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ABSTRACT 

DETECTION OF TILTED ELECTRICITY POLES USING IMAGE 

PROCESSING AND COMPUTER VISION TECHNIQUES 

Karaali, Ediz 

Master of Science, Civil Engineering 

Supervisor: Assoc. Prof. Dr. Onur Pekcan 

September 2023, 106 pages 

Regular maintenance is essential in efficiently transporting electricity from one point 

to another to ensure an uninterrupted energy supply, and risk assessments are 

imperative. Since human personnel predominantly carry out such tasks, demanding 

a considerable workforce and causing errors, autonomous and efficient methods for 

effectively surveying electricity poles to detect possible anomalies are required. This 

study presents an autonomous risk classification model to address an anomaly type: 

insecurely tilted electricity poles. During this study, extensive data, 8775 electricity 

pole images, was gathered from various regions by Unmanned Aerial Vehicles 

(UAVs). An object detector, Faster R-CNN, within the proposed model was 

integrated to precisely identify different types of electricity poles: steel, concrete, 

and wooden. Subsequently, image processing techniques are deployed to determine 

pole tilt angles accurately. Based on these angles, electricity poles are classified as 

"risky" or "not risky," indicating their structural integrity and stability. The test 

results of the proposed model reveal the following two significant outcomes: (a) 

Electricity poles can be detected with a mean average precision rate of 94.40%, and 

(b) Representative lines for the poles and their respective tilt angles can be measured
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with an accuracy of 95.95%, which demonstrates an exceptional performance. This 

model holds substantial promise for practically detecting risks associated with tilted 

electricity poles and can significantly contribute to ensuring the reliability and safety 

of power distribution systems.  

 

Keywords: Tilted Pole Risk Detection, Deep Learning, Image Processing, 

Unmanned Aerial Vehicles, Object Detector 
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ÖZ 

 

GÖRÜNTÜ İŞLEME VE DERİN ÖĞRENME TEKNİKLERİ İLE EĞİK 

ELEKTRİK DİREKLERİNİN TESPİTİ 

 

 

 

Karaali, Ediz 

Yüksek Lisans, İnşaat Mühendisliği 

Tez Yöneticisi: Doç. Dr. Onur PEKCAN 

 

 

 

Eylül 2023, 106 sayfa 

 

Kesintisiz enerji tedariği sağlamak için elektriğin bir noktadan diğerine verimli bir 

şekilde taşınmasında düzenli bakım şarttır ve risk değerlendirmeleri zorunludur. 

İnsanlardan oluşan personel grubunun ağırlıklı olarak bu tür görevleri yerine 

getirmesi, önemli bir iş gücü gerektirmesi ve hatalara neden olması nedeniyle, 

elektrik direklerinin etkin bir şekilde incelenmesi ve olası anormalliklerin tespit 

edilmesi için otonom ve verimli yöntemler gerekmektedir. Bu çalışma, bir 

anormallik türünü (güvensiz şekilde eğilmiş elektrik direkleri) ele almak için otonom 

bir risk sınıflandırma modeli sunmaktadır. Bu çalışma sırasında İnsansız Hava 

Araçları (İHA) aracılığıyla çeşitli bölgelerden 8775 adet elektrik direği 

görüntüsünden oluşan kapsamlı bir veri toplanmıştır. Önerilen modele bir nesne 

tespit modeli olan Faster R-CNN entegre edilerek farklı türdeki elektrik direklerini 

(çelik, beton ve ahşap) kesin olarak tanımlanmıştır. Daha sonra elektrik direklerinin 

eğim açılarını doğru bir şekilde belirlemek için görüntü işleme teknikleri 

uygulanmıştır. Elektrik direkleri bu açılara göre “riskli” ve “risksiz” olarak 

sınıflandırılarak yapısal bütünlük ve sağlamlıklarına işaret edilir. Önerilen modelin 
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test sonuçları şu iki önemli sonucu ortaya koymaktadır: (a) Elektrik direkleri 

ortalama %94.40'lık bir ortalama hassasiyet oranıyla tespit edilebilmektedir ve (b) 

Direkleri temsil eden çizgiler ve ilgili eğim açıları şu şekilde ölçülebilmektedir: 

yüksek bir performans sergileyen %95.95'lik bir doğruluk. Bu model, eğik elektrik 

direkleriyle ilişkili risklerin pratik olarak tespit edilmesi konusunda umut vaat 

etmekte ve güç dağıtım sistemlerinin güvenilirliğinin ve emniyetinin sağlanmasına 

önemli ölçüde katkıda bulunabilmesi öngörülmektedir. 

 

Anahtar Kelimeler: Eğik Direk Risk Tespiti, Derin Öğrenme, Görüntü İşleme, 

İnsansız Hava Araçları, Nesne Tespiti 
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CHAPTER 1  

1 INTRODUCTION  

Technological advancements enable human beings to enrich their horizons to 

enhance and strengthen their skills in solving challenging problems. More practical 

and efficient solutions to real-life situations can be discovered with increasing 

applications of Artificial Intelligence. In this study, a real-life issue, the detection of 

insecurely tilted electricity poles, is investigated using computer vision and advanced 

image processing techniques.  

1.1 Overview and Problem Statement 

A sustainable electricity supply is necessary, and it is gaining even greater 

significance in light of the global population growth trends and urbanization. The 

escalating demand for electricity is related to the expanding global population, 

compelling energy distribution companies to allocate substantial resources towards 

developing and maintaining transmission infrastructure. Consequently, the 

significant investments made in this domain necessitate an extensive network of 

transmission lines spanning both urban and rural areas, requiring the implementation 

of efficient management and maintenance protocols (Li et al., 2014).  

The significance of electricity distribution is as crucial as distributing this energy to 

the desired destinations. Consequently, electricity distribution companies endeavor 

to transmit electricity through highly efficient and complex network systems. These 

grid systems are instrumental in facilitating the delivery of electrical energy to 

consumers across vast distances, spanning hundreds of thousands of kilometers, as 

documented by the U.S. Energy Information Administration (EIA) in 2010.  
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These extensive long grid systems are classified into two primary types: local and 

global networks. Local grids are designed to compensate for the distribution needs 

of small cities, buildings, retail establishments, and businesses providing localized 

access to electricity. In contrast, global networks consist of multiple local grids, 

thereby providing a pivotal mechanism for facilitating electricity transmission over 

significantly extended distances. The main objective of this grid system is to 

establish reliable and durable electricity transmission to meet the customer’s energy 

requirements.  

While electricity distribution companies aim to distribute energy to their customers 

with efficient and reliable methods, it is imperative to acknowledge the presence of 

external factors, i.e., anomalies that can potentially result in short-term or long-term 

power interruptions. During this study, one of the most prevalent anomalies, 

hazardously tilted electricity poles, is studied (Figure 1).  

 

Figure 1. Hazardously Tilted Electricity Pole 

Tilted electricity poles are significantly correlated with the structural integrity and 

reliability of electricity poles, and they serve as the primary focus of this research. 

The tilting of electricity poles is predominantly attributed to the loss of equilibrium 

in suspension supports or increased tension in end supports (Malhara & Vittal, 2009).  
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Internal and external factors responsible for this loss of equilibrium, making these 

electricity poles susceptible to bending or inclination, encompass a range of 

influences (Yang et al., 2022):  

• Unstable force transmitted through the wires  

• Extreme weather conditions  

• Being near the end of its operational life  

Massive rainfall or wind-loading events have the potential to disrupt the stable 

transmission of forces along electricity cables. This phenomenon constitutes the 

primary factor responsible for the highly variable amplitude of vibrations during 

electricity transmission procedures, thereby giving rise to critical structural 

serviceability issues that may result in the inclination of electricity poles (Jafari et 

al., 2020).  

Furthermore, adverse weather conditions, including severe storms, floods, and 

landslides, can harm electricity poles' geotechnical and structural integrity. 

Consequently, these conditions can impede the practical functionality of energy 

transmission through electricity poles (Yang et al., 2022).  

In addition to the abovementioned external factors, it is imperative to recognize that 

each electricity pole possesses a distinct operational life. As a result, the absence of 

periodic maintenance and surveillance operations for the electricity corridors can 

culminate in structural concerns, such as the inclination of the electricity poles.  

The last factor that holds the potential to impact the structural stability of electricity 

poles pertains to geotechnical considerations. Since all structures rely on foundations 

anchored within soil layers, the durability and reliability of the foundation designs 

for electricity poles assume great significance. Consequently, meticulous attention is 

imperative during the construction phase of electricity poles.  

 



 

 

4 

These natural and human-induced factors may result in:  

• Suspension of electricity lines abnormally  

• Security vulnerability around the electricity poles  

Electric distribution companies are conducting surveillance and maintenance 

activities to mitigate or eradicate the problems associated with the electricity poles. 

Within these initiatives, a critical control and repair cycle has been instituted to 

address potential anomalies about electricity poles. This cycle consists of the 

following stages: (i) Conducting patrols along electricity line corridors to identify 

potential anomalies, (ii) Determining the types of anomalies and assessing their 

severity, and (iii) Repair operations for electricity poles exhibiting anomalies.  

This cycle has been systematically implemented across all electricity pole corridors 

by electricity distribution companies using manual investigative techniques. These 

manual procedures are contingent upon human labor and primarily encompass the 

following steps (Figure 2):  

I. The initial inspection entails traversing the line corridors using vehicles and 

visually assessing electricity poles without specialized equipment.  

II. A grading or severity assessment of potential anomalies is performed. This 

assessment aids in classifying the abnormalities by their level of severity.  

III. Finally, based on the outcomes of the severity assessment, requisite repair 

measures are executed.  
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Figure 2. Control and Repairment Cycle for an Electricity Pole 

As this cycle necessitates application across expansive grids spanning thousands of 

kilometers, several pivotal factors assume great importance. These factors include 

the efficiency of surveillance efforts, the precision value of anomaly detection, the 

extent of reliance on human labor, and the cost-effectiveness of repair solutions. 

Considering these factors, this study proposes an automated risk detection and 

classification system for inclined electricity poles. This system utilizes the 

capabilities of Artificial Intelligence applications, image processing techniques, and 

UAVs to enhance the accuracy and efficiency of anomaly assessment and 

management.  

Throughout this study, the principal objective is tilted electricity pole detection. 

Consequently, in addition to diminishing the time required for identifying instances 

of damage and malfunction, enhancing the accuracy rate in anomaly detection is also 

targeted. Shortening the damage and malfunction detection time is anticipated to 

reduce response time, enabling continuous energy transmission to the customers.  
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1.2 Objectives of the Research 

The principal aim of this study is to enhance an automated risk classification system, 

with a specific focus on detecting inclined electricity poles and conducting a 

comprehensive analysis of their risk status based on the quantification of their 

inclination angle values. As a result, it is imperative to employ proficient methods 

for the collection and processing of data. As a result, the main objectives of this 

research study will be as follows:  

• One of the most efficient and expeditious approaches, UAVs, was used for 

high-resolution data collection. These vehicles aim to capture real electricity 

pole images from a level higher than the poles’ height with pre-determined 

image shooting angles.  

• Collecting electricity pole images from diverse regions, such as Ankara, 

Bartın, Kastamonu, and Zonguldak, facilitates the creation of a 

comprehensive image dataset encompassing various pole types (steel, 

concrete, and wooden poles), environmental conditions, and associated 

anomalies.  

• During the risk classification method, a supervised learning approach has 

been employed. Consequently, a systematic labeling procedure for detecting 

pole types and their respective locations within the images has been carried 

out. This process has been facilitated through the utilization of in-house 

labeling software.  

• An object detection model, Faster R-CNN, is utilized for training with the 

labeled dataset to detect the approximate positions of electricity poles within 

the images. This phase aims at enhancing the precision and efficiency of the 

object detection model.  

• After detecting the locations of electricity poles within the images, these 

poles are cropped from the images to be employed within a sequence of 

image-processing techniques. The cropping procedures aim to eliminate the 

environmental noises around the electricity pole, and the proposed image- 
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processing algorithms include blurring, morphological operations, edge 

detection, line segment detection, and the Hough transformation to identify a 

representative line corresponding to the electricity poles.  

• The detected representative lines are validated using two performance 

metrics to measure the similarity of the two lines. A separate image labeling 

procedure was conducted to draw the electricity poles' truth lines. After this, 

truth and representative lines are utilized to measure the similarity ratio of 

these two lines.  

• After validation of the representative line for electricity poles, the primary 

objective is to measure the inclination angle of these poles by applying 

geometric principles. These principles involve the measurement of the angle 

between the representative line and a hypothetical vertical line.  

