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ABSTRACT

A DEEP LEARNING-BASED HYBRID COMPUTATIONAL APPROACH TO
CARDIAC ELECTROPHYSIOLOGY

Kuloğlu, Ali Fatih

M.S., Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Serdar Göktepe

September 2023, 106 pages

Electrophysiological modeling of the heart has witnessed significant progress with the

increase of available computational power. Realistic electrophysiology models often

require the solution of highly nonlinear differential equation systems. The complex

nature of the electrodynamic activity of a cell limits the applicability of simplistic nu-

merical techniques and necessitates the utilization of more advanced and demanding

techniques. Deep learning has emerged as a promising tool for predicting the solu-

tion of highly nonlinear problems and has shown tremendous success in differential

equation-based phenomena of biological systems over recent years. In this work, a

deep learning-based algorithm is proposed for the accurate and time-efficient solution

of the electrophysiology problem of the heart. A deep learning-based model is de-

veloped for forecasting transmembrane voltage at the cellular level. For this purpose,

the biophysically detailed ten Tusscher-Panfilov model is used for the generation of

the training data and performance measurements. Training data are acquired by solv-

ing ten Tusscher-Panfilov model as an ordinary differential equation system. The

resulting deep learning-based model incorporates the external stimulus information

and past potential values while making predictions. An important novelty of this
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work is extending a model trained with ordinary differential equations to the realm of

partial differential equations by associating the external stimuli with the conductivity

term of the partial differential equation. This approach facilitates the application of

more conventional partial differential equation solvers. Therefore, the classical way

of solving partial differential equations is combined with deep learning in the pro-

posed approach. This hybrid approach has successfully been applied to solve multiple

problems and has been evaluated in different settings.

Keywords: Deep Learning, Cardiac Electrophysiology, Finite Element Modeling
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ÖZ

KALP ELEKTROFİZYOLOJİSİNE DERİN ÖĞRENME TABANLI HİBRİD
BİR HESAPLAMALI YAKLAŞIM

Kuloğlu, Ali Fatih

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Serdar Göktepe

Eylül 2023 , 106 sayfa

Kalp elektrofizyolojisinin modellenmesinde, mecvut hesaplama gücündeki artışla ö-

nemli ilerlemeler sağlanmıştır. Gerçekçi elektrofizyoloji modelleri genellikle yüksek

derecede karmaşık olan diferansiyel denklem sistemlerini çözmeyi gerektirmektedir.

Kalp hücresinin elektrodinamik aktivitesinin karmaşık doğası, basit sayısal teknik-

lerin uygulanabilirliğini sınırlamakta ve daha karmaşık sayısal tekniklerin kullanı-

mını zorunlu hale getirmektedir. Derin öğrenme, son yıllarda biyolojik sistemlerin

diferansiyel denklem temelli problemlerinde başarıyla kullanılmış, doğrusal olmayan

problemleri tahmin etmek için umut vaat eden bir araç olarak ortaya çıkmıştır. Bu ça-

lışmada, kalbin elektrofizyoloji probleminin doğru ve hızlı bir şekilde çözülmesi için

derin öğrenme tabanlı bir algoritma önerilmektedir. Derin öğrenme modeli, trans-

membran voltajını hücre ölçeğinde tahmin etmek için geliştirilmiştir. Modelin öğre-

nimi için, biyofiziksel ayrıntıları içeren ten Tusscher-Panfilov modeli kullanılmış ve

performans ölçümleri bu modelin sonuçları üzerinden yapılmıştır. Öğretme verileri,

ten Tusscher-Panfilov modelinin adi diferansiyel denklem sistemi olarak çözülme-

siyle elde edilmiştir. Elde edilen model, dışarıdan gelen uyarıları ve geçmiş potansi-
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yel değerleri, beklenen potansiyelin değerini tahmin etmek amacıyla kullanmaktadır.

Bu çalışmanın önemli bir yeniliği, adi diferansiyel denklemler kullanılarak gelişti-

rilmiş olan bir modelin, dışarıdan gelen uyarıları iletkenlik terimiyle ilişkilendirerek

kısmi diferansiyel denklemleri çözebilecek bir şekilde genişletilmesidir. Bu yakla-

şım, daha konvansiyonel kısmi diferansiyel denklem çözme yollarının kullanımına

da olanak sağlamaktadır. Böylece, kısmi diferansiyel denklemlerinin çözülmesinde

kullanılan klasik metotlar ile derin öğrenme yaklaşımının beraber çalışması sağlan-

mıştır. Bu hibrit yaklaşım, birden fazla problemi başarıyla çözmüş ve farklı şartlar

altında değerlendirilmiştir.

Anahtar Kelimeler: Derin Öğrenme, Kalp Elektrofizyolojisi, Sonlu Eleman Modelle-

mesi
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CHAPTER 1

INTRODUCTION

In this thesis, the aim is to develop a new and practical approach to the numerical solu-

tion of the electrophysiology problem of the human heart. The proposed approach in

this thesis is based on deep learning. A well-accepted high fidelity electrophysiologi-

cal model is used to generate the necessary data for training the deep learning model.

The electrophysiological problem is solved using this trained deep learning model in

two dimensional space with Finite Element Analysis Program (FEAP). The results of

these solutions are evaluated and discussed. The performance of the proposed deep

learning model is compared with the high-fidelity model’s performance.

This chapter presents a structured assessment of the focused problem, the aims of

the thesis, and why this study is needed. First, the motivation of the thesis is given.

After the motivation, the addressed problem in this study is explained in more detail.

In the literature review section, the current state of the literature is presented, and

recent advances in solving similar problems are reviewed. Related studies are briefly

summarized to show the novelty of the proposed approach. Next, the aim and the

intended outcomes of the thesis are explained. The last part states the different aspects

of the problem that will be covered in this study.

1.1 Motivation

The human heart has been a major interest in science for centuries. Researchers have

studied the underlying mechanisms of the heart for a long time. As a result of these

studies, the chemical, mechanical, and biological processes of the heart have been

largely understood. Mathematical tools have been an essential part of this progress.
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These tools help researchers immensely to model and understand complex underly-

ing mechanisms of the heart. The significant surge of computational power in equip-

ment in recent decades has increased the utilization of mathematical tools, and these

new tools have become major aspects of this field. More complex and applicable

mathematical models led to the creation of more realistic and consistent studies and

solutions to more complex problems. In the end, the dissemination of these new

studies helps the creation of new medical procedures and improves understanding of

the heart. The development of new and better mathematical models is still a critical

necessity since cardiovascular diseases (CVDs) are one the most prominent global

problems today.

CVDs cause the most significant number of deaths compared to other medical con-

ditions globally. In 2019, approximately 17.4 million people died from CVDs. This

number represents approximately 32% of global deaths. Noncommunicable diseases

caused 17 million premature deaths (under the age of 70) in 2019, and 38% of these

deaths occurred due to CVDs [4]. CVDs cause the highest number of deaths among

noncommunicable diseases, followed by cancer, upper respiratory diseases, and di-

abetes [5]. According to the European Heart Network statistics from 2017, CVDs

are causing 3.9 million deaths in Europe and over 1.9 million deaths in the European

Union (EU). In Europe, CVDs cause 45% of deaths, while in the EU, this rate is

around 35% [6]. In England, CVDs cause approximately 136,000 deaths per year,

which is around 25% of the total number of deaths. CVDs are the primary reason

for the total morbidity, disability, and mortality in England [7]. Finally, in the United

States, CVDs caused 695,000 deaths in the year 2021, and they are the primary cause

of death. This number is around 20% of total deaths in the United States [8].

CVDs also impose a significant financial burden on the economy. CVDs are estimated

to cost C210 billion to the EU economy yearly in 2017 [6]. The economic impact

on the US economy during the period from 2018 to 2019 amounted to $407.3 billion,

consisting $251.4 billion in direct costs and $ 155.9 billion in indirect costs, including

factors such as productivity loss and mortality [9]. It is expected for these costs to rise

and, by the year 2035, to reach $1.1 trillion per year [10]. In England, CVDs cost £7.8

billion to the healthcare system and £15.8 billion to the economy. Furthermore, 1 in

6 people is predicted to have a stroke in their lifetime, and social services for stroke
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survivors cost around £5.2 billion per year [7]. In 11 OECD member countries, CVDs

account for 17% of hospital expenditure, with the largest share of hospital spending

[11]. CVDs having substantial adverse impacts on economies is an indisputable fact,

according to the findings of multiple studies; see, e.g., [6, 7, 9, 10, 11].

In the United States, the prevalence of CVDs for people aged 20 and above is around

48%. If hypertension is not included, this rate is around 9.9% [9]. Further, it is

predicted that by 2035, around 45% of the US population will have some form of

CVD [10]. Although the European Society of Cardiology member countries have

observed a slight decrease in the incidence of CVD cases, in some middle-income

countries, CVD cases increased modestly [12].

It is logical to expect CVDs to continue as a major medical concern. The decrease

in the mortality rate has stalled in recent years, and CVD cases are expected to surge

in the near future, according to multiple statistical studies [10, 12]. In this stage,

new mathematical approaches and the utilization of recent technologies are needed

to model more complex mechanisms of the heart in a faster and more effective way.

These new modeling methods will lead to medical advances ensuring effective com-

bat against CVDs.

1.2 Problem Statement

The human heart is a vital organ encompassing specific tissues and unique mech-

anisms. Therefore, it offers different problems than the rest of the human body.

Cardiac electrophysiology has been a focus of many studies in the past; see, e.g.,

[13, 14, 15]. The electrophysiology of the heart is directly coupled with its mechani-

cal behavior. Correct modeling of electrophysiology can lead to a better understand-

ing of medical conditions and the development of new medical procedures.

Electrophysiology of the heart is a complex phenomenon. Multiple factors play an

essential role in electrophysiological behavior. Ion concentrations inside and outside

the cells, geometric characteristics of the heart, orientation and distribution of tissue

fibers, and distribution of various cell types constitute important factors in electro-

physiology. The scale of these factors differs substantially. Calculating changes in

3



the ion concentrations and cell gate states are problems that need to be solved on

the microscale. On the other hand, the propagation of electrical waves in the heart,

with the heart’s unique geometry, fiber orientation, and distribution, is solved on the

macroscale.

Solving this electrophysiological problem in a correct way considering both macro-

scale and microscale aspects is possible, and multiple different approaches exist in the

literature. Phenomenological modeling and ionic modeling are two main approaches

for obtaining a solution. The phenomenological models are based on observations

of electrophysiological behavior on the microscale [16], while the ionic models take

microscale variables into consideration directly [13]. In general, phenomenologi-

cal models provide faster solutions. However, these solutions do not give physi-

cally meaningful quantitative results on the microscale. Physical quantities on the

microscale are often crucial for scientific observations and analysis for further stud-

ies. Phenomenological results are also less accurate than results obtained from ionic

models in general. Ionic models provide physically accurate results at both scales.

These models generally involve more variables and a higher number of equations that

need to be solved. As a result, the solution process may require a substantial amount

of time and computational power. Time and computation power restraints prevent

researchers with limited resources from employing more sophisticated and accurate

results and create a bottleneck for scientific progress.

1.3 Literature Review

There has been an immense increase in the computational power and capabilities of

computational tools over the past years. This increase has resulted in the solution

of numerous challenging problems and rapid progress in almost every field of sci-

ence. Thus, newer and more complex problems have started to be focused on due to

this progress. However, in recent years, advances have slowed down as solution ap-

proaches encountered bottlenecks. These complex problems require more advanced

algorithms or exceed time and resource constraints. This situation eventually led to

the utilization of deep learning. Although deep learning has been around for a long

time, many applications of it are relatively new.
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Cardiology and computational science are two of the major fields that made use of

deep learning. With the introduction of deep learning in the last few years, a signifi-

cant amount of literature has been published in both fields; see, e.g., [17, 18, 19, 20].

Deep learning offers a potential for further advancements, as this completely new

approach has shown that it can quickly solve highly complex problems. A wide

range of deep learning studies focus on cardiology in the literature. Hospital cardiac-

arrest prediction [18] and classification of heart sound signals [21] are examples of

DL-based studies in cardiology. Moreover, DL is also utilized with common diag-

nostic tools for cardiac disease detection, such as magnetic resonance imaging (MRI)

[22, 23, 24], and electrocardiogram (ECG) [25, 26, 27, 28, 29].

The electrophysiological behavior of the heart is a mathematically complex prob-

lem. Understanding the electrophysiological behavior and successful computational

modeling of underlying mechanisms requires solutions of large differential equation

systems in general. As a consequence, solving these complex differential equation

systems can be computationally extremely expensive and time-consuming. DL is an

emerging, promising tool for solving ordinary and partial differential equations; see,

e.g., [20, 30, 31]. In 1994, A. J. Meade proposed a method for solving ODEs using

neural networks [19]. This study proposed a feed-forward neural network and con-

straints on network weights and basis functions. A family of neural network models

was introduced for solving ODEs by Chen et al. in [20]. Instead of specifying a dis-

crete sequence of hidden layers, the proposed approach employed a neural network

to parameterize the derivative of the hidden state. In this model, gradients are com-

puted using the adjoint sensitivity method, and the network output is computed using

a black-box differential equation solver. However, most biological system equations

are represented by stiff equations; as a result, explicit solutions are unstable, and the

solution process is computationally costly. Thus, neural ODEs tend to fail in these

kinds of problems. These problems can be overcome by employing non-reserving

adjoint methods, linear scaling of adjoints, and the scaling of the equations [32]. An-

other numerical framework for approximating governing equations of ODEs is pre-

sented in [33]. In this work, residual network-based deep neural networks (DNN)

approximate governing equations and integrate them in time with the given initial

condition. Results showed that DNNs are highly capable of governing equation ap-
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proximation. This work extended in [34], aiming to approximate complex biological

processes and uncover their unknown factors. Additional variables are incorporated

into the DNN model; some variables are temperature and electric current, which can

be controlled during experimentation. Their incorporation enables the investigation

of the influence of the controlled variable in the dynamics of the system and results

in a more flexible network to understand underlying dynamics.

Analytical solutions for PDEs can be difficult to obtain, and most of the time, obtain-

ing an analytical solution might not be possible. Numerical approaches frequently

face challenges when dealing with PDEs, such as the possibility for numerical insta-

bility, the potential for extremely high dimensionality, and the difficulty of capturing

complex phenomena. One DL-based approach for solving ODEs and PDEs is propos-

ing a trial solution, such that the trial solution satisfies initial value and boundary con-

ditions by definition. A DNN approximation function is placed in the trial solution

and trained to learn from data [35]. In recent years, the data-driven discovery of PDEs

was proposed based on sparse regression technique [36]. However, this technique as-

sumes the chosen library to be sufficiently rich in reflecting the time dynamics of the

problem, which is unlikely and requires more data points than DL-based techniques.

