
HOMOMORPHIC ENCRYPTION: A COMPREHENSIVE STUDY OF TYPES,
TECHNIQUES, AND REAL-WORLD APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EZGİ NAZ TEKİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CRYPTOGRAPHY

SEPTEMBER 2023

Approval of the thesis:

HOMOMORPHIC ENCRYPTION: A COMPREHENSIVE STUDY OF TYPES,
TECHNIQUES, AND REAL-WORLD APPLICATIONS

submitted by EZGİ NAZ TEKİN in partial fulfillment of the requirements for the
degree of Master of Science in Cryptography Department, Middle East Technical
University by,

Prof. Dr. A. Sevtap Selçuk Kestel
Dean, Graduate School of Applied Mathematics

Assoc. Prof. Dr. Oğuz Yayla
Head of Department, Cryptography

Prof. Dr. Ferruh Özbudak
Supervisor, Mathematics, METU

Examining Committee Members:

Assist. Prof. Dr. Buket Özkaya
Cryptography, METU

Prof. Dr. Ferruh Özbudak
Mathematics, METU

Assist. Prof. Dr. Eda Tekin
Business Administration, Karabük University

Date:

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: EZGİ NAZ TEKİN

Signature :

v

vi

ABSTRACT

HOMOMORPHIC ENCRYPTION: A COMPREHENSIVE STUDY OF TYPES,
TECHNIQUES, AND REAL-WORLD APPLICATIONS

TEKİN, EZGİ NAZ
M.S., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

September 2023, 49 pages

Homomorphic encryption (HE), which enables computations on encrypted data with-
out first decrypting it, is a ground-breaking advancement in the cryptographic area.
In this study, many HE schemes such as partially, somewhat, and fully are exam-
ined and the details of the algorithms in these methods are given. Furthermore, this
comprehensive examination goes beyond theoretical considerations to include real-
world applications of this encryption technique. It examines both the potential and
the challenges of using HE as a powerful tool for ensuring security and privacy in cur-
rent information systems. This exploration takes into account not only the theoretical
foundations but also the practical aspects of its implementation.

Keywords: homomorphic encryption, partially homomorphic encryption, somewhat
homomorphic encryption, fully homomorphic encryption, etc.

vii

viii

ÖZ

HOMOMORFİK ŞİFRELEME: TÜRLERİ, TEKNİKLERİ VE GERÇEK DÜNYA
UYGULAMALARI ÜZERİNE KAPSAMLI BİR ÇALIŞMA

TEKİN, EZGİ NAZ
Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Eylül 2023, 49 sayfa

Homomorfik şifreleme (HŞ), şifrelenmiş verinin şifresi çözülmeden üzerinde hesap-
lama yapılmasını sağlayan, kriptografik alanda çığır açan bir gelişmedir. Bu çalış-
mada, kısmen, biraz ve tamamen gibi birçok HŞ şeması incelenmiş ve bu yöntemler-
deki algoritmaların detayları verilmiştir. Ayrıca, bu kapsamlı inceleme teorik değer-
lendirmelerin ötesine geçerek bu şifreleme tekniğinin gerçek dünyadaki uygulamala-
rını da içermektedir. HŞ’nin mevcut bilgi sistemlerinde güvenlik ve gizlilik sağlamak
için güçlü bir araç olarak kullanılmasının hem potansiyelini hem de zorluklarını in-
celemektedir. Bu inceleme sadece teorik temelleri değil aynı zamanda uygulamanın
pratik yönlerini de dikkate almaktadır.

Anahtar Kelimeler: homomorfik şifreleme, kısmen homomorfik şifreleme, biraz ho-
momorfik şifreleme, tamamen homomorfik şifreleme vd.

ix

x

ACKNOWLEDGMENTS

I would like to express my gratitude to Professor Dr. Ferruh Özbudak for all the
crucial advice given to me while preparing this thesis. I would like to express my
appreciation to my esteemed thesis defense committee members, Assist. Prof. Dr.
Buket Özkaya and Assist. Prof. Dr. Eda Tekin, for their dedicated time and effort.

I would like to thank my dear family - my beloved mother, Gül Tekin, for providing us
with constant love and support; my dear father, Tarık Tekin, for sharing his valuable
life experiences and wisdom with us; and my lovely sister, Zeynep Aslı Tekin, for
being my best friend and confidant throughout my life.

I would also like to thank my beloved husband Eray İşbilir, for providing unwavering
support throughout my entire journey at METU.

I would also like to thank my friends, for listening and supporting me during this
process.

xi

xii

TABLE OF CONTENTS

ABSTRACT . vii

ÖZ . ix

ACKNOWLEDGMENTS . xi

TABLE OF CONTENTS . xiii

LIST OF FIGURES . xix

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Historical Process and Literature Review 1

1.2 Outline . 3

2 PRELIMINARIES . 5

2.1 Group . 5

2.2 Ring . 6

2.3 Group Homomorphism . 6

2.3.1 Example: . 7

2.4 Ring Homomorphism . 7

xiii

2.4.1 Example: . 8

2.5 Homomorphic Encryption 9

3 PARTTIALLY HOMOMORPHIC ENCRYPTION 11

3.1 Rivest-Shamir-Adleman Algorithm 12

3.1.1 Key Generation 12

3.1.2 Encryption . 12

3.1.3 Decryption . 13

3.1.4 Homomorphic Property 13

3.2 Goldwasser-Micali Algorithm 14

3.2.1 Key Generation 14

3.2.2 Encryption . 14

3.2.3 Decryption . 15

3.2.4 Homomorphic Property 15

3.3 ElGamal Algorithm . 16

3.3.1 Key Generation 16

3.3.2 Encryption . 16

3.3.3 Decryption . 16

3.3.4 Homomorphic Property 17

3.4 Benaloh Algorithm . 17

3.4.1 Key Generation 17

3.4.2 Encryption . 18

xiv

3.4.3 Decryption . 18

3.4.4 Homomorphic Encryption 18

3.5 Paillier Algorithm . 19

3.5.1 Key Generation 19

3.5.2 Encryption . 20

3.5.3 Decryption . 20

3.5.4 Homomorphic Property 20

3.6 Other PHE Algorithms . 21

4 SOMEWHAT HOMOMORPHIC ENCRYPTION 23

4.1 BGN Algorithm . 23

4.1.1 Key Generation 23

4.1.2 Encryption . 24

4.1.3 Decryption . 24

4.1.4 Homomorphic Property 24

4.1.4.1 Homomorphism over Addition 25

4.1.4.2 Homomorphism over Multiplication . 25

4.2 Other Algorithms . 26

5 FULLY HOMOMORPHIC ENCRYPTION 27

5.1 Ideal-Lattice Based FHE . 29

5.1.1 SwHE scheme based on ideal lattices 31

5.1.1.1 Key Generation 31

xv

5.1.1.2 Encryption 32

5.1.1.3 Decryption 32

5.1.1.4 Homomorphic Property 32

5.1.2 Squashing . 33

5.1.3 Bootstrapping . 33

5.2 Fully Homomorphic Encryption Scheme over Integers 34

5.2.1 Secret Key SwHE scheme based on Integers 34

5.2.1.1 Key Generation 34

5.2.1.2 Encryption 35

5.2.1.3 Decryption 35

5.2.2 Public-Key SwHE scheme based on Integers . . . 35

5.2.2.1 Key Generation 35

5.2.2.2 Encryption 36

5.2.2.3 Decryption 36

5.2.3 Fully Homomorphic Property of SwHE scheme
based on Integers 36

5.2.4 Squashing . 37

5.2.4.1 Key Generation 37

5.2.4.2 Encryption 37

5.2.4.3 Decryption 38

5.2.5 Bootstrapping . 38

xvi

6 REAL-WORLD APPLICATIONS OF HOMOMORPHIC ENCRYP-
TION . 41

6.1 Secure E-voting Technology 41

6.2 Financial Privacy . 42

6.3 Control System for Protection 42

6.4 Healtcare Industry . 43

6.5 Cloud Computing . 43

7 CONCLUSION . 45

REFERENCES . 47

xvii

xviii

LIST OF FIGURES

Figure 5.1 Lattice in R2 [21] . 28

Figure 5.2 Sample Circuit [15] . 29

xix

xx

LIST OF ABBREVIATIONS

HE Homomorphic Encryption

PHE Partially Homomorphic Encryption

SwHE Somewhat Homomorphic Encryption

FHE Fully Homomorphic Encryption

SVP Shortest Vector Problem

CVP Closest Vector Problem

Z Integers

R Real Numbers

Zn Set of congruence classes modulo n

Z∗
n Multiplicative group of Zn

gcd(a, b) Greatest common divisor of two non-zero integers a, b

xxi

xxii

CHAPTER 1

INTRODUCTION

In the digital age, where data is the lifeblood of modern society, the need to bal-

ance innovation and privacy has become a paramount concern. As the volume and

sensitivity of data continue to grow, maintaining the confidentiality and security of

information while enabling its analysis and use has become a formidable challenge.