• The quantified tilt angle is a pivotal factor in determining the risk status of 

electricity poles. During this procedure, the pole types identified through the 

proposed object detection method are utilized to establish specific allowable 

inclination limits. These predefined limits classify electricity poles as either 

'risky' or 'not risky’.  

• At the final stage of this study, the performance of the enhanced risk 

classification model has been subjected to rigorous examination through the 

utilization of a dataset gathered from a pilot test region. This evaluation has 

been applied to validate the effectiveness and robustness of the proposed 

methodology.  

• Based on the above objectives, the schematic representation of the proposed 

risk classification system for the tilted electricity poles is provided in Figure 

3.  
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Figure 3. Representation of the Proposed Model 

1.3 Scope of the Thesis 

This study introduces an automated risk classification method to detect and classify 

tilted electricity poles. The research involves the labeling, image-processing, and 

testing of images acquired through UAVs. The proposed method demonstrates the 

capability to detect and classify three distinct types of electricity poles: (i) steel, (ii) 

concrete, and (iii) wooden poles, thereby expanding the versatility and applicability 

of the model.  

The proposed model can automatically detect electricity poles, quantifying the 

degree of inclination for various pole types and classifying their risk status based on 

their tilt angles without manual patrolling procedures. This model eliminates the 

necessity for surveillance operations involving personnel traversing electricity line 

corridors and visually inspecting pole risk status. While various data collection 

methods exist, from portable cameras to UAVs equipped with laser scanners, 

conventional UAVs were selected for use in this study due to their viability, 

efficiency, and expeditious data collection capabilities.  
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1.4 Thesis Organization 

This study consists of five chapters, each serving distinct purposes, with the 

overarching goal of explaining the data collection methods, the prior literature 

research, the proposed autonomous risk classification method, and presenting its 

results, accompanied by recommendations for future research works. Chapter 2 

delves into a detailed review of the existing literature, encompassing data collection 

methods, object detection models, and the detection of tilted electricity poles. 

Chapter 3 explains the risk detection methodology, including the properties of deep 

learning models, their architectural specifications, and the sequential application of 

image processing techniques. Chapter 4 conducts a comprehensive discussion, 

covering the results obtained from the proposed model and performance metric 

values related to both the object detection and risk classification models. 

Additionally, a field study conducted in Polatlı, Ankara, tests the proposed method's 

efficacy. The concluding chapter synthesizes the proposed techniques and outlines 

potential directions for future research initiatives.  
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CHAPTER 2  

2 LITERATURE REVIEW 

Regular anomaly detection on electricity poles is one of the crucial processes for 

sustainable electricity transmission systems. Some frequent anomalies or damages 

can be observed on these systems, such as foreign objects (bird’s nests, balloons, and 

kites) standing on the electricity poles, corrosion on the steel poles, fractures on 

insulators, contact of trees with electrical cables and tilted poles. Since these 

anomalies can cause long-term energy loss and dissatisfaction among electricity 

users, periodic surveillance and maintenance operations should be conducted.  

Until the last 20 years, manual inspection methods were mainly utilized through the 

electric lines spreading over extensive regions. These manual methods are prone to 

a vast workforce working on the sites. According to the Turkish Electricity 

Transmission Corporation (2023), Turkey's total length of electricity lines is 73,806 

kilometers. As a result, a considerable amount of seasoned site workers are required 

so that proper and confidential power line inspections can be conducted.  

The rapid progression of technological advancements over the past decade has 

afforded electricity distribution entities alternative approaches to mitigate excessive 

time consumption and the imperative for substantial workforce engagement in the 

execution of maintenance and surveillance undertakings. These alternative methods 

can collect data from several distant sites by utilizing enhanced robots such as UAVs. 

Autonomous anomaly inspection and data collection methods with a much smaller 

workforce emerged thanks to UAVs. After the data collection process in autonomous 

systems, the gathered data are utilized for consecutive deep learning models and 
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image processing techniques. This chapter presents the literature studies of data 

collection methods and data processing techniques within the above context. 

2.1 Data Collection Methods 

The expansion of electricity infrastructure has necessitated the establishment of 

extensive transmission lines spanning thousands of kilometers across diverse 

locations, including cities, villages, and towns. Given these regions' distinctive 

characteristics and susceptibility to expansion due to the increasing demands for 

electricity, expeditious and precise data collection techniques become crucial. Two 

principal methodologies emerge for acquiring data from these varied areas: 

conventional and semi-automated. Traditional methods mainly include ground 

inspections conducted by site workers and climbing robots that travel through the 

power lines at relatively slower speeds. In contrast, semi-automated data collection 

techniques include more contemporary methods such as airspace inspection and 

remote sensing (Liu et al., 2020). Although both inspection methods aim to gather 

high-quality and accurate images of electricity poles, they differ in labor cost, time 

spent, and efficiency. In the subsequent sections, data collection methods will be 

elaborated in detail. 

2.1.1 Conventional Methods 

Inspecting power lines through conventional methods represents substantially 

manual and primitive approaches to image acquisition. Among these approaches, an 

experienced field team patrols the entire route corridor, preferably on foot or in an 

off-road vehicle (Aracil et al., 2002), or a climbing robot with an advanced camera 

attached to the power line and collects video/images (Katrašnik et al., 2010). During 

these processes, photos of utility poles can be gathered using binoculars and 

sometimes infrared and corona detection cameras (Katrašnik et al., 2010).  
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Although human visual observation demonstrates the capacity for accurate 

classification of tower anomalies over manual inspection methods, power lines 

extending across the extensive and naturally complex environment and visible 

surfaces of towers can only be observed from the ground. Consequently, the 

reliance on on-site personnel for data collection in comprehensive sites will likely 

result in high expenditures, diminished safety margins, and hazardous operational 

efficiency. 

In response to the labor-intensive nature of conventional data acquisition techniques, 

the proposition of mobile robots (Figure 4) capable of traversing, ascending, and 

capturing video/images from electricity lines emerged as a prospective solution. 

These climbing robots are equipped with specialized cameras and are attached to 

power lines through the utilization of distinctive pins, enabling them to travel along 

the lines unceasingly. During the sliding process, cameras on the robots record many 

high-quality videos/images owing to the moving proximity to the electricity poles. 

Despite the evident advantages in efficiency, reduced labor intensiveness, and the 

acquisition of superior data, obstacles such as insulators, arresters, and cross-arms 

pose an intricate challenge (Katrašnik et al., 2010). In light of these complexities, 

semi-automated data collection methodologies grounded in aerial inspections 

became increasingly popular.  

 

Figure 4. Climbing Robots over a Power Line 
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2.1.2 Semi-automated Methods: 

The shortcomings of conventional image acquisition methods led to research into 

advanced techniques. These techniques are mainly based on collecting aerial images 

obtained by human-driven helicopters, satellites, and UAVs. The main advantage of 

using aerial tools for data gathering is collecting images more efficiently, accurately, 

and safely (Tong et al., 2010), unlike ground inspection and climbing robots.  

One of the essential methods that provides automated data collection from very high 

distances is the application of remote sensing techniques. In other words, remote 

sensing mainly involves observing or collecting information about a target using a 

device positioned at a certain distance away (Cracknell, 2007). Given that this 

approach acquires data with high spatial resolution and facilitates the accumulation 

of extended data sequences distinguished by their consistent attributes (Xue & Su, 

2017), it can be utilized to obtain optical satellite images. Nevertheless, it is 

imperative to acknowledge certain constraints associated with using satellite 

imagery. 

Although utilizing very high-resolution images gathered by satellites is significant, 

it may not constitute an optimally efficient solution for the surveillance of power line 

corridors, considering factors related to weather conditions and matters of economic 

feasibility. Obtaining images, including the desired objects, is challenging when a 

cloud cover prevails in the desired area. Furthermore, obtaining and processing a 

high-resolution image is expected to be very costly (Matikainen et al., 2016). As a 

result, human-driven helicopters and UAVs are more reliable and suitable options 

for image acquisition from electricity poles. 

Human-operated helicopters encompass a composite configuration, including a 

helicopter, a proficient camera operator, a camera apparatus, and a designated pilot. 

It is based on the collection of images by relying on the capabilities of the pilot and 

camera operator. In other words, high-resolution images of utility poles can be 

captured by experienced photographers or automated camera gimbals by utilizing 
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human-piloted helicopters (Business Bliss FZE, 2023). This approach facilitates the 

procurement of images with optimal clarity and permits efficient time allocation, 

even in arduous terrains. 

Even while they are faster than manual approaches (Jones & Earp, 2001), helicopter 

patrols outfitted with specialized fixed cameras or a photographer have various 

drawbacks regarding their size and the stability of the camera view. Lack of 

maneuverability is one drawback of using helicopters for data collection. They 

occupy large spaces, severely limiting their capacity to move and hover, especially 

in crowded and complex environments. As a result, gathering images with desired 

viewpoints could be very challenging. Image degradation brought by the cameras' 

residual sightline motion is another potential issue that can arise while using 

helicopters (Prasad et al., 2016). In other words, images collected during patrols may 

need to be more precise or transparent due to camera shake. 

As a result, UAVs are the best options for collecting high-quality, accurate, detailed 

images with feasible methods. The following parts will explain the detailed 

description and comparison of UAVs. 

UAVs can be categorized into distinct types, namely fixed-wing, helicopter, and 

multicopters (Mohsan et al., 2023) (Figure 5). Each of these UAV categories presents 

its unique set of advantages and disadvantages; as a result, selecting the appropriate 

UAV type should be conducted on the nature of the issue and the prevailing 

environmental circumstances. 
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(a) 

 

   (b)       (c) 

Figure 5. Types of UAVs (a) Fixed-wing, (b) Rotary-wing (Helicopter), (c) Rotary-

wing (Multi-copter) (Mohsan et al., 2023 & Stewart et al., 2021) 

Fixed-wing UAVs exhibit a structural resemblance to conventional aircraft. Their 

configuration, including physical attributes and takeoff and landing procedures, 

indicates a critical familiarity. This UAV variant is characterized by its capacity to 

achieve significant flight velocities, consequently facilitating the comprehensive 

coverage of expansive regions. On the other hand, it has some issues related to 

launching and landing, whereas it could be a more cost-effective solution, especially 

for electricity line monitoring. Given that enhanced agility and lower flight velocity 

are favorable to heightened efficiency, helicopter or multi-copter UAVs are more 

advantageous for data collection purposes centered around electricity poles. 
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Table 1. Comparison of UAV types (Matikainen et al., 2016 & Mohsan et al., 2023 

& Z. Li et al., 2011) 

UAV Type Advantages Disadvantages 

 

Fixed-wing 

 

- Fast flying speed 

- Covering large areas 

 

- Launching - landing 

problems 

- High Price 

Rotary-wing 

(Helicopter) 
- Hovering ability 

- Flying closer to the ground 
- High price 

Rotary-wing 

(Multicopter) 

- Hovering ability 

- Low price 
- Limited flight time 

 

Helicopters and multicopters are known for their ability to hover and fly close to the 

ground (Matikainen et al., 2016 & Mohsan et al., 2023 & Z. Li et al., 2011). Since 

both vehicles can hover and easily launch-land, financial efficiency becomes the 

driving factor in selecting the best UAV for this study. The rotary-wing (helicopter) 

configuration is more expensive than its rotary-wing (multi-copter) counterpart. In 

contrast, the flight duration of multi-copters is constrained due to battery-related 

limitations. This study selects multi-copters as the main UAVs since they are less 

costly and more agile than other vehicles described above, as can be deduced from 

Table 1. 

2.2 Data Processing Techniques 

Data processing techniques primarily facilitate the extraction of significant 

structures, patterns, and information. These techniques are extensively employed to 

address practical challenges, particularly in computer vision (CV) and artificial 

intelligence (AI) applications. While the application domains of CV and AI are 

diverse, this study will use specific methods to address the challenges effectively. 
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Illustrative instances of these applications encompass the localization of target 

objects within images, the classification of images based on predetermined 

properties, and the identification of edges of images. 

Throughout this study, the robust capabilities inherent to CV and AI applications 

will be harnessed to formulate a cohesive series of methodologies engineered to 

identify tilted electricity poles precisely. The proposed approach entails the 

integration of object detection models, a sequence of image processing techniques, 

and meticulous geometrical measurements to obtain a well-designed, highly 

accurate, and efficient solution. The literature study section will be divided into two 

sub-groups that includes: 

• Research on the detection of electricity poles by deep-learning models 

• Detection of tilted electricity poles by image processing and deep learning 

methods 

2.2.1 Research on Detection of Electricity Pole by Deep Learning 

Methods 

Object detection is a pioneering domain of inquiry that enhances the aptitude to 

address many real-world challenges. Within the framework of an object detection 

problem, annotated images are provided alongside their corresponding classes to a 

deep learning model, thereby enabling the derivation of an approximate spatial 

location of the target object as an output. This output commonly comprises four 

coordinates defining a rectangular bounding box encapsulating the object and 

assigning its class label. Several studies have researched the detection of electricity 

poles using object detection algorithms.  

