
ADSES: ANONYMOUS AND DECENTRALIZED SECURE ELECTION
SYSTEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EŞREF ÖZTÜRK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2023

Approval of the thesis:

ADSES: ANONYMOUS AND DECENTRALIZED SECURE ELECTION
SYSTEM

submitted by EŞREF ÖZTÜRK in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Ertan Onur
Supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Pelin ANGIN
Computer Engineering, METU

Prof. Dr. Ertan Onur
Computer Engineering, METU

Prof. Dr. İbrahim Körpeoğlu
Computer Engineering, Bilkent University

Date:08.09.2023

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Eşref Öztürk

Signature :

iv

ABSTRACT

ADSES: ANONYMOUS AND DECENTRALIZED SECURE ELECTION
SYSTEM

Öztürk, Eşref

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Ertan Onur

September 2023, 67 pages

This thesis proposes an e-voting scheme, the Anonymous and Decentralized Secure

Election System (ADSES), designed to fulfill the essential requirements for secure,

accurate, and transparent elections. ADSES employs a multi-stage methodology in-

corporating distinct user roles, such as Voters and Officials, and utilizes advanced

cryptographic algorithms to safeguard the elections integrity and security. Our sys-

tem thoroughly approaches every aspect of the election process, covering everything

from pre-election to post-election procedures. We aim to ensure that the election is

verifiable, anonymous, authenticated, accurate, transparent, consistent, dependable,

and efficient in terms of time while preventing any intermediary results.

A thorough security analysis of ADSES is provided, showcasing its efficacy in meet-

ing the core requirements for a reliable and trustworthy election process. By empow-

ering voters and observers to verify election results and guaranteeing the protection

of individual votes, ADSES fosters trust and confidence in the election system. As

a pioneering e-voting protocol, ADSES offers a promising solution to enhance the

security and dependability of elections, setting the stage for the widespread adoption

of e-voting systems in various democratic processes worldwide.

v

Keywords: E-voting protocol, Secure election system, Verifiability, Anonymity, Trust

vi

ÖZ

ADSES: ANONİM VE MERKEZSİZ GÜVENLİ SEÇİM SİSTEMİ

Öztürk, Eşref

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ertan Onur

Eylül 2023 , 67 sayfa

Bu tez, güvenli, doğru ve şeffaf seçimler için temel gereksinimleri yerine getiren Ano-

nim ve Merkezi Olmayan Güvenli Seçim Sistemi (ADSES) adlı bir e-oylama sistemi

önermektedir. ADSES, seçimin bütünlüğünü ve güvenliğini sağlamak için gelişmiş

şifreleme algoritmaları kullanarak, Seçmenler ve Yetkililer gibi farklı kullanıcı rol-

lerini içeren çok aşamalı bir metodolojiye dayanmaktadır. Sistemimiz, seçim önce-

sinden seçim sonrası prosedürlerine kadar seçim sürecinin her yönüne kapsamlı bir

yaklaşım sunmaktadır. Amacımız, seçimin doğrulanabilir, anonim, kimlik doğrula-

malı, doğru, şeffaf, tutarlı, güvenilir ve hızlı bir şekilde gerçekleştirilmesini sağlamak

ve aynı zamanda herhangi bir ara sonuç oluşumunu önlemektir.

ADSESnin ayrıntılı bir güvenlik analizi sunularak, güvenilir ve güvenilir bir seçim sü-

recine yönelik temel gereksinimleri karşılamasındaki etkinliği gösterilmektedir. Seç-

menlerin ve gözlemcilerin seçim sonuçlarını doğrulama yetkisi vererek ve bireysel

oyların korunmasını garanti ederek, ADSES seçim sistemine güven ve güvenilirlik

katar. Öncü bir e-oylama protokolü olarak, ADSES, seçimlerin güvenliğini ve güve-

nilirliğini artırmak için umut vaat eden bir çözüm sunarak, dünya genelinde çeşitli

vii

demokratik süreçlerde e-oylama sistemlerinin yaygın olarak kullanımının önünü aç-

maktadır.

Anahtar Kelimeler: Elektronik oy verme protokolü, Güvenli seçim sistemi, Doğrula-

nabilirlik, Anonimlik, Güven

viii

To my family

ix

ACKNOWLEDGMENTS

I am grateful for the support and guidance my advisor, Prof. Dr. Ertan Onur, provided

throughout my thesis work. His invaluable advice and patience played a crucial role

in helping me reach this point.

Additionally, I sincerely appreciate my friends who offered their unwavering support

and insightful feedback. Their challenging questions helped me to refine my ideas

and improve the quality of my work.

Finally, I am indebted to my family for their unwavering support and encouragement.

Their efforts have been instrumental in my success, and I am grateful for their con-

tinued belief in me.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xvi

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

2 RELATED WORK . 3

3 ANONYMOUS AND DECENTRALIZED SECURE ELECTION SYSTEM
(ADSES) . 9

3.1 The overall Idea . 9

3.2 System Model . 11

3.2.1 Official . 11

3.2.1.1 Authority . 11

3.2.1.2 Inspector . 12

3.2.2 Encryption . 13

xi

3.2.3 Blind Signature . 13

3.2.3.1 Blinding . 14

3.2.3.2 Signing . 14

3.2.3.3 Unblinding . 15

3.2.3.4 Unsigning . 15

3.2.4 Peer-to-peer distributed database 15

3.3 Requirement Analysis . 17

3.4 Design . 20

3.4.1 Pre-Election Phase . 20

3.4.1.1 Key Pair and Identifier Generation 21

3.4.1.2 Secure Channel Establishment 22

3.4.2 Election Phase . 23

3.4.2.1 Message Generation 25

3.4.2.2 Message Encryption 27

3.4.2.3 Message Signing . 28

3.4.2.4 Message Publishing 31

3.4.3 Post-Election . 32

3.4.3.1 Decryption Key Broadcasting 32

3.4.3.2 Tallying . 32

3.5 Security Analysis . 33

3.5.1 Verifiability . 33

3.5.2 Anonymity . 34

3.5.3 Authentication . 34

xii

3.5.4 Accuracy . 34

3.5.5 Transparency . 35

3.5.6 Consistency . 36

3.5.7 Dependability . 36

3.5.8 No Intermediary Results . 36

3.5.9 Time Efficiency . 36

3.6 Attack Vectors and Countermeasures in ADSES 37

3.6.1 Vote Tampering . 37

3.6.2 Fake Votes . 37

3.6.3 Voter Privacy Violation . 38

3.6.4 Denial of Service [1] . 38

3.6.5 Collusion Among Officials 38

3.6.6 Sybil Attack [2] . 39

3.6.7 Man-in-the-Middle (MITM) Attack [3] 39

3.6.8 Vote-Buying and Coercion 39

3.7 Cryptographic Features and Guarantees in ADSES 40

3.7.1 Forward Secrecy . 40

3.7.2 Backward Secrecy . 40

3.7.3 Key Authenticity . 41

3.7.4 Non-repudiation . 41

3.7.5 Unforgeability . 41

3.7.6 Data Integrity . 42

3.7.7 Authentication . 42

xiii

4 IMPLEMENTATION . 43

4.1 Practical Implementation of ADSES 43

4.1.1 Official Web App . 43

4.1.1.1 API Endpoints . 44

4.1.2 Voter Web App . 44

4.1.2.1 Web pages . 44

4.2 Used Technologies . 45

4.2.1 Python . 45

4.2.2 Python Cryptography Toolkit 45

4.2.3 RSA . 46

4.2.4 Django Rest Framework . 46

4.2.5 AWS . 46

4.2.5.1 Cloudformation . 46

4.2.5.2 EC2 . 46

4.2.5.3 Route53 . 47

4.3 Testing Environment Deployment 47

4.4 Validations with Experiments . 48

4.4.1 Validation of Result Announcement Time Change with Voter
Count . 48

4.4.2 Validation of Total Vote Signing Time Change with Voter Count 52

4.5 Conclusion . 55

5 CONCLUSION . 59

5.1 Conclusions . 59

xiv

5.2 Future Work . 59

REFERENCES . 61

xv

LIST OF TABLES

TABLES

Table 2.1 Degrees of satisfaction used to evaluate how well different studies

meet the requirements. 7

Table 2.2 Comparison of ADSES with the state-of-the-art related work. 8

Table 3.1 Definitions of operations used during the election phase. 16

Table 4.1 CPU counts and pricing for different EC2 instance types (as of May

2023). 48

Table 4.2 Experiment results showing vote signing capacity across various

instance types. 53

Table 4.3 Vote signing times across various instances for 100 virtual users. . . 54

xvi

LIST OF FIGURES

FIGURES

Figure 3.1 Comprehensive representation of the ADSES concept. 9

Figure 3.2 Depicts the process flow of the blind signature mechanism. . . . 14

Figure 3.3 Illustration outlining the sequence of actions in the Pre-election

phase. 21

Figure 3.4 Diagram illustrating the sequential steps involved during the

Election phase. 24

Figure 3.5 A diagram showing the sequence of operations carried out dur-

ing the Election phase. 25

Figure 3.6 Diagram displays the message generation process during the

Election phase. 26

Figure 3.7 The diagram depicts the sequence of message encryption during

the Election phase. 28

Figure 3.8 This illustrates the process of signing by Official1 during the

Election phase. 29

Figure 3.9 Diagram of the election process emphasizing Official2’s par-

ticipation in signing. 30

Figure 3.10 The election phase diagram illustrating Officialn’s involve-

ment in signing. 31

Figure 3.11 Post-election phase overview showing key transfer and results

disclosure. 32

xvii

Figure 4.1 Correlation between CPU count and evaluation time for 10,000

votes. 50

Figure 4.2 Evaluation time of votes with different instance types. 51

Figure 4.3 Logarithmic comparison of signed votes per second against vir-

tual user counts. 55

Figure 4.4 p95 Signing Time vs. Virtual User Counts 56

xviii

LIST OF ABBREVIATIONS

v The vote that the voter casts.

r Random string attached to the vote.

idi A random string generated by each Official specifically for the

election.

id IDs of all Officials concatenated in lexicographical order.

m The message generated by the user, obtained by concatenating

v, r, and id.

me The vote after encryption with all Official’s encryption keys

and concatenation with id.

ms The vote after signing with all Official’s signing keys.

xix

xx

CHAPTER 1

INTRODUCTION

Elections have been a fundamental part of human decision-making since ancient

times, but they have gained particular significance since the 17th century [4]. Large-

scale elections, such as national elections, have far-reaching consequences and impact

millions. Consequently, malicious actors often target these elections, making election

security a critical and extensively researched topic [5] [6] [7].

As technology advances and permeates various aspects of our lives, elections are

also increasingly incorporating electronic systems. E-voting has become more preva-

lent, but it presents numerous security challenges. Computers can perform operations

without human intervention, making it easier for malicious actors to manipulate votes

without detection.

Transparency is a significant concern in e-voting systems. Since computers operate

in the background, people may be unable to observe the entire voting process, leading

to suspicions about the accuracy of election results. To address this issue, we have

designed ADSES, a system that leverages a distributed peer-to-peer database to re-

flect all election operations transparently. This approach allows Voters to observe all

procedures, ensuring transparency and trust in the system.

A vital component of this thesis is the distributed database system, which ensures

that data remains unchanged over time. In the context of this thesis, we use a peer-

to-peer distributed database system [8] with an immutable data structure [9], as it is

well-suited for such purposes. Readers should note that any reference to a distributed

database system in this thesis pertains specifically to this type of system.

In the following sections, we introduce ADSES and explain how it fulfills the require-

1

ments of a secure election system. We also compare ADSES to other related works

in the field to demonstrate the innovations it brings to the state of the art.

The structure of this thesis is as follows: First, we provide a detailed overview of

the ADSES system, including its design and the cryptographic features that ensure

secure voting. We then explore the various stages of the election process, describing

the roles of different entities and the steps taken to guarantee transparency, privacy,

and security. In addition, we discuss possible attack vectors and explain how ADSES

mitigates these risks.

Next, we delve into the cryptographic features that satisfy essential security properties

such as forward secrecy, backward secrecy, and unlinkability. We also address the

issue of ensuring unique votes and how the system handles this challenge.

Finally, we compare ADSES to existing e-voting systems and highlight the advan-

tages and innovations it brings to the field. We conclude by discussing the potential

for future improvements and enhancements to the ADSES system and its potential

impact on electronic elections’ overall security and transparency.

In summary, ADSES presents a novel approach to secure and transparent e-voting,

leveraging the strengths of distributed databases to address the challenges inherent in

electronic voting systems. By offering a comprehensive solution that satisfies cru-

cial security requirements and ensures transparency throughout the voting process,

ADSES has the potential to contribute significantly to the advancement of e-voting

systems and promote greater trust in the democratic process.

2

CHAPTER 2

RELATED WORK

The field of electronic voting systems has received significant attention from re-

searchers and practitioners, aiming to address the security and transparency chal-

lenges associated with elections. This section provides an overview of existing related

works in the domain of e-voting systems.

