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ABSTRACT 

 

COMPARISON AND OPTIMIZATION OF MULTIPLE INTERACTING 
CONTINUA (MINC) MODEL PARAMETERS 

 

 

Demir, Ebru Berna 
Master of Science, Petroleum and Natural Gas Engineering 

Supervisor: Assist. Prof. Dr. Mehmet Onur Doğan 
 

 

September 2023, 94 pages 

 

 

 

In recent years, unconventional reservoirs have become a new trend in the oil 

industry because of the decrease in conventional hydrocarbon reserves. One of the 

commonly encountered types is shale gas reservoirs, where gas production can be 

enhanced with fracturing. Reservoir simulation has been significantly important to 

have future predictions for a long time. Understanding the transport processes in 

naturally fractured reservoirs is challenging compared to unfractured reservoirs. 

While matrix has extremely low permeability, fracture has extremely high 

permeability. Mainly two numerical conceptual models can be applied to this type 

of fractured reservoirs which are Continuum Fracture Model (CFM) and Discrete 

(DFM) Fracture Model (DFM). CFM requires calculation of some specific transfer 

parameters (shape factors, volume fractions etc.) implicitly to interpret transport 

processes between the matrix continua and fracture continuum. DFM requires huge 

computation power and cost to analyze fractures explicitly. Conductivity and 

connectivity of fractures are taken into account individually. This thesis focuses on 

parameter estimation of Multiple Interacting Continua (MINC) one of CFM models 

by taking DFM as a reference solution. The objective function for parameter 
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estimation is mass storage rate deviation from DFM model simulated on a Bristol 

geometry, located along the Bristol Channel coast in the United Kingdom. The 

computation cost of MINC model is more efficient compared to DFM model and 

requires fewer pre-processing efforts for geometry discretization. Volume fractions 

can be calculated on a representative part of the domain and can be used for the hole 

reservoir as long as the reservoir has the same fracture distribution as the 

representative part of the field. 

 

Keywords: Continuum Fracture Modeling, Discrete Fracture Network, Multiple 

Interacting Continua, Upscaling, Volume Fractions  

 



 
 

vii 
 

ÖZ 

 

ÇOKLU ETKİLEŞİMLİ SÜREKLİLİK (ÇES) MODELİ İÇİN 
PARAMETRE KIYASLAMASI VE OPTİMİZASYONU 

 

Demir, Ebru Berna 
Yüksek Lisans, Petrol ve Doğal Gaz Mühendisliği 

Tez Yöneticisi: Dr. Öğretim Üyesi Mehmet Onur Doğan 
 

 

Eylül 2023, 94 sayfa 

 

Petrol sektöründe konvansiyonel rezervlerin azalmasıyla beraber, son yıllarda 

ankonvansiyonel rezervlere yönelim arttı. Sıkça karşılaşılan tiplerden biri doğal 

olarak çatlaklar gösterebilen kaya gazı rezervuarlarıdır. Rezervuar simülasyonları 

geleceğe dair öngörü sahibi olmak için, uzun süredir, çok büyük bir öneme sahiptir. 

Çatlaklı olmayan rezervuarlarla göre, doğal çatlaklı rezervuarlarda taşınım 

proseslerini anlamak daha zordur. Matrisin çok düşük bir geçirgenliği varken, 

çatlakların geçirgenliği çok yüksektir. Bu tarz çatlaklı rezervuarları modellemek 

için Birleşik Çatlaklı Model (BÇM) ve Ayrık Çatlaklı Model (AÇM) olmak üzere 

iki ana kavramsal modelleme yöntemi kullanılabilir. BÇM, matris ve çatlaklar 

arasındaki taşınım prosesini anlamak için, dolaylı olarak hesaplanıp elde edilen 

bazı temel parametreler (şekil faktörü, hacim fraksiyonu vb.) gerektirir. AÇM ise 

çatlakları doğrudan analiz etmek için devasa hesaplama gücü ve maliyete ihtiyaç 

duyar. Bu tez, BÇM modellerinden biri olan çoklu etkileşimli süreklilik (ÇES) 

modeli için gerekli olan parametreleri AÇM modeli referans çözüm alarak 

hesaplamaktadır. Parametre tahmini için, kütle birikim hızının, Birleşik Krallık'ta 

Bristol Kanalı sahilinde bulunan Bristol geometrinin AÇM modelinden sapması 

objektif fonksiyondur. ÇES modelinin hesaplama maliyeti AÇM ile karşılaştırıldığı 

zaman daha avantajlıdır ve geometri detaylarının işlenmesi için gerekli çaba daha 

azdır. Hacim fraksiyonları belirli bir alanın temsili bir parçası üzerinde 
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hesaplanabilir. Tüm saha, temsili alanla aynı çatlak dağılımına sahipse, bulunan 

parametreler belirli bir alanın temsili bir parçası üzerinde hesaplanıp tüm saha için 

kullanılabilir. 

 

Anahtar Kelimeler: Sürekli Çatlak Modelleme, Ayrık Çatlak Ağ Modellemme, 

Çoklu Etkileşimli Süreklilik, Üst Ölçeklendirme, Hacim Fraksiyonları 
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CHAPTER 1  

1 INTRODUCTION  

Unconventional reservoirs are in high demand due to the decrease in conventional 

reservoirs. Naturally fractured reservoirs (NFR) represent one of the most complex 

unconventional reservoir types. These reservoirs formed as a result of fragmentation 

during tectonic movements of massive rock blocks. Consequently, fractures are 

distributed randomly throughout the matrix. 

 
Figure 1.1 The resource pyramid (Holditch, 2006) 

Gray (1977) introduced a resource pyramid, which illustrates that high-permeability 

reservoirs occupy the top tier, while low-permeability reservoirs are situated at the 

bottom. Conventional reservoirs, characterized by their high quality, small volumes, 

and ease of development, have become scarce. In contrast, low-quality 

unconventional reservoirs boast significant volumes but demand more advanced 

production technologies. This decrease in high-quality conventional reservoirs has 
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led to a growing demand for tight reservoirs, particularly shale gas reservoirs. 

Furthermore, the resource pyramid in Figure 1.1, emphasizes the need for improved 

technology and development strategies to enhance recovery from unconventional 

reservoirs.  

 
Naturally fractured reservoirs have a common point, low permeability, and high 

heterogeneity. Therefore, modeling fluid flow in shale gas reservoirs is more 

complex and requires more attention than in conventional reservoirs. 

 

Although fractures have a small portion of the reservoir, fluid transportation mainly 

occurs within the fractures. However, the reservoir is primarily made up of matrix. 

Fractures have low storage capacity and high permeability, while matrices have high 

storage capacity and low permeability. This difference causes discontinuity between 

the matrix and fractures. Thus, these heterogeneities make modeling fluid flow and 

transport processes inside the fractured reservoirs challenging.  

 

Creating a model that represents the matrix and the fractures properly is a crucial 

job. There are several methods, such as Continuum Fracture Model (CFM) (i.e., 

multiple interacting continua, dual porosity- dual permeability models), Discrete 

Fracture Model (DFM), and hybrid model. DFM models are well-known as 

representative models for the fractured reservoirs since they analyze each fracture 

individually. This advantage brings some drawbacks, which are extremely long 

computation time and high cost. 

 

One of CFM models is Multiple Interacting Continua (MINC) was originally 

designed by Pruess and Narasimhan (1982). MINC models are based on a 

straightforward nested volume element approach. Increasing the number of volume 

elements improves the model's representation of the reservoir. Each volume element 

is associated with a volume fraction, and the sum of all volume fractions must equal 

to 1. Volume fraction represents the proportion of one nested element to the total 
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volume of nested elements. Every homogeneously fractured reservoir has its own 

unique volume fractions. Determining these distinctive volume fractions is essential 

for effectively applying the MINC model concept. 

 

In this study, the naturally fractured Bristol geometry, located along the Bristol 

Channel coast in the United Kingdom, is employed. One of the study's objectives is 

to compare five different MINC methods. Additionally, parameter optimization is 

undertaken to create the most representative MINC model. Two optimization 

problems are addressed in this thesis. The first challenge involves determining 

upscaled matrix permeability for a continuum model assembled alongside the DFM 

model. The second optimization is to determine volume fractions for a ten-

interacting continua model, using the DFM model as a reference. 
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CHAPTER 2  

2 LITERATURE REVIEW 

Fractured reservoirs can exhibit both primary permeability, often referred to as 

matrix permeability, and secondary permeability, known as fracture permeability, 

simultaneously. Matrix permeability develops during the sedimentation process, 

whereas fracture permeability emerges after post-sedimentary rock processes, such 

as compaction or cementation, have taken place. The geological complexity of such 

rocks arises from the coexistence of these two distinct permeabilities. To model 

reservoirs with this dual permeability characteristic, researchers commonly employ 

continuum and discrete fracture models. 

2.1 Continuum Approach 

This approach incorporates the behavior of fractures implicitly, where matrix and 

fractures are treated as a continuous medium rather than discrete entities. Several 

continuum approach models exist, each requiring specific parameters such as shape 

factors and volume fractions to be defined. Small-scale fractures are typically 

identified in regions where the rock is poorly fractured, while large-scale fractures 

are recognized in domains where fracture-dominated flow prevails. It's important to 

note that continuum models are more commonly applicable to small-scale fractured 

reservoirs rather than those with larger-scale fractures (Ouenes & Hartley, 2000). 

2.1.1 Dual Porosity Single Permeability (DPSP) Model 

Dual porosity (DP) was initially introduced by Barenblatt et al. in 1960 with the 

intention of studying fluid seepage in fissured systems. In their early work, there was 
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an assumption that the system was homogeneous. However, it was later realized that 

fissure systems exhibit significantly higher permeability compared to porous media. 

 
Figure 2.1 Idealization of heterogeneous porous medium- Actual Reservoir and 

Model Reservoir (Warren & Root, 1963) 

The DP model in Figure 2.1 was initially introduced by Warren & Root (1963). In 

this model, primary porosity is intergranular and develops during the deposition and 

lithification processes, while secondary porosity is foramenular and arises after 

fracturing, jointing, or infilling through precipitation processes, as outlined by 

Warren & Root (1963). This model acknowledges the transport of fluids between 

fractures and between fractures and matrices, as illustrated in Figure 2.2. However, 

it does not account for fluid flow from one matrix to another, as matrix continua are 

not interconnected. 
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Figure 2.2 Dual porosity single permeability flow schematic diagram 

To apply DP model effectively, it is essential for the flow within the reservoir to 

reach a quasi-steady state condition, as highlighted by Warren & Root(1963). 

Consequently, it is important to note that if the reservoir does not attain a pseudo-

steady state condition, the use of DP model can lead to inaccurate estimations, 

particularly in the early-time region, as observed by Jiang & Younis (2016). 

2.1.1.1 Dual Porosity-Shape Factors 

In 1963, Warren & Root introduced DP model to the petroleum industry, introducing 

a novel concept, shape factor parameter of a transfer function (as depicted in Figure 

2.3). To elucidate fluid flow from matrix to fractures transfer function is introduced. 

Transfer function is function of matrix permeability, viscosity of the fluid, the 

difference between matrix and fracture pressure and shape factor. Table 2.1 provides 

a summary of three distinct shape factor constants, denoted as σL2 (where σ 

represents the shape factor and L is the fracture spacing), for each dimension. These 

shape factor constants are derived from solutions of the diffusivity equation under 

the assumption of constant fracture pressure. They are applied for analytical or 

numerical modeling in either pseudo-steady state or transient flow regimes. 