The initial paper (Zhang et al., 2018) focused on identifying a specific category of 

utility poles distinguished by the presence of cross arms, employing supervised 

learning techniques. The dataset for training the deep learning model was captured 

from the Google Street View application. These images were gathered through 
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screen capture methods facilitated by the application. Following the completion of 

the image-gathering process, a total number of 3500 screen views were annotated. 

This study selected the RetinaNet-101 architecture (Lin et al., 2017) as the preferred 

object detection algorithm. After the dataset preparation phase, the collection of 

input images was partitioned into distinct subsets, including training, validation, and 

testing categories. 

During the training phase, 2,500 screen views were dedicated to training the model, 

while the residual 1000 images were evenly partitioned to validate and test the object 

detection algorithm. As part of the augmentation techniques, random horizontal flips 

were incorporated, employing a batch size of 1 and an epoch of 200. Upon 

culminating the training process, specifically for an intersection over union (IoU) 

threshold of 0.5, the model demonstrated an aggregate accuracy of 50%, precision 

reaching 73%, and a recall metric of 62%. Visual representations of the test results 

derived from the proposed model are exhibited in Figure 6. 

 

Figure 6. Results of the Object Detection Algorithm (Lin et al., 2017) 

In an alternate investigation, the utilization of two distinct object detection 

methodologies, namely Faster R-CNN (Ren et al., 2017) and YOLO-V3 (Redmon & 

Farhadi, 2018), were employed with the primary aim of detecting and classifying 

high-voltage transmission towers. This research examined four distinct typologies of 

power towers: drum-shape, umbrella-shape, wine-glass shape, and cathead-shaped 
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towers. The imagery employed in this study was acquired by deploying a specialized 

drone and ground-based cameras. 

A range of augmentation techniques were employed to enhance the diversity and 

volume of the training dataset, including adjustments to brightness, rotation, and 

mirroring. Upon training two distinct deep learning models using identical input 

datasets, it was discerned that the Intersection over Union (IoU) values achieved by 

the Faster R-CNN model (0.882) exceeded those of the YOLO-V3 model (0.874). 

On the other hand, it is noteworthy that the YOLO-V3 model exhibited an average 

detection speed that was approximately 100 times faster when contrasted with the 

Faster R-CNN model.  

In the work by (Nguyen et al., 2019b), a comprehensive methodology was outlined 

for the multi-stage detection of components and faults related to electricity poles. 

The proposed framework involves the application of Single Shot Multibox (SSM) 

detector (Liu et al., 2016) to detect components, while the identification and 

classification of minor parts and faults were executed through the employment of 

deep Residual Networks (He et al., 2016). The architectural design of the proposed 

model, as depicted in Figure 7, centers on the initial detection of utility poles. After 

this preliminary detection, the SSM detector is engaged and classifies the small-scale 

components associated with the power lines. In the concluding stage, the Residual 

Network classifies the identified and cropped components, discerning their specific 

fault classes. 

 

Figure 7. Steps of the Proposed Model (Nguyen et al., 2019b) 

The dataset employed for training the model aimed at detecting components within 

power lines, including a total of 28,674 images with a size of 6048x4032. Some 

augmentation techniques, flipping, blurring, zooming, and rotation, were 



 

 

21 

implemented to augment the training dataset. Following the completion of the 

training process, the proposed model exhibited the capability to accurately identify 

utility poles, yielding an Average Precision (AP) of 88.00%. Moreover, the model 

demonstrated efficient classification proficiency for two distinct types of 

components, pole crops, and cross-arm crops, exhibiting weighted Precision values 

of 96.93% and 74.00%, respectively. 

Sampedro et al. (2014) suggested an investigative approach, including two distinct 

stages: electricity tower detection and subsequent classification. This method uses 

Histograms of Oriented Gradient (HOG) features in conjunction with training two 

Multi-layer perceptrons (MLP). This research includes two sequential steps: (i) 

Detection of electricity poles and (ii) classification of the four distinct types of 

electricity towers. During the initial phase, a sliding-window technique 

systematically traverses the images. After each window's traversal, the 

corresponding window of the image delimited by the present window's boundaries 

is isolated, and its HOG features are extracted. These extracted features are 

subsequently employed as input vectors to a first-layer MLP classifier to determine 

whether the given window section constitutes a component of an electricity tower or 

belongs to the background (Figure 8). 

 

Figure 8. Detection of Electricity Tower 

Upon the culmination of the window scanning procedure, the ultimate bounding box, 

including the electricity towers, was gathered by aggregating foreground window 

sections. In the subsequent stage, the outcomes derived from the initial stage – 
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specifically, the coordinates of the bounding boxes – were employed to crop the 

objects. Analogous to the initial step, the HOG features of these cropped objects were 

extracted. This dataset was then used to train a Multi-layer perceptron (MLP) 

classifier with four distinct classes, facilitating the classification of towers based on 

their respective types (Figure 9). 

 

Figure 9. Classification of Towers 

For dataset generation, a collection of 11 aerial videos was captured utilizing 

Unmanned Aerial Vehicles (UAVs), enabling the cropping of electricity towers from 

these recorded sequences. Consequently, a dataset comprising 3200 images was 

created, with an equal distribution of 1600 images for tower sections and the same 

number of images representing background sections. The evaluation of the first stage 

of the methodology provided accuracy values of 91.67% and 75% for the 

classification of tower and background segments, respectively. Subsequently, the 

classification of towers based on their types exhibited accuracy values of 93.33%, 

86.67%, 60%, and 86.67% for the respective four classes. 

2.2.2 Detection of Tilted Electricity Poles by Image Processing and/or 

Deep Learning Methods 

Numerous scholarly investigations have been dedicated to detecting and classifying 

electricity poles, employing the capabilities of image-processing techniques and 
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deep-learning methodologies. In a specific instance, the work presented in (Varghese 

et al., 2017) introduced a sequence of successive deep learning approaches that aim 

to detect the electricity poles and their tilt degree based on images acquired through 

UAVs. In the initial phase of this research (Figure 10), a pre-trained deep learning 

model was employed as a foundational feature extractor. After this, a set of 

specialized layers was introduced to the model's architecture for detecting electricity 

poles.  

 

Figure 10. Architecture of the Proposed Method (Varghese et al., 2017) 

Once the precise localization of poles within the images was established, a post-

processing algorithm based on a graph-based approach was applied. This algorithm 

serves the purpose of eliminating any false positive bounding boxes that include 

undesired elements. Thus, the output produced by the deep neural network was 

employed as the input for this post-processing algorithm, facilitating the accurate 

removal of erroneously detected bounding boxes. Electricity poles' tilt angles were 

measured in the investigation's subsequent phase through a comparative analysis 

involving two sets of images: test images, which may exhibit varying degrees of tilt, 

and reference images, including perfectly upright electricity poles. The methodology 

utilized geometric principles by fitting ellipses to test and reference pole images. The 

deviation in the orientations of the major axes of these fitted ellipses provided the 

measure of tilt degree. The efficiency of the proposed approach was validated, and a 

dataset containing 150 images was employed for testing purposes. The evaluation 

metrics values are 87.79% (F-Score), 97.90% (Accuracy), 93.50% (Precision), and 

83.6% (Recall). 
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Chen and Miao (2019) suggested a methodology for detecting electricity poles by 

determining their numerical count and risk status. This method utilized images and 

videos captured by UAVs, and the proposed approach was organized as follows: (i) 

Detection of electricity poles and (ii) Classification of the electricity poles 

concerning their orientation, upright or fallen. During the initial stage, images were 

extracted from the recorded videos captured by UAVs. Since the number of videos, 

including fallen poles, was insufficient, a strategy was implemented to simulate such 

instances by introducing a complex background (Figure 11). 

 

        (a)                   (b) 

Figure 11. Simulated images representing (a) Upright pole, (b) Fallen pole (Chen & 

Miao, 2019) 

In the training phase for the detection of poles, a comprehensive dataset containing 

13,429 images was utilized. Within this dataset, 11,951 images were dedicated to the 

training set. The YOLOv3 (Redmon & Farhadi, 2018) architecture was the chosen 

framework for the training procedure. In this context, the model was augmented with 

a Region of Interest (ROI), which served the model with indications regarding the 

approximate locations of electricity poles within the images. This assessment was 

achieved by estimating the positions of objects situated centrally within the images 

(Figure 12). 
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Figure 12. ROI in the Middle of an Image (Chen & Miao, 2019) 

After enhancing and training the YOLOv3 model for the dual tasks of pole detection 

and classification, the achieved performance was reflected in the Average Precision 

(AP) metrics. Specifically, an Average Precision value of 90.09% was obtained for 

upright poles, while fallen poles exhibit an Average Precision value of 90.81%.  

Hosseini et al. (2020b) enhanced a comprehensive methodology to detect potential 

damages that could occur on electricity poles. This approach was developed through 

the integration of four distinct models: (i) Damage classifier, (ii) Destruction 

estimator, (iii) Pole detector,  and (iv) Fire detector (Figure 13).  

 

Figure 13. Representative architecture for the proposed model 

Within the framework of the damage classifier model, a Convolutional Neural 

Network (CNN) was trained to classify images into three distinct classes: healthy, 

fallen, and burning poles. After the classification process, fallen poles were grouped, 
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facilitating the subsequent application of the destruction estimator model. This latter 

model served the purpose of providing a scalar value that quantifies the extent of 

damage. This quantification was achieved by introducing a 14x14 pooling layer at 

the final stage of the model's architecture (Figure 14). 

 

Figure 14. Architecture of the Destruction Estimator Model 

The pole detector model was applied to the bounding box, including electricity poles, 

in the fire detector model context. The ratio of pixels associated with fire to the total 

pole area was computed by assessing the fire extent. For the entire model, a dataset 

comprising a total of 1615 images was employed. This dataset encompassed 572 

images of healthy poles, 457 of fallen poles, and 586 of burning poles. Three distinct 

augmentation techniques were implemented to augment the dataset and diversified 

its contents, including Five-crop, random horizontal flipping, and color jittering. 

During the training procedure, the images were partitioned into distinct datasets 

utilizing ratios of 0.6 for training, 0.2 for validation, and 0.2 for testing, respectively. 

The accuracy value for the damage classifier model was 94.54%, and the error rate 

of the destruction estimator was 15.43%. In contrast, the estimation error for the pole 

and fire detector models was 21.56 pixels. 

The investigation conducted by L. Li et al. (2021) centered on the determination of 

tilt angles of the electricity poles with a distinctive emphasis on the utilization of 

satellite optical imagery. Within the framework of satellite images, the detection of 

tower shadows by electricity poles was comparatively more straightforward than the 

direct detection of the poles themselves. Consequently, the preliminary phase of this 
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research focused on the extraction of tower shadows with an implementation of the 

K-means clustering algorithm (Lloyd, 1982). In shadow detection, the contours of 

the identified shadows were subjected to applying the Hough line detection 

algorithm (Figure 15). 

 

Figure 15. Representation of the Shadows and Geometric Centerlines of Towers (L. 

Li et al., 2021) 

Additionally, other parameters, including solar altitude and azimuth angles, were 

computed based on the precise moment of image acquisition. Proceeding to the third 

phase of the methodology, essential input data, including the actual tilt degree of the 

towers, the length, and orientation of the detected contour centerline, as well as the 

solar altitude and azimuth angles, were collectively provided to a three-layer Back 

Propagation (BP) Neural Network. This neural network estimated the tilt angle of 

the electricity poles. In training, 80 shadow images corresponding to the towers are 

utilized, while the test set contains 26 such images. The proposed model reached an 

accuracy rate of 92.31%. 

2.3 Gaps in the Literature 

The comprehensive review of existing literature about the detection of tilted 

electricity poles has yielded valuable insights into various approaches and 

recommendations to enhance the reliability and robustness of models. Nonetheless, 
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the investigation has brought to light several notable deficiencies, which serve as the 

focal points of this study's inquiry. These primary gaps encompass the following: 

• Limited utilization of real electricity pole images in research endeavors, 

• Inadequate utilization of structured methodologies for image acquisition, 

• Absence of rigorous geometric principles in the determination of electricity 

pole tilt angles and 

• There is a need for more validation of the detected representative lines for 

electricity poles. 

The initial gap pertains to the need for actual images. Given the need for 

comprehensive electricity pole image datasets within the existing literature, specific 

simulated electricity pole images were generated for comparative purposes. While 

these images may serve as training data for deep learning models, it is imperative to 

note that the outcomes derived from such models may lack reliability and may not 

accurately capture real-world scenarios. 

