
EFFECTIVE REINFORCEMENT LEARNING THROUGH INTRINSIC
MOTIVATION AND VISUAL EXTERNAL MEMORY IN PARTIALLY

OBSERVABLE ENVIRONMENTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

BURAK HAN DEMIRBILEK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2023

Approval of the thesis:

EFFECTIVE REINFORCEMENT LEARNING THROUGH INTRINSIC
MOTIVATION AND VISUAL EXTERNAL MEMORY IN PARTIALLY

OBSERVABLE ENVIRONMENTS

submitted by BURAK HAN DEMIRBILEK in partial fulfillment of the require-
ments for the degree of Master of Science in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Faruk Polat
Supervisor, Computer Engineering, METU

Assist. Prof. Dr. Alper Demir
Co-supervisor, Computer Engineering, IUE

Examining Committee Members:

Prof. Dr. Göktürk Üçoluk
Computer Engineering, METU

Prof. Dr. Faruk Polat
Computer Engineering, METU

Assoc. Prof. Dr. Mehmet Tan
Computer Engineering, TOBB ETU

-
-
-
-

Date:08.09.2023

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Burak Han Demirbilek

Signature :

iv

ABSTRACT

EFFECTIVE REINFORCEMENT LEARNING THROUGH INTRINSIC
MOTIVATION AND VISUAL EXTERNAL MEMORY IN PARTIALLY

OBSERVABLE ENVIRONMENTS

Demirbilek, Burak Han
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Faruk Polat

Co-Supervisor: Assist. Prof. Dr. Alper Demir

September 2023, 106 pages

Reinforcement learning in practical scenarios often includes partial observability that

requires long-term remembering of visual observations to obtain optimal policies.

Addressing this challenge, this study introduces agents augmented with visual ex-

ternal memories, enhancing agents decision-making capabilities by constructing a

context derived from both current observations and memory data. Moreover, to en-

sure effective utilization of the external memory for the agent, intrinsic motivation is

incorporated as a secondary reward system, promoting long-term beneficial behav-

iors of using memory. Key contributions from this study include a novel framework

for integrating visual external memory in reinforcement learning agents, the devel-

opment of intrinsic motivation functions to efficiently learn how to utilize external

memory to improve overall learning, empirical evaluations and experiments in vari-

ous environments, and detailed comparison and analysis against the state-of-the-art.

The results highlight the potential and advantages of the proposed approaches and

present numerous possibilities for future investigation within this particular field of

study.

v

Keywords: Reinforcement Learning, Partial Observability, External Memory Man-

agement, Intrinsic Motivation

vi

ÖZ

KISMİ GÖZLEMLENEBİLİR ORTAMLARDA İÇSEL MOTİVASYON VE
GÖRSEL HARİCİ BELLEK İLE ETKİLİ PEKİŞTİRMELİ ÖĞRENME

Demirbilek, Burak Han
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Faruk Polat

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Alper Demir

Eylül 2023 , 106 sayfa

Gerçek hayattaki pratik pekiştirmeli öğrenme problemlerinde, problemlerin kısmi

gözlemlenebilir olduğu ve optimal çözümler için bazı gözlemlerin uzun süreli ha-

tırlanması gereken durumlarla sıklıkla karşılaşılmaktadır. Bu zorluğa çözüm oluştu-

rulması amacıyla, etmenlere içeriğini kendilerinin yönetebileceği harici görsel bellek

mekanizmaları oluşturulup, karar verme kabiliyetleri genişletilmiştir. Geliştirilen bu

görsel bellek yönetimi yaklaşımı sayesinde, mevcut gözlem ve harici bellek verileri

kullanılarak kısmi gözlemlenebilir senaryolar için etmenlerin bağlamlar oluşturması

sağlanabilmektedir. Ayrıca, etmenin bu harici belleği uzun vadede etkili bir şekilde

kullanmasını teşvik edebilmek amacıyla, içsel motivasyon yaklaşımları bu problem-

ler için ikincil bir ödül mekanizması olacak şekilde dahil edilmiştir. Bu çalışma so-

nucu elde edilen ana katkılar arasında, pekiştirmeli öğrenme etmenleri için görsel

harici bellek yönetimi çerçevesinin oluşturulması, harici belleğin verimli biçimde

kullanılmasına teşvik edilebilmesi amacıyla görsel içsel motivasyon fonksiyonları-

nın geliştirilmesi, farklı ortamlar üzerinde deneyler gerçekleştirilmesi ve literatürdeki

vii

en başarılı yaklaşımlarla karşılaştırılması yer almaktadır. Elde edilen sonuçlar, öneri-

len yaklaşımların potansiyelini ve avantajlarını vurgulamakta ve bu özel çalışma alanı

içinde gelecekteki araştırma için çok sayıda olasılığı okuyucuya sunmaktadır.

Anahtar Kelimeler: Pekiştirmeli Öğrenme, Kısmi Gözlemlenebilirlik, Harici Bellek

Yönetimi, İçsel Motivasyon

viii

To my family.

ix

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Prof. Dr. Faruk Po-

lat, for his patience, continuous support, and guidance throughout the course of this

work. His insights and wisdom were invaluable, and I feel fortunate to have had the

opportunity to work under his supervision. Prof. Polat created the perfect research

environment for me, where I could both be guided by my professors and have oppor-

tunities for research and self-development.

I would also like to thank my co-supervisor, Dr. Alper Demir, for including me in his

research project and partially funding my studies. I also want to express my gratitude

for his endless support, patience, and close interest in my thesis studies. He always

had time for me, and I am very glad to have had the opportunity to work with him.

Finally, I would like to thank the remaining members of our research group, Dr. Erkin

Çilden, Dr. Hüseyin Aydın, and Saim Sünel, for their support and valuable contribu-

tions. I thank my family and friends for their endless patience and for always moti-

vating me. Lastly, I also want to thank my close friend Batu Kaan Özen, whom I have

known since my Bachelor’s studies, for his unwavering support.

This work is partially supported by the Scientific and Technological Research Council

of Turkey under Grant No. 120E427.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

CHAPTERS

1 INTRODUCTION . 1

1.1 Contributions . 2

1.2 Outline . 3

2 BACKGROUND INFORMATION AND RELATED WORKS 5

2.1 Markov Decision Processes (MDPs) 5

2.2 Reinforcement Learning . 8

2.3 Partially Observable Markov Decision Processes (POMDPs) 11

2.4 Optimal Control/Decision Making of POMDPs 14

2.4.1 Belief State POMDPs . 14

2.4.2 Hidden State POMDPs . 18

2.5 Neural Network Architectures . 20

xi

2.6 Deep Reinforcement Learning . 26

2.6.1 PPO . 28

2.7 Intrinsic Motivations . 29

2.8 Related Works . 30

3 SOLVING PARTIALLY OBSERVABLE VISUAL REINFORCEMENT LEARN-
ING TASKS . 33

3.1 Motivating Example . 34

3.2 Augmenting External Observation Memory For Visual Tasks 36

3.3 Visual Self Memory Management 37

3.4 Visual Intrinsic Motivations . 40

3.4.1 Efficient Count-Based Intrinsic Motivation with Perceptual Hash-
ing . 41

3.4.2 Novelty-Based Intrinsic Motivation with Autoencoder Recon-
struction Error . 45

3.5 LSTM Based Internal Hidden State Memory Augmentation 48

4 EXPERIMENTAL RESULTS . 51

4.1 Environment Design and Selection 51

4.2 Algorithms . 57

4.3 Environment Setup . 59

4.4 Results and Discussion . 62

4.4.1 Ablation study of comparing external and internal memory ar-
chitectures . 63

4.4.2 Memory Environment - Comparison of memory architectures
in terms of generalization capability for different environment
configurations . 75

4.4.3 Memory Environment - Analyzing the effects of having an
excess number of external memory size 77

xii

5 CONCLUSION AND FUTURE WORK 79

REFERENCES . 83

APPENDICES

A EXTENDED EXPERIMENT RESULTS 91

xiii

LIST OF TABLES

TABLES

Table 2.1 Classification of Markovian models according to the observability

and ability of controlling the underlying model. Reference: [1]. 13

Table 4.1 Summary of how to evaluate metrics for Memory Environment ab-

lation studies. 65

Table 4.2 Summary of how to evaluate metrics for MMG Environment abla-

tion studies. 70

Table A.1 Extended summary of Memory Environment ablation studies. 92

Table A.2 Extended summary of generalization scenario experiments. 92

Table A.3 Extended summary of other experiments and utility metrics. 93

Table A.4 Extended summary of MMG Environment ablation studies and other

utility metrics. 102

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 An example state transition graph for a Markov Decision Pro-

cess with three states (green cells: s0, s1, s2) and two actions (orange

cells: a0, a1). Black arrows denote the transition probability from one

state to another, and orange arrows denote the rewards obtained from

transitioning from one state to another with the given action. Example

taken from: [2], best viewed in color. 6

Figure 2.2 Illustration of a Markov Decision Process, abstract perspective

with the concepts of agent and environments. Figure adapted from: [3]. 7

Figure 2.3 Example structure of a simple convolutional neural network fol-

lowed by an MLP, Source: [4]. 22

Figure 2.4 Example single neuron of a basic recurrent neural network. On

the left, recurrent connections are drawn with cycles, and on the right,

the recurrent neuron is unfolded over time steps. Source: [5]. 23

Figure 2.5 Example structure of a basic autoencoder network, Source: [6]. . 25

Figure 3.1 An example illustration of the T-Maze Environment maze

with a corridor length of 10, particularly demonstrating the long-term

memory dependency. The character S and G denote the start and goal

states, accordingly. The position of the state G randomly changes as

either the north or south state in the T-junction. The X sign in the figure

denotes that a hint is available in this state. 34

xv

Figure 3.2 Augmentation of the external memory for a reinforcement learn-

ing agent formulation, previously illustrated in Figure 2.1. External

memory related elements are colored in blue. 37

Figure 3.3 Extention of the Memory Augmented Agent Framework (Figure

3.2) with intrinsic motivation aproaches. Intrinsic motivation related

elements are colored in orange. 40

Figure 3.4 Novelty-based Intrinsic Critic Module: Intrinsic reward calcula-

tion by using autoencoder reconstruction error of the memory elements. 45

Figure 3.5 Visualization of the LSTM-based internal hidden state augmen-

tation: A Deep RL agent is augmented with LSTM Networks for an

internal memory representation of the hidden state. 48

Figure 4.1 An example illustration of the fully observed Memory Environment.

The agent is marked with a red triangle and the partial observation of

the agent is represented by the light shaded area. 52

Figure 4.2 An example observation in Memory Environment where

the agent is in the initial state. The object in green (either a ball or

a key figure, randomly initialized at each episode) marks the hint ob-

ject, which the agent needs to remember until the end of the maze to

optimally solve the environment. 53

Figure 4.3 An example observation in Memory Environment where

the agent is in the corridor. Due to the visual occlusions from partial

observability, many states are mapped to this same observation. 53

Figure 4.4 Example initial observations in Mortar Mayhem Grid Environ-

ment. The agent needs to remember given commands which are illus-

trated as signs in the center of the visual observation. This example is

given for an environment where the number of commands C = 3. . . . 56

xvi

Figure 4.5 An example observation in Mortar Mayhem Grid Environment

where the agent executes a correct command and all of the tiles is vi-

sualized in red except the agent is standing on if the agent is in the

right position. At this step, the agent gains a reward and continues to

remember/execute the correct commands. 57

Figure 4.6 Generalization Comparison: An example of a different environ-

ment configuration where the maze length is 10 more than the current

environment configuration, as previously shared in Figure 4.1. 62

Figure 4.7 Example episode in the Memory Environment with an external

memory augmented agent. This figure demonstrates the current and the

external memory contents of an agent for a single episode. At the start,

the agent initializes with an empty external memory. In this example,

the agent adds the crucial observation to the external memory and it

holds until the t-junction step at the end. 64

Figure 4.8 Memory Environment: Comparison of average cumulative re-

wards per episode. Each line represents the average of 16 parallel runs

with confidence intervals. 66

Figure 4.9 Memory Environment: Comparison of the average episode length

per episode. Each line represents the average of 16 parallel runs with

confidence intervals. 67

Figure 4.10 Memory Environment: Comparison of the average length of un-

changed memory sequences per episode. Each line represents the aver-

age of 16 parallel runs with confidence intervals. 68

Figure 4.11 Memory Environment: Comparison of the average number of

memory updates per episode. Each line represents the average of 16

parallel runs with confidence intervals. 69

Figure 4.12 MMG Environment: Comparison of average cumulative rewards

per episode. Each line represents the average of 16 parallel runs with

confidence intervals. 71

xvii

Figure 4.13 MMG Environment: Comparison of the average episode length

per episode. Each line represents the average of 16 parallel runs with

confidence intervals. 72

Figure 4.14 MMG Environment: Comparison of the average length of un-

changed memory sequences per episode. Each line represents the aver-

age of 16 parallel runs with confidence intervals. 73

Figure 4.15 MMG Environment: Comparison of the average number of mem-

ory updates per episode. Each line represents the average of 16 parallel

runs with confidence intervals. 74

Figure 4.16 Memory Environment - Generalization Scenario: Comparison

of average cumulative rewards per episode. Each line represents the

average of 16 parallel runs with confidence intervals. 75

Figure 4.17 Memory Environment - Generalization Scenario: Comparison

of average cumulative rewards per episode, best two approaches are de-

picted in the same figure. Each line represents the average of 16 parallel

runs with confidence intervals. Green is Internal Memory Based Ap-

proach (LSTM) and Pink is VSMM With Autoencoder-Based Intrinsic

Motivation. 76

Figure 4.18 Memory Environment: Comparison of average cumulative re-

wards for different memory sizes (∥M∥ = 1 and ∥M∥ = 3). Each line

represents the average of 16 parallel runs with confidence intervals. . . . 77

Figure A.1 Memory Environment - LSTM Algorithm: Average total cumu-

lative rewards per episode. 93

Figure A.2 Memory Environment - SMM Algorithm: Average total cumu-

lative rewards per episode. 94

Figure A.3 Memory Environment - SMM Algorithm With Frequency Based

IM: Average total cumulative rewards per episode. 94

xviii

Figure A.4 Memory Environment - SMM Algorithm With Autoencoder Based

IM: Average total cumulative rewards per episode. 95

Figure A.5 Memory Environment - SMM Algorithm With Longer Memory:

Average total cumulative rewards per episode. 95

Figure A.6 Memory Environment - Generalization Scenario: Comparison

of average episode lengths per episode. Each line represents the average

of 16 parallel runs with confidence intervals. 96

Figure A.7 Memory Environment - Generalization Scenario: Comparison

of average length of unchanged memory sequences per episode. Each

line represents the average of 16 parallel runs with confidence intervals. 97

Figure A.8 Memory Environment - Generalization Scenario: Comparison

of average number of memory updates per episode. Each line represents

the average of 16 parallel runs with confidence intervals. 98

Figure A.9 Memory Environment - Average Policy Entropy Values Com-

parision. Each line represents the average of 16 parallel runs with con-

fidence intervals. 99

Figure A.10 Memory Environment - Average Learning Throughput Values

Comparision. Each line represents the average of 16 parallel runs with

confidence intervals. 100

Figure A.11 Memory Environment - Average Total Loss Values Compari-

sion. Each line represents the average of 16 parallel runs with confi-

dence intervals. 101

Figure A.12 MMG Environment - LSTM Algorithm: Average total cumula-

tive rewards per episode. 103

Figure A.13 MMG Environment - SMM Algorithm: Average total cumula-

tive rewards per episode. 103

Figure A.14 MMG Environment - SMM Algorithm With Frequency Based

IM: Average total cumulative rewards per episode. 104

xix

Figure A.15 MMG Environment - SMM Algorithm With Autoencoder Based

IM: Average total cumulative rewards per episode. 104

Figure A.16 MMG Environment - Average Policy Entropy Values Compar-

ision. Each line represents the average of 12 parallel runs with confi-

dence intervals. 105

Figure A.17 MMG Environment - Average Learning Throughput Values Com-

parision. Each line represents the average of 12 parallel runs with con-

fidence intervals. 106

xx

CHAPTER 1

INTRODUCTION

In the context of Artificial Intelligence (AI), an agent is an entity that perceives its

environment through sensors and acts upon that environment with actuators to achieve

specific goals. More specifically, an agent defines a policy that maps from a given

state or observation of the environment to an action. Conversely, the environment

responds to the agent’s actions, providing new observations and rewards, thereby

encapsulating the dynamics and challenges the agent must navigate. Together, they

form a feedback loop where the agent continually adjusts its behavior based on the

consequences of its actions in the environment.

Reinforcement Learning (RL) is an area focused on optimal control and decision-

making in Markov Decision Processes (MDPs). It involves formulating agents that

interact with environments to learn policies that maximize a given optimization ob-

jective. While some RL methods operate on fully specified MDPs using the given

transition dynamics and reward structures, others learn policies through direct inter-

actions in scenarios where the MDP is incompletely known.

However, in real-world scenarios, the entire state of the environment is often not

completely visible to the agent at all times, rendering these situations as Partially

Observable Markov Decision Processes (POMDPs). In such circumstances, the agent

is required to make decisions based solely on its current observation, which only

offers a partial view of the entire state. In practice, there are many types of partial

observability, and there is no perfect method to optimally solve all kinds within a

single method; even many cannot be solved due to the complexity, which becomes

computationally intractable in practice.