Transient flow refers to a non-steady state condition in which flow properties, such 

as temperature and pressure, change with time. On the other hand, pseudo-steady 



 
 
8 

state, also known as quasi-steady state, assumes conditions where flow properties 

remain nearly constant over time. 

 

 
Figure 2.3 Schematic of the transfer function between the matrix and the fractures 
(Rostami et al., 2020) 

 

Coats (1999), Kazemi and Gilman (1993) and Lim and Aziz (1995), introduced 

different shape factors even for a single-phase flow by analytical approach. Kazemi 

et al. (1976) applied the first numerical method for a single-phase flow under pseudo-

steady state flow conditions. Bourbiaux et al. (1999), Sarda et al. (2002), Penuela et 

al. (2002) and Mora and Wattenbarger (2006) applied numerical approaches in order 

to decide shape factors; while Bourbiaux et al. (1999) decided it for transient flow 

regime, the others completed under pseudo-steady state conditions.  Hassanzadeh 

and Pooladi-Darvish (2006) have used Laplace domain analytical solutions of the 

diffusivity equation. Furthermore, they concluded that shape factors are a function 

of time and fracture pressure and change with time. Rostami et al. (2020) have 

studied shape factors for multidimensional irregular bodies by a numerical approach 

for a single-phase flow.  
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Table 2.1 Summary of Shape Factor Constants (Rostami et al., 2020) 

 
Eventually, mass transfer from matrix to fractures is in direct proportion to shape 

factors. There is no unique solution to calculate shape factors. The correct shape 

factor value must be decided for each type of flow regime and also the geometry of 

the fractured porous media.  

2.1.2 Dual Porosity Dual Permeability (DPDP) Model 

DPDP models are created where the flow exists not only between fractures but also 

in the matrix. A computer model, considering not only matrix permeability but also 

discrete fracture network, was developed by Hull and Clemo (1987). 

 

 The representation of fluid flow in the reservoir is shown in the Figure 2.4.  Usually, 

matrix permeability is significantly lower than fractured permeability.. DPDP 

modeling can pose challenges and require substantial computational power, making 

it a less common choice for naturally fractured reservoirs, especially when simpler 

models may suffice. 
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Figure 2.4  Dual porosity double permeability flow schematic diagram 

2.1.3 Multiple Interacting Continua (MINC) Model 

Like dual porosity models, matrix has low permeability and high storage capacity, 

while fractures have high permeability and low storage capacity for multiple 

interacting continua (MINC) concept.  MINC models are based on dual porosity 

concept, but the matrix media is subdivided into nested blocks. In dual porosity 

approach, analytical approximations are available only for regularly shaped matrix 

blocks such as slabs, cubes, or spheres while there is no regular shape limitation in 

MINC model approach. MINC was originally designed by Pruess and Narasimhan 

(1982) and developed by Pruess and Narasimhan (1985) at the Lawrence Berkeley 

Laboratory to model interconnected fractures where the flow mainly occurs. 
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Figure 2.5 MINC model flow schematic diagram 

 

Long-term transient flow regime is experienced due to the minimal matrix 

permeability (Jiang & Younis, 2016; Mayerhofer et al., 2006). Therefore, high 

resolution is required around the fractures where thermodynamics alters vigorously 

to analyze pressure gradients and mass exchange (Pruess & Narasimhan, 1985). 

 

One of the main advantages and superiority to dual-porosity models is that they can 

be applicable to transient problems where a quasi-steady state condition is not 

compulsory. There is only one condition to apply MINC model that fractures must 

be interconnected sufficiently so that fractured network is a continuum (Farah et 

al., 2016; Pruess, 1992). 

 

Instead of partial differential equations, finite difference method is easily used to 

designate the distances between each nested block with the help of mass and 

energy equations (Narasimhan & Witherspoon, 1978; Pruess, 1992). 
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2.2 Discrete Fracture Approach 

This model considers the individual effect of each fracture on fluid flow. Fracture 

coordinates, porosity, permeability (in x, y, z direction), compressibility, and matrix-

fracture exchange mass are defined in this model individually (Lei et al., 2017). In 

order to create a proper discrete fracture model, fracture characteristics, fracture 

aperture, orientation, and dip angle of fractures and their distributions are needed. 

  

While modeling fractured reservoirs, discrete fracture models are options for dual 

continuum models (Karimi-Fard et al., 2006). It is true that DFM can involve 

significant computational costs while they possess a distinct advantage over 

Continuum Fracture Models (CFM) in their ability to directly simulate fluid flow 

interactions between fractures and matrices, as well as between fractures and 

between matrices themselves. Unlike CFM, DFM does not require the use of transfer 

functions. This direct representation of fluid flow is a notable superiority of DFM in 

reservoir modeling (Egya, 2018). 

 

There are three different types of DFM models: 

 

• Discrete Single Fracture model 

• Discrete Fracture Network model 

• Discrete Fracture Matrix model 

2.2.1 Discrete Single Fracture Model  

Discrete Single Fracture model operates on the premise that flow and transport 

occur within a single, well-defined fracture or a few such fractures (Billaux et al., 

1989; Tsang & Tsang, 1987). This concept simplifies the representation of rough 

wall surfaces by invoking the idea of parallel plates, originally introduced by 
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Lomize (1951). It achieves this by eliminating macro or micro roughness, allowing 

for a more tractable approach to modeling fluid flow and transport. 

 

Although fracture aperture width and orientation and roughness are changing 

locally, parallel plates model assumes constant aperture for single fractures 

(Tatomir, 2012). 

2.2.2 Discrete Fracture Network Model 

Matrix is accepted as impermeable, so the flow mainly occurs in the interconnected 

fractures. Tsang and Tsang (1987) introduced a model which represents DFN, 

existence of one-dimensional fluid flow in a fractured 2–3-dimensional rock. An 

example of discrete fracture model of a large scaled naturally fractured reservoirs is 

shown in Figure 2.6. 

 

 
Figure 2.6 A 3D large fracture network with an irregular fracture distribution 
(Farah et al., 2016) 
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2.2.3 Discrete Fracture Matrix Model 

 Fractures exchange fluid with the surrounding matrix in this model besides the 

flow in the fracture network. Since fracture is the main flow pathway due to its 

high permeability while matrix mainly acts as a storage unit due to its low 

permeability, flow mainly occurs in the fracture network and there is no fluid 

exchange between matrices usually. Therefore, this model type is not frequently 

applied. 

2.3 Hybrid Model Approach 

Both continuum and discrete models can be adapted for naturally fractured reservoirs 

where fluid flow primarily occurs within fractures while the matrix plays a minor 

role in fluid transfer. Table 2.2 presents a comparison of continuum models and 

discrete models. In continuum models, the level of resolution is typically low, 

implying that these models favor simplified representations of fractures, coarser 

grids, straightforward meshing, and lower demands on computational resources such 

as processing power and memory. In contrast, discrete models are characterized by 

high resolution, signifying the need for detailed fracture representations, finer grids, 

complex meshing, and a substantial demand for computational resources. Continuum 

approaches offer advantages in terms of computation time and cost, as fractures are 

analyzed implicitly through the introduction of effective parameters. However, a 

notable drawback of continuum models is their inability to consider the impact of 

disconnected fractures (Kuchuk et al., 2014). In contrast, discrete models analyze the 

effects of each fracture individually. Nevertheless, their primary limitation is their 

applicability to field-scale problems due to the high computational cost and time 

required (Xue et al., 2019). In other words, discrete models are typically preferred 

for small-scale problems characterized by relatively small fracture dimensions or less 

densely distributed fractures within the rock formation. These limitations have led to 

the development of a hybrid model that combines elements of both continuum and 
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discrete approaches, addressing the need for a higher resolution in modeling 

fractured reservoirs. 

 
Table 2.2 Comparison of Continuum and Discrete Models (Modified from Egya D. 

(2018)) 

Criteria Continuum Models Discrete Models 

Level of resolution low high 

Computation time low high (days) 

Computational cost low high 

Scale in applicability large small 

Fracture representation implicit explicit 

Effective properties required (shape factor, 

volume fractions etc.) 
- 

Upscaling required - 
 

 
Figure 2.7 Schematic of unstructured gridding and embedded-fracture network in 

the hybrid model (Jiang & Younis, 2016) 
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Figure 2.8 Schematic illustrating a hybrid modeling approach for small- (black 
lines) and large-scale (red lines) fractures (Jiang & Younis, 2016) 

 
A hybrid model, as developed by Lee et al. (2001), addresses the modeling of 

fractures of varying sizes. Embedded discrete fracture models (EDFM), which is 

exemplified in Figure 2.7, were introduced, by Li and Lee (2008). These models 

employ a hybrid finite volume method to simulate naturally fractured reservoirs at 

a field scale. Figure 2.8 explains that large scale fractures are modeled with discrete 

fracture network whereas small scale fractures are modeled via dual continuum 

approach (Moinfar et al., 2013; Wu et al., 2014). 

 

Hybrid model is advantageous due to the lower computation time and good 

resolution of created models (Jiang & Younis, 2016; Ren et al., 2017; Xue et al., 

2019; Yang et al., 2018). 
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CHAPTER 3  

3 STATEMENT OF PROBLEM 

Modeling fluid flow and transport processes in fractured reservoirs is a challenging 

task. CFM models are well-priced and time-saving while DFM is more accurate and 

representative of a field.  However, DFM has two significant drawbacks: expensive 

computational time and excessive data requirements. The main objective of this 

study is to develop a realistic and representative model for the complex Bristol 

geometry, using CFMs. CMF models require well-connected fracture distributions 

and some non-unique, applicable parameters, which have previously been calculated 

for simple reservoir models. Bristol geometry, meeting MINC condition that 

fractures are sufficiently interconnected, is modeled with discrete fracture network 

method on COMSOL Multiphysics finite element method software.  Five different 

MINC models are formed to compare with DFM. The last one, which gives the most 

similar results to DFM, is created by optimizing specific parameters (e.g., volume 

fractions). Mass storage vs. time graph of the last MINC model and DFM are 

matched. The error between the optimized MINC and DFM is calculated by mean 

squared error calculation method. The previously created model, optimized MINC, 

represents the best DFM model. Modeling fractures using MINC model helps to 

simulate the Bristol geometry in a brief time with the least effort. 
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CHAPTER 4  

4 METHODOLOGY 

This chapter explains how to properly gather data to create DFM and MINC model 

of an unstructured geometry using the COMSOL Multiphysics program. In addition, 

which principles applied to create models are discussed in detail.  

 

It should be noted that this model specifically considers the transport of a single-

phase fluid, methane, within the fractured porous medium. This model can be likened 

to a shale gas reservoir, which may be naturally fractured or subjected to hydraulic 

fracturing processes. That’s because these reservoirs have a very low matrix 

permeability and consist of huge amounts of methane with a little percentage of other 

hydrocarbons.  Produced methane rarely has small percentages of carbon dioxide, 

nitrogen, ethane, or maybe propane in real life (Ahmed, 2010). 