As mentioned in ADSES Requirement analysis section 3.3, an e-election system must

fulfill multiple vital requirements to ensure a trustworthy, secure, and efficient elec-

tion process. These include verifiability, with both public and individual aspects;

protecting voter anonymity; implementing robust authentication mechanisms; ensur-

ing accuracy through prevention of duplication, tampering, and impersonation; main-

taining transparency while preserving voter privacy, guaranteeing consistency among

all stakeholders, ensuring dependability against attacks, withholding intermediary re-

sults, promptly revealing final results, optimizing time efficiency, and designing for

scalability. By addressing these requirements, an e-election system can establish a

transparent, secure, and efficient process that instills voter confidence, safeguards the

integrity of each vote, and accommodates a growing voter population.

Li et al. [10] propose a blockchain-based self-tallying voting protocol in decentralized

IoT. Their primary focus is on fairness, satisfying the requirement of no intermedi-

ary results. However, their study does not explicitly address anonymity, and they

mention that the blockchain used in the model can be a private blockchain or a con-

sortium blockchain, which may have implications for anonymity. Public blockchains

are generally considered more anonymous, while private or consortium blockchains

may have varying levels of transparency or restrictions. On the other hand, it is es-

sential to note that ADSES ensures anonymity by separating signing operation from

3

placing votes in the database operations.

Chaudhar et al. [11] propose a blockchain-based voting system that utilizes 5G net-

works and smart contracts [12], which are implemented using solidity language [13].

Their objective is to display the total votes for each candidate throughout the voting

process, creating a transparent environment for participants. However, their system

fails to meet the requirement for intermediary results. In contrast, ADSES guaran-

tees that no intermediate results are made public until the post-election phase. This is

achieved by ensuring voters encrypt their votes using Officials’ encryption keys.

Rathee et al. [14] propose a blockchain-based voting system that utilizes IoT-Oriented

Smart Cities. They use polling booths for voters to cast their votes. However, their

system lacks anonymity, accuracy, and transparency because the Authorities provide

the machines in polling booths. In contrast, ADSES focuses on enabling voters

to transparently perform operations on their devices while verifying all other func-

tions that Officials must carry out without exposing their identities. This is achieved

through the use of blind signatures and encryption.

Hjalmarsson et al. [15] propose a blockchain-based electronic voting system using

an Ethereum private blockchain. Still, their approach lacks anonymity as voters cast

their votes in a supervised environment using custom software installed on computers

in voting districts. In contrast, ADSES ensures voter anonymity by allowing voters to

use their machines with an open-source app and providing Officials with only blinded

votes. Furthermore, while Hjalmarsson et al. [15] allow immediate visibility of all

votes to Officials, ADSES ensures the requirement of withholding intermediary re-

sults by having voters encrypt their votes with Officials’ encryption keys, ensuring

that election results remain confidential until the election concludes.

Shahzad and Crowcroft [16] also propose a unique approach to electronic voting

systems by leveraging blockchain technology. However, their solution falls short

of meeting the requirement of individual verifiability. In their system, voters have

to use central voting machines and do not receive feedback on their votes, limiting

their ability to verify the accuracy of their votes independently. While blockchain

technology offers benefits in decentralization and immutability, its approach does not

adequately address the essential requirement of individual verifiability for a secure

4

and trustworthy e-election process. In contrast, ADSES ensures individual verifia-

bility by allowing voters to personally encrypt and sign their votes. These encrypted

votes are then stored in a peer-to-peer distributed database, enhancing transparency

and instilling confidence in the integrity of the voting process.

McCorry et al. [17] and Lai et al. [18] propose a smart contract-based approach to the

Ethereum blockchain for electronic voting systems. Still, its scalability is limited due

to the Ethereum network’s constraints and the high gas fees associated with main-

taining the order of votes. In comparison, ADSES addresses scalability concerns by

employing a distributed database architecture. ADSES does not rely on maintaining

the order of votes, instead focusing on individually verifying each vote against the

signatures of all officials. This approach allows ADSES to accommodate a grow-

ing voter population more efficiently and cost-effectively, making it a more scalable

solution when compared to McCorry et al.’s Ethereum-based approach.

Gao et al. [19] propose an anti-quantum electronic voting protocol with a trade-off

between efficiency and security. However, their approach has a computation overhead

time that grows proportionally to the number of Voters. Moreover, they focus on

achieving real-time attention to the election results by making vote contents readable

on the blockchain, which violates the requirement to withhold intermediary results

and leaves the election open to manipulation. In contrast, in ADSES, all votes are

encrypted with each of the Official’s encryption keys and remain confidential until the

post-election phase, adhering to the requirement of withholding intermediary results

and ensuring the prevention of manipulation.

Wang et al. [20] propose a self-tallying voting system that allows individual vot-

ers to tally votes without third-party control, providing transparency. However, their

system’s scalability is limited as it requires each voter to store a state matrix with

all voter information, making it impractical for large-scale elections. Additionally,

their protocol lacks a clear voter selection and authentication method, relying on ran-

dom voter assignment and secret distribution, compromising security. In contrast,

ADSES effectively addresses scalability and authentication concerns by employing

a distributed database architecture and requiring independent authentication by each

Official. These design choices make ADSES a more secure and scalable solution for

5

large-scale elections.

In their work, Li et al. [21] propose a quantum voting protocol that relies on single-

particle states. However, their protocol includes the ID information of voters in the

vote, which raises concerns about preserving voter anonymity. This would create a

potential risk if voter information were to be disclosed, such as through a voter center.

ADSES achieves this by implementing a secure encryption mechanism and a blinded

vote approach. Voters use their devices with a trusted open-source application, en-

crypting and signing their votes individually. The encrypted votes are stored in a

distributed database, while election officials only receive blinded votes without any

link to a voter’s identity. This strict separation of voter identification from the vote

in ADSES ensures that even in the event of voter information leakage, it would be

impossible to associate specific votes with individual voters, effectively preserving

anonymity throughout the e-election process.

Many recent studies have explored the use of blockchain or smart contracts in various

contexts [22] [23] [24] [25] [26]. However, these studies also encounter similar chal-

lenges, as mentioned earlier. Some survey studies also analyze blockchain e-voting

systems and highlight their limitations [27] [28] [29] [30] [31] [32]. While blockchain

enhances elections’ transparency, it introduces obstacles that hinder fulfilling specific

requirements, such as intermediary results, anonymity, and scalability. To address

some of these issues, additional mechanisms like encryption or blind signatures can

be employed. Nonetheless, it is essential to note that adopting blockchain also entails

overhead due to its focus on maintaining a chain structure with ordered data. Since

order is not crucial for vote data, ADSES utilizes a peer-to-peer data structure that

ensures immutability.

Some studies have also explored using blind signatures [33] [34]. They proposed a

system that fulfills the requirement of anonymity. However, their contribution does

not encompass all aspects of the election process, including the pre and post-phases

with all their details. Additionally, they fail to satisfy the requirement of having no

intermediary results. In contrast, ADSES utilizes blind signatures on encrypted data

and incorporates keys from all Officials, addressing the missing parts identified in

these previous studies.

6

Lastly, it is essential to note that the concept of e-voting is not a new one, as nu-

merous studies have been conducted on this topic since 1998 [35] [36] [37] [38]

[39]. However, significant advancements have been made in this area since then.

These advancements include the increased popularity of studies involving distributed

databases following the rise of blockchain technology and the availability of better

cloud infrastructures for implementation and experimentation. In this study, we com-

prehensively implement the ADSES system, providing a complete implementation

and a detailed cost and time analysis.

In Table 2.2, we compare the essential studies mentioned above concerning the re-

quirements mentioned in the ADSES requirement analysis section (Section 3.3). Each

column represents a specific requirement, and each row pertains to a study. The last

row represents ADSES, which receives a perfect score (S) for all requirements. Each

cell indicates whether the study satisfies (S), fails (F), or is ambiguous (A) for the

corresponding requirement, as shown in Table 2.1.

Table 2.1: Degrees of satisfaction used to evaluate how well different studies meet

the requirements.

Symbol Explanation

S Satisfies

F Fails

A Ambiguous

7

Table 2.2: Comparison of ADSES with the state-of-the-art related work.

Study 1a
Pu

bl
ic

Ve
ri

fia
bi

lit
y

1b
In

di
vi

du
al

Ve
ri

fia
bi

lit
y

2
A

no
ny

m
ity

3
A

ut
he

nt
ic

at
io

n

4a
O

ne
Vo

te
pe

r
Pe

rs
on

4b
N

o
D

up
lic

at
io

n

4c
N

o
Ta

m
pe

ri
ng

4d
N

o
Im

pe
rs

on
at

io
n

5
Tr

an
sp

ar
en

cy

6
C

on
si

st
en

cy

7
D

ep
en

da
bi

lit
y

8
N

o
In

te
rm

ed
ia

ry
R

es
ul

ts

9
Ti

m
e

E
ffi

ci
en

cy

10
Sc

al
ab

ili
ty

Li et al. [10] S S F S S S S S S S A S A F

Chaudhar et al. [11] S S F S S S S S S S S F S A

Rathee et al. [14] S S F F A A A A F S S S S A

Hjalmarsson et al. [15] F S F S S A A A F S S F S S

Shahzad and Crowcroft [16] S F A S S S S S F S S A S S

McCorry et al. [17] F S F S S S S S F S S S S F

Lai et al. [18] S S A S S S S S S S S S S F

Gao et al. [19] S S S S S S S S S S S F F F

Wang et al. [20] S S S F S S S S S S S S S F

Li et al. [21] S S F S S S S S S S S S F F

ADSES S S S S S S S S S S S S S S

8

CHAPTER 3

ANONYMOUS AND DECENTRALIZED SECURE ELECTION SYSTEM

(ADSES)

In this chapter, we provide an explanation and detailed information about ADSES.

We present a general overview of how ADSES operates during the election phase.

Following that, we define the system model by comprehensively explaining the com-

ponents involved. Subsequently, we analyze the requirements for a secure election

system.

Moving forward, we delve into the specifics of each ADSES phase, including the

pre-election and post-election processes. Moreover, we explore various analysis sec-

tions, such as Requirement analysis, Attack vectors and countermeasures, and finally,

cryptographic features and guarantees.

3.1 The overall Idea

v

r

v r

Voter

Officials

Id
1

id
1

id
2

id
3

Vote Message (m)

Random string

Id
2

Id
3

E
1
(m)

E
2
(m

1
)

E
3
(m

2
)

m
1

m
3

id
1

id
2

id
3

Step 1: Message Generation

m
2

m
3

Encrypted message (m
e
)

Step 2: Message Encryption Step 3: Message Signing

Voter Official 1

m
e

B
1
(m

e
)

S
1
(B

1
(m

e
))

U
1
(S

1
(B

1
(m

e
)))

S
1
(m

e
)

Voter Official 2

S
1
(m

e
)

...
...

...

S
2
(S

1
(m

e
))

Official 3

......

...

S
3
(S

2
(S

1
(m

e
)))

Figure 3.1: Comprehensive representation of the ADSES concept.

To better understand ADSES, let us consider a scenario where Alice participates as

a Voter in an election utilizing the ADSES system. A central Authority organizes

9

the election, and Inspectors from each party or candidate are called Officials within

the ADSES framework. This decentralized approach reduces reliance on a single

Authority. The roles and responsibilities of these entities are further explained in the

system model section.

To cast her vote, Alice begins by selecting the candidate she wishes to vote for. She

then appends a random string to her vote to ensure the uniqueness of each vote. Addi-

tionally, she attaches an identification string provided by each Official to ensure that

her vote is specifically generated for this particular election. The motivations behind

these steps are elaborated in the design section of this thesis.

Next, Alice proceeds to encrypt her vote, sequentially using the public encryption key

of each Official. This ensures that her vote remains confidential and unreadable until

the election concludes, preventing premature disclosure of the results. Subsequently,

she blinds her vote for each Official, sending them for signature. The Officials blind

sign her vote with their private signing keys. Once she receives the signed votes back,

she proceeds to unblind them. Alice also attaches the identification string provided by

each Official to her vote before the signing operations, ensuring that the signature of

her vote can be validated. This guarantees that while anyone can confirm the validity

of the signature, the vote cannot be traced back to the Voter.

To verify eligible voters, Officials can establish a one-time authentication system sim-

ilar to Turkey’s government-issued password system [40], applicable to all future

elections.

Lastly, Alice places her vote in a peer-to-peer distributed database with an immutable

data structure to ensure that all votes are transparently visible. She can submit her

signed vote to the distributed database at her discretion, preventing Officials from

establishing connections based on submission time. Additionally, she can employ

varying public IPs to enhance anonymity when interacting with the Officials and the

distributed database.

After the election concludes, Officials release the private keys of both the Encryption

and Decryption key pairs, allowing anyone to decrypt and read the votes in the peer-

to-peer distributed database.

