com/.

[36] J. J. Salk, M. W. Schmitt, and L. A. Loeb, “Enhancing the accuracy of next-generation sequencing
for detecting rare and subclonal mutations,” Nature Reviews Genetics, vol. 19, p. 269–285, May
2018.

[37] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 10.2.89,” 2020.

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

37

https://keras.io

38

APPENDIX A

CONTENTS OF FILE PREP.PY

1 i m p o r t numpy as np
2 from p i c k l e i m p o r t dump
3 from s y s i m p o r t a rgv
4 from os i m p o r t s t a t
5 from math i m p o r t c e i l
6 i m p o r t t e n s o r f l o w as t f
7 from t e n s o r f l o w i m p o r t k e r a s
8 from numpy . random i m p o r t r a n d o m s a m p l e
9

10 seed = 33333
11 k e r a s . u t i l s . s e t r a n d o m s e e d (seed)
12 t f . c o n f i g . e x p e r i m e n t a l . e n a b l e o p d e t e r m i n i s m ()
13
14 d e f p r e p a r e s t r i n g d a t a i n t o e n c o d e d 1 D (s t r i n g d a t a) :
15 r e s u l t = np . z e r o s ([l e n (s t r i n g d a t a) , 5] , d t y p e = np . d t y p e (np . i n t 8))
16 f o r i i n r a n g e (l e n (s t r i n g d a t a)) :
17 i f s t r i n g d a t a [i] == A :
18 r e s u l t [i] [0] = 1
19 e l i f s t r i n g d a t a [i] == T :
20 r e s u l t [i] [1] = 1
21 e l i f s t r i n g d a t a [i] == C :
22 r e s u l t [i] [2] = 1
23 e l i f s t r i n g d a t a [i] == G :
24 r e s u l t [i] [3] = 1
25 e l s e :
26 r e s u l t [i] [4] = 1
27 r e t u r n r e s u l t
28
29 r e a d l e n = i n t (a rgv [1])
30 s a m p l e r e p r e s e n t a t i o n = i n t (a rgv [2])
31 i s w o r k i n g o n s m a l l s a m p l e = i n t (a rgv [3])
32
33 s p e c i e s l e n g t h e q u a l i z e d = 1
34 d a t a l i s t = [[" B a k e r s Y e a s t " , " E c o l i "] , [" y e a s t " , " e c o l i "] , [0 , 0] , []]
35 d a t a = []
36 l e n s a m p l e s l i s t = l e n (d a t a l i s t [0]) [0]
37
38 open (" p k l / " + s t r (r e a d l e n) + i s w o r k i n g o n s m a l l s a m p l e " s m a l l " + " . p k l

" , " wb ")
39 open (" p k l / " + s t r (r e a d l e n) + i s w o r k i n g o n s m a l l s a m p l e " s m a l l " + " y . p k l

" , " wb ")
40
41 d a t a l i s t [2] = [0] l e n (d a t a l i s t [0])

39

42 d a t a l e n s = [0 f o r i i n r a n g e (l e n (d a t a l i s t [0]))]
43 f o r i i n r a n g e (l e n (d a t a l i s t [0])) :
44 d a t a = . j o i n (np . g e n f r o m t x t (d a t a / + d a t a l i s t [0] [i] +

i s w o r k i n g o n s m a l l s a m p l e s m a l l + . fna , d e l i m i t e r = n , d t y p e
= s t r)) . uppe r ()

45 d a t a = p r e p a r e s t r i n g d a t a i n t o e n c o d e d 1 D (d a t a)
46 d a t a l e n s [i] = l e n (d a t a)
47 m a x d a t a = max (d a t a l e n s)
48
49 f o r i i n r a n g e (l e n (d a t a l i s t [0])) :
50 d a t a = . j o i n (np . g e n f r o m t x t (d a t a / + d a t a l i s t [0] [i] +

i s w o r k i n g o n s m a l l s a m p l e s m a l l + . fna , d e l i m i t e r = n , d t y p e
= s t r)) . uppe r ()