 

COMSOL is employed to numerically solve Darcy's flow equations while 

considering changes in fluid properties. Methane, selected as the ideal gas for the 

models in COMSOL, introduces the need to derive Darcy's law due to methane's 

compressibility. Fracture permeability equations are derived from the Navier-Stokes 

equation, and partial differential equations are formulated for both models. MINC 

concept is elucidated in detail, and the calculation of corresponding parameters for a 

2D model is demonstrated. Furthermore, parameters from DFM model are upscaled 

for MINC models. Upscaling means that certain characteristics or properties derived 

or determined from DFM model are adjusted or transformed to be compatible with 

and applicable to the MINC models. 

 

Initially, the matrix permeability is optimized for MINC models, and subsequently, 

volume fractions of nested volume elements are optimized to have the same mass 
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storage vs. time graph as much as possible with DFM. The workflow diagram is 

summarized as follows: 

 

 
Figure 4.1 Workflow diagram 

4.1 Fractured Model Representation - Fluid Flow Characteristics 

It can be challenging even for methane molecules to move within shale gas reservoirs 

due to the limited pore spaces. However, fractures caused by natural earth movement 

and overlying deposits allow the reservoir components (oil, gas, water) to flow. 

These fractures cause high discontinuity within the rock. Eventually, these 

heterogeneities require determination of not only matrix properties but also fracture 

properties. 
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4.1.1 Darcy’s Law 

Permeability is one of the most significant parameters in porous media. The ability 

of fluid to flow in a porous rock is called permeability and explained by Darcy’s law.  

 
Figure 4.2 Darcy's Law horizontal flow representation 

When isotropic rock is subjected to pressure gradient between two points Darcy’s 

equation comes into play: 

 

𝑄 G 𝑑𝐿

0+

0,

= −
𝑘
𝜇 𝐴 G 𝑑p

1+

1,

	 			(4.1) 

𝑄(𝐿' − 𝐿2) = −
𝑘
𝜇 𝐴

(𝑝2 − 𝑝')	 			(4.2) 

𝑄
𝐴 = −

𝑘
𝜇
∆𝑝
∆𝐿	 			(4.3) 

Where 𝑄 is the flow rate, A is cross-sectional area of the pipe in Figure 4.2, L is the 

distance where the pressure gradient observed, k is the permeability, 𝜇 is the 

viscosity of the fluid, p1 is the left boundary pressure and p2 is the right boundary 

pressure. 

Henry Darcy created this formula for the fluids with the assumption under slightly 

compressible single-phase flow within porous media. However, in the model it must 

be noted that methane is a compressible fluid. Thus, density of the fluid changes with 
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time because it is function of pressure and temperature. In this condition, the 

volumetric flow rate is changing with time in contrast mass flow rate is not changing. 

Therefore, the equation is rearranged: 

 

𝜌'𝑄' =	𝜌2𝑄2 = 𝜌3𝑄3 	= 	𝜌𝑄	 			(4.4) 

Ρ is the density of the fluid, b is the base condition. 

 

Boyle’s law is applied under isothermal condition: 

 

𝑝'𝑉' = 𝑝2𝑉2 = 𝑝3𝑉3 = 𝑝𝑉	 			(4.5) 

 

or volume flow rate can be written instead of volume: 

 

𝑝'𝑄' = 𝑝2𝑄2 =	𝑝3𝑄3 	= 	𝑝𝑄		 			(4.6) 

When eqn 4.5 and eqn 4.6 is combined: 

 
𝑝3𝑄3
𝜌3𝑄3

=
𝑝𝑄
𝜌𝑄	

			(4.7) 

Density becomes: 

 

𝜌 = 𝜌3 P
𝑝
𝑝3
Q	 			(4.8) 

 

The new Darcy’s equation is derived as followed: 

 

𝜌
𝑄
𝐴 = −

𝑘
𝜇 𝜌

𝑑𝑝
𝑑𝑥	

			(4.9)	
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𝜌3
𝑄3
𝐴 = −

𝑘
𝜇 P𝜌3

𝑝
𝑝3
Q
𝑑𝑝
𝑑𝑥	

	(4.10) 

 

Base density terms are cancelled: 

 
𝑝3𝑄3
𝐴 = −

𝑘
𝜇 𝑝

𝑑𝑝
𝑑𝑥	  (4.11) 

 

Integrating  
"#
"$ : 

 

𝑝3𝑄3
𝐴 𝐿 =

𝑘
𝜇
(𝑝'2 − 𝑝22)

2 	 		

	(4.12) 

So that base volume flow rate will be equal to: 

 

𝑄3 =
𝑘𝐴
2𝜇𝐿

(𝑝'2 − 𝑝22)
𝑝3

		 	(4.13) 

 

Solving for the flow rate: 

𝑄3𝑝3 =
𝑘𝐴
2𝜇𝐿

(𝑝'2 − 𝑝22)	 	(4.14) 

 

Note that, arithmetic average pressure is equal to: 

 

�̅� =
𝑝' + 𝑝2
2 	 	(4.15) 

 

𝑝%𝑄% = �̅�𝑄% 	 	(4.16) 
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𝑄3𝑃3 = �̅�𝑄: =
𝑘𝐴
2𝜇𝐿

(𝑝'2 − 𝑝22)	 	(4.17) 

𝑝' + 𝑝2
2 𝑄: =

𝑘𝐴
2𝜇𝐿

(𝑝'2 − 𝑝22)	 	(4.18) 

 

𝑝' + 𝑝2
2 𝑄: =

𝑘𝐴
2𝜇𝐿

(𝑝' − 𝑝2)(𝑝' + 𝑝2)	 	(4.19) 

 

When (p' + p2)  terms are cancelled, the volumetric flow rate at mean pressure (QV) 

for ideal gasses can be calculated from the following equation: 

 

𝑄: =
𝑘𝐴
𝜇
(𝑝' − 𝑝2)

𝐿 	 	(4.20) 

 

Methane is identified as ideal gas for the models in COMSOL where the equation 

4.20 can be used to find the flow rate at mean pressure. 

4.1.1.1 Darcy’s Law in Fractures - Parallel Plates Theorem 

During constant source of methane injection to the DFM model, fracture aperture 

can exchange during time due to the compressibility of the gas. Hence, the mass 

balance equation for fracture apertures get starts (Liu et al., 2019): 

 
𝜕
𝜕𝑡 Xδ𝑐!

$𝜙Z = −
𝜕
𝜕𝑙 X𝑐!

$u!δZ	 	(4.21) 
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ϕ is the porosity of the fracture system, δ is the fracture aperture, cif is the 

concentration of the ith gas component in the fractures (where there is only methane 

concentration), uf  is the average gas velocity through the fracture. 

 

δ
𝜕
𝜕𝑡 X𝑐!

$𝜙Z + 𝑐!$𝜙
𝜕δ
𝜕𝑡 = −

𝜕
𝜕𝑡 X𝑐!

$u!δZ	 	(4.22) 

 

The temporal derivative of fracture aperture  
&'
&(
	 can be negligible (Chen et al., 

2020). 

Mass balance equation for fractures in porous media becomes: 

 

δ
𝜕
𝜕𝑡 X𝑐!

$𝜙Z = −
𝜕
𝜕𝑙 X𝑐!

$u!δZ	 	(4.23) 

 

Fluid flow in fractures resembles the flow in parallel plates Figure 4.3. In addition to 

mass conservation, momentum conservation is also required by Navier-Stokes 

equation applicable for which fluid flows in two parallel plates. 

 
Figure 4.3 Fluid flow between parallel plates 

 

 

]𝜌!
𝜕𝑢
𝜕𝑡 + 𝑢 ∙ 𝛻𝑢` = −𝛻𝑝 + 	𝛻 ∙ [	𝜇(𝛻𝑢 + 𝑢𝛻)] +	𝜌!𝑔	 	(4.24) 
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The cubic law is derived from the fundamental principles of Darcy's law and the 

Navier-Stokes equation. This relationship serves as a simplification that is 

particularly relevant for describing laminar flow in porous media, especially in 

scenarios involving compressible gases, as encountered in certain natural gas 

reservoirs. The well-known cubic law for a single-phase compressible gas flow is: 

 

𝜌 P
𝜕𝑢
𝜕𝑡 + 𝑢𝛻𝑢Q = −𝛻𝑝 + 𝜇𝛻2𝑢	 	(4.25) 

 

It is assumed that fluid flow within fractures follows Poiseuille's law, which 

subsequently leads to the well-known cubic law which describes laminar flow within 

the porous medium governing the overall flow rate (Chen et al., 2020). Like cubic 

law, Poiseuille’s law provides the relationship between flow rate, pressure drop, fluid 

viscosity and pipe dimensions. However, it is applicable to laminar flow of 

Newtonian fluids through cylindrical pipes or tubes. Also, the flow regime is 

assumed as steady state so 45
46
	 is neglected. Boundary conditions are accepted as no 

slip conditions which emphasizes that the velocity of the fluid must equal to the 

velocity of the plate at anywhere on the boundary (Batchelor, 1967; Zimmerman et 

al., 1994). In this condition, inertia forces are very small compared to viscous forces. 

Additionally, when fractures are oriented horizontally gravitational effects can be 

minimal and neglected.  

 

The combination of Equation 4.23 obeying the cubic law, the Navier-Stokes equation 

with the given assumptions becomes: 

 

𝑝' − 𝑝2
𝐿 + 𝜇

𝜕2𝑢-
𝜕2𝑧2 = 0	 	(4.26) 

There is only one flow direction, y direction in Figure 4.3. Integrating the equation 

by applying boundary condition, velocity profile: 
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𝑢-(𝑧) =
1
2𝜇
𝑝' − 𝑝2
𝐿 ghP

𝛿
2Q

2

− 𝑧2jk	 	(4.27) 

 

ul⃗ =
1
𝑎𝛿 GG𝑢-(𝑧)𝑑𝑦𝑑𝑧

7

.

𝜹
2

9𝜹2

	 	(4.28) 

ul⃗ =
1
2𝜇𝛿

𝑝' − 𝑝2
𝐿 G 	(P

𝛿
2Q

2
:
2

9:2

− 𝑧2)𝑑𝑧	 	(4.29) 

 

Therefore, average fracture velocity can be written as:  
 

𝑢 =
𝛿2

12𝜇
𝑝' − 𝑝2
𝐿 	 	(4.30) 

Also fracture flow rate is: 

 

𝑄! =
𝑎δ;

12𝜇
𝑝' − 𝑝2
𝐿  

	

	 (4.31) 

It’s known that Darcy’s flow equation is: 

 
𝑄
𝐴 = −

𝑘
𝜇
∆𝑃
∆𝐿	 	(4.32) 

 

Hence, fracture permeability is written as: 
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𝑘! =
𝛿2

12	 	(4.33) 

 

It must be noted that equation 4.33 is computed for fracture permeability (k<) where 

Darcy’s law is applicable (Witherspoon et al., 1979). 

4.2 Partial Differential Equations (PDEs) for DFM on COMSOL 

COMSOL Multiphysics, is easy to use and provides all physical modules (heat 

transfer, fluid mechanics, structural mechanics, etc.) in the same program. The 

Multiphysics program uses the finite element method (FEM) as a numerical solution. 

FEM is a numerical solution technique which is used to solve various challenging 

engineering and physical problems. FEM requires careful attention to mesh 

generation, element discretization, mathematical approximations, the derivation of 

equations from physics, the consideration of boundary conditions, and validation. 

General form of PDE as followed: 

 

𝜕(𝜌𝜙)
𝜕𝑡 + 𝛻(𝜌u) = 𝑞	 	(4.34) 

ϕ is porosity, u is the velocity of the fluid, q is the source or sink term. 