10

In the upcoming sections of this chapter, each phase of the ADSES system will be

explained in detail, including the pre-election and post-election processes. Moreover,

there will be comprehensive analysis sections covering the requirements, potential

attack vectors, countermeasures, and cryptographic features and guarantees offered

by ADSES.

3.2 System Model

The system model of the Anonymous and Decentralized Secure Election System

(ADSES) comprises several components and processes that ensure a secure and trans-

parent election. This section provides an overview of the critical elements and their

operations.

3.2.1 Official

As previously mentioned, ADSES involves Officials who authenticate voters. Typ-

ically, a single entity called the Authority is responsible for authenticating voters.

However, when the Authority has sole control, it possesses excessive power over the

entire election system. For example, it can easily view intermediary results because it

holds the private key used in encryption. More entities with the same power level are

needed to resolve this issue. As a result, ADSES includes Inspectors who also serve

as Officials, similar to the Authority. Inspectors can be selected from the participating

candidates in the election.

3.2.1.1 Authority

The Authority plays a critical role in the ADSES system. It is responsible for or-

ganizing and overseeing the election process. The Authority ensures the necessary

infrastructure, including establishing secure communication channels and generating

key pairs for encryption and decryption.

In addition to managing the technical aspects of the election, the Authority is also

11

responsible for verifying the eligibility of voters. It authenticates the identity of vot-

ers and ensures that they are eligible to participate in the election. This verification

process helps maintain the election’s integrity and prevent fraudulent voting.

To avoid the concentration of power in a single entity, the Authority collaborates with

the Inspectors. As mentioned earlier, the Inspectors serve as Officials and possess

the same level of control as the Authority. This distributed approach helps to ensure

transparency and fairness throughout the election.

3.2.1.2 Inspector

Inspectors, as mentioned earlier, serve as Officials in the ADSES system. They are

typically selected from the participating candidates or political parties in the election.

The role of Inspectors is to authenticate voters and ensure the proper handling of

votes.

Like the Authority, Inspectors are responsible for verifying the eligibility of voters.

They play a crucial role in ensuring that only eligible voters can cast their votes and

that each vote is treated with confidentiality and integrity.

Inspectors collaborate with the Authority entity to establish a robust and secure elec-

tion process. Their active participation helps to distribute power and prevent any sin-

gle entity from having undue influence over the election outcome. Including Inspec-

tors as Officials in the ADSES system aims to create a decentralized and transparent

election process that inspires confidence among the participants.

It is important to note that the specific roles of Officials, Authority, and Inspectors

can vary depending on the election context. For example, in a presidential election,

the Authority could be a government organization responsible for administering the

election. At the same time, Inspectors could be representatives from the political

parties participating in the election. The exact configuration of ADSES will need

to be adapted to the specific election scenario to ensure the appropriate roles and

responsibilities are assigned.

By establishing a robust system model with multiple Officials, ADSES aims to dis-

12

tribute power and reduce the risk of any single entity manipulating the election pro-

cess.

3.2.2 Encryption

Encryption plays a crucial role in ADSES to ensure the confidentiality and integrity

of votes. During the pre-election phase, Officials generate key pairs consisting of

public and private keys. Only the public keys are published.

When voters cast their votes, they use the public encryption keys of Officials to en-

crypt their votes. This ensures that the votes remain hidden and unreadable until the

election concludes. The use of encryption maintains the secrecy of each vote and

prevents the exposure of intermediary results.

After the election, Officials reveal their private keys for decryption purposes. These

private keys are used to decrypt and read the votes. This step allows for the verifica-

tion and tallying of the votes.

By employing encryption techniques, ADSES provides essential security measures

that enhance the overall trustworthiness and integrity of the election process.

3.2.3 Blind Signature

In ADSES, blind signatures [41] serves as a crucial mechanism to enhance the pri-

vacy and unlinkability of votes. The blind signature process ensures that the Official

cannot establish any connection between the blinded and original votes or between

the blinded and original signatures. Here’s an overview of the steps involved in how

blind signatures work in ADSES:

13

Voters Officials

message

blinds the message

unblinds the signed

blinded message

signed message

signs the blinded

message

Figure 3.2: Depicts the process flow of the blind signature mechanism.

3.2.3.1 Blinding

Before sending the vote to the Official, the Voter applies cryptographic operations

to blind the vote. This blinding process obscures the content of the vote, making it

impossible for the Official to determine its actual value or establish any association

between the blinded vote and the original vote.

3.2.3.2 Signing

The blinded vote, which conceals its content from the Official, is then presented to

the Official for signature. The Official signs the blinded vote, unaware of its actual

content. This means that the Official cannot intentionally modify the vote based on

the knowledge of specific votes or manipulate the election outcome.

14

3.2.3.3 Unblinding

Using the inverse cryptographic operations employed for blinding, the Voter can "un-

blind" the signature. This process retrieves the exact signature for their original vote

without compromising its privacy or integrity.

3.2.3.4 Unsigning

Anyone can unsign the vote using the Officials’ public signing key pair and verify

if the Officials authenticate the vote. For a vote to be saved in a peer-to-peer dis-

tributed database, it needs to be confirmed that the vote can unsign with all Official

public signing keys, and the resulting value should end with the IDs of all Officials,

as explained in the Design section.

Please note that to enable the blinding and reversibility of the signing operation, no

padding or hashing mechanism is used during these operations. Votes are directly

blinded, signed, unblinded, and unsigned.

By employing blind signatures, ADSES ensures the votes remain private and untrace-

able. It prevents the Official from linking a vote to a specific voter or being able to

distinguish between different votes based on the associated signatures. The blind sig-

nature mechanism strengthens the anonymity and integrity of the election process in

ADSES, enabling voters to participate confidently in a secure and protected environ-

ment.

3.2.4 Peer-to-peer distributed database

A peer-to-peer distributed database with an immutable data structure stores all votes

data in ADSES. The requirements for storing votes in the database are as follows:

• Only authenticated votes, meaning votes consecutively signed by all Officials,

can be accepted into the database.

• The database with the maximum number of authenticated votes is considered

15

Table 3.1: Definitions of operations used during the election phase.

Symbol Definition

Ei(m) Encrypts the message m with the i-th Official’s encryption key.

Si(m) Signs the message m with the i-th Official’s signing key.

Bi(m) Blinds the message m with the blinding factor generated for the i-th

Official’s signing key.

UBi(m) Unblinds the message m with the blinding factor generated for the

i-th Official’s signing key.

Di(m) Decrypts the message m with the i-th Official’s decryption key.

USi(m) Unsings the message m with the i-th Official’s signing key.

the most accurate.

These requirements serve the purpose of ensuring that only authenticated votes are

included in the database. Furthermore, they guarantee the accuracy of the votes data

stored in the database while maintaining consistency among all copies.

The process to add a new vote to the database is as follows:

• Voter sends the signed vote to a peer of the distributed database.

• Peer verifies whether all Officials have signed the vote. If not, it is discarded.

• If the vote is valid, it is saved into the database.

Unfortunately, there is no widely-accepted implementation of a peer-to-peer dis-

tributed database with an immutable data structure for storing votes in ADSES. Al-

though OrbitDB [42], which uses IPFS [43] as its data storage, may be considered

the closest approximation, even if it is incomplete. This highlights the ongoing chal-

lenges and limitations in achieving a fully functional solution for the desired database

system. Future development and research are required to address these limitations

and refine the implementation of such a database for secure and accurate storage of

voting data.

The system model outlined above describes the key components and processes em-

ployed in ADSES to ensure a secure and transparent election process. By utilizing

16

signatures, signing, blind signatures, encryption, and the roles of Authority and In-

spector, ADSES meets the requirements for a trustworthy and reliable election sys-

tem. Table 3.1 shows the operations and their definitions used in the following Design

section.

3.3 Requirement Analysis

In this section, we present the basic requirements of an e-election system.

1. Verifiability:

(a) Public Verifiability : Allowing everyone to validate the election outcome

ensures transparency. Upon election completion, participants can inde-

pendently verify that the announced results are accurate. Public verifia-

bility is crucial for elections, as voters need confidence in the accuracy of

the reported results. This requirement involves making the voting process

and results publicly accessible for scrutiny and analysis.

(b) Individual Verifiability: Every voter can confirm that their vote has been

accurately included in the final tally. While public verifiability allows for

overall result verification, individual verifiability ensures that each voter’s

choice is accurately reflected. Individual verifiability is vital for elections

since voters need assurance that their vote is counted correctly. This re-

quirement involves providing each voter with a means to verify if their

vote has been accurately recorded.

2. Anonymity: Voter anonymity must be protected, ensuring no one, including

officials, can trace a vote back to a specific individual. Anonymity is crucial

for elections as it enables voters to cast their votes without pressure or fear of

reprisal. This requirement involves implementing mechanisms that prevent the

association of votes with voters’ identities.

3. Authentication: Voting is limited to authorized individuals. Officials prepare

eligible voter lists, and only those individuals can cast their votes. After the

election, no additional votes should be present in the results. Authentication

17

is vital for elections to ensure fraudulent votes cannot be added to the system.

This requirement involves verifying the identity and eligibility of voters before

allowing them to cast their votes.

4. Accuracy:

(a) One Vote per Person: Each person can vote only once, and the sys-

tem prevents multiple voting. Limiting voting to one vote per person is

essential for elections as it preserves trust in the electoral process. This

requirement involves validating that each voter can only cast a single vote.

(b) No Duplication: Vote duplication is not permitted, even if the content

of the vote is unknown. Preventing duplication is crucial for elections to

reassure voters that no group can manipulate the results. This requirement

involves implementing measures to detect and prevent the inclusion of

duplicate votes in the final tally.

(c) No Tampering: Votes cannot be altered without detection, and the sys-

tem ensures that once cast, votes remain unchanged until the results are

announced. Preventing tampering is critical for elections to maintain voter

trust in the system. This requirement involves implementing secure stor-

age and cryptographic techniques to ensure the integrity and immutability

of the votes.

(d) No Impersonation: Voting on behalf of others is not allowed, and the

system verifies authentication credentials to prevent impersonation. Pre-

venting impersonation is essential for elections to protect the integrity of

each voter’s choice. This requirement involves robust verification mecha-

nisms to ensure that only eligible voters can cast their votes.

5. Transparency: The entire election process is open to observation, with all

steps adhering to established standards. Transparency is vital for elections as it

enables Voters to trust the system through direct observation. This requirement

involves providing public access to the various stages of the election process,

including vote encryption, decryption, and tallying while maintaining voter pri-

vacy.

6. Consistency: All election participants maintain identical voting records and ac-

18

cept the same election outcome. Consistency is crucial for elections to prevent

disputes and maintain trust in the system. This requirement involves ensuring

that all entities involved in the election process have consistent views of the

votes and that discrepancies are detected and resolved.

7. Dependability: Cryptographic algorithms guarantee protection against dishon-

est behaviors and attacks throughout the voting process. Dependability is vital

for elections as voters need confidence in the system’s security and integrity.

This requirement involves selecting and implementing robust cryptographic al-

gorithms and protocols to withstand various threats and attacks.

8. No Intermediary Results: Election results are withheld until voting is com-

plete, preventing potential manipulation based on preliminary outcomes. Pro-

hibiting intermediary results is essential for elections to protect voters from

undue influence or manipulation. This requirement involves ensuring that the

election results are kept confidential until the voting period ends and announc-

ing the results only after all votes have been cast.

9. Time Efficiency: Results are revealed promptly after the election concludes.

Time efficiency is crucial for elections as voters expect timely results, and rapid

announcements reduce opportunities for system tampering. This requirement

involves optimizing the voting and tabulation processes to provide quick and

accurate results within a reasonable timeframe.

10. Scalability: The system must handle many voters and adapt to increasing de-

mand without compromising security, efficiency, or performance. Scalability

is essential for elections as it ensures the system remains robust and functional

even as the voter population grows while maintaining the integrity and perfor-

mance expected in the election process. This requirement involves designing

the system architecture and infrastructure to handle many simultaneous voters,

ensuring efficient and secure communication, and scaling resources according

to the demand.

In summary, an election system must ensure verifiability, anonymity, authentication,

accuracy, transparency, consistency, dependability, no intermediary results, time effi-

ciency, and scalability. These requirements collectively aim to create a trustworthy,

19

secure, and efficient electoral process that guarantees the validity of each vote, pro-

tects voter privacy, and maintains public confidence in the integrity and fairness of the

elections. Implementing these requirements involves combining cryptographic tech-

niques, robust authentication mechanisms, secure storage and transmission of votes,

adherence to transparency standards, and adopting scalable infrastructure to accom-

modate a growing voter population.

3.4 Design

ADSES is designed as a multi-stage e-voting protocol with distinct user roles divided

into two groups: Voters and Officials. Voters participate in the election using their

local devices, eliminating the need for dedicated voting machines. Officials are re-

sponsible for Voter and vote authentication, including the Authority, who organizes

the election, and Inspectors from each candidate.