A breakthrough solution that has received considerable attention is Homomorphic

Encryption (HE). HE is a revolutionary cryptographic technique that promises to al-

low computations to be performed on encrypted data without the need for decryption;

in other words, it allows mathematical operations to be performed on encrypted data

in such a way that the results of those operations are still encrypted while maintaining

the confidentiality of the underlying data, thus bridging the gap between data privacy

and data utility. It has the potential to reshape the way we handle sensitive infor-

mation, enabling secure data analysis, secure computation outsourcing, and privacy-

preserving machine learning, among other transformative applications. This thesis

embarks on a comprehensive exploration of HE, delving into its underlying princi-

ples, types, applications, and the challenges it poses and addresses. [35, 17, 11].

1.1 Historical Process and Literature Review

The historical process and literature review of HE reveal a fascinating evolution of

cryptographic techniques aimed at preserving data privacy while enabling computa-

tion on encrypted data. This review traces the key milestones and significant research

contributions in the field of HE. The roots of HE can be traced back to the early de-

1

velopment of public-key cryptography and the concept of homomorphic properties.

Researchers like Rivest, Adleman, and Dertouzos [30] made foundational contribu-

tions to public-key encryption, setting the stage for future developments. The seminal

work of Craig Gentry [11] in 2009 marked a watershed moment in the field. Gen-

try’s breakthrough introduced the concept of Fully Homomorphic Encryption (FHE),

which allows arbitrary computations on encrypted data. His work ignited a surge of

interest and research in the area. Over time, various types of HE emerged.

• Partially Homomorphic Encryption (PHE) was the earliest form, allowing

either addition or multiplication on encrypted data.

• Somewhat Homomorphic Encryption (SwHE) struck a balance between ef-

ficiency and functionality.

• Fully Homomorphic Encryption (FHE) extended the capabilities further, en-

abling both addition and multiplication operations on encrypted data.

HE has found widespread applications in various fields, including healthcare, finance,

cloud computing, and machine learning. It has been employed for secure data analy-

sis, privacy-preserving machine learning, and secure computation outsourcing. While

HE offers groundbreaking capabilities, it has presented significant challenges, includ-

ing issues related to security proofs, computational efficiency, and usability. Balanc-

ing security and performance has been a central concern.

The field of HE is rapidly evolving, with ongoing research aiming to improve effi-

ciency, reduce computational overhead, and enhance security guarantees. Standard-

ization efforts are also underway to establish industry benchmarks and protocols for

broader adoption. As the digital landscape evolves, HE holds great potential for ad-

dressing emerging privacy and security challenges. Future research may focus on

post-quantum security, user-friendly interfaces, and practical implementations in real-

world scenarios.

In summary, the historical process and literature review of HE reveal a journey marked

by innovation, challenges, and transformative potential. This cryptographic technique

has the power to reshape data privacy and computation in an increasingly intercon-

nected and data-driven world.

2

1.2 Outline

This thesis examines homomorphic encryption over seven chapters.

In Chapter 2, definitions of important concepts such as group, ring, and homomor-

phism are given.

In chapter 3, the concept of partially homomorphic encryption is introduced, and a

detailed exploration of algorithms like RSA, Goldwasser-Micali, ElGamal, Benaloh,

and Paillier is provided.

In Chapter 4, the concept of somewhat homomorphic encryption is introduced, and a

detailed exploration of algorithms like Boneh-Goh-Nissim is provided.

In Chapter 5, the concept of fully homomorphic encryption is introduced, and both

ideal lattice-based and integer-based variants are conducted in detail.

In Chapter 6, real-life applications of homomorphic encryption are given, and the

importance of this encryption method is explained.

3

4

CHAPTER 2

PRELIMINARIES

The basic mathematical concepts from number theory and abstract algebra used in

the following chapters are defined in this chapter.

2.1 Group

A group is a fundamental algebraic construct comprising a collection of elements and

an operation that combines any pair of elements to generate a third element.[35, 15]

Definition 2.1. A group is conventionally marked as (G,⊡), where G symbolizes the

set and ⊡ represents the operation. The set and the operation must satisfy four main

properties in order to be counted as a group:

• Closure: For any two elements α and λ in the set G, the outcome of the opera-

tion α⊡ λ must also be in the set G.

• Associativity: For any three elements α, λ, and β in the set G, the outcome of

the operation (α⊡ λ)⊡ β is the same as α⊡ (λ⊡ β).

• Identity: There exists an element e in the set G in such a way that for any

element λ in the set, λ⊡ e = e⊡ λ = λ.

• Inverse: For each element λ in the set G, there exists an element λ−1 in such a

way that λ⊡ λ−1 = λ−1 ⊡λ = e, where e is the identity element.

5

2.2 Ring

Definition 2.2. A ring is a set R along with two operations, addition, and multiplica-

tion, that correspond to the eight properties listed below: [35]:

R is an abelian group under addition:

• Associativity: For all α, λ, β in R, (α + λ) + β = α + (λ+ β).

• Identity: There exists an element 0 in R such that for any element α,

α + 0 = 0 + α = α. This means that 0 is the additive identity.

• Inverse: For each element α in R, there exists an element −α such that

α + (−α) = (−α) + α = 0. This means that −α is the additive inverse of α.

• Commutative: For all α and λ in R, α + λ = λ+ α.

R is a monoid under multiplication:

• Associativity: For all α, λ, β in R, (α · λ) · β = α · (λ · β).

• Identity: There exists an element 1 in R such that for any element α,

α · 1 = 1 · α = α. This means that 1 is the multiplicative identity.

• Left distributivity: For all α, λ, β in R, α · (λ+ β) = (α · λ) + (α · β).

• Right distributivity: For all α, λ, β in R, (λ+ β) · α = (λ · α) + (β · α).

2.3 Group Homomorphism

A group homomorphism is a function that establishes a connection between two

groups and guarantees the preservation of the essential structure of the groups. [35]

Definition 2.3. When considering two groups (G, ⊡) and (H, ⊛), a group homomor-

phism from(G, ⊡) to (H, ⊛) can be defined as a function f : G → H. This function

follows the rule that for any elements β and β
′ in group G:

f(β ⊡ β
′
) = f(β)⊛ f(β

′
)

6

To put it another way, this function preserves the relationships that are defined by the

group operation as the elements are converted from one group to the other.

2.3.1 Example:

Consider two groups, G = {1,−1} with multiplication as the operation, and

H = {1, 2, 3} with addition as the operation. Determine a function κ : G → Hin such

a way that:

κ(1) = 1

κ(−1) = 3

This function is a group homomorphism because it preserves the group operation:

κ(1 ∗ 1) = κ(1) ∗ κ(1) = 1 ∗ 1 = 1

κ(1 ∗ −1) = κ(1) ∗ κ(−1) = 1 ∗ 3 = 3

However, if we determined a function Γ : G → H such that:

Γ(1) = 2

Γ(−1) = 3

This would not be a group homomorphism because it doesn’t preserve the group

operation:

Γ(1 ∗ −1) = Γ(−1) = 3

but

Γ(1) ∗ Γ(−1) = 2 ∗ 3 = 6

2.4 Ring Homomorphism

A ring homomorphism is a function that establishes a connection between two rings

and guarantees the preservation of the essential structure of the rings. [35]

7

Definition 2.4. When considering two rings R and S, then a ring homomorphism is

a function Γ : R → S such that

Γ(α + λ) = Γ(α) + Γ(λ)

Γ(α · λ) = Γ(α) · Γ(λ)

for all α and λ in R.

2.4.1 Example:

Consider two rings, R- The ring of integers (Z) and S - The ring of even integers (2Z)

with regular addition and multiplication as operations in both of them. Determine a

function:

Γ : Z → 2Z

n 7→ 2n

For any integer n, Γ(n) is twice the value of n, i.e., Γ(n) = 2n.

• For any integers a and b, we have:

Γ(a+ b) = 2(a+ b)

= 2a+ 2b

= Γ(a) + Γ(b)

The function preserves addition.

• For any integers a and b, we have:

Γ(a · b) = 2(a · b)

= (2a) · (2b)

= Γ(a) · Γ(b)

The function preserves multiplication.

• The multiplicative identity in both rings is 1. In R, Γ(1) = 2 and in S, Γ(1) = 2.

Thus, the multiplicative identity is preserved.

The function Γ satisfies the conditions required for a ring homomorphism between Z

and 2Z.