Where, 

u = P−
𝑘
𝜇Q𝛻𝑝	 	(4.35) 

 

4.3 Partial Differential Equations (PDEs) for MINC on COMSOL  

General form of PDE as followed: 
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𝑒)
𝜕2𝑝$
𝜕𝑡2 + 𝑑)

𝜕𝑝$
𝜕𝑡 + 𝛻 ∙

(−𝑐𝛻𝑝$ − 𝛼𝑝$ + 𝛾) + 𝛽 ∙ 𝛻𝑝$ + 𝑎𝑝$ = 𝑓$ 	 	(4.36) 

 

𝛻 = ]
𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦` 								in	2D	

	(4.37) 

ea is mass coefficient term, da is damping, a is absorption coefficient, c is the diffusion 

coefficient, α conservative flux convection coefficient in x&y direction, β 

convection coefficient in x&y direction, γ conservative flux source in x& y direction. 

fi is the source term (ea, a, β, α, γ are neglegted). 

 

The diffusion coefficient of the rock matrix and homogenous for matrix-to-matrix 

flow, however, it must be considered for the flow from the 1st matrix (second volume 

element) to the fracture (the first volume element). 

 Hence PDE becomes: 

 

𝑑)
𝜕𝑝$
𝜕𝑡 + 𝛻

(−𝑐𝛻p$) = 𝑓$ 	 	(4.38) 

 
The first term of the equation 4.38, the rate of change of fluid mass within the porous 

medium with respect to time (or in other words accumulation), is modified as 

follows: 

 

𝜌 =
𝑝𝑀
𝑅𝑇	 	(4.39) 

 
𝜕𝜌
𝜕𝑡 =

𝑀
𝑅𝑇	

𝜕p
𝜕𝑡	 	(4.40) 

 

The damping terms approximately equals: 
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𝑑) = 𝜙
𝑀
𝑅𝑇	 	(4.41) 

 

Change in porosity with time is neglected. 

The first term of the equation 4.38 is derived: 

 

𝑑)
𝜕𝜌$
𝜕𝑡 =

𝜕(𝜌𝜙)
𝜕𝑡 	 	(4.42) 

 

The second term of equation 4.38, the convective flow of fluid within the porous 

medium, can be written as: 

 

𝛻(−𝑐𝛻p) = 𝛻 P−𝜌$ P−
𝑘
𝜇Q𝛻𝑝Q	 	(4.43) 

Where, 

𝑐 = 𝜌 P−
𝑘
𝜇Q	 	(4.44) 

 
𝛻(−𝑐𝛻p) = 𝛻(−𝜌u))	 	(4.45) 

 

Now, inserting eqn. 4.42 and eqn. 4.45 into the eqn. 4.38: 

 

𝜕(𝜌𝜙)
𝜕𝑡 + 𝛻(𝜌u) = 𝑓=	 	(4.46) 

 

For the source or sink term (fi) calculation, 

 

𝑓$ =
−(𝑞$,$&'𝜌$)
𝑉/,$𝑓=

							𝑖 = 1	 	(4.47) 
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𝑓$ = −h
𝑞$,$&'𝜌$
𝑉/,$𝑓$

j + h
𝑞$9',$𝜌$9'
𝑉/,$𝑓$

j 								𝑖 = 2……𝑁 − 1	 	(4.48) 

𝑓$ = h
𝑞$9',$𝜌$9'
𝑉/,$𝑓$

j 								𝑖 = 𝑁	 	(4.49) 

 

Where N is the number of nested blocks. 

COMSOL Multiphysics utilizes these equations to solve MINC models numerically. 

4.4 Nested Volume Elements  

Some parameters are required in order to design MINC model. First, it’s important 

to mention that each nested element has a certain volume fraction (noted as fj). 

Volume fraction is the ratio of one nested element to total volume of nested elements. 

Therefore, volume fraction summation is equal to 1 in all circumstances. Besides 

volume fractions, distances, interface areas, porosity permeability and exchange 

(transmissibility) parameters are defined for each nested element.  There are a couple 

of methods to calculate each parameter correctly. 

 

• Equal Volume MINC Method: 

Each nested block has the same volume fractions in this method. Interface areas and 

the distances between the nested elements are calculated from the constant volume 

fractions. 

 

• Equal Distance MINC Method: 

All the distance between each nested element is equal to each other. Other parameters 

are calculated based on this geometry. 

 

• Logarithmically Distanced MINC Method: 

Nested blocks are distanced logarithmically from the fracture. 
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• Exponentially Distanced MINC Method: 

Nested elements are spaced natural logarithmically away from the fracture. 

 

• Commercial-simulator-default MINC Method: 

This approach uses CMG (Computer Group Modelling Ltd.) default volume 

fractions to decide the geometric distance and interface areas between the nested 

elements. 

4.5 MINC Parameter Determination 

Three sets of infinite fracture plane, fracture aperture, and spacing (one side length 

of idealized matrix cube) are idealized in Figure 2.1 MINC model assumes that 

fracture planes are parallel to matrix blocks. Fracture is the outermost element in 

Figure 4.4, shown by the dashed line; the inners represent matrix elements. 

Arranging the distances of each matrix block from the fracture requires consideration 

of the thermodynamics of each block, as discussed in the mass conservation partial 

differential equations of the MINC model. 
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Figure 4.4 Basic computational mesh for fractured porous media 

Geometry parameters (di,j  nodal distances, Ai,j interface areas, Vj element volumes) 

for the nested blocks are obtained from a specification of the volume fraction, fj 

(Pruess & Narasimhan, 1985). The outermost element is the fracture continuum 

where j=1. 

 

Equations from 4.50a to 4.56a, which describe idealized matrix cubes nested one by 

one in Figure 2.1, were adapted from Pruess & Narasimhan(1985). Additionally, 2D 

versions of these equations, represented as equations from 4.50b to 4.56b for 

identical squares in Figure 4.4, are derived. 

 

𝑓' = [𝐿;– (𝐿	– 	𝛿);]/𝐿; 	≈ 	3δ/L		 	(4.50a) 

𝑓' =
𝐿2 − (𝐿	– 	𝛿)2

𝐿2 =	
2Lδ − δ2

L2  
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𝑓' = [𝐿2– (𝐿	– 	𝛿)2]/𝐿2 	≈ 	2δ/L	 	(4.50b)  

𝑉% = 𝑓%𝐿;						(𝑗 = 1… 		𝐽)	 	(4.51a)  

𝑉% = 𝑓%𝐿2 	 ∙ 	1[𝑚]				(𝑗 = 1… 		𝐽)	 	(4.51b)  

 

L2 is multiplied by 1[m] to arrange volume (V>)	unit for 2D problem. 

 

𝐴%,%&' = 6𝐿;( � f=

?

=@>&'

)
2
;					(𝑗 = 1… 			𝐽 − 1)	 	(4.50a) 

 

𝐴%,%&' = 4𝐿(� f=

?

=@>&'

)
'
2 	 ∙ 	1[	𝑚]				(𝑗 = 1… 		𝐽 − 1)	 	(4.52b)  

 

A>,>&' is multiplied by 1[m] to arrange area unit (m2) for 2D problem. 

Nodes are located at the middle point of inner and outer element surfaces except the 

1st one locating where the 2nd nested block starts (see Figure 5.12). The number of 

nested blocks (N) equals to the number of nodes. Nodal distance means the distance 

between two nodes (i.e., d1,2 is the distance between node 1 and node 2). 

 

𝑑',2 =
𝐿
4 [(�𝑓$	

A

$@2

)
'
; − (�𝑓$

A

$@;

)
'
;]	 	(4.53a) 

 

𝑑',2 =
𝐿
4 [(�𝑓$	

A

$@2

)
'
2 − (�𝑓$

A

$@;

)
'
2]	 	(4.53b) 

 

d1,2, the distance locates from the beginning of the 2nd nested block to the middle 

point of the 2nd (1st matrix block) and 3rd (2nd matrix block) nested elements. d1,2 is 

shown in Figure 5.12 physically. 
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𝑑%,%&' =
𝐿
4 [(�𝑓$	

A

$@%

)
'
; − ( � 𝑓$

A

$@%&2

)
'
;]	… (𝑗 = 2				𝐽 − 2)	 	(4.51a) 

𝑑%,%&' =
𝐿
4 [(�𝑓$	

A

$@%

)
'
2 − ( � 𝑓$

A

$@%&2

)
'
2]	… (𝑗 = 2				𝐽 − 2)	 	(4.52b) 

 
 

dj,j+1 is the distance between jth and j+1th nodes and from d2,3 to dj-2,j-1 is calculated 

by the equation 4.54. 

 

𝑑A9',A =
𝐿
4 (𝑓A9' + 𝑓A)

'
; −

3𝐿
20𝑓A

'
;	 	(4.53a) 

 

𝑑A9',A =
𝐿
4 (𝑓A9' + 𝑓A)

'
2 −

𝐿
8𝑓A

'
2	 	(4.55b) 

 

The last equation states that the last node, (j=N), is not located in the middle of the 

innermost element. Instead, it is expected to be positioned near the beginning of the 

last nested block and explained in detail in Section 4.6. When the variation of 

thermodynamics properties, such as temperature or pressure around the fracture is 

small, subdividing volume elements to nested blocks is not required for a cube in 

Figure 4.4. In other words, thermodynamics are almost the same for the neighboring 

nested elements so they can be lumped together into one element volume. Therefore, 

corresponding nested volumes can be merged into one computational volume 

element. Hence, upscaling of such kind of case, scaling law, is needed when spatial 

resolution is required for small grids (Vn < < L3) (Pruess & Narasimhan, 1985). 

So, the number of elementary units is identified as follows: 
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𝜎 =
𝑉/
𝐿;	 	(4.54a) 

𝜎 =
𝑉/

𝐿2 ∙ 1[	m]	 	(4.56b) 

Vn is the total volume of the elementary unit and 𝜎 is an integer number. 

So that the volume of continuum j within Vn is: 

 

𝑉/% = 𝜎𝑉% = 𝑓%𝑉/	 	(4.57) 

 

Therefore, interface area occurs σ times so that: 

 

𝐴/%,/%&' = 𝜎𝐴%,%&'	 	(4.58) 

 

And the nodal distances equation does not change since the distances depend only 

on geometry instead of dimension, so: 

 

𝑑/%,/%&' = 𝑑%,%&'	 	(4.59) 

4.6 Validity of 2D MINC Formulas 

The calculations for distance, volume, and area in a 2D model are not found in the 

literature. Firstly, 2D geometry is created to use these formulas. For example, 

constant volume fraction value for all matrix continua is found by dividing the rest 

of volume fractions (from fracture fraction) to the nested matrix continua number for 

equal volume method. For another example, the relationship between the distances 

is established for each distance method (i.e., equal, exponentially, logarithmically 

distanced) and then their volume fractions are completed based on geometry. After 

deciding volume fractions from both examples, equations from 4.53b to 4.55b are 

created to match these formulas with the distances already created geometrically. In 
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addition, to validate these formulas (eqns. from 4.50b to 4.56b), MATLAB code, 

based on proximity function, is created, and attached to appendices. 

4.6.1 Proximity Function  

Proximity function explains matrix fracture interaction based on the geometry of the 

nested blocks. In fact, points are distributed in a line randomly and then, Monte Carlo 

integration techniques are applied to compute nodal distances (di,j) for irregular 

shape matrix or proximity functions are derived analytically to compute distances 

for regular shaped matrix blocks. This function calculates the volume of each matrix 

continuum as a function of the distance (xi in Figure 4.8) from the fracture (Pruess 

& Karasaki, 1982). 