51 d a t a = p r e p a r e s t r i n g d a t a i n t o e n c o d e d 1 D (d a t a)
52 i f (s p e c i e s l e n g t h e q u a l i z e d) :
53 s a m p l e s i n d i c e s = ((l e n (d a t a) r e a d l e n) r a n d o m s a m p l e (s i z e = i n t (

m a x d a t a s a m p l e r e p r e s e n t a t i o n / r e a d l e n))) . a s t y p e (i n t)
54 e l s e :
55 s a m p l e s i n d i c e s = ((l e n (d a t a) r e a d l e n) r a n d o m s a m p l e (s i z e = i n t (

l e n (d a t a) s a m p l e r e p r e s e n t a t i o n / r e a d l e n))) . a s t y p e (i n t)
56
57 samples = np . empty ([l e n (s a m p l e s i n d i c e s) , r e a d l e n , 5] , d t y p e = np . d t y p e (

np . i n t 8))
58 f o r j i n r a n g e (l e n (s a m p l e s i n d i c e s)) :
59 i n d e x = s a m p l e s i n d i c e s [j]
60 sample = d a t a [i n d e x : i n d e x + r e a d l e n]
61 samples [j] = sample
62 l e n s a m p l e s l i s t [i] = l e n (samples)
63
64 wi th open (" p k l / " + s t r (r e a d l e n) + i s w o r k i n g o n s m a l l s a m p l e " s m a l l "

+ " . p k l " , " ab ") a s f :
65 dump (samples , f)
66 d a t a l i s t [2] [i] = l e n (samples)
67
68 y = np . a s a r r a y ([np . a r r a y (i [0] + [1] + (l e n (d a t a l i s t [0]) i 1) [0]) f o r

j i n r a n g e (d a t a l i s t [2] [i])] , d t y p e = np . d t y p e (np . i n t 8))
69
70 wi th open (" p k l / " + s t r (r e a d l e n) + i s w o r k i n g o n s m a l l s a m p l e " s m a l l "

+ " y . p k l " , " ab ") a s f :
71 dump (y , f)
72
73 wi th open (" p k l / d a t a l i s t " + s t r (r e a d l e n) + i s w o r k i n g o n s m a l l s a m p l e "

s m a l l " + " . p k l " , " wb ") a s f :
74 dump (d a t a l i s t , f)

40

APPENDIX B

CONTENTS OF FILE TRAIN_TEST.PY

1 i m p o r t numpy as np
2 i m p o r t t e n s o r f l o w as t f
3 from t e n s o r f l o w i m p o r t k e r a s
4 from k e r a s . c a l l b a c k s i m p o r t LambdaCal lback
5 from k e r a s . l a y e r s i m p o r t F l a t t e n , Dense , A c t i v a t i o n
6 from k e r a s i m p o r t a c t i v a t i o n s , l o s s e s , i n i t i a l i z e r s , m e t r i c s
7 from s k l e a r n . m o d e l s e l e c t i o n i m p o r t t r a i n t e s t s p l i t
8 from s k l e a r n . m e t r i c s i m p o r t a c c u r a c y s c o r e , r e c a l l s c o r e , p r e c i s i o n s c o r e
9 from s y s i m p o r t a rgv

10 from p i c k l e i m p o r t l o a d
11 from t ime i m p o r t t ime
12 from gc i m p o r t c o l l e c t
13 from math i m p o r t c e i l
14
15 t f . c o n f i g . e x p e r i m e n t a l . e n a b l e o p d e t e r m i n i s m ()
16 seed = 0
17 b a t c h s i z e = 128
18 s t d d e v = 0 . 0 3 0 . 0 9 f o r 50 , 0 . 0 3 f o r 500
19 mean = 0 . 0
20 l e a r n i n g r a t e = 0 .00003 0 .0006 f o r 50 , 0 .00003 f o r 500
21 k e r a s . u t i l s . s e t r a n d o m s e e d (seed)
22 epochs = 5
23
24 p r i n t (" s eed : " , seed , " , s t a r t t ime : " , t ime () , end =" , ")
25 i s w o r k i n g o n s m a l l s a m p l e = i n t (a rgv [1])
26 r e a d l e n = 500 i n t (a rgv [2])
27 e n c o d i n g d i m l a y e r 1 = 1000 200 f o r 50 , 1000 f o r 500
28 e n c o d i n g d i m l a y e r 2 = 100 100 f o r bo th 50 and 500
29 e n c o d i n g d i m l a y e r 3 = 20 20 f o r bo th 50 and 500
30 a c t i v a t i o n f u n c t i o n = a c t i v a t i o n s . t a n h
31 l o s s = l o s s e s . B i n a r y C r o s s e n t r o p y (f r o m l o g i t s =True)
32 s a m p l e r e p r e s e n t a t i o n = 2
33 o n e h o t e n c o d i n g s i z e = 5
34
35 wi th open (" p k l / d a t a l i s t " + s t r (r e a d l e n) + i s w o r k i n g o n s m a l l s a m p l e "