1

Moreover, this work focuses on a specific subset of POMDP problems that require

long-term remembering of visual observations to obtain optimal policies. With this

problem type, some form of context or memory can be used to augment this POMDP

problem into a Hidden State MDP, which can be optimally solved in theory. Unfortu-

nately, due to computational limitations and approximation errors, solving POMDP

problems that require long-term remembering of visual observations is very challeng-

ing and easy to become intractable in practice.

In this study, agents are equipped with visual external memories, enabling memory

context to be perceived alongside their environmental observations. The manipulation

of this external memory is governed by the agents themselves, and this can benefi-

cially influence their future behaviors.

While external memory provides a mechanism to retain historical information, there

arises a need for a guiding force to encourage efficient memory utilization. This is

where intrinsic motivation comes into play. Intrinsic motivation serves as an internal

reward system, pushing the agent towards behaviors that are not just immediately

rewarding but also beneficial in the long run, such as effective memory management.

1.1 Contributions

The aim of this thesis has been to bridge the gaps in the realm of partially observable

reinforcement learning, particularly intrinsic motivations and the strategic utilization

of visual external memories. This work has led to several important contributions:

• Framework for visual external memory integration: One of the main contri-

butions of this work is the novel framework designed to integrate visual external

memory with reinforcement learning agents seamlessly. This design ensures

agents are better equipped to make decisions in partially observable environ-

ments by leveraging an external memory.

• Intrinsic motivation functions for Visual Memory Management: Recog-

nizing the critical role of intrinsic motivation in decision-making processes, a

unique set of intrinsic motivation functions were developed for visual tasks.

2

These functions, tailored for agents with visual memory management, ensure

that memory utilization is optimized to benefit decision-making strategies.

• Insights into the complexity in exploration: With the introduction of visual

external memory, agents expose the ’curse of dimensionality’ due to the grow-

ing observation and action spaces. This study provides a deep dive into the

results of extending the action and observation space, offering strategies to

overcome this negative effect.

• Open source codes of the algorithms and experiment results: The entire

work is open-sourced for future researchers using the same framework to utilize

the results for their research. The comparative analysis is included to assess the

performance of Visual Self Memory Management (VSMM) and IM approaches

against the state-of-the-art. Source codes can be accessed at

https://github.com/burakdmb/vsmm.

1.2 Outline

The subsequent chapters are organized as follows:

• Chapter 2 provides a comprehensive review of the current state-of-the-art in

RL, POMDPs, approaches for solving POMDPs such as Belief State and Hid-

den State POMDPs, Deep RL, Neural Network architectures, intrinsic motiva-

tion approaches, and lastly, related works.

• Chapter 3 delves into the methodologies employed, providing details about

the design and implementation of proposed intrinsically motivated agents with

external visual memory.

• Chapter 4 presents the experimental setup, including the environments se-

lected and the metrics used for evaluation, discusses the experiment results,

and compares with state-of-the-art methods.

• Chapter 5 concludes the thesis, summarizing the findings and suggesting av-

enues for future research.

3

https://github.com/burakdmb/vsmm

4

CHAPTER 2

BACKGROUND INFORMATION AND RELATED WORKS

2.1 Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs) provide a mathematical framework for modeling

discrete time stochastic control/decision-making processes. Foundations of MDPs

date back to the late 1950s [7] and 1960s [8] with academic pioneers Prof. Richard

Bellmann (mostly known with the Bellmann Equation and contributions in value it-

eration approaches) and Prof. Ronald A. Howard (mostly known for contributions to

policy iteration approaches). The name comes from the Russian mathematician An-

drey Markov as MDPs are an extension of the Markov Chains (and therefore based

on Markov Property). The Markov Property is characterized by the principle that the

probability of a subsequent event depends solely on its immediate predecessor and

is independent of all preceding events. If an event exhibits this characteristic, it is

said to be ’Markovian’ or to possess the Markov Property. Based on this definition, a

Markov Chain can be formalized as a stochastic process in which every event adheres

to the Markov Property.

MDPs are modeled with a four tuple, ⟨S,A, T,R⟩ where:

• S is the finite set of states,

• A is the finite set of actions that the agent can take,

• T : S × A× S → [0, 1] is the transition function,

• R : S × A× S → R is the reward function.

For demonstration, the state transition graph of a simple example MDP is given in

5

Figure 2.1.

Furthermore, in a more abstract and natural view, an MDP can be viewed as agents

acting in an environment with defined states, actions, transition probabilities, and

rewards (Illustration is shared in Figure 2.2). An agent can be a decision-making

human, a robot, or a control algorithm. As can be seen, many tasks/problems in

nature (decision-making of humans) or science can be modeled with MDPs, and with

appropriate methods, MDPs can also be solved. In addition, MDPs are characterized

by full observability, which means that the agent has complete knowledge of the state

of the environment at every time step.

S 0
a 1

a0

S 2

S 1

a 1

a 0

a 0

a 1

Figure 2.1: An example state transition graph for a Markov Decision Process with

three states (green cells: s0, s1, s2) and two actions (orange cells: a0, a1). Black

arrows denote the transition probability from one state to another, and orange arrows

denote the rewards obtained from transitioning from one state to another with the

given action. Example taken from: [2], best viewed in color.

6

Environment

actionstatereward

Agent

Figure 2.2: Illustration of a Markov Decision Process, abstract perspective with the

concepts of agent and environments. Figure adapted from: [3].

In a finite MDP, all defined random variables, such as states, actions, and rewards,

will have a finite number of elements as the agent interacts with the environment at

each discrete time step, t = 0, 1, 2, This results in a sequence of MDP variables

such as:

{s0, a0, r1, s1, a1, r2, s2, a2, r3, ...}

If the maximum time is finite instead of∞, this form of a finite sequence is named an

Episode of the MDP. When T is the final time step of this episode, E is defined as:

E = {s0, a0, r1, s1, a1, ..., rT−1, sT−1, aT−1, rT}

For arbitrary values of these random variables, s′ ∈ S and r ∈ R, the dynamics of the

MDP can be defined as:

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s, At−1 = a} (2.1)

for all s′, s ∈ S, r ∈ R and a ∈ A(s).

7

2.2 Reinforcement Learning

The problem of reinforcement learning is defined as the optimal control of incompletely-

known Markov Decision Processes by using theoretical foundations of dynamical

systems theory and computer science [3]. Reinforcement learning uses techniques

such as dynamic programming to obtain solutions for unknown MDPs.

In reinforcement learning, the agents aim to obtain optimal rewards from the envi-

ronment itself. At each time step, the agent tries to optimize its total rewards, and

the optimality of rewards means the maximization of cumulative rewards in the long

run. The agent behavior function, which designates the selection probability of each

feasible action given the state and is referred to as the ’Policy’, is also introduced.

It is denoted as π. Through the policy function π, the agent’s behavior within the

current MDP is determined, resulting in the acquisition of rewards corresponding to

their respective actions. The agent’s policy can be characterized as the probability

function π(a|s), a ∈ At, s ∈ St.

In control theory, the optimization criteria of rewards (or in this case, costs) mainly

refers to minimization, while in computer science and artificial intelligence literature,

it refers to maximization. The notation employed in this study adheres to the max-

imization of cumulative rewards notation for an agent’s objective. The cumulative

sum of rewards can be denoted as the expected total return, Gt, and can be defined as

follows:

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT (2.2)

Where T represents the final time step. Since not all MDPs are finite in step length,

it is possible to extend the concept of T to infinity by incorporating a discount rate

denoted as γ, satisfying the condition 0 ≤ γ ≤ 1.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (2.3)

If γ < 1, the infinite sum value will be finite. As γ approaches zero, the effects of

8

the future returns will be weaker, and as γ approaches one, the effect of the future

rewards is more substantial.

Expected return Gt can also be written as a recursive form:

Gt = Rt+1 + γGt+1 (2.4)

Additional expressions can be defined with the definition of expected return. Firstly,

a function can be defined to estimate the expected return of a specific state when an

agent follows a policy π. This is named as "State Value Function" and denoted as

vπ(s). It can be defined as:

Vπ(s) := E [Gt|St = s] = E

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
(2.5)

Equation 2.5 can also be written in a recursive form, given in Equation 2.6. This

is the Bellmann Equation form for Vπ. This constructs the relationship between the

value functions of the current and successor states, and this recurrent relationship is

the crucial element for algorithms to compute, approximate, or learn Vπ.

Vπ(s) = E [Gt|St = s] (2.6a)

= E [Rt+1 + γGt+1|St = s] (2.6b)

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γEπ [Gt+1|St+1 = s′]

]
(2.6c)

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)
[
r + γVπ(s

′)

]
(2.6d)

Secondly, a function is established to estimate the value associated with taking action

a within state s under policy π. This is named as "Action Value Function" and denoted

as qπ(s, a). It can be defined as:

qπ(s, a) = E [Gt|St = s, At = a] = E

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a

]
(2.7)

9

The goal of an agent then can be formulated with previously defined functions, which

is selecting the optimum policy where it obtains the maximum cumulative expected

reward. Equations 2.8a and 2.8b define the optimal state value function and optimal

action-value function, respectively:

V∗(s) = max
π

Vπ(s) (2.8a)

q∗(s, a) = max
π

qπ(s, a) (2.8b)

By combining equations 2.4 and 2.7, optimal state value function in Equation 2.8a

can be rewritten:

V∗(s) = max
a∈A(s)

qπ(s, a) (2.9a)

= max
a

Eπ∗ [Gt|St = s, At = a] (2.9b)

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s, At = a] (2.9c)

= max
a

Eπ∗ [Rt+1 + γV∗(St+1)|St = s, At = a] (2.9d)

= max
a

∑
s′,r

p(s′, r|s, a)[r + γV∗(s
′)] (2.9e)

Equations 2.9d and 2.9e are Bellman optimality equations for V∗, and be later used

in this section. Following the same, the Bellman optimality equation for q∗ can be

written, as in Equation 2.10b:

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(St+1,a|St = s, At = a

]
(2.10a)

=
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a′
q∗(s

′, a)
]

(2.10b)

Suppose that the underlying system dynamics are entirely known (means that p(s′, r|s, a)
function is known). In that case, one can use Dynamic Programming (Either using

Policy Iteration or Value Iteration) [3] to obtain the optimal policy. If not known, one

10

can use either Monte Carlo Based Predictions [9], Temporal Difference (TD) Learn-

ing (Such as Q-Learning or SARSA) [3] or derivations of such approaches. Monte

Carlo methods approximate the value function using the average returns obtained

from sampling the environment. On the other hand, TD-based methods use both

Monte Carlo (uses sampling to get an average return) and Dynamic Programming

(uses bootstrapping from successors) approaches. The resulting update function is

given in Equation 2.11:

V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] (2.11)

Q-Learning [10] is an off-policy variant of Temporal Difference (TD) learning. It

works by directly approximating the optimal action-value function. Under certain

conditions, including that each state-action pair is visited infinitely often and the

learning rates are suitably decreased over time, Q-learning has been proven to con-

verge to the optimal policy as the number of iterations approaches infinity. In Q-

Learning, the term ’off-policy’ refers to the methodology used by Q-learning to ap-

proximate the optimal action-value function. More specifically, Q-learning estimates

this function directly, without the need for the agent’s actions to consistently follow

the current policy. During the learning process, a Q-learning agent often employs

an exploration strategy (like ϵ-greedy) to effectively improve its estimates of the Q-

values. This exploration doesn’t always align with the optimal policy, thereby demon-

strating the off-policy nature of Q-learning. The pseudocode of the algorithm is given

in Listing 1.

2.3 Partially Observable Markov Decision Processes (POMDPs)

Previously in Section 2.1, Markov Decision Processes were defined. To recall, MDPs

provide a mathematical framework for modeling discrete time stochastic control/decision-

making processes while having an important assumption of satisfying the Markov

property. In this section, the definition of MDPs is extended in a more general form

by removing the assumption of complete observability. Partially Observable Markov

Decision Processes (POMDPs) are a general model for describing an environment

11

Listing 1 Pseudocode of the Q-Learning Algorithm. Reference: [3]
Algorithm parameters:

step size α ∈ (0, 1],

small ϵ > 0,

discount factor γ

Initialize Q(s, a) for all s ∈ S, a ∈ A(s),

arbitrarily except that Q(sterminal, .)=0

Loop for each episode:

Initialize s

Loop for each step of the episode:

Choose a from s using policy derived from Q (e.g., ϵ-greedy)

Take action a, observe r, s′

Q(s, a)← Q(s, a) + α [r + γmaxaQ(s′, a)−Q(s, a)]

s← s′

Until s is terminal

with limited information.

A POMDP is defined as a six tuple ⟨S,A, T,R,Ω, O⟩, Reference: [11], where:

• S is the finite set of states,

• A is the finite set of actions that the agent can take,

• T : S × A× S → [0, 1] is the transition function,

• R : S × A× S → R is the reward function,

• Ω is the finite set of observations and

• O : S × Ω→ [0, 1] is the observation function.

Contrasting with the four-tuple definition of MDPs, the definition of a POMDP ex-

tends the MDP framework by incorporating a set of observations Ω and an observation

probability function O. Since the agent has no direct access to the state s, it receives

an observation o ∈ Ω with the probability of O(s, o) = p(o|s).

Table 2.1 summarizes the classification of Markov models in terms of observabil-

ity and ability to control the underlying model. It’s essential to note that not every

12

stochastic process that isn’t an MDP is automatically a POMDP. The foundational

characteristic shared by both MDPs and POMDPs is that they are Markovian (i.e.,

they hold the Markov property). It’s the level of observability that determines whether

a process is classified as an MDP or a POMDP.

Due to the uncertainty of the observations, more than one state may correspond to

the same observation. This phenomenon is known as Perceptual Aliasing [12], and

since the agents cannot separate distinct states based on these observations, finding

the optimal policy becomes challenging. The common misconception arises when

considering the optimal control of unknown POMDPs, where traditional Reinforce-

ment Learning (RL) approaches cannot be directly applied. The challenge here lies

in the fact that these RL algorithms are generally designed under the assumption of

Markov Decision Processes (MDPs), wherein full observability of the environment

is guaranteed. POMDPs, however, incorporate partial observability, which makes the

standard application of tools such as Bellman Equations and dynamic programming

more complicated. This is not to say these methods cannot be used at all, but rather,

they must be adapted to work effectively within the context of belief or hidden states

in POMDPs, which will be mentioned in Section 2.4

Markov
Models

Are the
states

 completely
 observable?

Do we have control over
the state transitions?

Markov Chain
MDP

Markov Decision
Process

POMDP
Partially Observable

Markov Decision
Process

HMM
Hidden Markov

Model

YES

NO

NO YES

Table 2.1: Classification of Markovian models according to the observability and

ability of controlling the underlying model. Reference: [1].

13

2.4 Optimal Control/Decision Making of POMDPs

When partial observability occurs, agents must make their decisions under uncer-

tainty, and therefore, optimal decisions cannot be made at every step without forming

a context or a memory. There exist two primary ways to handle the uncertainty of

POMDPs in the literature [13, 14, 15, 16]. Firstly, agents can learn a sensor model

where observations can be mapped into states by using the prior experiences of the

agent. More formally, a probability distribution over observations given states can

be used to obtain optimal policies for POMDP problems. On the other hand, instead

of learning a full-sized probability distribution of observations given states (which re-

quires knowing the transition function T of the underlying dynamics), agents can esti-

mate their hidden state at each step by only using prior experiences (without knowing

the transition function). In the subsequent subsections, these belief and hidden state

POMDP definitions are mathematically defined. It is also demonstrated why defining

a belief state becomes intractable in practice. Moreover, hidden state POMDPs are

defined in the following part, which forms the underlying assumption of this study.

2.4.1 Belief State POMDPs

In the following, a belief state is used from [3] to create an updated POMDP, which

can be optimally solved.

The probability of state s under the belief state b can be defined as b(s), and an agent

can update its belief state with each iteration, from literature [3], with Equation 2.12:

b′(s′) = η ·O(o|s′, a) ·
∑
s∈S

T (s′|s, a) · b(s) (2.12)

Where b′(s′) is the updated belief state of any arbitrary state s′ after taking action

a ∈ A and observing the observation o ∈ Ω. O(o|s′, a) is the observation function and

T (s′|s, a) transition function defined in Section 2.3. In this approach, this transition

function is assumed to be known. Lastly, η is a normalization constant which makes

this expression a probability function, from literature [3], is defined in Equation 2.13a.

η is used for normalizing the belief state so that the sum of all belief states is equal to

14

unity,
∑

s′∈S b
′(s′) = 1.

η =
1

Pr(o|b, a)
(2.13a)

Pr(o|b, a) =
∑
s′∈S

O(o|s′, a) ·
∑
s∈S

T (s′|s, a)b(s) (2.13b)

In theory, belief states can be further augmented with POMDP formulation to ob-

tain an MDP where every belief is a state. A Belief MDP is defined as a four tuple

⟨B,A, τ, R⟩ [17], where:

• B is the finite set of belief states,

• A is the finite set of actions that the agent can take (same as POMDP),

• τ : B × A×B → [0, 1] is the transition function,

• R : B × A×B → R is the reward function.

The belief state transition function τ and reward function over belief states now need

to be defined again by using POMDP terms. In Equation 2.14a, the belief state tran-

sition function is defined. It is defined as a sum over all possible observations o, and

essentially computing the total probability of transitioning from belief state b to belief

state b′ under action a, with consideration of all observations. The term Pr(o|b, a) was

defined in Equation 2.13b and the term Pr(b′|b, a, o) was defined in Equation 2.14b.

Lastly, the reward function R(b, a) is defined in Equation 2.14c, from reference [3].

