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ABSTRACT

DEEP ENSEMBLES APPROACH FOR ENERGY FORECASTING

Engı̇nar, Onur

Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Ömür Uğur

September 2023, 104 pages

In this thesis study, we develop a novel deep ensembles based architecture that en-
ables transfer learning to reduce the time requirement of deep ensembles without
compromising the model’s accuracy. We apply our model to open energy datasets.
Moreover, this thesis compares SoTA tabular learning models with deep ensembles
and traditional machine learning models and provides a benchmark for the literature.
We further develop a feature selection algorithm based on boosted deep ensembles
model and compare it with linear feature selection models and tree-based feature se-
lection algorithms.

Keywords: Deep Learning, Energy Forecasting, Tabular Learning, Feature Selection

vii



viii



ÖZ

ENERJİ TAHMİNLEMEDE DERİN TOPLULUKLAR YAKLAŞIMI

Engı̇nar, Onur

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Eylül 2023, 104 sayfa

Bu tez çalışmasında, model performansından ödün vermeden derin toplulukların (deep
ensembles) zaman gereksinimini azaltmak için transfer öğrenmesini kullanarak ye-
nilikçi derin topluluklar (deep ensembles) modeli geliştirilmiştir. Geliştirilen model
açık veri setlerine uygulanmıştır. Ayrıca, bu çalışmada, derin topluluklar (deep en-
sembles) modeli, literatürde tabular öğrenmeye özel geliştirilmiş güncel modeller ile
kıyaslanarak sonuçları raporlanmıştır. Son olarak, derin topluluklar (deep ensemb-
les) tabanlı öz-nitelik seçim algoritması geliştirilerek, bu yöntem doğrusal öz-nitelik
çıkarma modelleri ve ağaç tabanlı öz-nitelik çıkarma modelleri ile kıyaslanmıştır.

Anahtar Kelimeler: Derin Öğrenme, Enerji Tahminleme, Tabular Öğrenme, Öznitelik
Çıkarma
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CHAPTER 1

INTRODUCTION

Energy forecasting is a long-studied subject with various subdomains, including de-

mand forecasting, generation forecasting, and energy price forecasting. These prob-

lems arise mainly for two reasons. First, energy companies aim to minimize uncer-

tainties. Second, system operators and market authorities set rules to regulate en-

ergy transmission and sustain energy markets efficiently. Both energy companies and

authorities rely on accurate energy forecasts to securely maintain their operations.

Probabilistic forecasting is more informative on managing risks since it provides in-

formation about how point forecasts might deviate.

Current studies use machine and deep learning models in forecasting tasks. A deep

ensemble model [95], which efficiently approximates predictive uncertainty, is a

promising approach for energy forecast tasks [39, 101, 102, 93]. Deep ensembles

generates results by averaging the collection of neural networks as base learners.

In applications, the number of base learners is usually small and is between 5-10.

Increasing the number of base learners increases the model accuracy, yet doing so

makes the application of deep ensemble model computationally complex. To solve

this, in Chapter 4, we propose a novel deep ensembles architecture that sufficiently

reduces time requirements by using transfer learning.

Contributions of Chapter 4 are the following: We investigate ensemble methods in

machine learning and deep learning literature and their probabilistic applications. We

propose a parallelizable transfer learning enabled deep ensemble model that runs sig-

nificantly faster than plain deep ensembles and generates distributional equivalent

prediction with deep ensembles and extensively test it on energy datasets, which are
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tabular learning tasks and provide statistical results. When trained with a sufficient

amount of base learners, the boosted deep ensemble model generates normally dis-

tributed predictions when using mse as a loss function where using negative log-

likelihood hurts point forecasting accuracy. We see that decorrelated predictions are

insufficient to generate a superior model; instead, leaving out poor-performing base

learners generates superior forecasts.