The operations of ADSES can be categorized into three distinct phases: pre-election,

election, and post-election. While ADSES primarily focuses on the election process,

it also includes preliminary steps to initiate the election and ensures the availability

of complete results by tallying votes after the election. The following subsections

provide a detailed explanation of ADSES operations during each phase.

3.4.1 Pre-Election Phase

The pre-election phase involves completing operations before the election begins.

Some tasks are required before every election, while others can only be performed

once.

Key pair and identifier generation operations must be done before each election during

the pre-election phase. However, secure channel establishment can be done one time

and reused for many elections. It can even be used for processes other than elections

by the Authority.

20

Voters Officials Distributed Database

Generates Encryption

and Decryption keys

Receives Encryption

key

Generates Signing and

Unsigning keys

Receives Unsigning

key

Generates identifier

Receives identifier

Figure 3.3: Illustration outlining the sequence of actions in the Pre-election phase.

3.4.1.1 Key Pair and Identifier Generation

Each Official generates unique information used by both Voters and Officials during

the election and post-election phases. They create two asymmetrical key pairs: En-

cryption (public) and Decryption (private) keys, and Signing (private) and Unsigning

(public) keys. Each Official also generates an identifier for themselves.

Officials only publish the public key parts during the pre-election phase: the Encryp-

tion and Unsigning keys. The Decryption and Signing keys are also posted after the

election phase is finalized and the post-election phase starts.

Encryption keys conceal results until the election phase is finalized and the post-

election phase starts. Each Voter encrypts their votes with each Official’s encryption

key one by one, ensuring that even officials cannot view the content unless they col-

laborate. However, collaboration is unlikely since they represent competing interests.

When the post-election phase starts, everyone can see the Decryption keys, decrypt

all votes, and view the results.

Unsigning keys are used to verify the authentication of the votes placed in the dis-

tributed database, ensuring that only authenticated Voters can submit their votes to

21

the distributed database. Each Voter sends their blinded vote to each Official individ-

ually and receives their blinded vote signed by the Official’s Signing key. They then

unblind it and obtain their signed vote, which cannot be related to the blinded votes

sent to Officials in any way. Since Unsigning keys are publicly available, anyone can

verify and only accept authenticated votes in the distributed database.

The identifier of each Official is also attached to each vote before encryption by the

Voter, allowing verification that the vote is generated specifically for the election.

Additionally, the identifier is added after encryption to ensure that the unsigned vote

has a specific suffix and is valid.

Key pair and identifier generation is a crucial step in the pre-election phase of the AD-

SES e-voting protocol. Each Official in the election generates unique asymmetrical

key pairs consisting of Encryption/Decryption and Signing/Unsigning keys. These

keys play a vital role in securing the voting process. Officials publish the public key

parts, enabling Voters to encrypt their votes and verify their authenticity. Additionally,

each Official generates an identifier attached to each vote to ensure it is specific to the

election and to facilitate the verification of unsigned votes. This process enhances the

security and integrity of the ADSES e-voting protocol.

3.4.1.2 Secure Channel Establishment

During the ADSES protocol’s election phase, each Official must authenticate every

Voter and sign their blinded votes. Establishing a secure channel or method for user

authentication is critical to this process. However, the ADSES protocol does not spec-

ify a particular way for secure channel establishment, as it depends on each election’s

specific requirements and existing authentication procedures.

The choice of secure channel establishment must be made for each election and elec-

tion group individually, ensuring compatibility with the Authority’s authentication

system or the specific needs of the election organizers. This flexibility allows for in-

tegrating the ADSES protocol with the existing infrastructure, enabling a seamless

and secure authentication process.

For example, in an election for a Chair position in a Computer Engineering depart-

22

ment at a university, a suitable method could involve using email as the secure chan-

nel. Each Voter could send a "Vote Authentication" email containing their blinded

vote to the designated Officials. The Officials would then respond to the email, pro-

viding their signature to authenticate the vote. This method relies on the trustworthi-

ness of email ownership, ensuring that only legitimate Voters can participate in the

election process.

Similarly, in the context of a national election, the ADSES protocol could leverage an

established system, such as an online platform like Turkey’s E-Government website.

Citizens could log in to their E-Government accounts securely and utilize the existing

authentication mechanism to verify their eligibility as Voters.

By allowing flexibility in selecting the secure channel establishment, the ADSES pro-

tocol accommodates diverse election scenarios and aligns with the specific needs of

different authorities or election organizers. This approach ensures the authentication

process is integrated seamlessly, guaranteeing a secure and credible voting environ-

ment.

3.4.2 Election Phase

The Election phase is a critical component of the ADSES, where Voters generate

their votes, perform necessary operations, and store them in the peer-to-peer dis-

tributed database. The overall process involves various steps, depicted in Figure 3.4,

illustrating the flow of operations.

23

Message Generation

Message Encryption

Signing by Official1

Signing by Official2

.

.

.

Signing by Officialn

Publish the message to database

Figure 3.4: Diagram illustrating the sequential steps involved during the Election

phase.

The first step is message generation, where the Voter creates their vote. This is fol-

lowed by message encryption, ensuring the confidentiality of the vote. The following

essential step is the signing process, which involves each Official sequentially signing

the blinded vote. This ensures the authenticity and integrity of the message. The last

step in this phase is publishing the signed message to the distributed database.

Figure 3.5 provides a high-level overview of the Election phase to illustrate the in-

teractions further. The Voter generates, encrypts, and blinds the vote. The blinded

vote is then forwarded to the Officials, who individually sign the blinded vote. After

receiving the signed vote, the Voter unblinds it to reveal the original message with-

out compromising privacy. Finally, the Voter adds the signed vote to the distributed

database.

24

Voter Officials Distributed Database

Generates, encrypts,

and blinds the vote

Signs the blinded vote

Receives and unblinds

the vote
Voter puts the signed

vote into the distributed

database

Figure 3.5: A diagram showing the sequence of operations carried out during the

Election phase.

By following these steps, the Election phase guarantees the secure handling of votes,

maintaining their privacy, authenticity, and integrity throughout the process.

3.4.2.1 Message Generation

In the Message Generation step, Voters decide on their votes and transform them into

unique and verifiable messages. These messages will be encrypted, signed, and stored

in the peer-to-peer distributed database.

25

V oter

v

v||r

v||r||id = m

Figure 3.6: Diagram displays the message generation process during the Election

phase.

Every Voter decides on their vote when the election starts, as shown in Figure 3.6.

Let us represent the vote of an individual as v. For example, let’s assume we have

two candidates in the election: Alice and Bob. The Authority can represent Their

vote characters as A and B. For example, as a Voter, Mallory chooses A as her vote.

To ensure uniqueness, voters concatenate a random string r to their votes. This pre-

vents malicious entities from quickly duplicating votes in the peer-to-peer distributed

database.

v||r

For example, Mallory concatenates the random string KLD to her vote and generates

AKLD.

Next, the Voter concatenates the IDs of all officials, sorted lexicographically by their

names. These IDs will be used to validate votes at the end of the election.

26

v||r||id = m

Let’s assume the Authority generates their ID as XY Y Z, Alice generates their ID as

HTRJ , and Bob generates their ID as KQXM . Then, Mallory’s message becomes

AKLDXY Y ZHTRJKQXM

As a result, the Voter generates the message by concatenating their vote, the random

string, and the IDs of officials. This ensures that each message is unique and can be

verified later.

3.4.2.2 Message Encryption

In the Message Encryption step, Voter encrypts their message using the encryption

keys of all the officials involved in the election. This ensures no one can read the

votes until the election is complete.

The Voter encrypts their message, denoted as m, using the encryption key of each

Official. The encryption is performed consecutively, starting from the first Official’s

key, as shown in Figure 3.7.

27

V oter

m

E1(m)

E2(E1(m))

.

.

.

EN(...E2(E1(m)))

EN(...E2(E1(m)))||id = me

Figure 3.7: The diagram depicts the sequence of message encryption during the Elec-

tion phase.

The resulting encrypted message is represented as

En(..E2(E1(m)))

Finally, the Voter appends the IDs of all officials to the encrypted message to create

the final encrypted message, denoted as

En(..E2(E1(m)))||id = me

This ensures that each encrypted message is unique and can be verified and decrypted

later in the post-election phase.

3.4.2.3 Message Signing

Message Signing process ensures the integrity and authenticity of the votes in the

peer-to-peer distributed database. This process involves the Voter blind-signing their

message and sequentially sending it to each Official for signature. The officials sign

the blinded message, which the Voter unblinds to obtain the signed message without

28

exposing its content to the officials. The signed message is then stored in the peer-to-

peer distributed database, where its validity can be verified.

It is essential to prevent officials from seeing the content of the message and making

any connection between the message stored in the peer-to-peer distributed database

and the messages sent to them.

To obtain the signature from the first Official, the Voter generates a blinding factor

for the Official’s signing key and blinds their message with this factor:

B1(me)

The Voter sends the blinded message to the first Official, as shown in Figure 3.8. The

Official signs the blinded message using their Signing key:

S1(B1(me))

V oter

me

S0(B0(me))

UB0(S0(B0(me)))

S0(me)

Official1

B0(me)

Figure 3.8: This illustrates the process of signing by Official1 during the Election

phase.

Then, the Official sends it back to the Voter. To verify the signature’s validity, the

Voter unsigns it and compares it to the blinded message:

29

US1(S1(B1(me)))? = B1(me)

Next, the Voter unblinds the message using the blinding factor, resulting in obtaining

the signed message without exposing it to the Official:

UB1(S1(B1(me))) = S1((me))

Then, the Voter performs the same operations to obtain a signature from the second

Official, as depicted in Figure 3.9.

S2(S1((me)))

V oter

S0(me)

S1(B1(S0(me)))

UB1(S1(B1(S0(me))))

S1(S0(me))

Official2

B1(S0(me))

Figure 3.9: Diagram of the election process emphasizing Official2’s participation

in signing.

The Voter continues to obtain the signature from each Official one by one until the

nth Official, as illustrated in Figure 3.10.

Sn(..S2(S1((me)))) = ms

30

V oter

Sn−1(...S1(S0(me)))

Sn(Bn(Sn−1(...S1(S0(me)))))

UBn(Sn(Bn(Sn−1(...S1(S0(me))))))

Sn(Sn−1(...S1(S0(me)))) = ms

Officialn

Bn(Sn−1(...S1(S0(me))))

Figure 3.10: The election phase diagram illustrating Officialn’s involvement in

signing.

3.4.2.4 Message Publishing

In the Message Publishing process, the Voter attempts to store the signed message in

the peer-to-peer distributed database. Other nodes (public) verify the validity of the

votes by performing the unsigning operation with the unsign key of each Official one

by one in reverse order:

US1(US2(..USn(ms)))

Following that, they check if the resulting value ends with the IDs of all the Offi-

cials. If the value does not match the expected format, indicating that it does not

end with the IDs of all officials, the signed message is removed from the peer-to-peer

distributed database.

In conclusion, the Election phase ensures the integrity and authenticity of votes within

a peer-to-peer distributed database. Through message signing, the Voter securely

blinds and obtains signatures from Officials without revealing the content of the vote.

The signed messages are then stored in the distributed database, where other nodes

verify their validity. Any discrepancies or tampering attempts can be detected and

31

flagged by performing unsigning operations and checking for the presence of all Of-

ficials’ IDs. This robust mechanism fortifies the integrity of the voting system, in-

stilling confidence in the accuracy and trustworthiness of the collected votes. With

a well-designed and implemented Election phase, the overall voting process can be

robust and resilient, safeguarding democratic principles and ensuring a fair represen-

tation of the Voters’ choices.

3.4.3 Post-Election

After the completion of the election phase, the Post-Election phase begins, which

includes two main steps: Decryption Key Broadcasting and Calculating Results.

Voter Officials Distributed Database

Discloses private keys

Receives private keys

Election results are

visible to everyone

Figure 3.11: Post-election phase overview showing key transfer and results disclo-

sure.

3.4.3.1 Decryption Key Broadcasting

In this step, Officials broadcast their Decryption keys to allow every node in the dis-

tributed database to decrypt the messages and reveal the election results. The broad-

casting ensures that the decryption keys are readily available to all authorized entities.

3.4.3.2 Tallying

Once the decryption keys are broadcasted, anyone from the public can calculate the

election results. The following steps are performed for each vote:

32

• The signed vote is unsigned by using each official’s Unsign key one by one in

reverse order.

• Starting from the end of the message, the IDs of all officials are discarded,

resulting in the encrypted vote.

• The encrypted vote is decrypted using each Official’s Decryption key one by

one in reverse order.

• It is then checked if the message ends with the IDs of all officials. If not, the

message is discarded.

• The IDs of all officials and the random string at the end of the message are

discarded.

• Valid votes are collected, and the overall results are calculated based on these

valid votes.

By employing a distributed database, the ADSES voting system ensures the security

and privacy of votes while enabling transparency and verifiability. The Post-Election

phase validates only legitimate votes and allows any public member to calculate the

election results accurately. This process maintains the integrity of the voting system

and instills confidence in the election’s outcome.