τ(b′|b, a) =
∑
o∈Ω

Pr(b′|b, a, o)Pr(o|b, a) (2.14a)

Pr(b′|b, a, o) =

1, if b′ transitioned by b, o and a

0, otherwise
(2.14b)

R(b, a) =
∑
s∈S

b(s)R(s, a) (2.14c)

In a Belief MDP, each state is represented by a belief state, and the function for

transitioning between states is defined by how these belief states are updated. Given

15

an action and an observation, the transition is deterministic, as it’s fully defined by

the belief update rule.

The probability equation Pr(b′|b, a, o) is defined in Equation 2.14b, the new belief

state b′ is calculated by using the belief update rule on the current belief state b, under

action a and the observation o. If a proposed belief state matches the belief state

obtained by applying the update rule, then Pr(b’| b, a, o) is one, otherwise, it’s zero.

This reflects the deterministic nature of the belief state transition function.

For the given formulation of Belief MDP, policies can then be defined with belief

states. a = π(b). The Bellman optimality equations for V∗(b), under Belief MDP

formulation, is defined in Equation 2.15

V∗(b) = max
a∈A(b)

(
R(b, a) + γ

∑
o∈Ω

Pr(o|b, a)
∑
b′∈B

τ(b′|b, a)V∗(b
′)

)
(2.15)

This Bellman optimality equation under the Belief MDP formulation simply denotes

that the optimal value of a belief state b comes from the action a that maximizes the

summation of immediate reward and the expected discounted optimal value of the

next belief states. The expectation operator is taken for both the observations and the

next belief states.

From now on, the methodologies and approaches mentioned in Section 2.2, such as

Q-Learning, can be applied to solve Belief MDP problems.

It’s very important to mention that, while theoretically, one can convert a POMDP to

a Belief MDP, this transformation may not always be practically feasible in practice.

It is also important to mention that, belief states in POMDP problems are often high-

dimensional and/or continuous, therefore working directly with these belief states are

very difficult. In most cases, exact solutions are intractable due to the large state

space size. An alternative approach for solving these problems is by using various

approximation methods, then these problems can be tractable and optimal policies

can be approximated. Even in such cases, obtaining successful policies depends on

the approximated belief state design.

16

The general steps of designing a belief state for POMDP problems can be summarized

as follows:

• Defining the state space:

This step includes defining the belief state space by deciding all possible be-

lief states the environment can be in, these states can also be discrete or even

continuous.

• Initializing the belief state: In many POMDP cases, agents do not know any

information about the environment state in initialization. In these cases, the

belief state can be initialized as a uniform distribution which means that the

agent believes it is equally like to be in any state. If any information exists, the

initialization should be made accordingly.

• Defining the belief update function: The belief update function needs to be

defined according to the belief state space. In a given belief state, when the

agent makes an action and observes a new observation, this function defines

the next belief state.

• Updating belief state: Lastly, as an agent interacts with the environment, the

belief state must be updated accordingly in each time step. With the given belief

state, the agent’s current policy can be calculated.

In Listing 2, the pseudocode of the Q-Learning algorithm is updated for the Belief

MDP formulation. In theory, with infinite computational resources and time, the

Belief-State-Q-Learning algorithm can solve any POMDP task. Reasons of this is

only possible in theory but not in practice are defined as follows:

• Full Exploration:

In theory, such an algorithm must explore all belief-action tuples infinitely often

to fully explore the environment and guarantee convergence.

• Appropiate Belief State Representation:

The belief state must capture all of the required information about the environ-

ment, therefore representation of the belief state must be accurate for the given

POMDP problem.

17

Listing 2 Pseudocode of the Belief-State-Q-Learning Algorithm.
Algorithm parameters: step size α ∈ (0, 1], small ϵ > 0

Initialize Q(b, a) for all b ∈ B, a ∈ A(b),

Loop for each episode:

Initialize b

Loop for each step of the episode:

Choose a from b using policy derived from Q (e.g., ϵ-greedy)

Take action a, observe r, o′

Update the belief state b′ using observation o and action a

Q(b, a)← Q(b, a) + α(r + γmaxa′Q(b′, a′)−Q(b, a))

b← b′

Until b is terminal

• Sufficient Discretization:

If the belief state space is continuous, the belief state space must be sufficiently

discretized to accurately approximate the continuous belief state space and find

the optimal policy.

• Enough Computation:

For a single algorithm to solve any POMDP problem, infinite computational

resources and time are needed to guarantee convergence.

2.4.2 Hidden State POMDPs

In practical cases, it is evident that computational limitations and the high dimensional

state spaces make it impossible for a single algorithm to solve all POMDP problems.

In addition, the state transition function T is unknown in most of these cases. There-

fore, solving these cases requires simple and more efficient estimations that do not

need to maintain a complete belief distribution, thereby being more computationally

tractable but less expressive in terms of representing the original states.

Existing literature [14] classifies hidden states as follows:

• Visible State. These are the states which are not hidden to the agent at all times.

18

• Non-Markov Hidden State. These states cannot be directly observable to the

agent, but it is correlated with the past states and/or actions, therefore called

non-markov. Agents can recover these non-markov hidden states by using the

memory of past observations/actions since it is correlated with the past.

• Invisible Hidden State. Lastly, these are the last kind of states where the given

state is not correlated with anything to the agent. These kind of states are also

a part of the environment, but the agents cannot make any estimates since it is

independent and therefore, cannot be predicted/estimated by the agents.

Regarding to this classification [14], recoverable hidden states can be estimated to

optimally solve some POMDP tasks. Approaches to solve/estimate states are initially

divided into two classes, namely the Memoryless(Stateless) and Memory-Based ap-

proaches.

Memoryless agents that are using reinforcement learning with hidden state POMDPs

do not try to disambiguate these aliased observations. Instead, it simply ignores hid-

den state problems and applies traditional reinforcement learning methods like there

is no perceptual aliasing. These approaches try to obtain the best policy without addi-

tional memory or context, which performs poorly in most partially observable prob-

lems. It has also been proven that finding the optimal memoryless policy in Hidden

State POMDP problems is NP-Hard [18].

Contrary to the first approach, memory-based approaches use an additional source

of memory (or context) to estimate the underlying state by combining this additional

information with given observations. In the literature, various strategies are used to

represent these additional sources. These include employing a fixed-length window of

recent observations, finite state machines, external memories (which can store obser-

vations, actions, rewards, or any blend of such data), and recurrent neural networks.

Approaches based on recurrent neural networks can also be termed as "internal mem-

ories" since the memory data is preserved within the agent’s policy itself. Since the

way of representing memories changes the formal definition, in a more abstract way,

a Hidden State MDP can be defined as a four tuple ⟨S ′, A, τ, R⟩ where:

• S ′ is the finite set of context/hidden states,

19

• A is the finite set of actions that the agent can take (same as POMDP),

• τ : S ′ × A× S ′ → [0, 1] is the transition function,

• R : S ′ × A× S ′ → R is the reward function.

Similar to the Belief State MDPs, Reinforcement Learning based approaches can then

be used to learn the optimal policy. The resulting pseudo-code of this algorithm is the

same as Listing 2, except that context/hidden states s′ ∈ S ′ are used instead of belief

states in the notation.

Lastly, it’s worth mentioning when augmenting the environment with a hidden state

using practical memory representations, issues such as computational complexity,

discretization, and the curse of dimensionality can prevent these augmented environ-

ments from being treated as true MDPs. Furthermore, these practical issues can make

it challenging to obtain the exact global policy or some approximated policies (but yet,

may still be achievable). One concrete example of this expression, for memory-based

representations, it has been proven that [19] even though a globally optimal policy

exists for a memory-augmented environment, the memory-augmented environment

itself might not be an MDP. For these cases in which the augmented environment is

not MDP, and this non-Markovian case impacts the performance of RL agents that ex-

plicitly exploit the Markovian assumption, learning may become unstable. Therefore,

it is crucial to efficiently design hidden states and use problem-specific adaptations.

2.5 Neural Network Architectures

Artificial neural networks can be described as computational models that are inspired

by the neural structure of the brain. These networks have the capacity to learn com-

plex functions from data. There are several studies that trace the origins of neural

networks back to the early to mid-20th century [20, 21], drawing influences from ar-

eas such as biology, neuroscience, psychology, and computer science. To the best of

our knowledge, the earliest prototypes of artificial neural networks date back to the

study by McCulloch and Pitts in 1943 [22]. A neural network can be characterized by

its linear and/or nonlinear processing units, often referred to as layers, and by the em-

ployment of backpropagation, which leverages the chain rule to concurrently adjust

20

the parameters of the entire network at once.

In literature, a variety of neural network architectures have been proposed, with each

with its unique features, advantages, and trade-offs. In this section, neural network

architectures are characterized and defined based on their structure. Subsequently,

concepts utilized in this study are defined to provide background information to the

readers.

• Multi-Layer Perceptrons and Convolutional Neural Networks:

Multi-layer perceptrons (MLPs), are the very simplest form of artificial neu-

ral networks and consist of multiple layers, in which at each layer, multiple

neurons exist, and each neuron is connected to every neuron in the next layer,

constructing a dense network in terms of the number of connections.

A feedforward neural network chains together multiple function compositions,

and thus it can be referred to as a ’network’. This model can also be represented

as a directed acyclic graph (DAG), where each node corresponds to a function

in the sequence, highlighting the layered, sequential structure of these networks

[23]. This chain form can be denoted as f(x) = f (3)(f (2)(f (1)(x))). In this no-

tation, f (1) is the first layer of the network, and so on. A linear layer of a neural

network can be defined as ŷ = W Th + b, where ŷ is the predicted/calculated

output value/label, W is the weight matrix which provides the weights of the

linear transformation, h is the input features of the current layer and lastly, b is

the bias values. In a more compact representation, For a given fully connected

layer l, if hl represents the output of that layer (also the input to the next layer

l + 1), then the output h(l+1) of the next layer can be calculated as:

hl+1 = σ(W l+1hl + bl+1)

Where:

– W l+1 is the weight matrix for layer l + 1,

– b(l+1) is the bias vector for layer l + 1.

21

– σ is the activation function. (Mostly used functions of σ are ReLU (Rec-

tified Linear Unit), sigmoid, or tanh functions) .

Figure 2.3: Example structure of a simple convolutional neural network followed by

an MLP, Source: [4].

Convolutional NNs utilize the convolution [24] operator to capture spatial re-

lationships in data when jointly used with fully connected neural networks. It

allows the representation of spatial information in a compressed form, and with

this architectural improvement, the number of parameters in a neural network

can be decreased, and the chance of overfitting can be reduced when compared

to usingly only MLPs. An example illustration is shared in Figure 2.3.

For a 2D input x (which can be an image), a 2D convolution operation can be

defined as follows:

yi,j = (x ∗ w)i,j =
∑k−1

m=0

∑k−1
n=0 xi+m,j+nwm,n

Where:

– w is a 2D kernel of size k × k,

– i and j are the spatial coordinates in the output y,

– wm,n is the kernel weights of the given spatial coordinates, and these

weights are shared across the entire spatial extent of the input, which is a

key aspect of the CNN that allows it to learn spatial relationships.

The convolution operation can be extended to 3D inputs. Typically, this layer

22

is used in conjunction with a pooling layer, which performs downsampling on

its inputs and is often followed by fully connected layers in the network archi-

tecture.

• Recurrent Neural Networks (RNNs):

Figure 2.4: Example single neuron of a basic recurrent neural network. On the left,

recurrent connections are drawn with cycles, and on the right, the recurrent neuron is

unfolded over time steps. Source: [5].

Recurrent Neural Networks (RNNs) utilize an internal memory structure to pro-

cess sequences of inputs, enabling the preservation of sequential information

within the network structure. To the best of our knowledge, Long Short-Term

Memory (LSTM) networks [25] and Gated Recurrent Unit (GRU) networks

[26] are among the most widely recognized architectures for the practical im-

plementation of recurrent neural networks. Example illustration is shared in

Figure 2.4.

In most simple terms, a recurrent neural network layer can be defined as fol-

lows:

Given:

– An input sequence x = (x1, x2, ..., xT),

– A hidden state h initialized often as zeros,

– Weight matrices Wxh, Whh, and Why,

– Bias vectors bh and by,

– An activation function, typically the hyperbolic tangent tanh,

23

ht = tanh(Wxhxt +Whhht−1 + bh)

yt = Whyht + by

for each t = 1, ..., T .

LSTM (Long Short-Term Memory) networks are a special type of RNNs (Re-

current Neural Networks) designed specifically to avoid the long-term depen-

dency problem, enabling them to remember and learn from long sequences

without suffering from the vanishing gradient issue prevalent in traditional

RNNs. An LSTM layer is defined by the following equations from [27]:

Forget Gate:

ft = σ(Wf · [ht−1, xt] + bf)

Input Gate:

it = σ(Wi · [ht−1, xt] + bi)

c̃t = tanh(Wc · [ht−1, xt] + bc)

Update Cell State:

ct = ft ∗ ct−1 + it ∗ c̃t

Output Gate:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(ct)

Overall Representation:

(ot, ht, ct) = LSTM(xt, ht−1, ct−1)

Where:

– σ denotes the sigmoid function.

– tanh is the hyperbolic tangent function.

– [ht−1, xt] means the vectors ht−1 and xt are concatenated.

– ∗ denotes element-wise multiplication.

24

• Autoencoder Networks:

Figure 2.5: Example structure of a basic autoencoder network, Source: [6].

An autoencoder network [28] is a specialized network for utilizing unsuper-

vised learning where it learns to compress the input data (o) and subsequently

attempts to reconstruct it, denoted as ô, solely based on the compressed latent

representation z [29]. An example illustration is shared in Figure 2.5.

Encoder:

z = Encoder(o)

Decoder:

ô = Decoder(z)

Overall Representation Of The Autoencoder:

ô = Autoencoder(o) = Decoder(Encoder(o))

Moreover, different architectures also have different computational requirements. Some

might be more memory-intensive, while others might be more computationally de-

manding. The decision to choose an architecture also depends on these factors, es-

pecially when dealing with large-scale problems or hardware constraints. These ar-

chitectures can also be combined with approaches in Section 2.6 to handle many

challenges, such as dealing with visual inputs or learning sequential information in

Reinforcement Learning tasks.

25

2.6 Deep Reinforcement Learning

In section 2.2, the concept of Reinforcement Learning was defined, and several algo-

rithms for solving RL problems were mentioned, including the Q-Learning algorithm.

However, in practice, only a small set of problem domains can be efficiently solved by

using these traditional approaches due to these algorithms tends to be computationally

intractable as the state and action spaces grow large or become continuous.

Deep Reinforcement Learning (Deep RL) overcomes this limitation by using deep

neural networks (previously defined in section 2.5) as function approximators to esti-

mate either a policy, a value function, or both. In most simple terms, Deep RL can be

defined as the integration of deep learning methodologies into reinforcement learn-

ing problems to eliminate possible drawbacks in existing solutions. This approach

enables the handling of large or even continuous state and action spaces, which were

previously intractable.

However, the use of deep networks as function approximators introduces an approx-

imation error. This error arises when the approximated function does not perfectly

represents the true function. Therefore, even if all state-action pairs are visited in-

finitely often (a requirement for convergence guarantee in traditional reinforcement

learning), the agent may not converge to the optimal policy due to this approximation

error. In practice, several approaches [30, 31, 32, 33] can be adapted to improve this

trade-off condition but it cannot be fully avoided.

In Listing 3, the pseudocode of the "Deep Q Learning (DQN) [30]" algorithm is given.

The main difference from the traditional "Q-Learning" algorithm is that the action-

value function Q is now approximated by a deep neural network parameterized with

θ. To recall, the traditional "Q Learning" is considered an off-policy method because

its Q-value update rule uses the greedy policy (best possible action) to update its

Q-values, while the behavior policy that is actually followed during learning can be

non-greedy (like ϵ-greedy) or a different exploratory policy. Similar to traditional

Q Learning, the DQN algorithm is also considered an off-policy method due to a

similar greedy update rule, also combined with the experience replay. Transitions

(sj, aj, rj, sj+1) are sampled from a replay memory D (with size N) to optimize the

26

neural network with mini-batches.

Listing 3 Pseudocode of the Deep Q-Learning Algorithm, Reference: [30].
Algorithm parameters:

step size α ∈ (0, 1],

small ϵ > 0,

discount factor γ,

capacity of replay memory N

Initialize replay memory D with capacity N

Initialize action-value neural network function Q

with randomly initialized weights θ

Loop for each episode:

Initialize s

Loop for each step of the episode:

Choose a from s using policy derived from Q (e.g., ϵ-greedy)

Take action a, observe r, s′

Store transition (st, at, rt, st+1) in D
Sample random minibatch of transitions (sj, aj, rj, sj+1) from D

Set yj =

rj for terminal sj+1

rj + γmaxa′ Q(sj+1, a
′; θ) for non-terminal sj+1

Perform a gradient descent step on (yj − Q(sj, aj; θ))
2 with respect

to neural network parameters and update θ

s← s′

Until s is terminal

@articlekloek1978bayesian, title=Bayesian estimates of equation system parameters:

an application of integration by Monte Carlo, author=Kloek, Teun and Van Dijk,

Herman K, journal=Econometrica: Journal of the Econometric Society, pages=1–19,

year=1978, publisher=JSTOR

27

2.6.1 PPO

Deep Q-Learning (DQN) aims to estimate the action-value function by minimizing

the difference between the estimated Q-values and the target Q-values. Once this

function is learned, a deterministic policy can be derived by selecting the action that

maximizes the Q-value for a given state.

In contrast, Proximal Policy Optimization (PPO) [34] is one of the most preferred

choices in policy gradient/optimization methods aiming to address the challenges of

policy gradient methods related to large policy updates. Instead of learning a value

function, it directly optimizes a parameterized policy to maximize expected rewards.