8

2.5 Homomorphic Encryption

HE is an approach that enables the execution of calculations on encrypted data, pro-

ducing outcomes that mirror the results of performing the identical computation on

data that is not encrypted.

Definition 2.5. HE scheme with encryption (E) over an operation ⊡ as follows:

E(m1)⊡ E(m2) = E(m1 ⊡m2)

∀m1,m2 ∈ M where M = the space of the messages.[35]

The HE scheme has four main algorithms:

• Key Generation: It provides a security parameter. An asymmetric HE system

creates a pair of keys, one secret and one public, but in a symmetric HE scheme,

it generates a single key.

• Encryption: It processes a plaintext message m from the set of possible mes-

sages in M using the encryption key to generate a ciphertext c, represented as

E(m) in the ciphertext space C.

• Decryption: It employs the ciphertext c in combination with the decryption

key to extract the plaintext message m, represented as D(c) = m.

• Evaluation (Homomorphic Property): It gets input in the form of ciphertexts,

denoted as c1 and c2 and conducts a computational operation, represented by

the function f on these ciphertexts, resulting in evaluated ciphertexts f(c1, c2) =

E(f(m1,m2)) all without gaining access to the underlying messages, i.e., it

doesn’t see the contents of m1 and m2. In other words, decryption of f(c1, c2)

is equal to f(m1,m2).

9

10

CHAPTER 3

PARTTIALLY HOMOMORPHIC ENCRYPTION

Definition 3.1. Partially Homomorphic Encryption (PHE) is a type of HE that

facilitates computations on encrypted data for only one specific type of operation,

such as addition or multiplication. [17]

There are two primary categories of PHE schemes:

1. PHE for Addition: This type of PHE allows encrypted data to be subjected to

homomorphic addition. With PHE for addition, we can perform addition oper-

ations on encrypted data without the need for decryption. However, other op-

erations, such as multiplication, cannot be directly performed on the encrypted

data using this type of encryption.

2. PHE for Multiplication: This type of PHE allows encrypted data to be sub-

jected to homomorphic multiplication. Similar to PHE for addition, we can

perform multiplication operations on encrypted data without decryption, but

other operations like addition are not directly supported.

PHE schemes have practical applications in specific scenarios where only one type of

operation is needed, and FHE might be computationally prohibitive or not yet avail-

able for certain use cases. However, they do not provide the same level of flexibility

and versatility as FHE when it comes to performing arbitrary computations on en-

crypted data. In this chapter, we mention some PHE algorithms such as Goldwasser-

Micali(GM), RSA, Elgamal, Paillie, Benaloh, etc.

11

3.1 Rivest-Shamir-Adleman Algorithm

In 1978, Ron Rivest, Adi Shamir, and Leonard Adleman [30] introduced the RSA

algorithm, deriving its name from the initial letters of their surnames. This method

involves the use of mathematical operations on significant prime numbers to create re-

liable encryption and digital signature systems based on Diffie Helman [6] developed

public key cryptography in 1976. Their work is of immense importance in modern

cryptography and serves as the fundamental framework for a wide variety of secure

online communications and transactions. RSA security depends on the RSA Root

Problem, which involves discovering e-th roots modulo k, where k is equal to pq, and

when the factorization of k is undisclosed.

3.1.1 Key Generation

RSA utilizes both public and private keys in its encryption and decryption processes.

The public key consists of a pair of integers (k, e), where k is the product of two

distinct large prime numbers, p and q (meaning that k = pq). The value of e is

selected in such a way that it does not share any common factors with ϕ(k), where

ϕ(k) is calculated as (p− 1) multiplied by (q − 1), and specifically, e has a modular

multiplicative inverse within ϕ(k)(i.e., gcd(e, ϕ(k)) = 1 where 1 < e < ϕ(k)). On the

other hand, the private key is represented as (d, k), with d being determined such that

it is the modular inverse of e (meaning that ed ≡ 1 (mod ϕ(k))).

3.1.2 Encryption

After turning the message M into an integer m such that 0 < m < k through the

application of a padding scheme to encrypt the message as follows:

E(m) = me (mod k)

= c

where c is the ciphertext.

12

3.1.3 Decryption

For decrypting the ciphertext c with the private key (d, k) as follows:

D(c) = cd (mod k)

= (me)d (mod k)

= m

where ed ≡ 1 (mod ϕ(k)). Afterward, the message m is converted with the padding

scheme to retrieve the original message M (unpadded plaintext).

3.1.4 Homomorphic Property

Within an unpadded RSA setting, if we consider the public key as (k, e), then the

following function determined [17] as follows:

E : Zk → Zk

m 7→ me

Consider two padded plaintexts ma and mb in Zk. Then

E(ma)× E(mb) = (me
a (mod k))× (me

b (mod k))

= me
a ×me

b (mod k)

≡ (ma ×mb)
e (mod k)

= E(ma ×mb)

Hence

D(E(ma)× E(mb)) = D(E(ma ×mb))

As observed, the RSA multiplication homomorphic characteristic allows for the di-

rect evaluation of E(ma×mb) using E(ma) and E(mb) without requiring decryption.

RSA does not exhibit homomorphism in regard to addition. In the RSA cryptosys-

tem, it is not possible to directly combine two encrypted ciphertexts through addition

without prior decryption.

13

3.2 Goldwasser-Micali Algorithm

The Goldwasser-Micali (GM) algorithm was introduced by Shafi Goldwasser and Sil-

vio Micali in 1982 [14]; it is the first public-key encryption algorithm that forms the

basis for probabilistic encryption. This algorithm provides a secure method for en-

crypting data while allowing for efficient decryption, making it suitable for various

applications in secure communication and data protection. The core concept of the

GM algorithm lies in its use of quadratic residues, a fundamental concept in num-

ber theory. Quadratic residues are integers that have square roots modulo a prime

number. The algorithm leverages the computational intractability of the Quadratic

Residuosity Problem (QRP) [12] to achieve semantic security in encryption. The se-

curity of the GM scheme is contingent on the Integer Factorization Problem because

the factorization of k = pq unveils the private key (p, q).

3.2.1 Key Generation

GM utilizes both public and private keys in its encryption and decryption processes.

The public key consists of a pair of integers (x, k), and the secret key is (p, q), where

k is the product of two distinct large prime numbers, p, and q (meaning that k = pq).

On the other hand, we choose a quadratic non-residue x ∈ Z∗
k to find the Jacobi

symbol with the Legendre symbols
(

x
p

)
=
(

x
q

)
= - 1 such that

(
x

p

)
·
(
x

q

)
= (−1) · (−1) = 1

=
(x
k

)

3.2.2 Encryption

The plaintext consists of a series of binary bits (m1,m2, . . . ,mt). For every bit mi

for i = 1, 2, . . . , t, yi is uniformly selected from the set of non-zero residues modulo

k (i.e., Z∗
k) such that gcd(yi, k) = 1. Performing encryption on a per-bit basis by

14

utilizing computations:

E(mi) = y2i x
mi (mod k)

= ci

where for every bit mi is in the set {0, 1} for i = 1, 2, . . . , t. The ciphertext generated

is (c1, c2, . . . , ct), such that ci ∈ Zk for i = 1, 2, . . . , t.

3.2.3 Decryption

There is no requirement for a distinct decryption algorithm because, for an element x

belonging to the set Z∗
k, the ciphertext ci is considered a quadratic residue modulo k

exclusively when mi equals 0. Therefore, if ci is a quadratic residue modulo k, then

mi is 0; otherwise, mi is 1. This process results in the plaintext m being represented

as a sequence (m1, . . . ,mt).

3.2.4 Homomorphic Property

The encryption function [17] employed in the GM is as follows:

E : ({0, 1},⊕) → (Z∗
k,×)

m 7→ y2 × xm

where ⊕ represents addition modulo 2. For bits ma and mb in {0, 1} where

a, b ∈ {1, 2, . . . , t}:

E(ma)× E(mb) = (y2ax
ma (mod k))× (y2bx

mb (mod k))

= (ya × yb)
2xma⊕mb (mod k)

= E(ma ⊕mb)

Hence,

D(E(ma)× E(mb)) = D(E(ma ⊕mb))

Therefore, the GM algorithm is an additive homomorphic scheme. Nonetheless, E

does not possess a multiplicative homomorphic property.

15

3.3 ElGamal Algorithm

The Elgamal encryption method is a public-key encryption algorithm introduced by

Taher Elgamal [9] in 1985 based on the complexity of discrete logarithm problem

[12]. The security of the ElGamal algorithm relies on the challenge of solving the

Diffie-Hellman Problem (DHP) within the set Z∗
p . The Diffie-Hellman key exchange

technique is effectively transformed into an encryption algorithm using the ElGamal.