 

 Volume fractions are the only necessary parameters to compute all geometry by 

proximity function to understand interporosity flow between matrix and fractures 

(Farah et al., 2016). 

 

Proximity function P(x) is used, firstly, to calculate volume fraction of matrix blocks 

from fracture volume fraction: 

 

𝑉# = (1 − 𝑓')𝑉.    (4.55) 

V0 is the total volume of the volume element, Vm is the total matrix volume, f1 is the 

fracture volume fraction. 

V(x) is volume of the matrix which is distanced x from the fracture faces (see Figure 

4.8). V(x) is written as a function of P(x): 

 

𝑉(𝑥) = 𝑃(𝑥)𝑉#    (4.56) 
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4.6.1.1 Proximity function for 1D: 

 
Figure 4.5 1D fracture system 

Proximity function for 1D fracture system is given by: 

 

𝑢 = 2 ∙
𝑥

𝑑𝑥!B)C
	 	(4.62) 

𝑃(𝑥) = �
𝑢, 2𝑥 < 𝑑𝑥!B)C
1, 2𝑥 ≥ 𝑑𝑥!B)C

	 	(4.63) 

 

Where x is the half of fracture aperture, 𝑑*!B)C is the fracture spacing (or length of 

one elementary unit). 
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4.6.1.2 Proximity function for 2D: 

 
Figure 4.6 2D fracture system 

Proximity function for 2D fracture system is given by: 

 

𝑢 = 2 ∙
𝑥

𝑑𝑥!B)C
	 	(4.64) 

 

𝑣 = 2 ∙
𝑥

𝑑𝑦!B)C
	 	(4.65) 

 	

𝑃(𝑥) = �
𝑢 + 𝑣 − 𝑢𝑣, 2𝑥 < min	(𝑑𝑥!B)C , 𝑑𝑦!B)C)

1, 2𝑥 ≥ min	(𝑑𝑥!B)C , 𝑑𝑦!B)C)
	 	(4.66) 
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4.6.1.3 Proximity function for 3D: 

 
Figure 4.7 3D fracture system 

 

Proximity function for 3D fracture system is given by: 

 

𝑢 = 2 ∙
𝑥

𝑑𝑥!B)C
	 	(4.67) 

 

𝑣 = 2 ∙
𝑥

𝑑𝑦!B)C
	 	(4.68) 

 

𝑤 = 2 ∙
𝑥

𝑑𝑧!B)C
	 	(4.69) 

𝑃(𝑥) = �
𝑢 + 𝑣 + 𝑤 − 𝑢𝑣 − 𝑣𝑤 − 𝑢𝑤 + 𝑢𝑣𝑤, 2𝑥 < minX𝑑𝑥!B)C , 𝑑𝑦!B)C , 𝑑𝑧!B)CZ

1, 2𝑥 ≥ minX𝑑𝑥!B)C , 𝑑𝑦!B)C , 𝑑𝑧!B)CZ

  

    (4.57) 
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Secondary mesh is created by using fracture volume fraction and proximity function 

by primary mesh. Proximity function P(x) is used, secondly, to calculate the 

distances between nested blocks and interface areas between the elements. 

 

As mentioned before, each element is divided into N-nested elements. Flow occurs 

only in fractures (DP model is assumed). To understand flow behavior between two 

neighbors (i.e., xi and xi+1 in Figure 4.8) continua, xi calculation based on proximity 

function is required.  

 

 
Figure 4.8 MINC partitioning of an idealized fracture system (Pruess, 1983) 

The volume fractions of the nested rock matrix elements 𝑓𝑖 for 2 ≤ 𝑖 ≤ N	

Thanks to the definition of proximity function, P(xi) for any nested element can be 

written as: 
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𝑃(𝑥$) 	= 	
𝑉(𝑥$)
𝑉#

								for	i	 > 	1	 	(4.71) 

 

The interface area at a distance x (from fracture) is derived from the equation 4.71 

and 4.60: 

 

𝐴(𝑥) = 	
𝑑𝑉
𝑑𝑥 =

(1 − 𝑓')𝑉. 	
𝑑𝑝(𝑥$)
𝑑𝑥 	 	(4.72) 

 

Using the volume fractions eqn. 4.71 becomes: 

 

𝑃(𝑥$) =
∑ 𝑓$𝑉.$
%@2

(1 − 𝑓$)𝑉.
	 	(4.73) 

 

or 

𝑃(𝑥$) =
∑ 𝑓$$
%@2

(1 − 𝑓')
	 	(4.74) 

 

The nodal distances can be written in terms of xi: 

 

𝑑',2 =	
𝑥2
2 	 	(4.75) 

 

𝑑$,$&' =
𝑥$&' − 𝑥$

2 −
𝑥$ − 𝑥$9'

2 							𝑖 = 2…𝑁 − 2	 	(4.76) 

 

Equation 4.73 is solved by using bisection method in MATLAB (i.e., xi value is 

researched by iteration that provides P(xi) in the equation 4.73, x1 is located on the 

fracture interface so it equals to 0). 
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To calculate xN,, or Di the innermost nodal distance, different method is applied . 

 

𝑑$9',$ =	
𝑥$9' −	𝑥$92

2 +	𝐷$										𝑓𝑜𝑟	𝑖 = 𝑁	 	(4.77) 

 

To accurately estimate the pressure gradient at the interface between two of the 

innermost elements, it is necessary for the last node to be positioned closer to the 

beginning of the innermost element, rather than at its middle. The determination of 

this distance, denoted as 'D', is based on finite difference approximation to accurately 

describe fluid flow between continua. D is a function of time in transient fluid flow 

regimes, and selecting the optimal D values is crucial for use in quasi-steady state 

flow regimes (Pruess, 1983). 

 

D can be calculated from the following table: 

 

Table 4.1 Quasi-steady flow distances for rectangular matrix blocks (Warren & Root, 

1963) 

 
D is function of dimension of matrix blocks (fracture spacing- fracture aperture) and 

innermost blocks.  



 
 

44 

 Once the volume fractions are accomplished, The MATLAB code in appendices 

enables to complete all MINC parameters and validates the equations from 4.50b to 

4.56b. 
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CHAPTER 5  

5 NUMERICAL MODELING 

Creating DFM and MINC models on COMSOL Multiphysics program steps are 

discussed in detail in this section. Models are based on Bristol Channel, which is a 

real naturally fractured rock along the southern margin of Bristol Channel coast, 

United Kingdom. The dimension of the reservoir in Figure 5.1 is 18 [m] x 8 [m]. The 

major component of the Bristol Channel is limestone with interbedded shales, and 

the fractures are approximately 30 cm high. The created models on COMSOL are 

assumed to be like a fractured shale gas reservoir made up of only methane in 2D 

dimensions. The 18 [m] x 8 [m] dimension unstructured grid ASCII file is then 

converted to upload COMSOL.  
 

 
Figure 5.1 Bristol Channel geometry (Tatomir, 2012) 

 

While modeling both DFM and MINC, 4 [m] x 2 [m] section of the Bristol Channel 

(Figure 5.2) is focused. 
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Figure 5.2 Created 4 [m] x 2 [m] dimensions as a representative part of Bristol 

Channel geometry 

Once DFM model is created, five different MINC model approaches are applied and 

compared with the DFM model. Then, the best representative MINC model is 

obtained by optimizing volume fractions and matrix permeability. 

5.1 DFM Parameters 

A certain amount of methane is constantly injected into the fractures (black areas in 

Figure 5.3) having 1x105 Pa initial reservoir pressure. The model considers the 

change in properties of methane characteristics. Table 5.1 summarizes the constant 

source injection problem parameters.  Porosity of fracture is taken as 1, and matrix 

porosity is assumed as 0.18. Darcy’s law is applied to the porous media. Matrix 

permeability is taken as 1x10-17 m2 (0.0101 mD) for DFM model. In DFM model, 

fracture aperture is taken as 0.01 [m], and fracture permeability is calculated by using 

it. 
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Table 5.1 DFM Constant Source Injection Problem Parameters 

Domain Properties DFM Parameters 

Fracture aperture 0.01m 

Matrix permeability 1x10-17 m² 

Fracture permeability 8.3333x10-6 m² (from Equation 4.33) 

Matrix porosity 0.18 

Fracture porosity 1 

Initial Condition 1x105 Pa 

Boundary Condition 1/6000 (kg/s) source into fractures shown in Figure 5.3 

 

 

 
Figure 5.3 Constant source injection problem with no flow boundaries (indicated by 
blue lines) 

5.1.1 Finite Element Grid Creation (Meshing) 

COMSOL Multiphysics program creates meshing and the size changes from 

extremely fine to extremely coarse. COMSOL creates mesh properly as triangle 

shape for 2D problems and tetrahedral for 3D problems. 
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Even though normal size mesh is created in DFM, the computation time is 

enormously high. Discretization is expectedly high around fractures (see Figure 5.4). 

Hence, the number of triangles increases and the size of them decreases when getting 

close to fractures. If a finer mesh is used, the program needs higher computational 

power due to the increased level of discretization. 

 
Figure 5.4 DFM model meshing 

5.2 MINC Parameters – Upscaling 

Upscaling is the process to adjust or transform properties or characteristics from a 

smaller or more detailed scale to a larger or coarser scale. This is frequently 

undertaken to enhance the computational efficiency of complex models or to extend 

their applicability to a wide range of reservoirs. It can entail methods like averaging, 

simplification, or other adjustments to make characteristics from the DFM model 

suitable for use in the MINC models. Table 5.3 represents domain properties for 

MINC models clearly. 

5.2.1 Matrix-Fracture Volumes 

While creating DFM model on COMSOL, uniform fracture aperture is taken as 

0.01[m]. Fracture volume of DFM must be in accordance with the first domain of 
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MINC model. Therefore, fracture volume fraction (f1) is based on the volume of 

fracture in DFM. 

5.2.2 Fracture Permeability 

DFM model, is created as a constant pressure boundary problem to decide 

transmissibility in the middle of the domain in Figure 5.6. Flow mainly occurs 

through interconnected fractures. In Figure 5.6, high pressure and low pressure is 

arranged on the left and on the right boundaries respectively. Upscaled fracture 

permeability for MINC models can be computed from the transmissibility equation 

by (Karimi-Fard et al., 2006) for a steady state problem. Table 5.2 summarizes DFM 

parameters for this model. 

 
Figure 5.5 Schematic illustrating transmissibility upscaling (Karimi-Fard et al., 

2006) 

 

𝜏),+ =
𝑄),+𝜇

�̅�(�̅�) −	�̅�+)
	 	 (5.1) 

 

𝜏+,, is the transmissibility between left and right domain boundary in Figure 5.5. 
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QD,E is the flow rate through the interface, p:D is the average pressure of cell k, p:E is 

the average pressure of cell l, ρ: is the average density at the interface. 