As energy forecasting is a subclass of tabular learning, we investigate SoTA tabu-

lar learning models [80, 3, 128] which are dominantly based on transformer archi-

tecture, and compare those models with XGBoost, a well-known machine learning

model, a plain CNN model and deep ensemble model in Chapter 5. We see that the

deep ensembles, the CNN model, and Xgboost beats SoTA transformer-based tabular

learning models are well suited for load forecasting tasks. Ensembling with XGBoost

significantly boosts the performance of each model. We further inspect embedding

space with the t-SNE algorithm [152] and perform a model ablation study by which

we conclude transformer-based models are not able to represent categorical and nu-

merical features as embeddings and hence result in poor performance.

Due to the transformer architecture, tabular learning models could extract features

from the dataset. In order to contribute to explainable AI, we develop a feature selec-

tion framework for the deep ensemble model in Chapter 6. We integrate variable drop

and variable permutation feature importance algorithms into the deep ensembles and

test the accuracy of those algorithms against benchmark models.

The remainder of this thesis study is organized as follows. Chapter 2 introduces

various use cases of the machine and deep learning in the energy domain. Chapter 3

defines supervised learning models, tabular learning, and literature on tabular learning

and sets notation used therein. In Chapter 4, we develop the boosted deep ensemble

model. In Chapter 5, we thoroughly analyze energy load forecasting and benchmark

SoTA tabular learning models compared with CNN, XGBoost, and deep ensembles.

In Chapter 6, we build and test a feature selection framework based on the deep

ensemble model. Finally, we provide a brief discussion and conclusion in Chapter 7.
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CHAPTER 2

USE CASES OF MACHINE & DEEP LEARNING MODELS IN

ENERGY

Digital transformation of energy has excelled in recent years, and as a result, the

energy sector has become a sensor-rich environment. Through IoT devices, an enor-

mous amount of data is being collected in databases, and naturally, machine and deep

learning algorithms are applied to those datasets. This section introduces prominent

use cases of machine and deep learning in the energy sector.

2.1 Energy Forecasting

Forecasting-based energy use cases such as generation, demand, and price forecasting

are to be briefly introduced in the sequel.

Energy Generation Forecasting

Accurate prediction of renewable power generation is required and beneficial for en-

ergy market participants such as energy generators, trading companies, dispatchers,

and system and market operators. The system operators need accurate predictions

to manage the reserve and to maintain the grid operations securely. Accurate and

reliable predictions of renewable power generation are essential for electricity trans-

mission and are also essential for competitive renewable energy supply. Moreover,

accurate predictions allow utilities favorable trading performance on the electricity

markets. In literature, there are mainly three methods, namely physical models, sta-
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tistical models, and machine learning models and their combinations to perform wind

power predictions. Generally, data-driven wind power forecasting is performed via

numerical weather prediction (NWP), which is used as input variables to map wind

plant generation. NWP is provided from spatially close points to the turbines as zonal

and meridional components of winds, and necessary calculations are made from NWP

data such as wind speed and direction. Generally, more than one point is selected for

each turbine to ensure the wind profile is met for specific locations. However, this

might result in redundant input variables for the model.

Electricity Load Forecasting

Energy demand/load forecasting is crucial and sometimes vital for governments and

private companies. Government agencies use long-term demand forecasts to plan

economic growth efficiently; thus, they can create social benefits. Moreover, banks

and financial institutions utilize long-term forecasts for investment valuation. Pri-

vate companies, such as energy distribution companies and system operators, require

long-term and short-term forecasts to minimize their losses and maximize system

operation security. Load forecasting is complex due to dependency on the quality

of weather forecasts, exhibiting nonlinearity and multi-seasonality and social factors

like holidays. Load forecasting deals with the prediction of energy demand in differ-

ent periods. Depending on the time scale, load forecasting can be categorized into

three types: long-term, medium-term, and short-term forecasting. Short-term load

forecasting is considered for predicting the system load for one hour to one week,

medium-term demand forecasting is for one week to one year, while the long-term

load forecasting requires performing longer than one year. Moreover, very short-term

load forecasting, 15 minutes to 1 hour, is usually made in smart grids to manage peak

demand. In general, long-term load forecasting deals with power system planning re-

quired by government agencies; medium-term load forecasting deals with generation

expansion planning and bilateral contracting. Short-term forecasting, on the other

hand, is vital for maintaining the real-time operation of the power systems.
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Electricity Price forecasting