The Deep Ritz Method is a modern approach for solving variational problems that

arise from PDEs with DL [37]. This method is based on representing the functions in

the context of the Ritz method and minimizing the variational problem with known

data. It is an adaptive method and less sensitive to dimensionality. The Deep Galerkin

Method is another approach for solving high-dimensional PDEs. Importantly, it is a

meshless method aiming to reduce the computational cost of dimensionality. The

solution is approximated with a deep neural network, which is trained to satisfy the

differential operator, initial condition, and boundary conditions. The algorithm gen-

erates random points with probability density function and is trained by using these

points [38]. Encoding underlying physical laws of PDEs into neural networks (NNs)

is an idea utilized by physics-informed neural networks (PINNs) [31]. Known phys-

ical laws are explicitly stated in the training of the NN, and a solution approximator

model is created. PINNs can be used in continuous and discrete forward solutions and

are capable of data-driven discovery of PDEs. Differentiation can be performed with

these nonlinear solutions after approximation of the solution function with PINNs.
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Automatic differentiation is the key concept for finding derivatives, and it is supe-

rior and computationally more efficient than numerical differentiation most of the

time. Multiple well-known differential equations such as Navier-Stokes, Nonlinear

Schrödinger, and Burger’s equation were solved using PINNs and produced satisfac-

tory results [30]. It is shown that increasing the number of training points in the high

residual region in the domain when training a PINN can improve the model’s effi-

ciency [39]. While the global minimization approach works well for boundary value

conditions of the problem, catastrophic forgetting, a phenomenon observed in neural

networks where they tend to forget previously acquired sequential information, can

make these PDE-solving techniques inapplicable to time-dependent phenomena. A

method is introduced for solving initial value PDEs, aiming to mitigate the initial

value forgetting problem, and multiple techniques are investigated, including; im-

provements on representational power, scalability, stability, and conditioning [40]. In

[41], a method for solving the parabolic PDEs is investigated. Nonlinear parabolic

PDEs are reformulated as backward stochastic differential equations, and the gradient

of the solution is approximated using DNNs. This approach is shown to solve high

dimensional PDEs such as the Schödinger equation and the nonlinear Black-Scholes

equation.

Reaction-diffusion problems describes the dynamics of the system by considering the

spread and interactions of a quantity in space and time. Diffusion refers to the spread

of matter from high-concentration regions to low-concentration zones, while reaction

refers to the transformation of matter. The cardiac electrophysiology problem is a

reaction-diffusion type of problem. In [42], an encoder-decoder-based convolutional

NN is designed to predict the concentration of a matter. When boundary conditions,

time, diffusion coefficient, and the reaction rate are given as input to this model, it pro-

duces acceptable results in a faster manner than the traditional finite element method.

However, the model becomes unstable with the increase in inputs and complex geo-

metrical configurations. Physics-encoded Recurrent Convolutional Neural Network

(PeRCNN) aims to hard code physical constraints of the systems directly into the

model, unlike PINNs [43]. PeRCNN is a discrete mesh-based model with a unique

convolutional layer to increase effectiveness for nonlinear spatiotemporal dynamics,

and it can incorporate numerical time integration methods. PeRCNN outputs good re-
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sults for multiple reaction-diffusion problems, but the model is designed for standard

convolution operators, limiting its applicability to irregular geometries. Moreover,

underlying governing PDEs are assumed to have only polynomial forms. In [44], a

DL model with U-Net-based architecture solves a one-dimensional reaction-diffusion

problem without any labeled information but only using initial and boundary condi-

tions. This proposed approach will likely encounter problems in complex geometries

such as the heart.

Complex systems involve interactions and processes in different scales or levels of

detail. In many mathematical systems, underlying processes of different scales are

linked to each other, and multiscale modeling aims to bridge the gap between these

scales. Thus, multiscale modeling is needed in numerous biological, engineering, and

chemical systems to understand underlying phenomena and represent system behav-

ior. Overall, DL has a limited application in many aspects of multiscale modeling;

however, DL techniques carry a high potential to address the known limitations of the

current state of modeling [45]. Homogenization of information from the microscale

to the macroscale is an important opportunity for DL in multiscale modeling. An ex-

emplary work for utilization of DL is a multiscale simulation of flow dynamics [46].

NN combines observed fine data and physical concepts with local multiscale model

reduction methodologies to predict flow dynamics.

Pure DL models learn only using the available data without prior knowledge about

underlying physical laws and constraints. Solving the problem in accordance with the

physical laws realistically carries significant importance in heart-related mathemati-

cal problems. If a model does not abide by the boundary conditions and governing

equations to some degree and only learns from data, it is often inapplicable for scien-

tific studies. It is possible to predict arterial blood pressure from non-invasive 4D flow

MRI data by using PINNs [17]. Mentioned PINNs effortlessly integrate non-invasive

in-vivo measurements and computational flow dynamics models resulting from phys-

ical equations. Conservation of momentum, conservation of mass, losses at the in-

terfaces, and clinical measurement results are accounted for in the given model, and

it is shown that the model is highly accurate. Since flow conditions do not change

greatly with different patients, trained networks can be adapted to different cases.

However, there is still a need to reduce the problem setup and training time for clini-
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cal applications. A DL framework with physical constraints (P-DL) for inverse ECG

modeling was proposed to take physics into account [47]. The proposed framework

integrates the physical laws for cardiac electrical wave propagation with DL infras-

tructure to predict spatiotemporal electrodynamics using electric potentials measured

by the body-surface sensor network. The resulting network’s accuracy is remarkably

higher than that of the model that does not know about physical constraints. An im-

portant point to note is that incorporating physics knowledge into the model is a sim-

ple process, and DL provides computational efficiency compared to traditional meth-

ods. Inference regarding ventricular activation parameters can be performed with DL

[48]. This patient-specific model locates Purkinje endocardial root nodes and predicts

conduction velocities using ECG and cardiac magnetic resonance imaging data and

patient-specific inputs, such as age, sex, and body mass index. The encoder-decoder

structure of the model framework enables the model to first encode ECG and cardiac

magnetic resonance imaging data, and then by decoding the given data, the model is

trained to generate geometrically and physically possible results. PINN-based car-

diac activation mapping is another method for cardiac activation mapping [49]. In

this NN, cardiac activation mapping that accounts for the wave propagation dynamics

is predicted. The physical part of the neural network takes the Eikonal equation into

account, and epistemic uncertainty is computed based on the predicted results. The

model successfully predicted activation mappings in atria within a range of specified

uncertainty.

Physical processes responsible for action potential in cardiac cells are generally de-

scribed as a system of ODEs. However, computationally, modeling the whole heart

at the cellular level is not possible. Homogenization of this discrete cell model leads

to a continuum model in the form of PDEs. Therefore, the cardiac electrophysiology

problem requires a solution of PDEs in heart tissue, and it is often characterized as

a multiscale modeling problem. DNNs can be trained to make predictions for a dy-

namic system such as cardiac electrophysiology. Sequential frames from the dynamic

system can be used to predict the next frame of a domain using recurrent DNNs [50].

By modifying the P-DL framework to integrate the physical laws of cardiac electrical

wave propagation for robust prediction of heart electrical behavior from sparse sen-

sor measurements, a physics-constrained deep active learning (P-DAL) framework is
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proposed [51]. A drop-out is used for uncertainty estimation, and geodesic distance-

based space-filling is used for distributing the data points over the domain. As a

result, the model learns from less data compared to the randomly distributed data

over the domain and manages to capture the electrodynamic behavior of the heart

with high accuracy. EP-PINNs can accurately predict electrical wave propagation in

the heart tissue, action potential, and electrophysiological parameter estimation [52].

After training with sparse in-silico or in-vitro data, the proposed NN accurately cap-

tures the spatiotemporal evolution of action potential, predicts excitability, diffusion,

and action potential duration parameters, and identifies heterogeneities in the network

parameters.

PINN-based fully connected NNs and recurrent NNs for solving cardiac electrophys-

iology model, namely, the Fitzhhugh-Nagumo model, are compared in [53]. PINN-

based designs resulted in better predictions for both architectures, and fully connected

NNs outperformed recurrent NNs. Data-driven approaches are capable of designing

monodomain models with the usage of artificial NNs [54]. In this work, the classical

way of determining coefficients of a predefined model is replaced by designing the

model with artificial NN and a model for phenomena related to cardiac electrophys-

iology designed using optimal control techniques. Spatio-temporal dynamics of the

cardiac tissue can be directly predicted [55]. Necessary data for training is generated

with a model that describes electrical activation in cardiac tissue. Electrical dynam-

ics can be directly predicted with this model with high accuracy. However, for the

long-term prediction process, accuracy drops significantly. In [56], an approach to re-

place the numerical integration of PDEs with a DL-based algorithm named EP-NET

is proposed. The dynamic system is reformulated, and integration is performed with

NN-based operators. After the model assimilates the first few frames of the domain,

the evolution of the model is predicted. Later, EP-NET extended to learn cardiac

electrophysiology dynamics from the data when scars are present in the cardiac tissue

[57]. The model successfully generalized to unseen conditions and learned complex

initial and boundary conditions. Still, the EP-NET model faces some problems; this

data-driven model could not successfully reproduce complex repolarization dynam-

ics of cardiac tissue, and prediction performance gradually declined [58]. To alleviate

the issues of EP-NET, a two-component architecture network is proposed. The net-
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work splits the dynamics of the system into physics-driven and data-driven parts. The

proposed network correctly reflected spatiotemporal electrodynamic behavior in the

domain when trained with the ten Tusscher-Panfilov model. The capabilities of this

framework explored in regards to learning full cardiac potential cycle [59]. Also,

the framework has the ability to produce complex action potential dynamics such as

depolarization and repolarization phases in the presence of noise in the data. In gen-

eral, the solution of coupled nonlinear systems regarding electrophysiology relies on

numerical approximation. Reducing these systems to lower dimensional problems

by conventional reduced-order models is challenging. A DL-based framework for

reduced order modeling of nonlinear time-dependent parametrized PDEs named DL-

ROM is proposed to solve this issue [60]. In the framework, nonlinear trial manifold

and nonlinear reduced dynamics are learned by the DL model in a non-intrusive way.

DL-ROM framework can efficiently provide solutions to parametrized electrophysi-

ology problems with a high accuracy [61]. One downside of training DL-ROMs is

extremely long learning times. DL-ROM framework is extended to address the bot-

tleneck in the training process [62]. DL-ROM framework is modified by performing

prior dimensionality reduction on full-order models through proper orthogonal de-

composition. This process enables speed up training times and decreases network

complexity. The proposed framework, named POD-DL-ROM, can solve challenging

physiological and pathological electrophysiology problems in real-time.

In the context of ODEs, taking advantage of known electrophysiological behavior

and underlying variables of an electrophysiological model is possible. However, the

complex nonlinear behavior of the electrical response in cardiac cells imposes a sig-

nificant challenge. The prediction of the electrical voltage of a cardiac cell by an NN

is an achievable task [63]. The reason is that NNs are extremely effective in pattern

recognition tasks, and recurrent NNs have the ability to keep track of the previous

patterns. As a result, recurrent NNs can learn the patterns of generated electrical sig-

nals in the heart. NN predictions can physiologically reflect the behavior of the model

used in training, with the potential for decreased computation time and high accuracy.

Different NN architectures have been proposed for nonlinear time series prediction of

cardiac voltage data, and their performance has been compared in the literature [64].

An important result of adapting time series-based prediction models is that they can
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predict potential values consistently for a long time with a high degree of accuracy.

In this work, echo state networks provide the best accuracy with the lowest computa-

tional time; however, echo state networks are very sensitive to hyperparameters and

network parameters. In the study [65], the echo state framework in [64] is extended

with the integration of a long-short term memory autoencoder. The autoencoder is

integrated to represent input nonlinearities in a compressed form, extract features for

more robust predictions, and simplify the learning process. This data-driven approach

is computationally more demanding than a pure echo state network. However, it is

more robust and accurate.

In the current state of the literature, DL frameworks are employed in various manners

within the field of cardiac electrophysiology. Several studies focus on the PDE prob-

lem derived from electrical wave propagation in cardiac tissue. In these studies, the

DL framework is generally trained by incorporating geometrical information about

the domain and physical constraints. PINNs represent a widely utilized approach for

addressing electrophysiology problems by embedding physical laws inside the loss

function. However, in the PINNs and other frameworks, when geometry and unique

physical constraints are integrated within the model, training the same model repeat-

edly for different physical conditions might be required. Thus, the training phase of

the model is likely to create a bottleneck and limit the clinical applicability. More

complex approaches demand sophisticated and complex algorithms to deal with this

problem. However, the generalization of these algorithms has yet to be fully estab-

lished. Also, the accuracy of these methodologies often diminishes with simulation

time. Another focus is predicting transmembrane potential at the cellular level as an

ODE problem. Training a DL-based model at the cellular level is simpler than teach-

ing the dynamics of the whole domain, and these models can be less computationally

expensive and faster to train. The current body of research addressing this problem at

the ODE scale remains very limited. This study proposes a DL model for the predic-

tion of action potential values at the cellular level. There is also a gap in the literature

for combining data-driven DL models with conventional numerical methods. The

finite element method (FEM) is an important, well-established, and common numer-

ical approach for solving PDEs. An important novelty of the proposed approach in

this thesis is that it can successfully integrate the DL framework with the finite el-
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ement method. Therefore, the DL framework can bridge the gap between the ODE

problem at the cellular level and the PDE problem of the considered domain. This

approach can be extended to other conventional numerical methods as well. The well-

understood strength of the finite element method ensures the reliability of the solution

and physical consistency, while the DL model improves the time efficiency. Another

advantage is the accuracy of the proposed model does not diminish over time. The

behavior of the DL model can be modified in the desired direction by adjusting the

distribution of training data; hence, the flexibility of the proposed framework can be

enhanced for the considered problem. The framework presented in this thesis can be

rapidly modified and extended to solve different kinds of problems.

1.4 Aim and Scope of Thesis

The aim of this thesis is to develop a computational approach that combines a robust

numerical method with a DL-based algorithm for solving cardiac electrophysiology

problems. In this contribution, computational gain, accuracy, and consistency over

long simulation periods of the proposed framework are investigated. A specific DL

architecture is designed for the prediction of action potential values at the cellular

level. As a first step, the DL model is developed to learn from a high-fidelity model

of electrophysiology. The chosen high fidelity model in this thesis is the ten Tussher-

Panfilov model [13]. Then, the DL model is trained with the solution of the ten

Tusscher-Panfilov model under changing conditions. These conditions include vary-

ing time frequency of exciting stimuli and magnitude of the given stimuli. The most

important part of the training is predicting the potential values with high accuracy

over a long time period and capturing the complex phenomena of the ten Tusscher-

Panfilov model. The external stimuli are an input for the DL model along with the

past action potential values. The proposed framework makes us capable of solving

PDEs by creating a correlation between external stimuli and the conductivity term of

the PDE. FEM is used to solve the PDE over the domain, while DL is predicted elec-

trical response at the cellular level. A lumping technique is employed within the FEM

to enhance the framework’s performance and to increase the correlation between the

DL model and the FEM.
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Several tests are run with the proposed framework to demonstrate the performance

and applicability in more complex conditions. The performance of the proposed

framework is compared with and without the lumping technique applied to the FEM

solver. Also, the framework’s performance is demonstrated with different time step

sizes, and wave propagation is observed in planar and nonplanar conditions. A re-

alistic ventricular geometry in the two dimensional domain of the heart is used to

demonstrate the capabilities of the framework in a realistic multidimensional setting.

1.5 Outline

The rest of the thesis is organized as follows: in Chapter 2, the anatomical structure

of the human heart is explained briefly. It is followed by an introduction to the elec-

trophysiological aspects and behaviors of the heart. The ground truth model used for

the simulation of electrophysiology in this study is introduced and its formulation is

explained.

Chapter 3 summarizes the finite element method (FEM) and lumping technique. A

FEM formulation based on the problem at hand is explained step by step for unfamil-

iar readers.

In Chapter 4, DL is briefly introduced along with the necessary terms. DL layers and

modeling hyperparameters used in this study are described, and their purpose and

contribution to the model are explained.

Chapter 5 gives the chosen architecture for the DL model. The chosen way for ob-

taining the necessary data and the preprocessing steps for the data are explained in

detail. The outcome of the training phase and the evolution of loss functions are

demonstrated. The accuracy of the trained model is demonstrated under different

conditions, and computation times are presented to the reader.

In Chapter 6, the trained DL model is extended to work in conjunction with the FEM,

which is responsible for solving the PDE. This extension process and the structure of

the algorithm are explained in detail.