3.3.1 Key Generation

After choosing large primes l and k such that k|(l − 1), choose a cyclic subgroup Gk

of Z∗
l , of order k, with generator g. Then, compute

t = gh (mod l)

for selected random h ∈ {1, 2, . . . , k−1}. The published public key is (k, l, g, t), and

the secret key is h.

3.3.2 Encryption

For encrypting a message m with the public key to m
′ ∈ Gk, there must be chosen a

random r ∈ {1, 2, . . . , k − 1} to compute

c1 = gr (mod l)

c2 = m
′ · tr (mod l)

The ciphertext is the pair (c1, c2) = (gr,m
′
tr).

3.3.3 Decryption

For decrypting ciphertext with the secret key to compute

D((c1, c2)) = c2(c
h
1)

−1 (mod l)

= m
′ · ghr · g−hr (mod l)

= m
′

(mod l)

16

Therefore, m′ is converted to the plaintext message m.

3.3.4 Homomorphic Property

The encryption process in the ElGamal [17] is determined as follows:

E : (Gk,×) → (Gk ×Gk,×)

m 7→ (gr,m× tr)

where the symbol × represents the standard multiplication, and Gk × Gk signifies

the direct combination of the group Gk with itself. For all ma and mb in Gk where

a, b ∈ {1, 2, . . . , k − 1}:

E(ma)× E(mb) = (gra ,ma · tra)× (grb ,mb · trb)

= (gragrb ,mat
ra ·mbt

rb)

= (gra+rb , (mamb)t
ra+rb)

= E(ma ×mb)

Hence,

D(E(ma)× E(mb)) = D(E(ma ×mb))

Therefore, the ElGamal is a multiplicative homomorphic scheme.

3.4 Benaloh Algorithm

Benaloh introduced an expansion of the GM scheme aimed at encrypting the entire

message as a single unit. [2] Benaloh’s security relies on leveraging the higher resid-

uosity problem (xn), which can be viewed as a broader and more generalized form of

the quadratic residuosity problems (x2).[12]

3.4.1 Key Generation

Let give a block size t, the two large primes p and q are chosen such that

t|(p− 1)

17

gcd(t, (q − 1)) = 1

gcd(t, (p− 1)/t) = 1

Compute k = pq and ϕ(k) = (p− 1)(q − 1).

Also, choose y ∈ Z∗
k such that yϕ(k)/t ̸= 1 (mod k). Finally,

set x = yϕ(k)/t (mod k), then the secret key is (p, q), and the public key is (k, y).

3.4.2 Encryption

Let m ∈ Zt be a message, needs to take u ∈ Z∗
k then

E(m) = ymut (mod k)

= c

3.4.3 Decryption

Compute cϕ(k)/t (mod k) since u ∈ Z∗
k and m ∈ Zt:

cϕ(k)/t (mod k) ≡ (ymut)ϕ(k)/t (mod k)

≡ (ym)ϕ(k)/t(ut)ϕ(k)/t (mod k)

≡ (yϕ(k)/t)m(u)ϕ(k) (mod k)

≡ xm (mod k)

where uϕ(k) ≡ 1 (mod k). If t is small, then m is recovered by an exhaustive search,

i.e. xi ≡ cϕ(k)/t (mod k) for i = 0, . . . t − 1. When dealing with larger values of t,

the baby-step giant-step algorithm can be used to compute the discrete logarithm to

recover m.

3.4.4 Homomorphic Encryption

The encryption function of the Benaloh [17] is determined as follows:

E : (Zt,+) → (Z∗
k,×)

m 7→ ym × ut

18

where + and × represent addition and multiplication operations, respectively. For all

ma and mb in Zt

E(ma)× E(mb) = (ymaut
a (mod k))× (ymbut

b (mod k))

= yma+mb(ua × ub)
t (mod k)

= E(ma +mb)

Hence,

D(E(ma)× E(mb)) = D(E(ma +mb))

Therefore, the Benaloh algorithm is an additive homomorphic scheme. However, this

algorithm is multiplicatively and additively homomorphic with an integer scalar h.

i.e. E(m)h = (ym)h(ut)h (mod k) = E(h×m).

3.5 Paillier Algorithm

The Paillier encryption method is the probabilistic public-key encryption algorithm,

initially introduced by Pascal Paillier [27] in 1999. The security of the Paillier algo-

rithm relies on a composite residuosity problem, [12]where computing the nth residue

classes is considered a complex computational challenge. The fundamental principle

underlying the algorithm concerns the decisional composite residuosity assumption,

a hypothesis related to intractability.

3.5.1 Key Generation

Let p and q be two large prime numbers such that

gcd(p, q − 1) = 1

gcd(p− 1, q) = 1

to compute k = pq. Then, compute

λ(k) = lcm(p− 1, q − 1)

where lcm refers to the least common multiple. Then select a random integer g ∈ Z∗
k2

such that

µ = (L(gλ(k) (mod k2)))−1 (mod k)

19

where function L is defined as

L(u) =
u− 1

k

∀u ∈ Z∗
k2 . Therefore, the public key is (k, g), and the secret key is (λ, µ).

3.5.2 Encryption

Let m ∈ Zk be a message where 0 ≤ m < k. Then, select random r ∈ Z∗
k2 such that

0 < r < k. Afterwards, compute the ciphertext as

E(m) = gm × rk (mod k2)

= c

3.5.3 Decryption

Let c ∈ Z∗
k2 be a ciphertext. Then, compute the plaintext message as

D(c) =
L(cλ(k) (mod k2))

L(gλ(k) (mod k2))
(mod k)

= m

3.5.4 Homomorphic Property

The encryption function can be determined [17] as for k = pq and g ∈ Z∗
k2 :

Eg : Zk × Z∗
k → Z∗

k2

(m, r) 7→ gm × rk

For all ma,mb ∈ Zk and ra, rb ∈ Z∗
k , then:

Eg(ma, ra)× Eg(mb, rb) = (gmarka (mod k2))× (gmbrkb (mod k2))

= gma+mb(ra × rb)
k (mod k2)

= E(ma +mb, ra × rb)

Hence,

D(E(ma)× E(mb)) = D(E(ma +mb))

Therefore, the Paillier is an additive homomorphic scheme.

20

3.6 Other PHE Algorithms

Various initiatives have aimed to improve the flexibility of current PHE schemes fol-

lowing: The Naccache-Stern (NS) algorithm [24], introduced by D. Naccache and J.

Stern in 1998, can be seen as an extension of the Benaloh algorithm. This NS algo-

rithm comes in two variants: a deterministic and a probabilistic, with the latter being

derived through minor adjustments to the former. Both of these versions function

as homomorphic encryption schemes. Likewise, The Damgard-Jurik algorithm [5],

created by Ivan Damgard and Mads Jurik in 2001, can be considered an expansion

of the Paillier algorithm. This algorithm naturally extends Paillier’s scheme to the

group Z∗
ns+1 . In addition, The Okamoto-Uchiyama algorithm, presented by Tatsuaki

Okamoto and Shigenori Uchiyama in 1998 [26], relies on the security principles of

the Integer Factorization Problem, specifically when n is represented as the product

of two k-bit primes, n = p2 × q.

21

22

CHAPTER 4

SOMEWHAT HOMOMORPHIC ENCRYPTION

All homomorphic encryption schemes created before 2005 consisted of only one op-

eration such as addition and multiplication. Only for a limited number of repetitions

can Somewhat Homomorphic Encryption (SwHE) successfully achieve both additive

and multiplicative operations. The scheme’s ability to reliably decrypt ciphertexts

associated with homomorphic operations defines this limitation.

4.1 BGN Algorithm

The Boneh-Goh-Nissim algorithm [3] is a public-key encryption that was introduced

by Boneh, Goh, and Nissim in 2005. The BGN encryption scheme bears similarities

to the Paillier and Okamoto-Uchiyama encryption methods. Specifically, the BGN

scheme was the pioneering technique that enabled additions and multiplications us-

ing fixed-size ciphertext. This scheme’s security is based on the Subgroup Decision

Problem, [12], which determines if an element x in a cyclic group G belongs to a spe-

cific subgroup within G. The group has an order of |G| = k, where k equals qa × qb

with qa and qb chosen as distinct large prime numbers.

4.1.1 Key Generation

Choose two large primes qa and qb to compute k = qa × qb and a larger prime p such

that p = l × k − 1 for some positive integer l and e is a bilinear map such that

e : G×G → G′

23

where G′ ⊆ Z∗
p2 . Choose two random generators g, u of G and set h = uqb . Then h is

a random generator of the order qa subgroup of G. The public key is (k,G,G
′
, e, g, h),

and the secret key is qa.

4.1.2 Encryption

For encrypting a message m ∈ Zqb , pick a random number r ∈ {0, 1, . . . , k−1} with

g and h as follows:

E(m) = gmhr

= c ∈ G

Each message is assigned a unique r-value on each occasion.