Markets are the physical or non-physical places where sellers and buyers come to-

gether to exchange the goods (money, asset, commodity, or physical deliverable) they

already have or do not have (i.e., future markets) with money or other goods. In finan-

cial markets, buyers and sellers interchange financial assets via mostly online tools;

no physical delivery is required at the end of transactions. However, in electricity

markets, sellers are required to deliver electricity physically. Also, electricity markets

are different from financial markets in how they are operated in a daily setting. In

day-ahead markets, market participants buy and sell electricity for the following day,

and prices are determined each hour daily. After the day-ahead market closure, the

auction in the balancing market starts to eliminate real-time imbalances in supply and

demand in distribution. Then, the intraday market bridges the gap between the day-

ahead and balancing markets, by a continuous auction in which buyers and sellers can

trade one hour before delivery.

The electricity market has become increasingly complex and dynamic in recent years,

with many factors affecting prices. These factors include changes in demand and sup-

ply, the integration of renewable energy sources, and the increasing use of distributed

generation. Accurate forecasting of electricity prices is crucial for a wide range of

stakeholders, including electricity generators, distributors, and even consumers. It

can help power companies make informed decisions about generation and purchas-

ing, and hence, enable consumers make more informed choices about their energy

usage.

As new technologies and renewable energy opportunities emerge in electricity mar-

kets, managing market price risk in electricity day-ahead markets has become more

challenging since hedging opportunities fall short. Therefore, forecasting electricity

prices is the foremost important tool for market price risk management in electricity

day-ahead markets.

Machine and deep learning models have recently become considerably popular in

electricity price forecasting. Traditional statistical methods, which have been used

for electricity price and load forecasting for a long time, are still used as bench-
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mark models for performance comparison. Recently, interest in energy forecasting

literature has shifted towards hybrid and ensemble models. These models are a com-

bination of statistical and machine learning models; hence, they can produce more

accurate forecasts than the individual one. However, in the related literature, there is

no sound consensus on models which produce more accurate forecasts.

2.2 Optimization in Energy

As in many theoretical and practical fields, optimization becomes not only crutial but

also handy.

Electricity Management Systems

An energy management system (EMS) is a tool for monitoring, optimizing, and con-

trolling energy use in buildings and industrial facilities. EMS helps to reduce energy

consumption, improve energy efficiency, and minimize the environmental impact of

energy used in buildings.

In recent years, the increasing availability of sensor data, IoT devices, and the de-

velopment of deep learning techniques have led to integrating deep learning methods

into EMS modeling. Deep learning models could accurately predict energy demand

or energy generation, and these predictions are used as inputs to optimize the energy

supply in real-time, which helps to reduce energy costs.

Deep reinforcement learning emerges as one of the main methods to improve the abil-

ity of EMS to control and optimize energy usage. For example, deep reinforcement

learning could be used to learn the optimal way to control building heating and air

conditioning (HVAC) systems to optimize energy usage.

Battery Optimization

Battery technology is one of the fastest-growing emerging technologies in energy.

Batteries store energy generated by renewable power plants, enabling excess energy
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whenever needed, including selling in the energy market or for self-use. Moreover,

battery technology reduces the share of fossil fuels and makes the grid sustainable. In

addition, the integration of battery technology into the grid makes it more efficient,

reliable, and stable. Since batteries could be employed when there is grid instability

or outages/disruptions, deep reinforcement learning is crucial in optimizing stored

energy utilization. An agent could be trained to enable the acquisition of optimal

strategies for managing battery charging and discharging in energy systems. By do-

ing so, deep agents could determine the most efficient times to charge and discharge

batteries, aiming to minimize energy costs and maximize the utilization of renewable

energy. Furthermore, deep reinforcement learning is employed to optimize battery

energy use while considering additional constraints, such as grid stability and envi-

ronmental impact. For example, reinforcement models could also be trained to strike

a balance between battery usage and utilization of other energy sources to minimize

greenhouse gas emissions.