3.5 Security Analysis

This section provides a security analysis of ADSES, focusing on how the system

addresses the requirements outlined earlier in the methodology. We discuss each re-

quirement and explain how ADSES ensures the election process’s security, accuracy,

and transparency.

3.5.1 Verifiability

Public Verifiability: In ADSES, public verifiability is achieved by allowing anyone

to verify the election outcome. After the election concludes, any participant can in-

dependently confirm that the results announced by the Officials are accurate. This

33

feature is crucial for establishing trust in the election process and ensuring the re-

ported results are legitimate.

Individual Verifiability: ADSES ensures individual verifiability by allowing voters

to confirm that their votes have been accurately counted in the final tabulation. The

system’s design enables voters to verify the overall election results and the inclu-

sion of their votes in calculating the outcome. Voters can confirm whether their vote,

which they put in the peer-to-peer distributed database during the election phase, is

still included and counted in the final tabulation. This feature enhances voter confi-

dence in the election process, ensuring their votes have been accurately recorded and

counted.

3.5.2 Anonymity

ADSES guarantees Voter anonymity by employing a combination of encryption, blind

signatures, and secure communication channels. This approach ensures that no one,

including officials, can link a vote to a specific voter. Anonymity is a critical require-

ment for a secure election process, as it allows voters to cast their votes without fear

of retribution or coercion.

3.5.3 Authentication

The system ensures voter authentication by establishing a secure channel between

Voters and Officials, wherein only authorized Voters can participate in the election.

Officials define the eligible voter list before the election, and the system ensures that

only those on the list can vote. This requirement is essential for maintaining the in-

tegrity of the election, as it prevents unauthorized votes from being cast and included

in the final results.

3.5.4 Accuracy

Voting Once: ADSES ensures that no one can vote more than once by implementing

unique authentication credentials for each voter and verifying their identity during

34

voting. This feature is critical for maintaining trust in the election, as voters can be

confident that their vote carries equal weight as everyone else’s.

No Duplication: The system prevents vote duplication by adding a random string

to each vote, making them unique. This feature ensures that no one can duplicate

someone else’s vote, even if they cannot see the content of the vote. For example, it

prevents scenarios where someone obtains an already signed vote from the distributed

database and attempts to send it back as a new vote. Each vote in the distributed

database is expected to be unique, further enhancing security. Preventing duplication

is crucial for maintaining the integrity of the election, as it prevents malicious actors

from manipulating the results.

No Change: ADSES employs cryptographic algorithms to ensure no one can change

a vote without being discovered. Once a vote is placed in the system, it remains un-

changed until the election results are announced. All votes are encrypted and signed,

which means that the content of a vote cannot be altered while preserving its validity.

A mutable data structure further ensures that votes cannot be changed once stored.

This feature is critical for fostering trust in the election process, as it assures voters

that their vote will not be tampered with after submission.

No Imitation: The system prevents vote imitation by verifying the authentication

credentials provided by each voter and ensuring that they belong to the intended in-

dividual. Additionally, the system does not allow anyone to bypass the authentica-

tion step and cast a vote on behalf of someone else. This requirement is crucial for

maintaining the integrity of the election, as it prevents unauthorized individuals from

voting in place of legitimate voters.

3.5.5 Transparency

ADSES promotes transparency by allowing everyone to observe the entire election

procedure. The system ensures that all steps of the election adhere to established

standards, allowing everyone to view signed votes on the system during the election.

After the election, everyone can see the unsigned and unencrypted votes without any

voter relation and validate the results. Transparency is crucial for a secure election,

35

enabling voters to observe the process and trust the system.

3.5.6 Consistency

The system ensures consistency by requiring all participants involved in the election

to maintain the same record of the voting procedure and accept the same outcome.

Consistency is vital for a secure election, as it prevents disputes over the results and

fosters trust in the system.

3.5.7 Dependability

ADSES guarantees dependability by utilizing cryptographic algorithms to protect the

voting procedure against dishonest behaviors and attacks. This feature is critical for

a secure election, as it assures voters that their votes are processed securely and that

the system is resilient against potential threats.

3.5.8 No Intermediary Results

The system prevents the release of intermediary results by encrypting votes before

officials sign them. This approach ensures that election results can only be known

after the voting process has concluded, protecting voters from potential manipulation

and ensuring that early results do not influence their choices.

3.5.9 Time Efficiency

ADSES achieves time efficiency by quickly revealing the results after the election

concludes. This feature is essential for a secure election, as voters are eager to know

the outcome as soon as possible. Additionally, announcing results promptly mini-

mizes the window of opportunity for potential attackers to tamper with the system.

Time efficiency helps build trust in the election process and increases voter satisfac-

tion.

36

In summary, the security analysis of ADSES demonstrates that the system effec-

tively addresses the critical requirements for a secure, accurate, and transparent elec-

tion process. By ensuring verifiability, anonymity, authentication, accuracy, trans-

parency, consistency, dependability, protection against intermediary results, and time

efficiency, ADSES provides a robust and reliable e-voting protocol that fosters trust

and confidence in the election process.

3.6 Attack Vectors and Countermeasures in ADSES

In this section, we discuss the possible attack vectors that ADSES may face and the

countermeasures taken by the system to mitigate these risks.

3.6.1 Vote Tampering

Attack: An attacker may attempt to modify the votes recorded on the distributed

database to influence the election results.

Countermeasure: ADSES employs a combination of encryption, signing, and stor-

ing in a peer-to-peer distributed database to ensure the integrity of votes. Each vote

is encrypted using the encryption keys of all officials and signed individually. The

distributed database, coupled with a consensus mechanism, verifies the authenticity

of votes and prevents any attempts to tamper with them.

3.6.2 Fake Votes

Attack: An attacker may attempt to introduce fake votes into the system to skew the

election results.

Countermeasure: The ADSES system requires that each vote be signed by all Offi-

cials using their unique Signing keys. This ensures that the system accepts only valid

votes cast by authenticated Voters. Any fake votes will not have valid signatures and

will be rejected by the nodes in the distributed database.

37

3.6.3 Voter Privacy Violation

Attack: An attacker may attempt to compromise voter privacy by associating votes

with an individual or a group of voters.

Countermeasure: ADSES utilizes blind signatures and encryption to protect voter

privacy. Each voter’s vote is encrypted using the encryption keys of all Officials

and then blinded before being individually signed by each Official. This process

ensures that officials cannot associate the vote with the specific voter. Furthermore,

including a random string attached to each vote enhances privacy by guaranteeing the

uniqueness of each vote, making it challenging to link multiple votes to any specific

group of voters.

3.6.4 Denial of Service [1]

Attack: An attacker may attempt to flood the system with invalid votes or transac-

tions, causing a denial of service and preventing legitimate votes from being pro-

cessed.

Countermeasure: The distributed database’s consensus mechanism and the require-

ment for valid signatures from all Officials help mitigate the risk of denial of service

attacks. Additionally, the peer-to-peer distributed nature of the database makes it

more resilient against such attacks. The network automatically rejects invalid votes

or transactions, ensuring the system can process legitimate votes without interrup-

tions.

3.6.5 Collusion Among Officials

Attack: A group of Officials may conspire to manipulate the election results or com-

promise voter privacy.

Countermeasure: In ADSES, Officials are chosen from each candidate, such as

different political parties or public officers, in case of a national election. This makes

collaboration among Officials less likely. Furthermore, the use of blind signatures

38

and encryption ensures that even if a group of Officials was to collude, they would

not be able to compromise voter privacy or alter the election results without being

detected by the consensus mechanism among nodes in the distributed database.

3.6.6 Sybil Attack [2]

Attack: In a Sybil attack, a malicious actor creates multiple fake identities to gain

control or influence over the network. In the context of ADSES, this could involve an

attacker creating multiple fake voter identities to cast illegitimate votes.

Countermeasure: ADSES requires voters to be registered and authenticated by of-

ficials, ensuring that each voter has a unique and valid identity. This process helps

prevent Sybil attacks by ensuring that only legitimate voters can participate in the

election.

3.6.7 Man-in-the-Middle (MITM) Attack [3]

Attack: A man-in-the-middle (MITM) attack occurs when a malicious actor inter-

cepts communication between two parties and can read, modify, or inject new mes-

sages. In the context of ADSES, a MITM attack could target the communication

between voters and officials or nodes in the distributed database.

Countermeasure: ADSES employs end-to-end encryption and digital signatures to

secure the communication between voters and officials. This ensures that an attacker

cannot read or modify any intercepted messages. Furthermore, securing the commu-

nication between nodes in the distributed database can help prevent MITM attacks

targeting the database.

3.6.8 Vote-Buying and Coercion

Attack: Vote-buying and coercion involve a malicious actor attempting to influence

a voter’s choice by offering incentives or applying pressure. In the context of AD-

SES, this could involve an attacker trying to determine a voter’s choice based on the

39

encrypted vote data.

Countermeasure: ADSES ensures vote privacy using encryption and blind signa-

tures. This makes it practically impossible for an attacker to determine the content of

a vote without access to the decryption keys of all officials. Furthermore, the random

string added to each vote during the message generation step ensures that even if an

attacker could decrypt the vote, they could not link it back to a specific voter, thereby

protecting against vote-buying and coercion.

3.7 Cryptographic Features and Guarantees in ADSES

In this section, we discuss the cryptographic features [44] and guarantees provided

by the ADSES system to ensure the security, privacy, and integrity of the electronic

voting process.

3.7.1 Forward Secrecy

Definition: Forward secrecy is a property of cryptographic systems that ensures the

compromise of a long-term key does not compromise past session keys or the data

encrypted with those session keys.

ADSES Implementation: In ADSES, each voter generates a random string (r) and

appends it to their vote. This randomization ensures that even if an Official’s encryp-

tion key is compromised in the future, the attacker cannot determine the original vote

by analyzing the encrypted data. Moreover, since the vote is encrypted using the en-

cryption keys of all Officials, the attacker would need to compromise all Officials’

keys to reveal the original vote, further enhancing forward secrecy.

3.7.2 Backward Secrecy

Definition: Backward secrecy, also known as future secrecy, is a property of crypto-

graphic systems that ensures the compromise of a long-term key does not compromise

the security of future session keys or the data encrypted with those session keys.

40

ADSES Implementation: ADSES achieves backward secrecy by using unique en-

cryption and signing key pairs for each election. If an Official’s key is compromised

after an election, the attacker cannot use it to manipulate future elections. Addition-

ally, selecting Officials from various independent entities reduces the risk of a single

point of failure and further strengthens backward secrecy.

3.7.3 Key Authenticity

Definition: Key authenticity is the property of cryptographic systems that ensures

the keys used for encryption and signing are genuine and belong to their respective

owners.

ADSES Implementation: In ADSES, key authenticity is achieved by having each

Official generate their encryption, signing key pairs, and broadcast their public keys

before the election. This allows voters and other nodes in the distributed database to

verify the authenticity of the keys used to encrypt and sign votes.

3.7.4 Non-repudiation

Definition: Non-repudiation is a property of cryptographic systems that ensures a

party cannot deny the authenticity of their signature on a document or the transmission

of a message.

ADSES Implementation: Non-repudiation is achieved in ADSES through digital

signatures. When an Official signs a vote, they use their private signing key to gen-

erate a unique signature. Anyone can verify this signature using the Official’s public

Unsigning key. Since the private Signing key is known only to the Official, they

cannot deny signing the vote.

3.7.5 Unforgeability

Definition: Unforgeability is a property of cryptographic systems that ensures it is

computationally infeasible for an attacker to create a valid signature or encryption

41

without possessing the appropriate private key.

ADSES Implementation: ADSES ensures unforgeability through public-key cryp-

tography for encryption and digital signatures. Since the private keys are known only

to their respective owners (Officials), it is computationally infeasible for an attacker

to create a valid signature or encryption without access to the private key.

3.7.6 Data Integrity

Definition: Data integrity is a property of cryptographic systems that ensures the

accuracy and consistency of data over its lifecycle. In the context of ADSES, data in-

tegrity ensures that votes are not tampered with or altered during the election process.

ADSES Implementation: ADSES achieves data integrity through digital signatures

and the distributed database. When a voter casts their vote, the vote is signed by the

voter and all officials involved. Any attempt to tamper with the vote will invalidate

the signatures, making it evident that the data has been altered. Additionally, the

distributed nature of the database ensures that multiple copies of the data exist, further

safeguarding against tampering.

3.7.7 Authentication

Definition: Authentication is a property of cryptographic systems that ensures the

identity of the entities involved in the process. In the context of ADSES, authenti-

cation ensures that only legitimate voters can participate in the election and that the

officials are genuine.

ADSES Implementation: ADSES achieves authentication by requiring Voters to be

registered and authenticated by Officials before participating in the election. This

ensures that each voter has a unique and valid identity. Furthermore, Officials are

authenticated using their digital signatures and public keys, guaranteeing they are

genuine and authorized to participate in the election process.