4.1.3 Decryption

For decrypting ciphertext c using secret key qa. First of all, notice that:

cqa = (gmhr)qa

= (gm)qa × (hr)qa

= (gm)qa × ((uqb)r)qa

= (gqa)m × (uqa×qb)r

= (gqa)m ∈ G

Calculating the discrete logarithm of cqa with the base gqa using Pollard’s lambda

method [29]is adequate to decrypt as follows:

D(c) = loggqa (c
qa)

= loggqa ((g
qa)m)

= loggqa (g
qa)m

= m

4.1.4 Homomorphic Property

The BGN algorithm has both additive and multiplicative homomorphic properties.

24

4.1.4.1 Homomorphism over Addition

The encryption function can be determined for k = qa × qb and g, u ∈ G∗ :

Eg : Zqb × Zk → G

(m, r) 7→ gm × hr

where r ∈ Zk is random and × represents the group operation of G. The BGN

algorithm possesses additive homomorphism, where the corresponding r-value for

the message sum of ma and mb is the sum of ra and rb.

Eg(ma, ra)× Eg(mb, rb) = (gma × hra)× (gmb × hrb)

= gma+mb × hra+rb

= Eg(ma +mb, ra + rb)

Hence,

D(E(ma)× E(mb)) = D(E(ma +mb))

Therefore, the BGN has homomorphic property over addition.

4.1.4.2 Homomorphism over Multiplication

The encryption function can be determined as:

Ega : Zqb × Zk → G
′

(m, r) 7→ (ga)
m × (ha)

r

where r ∈ Zk is random and × represents the group operation of G′ . The homomor-

phic multiplication of the BGN algorithm works with bilinear map, then ga = e(g, g)

and ha = e(g, h) are chosen, where ga with order k, hawith order qa, and let α ∈ Z

such that h = gα. Then, the encryption of multiplication of ma and mb by using

25

ca = gmahra ∈ G and cb = gmbhrb ∈ G is computed as follows:

e(ca, cb)h
r
a = e(gmahra , gmbhrb)hr

a

= e(gma+αra , gmb+αrb)hr
a

= e(g, g)(ma+αra)(mb+αrb)hr
a

= e(g, g)mamb+α(marb+mbra+αrarb)hr
a

= (ga)
mamb(ga)

α(marb+mbra+αrarb)hr
a

= (ga)
mamb(ha)

(marb+mbra+αrarb)hr
a

= (ga)
mambhr+marb+mbra+αrarb

a

= Ega(mamb, r +marb +mbra + αrarb)

If the expression r+marb+mbra+αrarb is uniformly distributed like r, the resulting

ciphertext c represents a uniformly distributed encryption of mamb. However, it’s

important to highlight that c now resides in G
′ instead of G. It’s worth noting that the

BGN scheme retains its limitless additively homomorphic property in G
′ . Therefore,

the BGN has homomorphic property over multiplication.

4.2 Other Algorithms

Melchor and colleagues, in their work [20], built upon established schemes with ho-

momorphic properties to introduce an encryption scheme that facilitates the homo-

morphic evaluation of constant-depth circuits. Conversely, Sander, Young, and Yung

(SYY) proposed a scheme [31] that allows for just one OR/NOT gate in combination

with multiple AND gates. Nevertheless, the evaluation of circuit depth was restricted

due to the fact that the ciphertext size grew with each evaluation of an OR/NOT

gate.

26

CHAPTER 5

FULLY HOMOMORPHIC ENCRYPTION

In 2009, Craig Gentry [11] presented the initial FHE scheme as part of his doctoral

thesis. This proposition of scheme also was served as a blueprint for constructing

an FHE scheme to other schemes. As a result, scholars expanded upon Gentry’s

foundation, working towards the development of further effective FHE systems.

Definition 5.1. The Fully Homomorphic Encryption scheme (FHE) is capable

of performing an unrestricted number of additive and multiplicative homomorphic

operations on encrypted data. It allows for objective evaluation of data without com-

promising its confidentiality.

While Gentry’s introduction of the FHE scheme was promising, its practical imple-

mentation was hindered by its high computational demands. Consequently, several

modifications were made to enhance the scheme’s viability for real-world usage. As

the search for new FHE schemes persisted, many advancements prioritized address-

ing lattice problems.

FHE schemes can be classified into two primary categories according to the underly-

ing problems they address:

• Gentry [11] initially introduced the ideal lattice-based approach, which

prompted several subsequent researchers to enhance his FHE scheme rooted in

ideal lattices, including the work of Smart and Vercauteren.

• Van Dijk and colleagues [7] proposed a scheme based on over-integers,

founded upon the Approximate-GCD problems [10].

27

The following definitions are critical to understanding the ideal-based lattices:

Definition 5.2. (Lattice) In m-dimensional Euclidean space Rm, a lattice L is the set

[21]

L = {a1b1 + a2b2 + · · ·+ anbn|a1, a2, . . . , an ∈ Z}

of a collection of linearly independent vectors, expressed as b1 through bn in Rm

where m ⩾ n. n is called the rank and m is the dimension of the lattice. The sequence

of vectors {b1, . . . , bn} is called a lattice basis. It is represented as the following

matrix:

B = [b1, . . . , bn] ∈ Rm×n

where m ⩾ n. When n is equal to m, the lattice is referred to as being full-dimensional

or having full rank. It’s important to note that a lattice can have multiple distinct bases.

As a result, lattices can be described and defined independently of any specific basis.

Within an infinitely regular n-dimensional grid, a lattice is defined as a collection of

points where the grid lines intersect. It is important to note that the grid does not need

to be perfectly orthogonal. Figure 5.1 illustrates this concept in a two-dimensional

context—a lattice point results from the linear combination of the base vectors. The

repeating pattern enclosed by these lattice points is known as the "Fundamental Par-

allelepiped," visible in black.

Figure 5.1: Lattice in R2 [21]

The field of lattice theory was initially introduced by Minkowski in 1910. [22] Later,

28

Ajtai [1] introduced a category of random worst-case lattice problems known as the

SVP and CVP in 1996. These problems have since found practical use in lattice-based

cryptographic schemes. [28]

Definition 5.3. (Shortest Vector Problem, SVP) Given a basis T ∈ Zm×n, find a

nonzero lattice vector Tx (with a ∈ Zn − {0}) such that |Ta| ⩽ |Tb| for any other b

∈ Zn−{0}, [15] i.e., using the specified basis T as a reference, SVP finds the shortest

non-zero vector within the lattice.

Definition 5.4. (Closest Vector Problem, CVP) Given a basis T ∈ Zm×n and a

target vector t ∈ Zm, find a lattice vector Ta closest to the target t,[15] i.e., find an

integer vector a ∈ Zn such that |Ta− t| ⩽ |Tb− t| for any other b ∈ Zn − {0}, i.e.,

CVP determines the lattice point closest to a specified point within the lattice.

Definition 5.5. (Circuits) A circuit is essentially a graph with nodes and edges,

specifically designed as an acyclic-directed structure. [15] The edges are referred to

as wires while the nodes are termed gates. The type of gates used in the circuit,

whether they represent logical operations (such as AND, OR, NOR, NAND, etc.) or

arithmetic operations, depends on the input data contained within the circuit, includ-

ing Boolean values, integers, and more. In figure 5.2, we observe the example circuit

that symbolizes the function using AND and OR as logic gates.

Figure 5.2: Sample Circuit [15]

5.1 Ideal-Lattice Based FHE

Craig Gentry is credited with developing the first encryption system capable of pro-

cessing circuits with arbitrary depth. [11] His SwHE scheme is based on ideal lat-

29

tices and allows for homomorphic evaluation of ciphertexts, albeit with limitations

on the number of iterations. This scheme is particularly suited for low-depth circuits.

Within this SwHE scheme, a certain amount of noise is added to the plaintext during

encryption. This noise increases with each addition and multiplication operation, cor-

responding to each gate in the circuit applied to the ciphertexts. Eventually, the noise

reaches a level where it makes it impossible for the decryption algorithm to accurately

recover the plaintext from the ciphertext.

To enable a ciphertext to undergo numerous homomorphic operations, Gentry em-

ployed a technique known as bootstrapping. Bootstrapping serves the purpose of

reducing the noise within the ciphertext to an acceptable level. In order to execute

bootstrapping successfully, the SwHE scheme must possess a decryption algorithm

with low complexity, meaning it has a low-depth decryption circuit that can assess

its own decryption process. In contrast to lattice-based encryption schemes, RSA

and ElGamal encryption schemes have more intricate decryption algorithms, which

renders them less suitable for FHE schemes.