Chapter 7 provides the results of the employed framework. Multiple tests under dif-
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ferent conditions are conducted, and the results of these tests are presented and evalu-

ated. These tests include the effects of the lumping, time step size, and the excitation

procedure. Also, the framework is tested for anatomically realistic geometry. Finally,

a test for capturing the complex reentry mechanism is conducted.

In Chapter 8, the results of the created framework are evaluated. The advantages of

the frameworks are discussed, and weaker sides are pointed out. Finally, the direc-

tions for future studies are shared with the reader.
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CHAPTER 2

CARDIAC ELECTROPHYSIOLOGY

2.1 Anatomy of the Heart

The heart is a specialized muscular organ that undertakes the rhythmic contraction

process, facilitating the blood flow from the low-pressure venous side to the high-

pressure arterial side of the circulation. Pumping of the blood occurs due to the

sequential contraction of the different heart chambers and the presence of the valves

within itself. A summary of the cardiac cycle and important anatomical components

of the heart is given in this section. The human heart consists of four chambers: the

right ventricle, left ventricle, right atrium, and left atrium.

Figure 2.1: Anatomical representation of the heart [2].

The anatomical structure of the heart is depicted in Figure 2.1. The right atrium re-

17



ceives the blood returning from systemic circulation. Blood in the right atrium flows

across the tricuspid valve into the right ventricle. The right ventricle pumps blood to

the pulmonary artery, which is separated from the right ventricle with the pulmonic

valve. The pulmonary artery carries the blood to the lungs, where the oxygen con-

centration increases. Oxygen-rich blood returns to the heart by four pulmonary veins.

Oxygen-rich blood gets collected in the left atrium first. Blood then flows from the

left atrium to the left ventricle across the mitral valve. The left ventricle has a thicker

muscular wall than the right ventricle, which can generate enough pressure for blood

to reach distant parts of the body. The contraction of the left ventricle pumps the

blood across the aortic wave into the aorta, and blood is distributed across the body

through the aorta. The right and left atria are divided by interatrial septum, while the

left and right ventricles are divided by thicker interventricular septum. Another es-

sential anatomical feature of the heart is the fibrous strands on leaflets of tricuspid and

mitral waves. These fibrous strands attach to papillary muscles located on the ven-

tricular walls. During the ventricular contraction, tension is generated by papillary

muscles, which prevents valves from bulging back and leaking blood into the atria.

2.2 Electrophysiology of the Heart

Rhythmic contraction and relaxation of the heart are necessary to fulfill their funda-

mental role in pumping blood. The electrical system within the heart functions as a

control mechanism for the contraction-relaxation process. Specialized structures that

are unique to the heart generate and conduct electrical impulses. Generation and con-

duction of electrical impulses are achieved by changes in the state of ion channels of

cell membranes, the concentration of different ions across the cell membrane, and the

membrane permeability to these ions. The concentration of K+, Na+, and Ca++ ions

are the most important factors for determining potential across the cell membrane [2].

Cardiac cells can be classified into two primary groups based on their capability for

generating electrical activity. Pacemaker cells are highly specialized cells that can

depolarize rhythmically and initiate an action potential cycle. The propagation of de-

polarizing currents from adjacent cells triggers the action potential of non-pacemaker

cells. The action potential behavior of cardiac cells differs significantly from other
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Figure 2.2: Action potential comparison between a nerve cell and a nonpacemaker

cardiac myocyte [2].

types of cells within the human body. Figure 2.2 compares the action potential of a

nonpacemaker cardiac cell with a nerve cell. Action potential duration is approxi-

mately 1 to 2 milliseconds for a nerve cell and 200 to 400 milliseconds for a cardiac

myocyte. The difference proves the unique structure of the heart myocytes.

Nonpacemaker cells, such as atrial and ventricular myocytes and Purkinje fiber cells,

are responsible for the conduction of the electrical currents across the heart. Purkinje

fibers are composed of electrically excitable cells that can transmit action potential

faster than other cell types in the cardiac tissue. A cardiac myocyte is a contractable

and excitable cell that is intrinsic to the muscle structure of the heart. Electrical

changes within the myocytes initiate the contraction. The contraction of cardiomy-

ocytes generates the necessary force to pump the blood out of the heart. Figure 2.3

demonstrates the action potential stages of a ventricular myocyte and changes in the

ionic conductance across the cell membrane with respect to the conductivity of im-

portant ions. Phase 4 is the resting potential for a myocyte. Without any external

stimuli, the potential of nonpacemaker cells stays close to the resting potential. When

these cells rapidly depolarize above a threshold potential, the conductance of voltage-
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Figure 2.3: Changes of ion conductances with the action potential of a nonpacemaker

cell [2].

gated fast Na+ channels increases, and K+ conductance decreases very rapidly. As

a result of this process, Phase 0 starts. Activation of a special type of K+ channels

starts an initial repolarization named Phase 1. An increase in slow inward Ca++ con-

ductance delays the repolarization, and then the potential value of the cell enters a

plateau phase (Phase 2). Finally, the conductance of K+ and Ca++ starts to return to

the resting values, and repolarization (Phase 3) occurs. A critical characteristic of the

action potential is that the cell is inexcitable during phases 0,1,2 and some parts of 3.

The inexcitable period is called the effective refractory period.

The main group of pacemaker cells is within the sinoatrial node, which is located in

the right atrium. Specialized cardiomyocytes in the sinoatrial node set the rhythm for

cardiac contraction by repeatedly generating action potentials. Since pacemaker cells

keep generating action potentials, they do not have a true resting state. Figure 2.4
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Figure 2.4: Changes of ion conductances with the action potential of a pacemaker cell

[2].

demonstrates the action potential stages of a pacemaker cell and ion conductance for

a pacemaker cell membrane. In these cells, depolarization occurs due to increased

Ca++ conductivity (Phase 0). Depolarization response is much slower compared

to that of nonpacemaker cells. Phase 0 triggers voltage-dependent K+ channels to

open, and in return, repolarization starts (Phase 3). After the completion of Phase 3,

the internal mechanisms of the cell increase the potential back to the depolarization

threshold (Phase 0) and complete the cycle of the pacemaker cell.

Different factors can affect the electrophysiological behavior of the heart. The ner-

vous system regulates the sinoatrial node behavior and conduction of action potential

within the heart. Hormones, drugs, and environmental factors can modify the sinoa-

trial node’s firing rate and tissue conductivity.

Disruptions in the electrophysiological architecture of the heart can perturb the me-

chanical properties and potentially lead to significant health issues. Various electro-
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physiological disorders exist, and accurate diagnosis of these problems holds great

importance. The ECG is the most common and significant diagnostic tool for de-

tecting problems regarding heart electrophysiology. An ECG test is performed by

attaching sensors to specific locations on the patient’s body. A machine records the

electrical signals generated by the heart, and then the electrical activity of the heart

can be evaluated by a healthcare specialist. Infarction, different kinds of arrhythmias,

and problems in the conduction system can be detected by ECG.

2.3 Mathematical Models of Cardiac Electrophysiology

Mathematical modeling of the action potential of cardiac cells can provide signif-

icant advantages in specialized drug development, understanding heart behaviors,

and rapidly establishing a diagnosis for heart diseases. One of the first mathemat-

ical formulations of the electrophysiological behavior of a cell was proposed by Alan

Hodgkin and Andrew Huxley in 1952 [15]. The proposed model explains the intricate

ionic mechanisms that govern the initiation and conduction of action potentials in the

squid giant axon. In more recent years, various mathematical models have been pro-

posed for cardiac electrophysiology, for instance, [14, 66]. Electrophysiology models

can be classified as phenomenological models and ionic models. Phenomenological

models are simplified representations of observed phenomena based on empirical data

or observed patterns. Phenomenological models are commonly utilized to understand

underlying mechanisms that are highly complex or not discovered fully. Ionic mod-

els are mathematical representations that describe the behavior of the cell membrane

gates and the movement of ions. Ionic models also involve physically meaningful pa-

rameters such as ion concentration and cell membrane conductivity to specific ions.

These models can capture the complex interactions between ions, ion channels, and

cell membranes and can be used to describe specific cell types of regions within the

heart.

Some common phenomenological model examples include Fitzhugh-Nagumo model,

Aliev-Panfilov model, and Mitchell-Schaffer model [16, 67, 68, 69]. While Fitzhugh-

Nagumo model is generally used to simulate pacemaker cells, Aliev-Panfilov and

Mitchell-Schaffer models are used for cardiac myocytes. On the other hand, Luo-
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Figure 2.5: ten Tusscher-Panfilov model of a human ventricular cardiomyocyte [1].

Rudy, Courtemanche-Ramirez-Nattel, and ten Tusscher-Panfilov models can be given

as examples for ionic models [14, 66, 13, 70]. While Courtemanche-Ramirez-Nattel

model is designed to represent the action potential of atrial cells, Luo-Rudy and ten

Tusscher-Panfilov models are designed for ventricular myocytes. Phenomenologi-

cal models have faster performance than ionic models in general due to a lower

number of variables. However, ionic models give more physically meaningful in-

sight to researchers and higher accuracy. Details of ionic models can vary a lot,

and the number of variables in ionic models can go up to 60. In this thesis, the ten

Tusscher-Panfilov model is chosen to analyze electrophysiological behavior since this

model can reflect the most important characteristics of the action potential and pro-

vide high accuracy for the cost of an increase in the computation time. Figure 2.5

illustrates ten Tusscher-Panflov model. The model is characterized by ion concentra-

tions, cion = [cNa, cK , cCa, c
sr
Ca]

T , ionic currents, Icrt = [INa, IbNa, INaK , INaCa, IK1,-

IKr, IKs, IpK , It0, ICaL, IbCa, IpCa, Ileak, Iup, Irel]
T and gating variables, ggate = [gm,-

gh, gj, gxr1, gxr2, gxs, gr, gs, gd, gf , gxK11∞, gfCa, gg]
T . The model considers nion = 4

ion concentrations, ncrt = 15 ionic currents and ngate = 13 gating variables. The

following parts will formulate the constitutive equations for human ventricular my-

ocytes.
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2.3.1 Constitutive Equations of ten Tusscher-Panfilov Model

The ten Tusscher-Panfilov model considers ion concentrations, ionic currents, and

gating variables. The model considers nion = 4 ion concentrations defined by,

ċion = ċion(ϕ, ggate, cion) with cion := [cNa, cK , cCa, c
sr
Ca], (2.1)

where cNa, cK , and cNa are the intracellular sodium, potassium, and calcium concen-

tration, respectively, and csrCa is the calcium concentration of sarcoplasmic reticulum.

The transmembrane potential is denoted with ϕ. The (̇) symbol used over a variable

demonstrates the derivative with respect to time of that variable. Ionic currents of the

model are,

Icrt =Icrt(ϕ, ggate, cion) with

Icrt =[INa, IbNa, INaK , INaCa, IK1, IKr, IKs, IpK , It0, ICaL, IbCa, IpCa,

ILeak, Iup, Irel]
T .

(2.2)

Sodium related currents are given as INa, IbNa, INaK , and INaCa, and they induce

changes on the intracellular sodium concentration cNa. Potassium related currents

are, IK1, IKr, IKs, INaK , IpK , and It0. These currents induce changes in the in-

tracellular potassium concentration cK . Calsium related currents, ICaL, IbCa, IpCa,

INaCa, Ileak, Iup, and Irel induce changes in the intracellular calsium concentration

cCa. Finally, the currents, Ileak, Iup, and Irel lead to changes in the calcium concen-

tration in the sarcoplasmic reticulum csrCa. Channel states of the cell are associated

with ngate = 13 gating variables. The gating variables of the model are,

ġI
gate = ġI

gate(ϕ, gI
gate),

ġII
gate = ġII

gate(ϕ, gII
gate, cion),

with

gI
gate = [gm, gh, gj, gxr1, gxr2, gxs, gr, gs, gd, gf ]

T ,

gII
gate = [gxK1∞, gfCa, gg]

T .

(2.3)
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In Equation (2.3), gm, gh, gj control the fast sodium channel, gK1∞ controls the in-

ward rectifier channel, gxr1, gxr2 control the rapid delayed rectifier channel, gxs con-

trols the slow delayed rectifier channel, gr, gs control the transient outward channel,

gd, gf , gfCa control the L-type calcium channel and gd, gg control the sarcoplasmic

reticulum calcium release channel. For each ion, the classical Nernst equation,

ϕion =
RT

zionF
log

cion0
cion

with ϕion = [ϕNa, ϕK , ϕCa]
T (2.4)

can be used to calculate Nernst or reversal potential ϕion. The zion is the elementary

charge per ion, zion = 1 for singly-charged ions, and zion = 2 for double-charged

ions. In Equation (2.4) R is the gas constant, F is the Faraday constant, and T is the

temperature. The rest of the material parameters utilized in this model are given in

Table 2.2. The following part of this chapter specifies the ion concentrations, currents,

and gating variables. Currents calculated from this model define the source term fϕ

as follows,

fϕ = −[INa+IbNa+INaK+INaCa+IK1+IKr+IKs+IpK+It0+ICaL+IbCa+IpCa].

(2.5)

Table 2.1: Utilized physical units in this study.

Physical Quantity Unit Name Abbreviation

Time milliseconds ms

Voltage millivolts mV

Ionic Currents picoamperes per picofarad pA/pF

Ionic Currents Across the Membrane of the Sarcoplasmic Reticulum millimolar per millisecond mM/ms

conductances nanosiemens per picofarad nS/pF

Intracellular and Extracellular Ion Concentrations millimoles per liter mmol/L

Physical units used in the rest of this study are demonstrated in Table 2.1. Next, the

evolution of some parameters is explained in detail for the sake of completeness.

2.3.1.1 Formulations of Sodium Related Variables

In the model, the evolution of the sodium concentration is calculated with
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ċNa = −
C

V F
[INa + IbNa + 3INaK + 3INaCa], (2.6)

where fast sodium current INa, the background sodium current IbNa, the sodium po-

tassium pump current INaK , and sodium calcium exchanger INaCa current are scaled

by the membrane capacitance per unit surface area C, the cytoplasmic volume V , and

the Faraday constant F . The sodium-related currents are defined as follows,

INa =CMax
Na g3mghgj[ϕ− ϕNa],

IbNa =CMax
bNa [ϕ− ϕNa],

INaK =IMax
NaK [cK0cNa][cNa + cNaK ][cK0 + cKNa]

× [1 + 0.1245e−0.1ϕ F
RT + 0.0353eϕ

F
RT ]−1,

INaCa =IMax
NaCa[e

γϕ F
RT c3NacCa0 − e[γ−1]ϕ F

RT c3Na0cCaγNaCa]

× [[c3NaCa + c3Na0][cCaNa + cCa0][1 + ksat
NaCae

[γ−1]ϕ F
RT ]]−1,

(2.7)

where the scaling factors are the maximum fast sodium conductance Cmax
Na , the maxi-

mum background sodium conductance Cmax
bNa , the maximum sodium potassium pump

current Imax
NaK , and the maximum sodium calcium exchanger current Imax

NaCa. Addi-

tional parameters in the equations for sodium potassium pump current INaK and for

the sodium calcium exchanger current INaCa are extracellular sodium, potassium,

and calcium concentrations CNaO, CKO, CCaO, the half saturation constants cNaCa,

cCaNa, cKNa, cNaK , the sodium calcium saturation factor ksat
NaCa, the outward sodium

calcium pump current enhancing factor γNaCa, and the voltage dependent sodium

parameter c. The fast sodium current INa is characterized through a three-gate for-

mulation with τ term to reflect the time constant associated with the steady state. The

sodium activation gate takes the form

g∞m = [1 + e[−56.85−ϕ]/9.03]−2,

τm = 0.1[1 + e[−60−ϕ]/5]−1][[1 + e[35+ϕ]/5]−1] + [1 + e[ϕ−50]/200]−1]].
(2.8)

The fast sodium inactivation gate is defined by
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g∞h = [1 + e[ϕ+71.55]/7.43]−2,

τh =

0.1688[1 + e−[ϕ+10.66]/11.1], if ϕ ≥ −40,

[0.057e−[ϕ+80]/6.8 + 2.7e0.079ϕ + 3.1× 105e0.3485ϕ]−1, if ϕ < −40.