Energy Trade Optimization

The optimization problem of buying and selling the produced energy, which includes

energy types diesel generation, natural gas, and renewable sources like solar and wind

power, to minimize costs or maximize profits is called energy trade optimization. It

also extends to optimizing energy exchanges between diverse geographic regions or

participants in the market. Leveraging sophisticated optimization methodologies, en-

ergy trade optimization empowers energy producers, consumers, and traders to make

well-informed decisions, thereby reducing costs associated with energy transactions.

Traditional optimization techniques typically rely on predefined rules and constraints,

which may hinder their adaptability to dynamic market conditions. In contrast, deep

reinforcement learning facilitates more flexible and adaptive decision-making by en-

abling deep agents to learn from experiences and make choices based on the most

up-to-date information. This empowers the deep agent to make precise and advanta-

geous decisions regarding energy trading. Deep reinforcement learning also presents

the potential for integrating multiple objectives and constraints into energy trade op-

timization. In the energy market, various objectives compete, such as cost minimiza-

tion, profit maximization, and environmental impact reduction. By employing deep
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reinforcement learning, multiple objectives and constraints are incorporated simul-

taneously, making decisions that optimize the balance among these factors. Conse-

quently, this enhances the efficiency and effectiveness of energy trade optimization.

Asset Management

Energy asset management is a strategic process of planning, coordinating, and over-

seeing the operation and maintenance of energy assets, which include a wide range of

equipment, such as power plants, transmission networks, renewable energy sources,

and energy storage systems. The main objective of energy asset management is to op-

timize the value of an organization’s energy assets by ensuring their efficient, secure,

and economical operation. Machine and deep learning models handle these tasks by

predicting an asset’s lifespan and cost. Unsupervised learning models, on the other

hand, could provide an asset management framework as well.

2.3 Various Other Use Cases

Apart from the cases described above, there are various other energy use cases, and

possibly, cannot be classified into a single categorization.

Energy Disaggregation

Energy disaggregation, or non-intrusive load monitoring (NILM), involves breaking

down a household’s electricity usage into specific appliance-level consumption data.

This is especially useful for helping households understand and manage their energy

use more efficiently, an essential aspect of sustainable energy policy. While various

approaches, including hidden Markov models and non-negative matrix factorization,

have been used to address the problems in NILM; a growing literature on supervised

modeling with deep neural networks (DNNs) may be particularly effective at identify-

ing the energy usage of different appliances. Moreover, clustering methods efficiently

detect resistive subloads such as heaters and boilers.
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Predictive Maintainance

Predictive maintenance uses mathematical models and the data generated from power

plants to predict equipment failure times or require maintenance, which helps asset

owners prevent equipment failures, reduce downtime, and improve a system’s over-

all reliability and performances. Apart from the deterministic mathematical models,

deep learning methodology has become one of the main tools for the performance

measure and condition of equipment in a renewable power plant. This includes data

on equipment temperatures, vibrations, and other performance metrics. Deep mod-

els predict equipment failure times or require maintenance, allowing for proactive

maintenance and repairs. Moreover, specific neural networks with autoecoders could

detect and analyze anomalies within renewable power facilities. To illustrate, these

models can be trained to collect patterns within data that signal equipment malfunc-

tions, enabling faster and more precise identification of the problems. This proactive

approach can effectively minimize operational disruptions and enhance renewable

power plants’ overall dependability and efficiency.

Solar Fault Detection

Solar generation fault detection deals with identifying and diagnosing problems of a

solar power generation system. This includes detecting problems with solar panels,

inverters, and other system components. Fault detection is essential for ensuring a

solar generation system’s efficiency and reliability. It can also help prevent downtime

and reduce the risk of equipment failures. Both supervised and unsupervised learning

methods are employed in solar fault detection. Supervised classification models are

applied also to anomaly labels in order to detect faults. Even further, clustering, as

unsupervised learning models, helps detect faulty clusters as well.

Power Quality

Power quality problems deal with various challenges that could impact the quality of

electrical power customers receive. These problems arise from various sources, such

as equipment failures, inadequate power supply infrastructure, or natural disasters.
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The consequences of power quality problems are diverse: equipment malfunction

or failure decreased efficiency of electrical systems, and heightened vulnerability to

power outages are some to mention. Commonly encountered power quality issues

include voltage fluctuations, power surges, power sags, and harmonics. Anomaly

detection models with machine and deep learning have become popular tools for de-

tecting power quality issues.
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CHAPTER 3

A REVIEW ON SUPERVISED LEARNING

Based on data availability, supervised learning is one of the most used learning algo-

rithms. It generates a linear or nonlinear mapping between input and output datasets.