The bootstrapping procedure efficiently revitalizes the ciphertext by reducing its noise,

allowing it to be reused in additional addition and multiplication operations. Gen-

try’s concept of "refreshing" involves several steps. Initially, a pair of encryption and

decryption keys is generated. Data is then encrypted using the encryption key, and

computations are performed on the encrypted data within the limitations of the SwHE

scheme. Subsequently, a second pair of encryption and decryption keys is generated,

and the results are encrypted under the second encryption key. To mitigate noise in

the encrypted results, Gentry encrypts the first decryption key using the second en-

cryption key. The decryption algorithm of the SwHE scheme is then applied through

the evaluation algorithm, which decrypts the results initially encrypted under the first

key but retains them encrypted under the second key. The computations can proceed

as desired. Once the computations are finished, the final decryption key is employed

to decrypt the results ciphertext, yielding the final computation result.

This process can be repeated iteratively, allowing the scheme to evaluate unlimited

operations on the ciphertexts. However, it is essential to note that this scheme faces

practical challenges because both the processing time and the volume of ciphertext

30

increase significantly. Gentry’s blueprint for this procedure involves three main steps,

constructing a SwHE scheme based on ideal lattices, squashing, and bootstrapping.

5.1.1 SwHE scheme based on ideal lattices

Gentry’s SwHE scheme was built upon the same concepts as the GGH method pro-

posed by Goldreich, Goldwasser, and Halevi [13] and was rooted in the domain of

lattice reduction problems. [28] Lattice reduction aims to discover a reasonably short

and orthogonal basis for a specific lattice, often referred to as a good basis for the lat-

tice. Typically, solving the SVP and CVP can be achieved in polynomial time if one

possesses knowledge of these good bases for a lattice. The LLL algorithm is one of

the most efficient algorithms for this purpose, although it becomes exponential when

dealing with unknown good bases of the lattice.

In this scheme, the public key is generated using a bad basis of the lattice, while a

good basis is utilized to create the secret key. Noise is subsequently introduced to a

lattice point to form the ciphertext. To decrypt the ciphertext, one must determine the

closest lattice point using the secret key. In this SwHE scheme, ideals are represented

using lattices. The scheme encompasses several algorithms, including the following:

5.1.1.1 Key Generation

This process begins with two inputs: a fixed ring R and a basis TI representing a

small ideal I within R. This basis is employed to embed the message into an error

vector. Moreover, an algorithm called IdealGen(R, TI) is employed to generate both

the public and secret keys. The public key includes a bad basis T pk, which can be

derived from the Hermite Normal Form (HNF) of the basis T sk used in the secret

key. T sk comprises a good basis of the ideal lattice J , featuring short and nearly

orthogonal vectors. It’s important to note that the choice of the ideal lattice J is such

that the sum of I and J equals R, meaning that I and J are relatively prime. In the

encryption algorithm, a Samp() procedure is employed to select a compact vector

from a coset of the ideal. This is achieved by shifting the ideal by a specific amount.

Therefore, the public key is comprised of (R, TI , T
pk, Samp()), and the secret key is

31

represented by T sk.

5.1.1.2 Encryption

This process involves taking the message vector −→m and the public key T pk as in-

puts. The plaintext space K is a subset of R modulo TI . An additional algorithm,

Samp(−→m,TI) is used to select a short vector from the coset formed by adding −→m to

I and this result is subsequently reduced modulo the public basis T pk.

E(−→m) = −→m +
−→
i (mod T pk

J)

= −→c

In this scenario, the ciphertext is determined as a vector −→c and encoded based on

distance from the nearest lattice point.

5.1.1.3 Decryption

For decrypting −→c with the secret key T sk as follows:

D(−→c) = (−→c (mod T sk
J)) (mod TI)

= −→m

5.1.1.4 Homomorphic Property

The homomorphic characteristic is demonstrated in the evaluation algorithm. This

algorithm receives input consisting of a circuit C from a permissible set CE, where

the gates in this circuit perform operations modulo T (the public key Tpk), and a set

of input ciphertexts {−→c1 , . . . ,−→cm}. It conducts the operations AddTI
and MultTI

in

the correct order to calculate the resulting ciphertext −→c .

Add(T pk
J ,−→c1 ,−→c2) → −→c1 +−→c2 (modT pk

J)

Mult(T pk
J ,−→c1 ,−→c2) → −→c1 · −→c2 (modT pk

J)

During the computation of −→c , the algorithm first uses a circuit C that operates under

the modulus TI to process the plaintexts. Then, it replaces the AddTI
and MultTI

32

operations within C with the corresponding operations, namely addition and multipli-

cation, but now within the ring R.

5.1.2 Squashing

To streamline the decryption process without sacrificing some of its computational

capabilities, Gentry made modifications that involved transferring certain decryption

computations to the encryption phase. This was accomplished by including additional

information about the secret key within the public key. However, it’s important to note

that this adjustment inherently reduced the security of the original scheme.

This transformation can be broken down into two stages:

• Stage 1: An initial, computationally intensive preprocessing phase carried out

by the encrypter does not require the secret key.

• Stage 2: A computationally lightweight phase is performed by the decrypter,

and it makes use of the secret key.

The revised scheme introduces three new parameters (ι, r, s) and two new algorithms,

namely SplitKey and ExpandCT , where the SplitKey algorithm puts in the public

key a hint about the secret key and the ExpandCT algorithm prepares the ciphertext

for the changed decryption algorithm.

5.1.3 Bootstrapping

The scheme capable of evaluating its own decryption algorithm circuit is referred to

as bootstrappable [11]. Bootstrapping essentially involves a refreshing process to

reduce the noise in a ciphertext after performing homomorphic operations on it. To

achieve this, the following steps are taken:

1. A pair of key sets (pka, ska) and (pkb, skb) are generated.

2. The message m is encrypted under the initial public key pka resulting in

c = Epka(m).

33

3. c is decrypted under the second public key pkb specifically as

Epkb(c) = Epkb(Epka(m)).

4. The first secret key ska is encrypted under the second public key as Epkb(ska).

5. Both Epkb(ska) and Epkb(c) are transmitted .

Because the squashed SwHE scheme can assess its own decryption circuit, the de-

cryption circuit is applied to homomorphically decrypt the noisy ciphertext. This

is achieved using the encryption of the first secret key ska under pkb denoted as

Epkb(Dska(c)). Consequently

Epkb(Dska(c)) = Epkb(m)

which can then be decrypted by the customer using skb, resulting in

Dskb(Epkb(m)) = m

5.2 Fully Homomorphic Encryption Scheme over Integers

Gentry’s research significantly influenced the alternative cryptographic system pro-

posed by Dijk and his colleagues in 2010, [7] where they replaced the ideal lattice-

based approach with an integer-based one. This new scheme is simpler in con-

cept compared to Gentry’s ideal lattice-based scheme but maintains similar homo-

morphic operations and effectiveness characteristics. This is because it is based on

the Approximate-Greatest Common Divisor (AGCD) problem, [10], which involves

searching for p within the set of equations xi = kqi+ ri. The outlined symmetric and

asymmetric schemes for SwHE look as follows:

5.2.1 Secret Key SwHE scheme based on Integers

5.2.1.1 Key Generation

The secret key is an odd integer chosen from some interval k ∈ [2ξ−1, 2ξ].

34

5.2.1.2 Encryption

For encrypting a bit m ∈ {0, 1}, the ciphertext as

E(m) = m+ 2r + kq

= c

where q, and r are chosen randomly, and 2r < k/2.

5.2.1.3 Decryption

For decrypting the ciphertext c as

D(c) = (c (mod k)) (mod 2)

= (kq + 2r +m (mod k)) (mod 2)

= 2r +m (mod 2)

= m

5.2.2 Public-Key SwHE scheme based on Integers

5.2.2.1 Key Generation

Select an odd integer k with ξ bits length as the private key. Utilize this private key to

create the public key, represented by the equation:

xi = kqi + ri

where qi ∈ Z ∩ [0, 2ϱ/k) and ri ∈ Z ∩ (−2θ, 2θ) are random.

35

5.2.2.2 Encryption

For encrypting a message m ∈ {0, 1}, choose a random subset T ⊆ {1, 2, . . . , t}
where t represents the count of integers in the public key and the output:

E(m) = (m+ 2r + 2
∑
i∈T

xi) (mod x0)

= c

5.2.2.3 Decryption

For decrypting the ciphertext c with the private key k, the output:

D(c) = (c (mod k)) (mod 2)

= (c− k · [c/k]) (mod 2)

= (c (mod 2))⊕ ([c/k]) (mod 2))

= m

where [a] represents the rounding to the nearest integer and k (mod 2) = 1.