Traditional policy gradient methods allow policies to be updated such that they can

become significantly different from the original. This can sometimes lead to destabi-

lized training or catastrophic drops in performance. PPO algorithm proposes a sur-

rogate objective function to bound the deviation of the new policy from the old one.

This is achieved by introducing a constraint or penalty to the optimization objective,

promoting incremental policy updates. Such a modification offers enhanced stability

and reliability in comparison to conventional policy gradient methods. Mathemati-

cally, PPO achieves this enhancement by adjusting the policy gradient objective to

incorporate a clipped version of the surrogate objective function. The idea is to avoid

making excessively large policy updates by clipping the objective to lie within a cer-

tain range of the original policy. Specifically, PPO minimizes the following objective

in Equation 2.16:

L(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(2.16)

Where:

• rt(θ) = πθ(at|st)
πθold (at|st)

is the probability ratio between the new policy and the old

policy. If rt(θ) > 1, the action at at state st is more likely in the current policy

than the old policy. And if 0 < rt(θ) < 1, the action is less likely for the current

policy than for the old one. This acts as an estimate of the divergence between

the old and current policy.

28

• Ât is an estimator of the advantage function at time t.

• ϵ is a hyperparameter that controls the extent to which the policy can be updated

in one step.

By clipping the policy update, PPO ensures that the new policy doesn’t deviate sig-

nificantly from the old policy, maintaining stable and robust learning.

In summary, while Deep Q-Learning (DQN) focuses on estimating the action-value

function and then derives a deterministic policy from it by selecting the action that

maximizes the Q-value for a given state, Proximal Policy Optimization (PPO) takes a

different approach which directly optimizes a stochastic policy to maximize expected

rewards. Another distinguishing feature is in their experience management: DQN

uses an experience replay mechanism to stabilize its learning, leveraging past expe-

riences to train the model. On the other hand, PPO operates on policy, relying on

the experiences collected from the current policy’s interactions with the environment.

PPO estimates the policy gradient using multiple trajectories from these experiences.

This difference in experience management also categorizes DQN as an off-policy al-

gorithm and PPO as an on-policy algorithm.

2.7 Intrinsic Motivations

The term intrinsic motivation comes from the area of psychology, where it is defined

as the act of engaging in some activity mostly for curiosity, satisfaction, and fulfill-

ment, not expecting any extrinsic reward or an outcome [35]. Similarly, this concept

has been adapted to the fields of artificial intelligence and robotics, and it can be ap-

plied to agents where it seeks curiosity instead of pursuing external rewards. While

the concept of intrinsic motivation often overlaps with the idea of exploration in re-

inforcement learning, it provides a broader framework than just exploration. Intrinsic

motivation is a more comprehensive concept that drives the agent’s actions not only

by curiosity or the need to uncover unknown parts of the environment (exploration)

but also by other internal factors that can drive learning and behavior. Intrinsic moti-

vations in reinforcement learning can be classified into two main topics [36]:

29

• Knowledge Acquisition:

Within this area, the aim of intrinsic motivation for agents is to find new knowl-

edge for the given environment. Knowledge Acquisition can be further classi-

fied into three topics, such as Exploration (motivating agents to improve ex-

ploration in sparse environments), Empowerment (motivating agents to states

where it has maximum control over the environment), and lastly, State Repre-

sentation (motivating agents to learn proper and related state representations).

• Skill Learning:

Intrinsic motivations can encourage and motivate agents to construct and learn

task-independent skills where these skills are useful for many problems and

particular skills could be reused to help agents quickly adapt to new problems.

Lastly, it is notable that in the current literature, studies employing intrinsic moti-

vations in the context of POMDP problems are relatively sparse compared to those

focused on MDP problems [36]. Furthermore, the application of intrinsic motivations

in these complex contexts might introduce additional layers of difficulty. Despite

these challenges, the potential gains of intrinsic motivation in encouraging explo-

ration, learning from sparse rewards, and motivating long-term planning make this an

important aspect for further research.

2.8 Related Works

Approaches With Internal Memory Mechanisms in POMDP environments. In

previous works, k-order memories are used to form a memory for the most recent

observations in order to solve visual atari problems [37] and showed above human-

level performance in such scenarios. The U-Tree method [38] uses a variable history

window to represent long-term dependencies. Similarly, [39] uses the history window

approach for reinforcement learning with hidden states. [40] uses RNNs in order to

approximate the value function. The state of the environment is approximated by the

current observation and the recurrent activations of the neural network, which repre-

sent the agent history. Recurrent neural networks are also directly used for solving

30

pomdp problems in [41]. This study shows by combining LSTM networks with the

Deep Q Learning method. The resulting agent is capable of detecting relevant infor-

mation given prior. [42] proposes internal memory architectures by using LSTMs for

high-dimensional visual observation problems.

External Memory Approaches. The study [16] begins with, wherein external bi-

nary memories are created for POMDP RL problems. In [43], continuous-valued ex-

ternal memories are introduced for solving continuous control tasks that necessitate

memory. Unfortunately, the policy is trained with imitation learning since the re-

ward signal was insufficient for agents to understand how memory can be controlled.

In [19], authors used external memory-augmented environments to solve POMDP

problems requiring long-term memory dependencies and compared external memory

approaches with LSTM-based internal memory methods. Neural Turing Machines

(NTMs) are a special kind of Turing architecture introduced in [44], which creates

a computationally universal model for neural networks, allowing them to have a dif-

ferentiable external memory matrix and a controller to read/write memory contents,

which can be trained end-to-end, with supervised learning. Following this approach,

[45] combines NTMs with reinforcement learning to move the memory tape head for

read and write operations, which can be used for external memory. One similar ap-

proach to NTMs is the Neural Map [46], which is different from NTMs, where the

external memory is structured as a spatial 2D grid or map. Self Memory Management

from [47] utilizes an external memory to form a context for a given POMDP problem.

Several other works exist in the literature where the problem domain changes (con-

tinuous control and transport optimization) [48, 49] while still using similar external

memory approaches.

Count-Based Intrinsic Motivation. These works leverage counting or statistical

frequency techniques to derive intrinsic motivation, encouraging agents to explore

states or actions that are less frequently visited or known. Jo et al. propose a learnable

hash-based episodic count for complex problems [50]. Machado et al. introduce the

substochastic successor representation as a count-based exploration mechanism [51].

Martin et al. delve into exploration within feature spaces using count-based strategies

[52]. Ostrovski et al. propose a count-based exploration strategy using neural density

models to gauge the density of states [53]. Bellemare et al. combine both count-

31

based exploration and intrinsic motivation methodologies into a unified framework

[54]. Tang et al. conducted an in-depth study on count-based exploration in the realm

of deep reinforcement learning [55]. Zhang et al. delve into the idea of pushing

exploration boundaries through the "Bebold" methodology, seeking novel states over

the inverse state visitation counts [56].

Novelty-Based Intrinsic Motivation. Works in this category emphasize the detec-

tion and exploration of novel experiences, states, or actions in the environment, lever-

aging the agent’s intrinsic motivation to seek out the unknown. Burda et al. focus

on novelty-based exploration through random network distillation, emphasizing the

importance of exploring novel states [57]. Kubovcik et al. approach novelty from

a signal detection perspective, especially in the context of robotic applications [58].

Pathak et al. employ a self-supervised prediction approach, driving the agent’s explo-

ration with intrinsic curiosity towards unfamiliar situations [59]. Seurin et al. empha-

sizes the utility of actions in the exploration, advocating for actions that lead to novel

experiences or learnings [60].

32

CHAPTER 3

SOLVING PARTIALLY OBSERVABLE VISUAL REINFORCEMENT

LEARNING TASKS

In previous chapters, a comprehensive exploration of several fundamental concepts

has been conducted. Equipped with this foundation, our attention now shifts to a

more intricate and practical problem domain - solving of the Partially Observable

Visual Reinforcement Learning Tasks. This chapter will bring together the concepts

we’ve previously discussed, illuminating the challenging terrain of visual environ-

ments where state information is not always fully available or directly observable.

The exceptional hurdles presented by this scenario will be analyzed, and an explo-

ration of how deep learning can be leveraged to attain optimal behaviors from these

tasks will be undertaken.

Contrary to MDPs, which are fully observable and for which optimal solutions can

often be computed given sufficient resources, solving POMDPs poses a greater chal-

lenge due to their inherent partial observability. Although using computational meth-

ods can significantly improve our chances of solving problems known as POMDPs,

it does not guarantee a solution to every POMDP problem. As previously mentioned,

deriving optimal solutions for POMDP problems is typically computationally inten-

sive, and may even be intractable in some cases. Furthermore, there is no universally

’perfect’ algorithm or approach that can solve all POMDP problems, reflecting the

diversity and complexity of these environments.

In this chapter, the formulation of approaches specifically aimed at addressing a se-

lected subset of POMDP problems that can be effectively solved using appropriate

methods is presented. To be more precise, this thesis focuses on a specific subset

of POMDP problems, that requires long-term remembering of observations to obtain

33

optimal policies. This can be further explained by a motivating example.

3.1 Motivating Example

The academic study conducted by Bakker in 2001 [61] served as an inspiration and

provided motivation for this study. Imagine a robot operating in a simple, single-

corridor maze environment that consists of only a corridor and a T-shaped junction

(which leads to two rooms) at the end. The robot is initially positioned at the other

end of this maze. Suppose that this robot can move in cardinal directions (north,

south, east, and west) in the maze to navigate. In this maze environment, one of these

rooms includes a battery charger (a reward), while in the other room, the robot battery

depletes (a penalty). And, suppose that the goal of this robot is to access the room

with the reward inside.

The robot must initially choose a direction in t-junction at random because which

room contains the reward or the punishment is initially unknown. But there’s a twist:

the state of the maze changes after each episode/trial, meaning that the position of

the reward and punishment rooms switches randomly, and the agent does not know

which room is which.

S

X G

Figure 3.1: An example illustration of the T-Maze Environment maze with a

corridor length of 10, particularly demonstrating the long-term memory dependency.

The character S and G denote the start and goal states, accordingly. The position of

the state G randomly changes as either the north or south state in the T-junction. The

X sign in the figure denotes that a hint is available in this state.

34

However, there’s a hint: a sign appears at the start of the maze, indicating a direction

where the reward room is in the current episode. According to the scenario/definition,

the range of robot vision can be either unlimited or limited to nearby state/states.

Consider a privileged robot that can navigate and has unlimited vision, which can

continuously see the sign information, even when it reaches the T-junction state. In

order to make optimal decisions at any state, this robot only needs its current state.

In this case, this environment can be modeled as a Markov Decision Process, and an

optimal policy can be obtained with the mentioned approaches in Section 2.2. Since

the state space and possible actions are limited and small, obtaining the optimal policy

is trivial.

Now, let us postulate a scenario when the robot’s vision is limited or even consider

that the robot only sees nearby features. In this case, this T-Maze environment be-

comes a Partially Observable Markov Decision Process (POMDP) since when the

agent is in the t-junction, in order to make the optimal decision, the agent needs to

remember the sign information, which was only visible at the start of the episode.

Even though the underlying environment dynamics is MDP, due to the partial observ-

ability, Reinforcement Learning cannot be directly applied to solve this task. Instead,

this problem needs to be addressed with a POMDP model, and appropriate methods

need to be applied. This environment is a simple yet effective example of such partial

observability that makes directly applied traditional methods (mentioned in Section

2.2) ineffective and even unsuccessful.

This environment, namely the T-Maze Environment, was first introduced by

[61] to demonstrate a special kind of POMDP problem, which is handling long-term

dependencies between relevant events. Figure 3.1, illustrates a grid-based visual-

ization of the T-Maze environment with a corridor length of 10. In the notation,

the scenario featuring the privileged robot with unrestricted vision is referred to as

the Fully Observable T-Maze Environment, while the other scenario is

named as the Partially Observable T-Maze Environment.

In practice, this environment can be implemented by either directly giving necessary

information, such that a state is a three-tuple ()

35

Later in this chapter, proposed methods will be examined. The objective of this

method is to achieve optimal or nearly optimal solutions for visual POMDP tasks

that requires long-term remembering of observations. Simultaneously, the method

aims to enhance efficiency in terms of the necessary quantity of observation samples

needed to learn the optimal policy.

To optimally solve such POMDP problems, one can employ the methodologies out-

lined in Section 2.2. However, the high-dimensional state space and dependency on

remembering relevant states for long terms requires special attention. When address-

ing these concepts with practical problems, the design of intelligent and effective

methodologies is crucial and necessary. Without such methods, these environments

could quickly become intractable. The proposed approaches in this chapter address

these issues and aim to obtain efficient solutions to such problems.

3.2 Augmenting External Observation Memory For Visual Tasks

In this section, the focus is shifted to the definition of an external observation memory

that will be utilized by agents in the subsequent sections, particularly in section 3.3

and beyond. Previously, the POMDP framework and approaches to optimally solve

POMDP problems have been defined (particularly in Sections 2.3 and 2.4).

Let O represent the observation space, which is typically high-dimensional in visual

RL tasks. ot ∈ O is the observation and at is the corresponding action taken by the

agent at time step t. Suppose that these visual tasks are partially observable and the

underlying state transition dynamics are not given (the agent does not know). Due to

visual occlusions in observations, a form of memory or context is needed to estimate

the hidden state, and if proper representations are used, this POMDP problem can be

optimally solved.

An external observation memory, denoted as M at time step t, is a dynamic con-

struct that empowers the agent to systematically store and retrieve observations. This

structure is defined as follows:

36

mt =< oi, ..., oj, ok >

Where oi, oj and ok represent arbitrary observations that are stored by the agent itself.

The order of the indexes i, j, and k can also be arbitrary. Although, in order to be

compatible with Section 3.3, Visual Self-Memory Management, indexes are defined

as t > i > j > k, where the most recent (lastly observed) observation is stored in the

most left element in the memory.

3.3 Visual Self Memory Management

memory
observation

Memory

memory
action

Agent

Environment

actionobservationreward

Figure 3.2: Augmentation of the external memory for a reinforcement learning agent

formulation, previously illustrated in Figure 2.1. External memory related elements

are colored in blue.

In social sciences, there exists a concept known as Stigmergy, which is often ob-

served, especially in social creatures. Stigmergy refers to the fact that agents could

change/alter their world (environment) to affect their future behaviors, usually in a

37

useful way [62, 16].

From this perspective, in reinforcement learning, if agents are equipped with exter-

nal memory, they can benefit themselves by interacting to learn to use a memory.

As a result, this augmentation may result in converting the POMDP problem into a

hidden-state MDP. Following a similar approach as seen in [16, 19, 47], the concept of

external memories is extended for the establishment of a hidden-state MDP. This con-

cept is subsequently examined in-depth, encompassing its diverse variations in terms

of memory augmentation and action design. This study augments the Self Memory

Management from [47] to be compatible with visual observations, and customized

intrinsic motivation functions are designed to work with high dimensional/continu-

ous observations. The term Visual Self Memory Management (VSMM) is used when

dealing with visual and high-dimensional inputs. Also, in experimental results, by

Section 4.2, the use of Visual Self Memory Management with Deep Reinforcement

Learning is further defined.

The contents of an external memory may depend on the problem and memory require-

ments itself. This study augments an external memory only of observations, which is

enough and sufficient in terms of the targeted POMDP problem.

An External Memory Augmented Hidden State MDP can be defined as a four tuple

⟨S ′, A, τ, R⟩ where:

• S ′ is the finite set of context states (observations augmented with external mem-

ory). S ′ = O ×M , where O is the finite set of observations and M is the finite

set of memories defined in 3.2

• Ā is the finite set of combined actions that the agent can take. Ā = A ×
Amem, where A are actions defined from POMDP definition and Amem ∈{
apush, askip

}
are the memory actions,

• τ̄ : S ′ × A × S ′ → [0, 1] is the combined transition function τ̄ = ⟨τ, τmem⟩,
where τ is the original transition function and τmem is the memory transition

function, which is defined in Equations 3.1a and 3.1b,

• R : S ′ × A× S ′ → R is the reward function.

In Equations 3.1a and 3.1b, the memory transition function is defined. This definition

38

originally comes from [47], and the main difference between this notation and the

original definition is, in this notation, the observation ot appending order into the

memory is left-sided, where the most recent (lastly observed) observation is stored in

the most left element in the memory.

mt+1 = τmem(mt, ot, a
mem
t) (3.1a)

=


⟨oi, ..., oj, ok⟩, if amem

t = askip,

⟨ot, oi, ..., oj, ok⟩, if amem
t = apush and |mt| < c,

⟨ot, oi, ..., oj⟩, if amem
t = apush and |mt| = c,

(3.1b)

In Figure 3.2, the external memory augmented agent is visually illustrated. As can

be seen, an agent has been equipped with external memory, and it has the ability to

manipulate the contents by memory actions amem
t . As a result, agents can estimate

the hidden state from a given state and memory observations. When looked at from

the outside of the agent, the agent is still compatible with the traditional RL frame-

work where it receives observations, rewards, and decides actions. Therefore any RL

algorithm can be used for optimization, with the exception that the RL algorithm now

uses the agent’s extended observation and action space. The memory-related obser-

vations and actions stay inside the agent, and only the environment-related action will

be given to the environment.

39

3.4 Visual Intrinsic Motivations

Environment

actionobservationreward

Memory

memory
action

Agent
memory

obs.

Reward
Combining

intrinsic
reward

Intrinsic
Critic

Figure 3.3: Extention of the Memory Augmented Agent Framework (Figure 3.2)

with intrinsic motivation aproaches. Intrinsic motivation related elements are colored

in orange.