Throughout time, complex architectures have been proposed by researchers [40].

Deep neural networks (NN) have been proven to achieve state-of-the-art results in

a wide range of tasks, including image and video processing and speech recogni-

tion [135, 55]. In essence, neural networks are nonlinear systems for approximating

some unknown functions over a parameter set. Even though numerous studies on tab-

ular learning models have been proposed, no dominant structure such as Res-Net [67]

emerged in image detection. Tabular data is used in many fields, such as medical

records of patients, companies’ financial records, or producers’ manufacturing logs.

Results from Kaggle competitions with tabular data suggest tree-based boosting algo-

rithms are shown to be superior against deep learning models [11]. The work in [86]

states that tabular data tasks are the last “unconquered castle” for deep neural network

models.

This section sets the notation and defines well-known deep learning models and tradi-

tional machine learning algorithms used in tabular datasets. Further, we give literature

on deep learning for tabular datasets.

3.1 Notation

In this section, we will be considering a regression problem, on pairs (Xi, Yi) where

i = 0, 1, . . . , n where input Xi ∈ Rd and output Yi ∈ R with the function of in-
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terest f(x) = E[Y |X = x]. As base learners on pairs (Xi, Yi), we define ĝi(·) for

i = 0, 1, . . . ,m. We consider decision trees for bagging and boosting, and consider

shallow neural networks with three or less dense layers having 8 neurons at maximum

for deep ensembles.

3.2 Machine Learning Models for Tabular Data

In this section, we introduce briefly the machine learning, tree based boosting and

bagging models, used in learning tasks with tabular datasets.

Decision Tree Regression (DT)

Decision tree [50] regression that creates a tree like structure based on decision rules

is the model that breaks the input space into subsets so that the weighted average

of standard deviation of the subsets is smaller than that before the partition. When

partition is completed, algorithm creates a tree composed of decision nodes and leaf

nodes. Decision nodes are the nodes that at each node input space is partitioned and

the resulting nodes are the leaf nodes where no further partition is required. Algorithm

converges when there is no further gain in the standard deviated left or maximum

depth of the tree is reached.

Bagging

Bagging (bootstapped aggregation) method reduces the instability of the estimator;

that is it reduces the variance of an estimator. Bagging is an ensemble algorithm

based on randomly resampling from original dataset and fitting a base procedure,

usually decision tree or a simple function, to generate a number of estimators and

then averaging. As meta-algorithms, the estimators result in a final estimate. See

Algorithm 1. It is a very straight-forward method and usually performs quite well in

applications.
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Algorithm 1: Basic Bagging Algorithm
Input: Bootstrapped datasets D = {d1, d2, . . . , dM}, model g to be fit

Output: Prediction of random forest

for m← 1 to M do
fit base model g on train set of dm

end

return Average of predictions on test dataset

Random Forest Model

Random forest regression [71] is one of the most popular bagging methods, which

resamples data with replacement to create bootstrapped series and, for each of these

series, it randomly drops some of the input features with uniform probability and fit

a decision tree in order to create decorrelated trees. Then, the algorithm averages the

results over those bootstrapped series.

Boosting

Unlike bagging algorithm, which could be run in parallel, boosting algorithm, runs

sequentially, to minimize a given loss function, iteratively by fitting base learners.

Gradient Boosting Trees (GBDT)

Gradient boosting regression [65] is a boosting model that fits a decision tree to resid-

uals from previous base learners, and works in a sequential order to improve results

from base learners.

Consider a GBM with M stages; where for each stage m, we define g(x) base learner

which is then fitted to em = y−Fm(x), where Fm is the boosting model at step stage

m and the goal is minimize the squared loss function via gradient descent algorithm.

More formally, for {xi, yi} in the training set, we define

F (x) =
M∑
i=1

gi(x) + g0,
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where gi some base learner g0 is the constant and ψi is the weight to be determined.