 
Figure 5.6 Transmissibility upscaling with constant pressure boundary on 

COMSOL 

The left boundary pressure is 2x105 Pa and the right boundary pressure is arranged 

as 1x105 Pa. Then the model runs for 2.4x105 seconds, where it has already reached 

to steady state. Fracture permeability for MINC models is calculated as 2.51x10-7 m² 

when Equation 5.1 is converged.   
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Table 5.2 DFM Constant Pressure Boundary Problem Parameters 

Domain Properties DFM Parameters 

Fracture aperture 0.01 m 

Matrix permeability 1x10-17 m² 

Fracture permeability 8.3333x10-6 m² 

Matrix porosity 0.18 

Fracture porosity 1 

Initial Condition 1x105 Pa 

Boundary Condition Left boundary: 2x105 Pa 

Right boundary: 1x105 Pa 

 

5.2.3 Matrix Permeability 

Matrix permeability in MINC models can be roughly calculated from DFM matrix 

permeability by applying Darcy's Law relationship between the two models as 

follows:  

 

𝑘##$%& ≈ 𝑘#!"# ∙
𝐴!,#!"#

𝐴!,##$%&

	 	 (5.2) 

 

kF-./0 is matrix permeability of MINC model, kF12- is the matrix permeability of 

DFM model, A<,F-./0 is the total interface area between matrix and fractures in 

MINC model, A<,F12- is the total interface area between matrix and fractures in 

DFM model. 

 

Equation 5.2 gives an approximation result. This value is also optimized according 

to DFM model result in section 6.3. 
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Table 5.3 MINC Constant Source Injection Problem Parameters 

Domain Properties MINC Parameters 

Fracture aperture 0.0481 (for one volume element) 

Matrix permeability 2.79x10-16 m² (roughly calculated from Equation 5.2 

and optimized later) 

Fracture permeability 2.51x10-7 m² (upscaled from Equation 5.1) 

Matrix porosity 0.18 

Fracture porosity 1 

Initial Condition 1x105 Pa 

Boundary Condition 1/6000 (kg/s) source into fractures with no flow 

boundary condition same as DFM 

 

5.3 MINC Parameters – Volume Fractions 

The most decisive parameter is fracture fraction or in other words, first domain 

volume fraction. Fracture volume in DFM model must be equal to fracture volume 

in MINC models. Then, fracture volume fraction is decided with fracture aperture 

for the first MINC volume. To enhance accuracy, all MINC models are constructed 

with 10 (N=10) nested elements since greater accuracy is achieved with higher 

discretization. Figure 5.7 shows the representation of MINC model where each 

element has 10 nested domains. 
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Figure 5.7 Primary Mesh for a MINC model on COMSOL & Computation of 

nested MINC domains for N=10 

To decide each MINC parameters, construction of geometry of each method is 

required. Table 5.4 summarizes all volume fractions for each method. 

 

Table 5.4 Volume Fractions for five different methods (N=10) 

Volume 

Fractions 

 

Equal 

volume 

MINC 

 

Equal 

Distance 

MINC 

Method 

Logarithmically 

Distance MINC 

(LOG-MINC)  

Exponentially 

Distanced (LN-

MINC) 

Commercial-

simulator-

default 

(SIMD-MINC) 

f1 0.0475  0.0475 0.0475 0.0475 0.0320 

f2 0.1058  0.2109 0.0894 0.1402 0.0580 

f3 0.1058  0.1846 0.0997 0.1437 0.0750 

f4 0.1058  0.1582 0.1022 0.1366 0.0890 

f5 0.1058  0.1318 0.1137 0.1356 0.1010 

f6 0.1058  0.1054 0.1186 0.1242 0.1110 

f7 0.1058  0.0791 0.1304 0.1139 0.1210 

f8 0.1058  0.0527 0.1341 0.0909 0.1300 

f9 0.1058  0.0264 0.1263 0.0581 0.1380 

f10 0.1058  0.0033 0.0379 0.0092 0.1450 
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5.3.1 Equal Volume MINC – Meshing 

Volume fraction of fracture is determined by the fracture volume in DFM model. f1 

is subtracted from 1 and then divided to 9. The result gives the matrix volume 

fraction for each nine nested domains. All other geometric parameters are calculated 

by using equations from 4.51b to 4.55b. 

 

It must be noted that the equation 4.56, σ, number of elementary units within Vn is 1 

for all cases. It can be assumed that fractures are distributed around the porous media 

homogenously. There are two uniform square elementary units where spatial 

resolution for models is not required.  

Computational meshing of equal volume MINC model is in Figure 5.8. 

Figure 5.8 Computational meshing of equal volume MINC model 

 

 
Figure 5.8 Computational meshing of equal volume MINC model 
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5.3.2 Equal Distance MINC Method – Meshing 

In this method, as its name states, nested elements are equally distanced. All 

distances are assumed equal to each other except for d12. Its length must be equal to 

the half of each distance due to its geometric location. 

 Computational meshing of equal distance MINC model is in Figure 5.9. 

 

 
Figure 5.9 Computational meshing of equal distance MINC model 

5.3.3 Logarithmically Distanced MINC Method – Meshing 

It must be noted that detailed resolution is required around the fracture rather than 

the innermost matrix. Therefore, the distances must be located closer around the 

fracture instead of around the innermost volume (Pruess & Narasimhan, 1985). As 

a result, while creating logarithmically and exponentially distanced models, the 

nodal distances are arranged as increasing form the fracture to the innermost 

domain. 
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Computational meshing of logarithmically distanced MINC model is in Figure 

5.10. 

 
Figure 5.10 Computational meshing of logarithmic distance MINC model 

5.3.4 Exponentially Distanced MINC Method – Meshing 

Like logarithmically distanced model, the distances are increased from fracture to 

the middle of the elementary unit. 

Computational meshing of exponentially distanced MINC model is shown in 

Figure 5.11. 
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Figure 5.11 Computational meshing of exponentially distanced MINC model 

 
 

 
Figure 5.12 Computational meshing of exponentially distanced MINC model - 

zoomed 

The distances between nested elements are shown in Figure 5.12. There are 10 

nodes and 9 different nodal distances. (δ is fracture aperture) 
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5.3.5 Commercial-Simulator-Default (SIMD-MINC) - Meshing 

This method is a little bit different than the others. That’s because default 

commercial simulator volume fractions, where CMG is available, are decided to 

create MINC model (see Table 5.4 for default fj values). 

Computational meshing of Commercial-simulator-default (SIMD-MINC) is in 

Figure 5.13. 

 
Figure 5.13 Computational meshing of Commercial-simulator-default (SIMD -

MINC) 

f1 is obviously different than from the other four different methods. Thus, porosity 

is required to be rearranged both in matrix and fracture, because matrix and 

fracture volumes of the DFM model should match with MINC model so that this 

model must be consistent with the other MINC models for comparison purposes. 
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5.4 Comparison of Model Outputs 

Once the models are validated with the initial and boundary condition in Figure 

5.3, mass storage vs time graphs are drawn. The same proportion of source is 

injected to fractures in both models DFM and MINC constantly. The total amount 

of the accumulated source of DFM is always equal to the source amount of MINC 

for all methods as it should be (see Figure 5.14) where the total mass storage line of 

equal volume MINC model exactly matches with the total storage line of DFM 

model). Figure 5.14 is drawn to check the consistency of the models. 

 
Figure 5.14 Mass storage comparison DFM and MINC model 

The accumulated mass in fractures at DFM and at MINC models is expected to 

give a measure of the accuracy of MINC parameters. The same is valid for the 

mass in matrix domain for both DFM and MINC models (e.g., Figure 5.15). 



 
 

60 

 
Figure 5.15 Equal volume method comparison with DFM result 

 
Figure 5.16 Equal volume method comparison with DFM result - zoomed  
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Figure 5.17 Equal distance method comparison with DFM result 

 
Figure 5.18 Equal distance method comparison with DFM result - zoomed 
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Figure 5.19 Logarithmically distanced method comparison with DFM result 

 
Figure 5.20 Logarithmically distanced method comparison with DFM result - 
zoomed 
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Figure 5.21 Exponentially distanced comparison with DFM result 

 
Figure 5.22 Exponentially distanced comparison with DFM result - zoomed 
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Figure 5.23 Commercial simulator method comparison with DFM result 

 
Figure 5.24 Commercial simulator method comparison with DFM result - zoomed 
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CHAPTER 6  

6 OPTIMIZATION AND RESULT 

6.1 Optimization 

 
Optimization has long been in high demand for discovering optimal solutions to a 

wide range of problems. Physical problems can often be numerically solved using 

analytical equations. The objective of optimization is to identify the most favorable 

output that maximizes results while minimizing energy consumption within the 

system. Numerical optimization processes primarily rely on iterative methods 

(Hemker & Ciaurri, 2007). The input variables for optimization can encompass 

various factors, such as the dimensions and shapes of a geometry, as well as material 

properties. Optimization options include shape optimization, parameter optimization 

(typically the most commonly used), topological optimization, and more. 

6.1.1 Optimization Terminologies 

6.1.1.1 Objective Function 

In addressing every physical design problem, it is customary to associate it with a 

figure of merit, often referred to as a cost function or, more commonly, an objective 

function. Virtually any aspect of the system's performance can be computed through 

this objective function. The objective is to attain the optimal value for any parameter 

by either maximizing or minimizing the objective function (Basbug, 2019). The 

optimal value parameters can govern various aspects of the design, including 

dimensions, loads, boundary conditions, material properties, and material 
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distribution. A set of limits and design constraints serves to confine the control 

variables within certain boundaries. 

6.1.1.2 Performance Constraints and Bounds 

There might be performance constraints depending on the model solution during 

system optimization. As an example, it is essential that any constraint parameters 

must be below a predefined safety limit while minimizing or maximizing the 

objective function.  

 

Usually, an optimization problem is the need to develop an objective function by 

changing the control variables inside a set of constraints. The control variables can 

vary in only the interval of upper and lower bounds (Sinha, 2020). 

6.1.1.3 Optimality Tolerance 

In all optimization methods, the optimality tolerance plays a crucial role. While it is 

intended to signify the relative accuracy of the final control variable values, 

achieving uniform behavior cannot be guaranteed due to significant variations in 

solver implementations. When the objective function in the last step falls within the 

optimality tolerance, the iteration comes to a halt. 

6.2 Optimization Algorithms 

There are two main optimization algorithms:  

• Derivative-Free Algorithm  

• Gradient-Based Algorithm 

These two solver groups are applicable under different conditions with different 

performance characteristics.  
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6.2.1 Derivative-Free Algorithm 

The origin of Derivative-free algorithms holds on the work of Spendley et al. (1962) 

and Nelder & Mead (1965). Characteristics of a derivative- or gradient-free 

algorithm are defined so that the derivative of the objective function with respect to 

the control variables is not required to compute. Therefore, these methods can suit a 

wide range of optimization problems (Chong & Żak, 2008). The main advantage of 

a gradient-free algorithm is that if any discontinuity exists in the objective function, 

this technique will be efficient and successful during optimization (Hadzic et al., 

2011). Even if the problem contains noise or is nonsmoothed, this method can be 

applicable Specifying geometric dimensions is a common instance of a noisy 

objective function. When the objective function is evaluated for various control 

variable values, the geometry changes driven by changing the control variables result 

in various finite element meshes that impose various discretization errors on the 

objective function. These solvers do not rely on the objective function pointwise 

behavior as a decent indicator of the next control variables. That’s why derivative-

free solvers trust in sampling the objective function at different positions in the 

control variable space. This method is more robust than a single path and also more 

expensive.  

COMSOL Multiphysics Optimization Module provides five different gradient-free 

algorithms. 

6.2.2 Gradient-Based Algorithms 

Implementation of gradient-based, or derivative based, algorithm necessitate the 

complete vector of the first order derivatives of the objective functions with respect 

to the discrete gradient of the objective function in the control variable space. These 

algorithms are efficient because of usage of derivatives of the objective functions. 