42

CHAPTER 4

IMPLEMENTATION

This chapter provides a detailed overview of the implementation of ADSES [45] and

the conducted experiments. It begins with the practical implementation of ADSES,

including the technologies utilized, the testing environment’s deployment, and the

validation presentation with experimental results.

4.1 Practical Implementation of ADSES

ADSES was implemented by developing two web applications, the Official and Voter

Web Apps. These applications were designed to ensure practical applicability and

have been made available as open-source projects [46]. By being open-source, the

public is provided with the opportunity to examine and verify the functionality and

security features of the applications.

4.1.1 Official Web App

The Official Web App serves as a platform for election authorities and party inspectors

to oversee the election process. It empowers these individuals to generate encryption

and decryption keys and distribute them as needed throughout the various stages of

the election.

To ensure transparency and trust, the Official Web App is designed to be easily de-

ployed and operated on the systems of each authority and inspector. This enables

multiple parties to independently verify and validate the election process, promoting

a robust and reliable electoral system.

43

4.1.1.1 API Endpoints

Key Pairs: The Voter Web App utilizes this endpoint to obtain the encryption and

signing keys of the Official. Initially, only the public parts of the keys are accessible.

After the election concludes, the private parts become available as well.

Sign a vote: This endpoint is used by the Voter Web App to request a blind signature

for a submitted vote.

Votes: The Votes endpoint facilitates the submission of encrypted and signed votes

from the Voter Web App to the Official Web App. It is important to note that the orig-

inal ADSES design incorporates a peer-to-peer distributed database to securely and

transparently store all votes. However, due to the unavailability of a widely accessible

peer-to-peer distributed database, we could not implement it as intended. Therefore,

to demonstrate the complete implementation of ADSES, we utilized an alternative

API endpoint and Relational Database to store votes.

Result: Once the election concludes and decryption keys are distributed, this end-

point provides access to the final election results.

4.1.2 Voter Web App

The Voter Web App is designed to ensure a smooth and secure voting experience

for eligible voters. It guides voters through submitting their votes and allows them

to verify their votes. The web application incorporates an intuitive user interface to

simplify voting and encourage voter participation.

With the Voter Web App, voters can confidently cast their votes, knowing that their

anonymity is preserved and their votes are securely recorded in the database.

4.1.2.1 Web pages

Vote: This page enables voters to submit their votes securely. The process involves

selecting a candidate, appending a random string to the vote, blinding it, forwarding

it to the authorities for authentication and signature, and finally submitting it to the

44

database.

4.2 Used Technologies

This section explores the various technologies utilized in the development of our so-

lution. We begin with an overview of Python 3, highlighting its high-level capabilities

and extensive library ecosystem. Next, we discuss the Python Cryptography Toolkit

(PyCryptodome) and its role in seamlessly handling cryptographic operations. We

then delve into implementing RSA, a widely-used public-key cryptography system

known for its security and versatility. Additionally, we examine the Django Rest

Framework, which played a vital role in developing a flexible and extensible API.

Lastly, we showcase the utilization of Amazon Web Services (AWS), specifically

CloudFormation, EC2, and Route53, for deploying and managing our solution in the

cloud.

4.2.1 Python

Python3 [47] was chosen as the programming language for its high-level capabili-

ties, enabling us to focus on core concepts without getting bogged down in low-level

details. Additionally, Python3’s extensive library ecosystem greatly facilitated our

implementation of cryptographic operations.

4.2.2 Python Cryptography Toolkit

We used the Python Cryptography Toolkit, PyCryptodome [48], to seamlessly handle

cryptographic operations. This toolkit allowed us to focus on the design and func-

tionality of our solution without the need for intricate knowledge of cryptographic

implementations.

45

4.2.3 RSA

RSA [49], a widely-used public-key cryptography system known for its security and

versatility, was employed in our implementation for signing and encryption opera-

tions. Leveraging RSA ensured a solid and reliable cryptographic foundation for our

system.

4.2.4 Django Rest Framework

The Django REST Framework [50] was instrumental in developing a flexible and

extensible API for our solution. By utilizing this framework, we could easily create

RESTful web services. The Django REST Framework empowered us to implement a

modular, scalable, and maintainable API.

4.2.5 AWS

We utilized Amazon Web Services (AWS) [51] as our cloud provider for deploying

our solution. AWS offers a comprehensive suite of services that played a vital role

in implementing and deploying our system. Specifically, the following AWS services

were employed:

4.2.5.1 Cloudformation

AWS CloudFormation [52] enabled the definition and provisioning of the required

infrastructure resources for our solution. Leveraging CloudFormation templates al-

lowed us to automate the creation and management of our infrastructure, ensuring a

consistent and reproducible environment.

4.2.5.2 EC2

Amazon Elastic Compute Cloud (EC2) [53] provided the scalable compute resources

necessary for running our application.

46

4.2.5.3 Route53

Amazon Route 53 [54] was used for managing the DNS records of our application.

This service provided a reliable and scalable domain name system (DNS) solution,

seamlessly integrating our custom domain name with our application. Route 53 en-

hanced the discoverability and usability of our solution.

4.3 Testing Environment Deployment

The deployment process for the testing environment of our ADSES implementation

involves several steps to ensure a smooth and error-free setup.

Creation of Artifacts: We create two zip artifacts, one for the Official Web App and

another for the Voter Web App. These artifacts contain all the files and configurations

required to run the applications.

Publishing on AWS S3: The artifacts, along with the associated cloud templates,

are published on a public file storage service provided by AWS called S3. This step

simplifies the process for officials and authorities to download the required files and

initiate deployment.

Official Web App Deployment: Officials can download and run the Official Web

App artifact on their local systems. This ensures that the Official Web App is deployed

correctly and ready for use.

Voter Web App Deployment: In a similar manner, authorities can download and run

the Voter Web App artifact on their respective systems. This ensures the Voter Web

App is correctly deployed and ready for use.

By following this deployment process, we ensure that the testing environment is set

up correctly and that the applications are running as intended. This approach helps

identify and resolve potential issues before election day, ensuring a smooth and error-

free voting experience for all eligible voters.

47

4.4 Validations with Experiments

Two critical stages that may create a bottleneck in the election process are vote signing

and result announcement. Analysis of the requirements for these stages is crucial.

Additionally, the efficiency and promptness of these stages are vital considerations.

For our experiments, we selected AWS EC2 c6i instances known for their efficient

compute optimization. The table 4.1 details the pricing and CPU counts for the var-

ious c6i instance types we assessed during our experimentation process [55]. Please

note that the prices and CPU counts provided are valid as of May 2023.

Considering these specifications when determining the appropriate EC2 instance type

is essential based on the use case’s compute requirements and budget constraints.

Table 4.1: CPU counts and pricing for different EC2 instance types (as of May 2023).

Instance Type CPU Count Price per Hour

c6i.large 2 $0.085

c6i.xlarge 4 $0.170

c6i.2xlarge 8 $0.340

c6i.4xlarge 16 $0.680

c6i.8xlarge 32 $1.360

c6i.12xlarge 48 $2.040

c6i.16xlarge 64 $2.720

4.4.1 Validation of Result Announcement Time Change with Voter Count

The first experiment aimed to determine the time required to announce results based

on the number of votes counted. To achieve this, a Python script was developed with

multi-processing capabilities, utilizing all CPUs of the machines. The experiment

was conducted on AWS EC2 c6i instances known for their compute optimization.

Seven different instance types were used to investigate the impact of CPU counts on

result announcement time. Five vote counts were tested: 1, 10, 100, 1000, and 10000.

Each case was tested 100 times to ensure reliability, resulting in 35 cases.

48

The experiment’s results indicated that the time required to count votes and announce

results varied significantly based on the vote count and CPU count. For example, on

a c6i.large machine with 2 CPUs, it took approximately 84 seconds to count 10000

votes, while on a c6i.16xlarge machine with 64 CPUs, it took around 11 seconds for

the exact vote count.

The pricing of c6i machines is directly proportional to their CPU counts. For example,

the c6i.large machine, which has 2 CPUs, is priced at 0.085 USD per hour, while the

cgi.16xlarge machine, which has 32 times as many CPUs (64 CPUs), is priced at

precisely 32 times the rate of the c6i.large machine, which is 2.72 USD per hour.

These findings show that results can be obtained quickly and at minimal costs, even

for large-scale elections involving 100 million people. The accessibility of all votes in

the database allows for their efficient distribution across multiple machines, enabling

parallel evaluation.

Considering the performance of the c6i.16xlarge machine, which can evaluate 10,000

votes in 11 seconds, we can estimate that it can determine approximately 3,272,727

votes in an hour (3600/11 * 10000). Utilizing 31 machines simultaneously allows

evaluating 100 million votes to be completed within an hour. Remarkably, the cost

for this process is a mere $84.32, which is remarkably low in comparison to the

scale of the election. Consequently, this approach can be employed by individuals or

organizations to validate the election’s integrity.

In addition, by running ten c6i.large machines simultaneously, each counting 1000

votes, a total count of 10000 votes can be achieved in 8.4 seconds, which is faster

than the 11 seconds required by a single c6i.16xlarge machine counting the same

number of votes. However, it should be noted that although most of the process can

be multi-processed, some tasks still rely on the main thread. Further experimentation

with different cases is needed to optimize the process thoroughly.

The experiment results are visualized in Figure 4.1 and Figure 4.2. Figure 4.1 demon-

strates the evaluation time for 10000 votes based on the number of CPUs used. As

depicted, increasing the CPU count results in a reduction in evaluation time. The

graph shows a downward trend in evaluation time as the CPU count rises. The eval-

49

uation time decreased from 84.09 seconds using 2 CPUs to 11.23 seconds when 64

CPUs were used. This observation indicates that utilizing more CPUs can signifi-

cantly reduce the time required to evaluate many votes.

Figure 4.2 shows the time for counting votes for different numbers of total votes. The

number of votes is displayed on a log axis due to the exponentially increasing number

of votes chosen for the experiment.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

10

20

30

40

50

60

70

80

90

CPU count

10
00

0
Vo

te
s

ev
al

ua
tio

n
tim

e
(s

ec
on

ds
)

Figure 4.1: Correlation between CPU count and evaluation time for 10,000 votes.

50

100 101 102 103 104

0

10

20

30

40

50

60

70

80

90

Number of votes (logarithmic)

Vo
te

s
ev

al
ua

tio
n

tim
e

(s
ec

on
ds

)

c6i.large
c6i.xlarge

c6i.2xlarge
c6i.4xlarge
c6i.8xlarge

c6i.12xlarge
c6i.16xlarge

Figure 4.2: Evaluation time of votes with different instance types.

Experiment 1 evaluated the performance of different c6i instance types regarding

signing votes per second. The results showed that all instance types performed sim-

ilarly in our experiments. Although there was a linear trend in the graph until 100

Virtual Users (VUs), we could not reach higher signed votes per second beyond that

point.

The experiments indicated a capacity limit of around 100 VUs, beyond which the

signed votes per second did not increase significantly. To measure higher capacities,

further experimentation with varying machine setups is necessary. This could involve

exploring different instance types, sizes, or configurations to optimize the system’s

performance and achieve higher throughput.

51

4.4.2 Validation of Total Vote Signing Time Change with Voter Count

The second experiment explored the relationship between the total time required for

all voters to sign their votes and the number of voters. The k6 load testing tool [56]

[57] was utilized to execute multiple signing requests to the sign endpoint and mea-

sure response times. AWS EC2 c6i instances, known for their compute optimization,

were used for the experiment to examine the impact of CPU counts on the total vote

signing time. Seven different instance types were used to assess the effect of CPU

counts on the whole vote signing time. Five different voter counts were tested: 1,

10, 100, 1000, and 10000, resulting in 35 tests lasting 30 seconds each to ensure

reliability.

The k6 load testing tool proved invaluable for this experiment as it allowed us to

simulate thousands of virtual users and measure the application’s response time. By

setting the virtual user count and time duration, we could replicate the behavior of

actual users sending requests to sign their votes.

The k6 script was set up for each experiment with a specific virtual user count [58],

representing the desired number of simultaneous requests to the sign endpoint. For

voter counts of 1, 10, and 100, the experiments yielded very similar numbers of signed

votes per second. For example, with 100 virtual users using the c6i.large instance, we

achieved a rate of signing 97.2 votes per second. However, for voter counts of 1000

and 10000, the experiments did not reach the target vote counts per second. Neverthe-

less, the results obtained using 100 virtual users were sufficient to demonstrate that

signing 100 million votes within a short time frame is feasible.

Using the c6i.16xlarge instance, we could sign 97.33 votes simultaneously with an

average response time of 7.78 ms per vote. This implies that within one hour, ap-

proximately 45037018 votes can be signed (calculated as 60601000/7.78 * 97.33).

Consequently, signing 100 million votes would take around 2.22 hours (calculated

as 100000000/45037018). The cost for this process would be approximately 6 USD

(calculated as 2.22 * 2.72), which is relatively low compared to the scale of the elec-

tion involving 100 million voters.