(2.9)

The slow sodium inactivation gate is defined by

g∞j = [1 + e[ϕ+71.55]/7.43]−2,

τj = [αj + βj]
−1,

αj =


0, if ϕ ≥ −40,

[−2.5428× 104e0.2444ϕ − 6.948× 10−6e−0.04391ϕ]

[ϕ+ 37.78][1 + e0.311[ϕ+79.23]]−1, if ϕ < −40,

βj =

0.6e0.057ϕ[1 + e−0.1[ϕ+32]]−1, if ϕ ≥ −40,

0.02424e−0.01052ϕ[1 + e−0.1387[ϕ+40.14]]−1, if ϕ < −40.

(2.10)

2.3.1.2 Formulations of Potassium Related Variables

The evolution of the potassium concentration

ċK = − C

V F
[IK1 + IKr + IKs − 2INaK + IpK + Istim] (2.11)

is calculated by six different currents. Inward rectifier current IK1, the rapid delayed

rectifier current IKr, slow delayed rectifier current IKs, the transient outward current,

sodium potassium pump current IK1, the plateau potassium current IpK , and the ex-

ternal stimulus current Istim govern the evolution of potassium concentrations and are

defined as follow,
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IK1 =Cmax
K1 g∞K1[cK0/5.4]

1/2[ϕ− ϕK ],

IKr =Cmax
Kr gxr1gxr2[cK0/5.4]

1/2[ϕ− ϕK ],

IKs =Cmax
Ks g2xsgxr2[ϕ− ϕK ],

INaK =Imax
NaK [cK0cNa][[CNa + cNaK ][cK0 + cKNa]

× [1 + 0.1245e−0.1ϕF/RT + 0.0.0353e[−ϕF/RT ]]]−1,

IpK =Cmax
pK [1 + e[25−ϕ]/5.98]−1[ϕ− ϕK ],

It0 =Cmax
t0 grgs[ϕ− ϕK ].

(2.12)

Scaling factors for these currents are the maximum inward rectifier conductance

Cmax
K1 , the maximum rapid delayed rectifier conductance Cmax

Kr , the maximum slow

delayed rectifier conductance for epicardial Cmax
Ks,epi, endocardial Cmax

Ks,endo, and M

Cmax
Ks,M cells, the maximum sodium potassium pump current Imax

NaK , the maximum

potassium pump conductance Cmax
pK , and the maximum transient outward conduc-

tance for epicardial Cmax
t0,epi, endocardial Cmax

t0,endo, and M Cmax
t0,M cells. The time-in-

dependent inward rectification factor g∞K1 has a significant role in the calculation of

maximum inward rectifier current IK1 and is defined as,

g∞K1 = αK1[αK1 + βK1]
−1,

with

αK1 = 0.1[1 + e0.06[ϕ−ϕk−200]]−1,

βK1 = [3e0.0002[ϕ−ϕk+100] + e0.1[ϕ−ϕk−10]][1 + e−0.5[ϕ−ϕk]]−1.

(2.13)

Steady state value and time constant for the activation gate of the rapid delayed recti-

fier current IKr are given as

g∞xr1 = [1 + e[−26−ϕ]/7]−1,

τxr1 = 2700[1 + e[−45−ϕ]/10]−1[1 + e[30+ϕ]/11.5]−1,
(2.14)

and steady state value and time constant for the inactivation gate are given as
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g∞xr2 = [1 + e[88+ϕ]/24]−1,

τxr2 = 3.36[1 + e[−60−ϕ]/20]−1[1 + e[ϕ−60]/20]−1.
(2.15)

The activation gate for the delayed rectifier current IKs is parameterized as follows

g∞xs = [1 + e[−5−ϕ]/14]−1,

τxs = 1100[1 + e[−10−ϕ]/6]−1/2[1 + e[ϕ−60]/20]−1.
(2.16)

The activation gate for the transient potassium outward current IKs is parameterized

as follows

g∞r = [1 + e[20−ϕ]/6]−1,

τr = 9.5[1 + e−[40+ϕ]2/1800] + 0.8.
(2.17)

The voltage dependent potassium inactivation gate exhibits different kinds of behav-

ior for epicardial and endocardial cells. The parameterization of this gate is given

as

epicardium

g∞s = [1 + e[20+ϕ]/5],

τs = 85e−[45+ϕ]2/320 + 5[1 + e[−20+ϕ]/5] + 3,

endocardium

g∞s = [1 + e[28+ϕ]/5],

τs = 1000e−[67+ϕ]2/1000 + 8.

(2.18)

Introduced half saturation constants in potassium related equations are cKNa and

cNaK .

2.3.1.3 Formulations of Calcium Related Variables

Calcium is a critical ion in cardiac tissue since it is an important factor in electrophys-

iological behavior and directly impacts the contraction mechanism. The evolution of

the calcium concentration is given as
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ċCa = γCa[−
C

2V F
[ICaL + IbCa + IpCa − 2INaCa] + Ileak − Iup + Irel]. (2.19)

Intracellular calcium concentration is affected by L-type calcium current ICaL, the

background calcium current IbCa, the plateau calcium current IpCa, the sodium cal-

cium pump current INaCa, the leakage current Ileak, the sarcoplasmic reticulum up-

take current Iup, and the sarcoplasmic reticulum release current Irel. These currents

are defined in the model as follows,

ICaL =Cmax
CaLgdgfgfCa[4ϕF

2]/[RT ][cCae
2ϕF/[RT ] − 0.341CCa0][e

2ϕF/[RT ] − 1]−1,

IbCa =Cmax
bCa [ϕ− ϕCa],

IpCa =Cmax
pCa cCa[cpCa + cCa]

−1,

INaCa =Imax
NaCacCa[e

γϕF/[RT ]c3NacCa0 − e[γ−1]ϕF/[RT ]c3Na0cCaγNaCa

× [[c3NaCa + c3Na0][cCaNa + cCa0][1 + ksat
NaCae

[γ−1]ϕF/RT ]]−1,

Ileak =Imax
leak [c

sr
Ca − cCa],

Iup =Imax
up [1 + c2up/c

2
Ca]

−1,

Irel =Imax
rel gdgg[1 + γrelc

sr2
Ca [c

2
rel/c

sr2
Ca ]

−1].

(2.20)

The scaling factors are the maximum calcium conductance Cmax
CaL , the maximum

background calcium conductance Cmax
bCa , the maximum plateau calcium conductance

Cmax
pCa , the maximum sodium calcium pump current Imax

NaCa, the maximum leakage

current Imax
leak , maximum sarcoplasmic reticulum calcium uptake current Imax

up , and the

maximum sarcoplasmic reticulum calcium release current Imax
rel . The long-lasting L-

type calcium channel is controlled by the voltage-dependent activation gate that has

the following formulation

g∞d = [1 + e[−5−ϕ]/7.5]−1,

τd = [1.4[1 + e[−35−ϕ]/13]−1 + 0.25][1.4[1 + e[5+ϕ]/5]] + [1 + e[50−ϕ]/20].
(2.21)

The formulation for the voltage-dependent inactive gate is

30



g∞f = [1 + e[20+ϕ]/7]−1,

τf = 1125e−[ϕ+27]2/240 + 165[1 + e[25−ϕ]/10]−1 + 80.
(2.22)

Intracellular calcium dependent inactivation gate is characterized through

g∞fCa = 0.685[[1 + [CCa/0.000325]
8]−1 + 0.1[1 + e[cCa−0.0005]/0.0001]−1

+ 0.2[1 + e[cCa−0.00075]/0.0008]−1 + 0.23],

τf =

∞, if g∞fCa > gfCa and ϕ ≥ 60 mV,

2 ms, otherwise.

(2.23)

Intracellular calcium dependent inactivation gate has two main states: no inactivation

state and incomplete activation state. Finally, the calcium-induced calcium release

current Irel is characterized by the same gate activating the L-type calcium channel.

Steady state and time constant formulation are given as,

g∞g =

[1 + c6Ca/0.00035
6]−1, if CCa ≤ 0.00035,

[1 + c16Ca/0.00035
16]−1, otherwise,

τg =

∞, if g∞g > gg and ϕ ≥ −60 mV,

2 ms, otherwise.

(2.24)

The remaining parameters in these equations are half saturation constants for plateau

calcium concentration cpCa, the sarcoplasmic reticulum calcium uptake Cup, and the

sarcoplasmic reticulum calcium release crel. The parameter γNaCa is introduced for

regularization of the sodium calcium pump current INaCa. The parameter γrel is a

weighting factor for the effect of the sarcoplasmic reticulum calcium concentration

on sarcoplasmic reticulum calcium release Irel. The total intracellular calcium con-

centration ctotcal is weighted by the γCa

γCa = [1 + [ctotcbuf ][cCa + cbuf ]
−2]−1, (2.25)
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where ctot and cbuf correspond to the total and half saturation cytoplasmic calcium

buffer concentrations, respectively.

2.3.1.4 Formulation of Sarcoplasmic Reticulum Calcium Related Variables

Evolution of the sarcoplasmic reticulum calcium concentration is defined as

ċ+ srCa = γsr
Ca

V

V sr
[−Ileak + Iup − Irel]. (2.26)

The sarcoplasmic reticulum calcium concentration is scaled by the ratio of the volume

of the cytoplasm V to the volume of the sarcoplasmic reticulum V sr. Contributing

currents are formulated as,

Ileak = Imax
leak [c

sr
Ca − cCa],

Iup = Imax
up [1 + c2up/c

2
up]

−1,

Irel = Imax
rel gdgg[1 + γrelc

sr2
Ca [c

2
rel + csr2Ca ]

−1].

(2.27)

The scaling factors are the maximum leakage current Imax
leak , the maximum sarcoplas-

mic reticulum calcium uptake current Imax
up , and the maximum sarcoplasmic reticulum

calcium release current Imax
rel . The half saturation constants are the calcium uptake

cup and the calcium release crel. Similar to the previous section, total calcium con-

centration in the sarcoplasmic reticulum is considered by summing free and buffered

sarcoplasmic reticulum calcium concentrations. This sum is weighted by γsr
Ca

γsr
Ca = [1 + [csrtotc

sr
buf ][c

sr
Ca + csrbuf ]

−2]−1, (2.28)

where csrtot and csrbuf correspond to the total and half saturation sarcoplasmic reticulum

calcium buffer concentrations, respectively.
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CHAPTER 3

NUMERICAL METHODS

This chapter will introduce the numerical methods used to solve the PDE problem.

The primary method utilized in this study is the finite element method. The finite

element method and lumping technique, which is pivotal for the proposed algorithm,

are explained in detail in the following sections.

3.1 Finite Element Method

The finite element method (FEM) is a mathematical method employed for the numer-

ical approximation and analysis of complex physical problems; see, e.g., [1, 71]. It

is a general and robust approach to real-world problems involving complex physics,

geometries, and boundary conditions. In FEM, the given domain is considered a

collection of subdomains, and these finite number of interconnected subdomains are

called elements. In each element, the governing equation is approximated by a con-

ventional variational method. The reason for seeking a solution via these elements is

that it is easier to represent a complex function as a collection of simple polynomials

[72]. It is crucial for these solutions over elements to fit with their neighbors and their

derivatives up to a chosen order to be continuous at the connecting points.

There are three important steps to obtaining a solution via FEM. Discretizing com-

plex domains reduces the problem to a collection of subdomains. Discretization can

be a major advantage since complex geometries, such as the heart, get represented

by elements with much simpler geometries. The second step is solving the problem

for quantities of interest over every element by solving algebraic equations derived

from governing equations. In the final step, solutions from every element are assem-
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bled according to their relation. Then, the assembled system is solved for the whole

domain, and interested quantities are calculated. The following section explains the

FEM formulation for the electrophysiological problem studied in this thesis.

3.2 Finite Element Formulation of Electrophysiology

The utilization of the finite element method requires the mathematical definition of

the problem intended to be solved. This study employs the finite element method

to solve for transmembrane potential ϕ in a given physical domain. Finite element

formulation for the electrophysiological problem is characterized through the trans-

membrane potential ϕ evolution in the spatiotemporal setting with

ϕ̇ = div(q(ϕ)) + fϕ(ϕ, ggate, cion), (3.1)

where the characterizing terms are flux q and the source fϕ, respectively. It is a

common practice to express the potential flux and its derivative, respectively, in the

following form

q = D∇ϕ, d∇ϕq = D. (3.2)

Here D is the conductivity tensor, which consists of isotropic and anisotropic parts.

The conductivity tensor is defined as

D = disoI+ danin⊗ n, (3.3)

where the diffusion tensor accounts for isotropic propagation diso and anisotropic

propagation dani along preferred directions n. The conductivity tensor’s anisotropic

part reflects the heart’s structural anisotropy, such as myocardial fiber directions.

Also, conductivities in the cardiac tissue can change significantly depending on the

cell types. On the other hand, the source term in (3.1) is related to the cellular re-

sponse at the micro level, and it can be described as

36



fϕ = −
ncrt∑
crt=1

Icrt(ϕ, ggate, cion). (3.4)

The ionic currents are parameterized by gating variables ggate and ion concentrations

cion. The ODE system for calculating the source term is explained in Chapter 2.3 in

detail. In this problem, the transmembrane potential is considered the global degree

of freedom in every finite element node. Gating variables and ion concentrations are

stored locally at the integration points based on the formulations in [1]. The equation

in (3.1) is discretized with finite elements in space and a finite difference approach in

time. C0-continuous finite element interpolation is chosen for the membrane poten-

tial. The expression in (3.1) is rewritten in a FEM applicable form as

Rϕ = ϕ̇− div(q)− fϕ = 0. in B. (3.5)

Rϕ is the residual term. The boundary ∂B of the domain B can be divided to two

parts as ∂Bq and ∂Bϕ. Dirichlet boundary conditions are defined as ϕ = ϕ on ∂Bϕ
while Neumann boundary conditions are defined for the flux vector as q · n on ∂Bq.
The vector n denotes the outward normal to ∂B. In this electrophysiology problem,

homogeneous Neumann boundary condition, q · n = 0, is applied along the entire

domain boundary ∂B. The equations in (3.5) are integrated over the domain with the

Neumann boundary conditions. The resulting equation is tested with a scalar-valued

test function δϕ, and with the utilization of integration by parts and Gauss theorem, it

is cast in the following weak form.

Gϕ =

∫
B
δϕϕdV +

∫
B
∇δϕ · qdV −

∫
δBq

δϕqdA−
∫
B
δϕfϕdV = 0, (3.6)

where q is the external flux applied to the boundary of the domain. Spatial discretiza-

tion is performed on the domain of interest B by discretizing the domain into de-

termined number of elements nel with subdomains Be as B =
⋃nel

e=1 Be. Trial and

test functions are interpolated with the same shape functions N in every element by

following the isoparametric concept
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δϕh|Be =
nen∑
i=1

N iδϕi, ϕh|Be =
nen∑
j=1

N jϕj, (3.7)

where nen is the number of elements and Be is the domain for each element. The

temporal discretization is performed by partitioning the time interval into subintervals

of [tn, tn+1]. To solve for the potential at the time step tn+1, the backward Euler time

integration scheme is applied to the system.