For the gradient-based solvers, the iteration steps in the control variable space, are 

based on the local derivative calculated in previous points. However, derivative-
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based algorithms are not efficient in a local optimum of a problem, convex (Koziel, 

2016). This algorithm does not work if any discontinuity exists in the objective 

function.   

COMSOL Multiphysics Optimization Module provides four different gradient-based 

algorithms. 

6.2.3 SNOPT 

SNOPT, Sparse Nonlinear Optimizer, was initially developed by Philip E. Gill of the 

University of California San Diego, and Walter Murray and Michael A. Saunders 

Stanford University (Gill et al., 2015) which is sequential quadratic programming. 

SNOPT is, a gradient-based solver available for sparse and large problems. In order 

to reach the optimum solution, a gradient-based optimization technique is used. 

Gradients of objective functions or constraints are required and can be computed 

analytically or numerically.  

 

SNOPT solves a sequence of approximation, meaning that the objective function is 

introduced as a quadratic polynomial, and the constraints are assumed to be linear 

(Leyffer & Mahajan, 2011). Sequential quadratic programming is implemented in 

the fundamental algorithm. Each step in this sequence requires a major or outer 

iteration, while each approximate quadratic programming problem requires minor 

and inner iterations.  

 

Optimal results are figured out around corners of a feasible set rather than interior 

ones with SNOPT method. As a result, the strategy works best for difficulties where 

there are many active constraints compared to the number of degrees of freedom for 

the control variable. 
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6.3 Matrix Permeability Optimization 

Two optimization problems are solved in this thesis. The first and most critical one 

is the determination of matrix permeability for a continuum model based on DFM 

model. DFM model has 1x10-17 m2 matrix permeability and utilizing this value 

without modification might introduce significant errors during the construction of 

MINC models. Therefore, Consequently, upscaling this value is essential for the 

MINC models.  Optimization result is expected like in section 5.2.3 where upscaled 

matrix permeability is explained with the relationship of the interfaces between 

matrix and fractures. The aim of this optimization is to decide matrix permeability 

for a MINC representing DFM model. Parameter estimation tool with gradient-based 

solver, SNOPT, is sufficient to optimize upscaled matrix permeability since there is 

no constraints or control variables. Optimality tolerance is arranged as 0.0001. 

 

The objective function is minimizing mass storage difference in matrix domain 

between MINC and DFM model. After a few iterations in COMSOL, matrix 

permeability for MINC models is optimized as 2.136x10-16 m2 (0.216 mD), a value 

closely approximated by Equation 5.2. 

6.4 MINC Parameter Optimization 

The other optimization is to decide volume fractions for a MINC model which 

deviates at least from the DFM model. As discussed before the main function of 

MINC concept is volume fractions. When volume fractions are changed, meshing 

i.e., nodal distances, interface areas, and interconnected flow characteristics change 

directly. Therefore, the aim of optimization is to decide volume fractions for a MINC 

model which represents the DFM model with the least error. 
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Fracture volume fraction (f1) is not optimized since it depends only on the fracture 

volume in DFM model. The other nine volume fractions are optimized by COMSOL 

Multiphysics Optimization Module. 

 

 It must be noted that the checking parameter is accumulated mass in matrix. While 

mass storage in matrix is matched, mass storage in fractures is implicitly matched 

since the total mass storage always must be same for all methods (see Figure 5.14). 

From the second volume fraction to the tenth one is optimized to decrease the 

deviation from the mass storage line of DFM. 

6.4.1 Optimization Module Steps 

Optimization solver is decided as SNOPT, gradient-based, is a strong solver while 

challenging with many constraints in large scale problem.  

 

The default optimality tolerance decreased to 0.0001 for better accuracy in SNOPT 

solver. The objective function is minimizing square root of the mass deviance at each 

time level in matrix domain between DFM and MINC models. The optimization type 

is set to 'minimize,' aiming to minimize the difference between mass storage in 

fractures and matrix in DFM model and the mass storage in fractures and matrix in 

MINC model. 

 

Control variable inputs are, as mentioned before, volume fractions from second one 

to the last one in the interval 0 and 1. Only one constraint is defined which tells that 

summation of volume fractions must be equal to 1. Computation time takes 

approximately 5 minutes. 

 

The output optimized volume fractions values and corresponding MINC parameters 

are located in Table 6.1. 
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Table 6.1 Optimized MINC Parameters 

Nodes Volume fractions 

(fi) 

Nodal Distances 

(di,i+1) 

Interface Areas 

(Ai,i+1) 

i=1 0.0475 0.020 1.758 

i=2 0.0776 0.048 2.734 

i=3 0.1020 0.060 3.821 

i=4 0.1092 0.055 5.247 

i=5 0.0736 0.079 6.145 

i=6 0.1600 0.145 6.517 

i=7 0.2020 0.157 7.033 

i=8 0.1113 0.129 7.483 

i=9 0.0685 0.116 7.808 

i=10 0.0483   

 

Mass storage comparison of the optimized MINC model and DFM model is shown 

in Figure 6.1.  
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Figure 6.1 Optimized MINC model comparison with DFM result 

 

 
Figure 6.2 Optimized MINC model comparison with DFM result - zoomed 
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It may not be easily said that the closest line is observed by the optimized MINC 

model due to blur in the figures. Therefore, deviation of each method from DFM is 

calculated by the mean squared error method. 

6.5 Comparison of MINC Models, Including the Optimized One 

6.5.1 Mean Squared Error Calculation 

Deciding optimality criteria of a model evaluation is a critical job. The mean squared 

error of prediction is a valuable parameter to consider when evaluating the quality of 

a model whose goal is prediction (Wang & Bovik, 2009). 

 

The lower the mean squared error observed, the more closely the data points are 

dispersed around the reference (mean) data. Inversely, the larger mean squared error 

indicates that data points are scattered far away from the reference ones. 

Mean squared error (MSE) is calculated by the following equation: 

 

𝑀𝑆𝐸 = 	 '
/
	 ⋅ 	∑(𝑥) − 𝑥)2    (6.1) 

 

n is the number of sample, xa is actual data and x is predicted/observed data. 

MSE calculations have been performed for three different sets of matrix permeability 

values. Table 6.2 illustrates the significance of upscaled matrix permeability. A 

lower error indicates that each MINC model deviates less from the DFM model. 

When using the upscaled MINC model, the resulting MINC models exhibit the least 

deviation, as depicted in the fourth column of Table 6.2. The second column 

indicates a significant error when the matrix permeability is directly used from the 

DFM model during MINC model creation. In the third column of  Table 6.2, MSE 

is calculated for the MINC models created by using the roughly calculated matrix 
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permeability from Equation 5.1. It can be inferred that this method is successful in 

obtaining good results. 

Table 6.2 Mean Squared Error  

MINC Model Type     MSE 

(DFM km) 

MSE 

(Roughly 

calculated km) 

MSE 

(Optimized 

km) 

Equal Volume MINC 3.57E-02 3.62E-06 1.81E-06 

Equal Distance MINC 4.39E-02 1.10E-05 8.69E-06 

Logarithmically Distanced 

MINC 

3.51E-02 
 

3.87E-06 
 

1.56E-06 

Exponentially Distanced MINC 3.78E-02 4.90E-06 3.24E-06 

SIMD (CMG) MINC  3.41E-02 1.72E-06 2.54E-06 

Optimized MINC 3.50E-02 5.07E-06 1.51E-06 

 

 

The MINC model with upscaled matrix permeability (located in the last column of 

Table 6.2) based on optimized volume fractions clearly exhibits the least deviation 

from the DFM model. Upon closer analysis, it becomes evident that there is 

minimal deviation in the early time steps, while a strong match is observed in the 

late time intervals of the solution. 

 

The MINC model that deviates the most from the DFM model is equally distanced 

MINC model. This deviation occurs because it contradicts the condition outlined by 

Pruess and Narasimhan (1985), which stipulates that discretization in the vicinity of 

the fracture continua must be smaller than in the vicinity of the middle of the 

elementary unit (see Figure 5.9). Moreover, equal volume method obeys that rule 

automatically since the volume fractions stay constant so that the distances are 

increasing as getting closer to the innermost element. The second most deviated one 

is CMG simulator default volume fractions even though nested blocks are much 

closer around the fracture continuum. In fact, it is expected due to the 
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underestimation of fracture volume fraction. It can be deduced that this method may 

be applicable instead of equal distanced method when the fracture volume is not 

available. Logarithmically and exponentially distanced methods are based on a 

similar approach during creating computation geometry. However, a considerable 

difference exists between them, surprisingly.  

6.5.2 Computation Time 

Table 6.3 shows that MINC models are computed significantly faster compared to 

DFM model. In other words, the software program requires much more 

computational power to run DFM model than MINC models. Furthermore, the 

optimization of volume fractions adds a substantial amount of time to the 

computation. 

 

Table 6.3 CPU Time Comparison for all Simulation Models 

Simulation Method CPU Time for 4 [m] x 2 [m] part of 

Bristol Geometry 

Equal Volume MINC a few seconds 

Equal Distance MINC a few seconds 

Logarithmically Distanced MINC a few seconds 

Exponentially Distanced MINC a few seconds 

Commercial-simulator-default MINC  a few seconds 

Optimized MINC 5 minutes optimization + a few seconds 

DFM ~10 minutes 
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6.6 Comparison of Large-Scale Reservoir MINC Models with Production 

Well 

A large-scale reservoir is created to assess the impact of each MINC method on 

production. The dimension of the reservoir is 500 [m] x 500 [m]. All reservoir 

characteristics are same with the previous Bristol geometry MINC models. Mesh of 

the large-scale reservoir is shown in Figure 6.3 . The mesh of this large-scale 

reservoir is illustrated in Figure 6.3, consisting of 62500 identical square elementary 

units, each with dimension of 2 [m] x 2 [m]. Production from the reservoir occurs at 

a constant rate, originating from the fracture within an elementary unit positioned at 

the reservoir's edge, as depicted in Figure 6.4 . 

 

 
Figure 6.3 Constant source production problem with no flow boundaries - Meshing 

 



 
 

77 

 

 
Figure 6.4 Well location of constant source production problem  

 
Methane is continuously extracted 100 kg/min constant rate from the reservoir, 

which initially has a pressure of 2x106 Pa, over a duration of 6000 seconds. The total 

mass within the reservoir remains consistent across all models, as the extracted mass 

is the same. Consequently, the mass within the matrix and fractures is calculated and 

visualized separately. Specifically, the produced mass from matrix blocks is depicted 

in a column chart in Figure 6.5 for the first 1000 seconds, providing a detailed 

comparison of each method's behavior. 
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Figure 6.5 Comparison of Production Data from Matrix Blocks for Each MINC 
Models 

 

As previously mentioned, all methods share the same fracture volume fraction, 

with the only variation occurring in matrix volume fractions.  It can clearly be 

observed that matrix volume fractions have relatively small impact on the solutions 

as it can be seen in Figure 6.5 and at the fourth column of  Table 6.2. Production 

from matrix does exhibit slight differences among all the models.
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CHAPTER 7  

7 CONCLUSION 

This study compares five different MINC models and develops an alternative MINC 

model to DFM model. MINC models are based on simple nested squared geometry, 

and the only essential parameters are upscaled permeabilities of fractures, nested 

matrix elements and volume fractions to compute the model. In contrast, DFM 

requires the definition of each fracture explicitly. Modeling field-scaled problems 

with DFM approach is time-consuming and costly. If the whole Bristol geometry (18 

[m] x 8 [m]) is computed by DFM model, the computing time is expected to take 

much more than 15 minutes (current computation time). Parameter optimization is 

completed for a MINC model by taking DFM as a reference solution. The primary 

purpose of using DFM model as a reference is that this model is well-known as one 

of the most accurate models. 