The following table 4.2 presents the outcomes of 35 experiments, where seven differ-

52

ent instance types and five virtual user counts were employed. In each experiment,

the k6 script generated virtual users, and each virtual user sent vote-signing requests

every second. The table displays the average number of votes sent in each experi-

ment and their corresponding response time. The table’s header shows the number of

virtual users used in each experiment.

Table 4.2: Experiment results showing vote signing capacity across various instance

types.

Instance

Type

1 Virtual

User

10 Virtual

Users

100 Virtual

Users

1000 Virtual

Users

10000 Virtual

Users

c6i.large 0.99 votes in

7.71 ms

9.9 votes in

16.53 ms

97.2 votes in

22.86 ms

167.66 votes

in 4680 ms

156.15 votes

in 5420 ms

c6i.xlarge 0.99 votes in

7.24 ms

9.9 votes in

11.52 ms

97.34 votes in

13.82 ms

170.98 votes

in 4540 ms

186.32 votes

in 5340 ms

c6i.2xlarge 0.99 votes in

7.35 ms

9.9 votes in

13.56 ms

97.11 votes in

13.35 ms

156.72 votes

in 4950 ms

167.68 votes

in 5650 ms

c6i.4xlarge 0.99 votes in

7.36 ms

9.9 votes in

10.57 ms

97.28 votes in

13.63 ms

170.72 votes

in 4650 ms

166.99 votes

in 5390 ms

c6i.8xlarge 0.99 votes in

7.29 ms

9.92 votes in

8.29 ms

97.24 votes in

23.99 ms

162.53 votes

in 4710 ms

179.01 votes

in 5280 ms

c6i.12xlarge 0.99 votes in

7.12 ms

9.9 votes in

11.01 ms

97.5 votes in

14.02 ms

182.59 votes

in 4290 ms

196.72 votes

in 5080 ms

c6i.16xlarge 0.99 votes in

6.99 ms

9.9 votes in

8.22 ms

97.33 votes in

7.78 ms

169.81 votes

in 4420 ms

179.92 votes

in 5360 ms

Our experiments with 100 Virtual Users showed that the ADSES signing phase is

a feasible solution for real-life scenarios. The table 4.3 provides detailed response

times statistics for each sign operation, including the Average, Minimum, Median,

Maximum, 90th percentile, and 95th percentile. All instance types tested were capa-

ble of concurrently signing approximately 97 votes. The table displays a variation in

response times for each instance type; however, there seems to be an overall trend of

decreasing response times as the CPU count increases across all instances. However,

the difference in response times is inconsistent, as seen in the table. Further experi-

mentation with extended duration times is required to identify the precise relationship

between CPU count and response times. Despite this, it is evident that even the worst

p95 results obtained are still feasible.

53

Table 4.3: Vote signing times across various instances for 100 virtual users.

Instance

Type

Average

(ms)

Minimum

(ms)

Median

(ms)

Maximum

(ms)

P90 (ms) P95 (ms)

c6i.large 17.63 5.61 6.1 607 9.29 22.86

c6i.xlarge 16.68 5.36 6.13 567.58 8.05 13.82

c6i.2xlarge 17.93 5.41 6.54 621.14 7.87 13.35

c6i.4xlarge 17.04 5.44 6.37 576.44 8.92 13.63

c6i.8xlarge 17.18 5.28 6.57 554.05 14.29 23.99

c6i.12xlarge 15.76 5.32 5.88 545.58 7.06 14.02

c6i.16xlarge 16.47 5.78 6.43 589.12 7.29 7.78

Figure 4.3 shows the signed votes per second for seven c6i instance types at varying

Virtual User counts. Both x and y coordinates are logarithmic as we expect expo-

nential increases. Results show that all instance types performed similarly in our

experiments. The graph follows a linear trend until 100 Virtual Users, beyond which

we could not reach higher signed votes per second. Further experimentation with

varying machine setups is necessary to measure higher capacities.

Figure 4.4 depicts the relationship between p95 response times and the number of

Virtual Users (VUs) in our experiments. Both axes are logarithmic due to the ex-

ponential increase of VUs and p95 response times. The graph demonstrates that the

current experiments had a capacity limit of around 100 VUs, beyond which the p95

response times increase exponentially. Consequently, further experimentation with

varying machine setups is essential to measure higher capacities. The legend indicates

the different machine setups used in the experiment, namely c6i.large, c6i.xlarge,

c6i.2xlarge, c6i.4clarge, c6i.8xlarge, c6i.12xlarge, and c6i.16xlarge.

Experiment 2 focused on analyzing the response times for each sign operation, specif-

ically looking at the p95 response times for different c6i instance types and VU

counts. The experiment results demonstrated an exponential increase in p95 response

times as the number of VUs increased.

The findings revealed that the experiments had a capacity limitation of around 100

VUs, beyond which the p95 response times increased significantly. These results sig-

nify the need for further experimentation with varying machine setups to accurately

54

100 101 102 103 104

100

101

102

Virtual Users (logarithmic)

Si
gn

ed
Vo

te
s

pe
rS

ec
on

d
(l

og
ar

ith
m

ic
) c6i.large

c6i.xlarge
c6i.2xlarge
c6i.4clarge
c6i.8xlarge

c6i.12xlarge
c6i.16xlarge

Figure 4.3: Logarithmic comparison of signed votes per second against virtual user

counts.

measure higher capacities and optimize response times in scenarios with larger VU

counts.

CPU count also played a role in the experiment, as increasing the CPU count gener-

ally led to decreased response times. However, the differences in response times were

inconsistent across all instance types, emphasizing the necessity for further investiga-

tion into the relationship between CPU count and response times.

4.5 Conclusion

In conclusion, our experiments focused on evaluating the feasibility and performance

of the ADSES signing phase in real-life scenarios. The experiments involved testing

different c6i instance types and varying Virtual User (VU) counts.

55

100 101 102 103 104

101

102

103

104

Virtual Users (logarithmic)

p9
5

Si
gn

in
g

Ti
m

e
(m

ill
is

ec
on

ds
/lo

ga
ri

th
m

ic
)

c6i.large
c6i.xlarge
c6i.2xlarge

c6i.4xl
c6i.8xl
c6i.12xl
c6i.16xl

Figure 4.4: p95 Signing Time vs. Virtual User Counts

The results indicated that the ADSES signing phase is a viable solution for real-life

scenarios, as all instance types performed similarly regarding signed votes per second.

However, we observed a capacity limitation of around 100 VUs, beyond which the

p95 response times increased exponentially.

Despite the increase in response times, even at the worst p95 results obtained, the AD-

SES signing phase remained feasible. However, further experimentation with varying

machine setups is necessary to measure higher capacities and optimize the response

times for larger VU counts.

The experiments also highlighted the importance of considering CPU count. While

there was a trend of decreasing response times as the CPU count increased across

all instance types, the difference in response times was inconsistent. Therefore, addi-

tional experimentation with extended duration times is required to identify the precise

relationship between CPU count and response times.

56

The findings suggest that the ADSES signing phase can deliver efficient performance

in real-life scenarios. However, further investigation and optimization measures are

needed to achieve higher capacities and optimize response times, including experi-

menting with different machine setups and potentially exploring parallelization tech-

niques.

57

58

CHAPTER 5

CONCLUSION

5.1 Conclusions

In this thesis, we presented ADSES, a decentralized and secure election system that

leverages the power of distributed databases to enhance the security, transparency,

and efficiency of electronic voting. ADSES is designed to be resilient against attacks

aimed at manipulating votes and ensures that voters can observe the entire election

process.

We outlined the requirements for a secure election and demonstrated how ADSES ad-

dresses each challenge. By utilizing distributed databases, ADSES offers a robust and

secure solution that fulfills these requirements, ensuring the integrity and reliability

of the voting process.

As demonstrated in this study, distributed databases hold great potential to improve

various aspects of our lives. Further research is needed to explore the integration of

distributed databases into diverse fields, thereby unlocking their potential benefits.

5.2 Future Work

Looking forward, there are several avenues for future research and development of

ADSES. One potential direction is the exploration of a fully decentralized election

system. Although ADSES is decentralized, the power is currently divided among a

limited number of participants rather than distributed among millions of voters. With

the continued advancement of distributed databases and other emerging technologies,

59

a fully decentralized election system could become a reality, further enhancing secu-

rity, transparency, and trust in the democratic process.

In addition to pursuing a fully decentralized election system, other areas of future

work may include refining the cryptographic features of ADSES to improve its se-

curity and privacy and exploring methods for scalability to accommodate larger pop-

ulations and more complex voting scenarios. Moreover, it would be worthwhile to

investigate further the integration of ADSES with other technologies, such as secure

multiparty computation [59] and zero-knowledge proofs [60], to enhance the privacy

and verifiability of the voting process.

Another area of future work is to develop user-friendly interfaces and tools that can fa-

cilitate the adoption of ADSES by election authorities and voters. This includes creat-

ing secure voting applications, providing educational resources, and offering training

for election officials and voters to ensure the smooth and successful implementation

of ADSES in real-world elections.

Additionally, further research could be conducted to analyze the legal and regulatory

aspects of implementing ADSES in various jurisdictions. Understanding the legal

requirements and potential barriers to adoption will be crucial for successfully de-

ploying the system in different countries and regions.

Lastly, conducting pilot studies and real-world trials of ADSES would be beneficial to

evaluate its performance, usability, and overall effectiveness in elections. This would

provide valuable insights and feedback that can be used to refine and improve the

system, ultimately contributing to the development of a more secure, transparent, and

trustworthy democratic process for all.

60

REFERENCES

[1] S. "Yu, "An Overview of DDoS Attacks". New York, NY: Springer New

York, 2014. [Online]. Available: https://doi.org/10.1007/978-1-4614-9491-1_1

[2] J. R. Douceur, “The sybil attack,” in Peer-to-Peer Systems, P. Druschel,

F. Kaashoek, and A. Rowstron, Eds. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2002, pp. 251–260.

[3] “Manipulator-in-the-middle attack | OWASP Foundation — owasp.org,” https:

//owasp.org/www-community/attacks/Manipulator-in-the-middle_attack, [Ac-

cessed 07-08-2023].

[4] B. Manin, The Principles of Representative Government, ser. Themes in the

Social Sciences. Cambridge University Press, 1997.

[5] T. Kohno, A. Stubblefield, A. Rubin, and D. Wallach, “Analysis of an elec-

tronic voting system,” in IEEE Symposium on Security and Privacy, 2004.

Proceedings. 2004, 2004, pp. 27–40.

[6] G. Schryen and E. Rich, “Security in large-scale internet elections: A retrospec-

tive analysis of elections in estonia, the netherlands, and switzerland,” IEEE

Transactions on Information Forensics and Security, vol. 4, no. 4, pp. 729–744,

2009.

[7] J. Bannet, D. Price, A. Rudys, J. Singer, and D. Wallach, “Hack-a-vote: Security

issues with electronic voting systems,” IEEE Security & Privacy, vol. 2, no. 1,

pp. 32–37, 2004.

[8] A. Bonifati, P. K. Chrysanthis, A. M. Ouksel, and K.-U. Sattler,

“Distributed databases and peer-to-peer databases: Past and present,”

SIGMOD Rec., vol. 37, no. 1, p. 5–11, mar 2008. [Online]. Available:

https://doi.org/10.1145/1374780.1374781

61

https://doi.org/10.1007/978-1-4614-9491-1_1
https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
https://owasp.org/www-community/attacks/Manipulator-in-the-middle_attack
https://doi.org/10.1145/1374780.1374781

[9] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making

data structures persistent,” in Proceedings of the Eighteenth Annual ACM

Symposium on Theory of Computing, ser. STOC ’86. New York, NY, USA:

Association for Computing Machinery, 1986, p. 109–121. [Online]. Available:

https://doi.org/10.1145/12130.12142

[10] Y. Li, W. Susilo, G. Yang, Y. Yu, D. Liu, X. Du, and M. Guizani, “A blockchain-

based self-tallying voting protocol in decentralized iot,” IEEE Transactions on

Dependable and Secure Computing, vol. 19, no. 1, pp. 119–130, 2022.

[11] S. Chaudhary, S. Shah, R. Kakkar, R. Gupta, A. Alabdulatif, S. Tanwar,

G. Sharma, and P. N. Bokoro, “Blockchain-based secure voting mechanism un-

derlying 5g network: A smart contract approach,” IEEE Access, vol. 11, pp.

76 537–76 550, 2023.

[12] V. Buterin, “A next-generation smart contract and decentralized application plat-

form,” January 2014.

[13] “Solidity 2014; Solidity 0.8.22 documentation — docs.soliditylang.org,” https:

//docs.soliditylang.org/en/develop/, [Accessed 09-08-2023].

[14] G. Rathee, R. Iqbal, O. Waqar, and A. K. Bashir, “On the design and implemen-

tation of a blockchain enabled e-voting application within iot-oriented smart

cities,” IEEE Access, vol. 9, pp. 34 165–34 176, 2021.