Another noteworthy gap is the need for a meticulously designed image acquisition 

guide. Such a guide would ideally furnish precise directives for capturing electricity 

pole images, including specified distances and elevations. Consequently, this 

standardized approach would yield a uniform perspective in images sourced from 

various electricity poles, thereby enhancing the robustness and reliability of training 

methodologies for deep learning models. 

Assessing an electricity pole's inclination angle represents a pivotal phase within a 

risk detection model. Within the extant literature, the application of geometric 

principles to quantify the tilt angle of electricity poles are notably absent despite the 

inherent accuracy and reliability associated with such an approach. This matter is 

also intricately linked to the inadequacy of images collected directly aligned with the 

poles. This factor substantially enhances the precision of tilt angle calculations when 

employing images as input. 



 

 

29 

Finally, it is worth noting that certain studies have adopted the practice of extracting 

contours from electricity poles for tilt angle measurements. While this approach 

holds merit, it is imperative to underscore that the detected lines are not subjected to 

validation procedures to verify their faithful representation of the correct shape of 

electricity poles. 

These deficiencies identified in the existing literature provide the foundation for 

developing an encompassing model. This model leverages real imagery of electricity 

poles acquired through UAVs, uses the computational prowess inherent in deep 

learning and image processing methods, employs fundamental geometric principles 

for precise tilt angle measurements of the electricity poles, and rigorously enhances 

the validation of the detected representative lines for the electricity poles. The 

subsequent chapter will delve into a detailed examination of the proposed method. 
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CHAPTER 3  

3 METHOD OF TILTED ELECTRICITY POLES DETECTION 

This chapter comprehensively explains the method employed to detect insecurely 

tilted electricity poles. The primary objective of this method is to minimize manual 

interventions within electricity grid operations, paving the way for the development 

of an autonomous and exact suite of artificial intelligence models. This chapter will 

delve into the fundamental principles underpinning the detection model while 

offering an intricate elucidation of the algorithmic architecture. 

The proposed method consists of four main steps: (1) object detection method, (2) 

advanced image processing techniques, (3) validation of the detected lines and (4) 

risk classification method. As an initial step, the detection of approximate locations 

of electricity poles within the provided images is accomplished by deploying an 

object detection method, the Faster R-CNN (Ren et al., 2015). This model aims to 

detect bounding boxes encapsulating the electricity pole structures. After this stage, 

the coordinates derived from the detected bounding boxes are employed to 

effectively filter out the environmental artifacts surrounding the poles, including 

elements like trees, road markings, and buildings. Besides detecting bounding boxes, 

the proposed object detection model undertakes the classification of the electricity 

poles based on their respective structural materials, according to their categories, 

such as concrete, steel, or wooden poles. 

The subsequent phase within this model uses the output values of the object detector. 

These outcomes are as the cropped portions of the images, containing exclusively 

the electricity poles. Subsequently, an array of image-processing techniques is 

employed to estimate a line that effectively represents the inherent structures of the 

poles. In the subsequent stage, a comprehensive evaluation of the detected 
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representative pole lines is conducted by some performance metrics to comprehend 

the robustness and effectiveness of the proposed method. 

In the last phase, two consecutive components, (a) Measurement of the tilt angles 

and (b) Classification of the risk status of the poles based on these angles utilizing 

pre-established angle thresholds, are applied. The initial component deals with the 

determination of the inclination angle of the electricity poles. This quantification is 

achieved by utilizing algorithms that inherit the established geometric principles. 

Following the prevailing design patterns, certain pole types may exhibit variable 

configurations. For instance, steel poles might inherently possess natural structural 

inclinations, whereas this property is not valid for concrete/wooden poles (Figure 

16). Consequently, different threshold values become necessary for the various types 

of poles. 
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(a) 

 

(b) 

 

(c) 

Figure 16. Comparison of Natural Inclination of Pole Types (a) Concrete 

Pole without Natural Structural Inclination (b) Wooden Pole without 

Natural Structural Inclination (c) Steel Pole with Natural Structural 

Inclination 
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In the last part of the third step, the determination of the risk status of the poles is 

established based on their respective tilt angles. This process is conducted by 

deploying an algorithm designed to examine whether the prevailing inclination angle 

of the electricity poles surpasses the pre-determined threshold limit. A flowchart of 

the process for detecting tilted electricity poles is visually depicted in Figure 17, 

while the details of each step will be comprehensively explained in the forthcoming 

sections. 

 

Figure 17. Flowchart of the Proposed Risk Classification Method 

3.1 Object Detection Algorithms: 

The initial phase within the risk detection model for tilted electricity poles includes 

identifying electricity poles through input images with dimensions of 5472x3648. 

During this stage, the procedure of image labeling is imperative to create distinct 

training and testing datasets for the model. This image labeling process necessitates 

the meticulous drawing of bounding boxes around the electricity poles, a task that is 

performed manually. To facilitate this particular step, labeling software has been 

employed. 

Following the completion of the labeling procedure, the images and their labels, 

bounding box coordinates, and the classes of the pole types are split into train-test 

sets, maintaining a split ratio. The object detector model learns from the training 
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dataset, subjecting its learned capabilities to evaluating previously unseen data 

within the test set. During the training phase, several critical considerations 

concerning the deep learning models require careful attention. These considerations 

encompass the image labeling procedure and selecting an appropriate object detector 

type and its properties. Comprehensive details of each step of the model will be 

discussed in the forthcoming sections. 

3.1.1 Image Labeling Procedure 

Image labeling is one of the significant steps of deep learning models. This procedure 

aims to create bounding boxes with rectangular shapes that enclose the boundaries 

of the target objects. These bounding boxes are created with four corner coordinates 

of a rectangle. The main challenge of this procedure is drawing the best tight 

rectangle that includes all the parts of the objects while the environmental noises 

should be excluded as much as possible.  

An indispensable point of the labeling procedure is the precise allocation of object 

classes. Within the framework of this study, the objects are classified into three 

distinct classes that correspond to different types of electricity poles: concrete, steel, 

and wooden (Figure 18). Upon the detection of the bounding box coordinates, the 

electricity pole classes are assigned based on the underlying material composition of 

the respective poles. 
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Figure 18. Concrete, Steel, and Wooden Electricity Pole Images 

During this study, a total number of 8775 images that contain electricity pole 

instances were annotated by an approximate effort of 175 person*hours. An original 

in-home software has been utilized to create and store the annotations. Each image, 

accompanied by its associated coordinates and class labels, is meticulously stored 

within a database within this software framework. Furthermore, the software can 

generate a comprehensive summary of labeled images in a JSON file. 

3.1.2 Object Detector 

An object detector's foremost objective is identifying the approximate spatial 

locations of the target objects within the given images. The detector accepts a batch 

of labeled images as input. Subsequently, the object detector proceeds to learn from 

the provided information, encompassing the coordinates of bounding boxes and the 

designated classes of the objects. In alignment with the objectives of this study, an 

object detector has been devised that leverages both supervised learning and transfer 

learning methodologies. 
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Supervised learning (B. Liu, 2011) represents a specific machine learning method, 

characterized by its reliance on labeled datasets to facilitate the training of models. 

The output of such models is classifying test images or estimating the spatial 

coordinates of detected objects in the context of object detection. This learning mode 

can be analogous to Kolb's learning cycle (Kolb, 2014), wherein the human learning 

process is likened to a cyclical progression. According to this theoretical framework, 

the human mind learns knowledge from past experiences and actions. Consequently, 

when confronted with inexperienced situations, the mind utilizes prior experiences 

to respond. 

Supervised learning has been notably influenced by this inherent learning 

phenomenon, i.e., exploration of knowledge acquisition from labeled datasets. 

Analogously, the past experiences of a human being find representation in the form 

of labeled datasets. At the same time, novel scenarios correspond to the unseen 

datasets encountered within the domain of deep learning models.  

Another crucial step in the training of a deep learning model is the determination of 

weight values. Throughout model training, these weight values are initialized, 

assuming a pivotal role in the efficiency of the learning process. As a result, the 

initial values attributed to a model's weights pose substantial significance. In this 

study, the process of selecting initial weight values has been undertaken using 

transfer learning methodologies. 

In the transfer learning technique, the final weights of a previously trained model 

have been utilized as the initial weight values of a current deep learning model. In 

other words, the weights of another pre-trained model have been transferred to a 

model that will be trained. This method enhances the performance and rapidness of 

a current deep-learning model by decreasing the expected training duration 

(Goodfellow et al., 2016) (Figure 19). 
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Figure 19. Representation of Transfer Learning Method 

This study has executed the process of detecting bounding boxes by employing a 

widely recognized and extensively employed object detection framework, Faster R-

CNN (Ren et al., 2015). This methodology has been utilized with supervised learning 

mechanisms supported by integrating transfer learning techniques. Faster R-CNN 

stands as a distinguished object detector that consists of sequential sub-models to 

manage high-resolution RGB images efficiently. The fundamental architecture of the 

Faster R-CNN model encompasses an array of convolutional layers, complemented 

by a Region Proposal Network and a Region of Interest Pooling (RoI) layer (H. 

Wang et al., 2019). The detailed functions of these layers will be explained in the 

following sections by utilizing Figure 20: 
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Figure 20. Representative Architecture of Faster R-CNN (Ren et al., 2015) 

• A Set of Convolutional Layers: At this step, convolution layers with the 

ReLU activation function and pooling layers are applied to extract the 

features of the provided images. 

• Region Proposal Networks (RPN) Layer: This framework is used to 

generate region proposals that encapsulate the targeted objects. Employing 

Softmax functions, these layers discern whether the proposed anchors or 

region proposals belong to the foreground or the background. At the final 

stage of this step, a bounding box regression technique is deployed to rectify 

the anchors to attain precise object localization. 

• Region of Interest Pooling Layer: This model component aims explicitly 

to collect the feature map with the region proposals and synthesize these 

distinct information sources. Proposal feature maps are produced after the 

information extraction process, serving as the foundation for subsequent 

layer operations. These subsequent layers encompass a fully connected layer 

that determines the classes to which objects belong and a classification layer 

that computes the definitive and meticulous positioning of the bounding 

boxes. 
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Several pivotal properties were incorporated throughout the Faster R-CNN object 

detector training phase. These inherent properties encompass the selection of the 

classification and feature extractor models. Within object detection, a deep learning 

model, ResNet-50 (He et al., 2016b), were employed to classify the diverse 

electricity pole types. Simultaneously, the feature extraction process is facilitated by 

incorporating Feature Pyramid Networks (FPN). The details of these two models will 

be examined in the following sections. 

3.1.2.1. Resnet-50 

A deep learning model includes multilayered artificial neural networks. These 

models often comprise numerous layers, thereby facilitating the attainment of high 

accuracy and efficiency. Throughout the training phase of the model, these neural 

layers undergo iterative updates conducted by backpropagation algorithms. These 

algorithms employ optimization techniques to calculate the error functions, 

ultimately guiding the model towards improved performance (Tan & Lim, 2019). 

The representation of a block of a deep neural network is indicated in Figure 21. 

 

Figure 21. A representation of a deep neural network (Tan & Lim, 2019) 

Upon completing the initial forward pass during the training phase, an output is 

generated following the nature of the problem under consideration. For instance, a 

class probability or class label would be the output of a classification model. This 

resulting output is subsequently combined with the target output, thereby facilitating 
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the assessment of the model's capacity to approximate the target outcome. The neural 

network's weights are updated according to the error function derived from the 

difference between the obtained and intended output values. This procedure is 

recognized as backpropagation. This iterative adjustment of weights is executed to 

enhance the model's predictive performance. The backpropagation process has been 

conducted by calculating the gradients, which the following equation can represent: 

𝜕𝐿

𝜕𝑊
= [

𝜕𝐿

𝜕𝑤1
,

𝜕𝐿

𝜕𝑤2
,

𝜕𝐿

𝜕𝑤3
,

𝜕𝐿

𝜕𝑤4
… ] (1) 

Where 𝐿 represents the error function, while 𝑊 is the vector of neural network 

weights, throughout the training phase of a model, a sequence of forward and 

subsequent backward passes is a recurring phenomenon, culminating in the 

calculation of multiple derivatives of the error function in relation to the weights. 

While the increase in the neural network's layer count is expected to mitigate the 

error rate of a model, it is imperative to acknowledge that the adoption of deeper 

architectures might cause the Vanishing/Exploding gradient problem. This issue 

were studied, and it is demonstrated that an increase in the number of layers is the 

main reason for gradients’ being close to 0 or very large (Kaiming et al., 2015).  

This phenomenon is tested with two Convolutional Neural Networks (CNNs) 

(O’Shea & Nash, 2015) that have 20 and 56 layers, respectively (Figure 22). 