s m a l l " + " . p k l " , " rb ") a s f :
36 d a t a l i s t = l o a d (f)
37 f o r i i n d a t a l i s t [2] :
38 p r i n t (i , end = " , ")
39
40 i n i t i a l i z e r = i n i t i a l i z e r s . RandomNormal (s t d d e v = s t d d e v , mean = mean)
41 i n i t i a l i z e r n a m e = " r a n d o m n o r m a l "
42 l a y e r s

41

43 f l a t t e n = F l a t t e n ()
44 dense1 = Dense (e n c o d i n g d i m l a y e r 1 , k e r n e l i n i t i a l i z e r = i n i t i a l i z e r)
45 a c t i v a t i o n 1 = A c t i v a t i o n (a c t i v a t i o n f u n c t i o n)
46 dense2 = Dense (e n c o d i n g d i m l a y e r 2 , k e r n e l i n i t i a l i z e r = i n i t i a l i z e r)
47 a c t i v a t i o n 2 = A c t i v a t i o n (a c t i v a t i o n f u n c t i o n)
48 dense3 = Dense (e n c o d i n g d i m l a y e r 3 , k e r n e l i n i t i a l i z e r = i n i t i a l i z e r)
49 a c t i v a t i o n 3 = A c t i v a t i o n (a c t i v a t i o n f u n c t i o n)
50 o u t p u t = Dense (l e n (d a t a l i s t [0]) , k e r n e l i n i t i a l i z e r = i n i t i a l i z e r)
51 a c t i v a t i o n 4 = A c t i v a t i o n (a c t i v a t i o n s . r e l u)
52 d a t a f low
53 i n p u t = k e r a s . I n p u t (shape =(r e a d l e n , o n e h o t e n c o d i n g s i z e))
54 f l a t t e n e d = f l a t t e n (i n p u t)
55 encoded1 = dense1 (f l a t t e n e d)
56 a c t i v a t e d 1 = a c t i v a t i o n 1 (encoded1)
57 encoded2 = dense2 (a c t i v a t e d 1)
58 a c t i v a t e d 2 = a c t i v a t i o n 2 (encoded2)
59 encoded3 = dense3 (a c t i v a t e d 2)
60 a c t i v a t e d 3 = a c t i v a t i o n 3 (encoded3)
61 e n c o d e d t r i a n g l e = o u t p u t (a c t i v a t e d 3)
62 a c t i v a t e d t r i a n g l e = a c t i v a t i o n 4 (e n c o d e d t r i a n g l e)
63 t r i a n g l e = k e r a s . Model (i n p u t , a c t i v a t e d t r i a n g l e)
64
65
66 x t e s t , y t e s t = np . a r r a y ([]) , np . a r r a y ([])
67
68 l e n x = sum (d a t a l i s t [2])
69 X f u l l = np . z e r o s ([lenx , r e a d l e n , o n e h o t e n c o d i n g s i z e] , d t y p e = np . d t y p e (

np . i n t 8))
70 i t = 0
71 f i l e n a m e = " p k l / " + s t r (r e a d l e n) + i s w o r k i n g o n s m a l l s a m p l e " s m a l l " + " .