[15] F. P. Hjalmarsson, G. K. Hreioarsson, M. Hamdaqa, and G. Hjalmtysson,

“Blockchain-based e-voting system,” in Proc. of the IEEE 11th International

Conference on Cloud Computing (CLOUD), vol. 00, Jul 2018, pp. 983–986.

[Online]. Available: doi.ieeecomputersociety.org/10.1109/CLOUD.2018.00151

[16] B. Shahzad and J. Crowcroft, “Trustworthy electronic voting using adjusted

blockchain technology,” IEEE Access, vol. 7, pp. 24 477–24 488, 2019.

[17] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for boardroom

voting with maximum voter privacy,” in International conference on financial

cryptography and data security. Springer, 2017, pp. 357–375.

[18] W.-J. Lai, Y.-C. Hsieh, C.-W. Hsueh, and J.-L. Wu, “Date: A decentralized,

anonymous, and transparent e-voting system,” in 2018 1st IEEE International

62

https://doi.org/10.1145/12130.12142
https://docs.soliditylang.org/en/develop/
https://docs.soliditylang.org/en/develop/
doi.ieeecomputersociety.org/10.1109/CLOUD.2018.00151

Conference on Hot Information-Centric Networking (HotICN). IEEE, 2018,

pp. 24–29.

[19] S. Gao, D. Zheng, R. Guo, C. Jing, and C. Hu, “An anti-quantum e-voting pro-

tocol in blockchain with audit function,” IEEE Access, vol. 7, pp. 115 304–

115 316, 2019.

[20] Q. Wang, C. Yu, F. Gao, H. Qi, and Q. Wen, “Self-tallying quantum anonymous

voting,” Physical Review A, vol. 94, no. 2, p. 022333, 2016.

[21] Y.-R. Li, D.-H. Jiang, Y.-H. Zhang, and X.-Q. Liang, “A quantum voting pro-

tocol using single-particle states,” Quantum Information Processing, vol. 20,

no. 3, pp. 1–17, 2021.

[22] H. Li, Y. Li, Y. Yu, B. Wang, and K. Chen, “A blockchain-based traceable self-

tallying e-voting protocol in ai era,” IEEE Transactions on Network Science and

Engineering, vol. 8, no. 2, pp. 1019–1032, 2021.

[23] E. Zaghloul, T. Li, and J. Ren, “d-bame: Distributed blockchain-based anony-

mous mobile electronic voting,” IEEE Internet of Things Journal, vol. 8, no. 22,

pp. 16 585–16 597, 2021.

[24] A. M. Al-madani, A. T. Gaikwad, V. Mahale, and Z. A. Ahmed, “Decentralized

e-voting system based on smart contract by using blockchain technology,” in

2020 International Conference on Smart Innovations in Design, Environment,

Management, Planning and Computing (ICSIDEMPC), 2020, pp. 176–180.

[25] P. P. Mukherjee, A. A. Boshra, M. M. Ashraf, and M. Biswas, “A hyper-ledger

fabric framework as a service for improved quality e-voting system,” in 2020

IEEE Region 10 Symposium (TENSYMP), 2020, pp. 394–397.

[26] T. Roopak and R. Sumathi, “Electronic voting based on virtual id of aadhar using

blockchain technology,” in 2020 2nd International Conference on Innovative

Mechanisms for Industry Applications (ICIMIA), 2020, pp. 71–75.

[27] S. Al-Maaitah, M. Qatawneh, and A. Quzmar, “E-voting system based on

blockchain technology: A survey,” in 2021 International Conference on

Information Technology (ICIT), 2021, pp. 200–205.

63

[28] S. Vivek, R. Yashank, Y. Prashanth, N. Yashas, and M. Namratha, “E-voting

systems using blockchain: An exploratory literature survey,” in 2020 Second

International Conference on Inventive Research in Computing Applications

(ICIRCA), 2020, pp. 890–895.

[29] V. Neziri, R. Dervishi, and B. Rexha, “Survey on using blockchain technologies

in electronic voting systems,” in 2021 25th International Conference on Circuits,

Systems, Communications and Computers (CSCC), 2021, pp. 61–65.

[30] K. L. Ohammah, S. Thomas, A. Obadiah, S. Mohammed, and Y. S. Lolo,

“A survey on electronic voting on blockchain,” in 2022 IEEE Nigeria

4th International Conference on Disruptive Technologies for Sustainable

Development (NIGERCON), 2022, pp. 1–4.

[31] M.-V. Vladucu, Z. Dong, J. Medina, and R. Rojas-Cessa, “E-voting meets

blockchain: A survey,” IEEE Access, vol. 11, pp. 23 293–23 308, 2023.

[32] J. Huang, D. He, M. S. Obaidat, P. Vijayakumar, M. Luo, and K.-K. R.

Choo, “The application of the blockchain technology in voting systems: A

review,” ACM Comput. Surv., vol. 54, no. 3, apr 2021. [Online]. Available:

https://doi.org/10.1145/3439725

[33] L. Zhang, Y. Hu, X. Tian, and Y. Yang, “Novel identity-based blind signature for

electronic voting system,” in 2010 Second International Workshop on Education

Technology and Computer Science, vol. 2, 2010, pp. 122–125.

[34] S. Ibrahim, M. Kamat, M. Salleh, and S. Aziz, “Secure e-voting with blind sig-

nature,” in 4th National Conference of Telecommunication Technology, 2003.

NCTT 2003 Proceedings., 2003, pp. 193–197.

[35] Y. Mu and V. Varadharajan, “Anonymous secure e-voting over a network,” in

Proceedings 14th Annual Computer Security Applications Conference (Cat.

No.98EX217), 1998, pp. 293–299.

[36] J.-K. Jan, Y.-Y. Chen, and Y. Lin, “The design of protocol for e-voting on

the internet,” in Proceedings IEEE 35th Annual 2001 International Carnahan

Conference on Security Technology (Cat. No.01CH37186), 2001, pp. 180–189.

64

https://doi.org/10.1145/3439725

[37] A. Stone, “E-voting: should we pull the lever?” IEEE Software, vol. 20, no. 6,

pp. 12–14, 2003.

[38] C. Lambrinoudakis, D. Gritzalis, and S. Katsikas, “Building a reliable e-voting

system: functional requirements and legal constraints,” in Proceedings. 13th

International Workshop on Database and Expert Systems Applications, 2002,

pp. 435–.

[39] G. Salomonsen, “Protection against hackers on client computers for e-voting

systems,” in Proceedings. 13th International Workshop on Database and Expert

Systems Applications, 2002, pp. 436–.

[40] “e-Devlet Kapısı Devletin Kısayolu | www.türkiye.gov.tr — turkiye.gov.tr,”

https://www.turkiye.gov.tr/, [Accessed 08-08-2023].

[41] D. Chaum, “Blind signatures for untraceable payments,” in Advances in

Cryptology, D. Chaum, R. L. Rivest, and A. T. Sherman, Eds. Boston, MA:

Springer US, 1983, pp. 199–203.

[42] “GitHub - orbitdb/orbitdb: Peer-to-Peer Databases for the Decentralized Web

— github.com,” https://github.com/orbitdb/orbitdb, [Accessed 01-08-2023].

[43] “IPFS Powers the Distributed Web — ipfs.tech,” https://ipfs.tech/, [Accessed

09-08-2023].

[44] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook

of Applied Cryptography. CRC Press, 2001. [Online]. Available: http:

//www.cacr.math.uwaterloo.ca/hac/

[45] E. Ozturk, “ADSES: Anonymous and Decentralized Secure Election System,”

Aug. 2023. [Online]. Available: https://github.com/esrefozturk/adsesv3

[46] “The Open Source Definition — opensource.org,” https://opensource.org/osd/,

[Accessed 10-08-2023].

[47] “Welcome to Python.org — python.org,” https://www.python.org/, [Accessed

08-08-2023].

65

https://www.turkiye.gov.tr/
https://github.com/orbitdb/orbitdb
https://ipfs.tech/
http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/
https://github.com/esrefozturk/adsesv3
https://opensource.org/osd/
https://www.python.org/

[48] “Welcome to PyCryptodome&x2019;s documentation &x2014; PyCryptodome

3.190b1 documentation — pycryptodome.org,” https://www.pycryptodome.

org/, [Accessed 08-08-2023].

[49] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, p.

120–126, feb 1978. [Online]. Available: https://doi.org/10.1145/359340.359342

[50] T. Christie, “Home - Django REST framework — django-rest-framework.org,”

https://www.django-rest-framework.org/, [Accessed 05-08-2023].

[51] “Cloud Computing Services - Amazon Web Services (AWS) —

aws.amazon.com,” https://aws.amazon.com/, [Accessed 05-08-2023].

[52] “Provision Infrastructure as Code - AWS CloudFormation - AWS —

aws.amazon.com,” https://aws.amazon.com/cloudformation/, [Accessed 08-08-

2023].

[53] “Secure and resizable cloud compute – Amazon EC2 – Amazon Web Services

— aws.amazon.com,” https://aws.amazon.com/ec2/, [Accessed 08-08-2023].

[54] “Amazon Route 53 | DNS Service | AWS — aws.amazon.com,” https://aws.

amazon.com/route53/, [Accessed 08-08-2023].

[55] “AWS On-Demand Instances – Amazon Web Services (AWS) —

aws.amazon.com,” https://aws.amazon.com/de/ec2/pricing/on-demand/,

[Accessed 09-08-2023].

[56] “Load testing for engineering teams | Grafana k6 — k6.io,” https://k6.io/, [Ac-

cessed 09-08-2023].

[57] “What is Load Testing? How to create a Load Test in k6 — k6.io,” https://k6.

io/docs/test-types/load-testing/, [Accessed 09-08-2023].

[58] “Constant VUs — k6.io,” https://k6.io/docs/using-k6/scenarios/executors/

constant-vus/, [Accessed 09-08-2023].

[59] R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adaptively secure

multi-party computation,” in Proceedings of the Twenty-Eighth Annual ACM

66

https://www.pycryptodome.org/
https://www.pycryptodome.org/
https://doi.org/10.1145/359340.359342
https://www.django-rest-framework.org/
https://aws.amazon.com/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/ec2/
https://aws.amazon.com/route53/
https://aws.amazon.com/route53/
https://aws.amazon.com/de/ec2/pricing/on-demand/
https://k6.io/
https://k6.io/docs/test-types/load-testing/
https://k6.io/docs/test-types/load-testing/
https://k6.io/docs/using-k6/scenarios/executors/constant-vus/
https://k6.io/docs/using-k6/scenarios/executors/constant-vus/

Symposium on Theory of Computing, ser. STOC ’96. New York, NY, USA:

Association for Computing Machinery, 1996, p. 639–648. [Online]. Available:

https://doi.org/10.1145/237814.238015

[60] U. Fiege, A. Fiat, and A. Shamir, “Zero knowledge proofs of identity,”

in Proceedings of the Nineteenth Annual ACM Symposium on Theory

of Computing, ser. STOC ’87. New York, NY, USA: Association for

Computing Machinery, 1987, p. 210–217. [Online]. Available: https:

//doi.org/10.1145/28395.28419

67

https://doi.org/10.1145/237814.238015
https://doi.org/10.1145/28395.28419
https://doi.org/10.1145/28395.28419

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Related Work
	Anonymous and Decentralized Secure Election System (ADSES)
	The overall Idea
	System Model
	Official
	Authority
	Inspector

	Encryption
	Blind Signature
	Blinding
	Signing
	Unblinding
	Unsigning

	Peer-to-peer distributed database

	Requirement Analysis
	Design
	Pre-Election Phase
	Key Pair and Identifier Generation
	Secure Channel Establishment

	Election Phase
	Message Generation
	Message Encryption
	Message Signing
	Message Publishing

	Post-Election
	Decryption Key Broadcasting
	Tallying

	Security Analysis
	Verifiability
	Anonymity
	Authentication
	Accuracy
	Transparency
	Consistency
	Dependability
	No Intermediary Results
	Time Efficiency

	Attack Vectors and Countermeasures in ADSES
	Vote Tampering
	Fake Votes
	Voter Privacy Violation
	Denial of Service cisaUnderstandingDenialofService
	Collusion Among Officials
	Sybil Attack 10.1007/3-540-45748-824
	Man-in-the-Middle (MITM) Attack owaspManipulatorinthemiddleAttack
	Vote-Buying and Coercion

	Cryptographic Features and Guarantees in ADSES
	Forward Secrecy
	Backward Secrecy
	Key Authenticity
	Non-repudiation
	Unforgeability
	Data Integrity
	Authentication

	Implementation
	Practical Implementation of ADSES
	Official Web App
	API Endpoints

	Voter Web App
	Web pages

	Used Technologies
	Python
	Python Cryptography Toolkit
	RSA
	Django Rest Framework
	AWS
	Cloudformation
	EC2
	Route53

	Testing Environment Deployment
	Validations with Experiments
	Validation of Result Announcement Time Change with Voter Count
	Validation of Total Vote Signing Time Change with Voter Count

	Conclusion

	Conclusion
	Conclusions
	Future Work

	REFERENCES