 

Figure 22. Comparison of Two Neural Networks with Different Number of Layers 

(He et al., 2016b) 
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From these plots, it can be observed that 56-layer CNN has a higher error rate for 

both training and testing processes than 20-layer CNN. This deduction emphasizes 

the significance of addressing the Vanishing/Exploding gradient issue. To mitigate 

this phenomenon, one prominent way of investigation is Residual Networks 

(ResNet) (He et al., 2016b). 

ResNet is one of the significant deep learning models with a well-known and 

inspiring method of Residual Blocks (Figure 23) against the Vanishing/Exploding 

gradient problem (Hochreiter, 1998). In Residual Blocks, a technique called skip 

connections has been utilized, which mainly aims to connect the activation of 

weights of a layer to the further layers. In other words, activation of weights is added 

to the additional layers by skipping some layers in between. 

 

Figure 23. Representation of a Residual Block in ResNet (He et al., 2016b) 

Skip connections enable Residual Blocks to form, and the stacking of these blocks 

results in Residual Networks. The mathematical representation of this model can be 

seen in the following equation: 

𝐻(𝑥) ∶= 𝐹(𝑥) + 𝑥 (2) 

 

Where 𝑥 represents the weight vector of the current layers, 𝐹(𝑥) is the output of the 

forward layer, in which the activation function is applied. Adding previous layers' 

weight values with the current layers' activated output prevents the occurrence of 
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Vanishing/Exploding gradients. This pivotal architectural framework facilitates the 

construction of deep learning models characterized by an extensive depth of layers. 

3.1.2.2. Feature Pyramid Networks 

Artificial Neural Networks (ANN) (Jain et al., 1996) mainly consist of artificial 

neurons that aim to imitate human natural neurons. An ANN primarily consists of an 

input layer, some hidden layers, and an output layer (Figure 24).  

 

Figure 24. Representative Artificial Neural Network (ANN) 

In the input layer, the pixel values of each image serve as input values. These input 

values are subjected to multiplication by pre-established weights and subsequently 

added with a constant value unique to each artificial neuron. This fundamental 

equation represents a linear calculation. The following equation indicates the 

representative linear calculation of a neuron: 

𝑧 = 𝑊 ∗ 𝑥 + 𝑏 (3) 
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In this context, the symbols W, x, b, and z denote a weight vector, an input vector, a 

bias constant, and an output vector, respectively. This calculation is systematically 

executed across all neurons within all layers within linear models. Nonetheless, the 

performance metrics of linear models, such as sensitivity, specificity, and accuracy, 

tend to yield results of lesser efficacy than non-linear models (Landi et al., 2010). In 

establishing a non-linear model, applying an activation function is essential. The 

representative non-linear equation of a neuron can be seen in the following equation: 

𝑧 = 𝜎(𝑊 ∗ 𝑥 + 𝑏) (4) 

where 𝜎 represents an activation function. The initial layer receives the input data 

from the external sources, subsequently forwarding this data to the hidden layers. In 

this layer, every neuron utilizes the outputs derived from the preceding layers, with 

the resultant values serving as inputs to the output layer. Across these successive 

passes, the provided data undergoes a comprehensive analysis with simultaneous 

training and learning processes. In other words, as the input data transfers through 

consecutive layers, the artificial neural network progressively learns deeper insights 

from the attributes of the provided dataset. 

CNNs are one of the types of ANN containing particular layers: convolutional and 

pooling layers and fully-connected ones (O’Shea & Nash, 2015). In the next section, 

the details of each layer will be explained. 

a) Convolutional Layer 

A convolutional layer is the first processing step of an input image. During 

this step, learnable kernels, specialized small-sized matrices, convolve each 

part of the provided images (O’Shea & Nash, 2015). The convolution means 

synthesizing the given images by applying many elementwise multiplications 

of portions of an image and the kernels. The representative figure of the 

convolution can be seen in the following figure. 
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Figure 25. Representation of a Convolution Process (Zhang et al., 2018b) 

As it can be deduced from Figure 24, the 3x3 portion of the provided image, inputs, 

are convoluted by the 3x3 kernels. At the end of a convolution process, the 

summation arising from the element-wise multiplication of the constituent elements 

of two distinct 3x3 matrices is acquired. 

b) Pooling Layer 

The core objective of the pooling layer is the reduction of matrix 

dimensionality, thereby decreasing the total count of model parameters. 

Within this layer, the convolved images serve as the input, and pooling is 

executed by applying precisely sized kernels. An illustration of the pooling 

process employing a 2x2 kernel is depicted in the following figure: 
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Figure 26. Representation of a Pooling Process (Zhang et al., 2018b) 

 

In Figure 25, the maximum values of the 2-by-2 matrices of the feature maps 

are extracted from the output maps. Thus, the size of the feature maps is 

halved by selecting the higher pixel values. 

c) Fully-connected Layer 

The final layer of a Convolutional Neural Network (CNN) comprises 

interconnected neurons arranged in a configuration reminiscent of the 

conventional architecture of an Artificial Neural Network (ANN), as depicted 

in Figure 23. 

Convolutional Neural Networks (CNNs) represent a pivotal class of deep learning 

models proficient in feature extraction from the provided input images. In the context 

of Feature Pyramid Networks (FPNs) (Lin, Dollár, et al., 2017), this architectural 

configuration facilitates extracting semantically robust features, like CNNs. 

However, FPN’s outputs are merged with the previous layers’ feature vectors (Figure 

27).  
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Figure 27. Feature Pyramid Network Architecture (Lin, Dollár, et al., 2017) 

As can be seen from the figure, Feature Pyramid Networks (FPNs) are characterized 

by two distinct pathways: the Bottom-Up and the Top-Down paths. In the Bottom-

Up path, a standard CNN is employed to derive a feature vector at the top of the 

initial pyramid (as illustrated by the left-side architecture in Figure 26. However, the 

Top-Down path utilizes the process of feature vector upsampling. This is achieved 

by integrating feature vectors from the Bottom-Up layer with the lateral connections 

(Lin, Dollár et al., 2017). Thus, the FPN structure provides semantically stronger 

features for the deep learning models, and they are utilized for the Regional Proposal 

Networks (RPN) in the Faster R-CNN model. 

Following the production of bounding boxes by the object detector, which effectively 

encapsulates electricity poles, a series of consecutive image processing techniques 

are employed to discern a representative line that accurately identifies the poles. In 

the following section, details of these methods will be discussed. 
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3.2 Advanced Image Processing Techniques 

The subsequent phase of the proposed methodology involves the application of a 

sequence of advanced image processing techniques to estimate representative lines 

for the electricity poles within the images. Within this step, the output values 

obtained from the preceding model, which encompass the coordinates of bounding 

boxes of electricity poles, are employed as input. The main reason for incorporating 

an object detection model before this second phase lies in its capacity to mitigate the 

potential interference sources that could adversely affect the effectiveness and 

precision of the method. 

Electric pole images are cropped according to the bounding box coordinates (Figure 

28).  

  

  

Input Images Cropped Images 

Figure 28. Cropping of the Bounding Box Coordination 

Within the preparation of the input images are completed, the following image 

processing techniques are applied consequently: 
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1. Converting RGB image to grayscale image 

2. Applying gaussian blur 

3. Applying morphological operations 

4. Utilizing Canny Edge Detection model 

5. Applying Line Segment Detector 

6. Filtering the detected lines according to its length 

7. Extracting the edges by thresholding 

8. Applying Hough Line Transform 

9. Finding the best line that represents the electricity poles 

10. Measurement of tilt angles of the poles 

In the following sections, the abovementioned image processing techniques will be 

explained by providing sample input images. 

3.2.1 Converting RGB image to Grayscale image 

In the first step of image processing techniques, RGB images are converted into 

Grayscale ones. An original image has three channels: Red, Green, and Blue (Figure 

29).  

 

Figure 29. Representation from RGB Image to Grayscale Image 

The conversion of an RGB image to grayscale requires the computation of the 

average value across the three-channel matrices. In other words, pixel values of all 
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the matrices are summed, which is subsequently divided by 3. The sample 

calculation can be seen in the following representation: 

([
𝑟1 𝑟2
𝑟3 𝑟4

] + [
𝑔1 𝑔2
𝑔3 𝑔4

] + [
𝑏1 𝑏2
𝑏3 𝑏4

]) /3 (5) 

In this step, input data are the cropped images that are obtained by the result of the 

object detector, and the output is the image in grayscale.  

3.2.2 Applying Gaussian Blur 

During this phase, grayscale images serve as the input data, and Gaussian blur is 

applied to blur the provided image. The Gaussian blur algorithm utilizes the 

convolution process with a kernel, the coefficients of which are determined by using 

the Gaussian Normal Distribution function (6) (Gedraite & Hadad, 2011). 

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2  (6) 

 

Upon the computation of convolution matrix values using the Gaussian function, the 

input image is convolved with this kernel, generating an output-blurred image. The 

mathematical representation of an output of blurred images can be seen in the 

following equation: 

𝑌(𝑖, 𝑗) = ∑ ∑ 𝑋(𝑖 + 𝑢, 𝑗 + 𝑣)𝐺(𝑢, 𝑣)

𝑤

𝑣=−𝑤

𝑤

𝑢=−𝑤

 (7) 

 

where 𝑌(𝑖, 𝑗) represents the blurred image, whereas 𝑋(𝑖 + 𝑢, 𝑗 + 𝑣) is the input 

image in which kernel matrix, 𝐺(𝑢, 𝑣), is applied.  
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3.2.3 Applying Morphological Operations 

Morphology operations encompass image processing techniques based on the image 

shapes. These operations are instrumental in extracting hidden structures concealed 

within the images (Soille, 2000). The execution of a morphology operation utilizes 

the employment of several key terminologies, including structuring element, erosion, 

dilation, opening, and closing operations. 

The structuring element is a matrix aiming to traverse the provided image, and its 

shape choice is one of the parameters that should be determined. Another significant 

term, erosion, seeks to shrink the image pixel by eroding the object's boundaries. 

During this process, if all the pixels in the structuring element cover the pixel of 

objects, these covered pixels are retained. Otherwise, object pixels are eliminated in 

the case of not fully matching the pixels. The mathematical operations to represent 

erosion can be seen in the following equation: 

𝑒𝑟𝑜𝑠𝑖𝑜𝑛 =  (𝐴 − 𝐵) (8) 

where A represents the input image while B is the structuring element. While the 

erosion operation creates more simplified object shapes, dilatation works reversely. 

Dilatation operation is liable to expand the object boundaries; in other words, it adds 

extra pixels to the outer part of the objects. The mathematical representation of this 

operation is: 

𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 =  (𝐴 + 𝐵) (9) 

While erosion and dilation operations reasonably impact images, their combination 

can also be utilized to achieve specific outcomes. One such combination, known as 

opening, involves the sequential application of erosion followed by dilation (10). On 

the other hand, the closing operation encompasses a dilation operation succeeded by 

erosion (11). 

𝑜𝑝𝑒𝑛𝑖𝑛𝑔 =  (𝐴 − 𝐵) + 𝐵 (10) 

𝑐𝑙𝑜𝑠𝑖𝑛𝑔 =  (𝐴 + 𝐵) − 𝐵   (11) 
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3.2.4 Canny Edge Detection Model 

In computer vision applications, edge detection means discovering the properties of 

an object in an image. These properties aim to be discovered by detecting and 

characterizing significant intensity changes (Poletaev et al., 2016). Thus, essential 

edges and curves in the provided images can be detected. In the current phase of this 

study, the Canny Edge Detection method (Canny, 1986) were employed to extract 

the edges that represent electricity poles. 

• Smoothing by Gaussian Convolution 

• Gradient Calculation 

• Process of Non-maximum Suppression 

• Tracking of the Edges 

In the first step of this edge detection model, Gaussian Smoothing (Gedraite & 

Hadad, 2011) is applied to eliminate the noises. After the blurring of the provided 

image, gradients are computed to detect the intensities and the directions of the 

edges, achieved through convolution with Sobel kernels (Kanopoulos et al., 1988) 

for both horizontal and vertical directions. This procedure facilitates the extraction 

of image edges; however, the intensity of these edges can exhibit variability. As a 

result, non-maximum suppression is applied, culminating in the thinning of edges. 

In the conclusive phase, the identification of strong and weak pixels representing the 

edges is determined, and a tracking algorithm selects the robust ones as the 

components of the edges. 