ϕ̇ = [ϕ− ϕn]/∆t, (3.8)

where ∆t is the time step. Equation (3.8) demonstrates the formulation of finite

difference approximation. Subscript (n+1) term is suppressed for clarity, and it will

be omitted for the rest of the study. With the combination of temporal discretization

and (3.6), the discrete residual can be written as follows,

Rϕ
I =

nel

A
e=1

∫
Be

N iϕ− ϕn

∆t
+∇N i · qdV −

∫
δBe

q

N iqdA−
∫
Be

N ifϕdV = 0. (3.9)

The operator, A, assembles all the element contributions from respective element

nodes. The residual is highly nonlinear in the electrophysiology problem. Therefore,

the iterative Newton-Raphson method is used in this framework. Using the Newton-

Raphson method the converged solution can be obtained by repeatedly solving the

consistently linearized system of equations. Apparently, the iterations are avoided if

the system is composed of linear equations. Derivative of the residual term with re-

spect to ϕ is needed to apply the Newton-Raphson method. Derivative of the residual

term can be given as

Kϕ
IJ = dϕj

Rϕ
I =

nel

A
e=1

∫
Be

N i 1

∆t
N j +∇N i · d∇ϕq · ∇N j −N idϕf

ϕN jdV. (3.10)

After the problem is formulated as in (3.10), the Newton-Raphon method can be

applied easily by
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ϕI ←− ϕI −
nnd∑
j=1

Kϕ,−1
IJ Rϕ

J , where I, J = 1, ...., nnd, (3.11)

where nnd is the global node number. The chemical problem is characterized through

gating variables, gIgate and gIIgate, and ion concentrations introduced in Chapter 2.3.

Their advancement in time approximated with the backward Euler method

ġI
gate = [gI

gate − gI
gate,n]/∆t,

ġII
gate = [gII

gate − gII
gate,n]/∆t, ċion = [cion − cion,n]/∆t.

(3.12)

Then, the update equations for the gating variables can be written in the form,

gI
gate = gI

gate,n +
1

τ Igate(ϕ)
[g∞I

gate − gI
gate]∆t,

gII
gate = gII

gate,n +
1

τ IIgate(ϕ)
[g∞II

gate − gII
gate]∆t.

(3.13)

It is important to note that the second group of gating variables depends not only

on the current potential value but on the ion concentrations as well. Therefore, the

second group of gating variables gIIgate are updated iteratively by local Newton itera-

tions. Gating variables control the ionic currents, which change the intracellular ionic

concentrations through,

ċion = fcion(ϕ, ggate, cion). (3.14)

Based on the Equation (3.14), the chemical problem can be written as

Rc
ion = cion − cion,n − fcion(ϕ, ggate, cion)∆t = 0. (3.15)
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More specifically, the residual for each ion can be written in the following form,

Rc
K =cK − cK,n +

C

V F
[IK1 + IKr + IKs − 2INaK + IpK + It0 + Istim] ∆t = 0,

Rc
Na =cNa − cNa,n +

C

V F
[INa + IbNa + 3INaK + 3INaCa] ∆t = 0,

Rc
Ca =cCa − cCa,n + [

C

2V F
[ICaL + IbCa + IpCa − 2INaCa]

− Ileak + Iup − Irel]γCa∆t = 0,

Rc
Ca =csrCa − csrCa,n +

V

V sr
[Ileak − Iup + Irel]γ

sr
Ca∆t = 0.

(3.16)

The algorithmic residual is linearized consistently to obtain the matrix Kc
ion ion. Re-

sidual and ion concentration vectors are arranged as Rc
ion = [Rc

K , R
c
Na, R

c
Ca, R

src
Ca ]

T

and cion = [cK , cNa, cCa, c
sr
Ca]

T , respectively,

Kc
ion ion = dcionRc

ion =


dcKR

c
K dcNa

Rc
K 0 0

0 dcNa
Rc

Na dcCa
Rc

Na 0

0 dcNa
Rc

Ca dcCa
Rc

Ca dcsrCa
Rc

Ca

0 0 dcCa
Rsrc

Ca dcsrCa
Rsrc

Ca

 . (3.17)

The matrix Kc
ion ion is used for local iterations at the integration points. For every

Newton iteration performed on the problem, the following sets are updated,

cion ←− cion − [Kc
ion ion]

−1Rc
ion,

gII
gate ←− gII

gate + fgIIgate(ϕ, ggate, cion)∆t,

Icrt ←− Icrt(ϕ, ggate, cion).

(3.18)

Once the convergence is achieved with the utilization of Newton iterations, the source

term fϕ(ϕ, ggate, cion) can be calculated from (2.5). The linearized form dϕfϕ(ϕ, ggate,-

cion) is calculated for the global Newton iteration step in the form as follows,

dϕfϕ =− [dϕINa + dϕIbNa + dϕINaK + dϕINaCa + dϕIK1 + dϕIKr

+ dϕIKs + dϕIpK + dϕIt0 + dϕICaL + dϕIbCa + dϕIpCa].
(3.19)
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The source term and its linearized form are assembled in (3.9) and (3.10), respec-

tively, and then utilized in global Newton iterations. The solution steps of the algo-

rithm are provided in Table 3.1. One significant property of this solution algorithm

is that the update formulation for gating variables differs based on whether they de-

pend on the membrane potential. Gating variables depending on the transmembrane

potential are updated with local Newton iterations, and the rest of the gating variables

are updated with implicit Euler updates for computational efficiency. Local updates

are fully implicit in the algorithmic treatment of the problem. Two nested Newton-

Raphson algorithms are embedded in the algorithm due to the highly nonlinear nature

of the problem. Notably, the number of equations, the linearization processes, and the

inversion of linearization matrices are computationally demanding steps.

Table 3.1: Algorithmic approach for the electrochemical problem of the cardiac tissue

based on finite element discretization in space and finite difference discretization in

time. Two nested Newton-Raphson iterations are employed to converge to a solution.

The membrane potential is the global degree of freedom ϕ and gating variables gIIgate,

gIIgate, and ion concentrations cion are solved locally at the integration point [1].

initialize degree of freedoms at nodes ϕ

initialize gating variables gI
gate, gII

gate

initialize ion concentrations cion

global Newton iteration

loop over all elements

loop over all integration points

update first set of gating variables gI
gate ←− gI

gate + fgIgate∆t

initialize second set of gating variables gII
gate ←− gII

gate + fgIIgate∆t

initialize ionic currents Icrt ←− Icrt(ϕ, gI
gate, gII

gate, cion)

local Newton iteration

calculate ion concentration residuals Rc
ion and local iteration matrix [Kc

ion ion] = dcionRc
ion

update ion concentrations cion ←− cion − [Kc
ion ion]

−1Rc
ion

update second set of gating variables gII
gate ←− gII

gate + fgIIgate∆t

update ionic currents Icrt ←− Icrt(ϕ, gI
gate, gII

gate, cion)

calculate source term fϕ(Icrt) and its linearization dϕfϕ

calculate element residuals Rϕe

I and element matrices Kϕe

IJ = dϕe
j
Rϕe

I

calculate global residual Rϕ
I and global iteration matrix Kϕ

IJ = dϕJ
Rϕ

I

update membrane potential ϕJ ←− ϕJ −Kϕ−1
IJ Rϕ

I
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CHAPTER 4

DEEP LEARNING

This chapter introduces deep learning, some important layer types, and the backprop-

agation algorithm. Last, the proposed model in the framework, chosen hyperparame-

ters, and the loss function are presented.

4.1 Introduction to Deep Learning

Deep learning (DL) is a subfield of machine learning that emphasizes learning in-

creasingly meaningful representations from data using numerous interconnected lay-

ers. The number of layers contributing to a model is called the depth of the model

[73]. The most prominent property of DL is that it can extract highly complex fea-

tures, unlike most machine learning algorithms. In DL, learned features are progres-

sively refined through iterative learning processes, resulting in higher-level represen-

tations of the data. These higher representations are learned by neural networks most

of the time. The term neural network is inspired by neurobiology by associating the

layers in neural networks with the nerve cells. Generally, neural networks consist of

layers stacked on top of each other. Layers of the network collaborate to transform an

input progressively into abstract representations.

In recent years, the popularity and applicability of DL have become widespread

among all scientific fields. Multiple factors have caused the sudden increase in the

usage of DL algorithms. Modern hardware has orders of magnitude more compu-

tational power than their predecessors. Fast and massively parallel chips have been

developed by companies, and their accessibility to researchers has made a consider-

able contribution to the DL field. An increase in the data acquisition technologies
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and storage capacities resulted in massive available data sets that DL models need.

Another important step is the discovery of algorithmic improvements. Many DL

concepts still used today have been known for a long time. For example, some funda-

mental concepts in DL, such as convolutional neural networks and Long Short-Term

Memory algorithm, were discovered before the 2000s. However, the critical issue

of DL, the vanishing gradient problem, has stalled the progress in the field. The

proposed improvements in the early 2010s, such as better activation functions, opti-

mization schemes, and weight initialization schemes, have significantly contributed

to this problem’s solution. These improvements have resulted in deeper and more

capable neural networks. Also, financial investments in the field have boosted the

progress. In 2011, the total venture capital investment in AI was around $19 million;

by 2014, the investment had risen to $394 million. Finally, DL tools have become ac-

cessible to large groups of people, the need for specialized equipment and significant

expertise has decreased, and the number of people studying the subject has drastically

increased [73].

DL has been observed to exhibit remarkable success across a multitude of diverse

problems. The most prominent breakthroughs of DL are near-human-level image

classification, near-human-level speech recognition, near-human-level handwriting

transcription, improved machine translation, near-human-level autonomous driving,

and the ability to answer natural-language questions. For the computational modeling

and its application in the heart, we refer to [74] and references therein.

DL can be grouped into three categories based on the applied learning technique: su-

pervised, unsupervised, and reinforcement learning. Supervised learning is defined

by its use of labeled data and training the model according to the labels to solve a

classification or a regression problem. In unsupervised learning, training data is unla-

belled, and DL algorithms focus on discovering data patterns and creating data group-

ings. Finally, in reinforcement learning, the algorithm is not explicitly programmed

to which actions it should take; instead, the model discovers the appropriate actions

by maximizing the reward based on the outcomes [75].

The DL model employed in this work is a supervised learning model. The model

predicts the action potential in the cardiac tissue at the cellular level, and therefore, it

44



can be classified as a regression problem. It should be noted that a DL model is not

comprised solely of layers that construct it. The choice of the hyperparameters, the

loss function, and the order of layers play a significant role in the performance of the

model. In the following sections, this work delves deeper into the DL environment.

The structure of the proposed model’s architecture is explained, and the proposed

model is introduced to the reader.

4.2 Deep Learning Model

In this section, fundamental aspects of the deep learning architecture will be intro-

duced, and the employed model will be demonstrated. Neurons are fundamental

computational units of DL layers. Number of neurons in each layer can go up to

thousands. Every neuron performs a specific action to its inputs. First, elementwise

multiplication is performed between inputs and neuron weights, and weighted inputs

are summed. In general, the neurons have a bias term, which is also included in the

summation. These bias terms allow shifting the sum in a specific direction and sim-

plifies the learning process. The resulting value constitutes the input value for the

neuron’s activation function. As the final step, the output of the activation function is

forwarded deeper inside the NN framework.

Figure 4.1: Structure of a neuron with the bias term [3].

In Figure 4.1, the general structure of a neuron is represented. While the xi with i =
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1, ...., n terms represent inputs, wi with i = 1, ...., n terms represent the neuron’s

weights. Also, the bias term is included as w0. Neuron has two functionalities, which

are summation and activation. The operations within a neuron can be formulated as,

output = σ(
∑
i

wixi + w0), (4.1)

where σ is the activation function of a neuron. Activation functions are crucial in a

DL framework and can be a significant factor in the learning speed and accuracy of

the model.

4.2.1 Activation Functions

The principal role of the activation function is to introduce nonlinearities to the out-

puts of the individual neurons to capture complex patterns in the data. Activation

functions impose nonlinearities and some restrictions on the outcome of the neuron.

These restrictions can include limiting neuron outcomes within specific ranges or de-

ciding if a neuron is active.

Figure 4.2: Some common activation functions [3].

Figure 4.2 represents some common activation types utilized in DL. The logistic ac-

tivation function, also called the sigmoid function, transforms the output in a range

between [0, 1], while the outcome of the tanh function is between [−1, 1]. Finally, the
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rectifier activation function, also called rectified linear unit, is one of the most pop-

ular choices for activation functions, with a minimum limit of 0 for outcome and no

upper limit. The main reason for the rectifier function’s popularity is that the deriva-

tive of this activation function does not saturate. In sigmoid and tanh functions, the

function’s derivative becomes close to 0 for the values larger than 3 and smaller than

-3. However, the derivative is a constant value for positive inputs in a rectified linear

function. This fact becomes a pivotal point in training the NNs. Once the backpropa-

gation algorithm is explained, the derivative’s importance will be more evident in the

following sections.

4.2.2 Fully Connected Layer

A fully connected layer, also called a dense layer, is a fundamental DL layer type.

Each neuron from the previous layer has direct connections to the neurons of the

ensuing fully connected layer.

Figure 4.3: A representation of fully connected layer.

All possible connections between the fully connected layer and its inputs layer are

present, as shown in Figure 4.3. This connection pattern means every input affects

the output of every neuron of the fully connected layer.
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4.2.3 Convolution Layer

Convolutional layers are specifically designed layers for processing data that have

grid-like topology. By employing kernels, the convolutional layer extracts features

from the input layer. The most important characteristic difference between convolu-

tional layers and fully connected layers is sparsity. In the convolutional layers, input

layers do not connect with every neuron of the convolutional layer. The convolution

operation is shown to be extremely successful in the DL world. Convolutional layers

leverage some distinct ideas to improve learning. They have sparse interactions be-

tween input neurons, and the same parameters are utilized for more than one function

[76].

One of the convolution’s most characteristic features is its success in extracting fea-

tures from spatial relations. The filters’ number and shape are hyperparameters that

are decided while designing a convolutional layer. Convolutional layers are generally

used together with other types of layers, such as pooling and batch normalization.

4.2.4 Recurrent Layer

A recurrent layer is specifically designed to process and model sequential or time

series data effectively. The distinguishing characteristic of recurrent layers is that they

can capture temporal dependencies. In other traditional layers, the input and output

of the model are independent from the previous inputs. In recurrent layers, however,

a dependence is achieved by incorporating recurring connections to the layer. Due to

its recurrent connection, these layers share the parameters across the input sequence.

Figure 4.4 demonstrates the structure of a recurrent layer. Hidden state variables

inside the recurrent layer are repeatedly fed back to the layer through the sequence.

In general, recurrent layers are unrolled in time to demonstrate the structure of the

layer. An adaptation of a backpropagation algorithm, the backpropagation through

time (BPTT), is used to train recurrent layers.

The process inside a recurrent layer is shown in Figure 4.5. ht−1 is the hidden state of

the previous layer, and xt is the model’s input at a given time. Merging of the paths
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Figure 4.4: Rolled and Unrolled demonstration of an RNN.

means a concatenation between vectors, and tanh is the layer’s activation function.

The terms ot is the layer’s output, and ht is the new hidden layer that will be forwarded

to the next step. One weakness of the recurrent layers is that they cannot learn long

sequences and have problems with the gradient propagation during the training phase.

Two other layers with recurrent connections are proposed to address this problem:

Gated Recurrent Units (GRU) [77] and Long Short-Term Memory (LSTM) [78].

LSTMs have multiple paths and gates within themselves. They are specifically de-

signed to learn long sequences, with fewer problems with gradient backpropagation.