As defined in Section 2.7, intrinsic motivations can be used for improving skill learn-

ing and encouraging exploration. From the perspective of the agent, the VSMM ap-

proach expands both the action and observation spaces by defining an external mem-

ory and the actions required for its manipulation. It is also crucial to note that, the

agent faces an increased complexity in exploration due to the curse of dimensionality,

which comes from extending the action and the observation space. Moreover, learn-

ing how to effectively manipulate a memory is a challenging task since there is no

direct external reward to guide how to efficiently use the memory.

Similar to the study outlined in [47], the application of intrinsic motivation proves

40

to be highly beneficial in these cases. If properly adapted, the disadvantages of the

VSMM method can be minimized, and VSMM can compete with the state-of-the-art

methods and even outcomes in terms of some critical performance metrics. However,

designing and adapting intrinsic motivations for especially high-dimensional visual

input (or even continuous value observations) is not trivial in most cases. Through

this section, existing approaches are expanded upon, and effective, generalizable IM

functions are developed for visual domains. These functions will be referred to as

Visual Intrinsic Motivations.

In figure 3.3, the memory-augmented agent framework has been extended with intrin-

sic motivation approaches. As given in the figure, the intrinsic reward is calculated

by a Intrinsic Critic, followed by a Reward Combining function. These two functions

(denoted as Rint and R̄, respectively) calculate the intrinsic reward rintt and adjust the

scalar proportion with the given external reward rt. In short, these functions will be

designed in Sections 3.4.1 and 3.4.2 in two alternative and yet effective ways.

3.4.1 Efficient Count-Based Intrinsic Motivation with Perceptual Hashing

The general idea of count-based intrinsic motivations can be defined as leading agents

to novel states that are not usually visited. This concept can be combined with VSMM

to motivate agents to keep novel observations in their memory. Given that the type of

POMDP problems being focused on requires long-term remembering of observations

to obtain optimal policies, these types of POMDP problems also hold the assump-

tion argument from [47] that assumes important observations are rare in uncertain

environments. If this assumption is correct for these POMDP problems, then moti-

vating agents to remember novel observations can improve learning performance. On

the contrary, if this assumption is not correct and important observations are com-

mon, then a memory or a context might not be necessary, and more trivial approaches

could be used to solve such POMDP problems (such as stacking the observations for

the last n time steps).

In this section, a count-based intrinsic motivation function is extended to be used in

visual problems where the observation space is discrete but high-dimensional, and ef-

fective calculation of observation counts is required to make the algorithm be tractable

41

in these problems.

By following the assumption mentioned above, the novelty of an observation can be

determined by the observation occurrence frequency ft(o), over all time steps, includ-

ing all the episodes. In Equation 3.2a, the normalized frequency of the given obser-

vation is defined, and by combining these frequencies across the memory elements,

a count-based intrinsic motivation function is defined in Equation 3.2b. However,

given the constantly changing frequencies, the scaling of the intrinsic reward with

the extrinsic reward presents a challenge without adaptive reward scaling. Instead

of this direct scaling, the intrinsic reward can be dynamically normalized by using a

running mean (as described in Equation 3.2c) and variance (referenced in Equation

3.2d). This normalization scales intrinsic rewards into a zero mean and unit variance

distribution. Based on this normalization (shown in 3.2e), negative normalized values

indicate that the original value is below the running mean. A value of zero signifies

equivalence to the average, and a positive value indicates that it exceeds the running

mean. In order to positively motivate agents to retain novel observations in memory,

the normalized intrinsic reward values are clipped to fall within the range of [0, 1].

The total combined reward is defined in Equation 3.2f.

ft(o) =
nt(o)∑

o′∈Ô
nt(o′)

(3.2a)

Rint(mt) =

(∑
o∈mt

(1− ft(o))

)
− c (3.2b)

µt = λµt−1 + (1− λ)Rint(mt) (3.2c)

σ2
t = λσ2

t−1 + (1− λ)(Rint(mt)− µt)
2 (3.2d)

R̃int(mt) = clip(0,
Rint(mt)− µt

σt

, 1) (3.2e)

R̄t = Rt + βR̃int(mt) (3.2f)

Where:

42

• R̃int(mt) is the zero-mean normalized and clipped intrinsic reward, values in

the range: [0, 1]. If this value is greater than zero, it means the intrinsic reward

is greater than the average. The act of clipping ensures that agents are positively

motivated for intrinsic rewards that are higher than the average value.

• µt and σt are the running average and variance values at time t.

• λ ∈ [0, 1] is the running average adaptation hyperparameter.

• c >= 0 is the memory capacity, which sets the number of observations that can

be stored in a memory.

• ft(o) ∈ [0, 1] is the normalized frequency of the observation o in time t.

• nt(o) is the total occurrence count of observation o occurs.

• Ô is the set of observations that have been observed by the agent. Eventually,

Ô → O when t→∞ with a explorative agent.

• β ∈ [0, 1] is the adjusting parameter that changes the scale of the intrinsic

reward.

For visual problems, each pixel is a three-valued (RGB), bounded integer in the range

of 0-255. Therefore, visual problems are discrete problems with a large observation

space. In data structures, counting occurrences of a large number of arbitrary values is

most effectively achieved by hash maps, since it provides constant time (O(1)) opera-

tions for adding and retrieving elements. Since the observations are high-dimensional

and large arrays of pixels, calculating a hash value for the given observation also takes

time. One of the simplest hashing can be done by converting this array into a String

and using this String as a hash value, which is time-consuming when compared to

other calculations.

For the efficient hashing of observations, the utilization of Perceptual Hashing [64,

63] is proposed in this study. This technique, drawn from the realm of image process-

ing literature, serves as an image-hashing method.

Perceptual Hashing can rapidly generate hash values for images by relying on the

frequency characteristics of the image instead of the pixel properties. Additionally,

it possesses a valuable attribute known as locality-sensitivity. This means that if im-

ages exhibit similarity, their corresponding hash values also demonstrate similarity in

terms of the Hamming Distance [65]. It’s important to highlight that, in the scope

43

Listing 4 Pseudocode of the Perceptual Hashing Algorithm [63]. A hashing method

that is based on using discrete cosine transform (DCT) for comparing images based

on frequencies rather than direct color values.
Algorithm Input: Image with an arbitrary size of pixels.

1. Resize the image to 32x32 pixels.

2. Convert the image to grayscale.

3. Compute the Discrete Cosine Transform (DCT) of the image.

4. Extract the top-left 8x8 pixels from the DCT (excluding the first row and col-

umn).

5. Compute the average value of these 8x8 pixels.

6. For each pixel in the 8x8 block:

• If pixel_value > average:

– Set bit to 1.

• Else:

– Set bit to 0.

7. Construct the hash based on the binary bit sequence.

Algorithm Output: 8-byte integer hash value.

of this work, none of these properties are presently being utilized. These aspects are

introduced for potential consideration in future research endeavors. In Listing 4, the

pseudo-code of the perceptual hashing algorithm is given.

However, it’s important to know the potential limitations of this approach. As an

approximate hashing method, Perceptual Hashing may cause collisions in hash values

(with distinct observations resulting in the same hash value). Such collisions could

lead to incorrect calculations and negatively affect learning. Furthermore, in noisy

environments, minor changes could lead to significant differences in hash values,

resulting in many different hashes, and even the locality-sensitivity property does not

hold for these observations. In the experiments conducted, none of these drawbacks

were observed. However, future applications should take into account these possible

pitfalls as part of their considerations.

It’s important to note that this study focuses on perceptual hashing due to the effective

44

and fast hashing of images. Also, in future works, further intrinsic motivations can

be designed in terms of calculating novelty by using hash similarity and mean hash

distance of observations.

3.4.2 Novelty-Based Intrinsic Motivation with Autoencoder Reconstruction Er-

ror

Intrinsic Critic

For each in memory , Calculate
Autoencoder

Encoder Decoder

Figure 3.4: Novelty-based Intrinsic Critic Module: Intrinsic reward calculation by

using autoencoder reconstruction error of the memory elements.

To measure the novelty of memory, the inherent characteristic of an autoencoder’s

ability to poorly reconstruct unfamiliar data can be utilized. An autoencoder net-

work is a specialized network for utilizing unsupervised learning where it learns to

compress the input data (o) and subsequently attempts to reconstruct it, denoted as

ô, solely based on the compressed latent representation z. (Equations 3.3a, 3.3b and

3.3c). Autoencoders typically employ neural networks to embody both the encoder

(compression) and the decoder (decompression) functions. They are generally trained

to reproduce the input with high fidelity, and thus, they tend to perform well on sam-

ples they have already been trained on. However, when faced with novel, unseen

samples, autoencoders may struggle to reconstruct the input accurately. This property

can be used as a measure of novelty detection. The effectiveness of the reconstruc-

tion is dependent on both the structure of the neural network and the optimization

algorithm used. Training, in simplest terms, involves optimizing the neural network

45

weights to minimize a Loss function L(o, ô), where it is often defined as the metric

of the reconstruction error.

The performance, how well the autoencoder reconstructs the inputs, depends on the

training itself. Given enough data and enough expressivity of the given neural net-

works, an autoencoder can optimize its parameters where the loss is nearly optimal.

This argument holds when the data is equally distributed, but when the distribution of

the data becomes uneven, autoencoders tend to generate lower reconstruction errors

on examples that are sampled more frequently.

In reinforcement learning problems, states/observations are not always equally ex-

plored. Even with the intention of uniform exploration of states, the observations

are sampled unevenly due to perceptual aliasing, where some states map to the same

observation. In addition, there might be some partially observable cases where some

information is only available at some point, which needs to be remembered.

In case of this imbalance problem, autoencoders can be used to measure the novelty of

a given sample. For novel states/observations, autoencoders have higher reconstruc-

tion loss (also known as reconstruction error) since the network is trained mainly on

very frequent states/observations. This reconstruction loss can be used as an intrin-

sic reward to increase learning performance. In [66], authors successfully used this

approach and conducted detailed experiments on many environments.

It can be argued that the use of autoencoders for novelty can be extended to sequences

of observations, namely a memory, that represent experiences in an environment. As

memory becomes more distinctive, an autoencoder trained in the environment must

generate a higher reconstruction error for the memory (Equation 3.3c). A memory-

based RL agent may utilize the novelty of its memory to get informed about how

distinctive its current experience is in the environment (Equation 3.3e). Then this

measurement of the memory novelty can be used as an intrinsic reward to support

learning how to effectively manipulate a memory (Equation 3.3f). Similar to the

frequency-based intrinsic motivations, given the constantly changing reconstruction

losses, the scaling of the intrinsic reward with the extrinsic reward presents a chal-

lenge without adaptive reward scaling. Instead of this direct scaling, the intrinsic

reward can be dynamically normalized by using a running mean (as described in

46

Equation 3.3g) and variance (referenced in Equation 3.2d). This normalization scales

intrinsic rewards into a zero mean and unit variance distribution. Based on this nor-

malization (shown in 3.3i), negative normalized values indicate that the original value

is below the running mean. A value of zero signifies equivalence to the average, and

a positive value indicates that it exceeds the running mean. In order to positively mo-

tivate agents to retain novel observations in memory, the normalized intrinsic reward

values are clipped to fall within the range of [0, 1]. The total combined reward is

defined in Equation 3.3j.

z = Encoder(o) (3.3a)

ô = Decoder(z) (3.3b)

ô = Autoencoder(o) = Decoder(Encoder(o)) (3.3c)

m̂t = [ôi, ..., ôj, ôk] (3.3d)

RE(mt, m̂t) =
1

c

∑
(o′,ô)′∈(mt,m̂t)

∥o′ − ô′∥ (3.3e)

Rint(mt) = RE(mt, m̂t) (3.3f)

µt = λµt−1 + (1− λ)Rint(mt) (3.3g)

σ2
t = λσ2

t−1 + (1− λ)(Rint(mt)− µt)
2 (3.3h)

R̃int(mt) = clip(0,
Rint(mt)− µt

σt

, 1) (3.3i)

R̄t = Rt + βR̃int(mt) (3.3j)

Let o represent the observation and z denote the compressed latent vector. The re-

constructed observation is given by ô, while m̂t stands for the reconstructed memory,

which encompasses the reconstructed observations. The function RE(mt, m̂t) is the

reconstruction error function, which computes the average reconstruction error be-

tween each observation and its corresponding reconstructed observation. The term c

defines the memory capacity, known as the length of the memory, c = ∥M∥. Ad-

ditionally, ∥o′ − ô′∥ represents the error norm, which can either correspond to the

L1 or L2 norm. The zero-mean normalized and clipped intrinsic reward is given by

47

R̃int(mt), with its values ranging from [0, 1]. A value greater than zero for this term

indicates that the intrinsic reward surpasses the average. This clipping ensures that

agents are not motivated for intrinsic rewards falling below the average. The terms µt

and σt denote the running average and variance values, respectively, at time t. Such

that µ0 = 0 and σ2
0 = Lastly, λ ∈ [0, 1] serves as the running average adaptation

hyperparameter. Figure 3.4 illustrates the intrinsic critic module using these formula-

tions.

It is possible that an autoencoder network can be trained simultaneously with a re-

inforcement learning policy through the utilization of distinct loss functions and op-

timizers. Experimental and algorithmic details and results are explained in Chapter

4.

3.5 LSTM Based Internal Hidden State Memory Augmentation

Environment

actionobservationreward

Agent
(With LSTM Hidden State

Augmentation)

Figure 3.5: Visualization of the LSTM-based internal hidden state augmentation: A

Deep RL agent is augmented with LSTM Networks for an internal memory represen-

tation of the hidden state.

48

As defined earlier in Section 2.4.2, the inclusion of a memory representation or con-

text is imperative for enhancing a hidden state, facilitating the optimal solution of

POMDP problems. In Section 3.2, an external memory was defined for visual re-

inforcement learning tasks, representing memory external to the agent. As an alter-

nate approach, the integration of deep reinforcement learning can leverage Recurrent

Neural Networks, specifically LSTM Networks, due to their capability to remember

long-term information to augment an internal hidden state within the policy network

of the agent.

In Section 2.5, LSTM networks are defined such that:

(outputt, ht, ct) = LSTM(ot, ht−1, ct−1)

In this formulation, ht is the lstm hidden state (interpreted as the short-term mem-

ory/the context), and ct is the cell state (interpreted as the long-term memory). As

previously mentioned, hidden and cell states are dependent on each other and updated

in each LSTM update. Lastly, ht can be further used to calculate the outputt value.

By using the lstm hidden state ht of the LSTM network, the policy πθ(at|ht) and/or

the value Vθ(ht) function networks (depending on the approach/algorithm) augment

a hidden state MDP.

The LSTM, along with the policy and/or value function networks, can be trained

using one of two methods. The first involves separate neural networks where the

hidden state ht is utilized as an input for the latter. Alternatively, these elements

can be directly trained within a single, unified neural network. An illustration of the

LSTM-based hidden state augmented agent is shared in Figure 3.5.

Choosing between internal and external memory representations often comes down

to the specific requirements and constraints of the given task. For simpler tasks with

shorter-term dependencies, an internal memory representation might be sufficient and

more efficient. However, for more complex tasks requiring substantial memory ca-

pacity and the understanding of long-term dependencies, an external memory repre-

sentation may be necessary. The internal memory representation is defined, imple-

mented, and employed by utilizing LSTM networks to establish a baseline within our

49

experiments for the proposed approaches. Details are given in Chapter 4 and later.

50

CHAPTER 4

EXPERIMENTAL RESULTS

In many real-world scenarios, the ability to remember and utilize distant past ob-

servations becomes paramount to achieving optimal or near-optimal policies. Such

scenarios may include tasks where short-term observations are noisy, ambiguous, or

provide only incremental information about the environment. In others, the agent

may need to recall specific past events to make informed decisions in the present,

especially when the immediate observations are insufficient or misleading. In this

chapter, the selected/designed POMDP tasks are defined within simulation environ-

ments. Reinforcement Learning algorithms are formulated to solve these tasks, and

experimental results are subsequently shared.

4.1 Environment Design and Selection

In general, choosing an environment that embodies these characteristics is crucial

when evaluating the efficiency of algorithms and techniques designed for POMDPs.

Aspects to consider when designing or selecting such POMDP environments include:

• Observation Ambiguity: The environment should frequently present observa-

tions that are ambiguous without the context of past information, forcing the

agent to rely on its memory to disambiguate them.

• Reward Sparsity: Infrequent rewards will ensure that the agent has to leverage

its memory to make sense of its actions and the outcomes, particularly when the

rewards are contingent on sequences of actions or events spread out over time.

• Noise and Distractions: Introducing stochasticity in observations or adding

51

irrelevant details can test an agent’s capability to filter out noise and focus on

pertinent information.

• Extended Temporal Dependencies: The environment should be structured

such that actions taken at one point might have consequences much later. Pos-

sibly, the past knowledge is needed in a temporally distance place in the se-

quence, compelling the agent to maintain and access a long-term memory of

events.

In this study, only a special subset of POMDP problems is focused on, which re-

quires long-term remembering of visual observations to obtain optimal policies. In

the following, several problems formulated within this context:

Figure 4.1: An example illustration of the fully observed Memory Environment.

The agent is marked with a red triangle and the partial observation of the agent is

represented by the light shaded area.

52

Figure 4.2: An example observation in Memory Environment where the agent

is in the initial state. The object in green (either a ball or a key figure, randomly

initialized at each episode) marks the hint object, which the agent needs to remember

until the end of the maze to optimally solve the environment.

Figure 4.3: An example observation in Memory Environment where the agent is

in the corridor. Due to the visual occlusions from partial observability, many states

are mapped to this same observation.