 

Mass storage rate deviation from the DFM model in each time step is the objective 

function to compare five MINC models with DFM. Each reservoir has its own 

particular volume fractions. However, different MINC models have revealed that 

volume fractions do not affect the solution significantly contrary to expectations 

when upscaled matrix permeability is determined. In addition, same volume 

fractions are employed to construct large-scale reservoir and it is observed that 

matrix volume fractions have only a slight effect on the results. Also, in cases where 

there is insufficient time for upscaling, approximating matrix permeability from the 

Darcy’s Law relationship between two models significantly provides convenience to 

obtain good results. 

 

The best representative MINC model is constructed by optimizing volume fractions 

and deciding true matrix permeability for a specific part of the Bristol Channel. The 
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distribution of fracture network in Bristol geometry is accepted as homogeneous and 

well-connected to model with MINC approach. Therefore, the optimized matrix 

permeability and volume fractions can be applicable to the whole reservoir. If the 

entire Bristol geometry is computed with the optimized parameters, it is not expected 

to exceed 5 minutes computation time. With the optimized MINC model, 

computation time, cost, and pre-processing efforts will be saved significantly, and 

the model would be as accurate as the DFM model when considered on the same 

scale. 
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APPENDICES 

A. MATLAB CODE – Proximity Function 

Ad %clc ; 

clear all; 

%Begin Input 

n_minc_cont=10;%number of minc continua 

dim=2; %element dimension for 2D 

n_f_p=2; %number of perpendicular fracture plane sets  

frac_ap=0.048100925; % fracture aperture m 

V_actual=8; % 3D volume of discretized element m^3 

V_0=V0_function(dim,V_actual);% depending on dime 2,3 discretized element 

volume is modified 

dx_frac=2; %fracture spacing in x m 

dy_frac=2; %fracture spacing in y m 

dz_frac=2; %fracture spacing in z m 

f=zeros(1,n_minc_cont); % for the constant volume method with fractions (N=10)  

f(1)=Proximity(n_f_p,frac_ap/2,dx_frac,dy_frac,dz_frac); %volume fraction of 

fracture 

f(2)=0.105830833333333; 

f(3)=0.105830833333333; 

f(4)=0.105830833333333; 

f(5)=0.105830833333333; 

f(6)=0.105830833333333; 

f(7)=0.105830833333333; 

f(8)=0.105830833333333; 

f(9)=0.105830833333333; 
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f(10)=1-f(1)-f(2)-f(3)-f(4)-f(5)-f(6)-f(7)-f(8)-f(9);% volume fraction of inner most 

domain 

%End Input 

P=zeros(1,n_minc_cont);% proximity function value 

x=zeros(1,n_minc_cont-1);% x values for given proximity function value 

V=zeros(1,n_minc_cont);% MINC volumes with V1 fracture volume 

d_intf=zeros(1,n_minc_cont-1); 

A_intf=zeros(1,n_minc_cont-1); 

dx_m=dx_frac-frac_ap; % matrix spacing in x m 

dy_m=dy_frac-frac_ap; % matrix spacing in y m 

dz_m=dz_frac-frac_ap; % matrix spacing in z m 

 

for i = 2 : n_minc_cont-1 

    sum_f=0; 

    for n=2:i 

        sum_f=sum_f+f(n); 

    end 

    P(i)= sum_f/(1-f(1)); 

    % calculate x by iteration and proximity function objective 

    LB=1e-6;%lower bound of x 

    d_spacing = [dx_m,dy_m,dz_m]; 

    UP=min(d_spacing)/2; % upperbound 

    cost = @(x_cost,i) abs(P(i)-Proximity(n_f_p,x_cost,dx_m,dy_m,dz_m)); 

    objectivefcn = @(x_ob,varargin) cost(x_ob,i); 

    %options = optimset('PlotFcns','optimplotfval','TolX',1e-

10,'MaxFunEvals',1000,'MaxIter',1000); 

    options = 

optimset('PlotFcns','optimplotfval','FunValCheck','on','MaxFunEvals',10000000,'M

axIter',100000,'TolX',1e-10,'TolFun',1e-10); 

    x0=1e-16; 
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    [x(i), fval, exitflag] = fminsearchbnd(objectivefcn,x0,LB,UP,options); 

end 

 

% Most inner block calculations acc. to Warren Root 

ui=dx_m-2*x(n_minc_cont-1); 

vi=dy_m-2*x(n_minc_cont-1); 

wi=dz_m-2*x(n_minc_cont-1); 

if (n_f_p ==3) 

    l= 3*ui*vi*wi/(ui*vi+vi*wi+ui*wi); 

    d_inner=l/10; 

else 

    if (n_f_p ==2) 

        l=2*ui*vi/(ui+vi); 

        d_inner=l/8; 

    else 

        if(n_f_p ==1) 

            l=ui; 

            d_inner=l/6; 

        end 

    end 

end 

 

% Minc Volumes 

for i = 1 : n_minc_cont 

V(i)= f(i)*V_0; 

end 

 

% distance between the blocks 

% 1 is fracture domain, ex: d_intf(1) means d_1_2, d_intf(2) means d_2_3 

d_intf(1)=0+(x(2)-x(1))/2; 
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for i = 2 : n_minc_cont-2 

d_intf(i)= (x(i)-x(i-1))/2 + (x(i+1)-x(i))/2; 

end 

d_intf(n_minc_cont-1)= (x(n_minc_cont-1)-x(n_minc_cont-2))/2 + d_inner; 

 

% Area between the blocks ex: A_intf(1) means A_1_2, A_intf(2) means A_2_3 

delta_x=1e-10; 

for i = 1 : n_minc_cont-1 

%dP/dx 

dP= Proximity(n_f_p,x(i)+delta_x,dx_m,dy_m,dz_m)- 

Proximity(n_f_p,x(i),dx_m,dy_m,dz_m); 

A_intf(i)=(1-f(1))*V_0*dP/delta_x; 

end 

 

function proxm= Proximity(n_f_p,x,dx_spacing,dy_spacing,dz_spacing) 

u=2*x/dx_spacing; 

v=2*x/dy_spacing; 

w=2*x/dz_spacing; 

d_spacing = [dx_spacing,dy_spacing,dz_spacing]; 

if (n_f_p ==3) 

    if (2*x < min(d_spacing)) 

        proxm = u+v+w-u*v-v*w-u*w+u*v*w; 

    else 

        proxm = 1; 

    end 

else 

    if (n_f_p ==2) 

        if (2*x < min(d_spacing)) 

            proxm=u+v-u*v; 

        else 
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            proxm = 1; 

        end 

 

    else 

        if(n_f_p==1) 

            if (2*x < min(d_spacing)) 

                proxm=u; 

            else 

                proxm = 1; 

            end 

 

        end 

    end 

end 

end 

 

function v0 = V0_function(dimension,V_act) 

    if (dimension ==3) 

        v0= V_act; 

    else 

        if (dimension ==2) 

            v0=(V_act^(1/3))^2; 

        else 

            if(dimension==1) 

                v0=(V_act^(1/3)); 

            end 

        end 

    end 

end 
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B. Derivative-Free Algorithms 

Coordinate search Method 
 
The goal of the coordinate search solver is to improve the objective function through 

the coordinate directions of the control parameters space. The lengths of space are 

increased or decreased for appropriate values of the objective function. This solver 

interprets the gradients of objective function indirectly. That’s because gradients 

may not be supplied as a quantity directly in some conditions. 

Monte Carlo Method 

The Monte Carlo solver assigns points randomly by uniform distribution within a 

box where an upper bound and a lower bound are compulsory. This solver is 

successful in gaining statistical information of design changes after examining the 

range of values which are taken by the objective function. On the other hand, it’s 

slow to complete the optimal value because of looking for the all-range space 

specified by the parameter bounds. Rather than the other optimization algorithms 

implemented in COMSOL, Monte Carlo method is looking for the minima both 

locally and globally. 

Nelder–Mead Method 

The Nelder Mead method was initially introduced by Spendley, Hext, and 

Himsworth in 1962 and developed by Nelder and Mead (1965). The technique holds 

on an ordinary procedure, simplex, which is a geometric shape, is concluded by n+1 

(n= a number of control variables) points in the n dimensional space (Chong & Żak, 

2008). The worst point of a simplex in the control variable space is exchanged by 

using reflections, expansions, and contractions iteratively to recover the objective 

function. 
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BOBYQA  

The name BOBYQA means Bound Optimization by Quadratic Approximation. A 

quadratic model, valid in a trust region, approximates the objective function values 

by iteration. The number of interpolations is fixed to two times the number of control 

variables plus one (Powell, 2009). 

COBYLA  

The name COBYLA is the abbreviation of Constrained Optimization by Linear 

Approximation. This is another derivative free iterative approach that linear 

approximation sequence is formed by each iteration at the vertices of a simlex in a 

trust region. The COBYLA technique is applicable for small problems since linear 

approximation can be inadequate for the high number variables. (Powell, 1994). 

C. Gradient-Based Algorithms 

IPOPT  

IPOPT, interior Point Optimizer, is one of the gradient-based optimization solver 

techniques which is based on a line search filter interior- point algorithm (Wächter 

& Biegler, 2005) . IPOPT is available for large-scale nonlinear problems with many 

or difficult constraints to reach optimal solution. Analytical or semi-numerical 

computation are externally necessary for the gradients of both the objective function 

and all constraints. IPOPT is focused on linear system solutions, problem function 

computations, and derivatives of problem functions (Ermakova et al., 2022). 
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MMA  

MMA, Method of Moving Asymptotes, was created by Svanberg (1987) and has the 

ability to compute every type of optimization problem primarily available to the 

enormous number of control variables. In basic terms, MMA is a linear process 

rather than approximating second-order information about the objective function. Its 

sub-problems are linear approximations of the original problem, but they also 

contain contributions from rational functions that resemble barriers and are governed 

by moving asymptotes. Nothing but the asymptotes' present position is stored 

between outer iterations regarding the problem (Svanberg, 2013). 

Levenberg – Marquardt Method 

The Levenberg-Marquardt only employs least-squares-type objective functions. 

Constraints are not validated by this method. This method often converges more 

quickly than SNOPT, IPOPT, or MMA for problems of least-squares type since it is 

designed exclusively for addressing them. The technique uses first-order derivatives 

to compute second-order derivatives during least squares fitting. 

The evaluation of an approximate Hessian and regularization of the Hessian 

approximation are the two main concepts that underlie the Levenberg-Marquardt 

algorithm. Since a Newton iteration can theoretically be performed directly using an 

approximate Hessian (matrix of second derivatives), the specific structure of least-

squares objective functions makes this possible in a cost-efficient way. However, the 

Newton process could be more stable since least-squares issues are frequently 

unconstrained. In order to ensure the Hessian's positive definiteness, a regularization 

parameter is included. Based on the outcome of the previous phase, this parameter is 

updated by iterations. (Madsen et. al., 2004). 

 

 

 