The cell state c in an LSTM layer is subjected to fewer algebraic operations to ease

the gradient backpropagation. The cell state represents the long-term memory, while

the hidden state h represents the short-term memory. In Figure 4.6 ct−1 and ht−1 are,

respectively, the cell state and hidden state variables from the previous step. The op-

erations +, 1−, and× are elementwise. Additionally, the sigmoid activation function

σ takes place within the layer. The rest of the variables are current cell state ct, current

hidden state ht, input xt, and internal states ft it c̃ and ot. LSTMs are computationally

more expensive than recurrent layers. However, they can generally model longer and

more complex sequences. An LSTM layer is employed by the DL model proposed in

this study. On the other hand, GRUs are slightly modified versions of LSTMs.
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Figure 4.5: Structure of a recurrent layer.

A GRU layer has fewer gates and variables compared to LSTM. In Figure 4.7, the

structure of the GRU layer is demonstrated. The hidden state of the GRU operates

as a combination of short and long-term memories. The performance of LSTMs and

GRUs depends on the problem, while both perform better than the simplistic recurrent

layer in general.

4.2.5 Backpropagation Algorithm

Backpropagation, short for "backward propagation of errors," is an essential algo-

rithm for training DL models. Backpropagation performs an automatic differentiation

technique to complex nested functions. The popularity of the backpropagation algo-

rithm surged after the discovery of its applicability to NNs. Given an NN and a loss

function, the backpropagation algorithm calculates the gradient of the error function

with respect to the weights of the NN. Gradients are calculated from the last layers of

NN and propagated toward the initial layers through the chain rule of differentiation.

Training a NN with backpropagation follows several steps. Firstly, an error calcula-

tion function is determined. The choice of this function is based on the NN’s purpose

and the data’s characteristics. For example, a mean squared error loss function com-

putes the loss as the square of the difference between the output of the NN and the
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Figure 4.6: Structure of an LSTM layer.

actual result (label). In the forward pass, input data is passed from layer to layer, and

an outcome is obtained. A loss value is calculated with the loss functions. In the

backward pass, the backpropagation algorithm calculates the gradients of loss with

respect to the model parameters. Parameters of the model are updated in the opposite

direction of the gradient to minimize the error. In the update step, a gradient descent-

based algorithm is employed generally. By repeating these steps, the model is trained

until the error is below a determined tolerance or until the time and computation re-

strictions are exceeded.

4.2.6 Proposed Model

The model is created with the PyTorch framework. Pytorch is a machine learning

framework based on the Torch library [79]. This framework aims to accelerate the de-

velopment of machine learning models. PyTorch offers DL-specific layers, loss func-

tions, and optimization algorithms. The version of the PyTorch framework utilized in

this study is 1.12.1 with CUDA support. The parameters not explicitly mentioned in

this study are the default values from the implemented PyTorch framework. CUDA

(Compute Unified Device Architecture) is a parallel computing platform and appli-

cation programming interface created by NVIDIA. It allows developers to harness

the computational power of NVIDIA GPUs (Graphics Processing Units) for general-
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Figure 4.7: Structure of a GRU layer.

purpose computing tasks other than graphical rendering.

The proposed model in this study is demonstrated in Figure 4.8. The input of the

model has the shape of [nfeature, nsequence length, ndepth = 1]. The term nfeature is the

number of input features at each sequence step, while nsequence length represents the

length of the respective part of the electrophysiological signal. The depth of the raw

input signal ndepth is one, as only the features and sequence length are determined and

needed. The architecture of the model can be divided into three parts. The first part

consists of convolutional layers, activation functions, and dropout layers. This part is

followed by an LSTM layer to process sequential information of the signal. Finally,

three fully connected layers process the signal and output a single prediction value.

The first part with the convolutional layers functions as an autoencoder, where a com-

bination of convolutional and pooling layers encodes the input signal. The purpose of

convolutional layers is to extract intricate features and patterns from raw input data

automatically. A total of five convolution layers are proposed in the model architec-

ture. Four filters are applied to the input signal at the first convolution layer. In the

following layers, twice the number of filters applied in the preceding layer are ap-

plied. At the end of the convolution part, the depth of the forwarded input becomes

ndepth=64. The filters’ width is aligned with the input’s feature dimension, and the fil-

ters’ height is aligned with the sequence dimension. Convolution filters have a height
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of 3, which means each filter seeks patterns for sequence lengths of 3. The filters’

width is one except for the fourth layer, and the filters’ depth is equal to the depth

of the input at the current position. Filters with a width of one extract feature from

a single input, while the fourth layer combines all inputs and creates features with

information from all inputs. Each filter has a stride of one in both directions, which

means filters move without any jumps. The size of the output of a convolution layer

can be calculated for both feature and sequence dimensions as follows,

nout = [
nin + 2p− k

s
] + 1, (4.2)

where nout is the output features, nin is the input features, s is the stride size for the

kernel in the given direction, and p is the padding for input data. This model’s data is

padded with zeros in the sequence dimensions to keep nin = nout. Padding with zeros

is a generally accepted approach in the DL community. Zero padding has the benefit

of considering the last features of the input multiple times, as they carry significant

information about the state of the signal most of the time. The output of the convo-

lutional layers is forwarded to pooling layers except for the last convolutional layer.

The purpose of the pooling layers is to decrease the sequence length by keeping the

outputs of the most active neurons. Pooling filters have a stride of 2 in the sequence

dimension, meaning they halve the sequence dimension length and present a more

compact output. The outputs are forwarded to a leaky-ReLU activation function to

introduce nonlinearities after every convolutional layer. The leaky-ReLU activation

function is defined as,

LeakyRELU(x) =

 x, if x ≥ 0,

0.1x, otherwise.
(4.3)

The second part of the model has an LSTM layer. The purpose of this layer is to

process the encoded form of the signal as a time series with recurrent connections.

The most critical parameter in the LSTM layer is the number of units nhidden in the

hidden state. 400 hidden units are present in the proposed architecture for carrying the

time series information in an accurate power with necessary modeling capabilities.
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The final part of the NN consists of fully connected layers. Three fully connected

layers are stacked on each other to increase the prediction capabilities of the NN. The

number of neurons in these layers is kept relatively small compared to modern NN

models for keeping the computational load at an optimum level. While the first fully

connected layer has 400 neurons, the following layers have 200 and 100 neurons.

The last fully connected layer generates a single output. A ReLU activation layer is

present after fully connected layers except for the last layer. Since the model aims

to predict a value from an unbounded range, an activation function is absent after the

last fully connected layer.

The output of the model and label of the data are fed into the chosen loss function.

The chosen loss function in this model is the minimum squared error (MSE) loss

function,

MSE =
1

N

N∑
i=1

[yi − ỹi]
2, (4.4)

where N is the number of predicted outputs, and ỹi is the label of the input. The

gradient of the loss function with respect to model parameters is backpropagated, and

then the model parameters are updated with the Adam optimization algorithm [80].

Adam stands for ’Adaptive Moment Estimation,’ and it is an extended version of a

stochastic gradient descent optimizer. This optimizer dynamically adjusts learning

rates based on gradient moments, aiming to accelerate the decrease of the loss value

and improve the training process of the DL model.
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Figure 4.8: Architecture of the proposed model.
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CHAPTER 5

ORDINARY DIFFERENTIAL EQUATIONS AND DEEP LEARNING

In this chapter, training the DL model based on the ten Tusscher-Panfilov model

will be explained in detail. Training data are generated from the solutions of the

ten Tusscher-Panfilov model as an ODE system. The architecture of the DL model,

preprocessing, and training stages are discussed in Chapter 2.

5.1 Data Generation

The general form of the local electrophysiological problem can be described as fol-

lows,

ϕ̇+ fϕ + Iext = 0 (5.1)

in the ODE setting. fϕ is the source term resulting from the electrical response at

the cellular level, ϕ̇ is the rate of change of the potential, and Iext is the external

stimulus. The ten Tusscher-Panfilov model parameters and initial state values are

given in Table 2.2. The model can provide accurate response up to time steps as large

as 0.2 ms [1]. In this study, time step ∆t is chosen as 0.08 ms for data generation

unless stated otherwise. The initial potential value of the model ϕ0 is defined as

−86.2 mV, approximately equal to the resting potential for a cardiac myocyte in the

ten Tusscher-Panfilov model. The algorithm created for the ten Tusscher-Panfilov

model returns the value of ϕ when provided with ϕn and Iext values. This process

can be demonstrated as Tusscher(ϕn, Iext) −→ ϕ. The external stimulus Iext is the

stimulation provided to the ODE externally between [tn, tn+1]. The pair [ϕn, Iext] is
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saved to a data set for every time step. The unit for all stimuli in this section is mV/ms.

Training a DL model to capture the possible complex phenomena occurring in the ten

Tusscher-Panfilov model requires an extensively large data set. Two important model

parameters are randomly selected from uniform distributions to reflect these complex

behaviors. These are the magnitude of the given stimulus Iext and the time between

the consecutive stimuli that can generate the action potential. The given stimuli to the

model are divided into two groups.

Figure 5.1: Action Potential ϕ cycle of a cell from a PDE solution with respect to

time t on the left, and Potential Value ϕ with respect to divergence term divq in the

PDE (right).

The first group of stimuli is directly associated with the excitation of the cell. Figure

5.1 presents the potential value of a cell with respect to time and divergence term.

The data for the figure are obtained from a PDE solution in the 2-D domain with

the utilization of ten Tusscher-Panfilov model in the source term. The data point is

chosen at a central location of the domain as an exemplary point that exhibits standard

behavior. During the depolarization phase, the divergence term exhibits significant

variations; in the figure, the points in which divq deviates significantly from zero

correspond to the depolarization stage. These large variations in the depolarization

stage are considered in deciding the intervals of the Iext terms. The initial Istim1 term

is bounded between [25, 120] mV/ms values, and it is applied for the duration tstim1

within the range of [0.5, 1.25] ms. The second part of the external stimuli Istim2 is
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within the range of [−50, 50] mV/ms, and the duration tstim2 of it is within [1.25, 2.5]

ms. All the values are selected randomly from uniform distributions with the given

bounds. The process can be summarized as follows; first Istim1, Istim2, tstim1 and

tstim2 values are selected. At the first stage the stimulus Istim1 is applied until tstim1.

In the second stage, the stimulus Istim2 is applied until tstim2 and the excitation stage

is completed. A significant property for the stimuli values Istim1 and Istim2 and,

respectively, their intervals [0, tstim1] and [tstim1, tstim2] is that they do not guarantee

the initiation of depolarization, since selected stimulus values may not provide the

necessary stimulation to initiate the action potential cycle with the given magnitude

and duration intervals.

Istim1 ∼ U(25, 120) with tstim1 ∼ U(0.5, 1.25),

Istim2 ∼ U(−50, 50) with tstim2 ∼ U(1.25, 2.5),

Istim = Istim1 while t ∈ [0, tstim1],

Istim = Istim2 while t ∈ [tstim1, tstim2].

(5.2)

The equation (5.2) shows the formulation for the exciting stimuli group, where U(·, ·)
is the notation for the uniform distribution. The selected values’ intervals have been

kept as wide as possible to create a greater variety of conditions in the training of

the model. The aim of training the model in this manner is to enhance its capacity

for extrapolation. The time between the start of the exciting stimulus and the start-

ing time of the following exciting stimulus is chosen from the range [250, 320] ms.

This interval is chosen since high-frequency excitations create unique and challenging

phenomena. The model can show complex reentry behavior if the excitation occurs

shortly after the end of the effective refractory period. Moreover, the action potential

duration (APD), which is the time needed for a cell to undergo depolarization and

repolarization phases, changes with the excitation frequency. As the frequency of ex-

citation stimuli increases, the action potential duration of the cell decreases. Another

important reason for choosing this range of values is that since all possible values for

external stimuli will not start a depolarization, the interval between the consecutive

depolarization times can be larger than 320 ms. Therefore, the data set will implicitly

include two consecutive waves with large time intervals between them.
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The second group of stimuli plays the role of noise. The numerical method and preci-

sion of computation can cause noise. Also, some minor stimuli can be applied to the

model purposefully. The noise stimuli do not have a time interval; instead, they can

be introduced in any step unless an exciting stimulus is being applied. In the problem,

the noise stimuli are divided into three groups. The magnitude of the first stimulus

group ranges between [−10, 10] mV/ms and occurs with a probability of 0.5% at a

time step. The second group has a magnitude range of [−0.1, 0.1] mV/ms with a

probability of occurrence of 24.5%. The magnitude of the final group is between

[−0.001, 0.001] mV/ms with a probability of occurrence of 75%. Noise stimulus can

be shown in the following way,

Inoise1 ∈ [−10, 10] with P (Inoise1) = 0.005,

Inoise2 ∈ [−0.01, 0.01] with P (Inoise2) = 0.245,

Inoise3 ∈ [−0.001, 0.001] with P (Inoise3) = 0.750,

(5.3)

where P () is the probability of occurrence of a noise stimulus. It should be noted

that noise will be present at every time step since a minor noise is likely to occur in

a numerical solution of a PDE. The magnitude intervals for Inoise2 and Inoise3 terms

are determined based on Figure 5.1. Inoise1 values represent larger noises that can

occur due to several reasons. For example, they can result from the geometry or be

provided in the stimulation. The range interval for Inoise1 is significantly larger than

Inoise2 and Inoise3, and they do not disturb the stimulation extensively. All noise terms

are incorporated into data to enhance the robustness and reliability of the DL model.

In Figure 5.2, the initial part of the generated data set with the application of noise and

external stimuli is demonstrated. In the depolarization phase, the membrane potential

gradient exhibits a rapid ascent towards significantly large magnitudes in a very short

temporal interval. This characteristic behavior of a cell’s action potential imposes a

significant challenge in modeling and necessitates the usage of short time steps for

conventional numerical methods due to stability problems. Accurate prediction of

potentials in the depolarization phase by the NN model is a critical goal in the model

development since depolarization has major effects on the rest of the action potential

phases. However, the depolarization phase constitutes a tiny fraction of the action
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Figure 5.2: Potential values with respect to time from a frame of the data set where

only the first 8000 ms are considered.

potential cycle. This results in an unbalanced data set where the depolarization phase

is underrepresented in the data set.

The training data set is enriched by adding data that only involves potentials from the

depolarization and initial repolarization phases. These minor data sets added to the

training data are called attention sets. These attention sets are obtained by solving the

problem for short periods that are just enough to capture the third wave’s depolariza-

tion and initial repolarization with adequate history data to include in the sequence.

Figure 5.3 demonstrates the area where data points will be included in the training set

in the red box. Previous points from the red box are present in the sequence; however,

only those points inside the red box are utilized in training. Adding these attention

sets improved the overall performance for prediction and robustness of the model.

One major advantage of the DL model is that it can predict results for larger time
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Figure 5.3: Potential values with respect to time from an attention data set, the depo-

larization, and initial repolarization data are demonstrated inside the red box.
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steps in a data-driven way and is less likely to suffer from instability problems like

the numerical methods. Therefore, it is possible to utilize the DL to work with larger

time steps than the ten Tusscher-Panfilov model is capable of. In this study, unless

stated otherwise, the model is trained to predict ϕ value with time steps of 0.40 ms.

Some adjustments are applied to the data sets to achieve predictions with larger time

steps. Since the ten Tusscher-Panfilov model is solved with time steps of 0.08 ms,

external stimuli are kept constant for the model’s chosen time step, 0.40 ms, to achieve

consistency over the data sets. The process of formatting the data set in the desired

manner can be demonstrated in the following form,



I0ext ϕ0

I0ext ϕ1

I0ext ϕ2

I0ext ϕ3

I0ext ϕ4

I1ext ϕ5

I1ext ϕ6

...
...

Inext ϕm
ext



−−−−−−−−→
Adjusted Data



I0ext ϕ0

I1ext ϕ5

I2ext ϕ10

I3ext ϕ15

I4ext ϕ20

I5ext ϕ25

I6ext ϕ30

...
...