Starting with a constant model g0; at each step m, we compute

Fm(x) = Fm−1(x) + fm(x)

where

fm(x) = argminf

N∑
i=1

L(yi, Fm−1(xi) + f(xi))

Support Vector Regression (SVR)

Support vector regression [30] sets the decision line which minimizes the error terms

which are out of the ϵ neighborhood around the decision line. For a given training set

of {xi, yi}, we can define SVR as a optimization problem:

minimize
1

2
||w||2 + C

N∑
i=1

(ξ+ + ξ−)

subject to

yi − ϕ(wxi)− b ≤ ϵ+ ξ+

ϕ(wxi) + b− yi ≤ ϵ+ ξ−

ξ+, ξ− ≥ 0 and i = 1, . . . , N,

where ϕ is a hyper-parameter which could be linear, polynomial of radial basis func-

tion, maps input space into lager space, C is the cost function, ξ+ and ξ− positive and

negative error respect to ϵ neighborhood.

K-Nearest Neighborhood Regression (KNN)

KNN [49] regression is a non-parametric model which calculates the average of the

k-nearest elements, based on some distance function defined, as regression output.

Algorithm is quite straight forward. First, for each element, using a distance function

(Euclidean, Manhattan, etc.) distances to other elements are calculated and sorted in

14



ascending order. Then, based on predetermined number k, the average is calculated

based on these nearest k elements.

3.3 Deep Learning Models

In this section, we define the fundamental structure of deep learning models, such as

multilayer perceptron (feed forward neural network), convolutional neural network

(CNN) and recurrent neural network (RNN). We also introduce the tabular learning

and related literature.

Feed Forward Neural Networks (FNN)

Feed forward neural network [119] is a differentiable layered structure that maps

input space into larger space by passing it through layers with nonlinear activation

functions and finds the set of parameters Wi,l, where index i stands for the input i and

l stands for the layer l, by minimizing the squared loss function via gradient descent

algorithm.

Consider the data {xi, yi} in the training set with n elements and a network with a

single hidden layer, say h1, with a single node n1. We define a simple neural network

ŷ = h1(z
1),

where z1 =
∑n

i=1w
1
1,ixi +w1

1,0 and h1 differentiable transformation. Now consider a

network with two layer and with two node, we have

ŷ = h2(z
2),

where z2 =
∑2

i=1w
j
2,iz

j + wj
2,0forj = 1, 2 and zj =

∑n
i=1w

j
1,ixi + wj

1,0 and h2

differentiable transformation. This layered structure could be generalized into l layers

with nl nodes at each layer l. Using gradient descent algorithm, the squared loss

function is then minimized with respect to the weights wn
l .
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Convolutional Neural Network (CNN)

Convolutional neural network [96] is a powerful tool for image processing and classi-

fication, video recognition tasks. It is a sub-model, belongs to neural network family.

Similar to multilayer perceptron, CNN is a layered structure, and at each layer it

convolves input space with filters to extract features from it and thereby generates

results.

Recurrent Neural Network (RNN)

Recurrent neural network, [113] is a class of neural networks for processing sequen-

tial data, which are used for modeling complex relations within the data sequences

and prominently used for prediction tasks by scholars [55]. RNN, as the name sug-

gests, recursively processes the previous values of the input series as a nonlinear

transformation from input space to future of the input space:

ŷt+1 = f(ht, yt)

ht = g(yt)

where functions f and g are the nonlinear transformations of the RNN model and ht

is the states generated by the model where t = 1, . . . , T. and T is length of recurrent

window.