• Memory Environment ([67]):

This environment can be defined as the visual implementation of the T-Maze

Environment [61]. The agent begins in a small room with an object, then nav-

igates a narrow hallway that leads to a split with an object at each end, namely

a t-shaped junction. In this intersection, the agent needs to select one of the

directions, and the hint of this correct choice is only given at the beginning of

the episode. The object which makes the agent successful is randomly selected

at each episode, and the hint object changes accordingly. Therefore, in an op-

timal policy, an agent needs to observe and remember this single information

until the end. For the purpose of explanation, the fully observable setting of this

environment is visualized in Figure 4.1. In the partially observable setting, the

agent can only see nearby objects, so the hint object cannot be seen at all times,

53

which the problem becomes a POMDP. In addition to POMDP, high dimen-

sional inputs, sparse rewards, and visual occlusions make this simple problem

domain very hard to solve. Hence, it is believed that this domain serves as a

strong baseline environment for evaluating algorithms designed for POMDP

problems, particularly with regard to sample efficiency. Figures 4.2 and 4.3

shows example partial observation images taken from this environment.

In more detail, the environment is defined as follows:

– The observation space is 3 dimensional visual RGB image (N,N, 3) where

N is the pixel size.

– The action space consists of 3 possible actions, which are "Turn Left, Turn

Right, Move Forward".

– An episode ends if any following conditions are met:

∗ The agent reaches either the correct or wrong matching object at the

end of the maze.

∗ The total timesteps exceed the environment timeout value.

– Lastly, the reward is defined in Equation 4.1

R =

1− 0.9(step_count/max_steps), if reached correct matching object

0, otherwise
(4.1)

• Mortar Mayhem Grid Environment ([68]):

In Memory Environment, by the problem definition, the agent needs to remem-

ber a single observation to solve this task optimally. However, in order to

show the scalability in terms of memory size greater than one, a more complex

environment, namely Mortar Mayhem Grid, is also selected and defined.

Mortar Mayhem Grid is a visual environment where the agent lives in a square-

shaped grid. At the start of an episode, a sequence of commands appears in the

visual observation, which are visual direction signs that denote how the agent

should move. At the start of an episode, these commands are visualized one by

54

one and never appear after that. The agent should remember and execute these

sequences of commands in the right order to optimally solve this problem. Sim-

ilar to the Memory Environment, high dimensional inputs, sparse rewards, and

visual occlusions make this simple problem domain very hard to solve, and the

requirement of remembering an ordered sequence of observations is crucial for

experimentations and comparisons. Figures 4.4 and 4.5 shows example partial

observation images taken from this environment.

In more detail, the environment is defined as follows:

– The observation space is 3 dimensional visual RGB image (N,N, 3) where

N is the pixel size.

– The action space consists of 4 possible discrete actions, which are "No

Operation, Turn Left, Turn Right, Move Forward".

– An episode ends if any following conditions are met:

∗ The agent correctly executes all commands in a given time period.

∗ The agent falsely executes a command at any time step.

∗ The total timesteps exceed the environment timeout value.

– Lastly, the reward is defined in Equation 4.2

R =


RC

success ∗ Ĉ, if successfully executed first Ĉ commands,

RC
success ∗ C +RE

success, if successfully executed all commands,

0, otherwise
(4.2)

Where:

∗ C is the total number of commands defined in the environment.

∗ 0 ≤ Ĉ < C is the number of successfully executed commands, which

is lower than the total number of commands.

∗ RC
success is the reward value when the execution of a command is a

success,

∗ RE
success is the reward value when all commands are successfully exe-

cuted.

55

(a) 1st Observation: The command is given

at the center of the visual observation (Move

Left)

(b) 2nd Observation: The command is given

at the center of the visual observation (No Op-

eration)

(c) 3rd Observation: The command is given

at the center of the visual observation (Move

Down)

(d) 4th observation: The sequence of com-

mands is all given, and now the agent needs to

execute the sequence of actions accordingly.

Figure 4.4: Example initial observations in Mortar Mayhem Grid Environment. The

agent needs to remember given commands which are illustrated as signs in the center

of the visual observation. This example is given for an environment where the number

of commands C = 3.

56

Figure 4.5: An example observation in Mortar Mayhem Grid Environment where the

agent executes a correct command and all of the tiles is visualized in red except the

agent is standing on if the agent is in the right position. At this step, the agent gains a

reward and continues to remember/execute the correct commands.

In summary, these environments were chosen to provide a fair comparison between

the proposed methods and the state-of-the-art. Further in this chapter, algorithms and

test scenarios are outlined for comparative analysis.

4.2 Algorithms

After discussing the environment design in previous sections, this section delves into

the decision-making process of the agents. In this study, we opted for one of the most

widely used RL algorithms, specifically the Proximal Policy Optimization (PPO) al-

gorithm. This decision was guided by the intention to emphasize the memory archi-

tectures rather than the reinforcement learning algorithm itself.

Nevertheless, the proposed architectures are versatile and can be integrated with any

deep reinforcement learning algorithm. It’s important to highlight that these architec-

tures aren’t restricted solely to the PPO algorithm. The experiments are based on the

PPO algorithm with convolutional and fully connected neural network layers, similar

to the study in [34]. However, given the potential challenges due to the partial ob-

servability of the environment designs, direct utilization of the vanilla PPO algorithm

is not sufficient.

As previously defined in Sections 3.3, 3.4, and 3.5, the internal and external memory

57

mechanisms are extended to the practical implementation of the PPO algorithm. This

extension is aimed at resolving the POMDP environments at hand.

Each of these architectural extensions aims to harness both the agent’s past experi-

ences and intrinsic motivations, ensuring that decision-making is based on immediate

observations and informed by historical data and internal drives. In the following

section, practical methods to solve the defined environments are outlined, and these

methods are detailed extensively:

• PPO + VSMM:

This method augments the existing PPO algorithm with Visual Self Memory

Management (Section 3.3) to create an external memory for agents in reinforce-

ment learning problems. Augmentation of the external memory is defined by

extending the observation space with current observation and external memory

observations. As previously defined, agents also have the ability to manipulate

the memory contents. Therefore, the action space is also extended. From the

environment perspective, the agent is still compatible since memory observa-

tions and actions are only related to the agent itself. Therefore this algorithm

can be used in any reinforcement learning environment.

One main drawback of this algorithm is the increasing number of observation

and action dimensions. Due to the curse of dimensionality, observation/action

space volumes grow exponentially, and the required number of samples/data

drastically increases.

Even though the environment-related observation/action spaces do not change,

memory-related changes negatively affect the overall reinforcement learning

problem. Consequently, "PPO + VSMM" is further enhanced through the in-

tegration of two different intrinsic motivation strategies, intended to eliminate

the negative effects mentioned earlier.

• PPO + VSMM With Frequency Based IM:

A count/frequency-based intrinsic motivation can be helpful with VSMM to

motivate agents to keep novel observations in their memory. It’s worth mention-

ing that the primary purpose of this approach is not to improve the overall ex-

ploration. Instead, it only motivates agents to use memory for their benefit. For

58

visual problems where the observation space is discrete but high-dimensional,

effective calculation of the observation counts is required to make the algorithm

be tractable. This challenge is surpassed by employing a perceptual hashing al-

gorithm to efficiently hash and store observation counts. Further details can be

found in Section 3.4.1.

• PPO + VSMM With Autoencoder Based IM:

As an alternative approach, the novelty of external memory can be measured by

utilizing the inherent characteristics of an autoencoder’s ability to reconstruct

unfamiliar data poorly. Similar to frequency-based IM, this metric can be fur-

ther used to motivate agents to utilize external memories properly. In addition

to the frequency-based IM methods, since neural network-based autoencoders

are used for calculating novelty, there is no observation limitation, which can

be useful in large dimensional and continuous problems. Details are given in

Section 3.4.2.

• PPO + LSTM:

Instead of utilizing an external memory, recurrent neural networks can also be

adapted with the PPO algorithm to create an internal memory. For this problem,

one of the state-of-the-art methods for remembering long-term information is

utilized, specifically the LSTM Networks. Details are given in Section 3.5.

For simplicity, the naming of these approaches is restricted solely to their additional

mechanisms. For instance, rather than using the name "PPO + LSTM", the method

is simply referred to as "LSTM" in the reinforcement learning experiments. This is

because all the algorithms utilize PPO, making the inclusion of the "PPO" term in

algorithm names redundant.

4.3 Environment Setup

• Simulation Environments and VSMM Details:

– For both simulation environments (Memory and MMG environments),

normalized visual observations with range [-1, 1] and pixel shape of (84,

84, 3) have been used.

59

– The external memory has been formalized as a 4-dimensional array de-

noted as (memory_capacity, 84, 84, 3), wherein memory capacity assumes

a positive integer value.

– Observation space with external memory is formulated as a tuple (current

observation, external memory).

– In the overall neural network architecture, convolutional layers are uti-

lized for visual observation inputs to capture spatial relationships among

visual elements efficiently. After incorporating external memory, and

since multiple visual images are present within a single observation, these

images are processed separately.

– Memory actions are formulated as two discrete actions, which are "No

operation" and "Add to memory". The new action space is the cross-

product of the existing and memory action spaces.

– When the memory is full of observations, the replacement strategy is for-

mulated as a FIFO (First In, First Out) Queue.

– For training stability, intrinsic motivation rewards start after 200.000 timesteps

for all environments. Until this timestep, frequency-based or autoencoder-

based intrinsic motivation functions start bootstrapping. These functions

always calculate IM reward values but are not applied to the agent until

this bootstrapping phase is over.

– In Autoencoder Based Intrinsic Motivation approaches, the autoencoder

network is concurrently trained with the reinforcement learning policy by

using separate loss functions and optimizers.

• Experimental Conditions:

– The seeds for all experiments are initialized randomly to ensure unifor-

mity across multiple runs. For Memory Environments, 16 parallel runs are

carried out, and for MMG (Memory Management Games) Environments,

12 parallel runs are executed, each with randomly initialized seeds.

– The same hyperparameters and network architectures are applied to all

algorithms and experiments. In the context of ablation study, only the ar-

chitectural extensions are altered, while the shared hyperparameters and

60

neural network architectures remain consistent across all algorithms. This

approach enables a relative performance comparison between the algo-

rithms.

• Baseline and Comparisons:

– Memory Environment: Due to the partial observability, the vanilla PPO

algorithm (classical PPO algorithm without any recurrence or memory)

can only learn to navigate in the maze, but it cannot correctly decide the t-

junction direction since there is no available information at decision step.

This results in the decision at the t-junction becoming random and con-

verging to an average reward of 0.5 in the Memory Environment. Antic-

ipatedly, all the formulated algorithms are projected to surpass this base-

line and converge towards an optimal policy, approaching a reward value

of 1.

– MMG Environment: Due to the partial observability, the vanilla PPO al-

gorithm returns the worst possible reward, a value of "-1" on average in

this environment. Since this environment requires remembering multiple

observations in order to obtain the optimal policy, an agent needs to put

all of the required observations into their memory and act accordingly. It

is anticipated that all the devised algorithms will outperform the vanilla

algorithm and push the environment reward value limits.

– Performance Comparison: In the ablation study, since all of the common

hyperparameters and neural network architectures are the same, algorithm

performances in terms of sample efficiency can be relatively compared.

The term sample efficiency simply means that how many environment

steps are required on average to converge to the optimal policy.

– Generalization Comparison: Throughout the training process, periodic

evaluations of algorithm performance are conducted, creating metrics such

as mean rewards, episode lengths, and others. Furthermore, within each

evaluation interval, the algorithm’s policy is also evaluated across a dif-

ferent environment configuration. For the memory environment, this gen-

eralization comparison is performed by utilizing a different environment

configuration, where the maze length is 10 more than the current envi-

61

ronment configuration, shared in Figure 4.6. This allows us to see the

generalization capability of the algorithms for unseen environment con-

figurations.

Figure 4.6: Generalization Comparison: An example of a different environment con-

figuration where the maze length is 10 more than the current environment configura-

tion, as previously shared in Figure 4.1.

Python 3.11 [69], the most current version available at the time, is used for all soft-

ware implementations and experiments. In addition, an open-source reinforcement

learning framework named "Ray RLlib" [70] has been used to utilize multiple GPUs

and CPUs efficiently. In the context of the deep learning framework, the PyTorch [71]

tensor library was used for efficient computational operations.

4.4 Results and Discussion

In this section, various experiments are performed to assess and evaluate the per-

formance of given memory architectures. In summary, the following sections are

structured as follows:

• Ablation study of comparing external and internal memory architectures. (Mem-

ory and MMG Environment)

62

• Memory Environment: Comparison of memory architectures in terms of gen-

eralization capability for different environment configurations.

• Memory Environment: Analyzing the effects of having an excess number of

external memory size.

4.4.1 Ablation study of comparing external and internal memory architectures

During the ablation study, the anticipated outcomes involve observing the perfor-

mance impacts of different memory architectures. These results are achieved solely

by altering the architectural extensions while retaining the same reinforcement learn-

ing algorithm (PPO), base neural network structure (including convolutional layers

and MLP), and hyperparameters. Due to computational costs, total training steps are

limited to 10M timesteps in the memory environment, meaning that each algorithm

interacts with 10M timesteps in the given environment. Meanwhile, learning iteration

occurs in batches (for example, in every 1000 timestep).

In Figure 4.8, approaches such as "VSMM, VSMM With Frequency Based IM, VSMM

With Autoencoder Based IM, and LSTM" are compared in terms of average cumula-

tive rewards per episode. This metric is calculated by averaging all the reward values

achieved per episode since the previous training iteration. These algorithms aim to

optimize the mean reward, which is a direct metric for the agent’s performance dur-

ing the training. As can be seen, all methods converge into the optimal policy, which

shows that an agent can successfully use some type of memory to solve this POMDP

problem optimally. In Figure 4.7, how a successful agent with an external memory

operates in the Memory Environment is illustrated. Initially, the agent starts with an

empty external memory. For this example, optimal behavior entails the agent adding

the crucial observation to the external memory and retaining it until the t-junction

step at the episode’s conclusion.

As a result, VSMM alone performs the least sample efficient. It eventually converges,

but it takes longer to learn the optimal behavior due to the larger observation and ac-

tion spaces, making it harder to find the optimal policy. On the contrary, the contents

of the external memory can always be seen and easily explained to others, which is

63

beneficial for the safety and explainability of reinforcement learning agents. It can

also be seen that it even improves overall learning stability when compared with the

internal memory approach (LSTM).

On the other hand, internal memory (LSTM) based architecture performs the best in

sample efficiency. However, due to the nature of neural networks, there is no clear

explanation of which information is stored currently and how it is processed (it can be

seen as a black-box model). In addition, in LSTM-based architecture, there is more

variance among parallel runs when compared with VSMM-based approaches, which

could be a problem in terms of stability.

Current
Observation:

External
Memory:

Keeping crucial observation in external memory to

create a context for the POMDP task.

Add Observation To
The Memory

t=2t=0 t=1 t=3 t=N-3 t=N-2 t=N-1

Episode EndEpisode Start

Figure 4.7: Example episode in the Memory Environment with an external memory

augmented agent. This figure demonstrates the current and the external memory con-

tents of an agent for a single episode. At the start, the agent initializes with an empty

external memory. In this example, the agent adds the crucial observation to the exter-

nal memory and it holds until the t-junction step at the end.

The external memory architectures combined with intrinsic motivations, namely "VSMM

With Frequency Based IM" and "VSMM With Autoencoder Based IM", seem to im-

prove the disadvantages of the VSMM algorithm caused by the large observation and

action space dimensions. Both approaches improve the average sample efficiency by

utilizing intrinsic motivations to motivate using the external memory.

The comparison of the average episode lengths is given in Figure 4.9. This metric

is calculated by averaging episode lengths since the previous training iteration. This

metric itself is an indicator for showing the agent’s capability of how fast it learns to

64

navigate in the maze, but it doesn’t show how optimal the agent performs in the envi-

ronment since the optimal behavior depends on the agent’s memory context creation

capability. As can be seen, for all algorithms, all agents quickly learn to navigate

through the maze to go to the t-junction, while observations are partially observable.

In Figure 4.10, for VSMM-based algorithms, the comparison of the average lengths

of unchanged memory sequences per episode is given. This metric is calculated by

averaging unchanged memory sequence lengths of agents with external memory since

the previous training iteration. It is a good indicator of how long an agent keeps an

observation through the episode. For agents utilizing external memory, the expecta-

tion is that they will remember observations for a sufficient amount of timesteps. As

can be seen, all VSMM-based approaches learn to use the external memory, and more

importantly, they learn to hold the important information until the t-junction. Parallel

to these results, the average number of memory updates per episode is compared in

Figure 4.11. The calculation of this metric is similar to previous metrics. It is ex-

pected that agents change the memory contents a few times since they need to retain

and recall until the appropriate state.

Figure and Metric Name
Metric Value

Range
How to evaluate?

Figure 4.8 - Average Cumulative Re-

wards Per Episode
y ∈ [0, 1]

Higher value and lower

variance is better.

Figure 4.9 - Average Episode Length

Per Episode
y ∈ [0, 1200]

Lower value and lower

variance is better.

Figure 4.10 - Average Length Of

Unchanged Memory Sequences Per

Episode

y ∈ [0, 15]
Higher value and lower

variance is better.

Figure 4.11 - Average Number Of

Memory Updates Per Episode
y ∈ [0, 600]

Lower value and lower

variance is better.

Table 4.1: Summary of how to evaluate metrics for Memory Environment ablation

studies.