Inext ϕ
⌊m/5⌋
ext



. (5.4)

Therefore, the generated data becomes consistent with external stimuli and can be

represented by large time steps.

The training data is generally partitioned into three distinct groups when training DL

models. The first group is the training data, where the model parameters are ad-

justed according to them with the backpropagation algorithm. The purpose of the

validation set is to adjust the model’s hyperparameters, such as the optimization algo-

rithm’s learning rate, number of epochs, number of layers, and number of neurons in

each layer. Finally, the model’s final performance is measured by how well it works

with the test set since it has never encountered the data from the test set. Overfitting

is a common problem in DL since DL models can possess significant potential for

learning highly complex data. Overfitting occurs when the DL model memorizes the

training data and is not able to generalize to other data of the same problem. In this
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problem, overfitting is not a major issue since the data is generated from a structured

ODE system. A DL model’s generalization capability is assessed by its performance

on the test set. Three different data sets are created to train the proposed model in

this study. The ODE system is solved for 72000 ms for the training data set, and for

validation and test sets, the system is solved for 10000 ms. The dataset obtained from

a solution of 72000 ms is sufficient for training since it exhibits all the necessary be-

havior that needs to be learned by the model, while datasets obtained from 10000 ms

solutions are sufficient for hyperparameter adjustment and model performance anal-

ysis. Additionally, the model is solved for 1000 ms for each generated attention data

set.

Prior to training, some preprocessing is applied to raw data. The scale of the range of

the input variables differs significantly in the generated data. As a general practice in

DL, each input is standardized to have values similar in the scale. The reason for this

standardization is to prevent an input from having an unbalanced effect on the model’s

output and to ease the learning process by scaling the gradients. The standardization

is performed for every single feature value,

xi =
xi − µ

σ
, (5.5)

with µ is the mean σ is the standard deviation for the feature, and xi is the unstandard-

ized value of the feature. The mean and standard deviation values are calculated from

the training set data only without attention sets and used for standardizing the data of

attention, validation, and test sets. The last preprocessing step is creating input and

label pairs from raw data. This process can be demonstrated as follows,
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raw data =



I0ext ϕ0

I1ext ϕ1

I2ext ϕ2

I3ext ϕ3

I4ext ϕ4

...
...

Isext ϕs


(s+1)×i

−→ input =



I0ext ϕ0

I1ext ϕ1

I2ext ϕ2

I3ext ϕ3

I4ext ϕ4

...
...

Is−1
ext ϕs−1


s×i

, label =
[
ϕs

]
1×1

,

(5.6)

where s is the data sequence length, and i is the number of input features. The indices

in raw data in (5.4) are reinitialized in (5.6). Before training, input and label pairs

are randomly shuffled to prevent the model from learning from consecutive data. The

model has been trained to predict the subsequent membrane potential value at one

time step ahead when provided with past stimuli and potential values in its history as

inputs.

5.2 Training of the Model

The proposed model is trained for 300 epochs, and the model’s parameters are up-

dated with the Adam optimizer. The initial learning rate of the optimizer is 0.0001;

however, it is updated at epochs 150, 200, 250, and 275. These milestones are de-

termined by training the model and observing the change in the loss values. Once

the epoch number from one of the stated milestones is reached, the learning rate is

multiplied by γ = 0.2. The reason for decreasing the learning rate is to reduce the

chance of unexpected behavior of the model in the long term and to increase the

overall performance.

In the training, the minimum squared error loss function calculates the loss value for

each model output. Figure 5.4 demonstrates the change of loss values over epochs.

The effects of the decrease in the learning rate are visible in the figure, with sharp

declines in the loss values. Learning rates are multiplied by γ = 0.2 at the epochs

where the decrease rate of the loss starts to stagnate. During the backpropagation,
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Figure 5.4: Change of loss values with epoch number for training and test sets.

obtained gradients are clipped if they are above a certain threshold since substantial

gradient values complicate the learning process and slow it down.

The aim of the trained model is to predict the potential for an extended time period

into the future. However, using a minimum squared error loss function for a sin-

gle prediction, the model’s overall performance cannot be estimated decisively. The

model can accomplish multiple predictions into the future, but the DL model needs to

be interoperable with the PDE solver. Therefore, after every prediction, the following

prediction will be affected by feedback provided by the PDE solver, so it is imprac-

tical to predict multiple potential values for the next few time steps. In this work,

the model’s performance evaluation is achieved by comparing the consecutive pre-

dictions made by the DL model with validation and test sets. For every five epochs,

predictions of the model and the original data are plotted to give a performance esti-

mation as in Figure 5.5. Once a model makes a prediction, the output is added to the

last entry of the sequence, and the rest of the entries are shifted one step before. The
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Figure 5.5: Predicted potentials by DL model and potentials from the test set.

stimulus term for the next step is obtained from the data set, and the comparison is

completed.

The selection of the DL model is performed based on its loss value. In stochastic

gradient-based optimization, the loss values keep fluctuating, and the least loss does

not always occur at the last epoch. The loss value is measured in every step of the

training, and the prediction performance plot Figure 5.5 is also taken into consider-

ation when saving the model. The model with the minimum loss value and the best

performance in the long term is selected and saved as a Torch Script module for the

PDE problem.

Figure 5.6 shows the model’s predictions over a long time sequence, with stimuli of

random magnitudes given with random time intervals. It can be observed that the

model demonstrates the classical cardiac cell behavior at the end of effective refrac-

tory periods. If the magnitude of the external stimulus is not large enough to make
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Figure 5.6: DL model prediction over 3000 ms by providing external stimuli.

the potential value pass its threshold, the action potential cycle does not start. More-

over, the action potential duration of the cells changes with the time between action

potential cycles and the magnitude of the external stimulus. The DL model is able to

show all critical characteristic behavior of a cardiac cell in an ODE setting.
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CHAPTER 6

PARTIAL DIFFERENTIAL EQUATIONS AND DEEP LEARNING

The finite element method (FEM) has evolved from a linear structural analysis pro-

cedure to a common technique for solving nonlinear, transient PDEs over the last

decades. Solving a PDE problem in a complex domain may require enormous time

and computational power. Over the years, numerous techniques have been proposed

to enhance the performance of the FEM. Wide ranges of PDE solvers specializing in

different problems and involving numerical techniques that boost their performance

exist today. One of them is the Finite Element Analysis Program (FEAP). FEAP is

an academic FEM-based analysis program developed by Professor Robert L. Tay-

lor in the Department of Civil Engineering at UC Berkeley, and it is still actively

maintained [81]. FEAP is mainly designed to solve problems in solid mechanics;

however, its system can be extended by adding user-developed codes to solve prob-

lems in other research areas, such as fluid dynamics and thermoelectric problems. In

this study, FEAP is extended to solve the electrophysiological problem of the heart.

The operating system where FEAP is used to solve the problem in this study is Linux

Ubuntu version 20.04.

6.1 Incorporation of DL Model into FEAP Framework

The proposed DL model is trained with the PyTorch framework. Pytorch is an open-

source framework based on the Python programming language and Torch library.

Therefore, the model is created with the Python language. The source code of the

FEAP is written mainly in Fortran language. To achieve interoperability between the

PyTorch model and FEAP, trained PyTorch models are saved as Torch Script models.
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LibTorch is a C++ distribution of PyTorch, in LibTorch binary distributions of head-

ers, libraries, and configuration files depending on PyTorch provided by the devel-

opers of the PyTorch framework. Saved Torch Script models can be loaded into this

C++ API of PyTorch. Loading the model into LibTorch provides a C++ environment,

which is more suitable for working with Fortran and C languages. Interoperability

between C, C++, and Fortran languages enabled fast and efficient development of

algorithms for the focused problem.

For incorporating the DL model into FEAP, mean and standard deviation values of

the training data are saved as parameters since the predicted values of the DL model

need reverse standardization for rescaling the value back to its original scale, and the

feedback from FEAP needs to be standardized to be saved in the history of the DL

model. Before deploying the DL model, arrays with shapes matching the input of the

DL model are created for each node. Since prior information than the initial condition

on the model is generally unavailable, each array filled with resting potentials and no

stimuli values as shown,



I0ext = 0 ϕ0 = −86.2
I1ext = 0 ϕ1 = −86.2
I2ext = 0 ϕ2 = −86.2
I3ext = 0 ϕ3 = −86.2

...
...

Is−1
ext = 0 ϕs−1 = ϕ0


, (6.1)

where s is the length of sequence, −86.2 is the resting potential in mV, and ϕ0 is the

initial condition of the potential.

One crucial characteristic of this developed method is that the ϕ values can be pre-

dicted in the Graphics Processing Unit (GPU). Performing predictions on the GPU

relies on the Cuda expansions of the LibTorch framework. DL models’ performance

is much higher when computations occur in the GPU rather than the Central Process

Unit (CPU) due to GPU architecture. However, the memory of GPUs is, in general,

more limited, and an array for every node cannot be present in its memory at the same

time. During the prediction phase, nodes are loaded in batches to the GPU to navi-
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gate this bottleneck. First, a copy of a specified number of history arrays is created in

GPU, and then the model outputs are obtained. After that, the next group of history

arrays are copied to the GPU. This process is repeated until a prediction is made for

all nodes.

Once the stimulation starts, history arrays are initialized for every node, and the coor-

dination between the FEAP and the DL model is achieved by following several steps.

First, a ϕ value is predicted with the history data for every node. Then, the FEAP

solver computes a general solution by obtaining a source term fϕ from each node.

The source term is calculated as,

fϕ =
ϕ− ϕn

∆t
(6.2)

through the finite difference method. The predicted fϕ is assumed to be known priori,

and therefore the linearization of the problem is achieved. The linearization of

the problem means the model converges to a solution after a single calculation step.

Once the FEAP computes the solution by using the corrected potentials ϕc resulting

from the FEM solution, the stimulus term Iext in the last row of the history arrays is

calculated using the finite difference method,

Iext =
ϕc − ϕp

∆t
(6.3)

and corrected in the history array. The assumption is that the difference between cor-

rected ϕc and predicted ϕp potential values is caused by only the PDE’s divergence

term divq. The effects of this divergence term on the source term are taken into ac-

count by DL in the next prediction step. Therefore, the effects of divergence term on

the source terms are delayed by a single time step. Following this algorithm, the di-

vergence term of the PDE is associated with the stimulus term used in the training of

the DL model. It should be noted that the variables taken from the history array and

the FEAP solution must be on the same scale, and standardization and reverse stan-

dardization are applied to the history variables in the given equations. The proposed

algorithm can be demonstrated in the following form,
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Prediction Stage

Iext,0 ϕ0

Iext,1 ϕ1

Iext,2 ϕ2

...
...

Iext,n ϕn


Prediction−−−−−−→ ϕp,n+1

fϕ Calculation−−−−−−−−→ ϕp,n+1 − ϕn

∆t
= fϕ

Correction Stage

Step 1: FEAP (divq, External F lux, fϕ)
Correction−−−−−−→ ϕc,n+1

Step 2: ϕc,n+1
Iext Correction−−−−−−−−−→ phic,n+1 − phip,n+1

∆t
= Iext,n+1

Updated History :



Iext,1 ϕ1

Iext,2 ϕ2

Iext,3 ϕ3

...
...

Iext,n+1 ϕn+1


.

(6.4)

The FEAP (divq, External F lux, fϕ) term demonstrates that FEAP takes external

flux and divergence terms into account with the source term.

Two main reasons exist for directly utilizing ϕ values in the history arrays instead of

fϕ values. Correcting fϕ values directly from the FEAP solver is more complex and

requires checking the potential history on that node since divergence is not a direct

output. Also, if a model is trained with fϕ data instead of ϕ, it would fail in PDE

without knowledge from the primary ϕ field. Utilizing both fϕ and ϕ in the history

array is observed to be inefficient and has high computational costs. It is generally

easier for a model to learn normally distributed data. Even though the distribution

of potential ϕ values is very distinct from normal distribution, as can be seen from

Figure 6.1, they are still more structured and easy for the DL model to learn than the

fϕ values. Figure 6.2 demonstrates the ϕ and fϕ values for the same action potential

cycle.
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Figure 6.1: Histogram of potential ϕ distribution in a complete action potential cycle.

It can be observed that extreme outliers are present in the fϕ distribution with critical

importance on characteristics of action potential cycle, and training an NN for this

data is significantly more challenging.

6.2 Lumping in PDE

In the context of FEM, lumping refers to a computational technique used in matrices

and vectors arising from the PDE domain’s discretization. The computational effi-

ciency of the cardiac electrophysiology problem is examined in [71]. In this study,

different combinations of lumped approximations are studied and shown to be effec-

tive in the mono-domain problem of cardiac electrophysiology. The lumping tech-

nique’s primary purpose is to simplify the computations of matrices and vectors.

For example, in a mass matrix, element masses are redistributed onto the diagonal

of the matrix, and off-diagonal terms are neglected. This process results in a diago-

nal matrix where each diagonal entry represents the lumped term associated with the

corresponding degree of freedom. Since lumped matrices are diagonal, they are com-

putationally efficient to solve and can take less memory to store. This technique is

commonly utilized in solving dynamic problems and large-scale problems. However,
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Figure 6.2: fϕ and ϕ changes in a single action potential cycle.

lumping causes a loss of accuracy since the off-diagonal coupling between terms is

disrupted with this method. Therefore, it offers a trade-off between accuracy and

computational efficiency.

Holding the history arrays at integration points in the Gauss quadrature method can

introduce artificial stimuli when fϕ values are projected to the nodes. Therefore,

lumping can significantly improve the proposed predictor-corrector algorithm with

increased computational efficiency. The main equation of the PDE can be formulated

as,

ϕ̇− divq− fϕ = 0 (6.5)

with ignoring the external flux term for simplification. Equation (6.5) can be cast into

the residual form for each element in the following FEM form,
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re =

∫
Be

NTN
[Φe − Φn

e ]

∆t
dV +

∫
Be

BTqdV −
∫
Be

NTNfΦe dV,

ke = dΦere =

∫
Be

NTN
1

∆t
dV +

∫
Be

BTd∇ΦeqBdV −
∫
Be

NTNdΦef
Φ
e dV,

where me = NTN & ke = BTB.

(6.6)

In equation (6.6), shape functions are denoted with N, and the gradient of the shape

functions are denoted as B. In the proposed approach, only the mass matrix terms

me are lumped, and the conductivity matrix ke is kept unaltered.
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CHAPTER 7

RESULTS

This chapter examines the performance of the DL model with the proposed algorithm

under different conditions. Section 7.1 compares the effects of lumping to the non-

lumped approach in the 2D domain. Section 7.2 compares the general behavior of the

proposed DL-based algorithm with the ten Tusscher-Panfilov model-based algorithm

in different cases. In Section 7.3, a realistic 2D ventricular model is used for a PDE

solution, and results are demonstrated. In Section 7.4, the complex reentry behavior

that can occur in cardiac electrophysiology is created and solved with the DL-based

algorithm.

The simulations are performed in a Dell Inspiron machine with 16 gigabytes of DDR4

RAM and an NVIDIA GeForce GTX 1050 Ti GPU with 4 gigabytes of memory. The

device’s processor has four cores and a 2.8 gigahertz process frequency.

7.1 Effects of Lumping

The proposed algorithm is modified to a default non-lumped form. The history arrays

are still kept at the nodes of the elements; however, the returned source values to

the FEAP solver are obtained by interpolating the source values at Gauss quadrature

points, and lumping is not applied to any matrix or vector.