p k l "
72 wi th open (f i l e n a m e , " rb ") a s f :
73 f o r i i n r a n g e (l e n (d a t a l i s t [0])) :
74 sample = l o a d (f)
75 f o r j i n sample :
76 X f u l l [i t] = j
77 i t += 1
78 d e l sample
79 c o l l e c t ()
80
81 Y f u l l = np . z e r o s ([lenx , l e n (d a t a l i s t [0])] , d t y p e = np . d t y p e (np . i n t 8))
82 i t = 0
83 y f i l e n a m e = " p k l / " + s t r (r e a d l e n) + i s w o r k i n g o n s m a l l s a m p l e " s m a l l " +

" y . p k l "
84 wi th open (y f i l e n a m e , " rb ") a s f :
85 f o r i i n r a n g e (l e n (d a t a l i s t [0])) :
86 sample = l o a d (f)
87 f o r j i n sample :
88 Y f u l l [i t] = j
89 i t += 1
90
91 s t a r t t i m e = t ime ()
92
93 x t r a i n , x t e s t , y t r a i n , y t e s t = t r a i n t e s t s p l i t (X f u l l , Y f u l l ,

r a n d o m s t a t e =seed , t e s t s i z e = 0 . 2 0) 8 0 t r a i n
94 x v a l , x t e s t , y v a l , y t e s t = t r a i n t e s t s p l i t (x t e s t , y t e s t ,

r a n d o m s t a t e =seed , t e s t s i z e = 0 . 5) 1 0 v a l 1 0 t e s t
95

42

96 d e l X f u l l , Y f u l l
97
98 p r i n t e r C a l l b a c k = LambdaCal lback (
99 o n e p o c h b e g i n = lambda epoch , l o g s : p r i n t (epoch , end = " , ") ,

100 o n e p o c h e n d = lambda epoch , l o g s :
101 p r i n t (" : . 4 f " . f o r m a t (l o g s [l o s s]) , " , " , " : . 4 f " . f o r m a t (l o g s [

v a l l o s s]) , " , " , " : . 1 f s e c " . f o r m a t (c e i l ((t ime ()
t r a i n s t a r t t i m e) 1 0) / 1 0) , end = " , ")

102)
103 o p t = t f . k e r a s . o p t i m i z e r s . Adam(l e a r n i n g r a t e)
104 p r i n t (" o p t i m i z e r : " , "Adam " , " , l e a r n i n g r a t e : " , l e a r n i n g r a t e , " ,

b a t c h s i z e : " , b a t c h s i z e , " , i n i t i a l i z e r : " , i n i t i a l i z e r n a m e , " ,
s t d d e v : " , s t d d e v , " , Mean : " , " : . 5 f " . f o r m a t (mean) , end =" , ")

105 t r i a n g l e . compi l e (o p t i m i z e r =opt ,
106 l o s s = l o s s
107)
108 y t r u e = [0 i f x [0] x [1] e l s e 1 f o r x i n y t e s t]
109 temp = t r i a n g l e . p r e d i c t (x t e s t , v e r b o s e =0)
110 avgs = np . a v e r a g e (temp , a x i s =0)
111 p r i n t (" u n t r a i n e d o u t p u t a v e r a g e s : " , " [: . 5 f , : . 5 f] " . f o r m a t (avgs [0] , avgs

[1]) , end = " , ")
112 t r a i n s t a r t t i m e = t ime ()
113 p r i n t (s a m p l e r e p r e s e n t a t i o n , " , " , r e a d l e n , " , " , s t r (l o s s) . s p l i t (" ")

[1] , " , " , e n c o d i n g d i m l a y e r 1 , " , " , e n c o d i n g d i m l a y e r 2 , " , " ,
e n c o d i n g d i m l a y e r 3 , " , " , s t r (a c t i v a t i o n f u n c t i o n) . s p l i t (" ") [1] , " ,
" , epochs , " , " , t r a i n s t a r t t i m e , end = " , " ,)