65

Table 4.1 serves as a summarized view of the conducted metrics, organized in a tab-

ular format to facilitate readers’ comprehension. Each figure and metric name are

cross-referenced with their corresponding value ranges, along with instructions on

how to interpret and evaluate the results.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) VSMM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) VSMM With Frequency Based IM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(c) VSMM With Autoencoder Based IM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(d) LSTM

Figure 4.8: Memory Environment: Comparison of average cumulative rewards per

episode. Each line represents the average of 16 parallel runs with confidence intervals.

66

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 100000 200000 300000 400000 500000

Steps

(a) VSMM

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 100000 200000 300000 400000 500000

Steps

(b) VSMM With Frequency Based IM

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 100000 200000 300000 400000 500000

Steps

(c) VSMM With Autoencoder Based IM

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 100000 200000 300000 400000 500000

Steps

(d) LSTM

Figure 4.9: Memory Environment: Comparison of the average episode length per

episode. Each line represents the average of 16 parallel runs with confidence intervals.

67

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) VSMM

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) VSMM With Frequency Based IM

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(c) VSMM With Autoencoder Based IM

Figure 4.10: Memory Environment: Comparison of the average length of unchanged

memory sequences per episode. Each line represents the average of 16 parallel runs

with confidence intervals.

68

0

50

100

150

200

250

300

350

400

450

500

550

600

0 100000 200000 300000 400000 500000

Steps

(a) VSMM

0

50

100

150

200

250

300

350

400

450

500

550

600

0 100000 200000 300000 400000 500000

Steps

(b) VSMM With Frequency Based IM

0

50

100

150

200

250

300

350

400

450

500

550

600

0 100000 200000 300000 400000 500000

Steps

(c) VSMM With Autoencoder Based IM

Figure 4.11: Memory Environment: Comparison of the average number of memory

updates per episode. Each line represents the average of 16 parallel runs with confi-

dence intervals.

To conclude the results and their discussions, by augmenting agents with external

memory, agents can learn to interact with the memory mechanism, and further train-

ing allows agents to utilize the memory for solving the Memory environment visual

problem. Appendix A shares detailed experiment results.

The performance effects of different memory architectures in the MMG environment

are also expected to be observed by only changing the architectural extensions while

keeping the same reinforcement learning algorithm (PPO) and hyperparameters. The

natural structure of the MMG environment requires agents to remember multiple ob-

servations and the exact sequence throughout the episode. From the agent’s per-

69

spective, the agent needs to remember correct information and order. This complex-

ity makes the MMG environment very hard and sample inefficient for algorithms to

solve. Due to computational costs, total training timesteps are limited, and the rel-

ative performance of different memory architectures with the same hyperparameters

and network structure is compared.

Figure and Metric Name
Metric Value

Range
How to evaluate?

Figure 4.12 - Average Cumulative

Rewards Per Episode
y ∈ [−1, 0]

Higher value and lower

variance is better.

Figure 4.13 - Average Episode

Length Per Episode
y ∈ [0, 20]

Lower value and lower

variance is better.

Figure 4.14 - Average Length Of

Unchanged Memory Sequences Per

Episode

y ∈ [0, 15]
Higher value and lower

variance is better.

Figure 4.15 - Average Number Of

Memory Updates Per Episode
y ∈ [0, 15]

Lower value and lower

variance is better.

Table 4.2: Summary of how to evaluate metrics for MMG Environment ablation stud-

ies.

In Figure 4.12, approaches like "VSMM, VSMM With Frequency Based IM, VSMM

With Autoencoder Based IM, and LSTM" are compared in terms of average cumula-

tive rewards per episode.

As a result, VSMM alone performs the least successful approach regarding sample

efficiency. Compared with other methods, VSMM could not improve its reward as

much as different approaches.

Parallel to the Memory environment results, internal memory (LSTM) based archi-

tecture performs the best in sample efficiency for this environment. Also, intrinsic

motivations improve the disadvantages of the VSMM algorithm caused by the large

observation and action space dimensions. Both approaches improve the average sam-

ple efficiency by utilizing intrinsic motivations to motivate using the external memory.

70

The average episode lengths are compared in Figure 4.13. As can be seen, results

are in parallel with Memory environment results. In Figure 4.14, for VSMM-based

algorithms, the comparison of the average lengths of unchanged memory sequences

per episode is given. As can be seen, all VSMM-based approaches learn to use the

external memory, and more importantly, it learns to hold the important information

until the t-junction. Parallel to these results, the average number of memory updates

per episode is compared in Figure 4.15.

In table 4.2, the defined metrics are summarized in a table format to ease the under-

standing for readers. Each figure and metric name is referenced with corresponding

value ranges, and the method of evaluating the results is denoted.

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(a) VSMM

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(b) VSMM With Frequency Based IM

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1e+6 2e+6 3e+6 4e+6 5e+6

Steps

(c) VSMM With Autoencoder Based IM

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(d) LSTM

Figure 4.12: MMG Environment: Comparison of average cumulative rewards per

episode. Each line represents the average of 16 parallel runs with confidence intervals.

71

10

11

12

13

14

15

16

17

18

19

20

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(a) VSMM

10

11

12

13

14

15

16

17

18

19

20

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(b) VSMM With Frequency Based IM

10

11

12

13

14

15

16

17

18

19

20

1e+6 2e+6 3e+6 4e+6 5e+6

Steps

(c) VSMM With Autoencoder Based IM

10

11

12

13

14

15

16

17

18

19

20

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(d) LSTM

Figure 4.13: MMG Environment: Comparison of the average episode length per

episode. Each line represents the average of 16 parallel runs with confidence in-

tervals.

72

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(a) VSMM

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(b) VSMM With Frequency Based IM

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1e+6 2e+6 3e+6 4e+6 5e+6

Steps

(c) VSMM With Autoencoder Based IM

Figure 4.14: MMG Environment: Comparison of the average length of unchanged

memory sequences per episode. Each line represents the average of 16 parallel runs

with confidence intervals.

73

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(a) VSMM

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(b) VSMM With Frequency Based IM

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1e+6 2e+6 3e+6 4e+6 5e+6

Steps

(c) VSMM With Autoencoder Based IM

Figure 4.15: MMG Environment: Comparison of the average number of memory up-

dates per episode. Each line represents the average of 16 parallel runs with confidence

intervals.

To conclude, MMG environment results are very similar to the Memory environment.

Due to the computational limitations, the earlier iterations of the algorithms are rela-

tively compared, and even in this situation, the results are coherent. Lastly, additional

experiment results are shared in Appendix A.

74

4.4.2 Memory Environment - Comparison of memory architectures in terms of

generalization capability for different environment configurations

In this section, the generalization capabilities of the algorithms are further analyzed

and compared with the internal memory-based approach. Evaluation for additional

scenarios using the same comparison metrics mentioned in Section 4.4.1 is conducted.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) VSMM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) VSMM With Frequency Based IM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(c) VSMM With Autoencoder Based IM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(d) LSTM

Figure 4.16: Memory Environment - Generalization Scenario: Comparison of aver-

age cumulative rewards per episode. Each line represents the average of 16 parallel

runs with confidence intervals.

75

Figure 4.17: Memory Environment - Generalization Scenario: Comparison of aver-

age cumulative rewards per episode, best two approaches are depicted in the same

figure. Each line represents the average of 16 parallel runs with confidence inter-

vals. Green is Internal Memory Based Approach (LSTM) and Pink is VSMM With

Autoencoder-Based Intrinsic Motivation.

As previously defined, algorithm performances are periodically evaluated in terms of

given metrics during the training. In this section, a new comparison scenario for the

generalization capabilities of algorithms is introduced. The algorithm policy is also

evaluated for a different environment configuration in each evaluation period, where

the maze length is 10 more than the current environment configuration. This approach

demonstrates the generalization capability of the algorithms for unseen environment

configurations. In other words, the agent is not trained in any generalization environ-

ments; this configuration is solely used for evaluation.

It is believed that one of the most important results of the study is this experiment. In

Figure 4.16, the LSTM-based internal memory approach is rigorously compared with

the VSMM-based external memory strategy. Immediately, a sharp contrast emerges:

the LSTM-based methodology, despite its prevalence in many applications, falls no-

tably short in achieving the same average rewards as the VSMM-based approach.

This isn’t a minor discrepancy but a substantial one. The inherent strength of the

76

VSMM-based method stems from its powerful generalization capabilities. By lever-

aging an external memory structure, it can adeptly capture and retain rare observa-

tions, which can be pivotal in decision-making scenarios. In contrast, LSTM’s in-

ternal memory might not capture these nuances as effectively, and it seems learned

policy is memorized to create a context for certain timesteps only. This observation

underscores the potential superiority of external memory systems, especially in en-

vironments where nuances and rare observations can drastically influence outcomes

in transferring the learned policy into new configurations. To delve deeper into the

empirical evidence and comparison, readers are encouraged to consult Appendix A.

4.4.3 Memory Environment - Analyzing the effects of having an excess number

of external memory size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) VSMM (∥M∥ = 1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) VSMM (∥M∥ = 3)

Figure 4.18: Memory Environment: Comparison of average cumulative rewards for

different memory sizes (∥M∥ = 1 and ∥M∥ = 3). Each line represents the average

of 16 parallel runs with confidence intervals.

As previously mentioned, agents are required to remember a single observation in the

memory environment to achieve optimal behavior. This section examines the effects

of an excess external memory size. For this experiment, the SMM approach with

external memory sizes of c = 1 and c = 3 is compared. In Figure 4.18, the com-

parison of average cumulative rewards per episode metric is illustrated. As depicted,

the SMM with a larger memory (memory size of 3) outperforms the classic SMM

77

configuration (memory size of 1) in terms of sample efficiency.

From the extended experiments, it is observed that, with a longer memory, agents

can exhibit greater robustness to mistakes when deciding on memory actions. This

is because the observation remains in the memory for an extended period due to the

FIFO (first in, first out) replacement strategy, as mentioned in Section 4.3. Thus,

based on these findings, it is inferred that learning how to use memory becomes more

straightforward in scenarios with larger memory.

78

CHAPTER 5

CONCLUSION AND FUTURE WORK

The challenge of optimal decision-making within the context of Partially Observable

Markov Decision Processes (POMDPs) still remains a challenge. Addressing this,

particularly for real-world scenarios with partial observability, is a complex endeavor,

especially when considering problems requiring remembering long-term retention of

visual observations. The relevance and potential of integrating visual external mem-

ories into reinforcement learning agents within this domain have been notably under-

explored due to possible disadvantages.

However, it is hoped that this can be avoided when combined with intrinsic motiva-

tion. Moreover, the external memory can be further leveraged to interpret the memory

context. As an outcome of this study, the possible advantages and disadvantages of

the approaches are summarized:

LSTM Based Internal Memory:

Recurrent neural networks can be employed to establish an internal memory for RL

agents. This internal memory is utilized to address POMDP tasks that demand the

long-term retention of observations using LSTM Networks.

• Advantage: Sample efficient among other architectures.

• Disadvantage: Internal memory cannot be seen and analyzed.

Visual Self Memory Management (VSMM):

Agents are equipped with external memory so they can benefit themselves by inter-

acting to learn to use a memory.

79

• Advantage: Interpretable external memory.

• Disadvantage: Increased observation and action dimensions, resulting in sam-

ple inefficiency due to the curse of dimensionality.

Visual Self Memory Management With Intrinsic Motivation:

Motivating agents to efficiently learn how to use memory by utilizing intrinsic moti-

vations over the memory observation novelty/count. Due to the uneven exploration

in the environment, motivating agents to hold novel/less frequent observations can

improve memory use.

• Advantage: Interpretable external memory

• Improvement: Better sample efficiency (similar to LSTM-based internal mem-

ory) and better generalization capabilities.

In this study, the presented approaches are analyzed and compared through ablation

studies across different environments. To conclude, the achievements derived from

these experiments include:

• The application of deep RL algorithms/agents to address partially observable

visual problems using the provided open-source framework.

• A demonstration that external visual observation memory mechanisms, espe-

cially the VSMM method, can serve as alternatives to internal memory-based

strategies.

• A realization that including intrinsic motivation methods can enhance sample

efficiency performance, allowing it to match or even surpass internal memory-

based methods.

• The acknowledgment that, when considering factors such as interpretability,

safety, stability, and generalization capability, the VSMM method presents nu-

merous advantages over its internal memory-based counterparts.

Lastly, the main distinctions of the proposed intrinsic motivation architectures are as

follows: The frequency-based IM often demonstrates greater sample efficiency than

80

the autoencoder-based approach. However, a significant drawback of this architecture

is its potential failure in the face of noisy or continuous observations. This is because

it cannot handle an infinite number of observations, given that the hashing algorithm

inherently makes hashes discrete and finite.

Furthermore, in long training experiments, as the observation visitation frequencies

might shift based on the exploration policy itself, these transient exploration policies

can unpredictably modify the intrinsic reward. This unpredictability can lead to learn-

ing instabilities. During our experiments, minor instability effects were observed due

to this issue, but all of the experiment runs achieved the overall convergence to the

optimal policy.

These limitations can be addressed using autoencoder-based intrinsic motivation func-

tions. By employing autoencoders, the intrinsic motivation function can be readily

scaled across various environments. Moreover, this function excels in scenarios with

noisy or continuous observation spaces. When provided with an appropriate learning

rate and after processing infinitely many observation samples from the environment,

the autoencoder network converges to an average reconstruction error value. As the

intrinsic reward is based on the extent to which a given observation deviates from

this average regarding reconstruction error, it’s inferred that this intrinsic reward ex-

hibits a decaying or vanishing effect over time during training. This phenomenon was

observed to enhance overall learning stability in our experiments.

For future works, combining external memory-based approaches with safe and ex-

plainable reinforcement learning methods could open new avenues for research in

safe and robust learning. Additionally, as AI systems increasingly integrate into real-

world applications, the demand for transparent decision-making processes grows. In-

corporating explainability into external memory-based RL approaches not only en-

hances their interpretability but also fosters trust among users. Furthermore, a har-

monious blend of safety and memory mechanisms could lead to RL agents that are

not only more capable in complex environments but also less prone to unexpected

or harmful behaviors. This becomes especially crucial in mission-critical scenarios,

such as healthcare or autonomous driving, where the stakes are high. Exploring this

convergence could pave the way for more reliable and human-centric AI solutions.

81

82

REFERENCES

[1] Shvechikov Pave, “Partially observable markov decision process in re-

inforcement learning.” URL: https://bayesgroup.github.io/

bmml_sem/2018/Shvechikov_Partially%20Observable%

20Markov%20Decision%20Process%20in%20Reinforcement%

20Learning.pdf, 4 2018.

[2] “Markov decision process - Wikipedia — en.wikipedia.org.” https://en.

wikipedia.org/wiki/Markov_decision_process. [Accessed 09-

Jul-2023].

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 2018.

[4] V. H. Phung and E. J. Rhee, “A deep learning approach for classification of cloud

image patches on small datasets,” Journal of information and communication

convergence engineering, vol. 3, Sep 2018.

[5] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep learning,” arXiv

preprint arXiv:2106.11342, 2021.

[6] U. Michelucci, “An introduction to autoencoders,” arXiv preprint

arXiv:2201.03898, 2022.

[7] R. Bellman, “A markovian decision process,” Journal of mathematics and me-

chanics, pp. 679–684, 1957.

[8] R. A. Howard, “Dynamic programming and markov processes.,” 1960.

[9] S. P. Singh and R. S. Sutton, “Reinforcement learning with replacing eligibility

traces,” Machine learning, vol. 22, pp. 123–158, 1996.

[10] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.

83

https://bayesgroup.github.io/bmml_sem/2018/Shvechikov_Partially%20Observable%20Markov%20Decision%20Process%20in%20Reinforcement%20Learning.pdf
https://bayesgroup.github.io/bmml_sem/2018/Shvechikov_Partially%20Observable%20Markov%20Decision%20Process%20in%20Reinforcement%20Learning.pdf
https://bayesgroup.github.io/bmml_sem/2018/Shvechikov_Partially%20Observable%20Markov%20Decision%20Process%20in%20Reinforcement%20Learning.pdf
https://bayesgroup.github.io/bmml_sem/2018/Shvechikov_Partially%20Observable%20Markov%20Decision%20Process%20in%20Reinforcement%20Learning.pdf
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Markov_decision_process

[11] M. T. Spaan, “Partially observable markov decision processes,” in Reinforce-

ment learning: State-of-the-art, pp. 387–414, Springer, 2012.

[12] S. D. Whitehead and D. H. Ballard, “Active perception and reinforcement learn-

ing,” in Machine Learning Proceedings 1990, pp. 179–188, Elsevier, 1990.

[13] K. J. Astrom et al., “Optimal control of markov processes with incomplete state

information,” Journal of mathematical analysis and applications, vol. 10, no. 1,

pp. 174–205, 1965.

[14] A. K. McCallum, Reinforcement learning with selective perception and hidden

state. University of Rochester, 1996.

[15] W. S. Lovejoy, “A survey of algorithmic methods for partially observed markov

decision processes,” Annals of Operations Research, vol. 28, no. 1, pp. 47–65,

1991.

[16] L. Peshkin, N. Meuleau, and L. Kaelbling, “Learning policies with external

memory,” arXiv preprint cs/0103003, 2001.

[17] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in

partially observable stochastic domains,” Artificial Intelligence, vol. 101, no. 1,

pp. 99–134, 1998.

[18] M. L. Littman, “Markov games as a framework for multi-agent reinforcement

learning,” in Machine learning proceedings 1994, pp. 157–163, Elsevier, 1994.