3.3.1 Tabular Learning

Generally, datasets could be categorized as structured (heterogenous, tabular) and

unstructured (homogenous). Tabular data is characterized by heterogeneous fea-

tures with mixed input types collected from various sources integrated into relational

databases. For example, consider data instances of purchase interaction of an indi-

vidual with an e-commerce website. Structured data from this interaction could be

as follows: demographic information, information on the frequency of the visits and

interaction with the website, and date-related information about their visit. Collected

data might have different types, such as categorical and numerical variables. Numeri-

cal data might be highly skewed or clustered, or some might need to be more reliable

16



(e.g., answers to survey questions). A structured (heterogeneous) dataset is a data

collection organized for easy searching, analyzing, and processing. Structured data

has a form of rows and columns where each row represents a single record. These

records contain a set of fields (columns) containing a value. This dataset type is used

in business intelligence applications such as data mining to generate insights from

datasets. Also, they can be used for analyzing recent trends and making predictions;

they are also suitable for reporting and visualizations. Some examples of structured

data include: customer records, product inventories, financial data, and sensor data.

Pros. Easily used by machine learning (ML) algorithms: due to its specific archi-

tecture, structured datasets are easy to query and manipulate; thus, these datasets

could be easily used with machine learning models. Easily used by business users:

structured data is easy to interpret and understand. A basic understanding of the data

allows users to understand data easily. Accessible by more tools: since technologies

for collecting unstructured datasets are premature relative to structured datasets, more

tools are available for structured datasets.

Cons. Limited use: the flexibility and utility of data with a fixed format are con-

strained to the purpose for which it was developed. Limited storage options: data

storage systems with a rigid schema (such as "data warehouses") are often used to

save structured data. As a result, changes in data needs to entail an update of all

structured data, resulting in a significant investment of time and money.

Data collections without a predefined data model are called unstructured (homoge-

nous) datasets. These datasets can be found in text, audio, images, and video formats.

It is more challenging to work with unstructured data because of its ambiguous for-

mat. Also, since it lacks a predefined format, and hence, it is hard to search and

analyze. The amount of unstructured data in the world is growing exponentially. It

is estimated that 80% of all data created today is unstructured. The increasing use

of mobile devices, social media, and the Internet of Things drives this growth. Some

examples of unstructured data are: emails, social media posts, images, and audio files.
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Pros. Native format: Until it is required, unstructured data is unclear when pre-

served in its original form. Because of its adaptability, the database’s file formats

may be expanded, expanding the data set and enabling data scientists to prepare and

analyze only the data they are interested. Rapid data accumulation: Data can be ac-

quired quickly and easily because it is unnecessary to characterize it beforehand. Data

lake storage: Lowers costs and makes scaling easier by allowing for large storage and

pay-as-you-go pricing.

Cons. Requires expertise: due to the undefined/non-formatted nature of unstruc-

tured data, preparation and analysis of such data require knowledge in data science.

Data analysts benefit from this, but non-expert business users who may not fully

understand specialist data concerns or how to use their data are alienated. Needs spe-

cialized tools: specialized tools are required to process unstructured data, restricting

the range of products available to data managers.

What are the key differences between structured and unstructured data? It is consid-

ered more valuable in business applications since it is easier to search, analyze, and

generate insights from structured data. For example, companies could use structured

datasets to analyze trends and take necessary actions. For example, a database of

customer records can be easily searched to find all customers who live in a partic-

ular city or have purchased a specific product. Even though it is richer in content,

unstructured data takes time to comprehend quickly. For example, a text file of cus-

tomer reviews would be difficult to find all reviews mentioning a particular product.

Structured (quantitative) data provides a "birds-eye view" of consumers, whereas un-

structured (qualitative) data provides a more in-depth insight into client behavior and

purpose. The main difference is the way that data is organized. Since a structured

dataset has a predefined model, it is organized to be used easily. Also, structured

data is easy to fetch and manipulate, usually via SQL queries, due to its storage type.

Unstructured data is generally stored in a file since files are a more general-purpose

way to store data. Files could store any type of data, including structured and un-

structured. Sources of structured and unstructured data differ as well. The primary

sources of structured data could be GPS data, sensor data, web forms, server logs,

ERP data, and OLTP systems. Email messages, word-processing documents, PDFs,
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and IoT devices are sources for unstructured data. Both datasets are easy to use in

ML applications. Structured data is plain to use in ML applications since it has a

structure that complies with easy model fitting. On the other hand, unstructured data

generally requires more preprocessing and run time to fit. Generally, forecasting or

classification is the main purpose of using structured data in business applications.