3.2.5 Applying Line Segment Detector 

The Line Segment Detector (LSD) developed by Von Gioi et al. (2012) is a computer 

vision algorithm designed to systematically analyze images to identify regions 

characterized by high edge density. These identified regions are subsequently 

merged to form coherent line segments. The functioning of the LSD algorithm 
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involves several key steps. An edge detector is initially applied to the images to 

identify edge points. Subsequently, the output from the edge detector undergoes a 

filtering process. This process involves the application of specific filters to the point 

data to generate hypotheses for potential line segments. These filters consider 

parameters such as the angle, length, and number of supportive points for each line 

segment hypothesis. 

Following the generation of line segment hypotheses, a clustering algorithm based 

on proximity and similarity is employed. This clustering step serves to group related 

hypotheses by eliminating false positives. In the final stage of the LSD algorithm, a 

least-squares algorithm is utilized. This algorithm creates the line segment 

hypotheses by fitting them to the original edge points, which enhances the accuracy 

and precision of the extracted line segments. 

3.2.6 Filtering the Detected Lines According to Its Length 

Within this stage, the lines extracted via the Line Segment Detector undergo a length-

based filtration process. Within the framework of the proposed method, lines 

possessing lengths below 50 pixels are excluded. This strategic elimination of shorter 

lines serves the purpose of discarding those unlikely to represent electricity poles 

accurately. 

3.2.7 Extracting the Edges by Thresholding 

This phase facilitates the preliminary extraction of edges by utilizing the extended 

lines generated in the preceding step. Within this segment, an algorithm is deployed 

to identify pixels that do not correspond to edges, encoding the values of these pixels 

as "1" by applying the "Draw Segments" function of the line segment detector. In the 

pursuit of extracting edges, a thresholding procedure is enacted, whereby pixel 

values surpassing the threshold of "1" are retained, while those below this threshold 

are disregarded. 
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3.2.8 Applying Hough Line Transform 

Utilizing the Hough Line Transform (Duda & Hart, 1972) is instrumental in 

identifying straight lines, which accept edge maps as input. This methodology 

represents lines within the polar coordinate system, characterized by two parameters 

(r, θ). These parameters encapsulate the spatial location of a point, wherein the value 

of r indicates the distance from the origin, and the angle θ signifies the orientation 

relative to the polar axis (Figure 30). 

 

Figure 30. Polar Coordinate System 

By using (𝑟, 𝜃) pair, line equation in Figure 29 can be written as: 

𝑦 = (−
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
) 𝑥 + (

𝑟

𝑠𝑖𝑛𝜃
) (12) 

  

The following equation (13) is obtained when this term is arranged. This equation 

means that for each point of (𝑥, 𝑦), a family of lines that passes through this point 

can be described. 

𝑟 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 (13) 

  

A family of lines can be obtained for all the points in an image, and if the curves of 

two points are intersected, these points are on the same line. As a result, the Hough 

Line Transform algorithm aggregates such intersecting points, thereby enabling the 

extraction of suggested lines. 
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3.2.9 Finding the Best Line That Represents the Electricity Poles 

In the previous step, many lines are produced by the Hough Line Transformation. 

These line points are stored within a list, wherein the lines are ordered based on their 

prominence. Consequently, the optimal line that best represents the electricity poles 

is designated by selecting the initial element from the line list. 

3.2.10 Measurement of the Tilt Angles of the Poles 

All the gathered images exhibit a uniform rectangular configuration, ensuring that 

the angle between two adjacent boundaries of an image corresponds to 90 degrees. 

Utilizing this inherent property of the images, the determination of the angle between 

the representative line symbolizing the electricity poles and a vertical boundary line 

is facilitated within this phase. The steps of measuring the tilt angle of an electricity 

pole are demonstrated in the following equations: 

𝑑𝑒𝑔𝑟𝑒𝑒 =  𝜃 ∗ 180/3.14 (14) 

𝑑𝑒𝑔𝑟𝑒𝑒 =  min (𝑑𝑒𝑔𝑟𝑒𝑒, 180 − 𝑑𝑒𝑔𝑟𝑒𝑒) (15) 

  

In equation (14), the transformation from the polar to cartesian coordinates is 

applied, whereas equation (15) quantifies the inclination angle existing between the 

representative line and the vertical boundary of the image (Figure 31). 

 

Figure 31. Representative Line and Vertical Boundary of the Image 
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3.3 Measurement of Performance Metrics 

The image processing algorithm presented in the second section aims to estimate the 

representative lines corresponding to the electricity poles. To measure the accuracy 

of this algorithm, two distinct performance metrics, namely the Earth Mover’s 

Distance (EMD) (Department et al., 1998) and the EA-score (Zhao et al., 2021), are 

employed. EMD is characterized as the measure of distance between two 

mathematical distributions, and according to Zhao et al. (2021), it can also serve as 

an indicator of line similarities. As a result, this similarity metric accomplishes this 

by (i) rasterizing the lines into pixels and (ii) computing the pixel-wise Euclidean 

distance, which is represented by the following equation: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (16) 

 

where (𝑥1, 𝑦1) & (𝑥2, 𝑦2) are coordinated two different points. The other metric, EA-

score, proposed by (Zhao et al., 2021), utilizes Euclidean and Angular distances of 

two lines simultaneously. The following equation can measure the angular distance 

of two lines: 

𝑆𝜃 = 1 − 
𝜃(𝑙𝑖 , 𝑙𝑗)

𝜋/2
 (17) 

 

where 𝜃(𝑙𝑖 , 𝑙𝑗) represents the angle between two lines 𝑙𝑖 and 𝑙𝑗. Furthermore, the 

Euclidean distance is described as: 

𝑆𝑑 = 1 − 𝐷(𝑙𝑖 , 𝑙𝑗) (18) 

where 𝐷(𝑙𝑖 , 𝑙𝑗) is defined as the Euclidean distance between two lines’ midpoints. 

To measure the EA-score, angular and Euclidean distances are utilized as in the 

following equation: 

𝑆 =  (𝑆𝜃 ∗ 𝑆𝑑)2 (19) 
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3.4 Risk Classification Method 

Within the conclusive segment of the proposed model, the measured tilt angles are 

subjected to an examination following pre-established threshold values. This 

evaluation is conducted in alignment with the classifications of the poles. For 

instance, steel poles may inherently possess a structural inclination, whereas secure 

concrete and wooden poles are expected to maintain vertical standing (Figure 32). 

This necessitates the incorporation of distinct threshold values for steel and concrete-

wooden poles. 

 

(a)                                                           (b) 

Figure 32. Representative Input Images for (a) Steel Pole, (b) Wooden Pole 

The threshold value for a steel pole is established at 4 degrees. This value is derived 

from the summation of the natural inclination degree of a secure steel pole (3 

degrees) and an error degree (1 degree), which is permissible within civil engineering 

standards. On the other hand, in the case of a concrete or wooden pole, the allowable 

inclination degree is limited to 1 degree, representing the extent of permissible error. 

In this part of the study, measured inclination degree values of the poles are 

examined so that threshold values are not exceeded. In the case of excessing 

threshold values, the examining electricity poles are classified as “risky”. Otherwise, 

they are labeled as “not risky”. 
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CHAPTER 4  

4 FIELD EXPERIMENTS 

This chapter validates the proposed model for risk detection in tilted electricity poles 

through real-time image testing. During this phase, we selected a specific test region 

in Polatlı, Ankara, which featured electricity poles that were neither part of the 

training nor testing the object detection model. To assess the study’s robustness and 

the high precision of its outcomes, we carefully selected several random road 

corridors within this test area, ensuring the presence of numerous steel, concrete, and 

wooden electricity poles. 

Regarding the object detection model, we employed eight distinct shooting angles 

(1, 2, 3, 4, 5, 6, 7, 8) as illustrated in a representative schema (Figure 33). However, 

we used images acquired from angles 1, 3, 5, and 7 to measure tilt degrees. 

Representative images captured from these specific areas are presented in Figure 34. 

 

Figure 33. UAV Shooting Angles from Top View 
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Figure 34. Sample Images Collected from the Test Region 

The data collection process was executed throughout these experiments using an 

UAV, specifically the DJI Mavic Pro 2. Noteworthy features of this vehicle are 

explained in the subsequent section. Its total takeoff weight, including the battery 

and propellers, is approximately 907 grams. The UAV can attain a maximum ascent 

speed of 5 meters per second, with a descent speed reaching 3 meters per second. Its 

operational altitude upon takeoff is restricted to 6000 meters, and the onboard battery 

sustains operation for a maximum duration of 31 minutes. The UAV boasts 

compatibility with both GPS and GLONASS satellite positioning systems. 

Furthermore, it features a camera with a Field of View (FOV) spanning 77° and a 

focal length of 35 mm. This camera generates images with dimensions of 5472x3648 

pixels and remains functional within a temperature range from -10°C to 40°C. 

Additional technical specifications are given in Table 2. 
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Table 2. Other Properties of DJI Mavic Pro 2 (DJI, 2023) 

Aircraft 

Diagonal Distance 354 mm 

Weight (Battery & Propellers 

Included) 
907 g 

Max Speed (near sea level, no wind) 72 kph 

Maximum Tilt Angle 
35° (S-mode, without remote 

controller) 

Sensing System 

Sensing System Omnidirectional Obstacle Sensing 

Upward 
Precision Measurement Range:  

0.1 - 8 m 

Sides 
Precision Measurement Range:  

0.5 - 10 m 

Camera 

Sensor 
1/2.3" (CMOS), Effective pixels:  

12 million 

Lens FOV 83º 24 mm 

Electronic Shutter Speed 8 - 1/8000 s 

Photo JPEG, DNG 

 

During this study, images of electricity poles were acquired using UAVs equipped 

with cameras featuring a fixed gimbal angle of 45°. The consistent application of this 

gimbal angle ensures the uniformity of image properties across the dataset, thereby 

subjecting all pole images to the same evaluation conditions.  

Under these specific conditions, the collection of electricity pole images took place 

at an approximate altitude of 19 meters, as illustrated in Figure 35. A total of 263 

images of electricity poles were acquired for testing purposes within the Polatlı 

region under clear and sunny weather conditions. These collected images were 

subsequently transferred to a local computer, where the testing of the model 

commenced, employing this dataset that had not been previously utilized for training. 
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Figure 35. Approximate Altitude of UAVs Image Shooting 

The unseen dataset were partitioned into two discrete subgroups: the initial subgroup 

encompasses images captured from shooting angles 1, 3, 5, and 7, whereas the 

second subgroup includes images obtained from shooting angles 2, 4, 6, and 8. The 

shooting angles with odd numerical designations detect the electricity poles, 

bounding box coordinate determination, and tilt degree measurement. Conversely, 

the images acquired from angles characterized by even numbers are exclusively 

utilized for the object detection model.  

To evaluate the model’s performance, 263 images collected from the Polatlı region 

were utilized for testing. Within this image set, those captured from shooting angles 

associated with odd numbers comprised 80 steel poles, 22 concrete poles, and 40 

wooden poles. Conversely, the remaining images obtained from angles bearing even 

numerical designations encompassed 73 steel poles, 16 concrete poles, and 32 

wooden poles. Notably, all the images are rendered in RGB color space and have a 

resolution of 5472x3648 pixels, aligning with the specifications of the UAV. 

When subjecting all the images to testing using the proposed model, an assessment 

of the model’s performance for validating the representative lines of the poles is 

conducted via two metrics: EMD and EA-score. These metrics are instrumental in 

establishing a similarity ratio between the ground truth and the detected 



 

 

63 

representative lines about electricity poles. The EMD value was 96.68 %, while the 

EA-score was 95.54 %.  

During this testing phase, three distinct models were executed, each serving a 

specific purpose: the object detection model, advanced image processing techniques, 

and risk classification. In the initial object detection phase, the well-established 

Faster R-CNN deep learning model (Girshick, 2015) was employed to achieve 

precise and tightly localized bounding boxes encompassing the electricity poles. 

Following the object detection stage, a sequence of advanced image processing 

techniques was implemented to generate representative lines that convey the 

structural alignment of the electricity poles. These techniques include the application 

of Gaussian Blur, morphological operations, Canny Edge detection, Line Segment 

detection, the Hough Line Transformation, and a geometric rule for measuring the 

angle between two lines. 

In the last phase, the risk status of the electricity poles was determined by assessing 

their inclination angles compared to predefined threshold limits. These threshold 

values are established by utilizing one of the outputs from the proposed object 

detector, specifically, the type of electricity poles. Given the distinct structural 

configurations of steel, concrete, and wooden poles, the imposition of unique 

threshold values becomes imperative.  

During the evaluation of the risk status, a determination is made as to whether the 

measured tilt angles exceed the pre-established threshold values. The subsequent 

sections provide a comprehensive elaboration on the object detection model and the 

employed image processing algorithms 

4.1 Object Detection Model 

An advanced object detection model, Faster R-CNN, was employed in this study 

phase. The training of deep learning models heavily relies on the quantity and 

diversity of the available images. Consequently, a comprehensive dataset comprising 
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8775 images was meticulously collected using UAVs deployed in various regions 

across Turkey. These regions include Zonguldak, Bartın, Kastamonu, and Ankara.  