[19] R. T. Icarte, R. Valenzano, T. Q. Klassen, P. Christoffersen, A. massoud Farah-

mand, and S. A. McIlraith, “The act of remembering: A study in partially ob-

servable reinforcement learning,” 2021.

[20] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep learning,” 2023.

[21] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu, S.-C.

Chen, and S. S. Iyengar, “A survey on deep learning: Algorithms, techniques,

and applications,” ACM Comput. Surv., vol. 51, sep 2018.

[22] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” The Bulletin of Mathematical Biophysics, vol. 5, pp. 115–133,

Dec. 1943.

84

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[24] “Convolution - Wikipedia — en.wikipedia.org.” https://en.

wikipedia.org/wiki/Convolution. [Accessed 29-Jul-2023].

[25] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Compu-

tation, vol. 9, pp. 1735–1780, Nov 1997.

[26] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn

encoder-decoder for statistical machine translation,” 2014.

[27] C. Olah, “Understanding lstm networks,” 2015.

[28] D. E. Rumelhart, J. L. McClelland, and C. PDP Research Group, Parallel dis-

tributed processing: Explorations in the microstructure of cognition, Vol. 1:

Foundations. MIT press, 1986.

[29] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” Machine Learning for

Data Science Handbook: Data Mining and Knowledge Discovery Handbook,

pp. 353–374, 2023.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

[31] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”

arXiv preprint arXiv:1511.05952, 2015.

[32] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region pol-

icy optimization,” in International conference on machine learning, pp. 1889–

1897, PMLR, 2015.

[33] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Du-

eling network architectures for deep reinforcement learning,” in International

conference on machine learning, pp. 1995–2003, PMLR, 2016.

[34] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

85

http://www.deeplearningbook.org
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Convolution

[35] R. M. Ryan and E. L. Deci, “Intrinsic and extrinsic motivations: Classic def-

initions and new directions,” Contemporary Educational Psychology, vol. 25,

pp. 54–67, 2000.

[36] A. Aubret, L. Matignon, and S. Hassas, “An information-theoretic perspective

on intrinsic motivation in reinforcement learning: A survey,” Entropy, vol. 25,

no. 2, p. 327, 2023.

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-

mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-

level control through deep reinforcement learning,” nature, vol. 518, no. 7540,

pp. 529–533, 2015.

[38] A. K. McCallum et al., “Learning to use selective attention and short-term mem-

ory in sequential tasks,” in From animals to animats 4: proceedings of the fourth

international conference on simulation of adaptive behavior, vol. 4, p. 315, MIT

Press Cambridge, 1996.

[39] L.-J. Lin and T. M. Mitchell, “Reinforcement learning with hidden states,” From

animals to animats, vol. 2, pp. 271–280, 1993.

[40] B. Bakker, “Reinforcement learning with long short-term memory,” Advances

in neural information processing systems, vol. 14, 2001.

[41] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially observable

mdps,” in 2015 aaai fall symposium series, 2015.

[42] J. Oh, V. Chockalingam, H. Lee, et al., “Control of memory, active percep-

tion, and action in minecraft,” in International conference on machine learning,

pp. 2790–2799, PMLR, 2016.

[43] M. Zhang, Z. McCarthy, C. Finn, S. Levine, and P. Abbeel, “Learning deep

neural network policies with continuous memory states,” in 2016 IEEE inter-

national conference on robotics and automation (ICRA), pp. 520–527, IEEE,

2016.

[44] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv

preprint arXiv:1410.5401, 2014.

86

[45] W. Zaremba and I. Sutskever, “Reinforcement learning neural turing machines-

revised,” arXiv preprint arXiv:1505.00521, 2015.

[46] E. Parisotto and R. Salakhutdinov, “Neural map: Structured memory for deep

reinforcement learning,” arXiv preprint arXiv:1702.08360, 2017.

[47] A. Demir, “Learning what to memorize: Using intrinsic motivation to form

useful memory in partially observable reinforcement learning,” Applied Intel-

ligence, pp. 1–19, 2023.

[48] A. Khan, C. Zhang, N. Atanasov, K. Karydis, V. Kumar, and D. D. Lee, “Mem-

ory augmented control networks,” arXiv preprint arXiv:1709.05706, 2017.

[49] C.-C. Hung, T. Lillicrap, J. Abramson, Y. Wu, M. Mirza, F. Carnevale, A. Ahuja,

and G. Wayne, “Optimizing agent behavior over long time scales by transporting

value,” Nature communications, vol. 10, no. 1, p. 5223, 2019.

[50] D. Jo, S. Kim, D. Nam, T. Kwon, S. Rho, J. Kim, and D. Lee, “Leco: Learnable

episodic count for task-specific intrinsic reward,” Advances in Neural Informa-

tion Processing Systems, vol. 35, pp. 30432–30445, 2022.

[51] M. C. Machado, M. G. Bellemare, and M. Bowling, “Count-based exploration

with the successor representation,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 34, pp. 5125–5133, 2020.

[52] J. Martin, S. N. Sasikumar, T. Everitt, and M. Hutter, “Count-based exploration

in feature space for reinforcement learning,” arXiv preprint arXiv:1706.08090,

2017.

[53] G. Ostrovski, M. G. Bellemare, A. Oord, and R. Munos, “Count-based ex-

ploration with neural density models,” in International conference on machine

learning, pp. 2721–2730, PMLR, 2017.

[54] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos,

“Unifying count-based exploration and intrinsic motivation,” Advances in neu-

ral information processing systems, vol. 29, 2016.

[55] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. Xi Chen, Y. Duan, J. Schulman,

F. DeTurck, and P. Abbeel, “# exploration: A study of count-based exploration

87

for deep reinforcement learning,” Advances in neural information processing

systems, vol. 30, 2017.

[56] T. Zhang, H. Xu, X. Wang, Y. Wu, K. Keutzer, J. E. Gonzalez, and Y. Tian,

“Bebold: Exploration beyond the boundary of explored regions,” arXiv preprint

arXiv:2012.08621, 2020.

[57] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by random

network distillation,” arXiv preprint arXiv:1810.12894, 2018.

[58] M. Kubovčík, I. Dirgová Luptáková, and J. Pospíchal, “Signal novelty detection

as an intrinsic reward for robotics,” Sensors, vol. 23, no. 8, p. 3985, 2023.

[59] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven exploration

by self-supervised prediction,” in International conference on machine learning,

pp. 2778–2787, PMLR, 2017.

[60] M. Seurin, F. Strub, P. Preux, and O. Pietquin, “Don’t do what doesn’t matter:

Intrinsic motivation with action usefulness,” arXiv preprint arXiv:2105.09992,

2021.

[61] B. Bakker, “Reinforcement learning with long short-term memory,” in Ad-

vances in Neural Information Processing Systems (T. Dietterich, S. Becker, and

Z. Ghahramani, eds.), vol. 14, MIT Press, 2001.

[62] Wikipedia contributors, “Stigmergy — Wikipedia, the free encyclopedia,” 2023.

[Online; accessed 31-July-2023].

[63] C. Zauner, “Implementation and benchmarking of perceptual image hash func-

tions,” 2010.

[64] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of the Royal

Society of London. Series B. Biological Sciences, vol. 207, no. 1167, pp. 187–

217, 1980.

[65] R. W. Hamming, “Error detecting and error correcting codes,” The Bell system

technical journal, vol. 29, no. 2, pp. 147–160, 1950.

88

[66] N. Bougie and R. Ichise, “Fast and slow curiosity for high-level exploration in

reinforcement learning,” Applied Intelligence, vol. 51, no. 2, pp. 1086–1107,

2021.

[67] M. Chevalier-Boisvert, B. Dai, M. Towers, R. de Lazcano, L. Willems,

S. Lahlou, S. Pal, P. S. Castro, and J. Terry, “Minigrid & miniworld: Modular

& customizable reinforcement learning environments for goal-oriented tasks,”

CoRR, vol. abs/2306.13831, 2023.

[68] M. Pleines, M. Pallasch, F. Zimmer, and M. Preuss, “Memory gym: Partially

observable challenges to memory-based agents,” in International Conference

on Learning Representations, 2023.

[69] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley,

CA: CreateSpace, 2009.

[70] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. E. Gonzalez,

M. I. Jordan, and I. Stoica, “RLlib: Abstractions for distributed reinforcement

learning,” in International Conference on Machine Learning (ICML), 2018.

[71] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-

Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and

S. Chintala, “PyTorch: An Imperative Style, High-Performance Deep Learning

Library,” in Advances in Neural Information Processing Systems 32 (H. Wal-

lach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett,

eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

89

90

APPENDIX A

EXTENDED EXPERIMENT RESULTS

This appendix chapter includes extended experimental results for additional analysis

and performance results in Figures A.1 - A.17.

Memory Environment Results:

First, the results are presented in terms of both average and individual performances.

To highlight the effects of learning stability, individual outcomes for each run are also

provided. Subsequently, the figures from the generalization scenario experiments

are showcased. Finally, figures detailing changes in entropy, learning throughput,

and loss value comparisons are shared. In Tables A.1, A.2, and A.3, methods for

evaluating and comparing metrics among the algorithms are presented.

91

Figure and Metric Name How to evaluate?

Figure A.1 - LSTM Algorithm: Average total

cumulative rewards per episode.

Higher value and lower variance is

better.

Figure A.2- SMM Algorithm: Average total

cumulative rewards per episode.

Higher value and lower variance is

better.

Figure A.3 - SMM Algorithm With Frequency

Based IM: Average total cumulative rewards

per episode.

Higher value and lower variance is

better.

Figure A.4 - SMM Algorithm With Autoen-

coder Based IM: Average total cumulative re-

wards per episode.

Higher value and lower variance is

better.

Figure A.5 - SMM Algorithm With Longer

Memory: Average total cumulative rewards

per episode.

Higher value and lower variance is

better.

Table A.1: Extended summary of Memory Environment ablation studies.

Figure and Metric Name How to evaluate?

Figure A.6 - Generalization Scenario: Com-

parison of average episode lengths per episode.

Lower value and lower variance is bet-

ter.

Figure A.7 - Generalization Scenario: Com-

parison of average length of unchanged mem-

ory sequences per episode.

Higher value and lower variance is

better.

Figure A.8 - Generalization Scenario: Com-

parison of average number of memory updates

per episode.

Lower value and lower variance is bet-

ter.

Table A.2: Extended summary of generalization scenario experiments.

92

Figure and Metric Name How to evaluate?

Figure A.9 - Average Policy Entropy Values

Comparision.

Lower entropy means less exploration

and convergence of the algorithm ex-

ploration, only visualized for informa-

tive purposes..

Figure A.10 - Average Learning Throughput

Values Comparision.

Higher value and lower variance is

better.

Figure A.11 - Average Total Loss Values Com-

parision.

Lower value and lower variance is bet-

ter.

Table A.3: Extended summary of other experiments and utility metrics.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) Average of 16 runs with confidence intervals.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) Individual performance of 16 parallel runs.

Figure A.1: Memory Environment - LSTM Algorithm: Average total cumulative

rewards per episode.

93

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) Average of 16 runs with confidence intervals.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) Individual performance of 16 parallel runs.

Figure A.2: Memory Environment - SMM Algorithm: Average total cumulative re-

wards per episode.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) Average of 16 runs with confidence intervals.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) Individual performance of 16 parallel runs.

Figure A.3: Memory Environment - SMM Algorithm With Frequency Based IM:

Average total cumulative rewards per episode.

94

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) Average of 16 runs with confidence intervals.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) Individual performance of 16 parallel runs.

Figure A.4: Memory Environment - SMM Algorithm With Autoencoder Based IM:

Average total cumulative rewards per episode.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) Average of 12 runs with confidence intervals.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) Individual performance of 12 parallel runs.

Figure A.5: Memory Environment - SMM Algorithm With Longer Memory: Average

total cumulative rewards per episode.

95

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) VSMM

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) VSMM With Frequency Based IM

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(c) VSMM With Autoencoder Based IM

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(d) LSTM

Figure A.6: Memory Environment - Generalization Scenario: Comparison of average

episode lengths per episode. Each line represents the average of 16 parallel runs with

confidence intervals.

96

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) VSMM

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) VSMM With Frequency Based IM

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(c) VSMM With Autoencoder Based IM

Figure A.7: Memory Environment - Generalization Scenario: Comparison of average

length of unchanged memory sequences per episode. Each line represents the average

of 16 parallel runs with confidence intervals.

97

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) VSMM

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) VSMM With Frequency Based IM

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(c) VSMM With Autoencoder Based IM

Figure A.8: Memory Environment - Generalization Scenario: Comparison of average

number of memory updates per episode. Each line represents the average of 16 par-

allel runs with confidence intervals.

98

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) VSMM

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) VSMM With Frequency Based IM

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(c) VSMM With Autoencoder Based IM

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(d) LSTM

Figure A.9: Memory Environment - Average Policy Entropy Values Comparision.

Each line represents the average of 16 parallel runs with confidence intervals.

99

0

200

400

600

800

1000

1200

1400

1600

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) VSMM

0

200

400

600

800

1000

1200

1400

1600

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) VSMM With Frequency Based IM

0

200

400

600

800

1000

1200

1400

1600

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(c) VSMM With Autoencoder Based IM

0

200

400

600

800

1000

1200

1400

1600

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(d) LSTM

Figure A.10: Memory Environment - Average Learning Throughput Values Compar-

ision. Each line represents the average of 16 parallel runs with confidence intervals.

100

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(a) VSMM

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(b) VSMM With Frequency Based IM

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(c) VSMM With Autoencoder Based IM

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2e+6 4e+6 6e+6 8e+6 1e+7

Steps

(d) LSTM

Figure A.11: Memory Environment - Average Total Loss Values Comparision. Each

line represents the average of 16 parallel runs with confidence intervals.

101

MMG Environment Results:

Figure and Metric Name How to evaluate?

Figure A.12 - LSTM Algorithm: Average total

cumulative rewards per episode.

Higher value and lower variance is

better.

Figure A.13 - SMM Algorithm: Average total

cumulative rewards per episode.

Higher value and lower variance is

better.

Figure A.14 - SMM Algorithm With Fre-

quency Based IM: Average total cumulative re-

wards per episode.

Higher value and lower variance is

better.

Figure A.15 - SMM Algorithm With Autoen-

coder Based IM: Average total cumulative re-

wards per episode.

Higher value and lower variance is

better.

Figure A.16 - Average Policy Entropy Values

Comparision.

Lower entropy means less explo-

ration and convergence of the algo-

rithm exploration, only visualized for

informative purposes.

Figure A.17 - Average Learning Throughput

Values Comparision.

Higher value and lower variance is

better.

Table A.4: Extended summary of MMG Environment ablation studies and other util-

ity metrics.

102

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(a) Average of 12 runs with confidence intervals.

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(b) Individual performance of 12 parallel runs.

Figure A.12: MMG Environment - LSTM Algorithm: Average total cumulative re-

wards per episode.

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(a) Average of 12 runs with confidence intervals.

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(b) Individual performance of 12 parallel runs.

Figure A.13: MMG Environment - SMM Algorithm: Average total cumulative re-

wards per episode.

103

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(a) Average of 12 runs with confidence intervals.

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(b) Individual performance of 12 parallel runs.

Figure A.14: MMG Environment - SMM Algorithm With Frequency Based IM: Av-

erage total cumulative rewards per episode.

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1e+6 2e+6 3e+6 4e+6 5e+6

Steps

(a) Average of 12 runs with confidence intervals.

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

1e+6 2e+6 3e+6 4e+6 5e+6

Steps

(b) Individual performance of 12 parallel runs.

Figure A.15: MMG Environment - SMM Algorithm With Autoencoder Based IM:

Average total cumulative rewards per episode.

104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(a) VSMM

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(b) VSMM With Frequency Based IM

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1e+6 2e+6 3e+6 4e+6 5e+6

Steps

(c) VSMM With Autoencoder Based IM

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(d) LSTM

Figure A.16: MMG Environment - Average Policy Entropy Values Comparision.

Each line represents the average of 12 parallel runs with confidence intervals.

105

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(a) VSMM

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(b) VSMM With Frequency Based IM

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

1e+6 2e+6 3e+6 4e+6 5e+6

Steps

(c) VSMM With Autoencoder Based IM

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

1e+6 2e+6 3e+6 4e+6 5e+6 6e+6 7e+6 8e+6

Steps

(d) LSTM

Figure A.17: MMG Environment - Average Learning Throughput Values Compari-

sion. Each line represents the average of 12 parallel runs with confidence intervals.

106

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Contributions
	Outline

	Background Information and Related Works
	Markov Decision Processes (MDPs)
	Reinforcement Learning
	Partially Observable Markov Decision Processes (POMDPs)
	Optimal Control/Decision Making of POMDPs
	Belief State POMDPs
	Hidden State POMDPs

	Neural Network Architectures
	Deep Reinforcement Learning
	PPO

	Intrinsic Motivations
	Related Works

	Solving Partially Observable Visual Reinforcement Learning Tasks
	Motivating Example
	Augmenting External Observation Memory For Visual Tasks
	Visual Self Memory Management
	Visual Intrinsic Motivations
	Efficient Count-Based Intrinsic Motivation with Perceptual Hashing
	Novelty-Based Intrinsic Motivation with Autoencoder Reconstruction Error

	LSTM Based Internal Hidden State Memory Augmentation

	Experimental Results
	Environment Design and Selection
	Algorithms
	Environment Setup
	Results and Discussion
	Ablation study of comparing external and internal memory architectures
	Memory Environment - Comparison of memory architectures in terms of generalization capability for different environment configurations
	Memory Environment - Analyzing the effects of having an excess number of external memory size

	Conclusion and Future Work
	REFERENCES
	Extended Experiment Results