5.2.3 Fully Homomorphic Property of SwHE scheme based on Integers

Given two ciphertext ca = kqa + 2ra +ma and cb = kqb + 2rb +mb, we have

ca + cb = (qa + qb)k + 2(ra + rb) + (ma +mb)

ca · cb = (kqaqb+2qarb+2qbra+maqb+mbqa)k+2(2rarb+marb+mbra)+mamb

When

ra + rb < k/2

2rarb +marb +mbra < k/2

we have

(ca + cb (mod k)) (mod 2) = ma +mb

(ca · cb (mod k)) (mod 2) = mamb

36

Therefore, both the symmetric and asymmetric SwHE have a fully homomorphic

property.

5.2.4 Squashing

There are introduced three additional parameters denoted as σ, ϱ, and ζ , all of which

are functions of parameter λ. σ = γξ

ρ′
and ζ = ω(σ · logλ) are settled. We add to

the public key pk∗ from the original SwHE scheme, we add to the public key a set

{y1, y2, . . . , yζ} of rational numbers in [0, 2) with σ bits of precision, such that there

is a sparse subset S ⊂ {1, 2, . . . , ζ} of size ϱ with

y1 + y2 + · · ·+ yζ ≈ 1/k (mod 2)

for secret key sk∗ and public key pk∗ from the original SwHE scheme.

5.2.4.1 Key Generation

Generate sk∗ = k and pk∗. Set xk = [2k/k] choose at random a ζ-bit vector

S = (s1, s2, . . . , sζ) with Hamming weight ζ and let S = i : si = 1. Choose at random

integer ui ∈ Z ∩ [0, 2σ+1), i = {1, 2, . . . , ζ} subject to the condition that∑
i∈S

ui = xk (mod 2σ+1)

. Set yi = ui/2
σ and y = {y1, y2, . . . , yζ}. The chosen yi’s confirms∑

i∈S

yi (mod 2) = (1/k)−△k

for some |△k| < 2−σ. The public key is {pk, y}, and the secret key is S.

5.2.4.2 Encryption

Given a ciphertext c∗, for i ∈ {1, 2, . . . , ζ}, set

zi = c∗ · yi (mod 2)

for each zi keeping n = [logζ]+3 bits of precision after the binary point. The outputs

are c∗and z = {z1, z2, . . . , zζ}.

37

5.2.4.3 Decryption

For decrypting c∗ and z with private key k, output as follows:

m = (c∗ − [
∑
i∈S

zi]) (mod 2)

5.2.5 Bootstrapping

Bootstrapping is crucial in the FHE framework. Including the bootstrapping compo-

nent ensures that the decryption circuit is a subset of the permitted circuits.

Definition 5.6. (Augmented Decryption Circuit) . Let ϵ be an encryption scheme

where decryption is implemented by a circuit that depends only on the security pa-

rameter.

Given a specific security parameter λ, the collection of enhanced decryption circuits

comprises two distinct circuits. Each of these circuits takes as input a secret key and

two ciphertexts:

• The first circuit decrypts both ciphertexts and performs an addition operation

on the resulting plaintext bits modulo 2.

• The second circuit decrypts both ciphertexts and performs a multiplication op-

eration on the resulting plaintext bits modulo 2.

Definition 5.7. (Bootstrappable Encryption) [7] Let ϵ be a HE scheme. We say

that ϵ is bootstrappable if its augmented decryption circuits are permitted circuits for

every value of the security parameter λ.

To reduce the size of the ciphertext during the evaluation process, van Dijk [7] and

his team introduced additional elements to the public key in the form of x′
i, which is

defined as q′
ik+2ri. Here, ri is selected as usual from the range between −2Υ and 2Υ,

while qi values are chosen to be significantly larger than those used for other public

key elements. Specifically, for values of i ranging from 0 to ϖ, the expressions are as

follows:

38

q
′
i belongs to the set of integers within the range [2ϖ+i−1/k, 2ϖ+i/k), ri is an integer

within the interval (−2Υ, 2Υ), and x
′
i is calculated as 2(q′

i · k + ri).

This calculation results in x
′
i being within the range of values from [2ϖ+i, 2ϖ+i+1].

39

40

CHAPTER 6

REAL-WORLD APPLICATIONS OF HOMOMORPHIC

ENCRYPTION

In real-life circumstances, HE has great relevance and effect. The following are some

instances of its practical applications:

6.1 Secure E-voting Technology

In contemporary society, voting is an essential civic duty. Encryption methods pro-

vide a secure avenue for the implementation of computer-based voting systems, en-

suring the safety of large-scale elections. The homomorphic technology-driven plan

is straightforward, featuring well-defined steps that are practical for real-world appli-

cation. Even in cases where the electorate’s machine has been attacked by harmful

programs or the voter is practically under the control of an adversary, a remote end-

to-end voting scheme system [34] assures that the voter’s choice remains private. It

allows voters to transmit honest messages through anonymous and untraceable chan-

nels, offering effectiveness, verifiability, and anonymity. Three steps make up the pro-

posed protocol’s structure: setup, where parameters are configured, voter registration,

core voting, where votes are processed, and tallying, where the results are decrypted

[32]. FHE has introduced a groundbreaking solution for creating an electronic voting

system that supports addition and multiplication operations. An EMH E-Voting tech-

nique has been created to alleviate the shortcomings of the current setup. In order to

guarantee an effective electoral process, this solution combines the ElGamal encryp-

tion technique with decentralized decryption and makes use of a strong verification

41

mechanism. Grouped counting and group shuffling techniques are utilized to prevent

vote manipulation and maintain count confidentiality.

6.2 Financial Privacy

A company, especially in sectors like finance where sensitive data and proprietary al-

gorithms, such as those employed for stock value predictions, need protection, must

take steps to secure this information. Naehrig [25] introduced a technique utilizing

HE to securely transmit data and algorithms in an encrypted format, enabling the

delegation of computational tasks to a cloud service. However, HE alone doesn’t

inherently safeguard the secrecy of the algorithm; this is the realm of obfuscation re-

search. The critical feature in fully-fledged HE methods is circuit privacy, ensuring

that no information about the function is revealed through the output. Nevertheless,

it doesn’t directly encrypt the function itself. To illustrate, consider a scenario where

Company Y possesses confidential techniques for predicting stock prices, and Com-

pany X holds sensitive data like a stock portfolio. In the conventional approach, X

would need to share its stock portfolio with Y, or Y would have to disclose its al-

gorithm to X. However, X can encrypt its data using a circuit-private approach and

transmit it to Y using HE. Y can then apply its proprietary method to the encrypted

data, yielding results that can only be decrypted using X’s secret key. This way, Y

is barred from accessing X’s data, and X remains unaware of the specific processes

employed by Y.

6.3 Control System for Protection

A control system, often known as a cyber-physical system, is a computer-based network-

connected system designed to regulate and manage signals for the operation of a

physical system. It consists of a controller, a plant equipped with sensors and ac-

tuators. The controller gathers sensor data, combines it with user input to generate

command instructions, and transmits them to actuators for controlling the plant ac-

cordingly. This domain encompasses a wide range of applications, including smart

vehicles, drones, and critical infrastructure such as nuclear and commercial facilities.

42

Notably, there have been instances of control system breaches, such as a demonstra-

tion in 2015 where a hacker remotely manipulated a car’s braking and acceleration

systems. Similarly, in 2010, a malicious computer virus infiltrated a uranium enrich-

ment facility’s system, altering centrifuge speeds and causing damage. Preventing

control system hacking is crucial but challenging. To safeguard against data theft or

unauthorized control commands, it is recommended that sensors transmit encrypted

data to the controller, and the controller sends encrypted control instructions to the ac-

tuators. However, this approach may not fully protect against data leakage caused by

malware infiltrating the controller. Recently, some researchers have proposed using

HE to secure control systems, specifically by encrypting sensor data with HE [16]. In

such a scenario, the controller may not have permission to access sensor data because

encryption is unnecessary for data processing. Moreover, it is likely that the actuator’s

sensing system can detect alterations made by intruders to the encoded information.

For added security, this approach could be compared to HAE.

6.4 Healtcare Industry

Individuals’ private info in computer-based archive format, which contains data per-

taining to each person’s health issues, are under the control of health facilities. Data

centers are used to store and process these records. [23] Sensitive medical data is lost

when data is encrypted using conventional methods since it must first be decrypted in

order to do computations. By permitting data to be treated in an encrypted form and

ensuring only encrypted data is exposed to service providers, HE arises as a solution

to this problem.

6.5 Cloud Computing

In contrast to conventional encryption methods, HE offers the advantage of mini-

mizing the need for frequent encryption and decryption between cloud services and

users. This efficiency results in reduced communication and computational costs. HE

is a pivotal technology for maintaining data confidentiality in cloud environments.