As mentioned above, the substantial image dataset was instrumental in enhancing 

the training and performance of the object detection model. The acquisition of 

images from distinct regions enables the dataset to be at a desirable level of diversity. 

This diversity in the dataset provides a range of backgrounds upon the electricity 

pole images, which may include diverse elements such as automobiles, highways, 

pedestrian walkways, topographical features like mountains, and human figures. 

Furthermore, this approach introduces variations in lighting conditions that 

correspond to different weather scenarios, encompassing sunny and cloudy days. 

This diversity in the dataset effectively simulates real-world scenarios, thus 

enhancing the model’s robustness and adaptability across various operational 

contexts. 

Upon the conclusion of the data acquisition phase, which spanned approximately 60 

days, meticulous labeling procedures were undertaken. The dataset was annotated 

with bounding box coordinates and the respective electricity pole types during this 

phase. These annotations were the foundation for training a supervised deep learning 

model, specifically Faster R-CNN. Before the training process, several pivotal 

considerations were meticulously conducted. These considerations encompassed the 

application of transfer learning methodologies, the employment of augmentation 

techniques, the selection of hyperparameters, and the selection of appropriate 

performance metrics. Subsequent sections explains these points mentioned above in 

detail. 

4.1.1 Transfer Learning Method 

The transfer learning method is used to initialize the deep learning model’s weight 

vectors by utilizing previously trained models’ weights, as mentioned in Chapter 3. 

Throughout this study, the object detection model’s initialization was executed via 
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the utilization of the ImageNet dataset (Deng et al., 2010). This dataset comprises a 

substantial collection of over 1.2 million annotated images. The weight vectors that 

resulted from the training of the ImageNet dataset were utilized to initialize the 

object detection model. 

4.1.2 Augmentation Techniques 

Augmentation techniques expand the number of images by manipulating their 

inherent attributes. Within the scope of this study, a specific augmentation technique 

called “Random Flip” was employed, with a flip ratio of 0.5. Each input image is 

also resized to (800, 1333) dimensions. An example of the application of “Random 

Flip” can be seen in the following figure: 

 

(a) Original Image 

 

  (b) Vertical Flip   (c) Horizontal Flip 

Figure 36. Sample Application of Random Flip 
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4.1.3 Hyperparameters 

Hyperparameters are the parameters set before the training of a deep learning model, 

and they control the learning process. Throughout the training phase of the proposed 

object detection model, a selection of hyperparameters and their corresponding 

values are indicated in the subsequent table. 

Table 3. Hyperparameters and their proposed values 

Learning rate 0.002 

Batch size 2 

Optimizer Stochastic Gradient Descent 

Momentum 0.9 

Weight Decay 0.0001 

Epoch number 15 

Loss Function Cross-Entropy Loss 

 

4.1.4 Performance Metrics 

Performance metrics are instrumental in assessing the efficiency of electricity pole 

detection. In this study, precision and recall metrics were employed to quantify 

performance. The evaluation of these metrics entails the consideration of terms 

concerning the identification of positive and negative instances. These terms are 

explained in the following table: 
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Table 4. Description of the performance metrics’ terms 

True Positive 
How many times did the model correctly classify 

a Positive sample as Positive? 

False Negative 
How many times did the model incorrectly classify 

a Positive sample as Negative? 

False Positive 
How many times did the model incorrectly classify 

a Negative sample as Positive? 

True Negative 
How many times did the model correctly classify 

a Negative sample as Negative? 

 

Precision measures the accuracy of the proposed model in classifying a sample as 

positive, whereas the model’s ability to detect positive samples can be obtained by 

Recall. The equations of these metrics can be represented with the following 

formulas: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

4.1.5 Training Object Detection Model 

The proposed Faster R-CNN object detection model that utilizes ResNet50 with FPN 

(r50 FPN) as a backbone structure, i.e., Faster R-CNN r50 FPN is trained for 50 

epochs. An early stopping rule were implemented to ascertain the optimal number of 

epochs, which evaluates whether three consecutive changes in loss differences are 

less than 0.001. According to this rule of thumb, the final epoch number were 

decided as 15. Throughout model training, following the common practice (Chen et 

al., 2019), the learning rate is kept constant until the ninth epoch, then divided by ten 

at the beginning of the 9th and 11th epochs.  
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The images are partitioned for training purposes with a training-test ratio of 0.8 to 

0.2. Consequently, the training dataset comprises 5460 steel, 1484 concrete, and 68 

wooden pole images, while the test dataset consists of 1381 steel, 364 concrete, and 

18 wooden pole images. 

After the training process has terminated, the training loss curves of the object 

detector are given in Figure 37. 
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(a) 

 

(b) 

Figure 37. The Loss Curves of Faster R-CNN Object Detector (a) Separate losses 

and (b) Total loss 

After the training process is terminated, the final values for the precision of the 

proposed model are obtained in the Table 5: 
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Table 5. Detection results of the proposed object detector 

 Precision (%) Average Precision (%) 

Steel Pole 97.7 
94.4 

(IoU=0.5) 
Concrete Pole 95.6 

Wooden Pole 89.8 

 

Precision-Recall figures are provided to comprehend the model’s strength using 

precision results to comprehend the strength of the model by utilizing precision 

results. 
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(a)  

 

(b) 

Figure 38. Precision-Recall Curves (a) Classwise (b) Average Precision 
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The Precision-Recall (PR) curves serve as a means to evaluate the efficacy of the 

proposed model, as they allow for a comparison of the area under the curves (AUC). 

An analysis of the classwise PR curves reveals that the steel pole detection exhibits 

the highest precision outcome compared to concrete and wooden poles, as evidenced 

by the higher AUC value. Conversely, the class of wooden poles emerges as the least 

successfully detected, which aligns with expectations given the lower number of 

images containing wooden poles compared to other pole types. Some output images 

of the proposed object detector are given in Figure 39. 
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Figure 39. Output Image Samples of the Object Detector 
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4.2 Image Processing Algorithms 

In the second phase of the proposed approach, a series of image-processing 

techniques are applied. These techniques leverage the outcomes of the object 

detector, precisely the bounding box coordinates of the electricity poles, to facilitate 

the extraction of the target objects from the images. Consequently, smaller-scale 

images containing the electricity poles and reduced-size elements from the 

surroundings are obtained. These cropped images are subsequently fed into the 

sequence of image processing techniques. In the forthcoming sections, the outcomes 

obtained from each step of the proposed algorithms are provided. 

• Converting RGB image to Grayscale images 

After this conversion is applied to the sample images from the dataset, the 

following results are obtained (Figure 40): 
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Input Images Images in Grayscale 

Figure 40. Converting Cropped Images to Grayscale 

• Applying gaussian blur 

After the convolution process involving a 15-by-15 kernel, the resulting output 

images are depicted in the forthcoming figure (Figure 41). This step aims to 

mitigate the presence of minor image noise artifacts, thereby enhancing image 

clarity. 
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Input Images Blurred Images 

Figure 41. Applying Gaussian Blur to Input Grayscale Images 

 

• Applying morphological operations 

In this phase, the previously obtained blurred images from the second stage are 

employed as input. During this step of the study, a series of morphological 

opening operations, combined with a single erosion operation, are executed using 

a structural element of a 25-by-25 ones-matrix. These operations are undertaken 
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to remove undesired objects, such as cars, highway lines, and houses, from the 

images. The outputs produced following this step are given in Figure 42. 

  

  

Input Images Output Images 

Figure 42. Applying Morphological Operations to Input Images 

• Utilizing the Canny Edge Detection Model 

Following applying the Canny Edge Detector with specified parameter values, 

including a low threshold of 10, a high threshold of 200, and an aperture size of 
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5, the resultant output images are illustrated in Figure 43. This phase is designed 

to identify and delineate the prominent edges of objects within the images. 

 

  

  

Input Images Output Images 

Figure 43. Applying Canny Edge Detector to Input Images 

• Application of Line Segment Detector, Filtering Detected Lines and 

Thresholding 
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During this stage, the line segment detector is deployed to identify prominent 

linear segments within the images. After detecting these line segments, a 

filtration procedure is implemented to eliminate shorter segments less likely to 

represent electricity poles effectively. This filtering process employs a 

predetermined threshold of 50 pixels as a length constraint. Following the 

sequential execution of the line segment detection, long line filtration, and 

thresholding operations, the resultant output images are presented in Figure 44. 

  

  

Input Images Output Images 

Figure 44. Representation of Extracted Edges 
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• Applying Hough Line Transform 

In this phase, candidate lines potentially indicative of electricity poles are 

discerned by applying the Hough Line Transformation. This procedure inputs the 

edge maps derived from the preceding edge detection stage. This algorithm’s 

application to the edge map acquired in the previous step yields the delineation 

of lines overlaid on the original images, as exemplified in Figure 45. 

  

  

Input Images Output Images 

Figure 45. Proposed Lines by Hough Line Transformation 



 

 

81 

• Finding the Best Line That Represents the Electricity Poles 

The Hough Line Transformation employs a voting algorithm to identify the most 

prominent line that signifies the presence of electricity poles. Consequently, each 

candidate line generated through this transformation accrues a certain number of 

votes based on the underlying algorithmic mechanism. The line with the highest 

vote count is the optimal representative line for the electricity poles. An 

illustrative demonstration of the process for selecting the best line is presented in 

Figure 46. 

  

  

Input Images Output Images 

Figure 46. Selecting the Best Line 
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• Measurement of Tilt Angles of the Poles 

In the concluding segment of the image processing algorithms, the tilt angle of 

the electricity poles is determined. In this phase, a hypothetical vertical line 

parallel to the vertical edge of the image serves as the reference line. When 

measuring the tilt angles of an electricity pole, the angle between the reference 

line and the detected representative line is calculated. The measurement 

procedure is visually elucidated in Figure 47. 

 

Figure 47. Example Measurement of Tilt Angle 

4.2.1 Validation of the Representative Lines 

The primary objective of the proposed algorithm is to generate representative lines 

for electricity poles. It is essential to validate the generated representative lines to 

assess the robustness and accuracy of this algorithm. Therefore, a meticulous 

labeling procedure is undertaken to measure the algorithm’s accuracy and ability to 

produce accurate representative lines.  

In the labeling process, 592 images obtained from shooting angles 1, 3, 5, and 7 (as 

depicted in Figure 30) were meticulously labeled using the Labelme software 

(Russell et al., 2007). The labeling endeavor required a collective effort equivalent 

to 4.11 hours per person. Upon completion of the labeling phase, the accuracy of the 

algorithm’s generated representative lines was assessed by applying two 
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performance metrics: EMD and EA-score. These metrics quantify the degree of 

similarity between the truth and detected lines. The outcomes of these evaluation 

metrics are tabulated in Table 6. 

Table 6. Results of the Performance Metrics 

Earth Mover’s Distance (%) 98.56 

EA-score (%) 95.95 

 

The observed unity between the detected representative lines and the ground-truth 

data is the robustness of the algorithm proposed. The noteworthy levels of success, 

as evidenced by the auspicious matching values presented in Table 6, substantiate 

the model’s capacity for detecting representative lines associated with electricity 

poles and accurately measuring their tilt angles with a commendable degree of 

accuracy. 

4.3 Risk Classification 

In the final segment of this investigation, the classification of risk for individual 

electricity poles is achieved by applying class-specific thresholds. Considering the 

inherent structural inclinations of steel poles, an allowable inclination angle of 4° is 

established. In contrast, concrete and wooden poles are subject to a threshold of 1°.  

The classification of poles according to their inclination angles is represented in 

Figure 48. Among the overall count of 409 steel poles, 237 are classified as “Not 

Risky”. Similarly, out of 171 concrete poles, 65 fall under the “Not Risky” category. 

Four of the 12 wooden poles are classified as “Not Risky”. 
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(a) 

 

(b) 

 

(c) 

Figure 48. Risk Classification Results of the Electricity Poles (a) Concrete Pole, (b) 

Steel Pole and (c) Wooden Pole 
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Some output images of the proposed model are indicated in Figure 49. 

 

Figure 49. Output Images from The Proposed Model 
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4.4 Results and Discussion 

The performance of the proposed risk classification model has been illustrated in the 

preceding sections. Based on the outcomes derived from the object detection model, 

image processing algorithms, and the risk classification model, it is observed that the 

proposed model exhibits a remarkable ability to classify the risk associated with 

tilted electricity poles. This notable capability is primarily attributed to acquiring an 

extensive dataset comprising real electricity pole images. It is a common practice 

that an increase in the volume of data results in a proportional enhancement of the 

robustness of artificial intelligence models (Zhou, 2016). In conjunction with many 

datasets, the diversity of these images assumes paramount importance, allowing for 

incorporating various natural environmental conditions during the training phase.  