Figure 7.1 shows the state of potentials at different time steps of the solution. The

same DL model trained with ∆t = 0.4 ms time steps was used in both solutions. The

considered domain is 50 × 50 mm2 homogeneous cardiac tissue block discretized

into 60 × 60 four-node quadrilateral elements. The conduction tensor is assumed
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Figure 7.1: The state of potential ϕ values over the domain, provided for lumped and

non-lumped approaches at the solution time of t = 12 ms and t = 280 ms.

to be isotropic with D = disoI with diso = 1.0 mm/ms. An external flux of 120

mV/ms is applied to the nodes at the left edge of the domain, towards the center of the

domain, for 0.8 ms. Applied external fluxes managed to excite the cells successfully.

The wavefront moved through the entire domain in both lumped and non-lumped

versions. Around t = 280 ms, the repolarization of the problem being solved with

the lumped version started, while the non-lumped version still had extremely high

potential values all over the domain.

Considering the source terms at the Gauss integration points instead of the element

nodes as in the non-lumped version generated extreme stimuli values, and the DL

model could not predict correct source values. Figure 7.2 shows the potential changes

at the central nodes of both domains with respect to time. Even though the depolar-
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Figure 7.2: Potential values with respect to time from the central point from lumped

and non-lumped solution.

ization and initial repolarization are reflected in the non-lumped version, extreme

stimulus terms prevent the model from repolarizing, while in the lumped version, the

same node repolarized successfully and favorably.

7.2 Deep Learning and High Fidelity Model-Based Solution Comparison

Comparison between the solution provided by the DL-based algorithm and high fi-

delity ten Tusscher-Panfilov model is examined in several cases.

The results of a DL model, which is trained with time steps of ∆t = 0.4 ms, is

compared to the results of ten Tusscher-Panfilov model with time steps of ∆t = 0.08

ms in an ODE setting. At every 350 ms, an influx of 120 mV/ms is applied to the point

for a duration of 0.8 ms. Figure 7.3 demonstrates the results of both approaches. DL-

model shows extremely great accuracy even for an extended period of time of 5000

ms. There is an overshooting at the depolarization stage of the DL model. However,

the model successfully follows its path and readjusts itself accordingly.

A comparison between the outcomes of the DL-based algorithm and the high fidelity

model-based algorithm using the same time steps is demonstrated in Figure 7.4. An
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Figure 7.3: Potential values predicted by the DL model and the solution of high

fidelity model as ODE problems over time t = 5000 ms.

additional pooling layer is added after the last convolutional layer of the DL model,

and the sequence length of the input array is doubled to learn the action potential cycle

with time steps of ∆t = 0.2 ms since it is essential for the DL model to know about

a large segment of the wave prior making a prediction. The considered domain is

50× 50 mm2 homogeneous cardiac tissue block discretized into 100× 100 four-node

quadrilateral elements. The conduction parameter is considered diso = 3.0 mm/ms,

and only isotropic conduction is present. An external flux of 120 mV/ms is applied

to the nodes on the left edge of the domain, towards the center of the domain, for

0.8 ms. The wavefront moves faster in the high fidelity model-based solution than

the DL-based one. As a result, the repolarization of the high fidelity model-based

algorithm has happened before.

The difference between the APD of the solutions is around 20 ms based on Figure

7.5. Overall, the action potential cycle is similar, and the results of the DL-based
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Figure 7.4: Snapshots from the solutions obtained with a DL-based algorithm trained

with ∆t = 0.2 and a high fidelity model with time steps of ∆t = 0.2.

algorithm are acceptable for many applications.
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Figure 7.5: Potential values with respect to time from the central point from DL and

high fidelity model-based solutions.

Figure 7.6: Demonstration of action potential cycles for DL-based and high fidelity-

based solutions shifted to t=0 and obtained error values.

The error is defined as

ϵ =
(|ϕDL − ϕHF |)

100
. (7.1)

In error definition, ϕDL is the potential value at a given time obtained from a DL-
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based solution, ϕHF is the potential value at a given time obtained from a solution

with the high fidelity model, and 100 is a factor to normalize the error. In the rest of

this study, errors are calculated using the Equation (7.1), and the high fidelity model

is accepted as the ground truth. Figure 7.6 demonstrates the difference between the

solutions obtained from the high fidelity model and the DL-based model when the

start of the depolarization occurs at the same time. It can be observed that after the

initial depolarization stage, the error reaches acceptable levels. However, due to the

delay in the repolarization stage of the DL-based approach, the error between the so-

lutions increases to around ϵ = 0.45. After the repolarization stage is complete, both

approaches reach the resting potential value, and the error is around ϵ = 0.01. The

simulation times are around 44 minutes for the DL-based algorithm and 18 minutes

for the high fidelity model-based algorithm. It should be taken into consideration that

the time step of ∆t = 0.2 ms is close to the maximum allowed step size by the high

fidelity model and generally is not used in the simulations. In contrast, this time step

does not cause significant problems for the DL model and can be increased without

introducing convergence issues.

For high fidelity ten Tusscher-Panfilov, the step used in the original publication is

∆t = 0.02 ms [13]. Two DL-based algorithms with time steps of ∆t = 0.2 ms and

∆t = 0.4 ms are compared to the high fidelity model-based solution. The high fidelity

model-based algorithm is considered the ground truth. The considered domain is

50 × 50 mm2 homogeneous cardiac tissue block discretized into 60 × 60 four-node

quadrilateral elements. The conduction is assumed to be isotropic with diso = 1.0

mm/ms. An external flux of 120 mV/ms is applied on the nodes at the left edge of the

domain, towards the center of the domain for 0.8 ms. Wavefront in the ten Tusscher-

Panfilov model-based stimulation moves faster than in the DL-based simulations. All

three solutions excite the whole domain and repolarize around 300 ms. Accuracy

and the conduction of both DL-based simulations are very similar. The proposed

algorithm with the DL model trained with time steps of ∆t = 0.4 ms solves the

problem in 8 minutes, the model trained with time steps of ∆t = 0.2 ms solves the

problem in 15 minutes, and the high fidelity model solves the problem in 61 minutes.

The overall action potential behavior is similar in both DL model simulations, as

shown in Figure 7.8. Error analysis of the DL model trained with different time
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Figure 7.7: Snapshots from the solution obtained by DL-based algorithm with time

steps of ∆t = 0.2 ms and ∆t = 0.4 ms, and high fidelity model-based algorithm with

a time step of ∆t = 0.02 ms.

steps is presented in Figure 7.9. The APD of the DL simulations is around 25 ms

longer than the APD of the high fidelity model. APD of the DL stimulation with the

model trained with ∆t = 0.4 ms is around 5 ms shorter than the model trained with

∆t = 0.2 ms. The error increases to ϵ = 0.4 at the end of the repolarization phase for

both DL-based solutions due to increased action potential duration. At the end of the

repolarization phase, both DL-based solutions reach the resting potential, and error is

minimized. Overall, both DL models offer adequate accuracy.

Nonplanar excitation of the domain requires complex computations. Figure 7.10

shows nonplanar wave propagation in the domain simulated by a DL-based algo-
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Figure 7.8: Potential values with respect to time from the central point from DL and

High Fidelity Model simulations demonstrated in 7.7.

Figure 7.9: Demonstration of action potential cycles for DL-based and high fidelity

solution shifted to t=0 and obtained error values based on 7.7.
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Figure 7.10: Snapshots from the solution obtained by nonplanar excitation of the

domain with DL-based algorithm with a time step of ∆t = 0.4 ms and high fidelity

model-based algorithm with a time step of ∆t = 0.02 ms.

86



rithm with a time step of ∆t = 0.4 ms and a high fidelity model-based algorithm

with a time step of ∆t = 0.02 ms. The considered domain is 50× 50 mm2 homoge-

neous cardiac tissue block discretized into 60× 60 four-node quadrilateral elements.

The conduction is assumed to be isotropic with diso = 1.0 mm/ms. An external flux

of 120 mV/ms is applied to the 9 nodes at the left bottom corner towards the right

edge of the domain for 0.8 ms. DL-based simulation has managed to capture the cor-

rect wavefront propagation, with a lower wavefront speed than the high fidelity ten

Tusscher-Panfilov model with ∆t = 0.02 ms.

Figure 7.11: Potential values with respect to time from the central point from DL and

High Fidelity Model simulations demonstrated in 7.10.

The shift in the depolarization stage is observable between the nonplanar wave prop-

agation cases presented in Figure 7.11. The wavefront in the high fidelity solution

reaches the central point in the domain around 25 ms earlier than the DL-based solu-

tion. Moreover, the action potential duration of the DL-based solution is around 30

ms longer than the high fidelity model solution. After the repolarization is complete,
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Figure 7.12: Demonstration of action potential cycles for DL-based and high fidelity

solution shifted to t=0 and obtained error values based on 7.10.

both solutions stay around the resting potential value, and the error is minimal.

7.3 DL-based Algorithm Solution in Realistic Ventricular Geometry

The complex geometry of the heart’s ventricles increases the problem’s complexity.

Correct modeling of the ventricles opens the possibility of observing the mechanical

behavior of the heart and creating artificial ECG from the simulations.

Figure 7.13 demonstrates the wavefront of action potential in ventricles and potential

values over the domain. Since the Purkinje fibers are not present in this model, the

wave propagation is expected to move from the upper septum to the apex of the heart

and then to the ventricle walls. The considered ventricular tissue block has 1939

four-node quadrilateral elements. The conduction is assumed to be isotropic with

diso = 1.0 mm/ms. An external flux is applied to the nodes at the top of the septum,

with 70 mV/ms in the horizontal direction towards the right ventricular wall and 70

mV/ms in the vertical direction towards the apex for 0.8 ms. The DL-based algorithm

successfully solves the electrophysiological problem of the cardiac ventricles around

18 minutes. The time needed for ten Tusscher-Panfilov model with time steps of

∆t = 0.08 ms to solve the same problem is around 14 minutes, and for time steps
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Figure 7.13: Snapshots from the solution obtained with the DL-based algorithm with

the time step of ∆t = 0.4 ms in ventricular geometry.

89



of ∆t = 0.02, which is the recommended time step size, the problem is solved in 53

minutes.

The error analysis for wave propagation in ventricular geometry is performed by com-

puting a heart vector qheart [82]. The vector qheart is the integrated sum of the elec-

trical flux q at all points in the domain. The vector qheart can be calculated as,

qheart =

∫
B

qdV with q = D∇ϕ. (7.2)

Since an implicit finite element approach is applied in the solution, potential flux q

terms are numerically integrated with the Gauss quadrature method to obtain qheart

vector.

In Figure 7.14, the first and second components of the vector qheart are demonstrated.

Even though both DL-based and high fidelity model-based solutions demonstrated

similar overall behavior, the delay in the DL-based solution is a reason for large errors.

In Figure 7.15, components of the qheart vector obtained from the DL-based solution

are shifted in time to remove the delay. However, it can be observed that the evolu-

tion of the components obtained from the DL-based solution is significantly slower

than those obtained from high fidelity model-based solution, and more delay occurs.

Changes in the components of qheart occur in larger time intervals in the results of

the DL-based framework. Another observation is that the magnitude scale of both

components is in a similar range in both solutions.

7.4 DL-based Algorithm Solution for the Reentry Behavior

Reentry is a challenging phenomenon to model in a computational environment. It is

critically important to model reentries with the DL-based algorithm to capture differ-

ent pathological conditions that cause cardiac arrhythmia.

Figure 7.16 shows the change in potential across the cardiac tissue, imposed reentry

conditions, and reentry behavior. The considered domain is 50 × 50 mm2 homoge-

neous cardiac tissue block discretized into 60× 60 four-node quadrilateral elements.
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Figure 7.14: Change of first and second component of qheart with respect to time for

DL-based solution with ∆t = 0.4 ms and high fidelity model-based solution with

∆t = 0.08.

The conduction is assumed to be isotropic with diso = 1.0 mm/ms. An external flux

of 120 mV/ms is applied to the nodes at the left edge of the domain, towards the center

of the domain, for 0.8 ms. In addition, between the time t = 318 ms and t = 328 ms,
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Figure 7.15: Shifted version first and second component of qheart with respect to time

for DL-based solution with ∆t = 0.4 ms and high fidelity model-based solution with

∆t = 0.08.

a flux of 50 mV/ms in the direction of the right edge of the domain is given to a block

of nodes below the central point of the domain. The second flux is given to initiate the

reentry behavior at the end of the effective refractory period. The proposed DL-based

algorithm successfully captures the reentry behavior in the 2D domain.
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Figure 7.16: Snapshots from the solution obtained with the DL-based algorithm with

the time step of ∆t = 0.4 ms with the observed reentry in the domain.
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CHAPTER 8

DISCUSSION

The computational modeling of cardiac electrophysiology contributes to both the de-

velopment of new therapeutic strategies and the improvement of the existing methods.

Correct modeling of cardiac electrophysiology is essential for developing treatments

and understanding the arrhythmic behavior of the heart and dysfunctions occurring in

cardiac tissue. However, even with today’s advanced computational tools and math-

ematical methods, modeling cardiac electrophysiology still requires significant com-

putational time and resources. Therefore, there is still a vital need for robust and

efficient methods for solving the electrophysiology problem. Deep learning emerged

as a flexible tool that can easily solve scientific problems from various fields; how-

ever, its applications in computational science remain relatively limited compared to

those in other fields.

This thesis proposes a novel DL-based algorithm for solving cardiac electrophysiol-

ogy problems. The training of the DL model and its application to different kinds of

electrophysiological problems are demonstrated in this study. The architecture of the

proposed DL model is designed for fast and accurate predictions for transmembrane

potential values and utilized to model electrophysiological behavior for the first time

to our knowledge. In this work, the predictive capabilities of DL are utilized to an

extent to predict future potential values over large time steps, which are not possible

with conventional numerical models. Due to the potential field having high gradient

values, specifically in the depolarization stage, the maximum applicable time step

size to obtain a solution with numerical methods is very limited. Even with implicit

numerical methods, solving the electrophysiology problem demands relatively small

time steps to converge successfully. The proposed model is fast to train and deploy,
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and the required data can be achieved easily by solving an electrophysiology model

in an ODE setting. With the predictor-corrector algorithm, the stimulus term in the

ODE problem is associated with the flux term of the PDE, which is another novelty

in this work. The proposed approach can be easily extended to different types of

PDE problems. Moreover, the proposed DL-based algorithm transforms the original

highly nonlinear problem of electrophysiology into a linear problem with a source

term provided by the DL module.

The results in Chapter 7 show that the DL-based algorithm can easily model complex

problems. Provided solutions by the proposed model are sufficiently accurate and

in the physiologically acceptable ranges. The accuracy of the approach faces some

challenges due to an increase in the action potential duration and propagation speed of

the wavefront. However, since the proposed approach shows the main characteristic

behaviors of the action potential, it can be expected to work better with simulations

at the organ scale, such as ECG stimulations. Still, the performance of the approach

should be improved before cilinical applications since the delay in the wavefront and

increase in the action potential duration created large errors in the ventricular domain

when error analysis is performed.

The proposed algorithm decreases the computational time in the PDE setting. A

major reason for this is the linearization of the PDE problem, which is achieved by

the proposed algorithm. As a result of the linearization, a single iteration is required

for every time step in the solution stage. The gain in computational time has enormous

potential for further improvement. Recent GPUs can process the input much faster

than the GPU, which has been used for training and solving the problems in this study.

Moreover, newer GPUs have more memory and optimized architectures to allow more

predictions to be made simultaneously. Another potential for improvement is the

model itself; DL models generally always have room for optimization, which can

affect its speed enormously.

Furthermore, it is worth noting that the proposed approach can readily be applied

to the DL-based efficient solution reaction-diffusion type parabolic PDEs with highly

nonlinear source terms that are inherently nonlinear. For example, the chemo-thermal

problem of frontal polymerization can be considered as an immediate example.
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