[8]Leveraging its homomorphic capabilities, this technology can address critical se-

43

curity concerns within cloud services, ultimately facilitating the advancement of HE

technology through the broader adoption of cloud computing applications.

44

CHAPTER 7

CONCLUSION

There are still unsolved security concerns surrounding FHE schemes. Enhancing

the computational efficiency of FHE schemes is a significant challenge. Researchers

may work on optimizing algorithms, reducing computational overhead, and develop-

ing hardware accelerators to make FHE more practical for real-world applications.

Furthermore, most FHE schemes rely on Gentry’s bootstrapping technique and the

outstanding challenge is the development of an unlimited FHE scheme that permits

unlimited operations without the need for bootstrapping. Liu [19] introduced a noise-

free FHE scheme and Brakerski and Gentry [4] proposed an FHE scheme without

bootstrapping. After this study was published, Yagisawa [33] also published a study

about an FHE scheme without bootstrapping. However, Wang reported Liu and Yag-

isawa’s studies as insecure. [18]

In conclusion, HE provides a transformative solution at the intersection of cryptogra-

phy and data privacy. Its capability to conduct computations on encrypted data, with-

out compromising sensitive information, has the potential to revolutionize the way we

handle and analyze data, particularly in fields with high privacy concerns. Through

exploration of its various types, which include PHE, SwHE, and FHE, a spectrum

of capabilities ranging from basic operations to comprehensive computational power

has been uncovered. The applications of HE in healthcare, finance, cloud computing,

and other fields underscore its relevance and promise in modern society. However,

as this technology continues to evolve, challenges related to security, efficiency, and

standardization must be addressed to realize its full potential. Ongoing research and

innovation suggest that HE will play a pivotal role in securing data while facilitating

45

advanced data analytics, machine learning, and secure communications in the digital

age.

46

REFERENCES

[1] M. Ajtai. Generating hard instances of lattice problems. in Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, page 99–108,
1996.

[2] J. Benaloh. Dense probabilistic encryption. in Proceedings of the workshop on
selected areas of cryptography, page 120–128, 1994.

[3] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. in
TCC, 3378:325–341, 2005.

[4] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption
without bootstrapping. Electron. Colloquium Comput. Complex., TR11, 2011.

[5] I. Damgård and M. Jurik. A generalisation, a simplification and some applica-
tions of paillier’s probabilistic public-key system. In: Kim K. (ed) Public Key
Cryptography. PKC 2001.LNCS, page 119–136, 1992.

[6] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 22(6):644–654, 1976.

[7] M. V. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. in Annual International Conference on the Theory
and Applications of Cryptographic Techniques, page 24–43, 2010.

[8] M. Zhao E and Y. Geng. Homomorphic encryption technology for cloud com-
puting. Procedia Computer Science, 154:73–83, 2019.

[9] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on information theory, 31(4):469–472, 1985.

[10] S. D. Galbraith, S. W. Gebregiyorgis, and Sean Murphy. Algorithms for the ap-
proximate common divisor problem. LMS Journal of Computation and Mathe-
matics, 19(A):58–72, 2016.

[11] C. Gentry. A fully homomorphic encryption scheme. Ph.D. thesis, 2009.

[12] K. Gjøsteen. Subgroup membership problems and public key cryptosystems.
2004.

[13] O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lat-
tice reduction problems. in Advances in Cryptology-CRYPTO’97: 17th Annual

47

International Cryptology Conference, Santa Barbara, California, USA, August
1997. Proceedings, 60(5):112, 1997.

[14] S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. Symposium on the Theory of Com-
puting, page 365–377, 1982.

[15] S. Goluch. The development of homomorphic cryptography: from rsa to gen-
try’s privacy homomorphism. na, 2011.

[16] J. Kim, C. Lee, H. Shim, J. H. Cheon, A. Kim, M. Kim, and Y. Song. Encrypting
controller using fully homomorphic encryption for security of cyber-physical
systems. IFAC, 49:175–180, 2016.

[17] Ç. K. Koç, F. Özdemir, and Z. Ödemiş Özger. Partially Homomorphic Encryp-
tion. Springer, 2021.

[18] J. Li and L. Wang. Noise-free symmetric fully homomorphic encryption based
on noncommutative rings. IACR Cryptol. ePrint Arch., page 641, 2015.

[19] D. Liu. Practical fully homomorphic encryption without noise reduction. IACR
Cryptol. ePrint Arch., page 468, 2015.

[20] C. A. Melchor, P. Gaborit, and J. Herranz. Additively homomorphic encryption
with d-operand multiplications. in CRYPTO, 6223:138–154, 2010.

[21] D. Micciancio and S. Goldwasser. Complexity of lattice problems - a crypto-
graphic perspective. Springer Science Business Media, 671, 2002.

[22] H. Minkowski. Geometrie der zahlen. Ripol Classic, 40, 1910.

[23] K. Munjal and R. Bhatia. A systematic review of homomorphic encryption and
its contributions in healthcare industry. Complex Intell Systems., pages 1–28,
2022.

[24] D. Naccache and J. Stern. A new public key cryptosystem based on higher
residues. In: Proceedings of the 5th ACM Conference on Computer and Com-
munications Security, page 59–66, 1998.

[25] M. Naehrig, K. E. Lauter, and V. Vaikuntanathan. Can homomorphic encryption
be practical? In Christian Cachin and Thomas Ristenpart, editors, Proceedings
of the 3rd ACM Cloud Computing Security Workshop, CCSW, page 113–124,
2011.

[26] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as
factoring. Advances in Cryptology—EUROCRYPT’98, page 308–318, 1998.

[27] P. Paillier. Public key cryptosystems based on composite degree residue classes.
Proceedings of Advances in Cryptology, EUROCRYPT’99, page 223–238, 1999.

48

[28] C. Peikert. A decade of lattice cryptography. Foundations, and Trends in Theo-
retical Computer Science, 10(4):283–424, 2016.

[29] J. M. Pollard. Monte carlo methods for index computation (mod p). Math.
Comput., 32(143):918–924, 1978.

[30] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21:120–126, 1978.

[31] T. Sander, A. Young, and M. Yung. Non-interactive cryptocomputing for nc1.
in Proceedings of the 40th Annual Symposium on Foundations of Computer Sci-
ence, FOCS ’99, page 554–, 1999.

[32] S. S. Shinde, S. Shukla, and D. Chitre. Secure e-voting using homomorphic
technology. International Journal of Emerging Technology and Advanced En-
gineering, 3:203–206, 2013.

[33] M. Yagisawa. Fully homomorphic encryption without bootstrapping, 2015.

[34] X. Yi and E. Okamoto. Practical internet voting system. J. Netw. Comput. Appl.,
36(1):378–387, 2013.

[35] X. Yi, R. Paulet, and E. Bertino. Homomorphic encryption and applications,
volume 3. Springer, 2014.

49

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Historical Process and Literature Review
	Outline

	PRELIMINARIES
	Group
	Ring
	Group Homomorphism
	Example:

	Ring Homomorphism
	Example:

	Homomorphic Encryption

	PARTTIALLY HOMOMORPHIC ENCRYPTION
	Rivest-Shamir-Adleman Algorithm
	Key Generation
	Encryption
	Decryption
	Homomorphic Property

	Goldwasser-Micali Algorithm
	Key Generation
	Encryption
	Decryption
	Homomorphic Property

	ElGamal Algorithm
	Key Generation
	Encryption
	Decryption
	Homomorphic Property

	Benaloh Algorithm
	Key Generation
	Encryption
	Decryption
	Homomorphic Encryption

	Paillier Algorithm
	Key Generation
	Encryption
	Decryption
	Homomorphic Property

	Other PHE Algorithms

	SOMEWHAT HOMOMORPHIC ENCRYPTION
	BGN Algorithm
	Key Generation
	Encryption
	Decryption
	Homomorphic Property
	Homomorphism over Addition
	Homomorphism over Multiplication

	Other Algorithms

	FULLY HOMOMORPHIC ENCRYPTION
	Ideal-Lattice Based FHE
	SwHE scheme based on ideal lattices
	Key Generation
	Encryption
	Decryption
	Homomorphic Property

	Squashing
	Bootstrapping

	Fully Homomorphic Encryption Scheme over Integers
	Secret Key SwHE scheme based on Integers
	Key Generation
	Encryption
	Decryption

	Public-Key SwHE scheme based on Integers
	Key Generation
	Encryption
	Decryption

	Fully Homomorphic Property of SwHE scheme based on Integers
	Squashing
	Key Generation
	Encryption
	Decryption

	Bootstrapping

	REAL-WORLD APPLICATIONS OF HOMOMORPHIC ENCRYPTION
	Secure E-voting Technology
	Financial Privacy
	Control System for Protection
	Healtcare Industry
	Cloud Computing

	CONCLUSION
	REFERENCES