114 t r i a n g l e . f i t (x t r a i n , y t r a i n ,
115 epochs =epochs ,
116 b a t c h s i z e = b a t c h s i z e ,
117 s h u f f l e =True ,
118 v a l i d a t i o n d a t a =(x v a l , y v a l) ,
119 c a l l b a c k s = [p r i n t e r C a l l b a c k] ,
120 v e r b o s e = 0
121)
122 temp = t r i a n g l e . p r e d i c t (x t e s t , v e r b o s e =0)
123
124
125 y p r e d = [0 i f x [0] x [1] e l s e 1 f o r x i n temp]
126 y t r u e = [0 i f x [0] x [1] e l s e 1 f o r x i n y t e s t]
127
128 wi th open (" o u t p u t p r e d r e a l w e i g h t s . c sv " , "w") as f :
129 f o r i i n r a n g e (l e n (temp)) :
130 f . w r i t e (" : . 2 f , : . 2 f , , n " . f o r m a t (temp [i] [0] , temp [i] [1] ,

y p r e d [i] , y t r u e [i]))
131
132 p r i n t (" nend t ime : " , t ime () , end =" , ")
133 p r i n t (" Accuracy : " , a c c u r a c y s c o r e (y t r u e , y p r e d) ,
134 " , R e c a l l : " , r e c a l l s c o r e (y t r u e , y p r e d , a v e r a g e =" b i n a r y ") ,
135 " , P r e c i s i o n : " , p r e c i s i o n s c o r e (y t r u e , y p r e d , a v e r a g e =" b i n a r y ") ,

f l u s h =True)
136
137 k e r a s . backend . c l e a r s e s s i o n ()

43

44

APPENDIX C

LIST OF INSTALLED PACKAGES AND VERSIONS

Name Version
_tflow_select 2.1.0

cudatoolkit[37] 11.3.1
cudnn 8.2.1

ipykernel 6.13.0
ipython 8.2.0

ipython_genutils 0.2.0
jupyter_client 7.3.0
jupyter_core 4.9.2

jupyter_server 1.17.0
jupyterlab 3.3.4

jupyterlab_pygments 0.2.2
jupyterlab_server 2.13.0

keras[32] 2.9.0
keras-preprocessing 1.1.2

notebook 6.4.11
notebook-shim 0.1.0

Name Version
numpy 1.23.4
pdflatex 0.1.3

pickleshare[34] 0.7.5
pip 23.2.1

python[34] 3.9.12
rsa 4.7.2

scikit-learn[38] 1.1.1
scipy 1.9.3

sklearn 0.0
tensorboard[33] 2.9.1

tensorboard-data-server 0.6.0
tensorboard-plugin-wit 1.6.0

tensorflow[33] 2.9.1
tensorflow-estimator 2.9.0
tensorflow-gpu[33] 2.6.0

tensorflow-io-gcs-filesystem 0.26.0

Table 7: Packages in environment tf_gpu

45

	ABSTRACT
	ÖZ
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation
	Scope and Goal
	Contributions of the Study
	Structure of the Thesis

	Background
	Discovery of DNA
	Sequencing
	PCR
	Sanger sequencing
	Next Generation Sequencing(NGS)
	Second Generation Sequencing
	Third Generation Sequencing

	Gene sequence file types

	DNA Barcoding
	Machine Learning
	Underfitting
	Overfitting

	Neural Networks
	Encoding
	Gradient Descent
	Vanishing Gradients Problem
	Exploding Gradients Problem

	Hyperparameters in Deep Learning
	Model (Structure) Related Parameters
	Training(Optimization) Related Parameters

	Specialized Neural Networks

	Related Work

	Material and Method
	Data Preparation
	Model structure
	Hyperparameters
	Training
	Testing

	Results
	Experiments
	Testing Number of Hidden Layers
	Testing Read Length and Layer Sizes
	Testing Learning Rates
	Testing Different Activation Functions
	Testing Different Activation Functions for the Output Layer
	Testing Initializer Specs for Normal Distribution
	Standard Deviation
	Mean

	Testing Different Sample Species Representation Methods

	Discussion and Conclusion
	Issues Encountered
	Loss Selection
	Gradients in Activation Function Selection
	Achieving Determinism
	Using Keras' Own Metrics
	Memory/Time Issues in Training

	Representation of Species in the Data
	Using Synthetic Short Reads vs. Real-life Sequencing Outputs
	Specifications of the Output Layer
	Multi-species Classification
	Comparison to similar work
	Conclusion
	Future Work

	REFERENCES
	Contents of file prep.py
	Contents of file train_test.py
	List of installed packages and versions