This study systematically collected 8,775 electricity pole images over 60 days. These 

images were procured from diverse regions across Turkey, encompassing locations 

such as Ankara, Bartın, Kastamonu, and Zonguldak, utilizing UAVs. Noteworthy 

aspects of this data collection phase include (i) acquiring real electricity pole images 

and (ii) implementing structured data collection methods. 

The significance of collecting real images is highlighted by the findings in the 

existing literature, where studies have relied on simulated electricity pole images to 

train risk classification models for tilted utility poles. For example, in the work of 

Chen and Miao (2019), an artificial dataset of electricity pole images was generated 

for training a deep learning model to detect hazardously tilted electricity poles. While 

their study aimed to simulate a dataset that included environmental elements such as 

buildings located behind the poles, it did not faithfully replicate real-life scenarios. 

In contrast, this present study features a diverse array of actual environmental objects 

within the collected images (Figure 50), thereby providing a more realistic 

foundation for the proposed risk classification model. 
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Figure 50. Images Including Various Types of Environmental Objects 

Furthermore, certain existing studies in the literature have relied on images sourced 

from Google Street views (Lin et al., 2017) and satellite imagery (L. Li et al., 2021). 

While these image collection methods aim to incorporate real electricity pole images, 

they often lack the utilization of well-structured image shooting angles. Additionally, 

the inherent limitations in resolution within satellite images can lead to poorly trained 

deep learning models, resulting in less reliable risk classification outcomes.  

In contrast, for the training procedure of the proposed model, UAVs were deployed 

to acquire high-quality and high-resolution images of electricity poles, employing 

efficient and expeditious methods. During the data collection process in this study, 

four images were captured from each of the four sides of the electricity poles, all 

from a close point of view and directly aligned with the poles (Figure 51). This 

approach facilitates a highly precise and reliable method for measuring tilt degrees. 
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Figure 51. Images Collected for the Detection of Tilted Electricity Poles 

After the training phase of the object detection model, it yielded average precision 

values of 97.7%, 95.6%, and 89.8% for steel, concrete, and wooden poles, 

respectively. These average precision values suggest that the proposed model’s 

capacity for detecting wooden poles is comparatively less successful than its 

performance with steel and concrete poles. This difference can be primarily 

attributed to the limited number of available wooden pole images compared to the 

substantial number of steel and concrete pole images. Consequently, there are 

instances where wooden pole images may be erroneously classified as concrete poles 

(Figure 52). Nevertheless, the mean average precision value achieved by the object 

detection model, 94.4%, exceeds the performance metric results reported in similar 

studies within the existing literature. 
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Figure 52. Incorrectly Classified Wooden Pole 

Another noteworthy consideration is detecting the shadows of the electricity poles 

(Figure 53), which can potentially lead to inaccuracies in tilt angle measurement. 

Given that most of the images in the dataset were captured under sunny weather 

conditions, it is plausible for the shadows of utility poles to be present on the images. 

To mitigate this issue, a meticulous and comprehensive labeling procedure was 

executed. This procedure involved drawing sufficiently tight and compact bounding 

boxes, including all segments of the electricity poles. Such an approach effectively 

eliminates the influence of shadows cast by the utility poles during the training phase. 

Consequently, the proposed model is trained using labels representing the actual 

locations of the electricity poles, thereby enhancing its accuracy. 

 

Figure 53. Images Including Shadows of the Electricity Poles 



 

 

90 

The output generated by the object detector was employed to crop the images, and 

this cropped data was subsequently utilized as input for a series of image processing 

techniques. These techniques were employed to identify a line that accurately 

represents the structural alignment of the electricity poles, facilitating the 

measurement of the poles’ tilt angles. A notable contribution of the proposed method 

lies in its incorporation of a validation process for the detected representative lines 

and the utilization of geometric principles for measuring the inclination angles of the 

poles.  

A rigorous labeling procedure was executed to ascertain the validity of the 

representative lines, and two performance metrics quantified the similarity ratio 

between the truth and the detected lines. This validation process constitutes a pivotal 

contribution, as it furnishes quantitative outcomes for detecting the representative 

lines. The measured values for these metrics were 98.56% for the EMD and 95.95% 

for the EA-score, signifying that the proposed model consistently generates highly 

accurate representative lines.  

While the performance metric results are highly successful, particular challenges 

remain associated with detecting representative lines. Once the images are cropped, 

utilizing the bounding box coordinates derived from the object detector, the primary 

objective is to mitigate environmental interferences, such as vehicles, buildings, and 

trees. This approach can remove most environmental objects; however, it is 

important to note that certain essential elements, such as electricity cables and road 

markings, cannot be eliminated. 

Consequently, electricity cables and road markings within the cropped images can 

occasionally lead to their misidentification as electricity poles (Figure 54), yielding 

inaccurate tilt angle measurements. To address this issue, morphological operations 

with larger kernels are implemented. These operations effectively remove road 

markings and electricity cables from the images. While applying morphological 

operations, it is noteworthy that only 16 out of 592 images were misclassified, 

underscoring the robust performance metrics exhibited by the proposed method.  
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(a)                                                              (b) 

Figure 54. Misidentified Lines (a) Electricity Cable, and (b) Road Markings 

Furthermore, determining the poles’ tilt angles is accomplished by measuring angles 

between two lines. The utilization of fundamental geometric principles for angle 

measurement yields reliable and comprehensible results, thereby enhancing the 

efficacy of the risk classification model.  
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CHAPTER 5  

5 SUMMARY, CONCLUSIONS, AND FUTURE WORK 

5.1.  Summary 

Regular maintenance, surveillance operations, and risk assessments for the 

electricity line corridors are imperative to ensure continuous power supply. These 

responsibilities predominantly rely on human personnel such that they have to 

conduct a manual control and repair cycle to patrol through electricity corridors and 

detect possible anomalies. However, this manual cycle demands a substantial 

workforce and carries the potential for errors. This highlights the emergent 

requirement to explore autonomous and efficient methods for accurately surveilling 

electricity poles to identify possible anomalies.  

As a result, this research deals with a specific anomaly that presents potential risks: 

the insecure tilting of electricity poles. Such tilts can lead to energy losses and pose 

collapse hazards and suspension of electricity lines, warranting immediate attention. 

To address this concern, artificial intelligence applications, along with advanced 

image processing algorithms, are utilized.  

This study uses a risk detection model to capture various electricity pole images 

utilizing UAVs. A total of 8775 electricity pole images with various backgrounds 

were collected from different regions during the data collection procedure. 

Within the risk detection framework, an object detector, Faster R-CNN, is integrated 

to precisely recognize and classify the electricity poles using bounding boxes. 

Additionally, some image processing techniques, including blurring, morphological 

operations, Canny edge detection, Line Segment Detector, and Hough Line 

Transform, are employed to measure the tilt angle of each pole. Based on these 
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angles, the electricity poles are classified as ‘risky’ or ‘not risky’ related to their 

structural integrity and stability.  

Labeling operations provide annotated inputs for object detection and risk 

classification methods to maintain this procedure. The output values of the object 

detectors are employed to crop images for subsequent processing. Furthermore, 

representative tilt lines are obtained after applying several image processing 

techniques to the crop images. These lines' accuracy is validated using performance 

metrics to comprehend the matching scores. Furthermore, a testing area in Polatlı, 

Ankara, was meticulously chosen to authenticate the proposed model's performance. 

A comprehensive dataset comprising 263 images of electricity poles was collected 

from this specific region to assess the model's robustness against an unseen dataset. 

The study illustrates the substantial efficiency of the proposed risk assessment 

model, achieving noteworthy accuracy, precision, and recall metrics. Consequently, 

this model holds considerable potential for the practical identification of risks 

associated with electricity poles, significantly contributing to the dependability and 

safety of power distribution systems. 

5.2.  Conclusions 

This study presents an innovative approach for classifying risk associated with tilted 

electricity poles, utilizing UAVs. The proposed model consists of three distinct 

components: (a) an Object Detection Model, (b) a series of image processing 

techniques, and (c) a Risk Classification Method. This method facilitates the 

identification of tilted electricity poles by utilizing the capabilities of the robust 

object detection model, Faster R-CNN, alongside estimating tilt angles and 

subsequent risk classification. Within the framework of the object detection model, 

the algorithm is designed to detect and classify three classes of electricity poles: 

Concrete, steel, and wooden poles. 
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The proposed multi-stage risk classification method exhibits exceptional proficiency 

in detecting, classifying, and quantifying the tilt degrees of electricity poles by 

utilizing RGB images. An interesting observation was made upon validation of the 

object detection algorithm: wooden poles sometimes exhibited misclassification as 

concrete poles despite accurately estimating their bounding box coordinates. This 

particular misclassification is unsurprising, as the structural forms of these two pole 

types are very familiar. The primary differentiating factor is the poles’ section areas, 

with concrete poles generally having larger sections. 

Moreover, a variety in color exists between these pole types, although such 

distinctions may not be apparent on sunny days. In light of these details, the precision 

values for the detection outcomes of steel, concrete, and wooden poles are obtained 

as 97.7%, 95.6%, and 89.8%, respectively. These results are very reasonable and 

successful for a UAV-based object detection algorithm.  

The tilt angle classification method relies on the bounding box coordinates generated 

by the object detector to extract the electricity pole, followed by applying a sequence 

of image processing algorithms. This phase of the study presented a significant 

challenge in identifying the representative lines of the electricity poles, with the 

primary source of noise electricity lines. Sometimes, these electricity cables could 

be erroneously detected instead of the poles. The sequence's order was devised to 

address this issue. After representative lines for the electricity poles are detected, the 

alignment accuracy between the detected and actual lines is measured, and two 

performance metrics are employed. 

The metrics of EMD and EA-Score yield values of 98.56% and 95.95%, respectively. 

These outcomes strongly suggest that the primary challenge of potential 

misdetection of electricity cables were addressed, and the sequence of image 

processing algorithms exhibits remarkably high performance.  

After successfully detecting representative lines for the electricity poles, the 

subsequent step involves measuring the inclination angles using geometric 

principles. High and successful matching ratios between truth and detected lines also 
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indicate a high accuracy for the measurement of tilt angles of the electricity poles. 

The risk classification process is then executed by considering allowable inclination 

angle thresholds corresponding to the electricity pole class types.  

Upon validation of the proposed model using an unseen dataset obtained from 

Polatlı, Ankara, an average similarity ratio of 96.11% is attained. This notable 

matching ratio is a compelling testament to the robustness and credibility of the 

proposed model. 

Despite the numerous advantages of the proposed method, several challenges still 

need to be addressed. One significant challenge arises that most images were 

acquired under daylight conditions, potentially leading to reduced performance when 

faced with varying weather conditions. Moreover, image collection via UAVs can 

become challenging during adverse weather conditions such as wind or rain. In 

addition to the challenges related to image acquisition, implementing a real-time risk 

classification method could offer more efficient solutions by minimizing the waste 

of time transferring images from the sites to computing facilities. 

5.3.  Future Work 

The proposed model must constitute a fully automated method for classifying risk 

associated with tilted electricity poles. As a result, the following subject matters can 

be further investigated in the future: 

● While there exists a variety of classes of types of electricity poles, this study 

has focused explicitly on steel, concrete, and wooden poles. In forthcoming 

research, including images from high-voltage poles could also contribute to 

a diverse dataset. 

● Due to the diverse shapes of steel poles, the current risk classification method 

might not indicate optimal performance. Given that the natural inclination 

degree of steel poles can vary based on their specific types, assigning 

different allowable inclination limits becomes necessary. To address this, 
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images of different kinds of steel poles can be collected, accompanied by the 

training of more sophisticated object detection models. 

● Varying weather conditions can influence images' contrast, brightness, and 

hue; therefore, this variability in lighting conditions should be considered. To 

enhance the model's robustness, images captured during different seasons, 

each characterized by distinct lighting conditions, can be added to the training 

dataset. 

● During this study, the focus has been on one specific anomaly type that can 

occur on electricity poles. Future research could study various anomaly 

types, including investigating issues like birds' nests, vegetational 

encroachment, and broken/rusted insulators. 

● This study has utilized images acquired through UAVs for analysis. 

However, other image collection platforms that offer superior image quality 

could enhance the performance of the proposed models. 

● During this study, images were collected on-site and then transferred to 

servers to apply the proposed model. Investigating real-time anomaly 

detection directly on electricity poles could be explored to mitigate the waste 

of time caused by image transfers. 
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