Image detection, audio or video processing, or text generation is the main usage of

unstructured datasets. Both have challenges, such as sometimes it is hard to generate

insights from structured datasets and it requires more resources to use unstructured

datasets in ML modeling.

Table 3.1 below summarizes the key differences between structured and unstructured

data:

Table 3.1: Summary Table for Data Structures
Feature Structured Data Unstructured Data
Organization Organized in a way that makes it easy to search and analyze Not organized in a way that makes it easy to search and analyze
Sources GPS sensors, online forms, ERP data, web server logs, OLTP systems email messages, word-processing documents, PDF, IOT devices
Data model Predefined No predefined
Storage Typically stored in a relational database, data warehouses Often stored in a file or in NoSQL databases
Form Tabular form, generally numbers and values sensors readings, text files, audio and video files
Examples Names, addresses, phone numbers, dates, product SKUs Text, images, audio, video, social media posts, emails
ML Usage Easily used with ML algorithms. Mainly used in image processing and NLP models.
Usage Usually used in forecasting and classification tasks Image recognition, text generation, video processing.
Challenges Can be difficult to extract meaning from Can be difficult to store and manage

Deep Learning and Tabular Data

Deep learning models are proven successful on common data modalities such as im-

age, audio, text, and video [135, 55]. Tabular data modeling is dominated by machine

learning methods, such as extremely gradient-boosted decision trees (XGBoost) [26],

which have superior performance over deep learning models. The main problems

with tabular datasets are the following: poor signal-to-noise ratio and, therefore, this

make developing a high-performance model challenging in considering missing input

values, feature redundancy, and noisy measurements.

Recent literature could loosely be divided into two: the first looks for an answer

to why deep models underperform against tree-based ensemble models; the other

proposes new deep architectures to prove that deep models could perform better as

tree-based ensembles. Nevertheless, there are some problems with the research in

evaluating the model performance on tabular data stated by [13]. There is no stan-
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dard benchmark for evaluating tabular data learning methods. However, this gives

researchers much freedom to choose the datasets and evaluation metrics that best

showcase their methods.

Additionally, most tabular datasets are small compared to other machine learning

benchmarks, such as ImageNet [33], which makes it hard to compare different meth-

ods, as the results can be unreliable. This, along with other factors like unequal

hyperparameter tuning efforts, makes it challenging to replicate machine learning re-

sults. The work in [12] provides a comprehensive literature survey on tabular data and

states the related open questions and concludes that tree-based models outperform

deep learning models on tabular learning tasks and that progress on deep learning

models for tabular data is stagnating. Also, in [58] it is stated that neural networks

struggle to fit nonsmooth target functions and that redundant features adversely affect

MLP-like architectures, while the GBDT model is unaffected by such issues. Fur-

thermore, in [138], various deep learning models are proposed for tabular data with

XGBoost model. The results reveal that XGBoost outperforms most deep-learning

techniques across all datasets. Another important point is that XGBoost requires

far less hyperparameter adjustment to work effectively, which is a big advantage in

many real-world circumstances. The attempts with diverse ensembles are noteworthy:

When deep neural networks are paired with XGBoost, the best results are obtained.

The work in [86] proposes a new method for regularizing neural networks, called

“cocktail regularization,” which involves searching for the optimal combination of

13 different regularization techniques for each dataset. They evaluate the proposed

method on 40 tabular datasets and show that it can significantly improve the perfor-

mance of neural networks, even when compared to state-of-the-art specialized neural

network architectures and traditional machine learning methods.

In recent literature, a growing number of deep architectures have been proposed for

tabular data tasks. Below are some of these.

TabNet [3] selects which attributes to infer from each decision step by employing

sequential attention. Using the network’s learning potential for the most crucial char-

acteristic enables greater interpretability and more effective learning.

GrowNet [5] architecture for gradient boosting employs shallow neural networks as
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“weak learners,” in which the output of the previous layer of the current iteration is

added to the initial input features at each boosting step. The following weak learner

is trained to utilize this enhanced feature set by boosting the most recent residuals.

Tree Ensemble Layers [66] introduce a new layer as “Tree Ensemble Layers,” con-

sisting of an ensemble of differentiable decision trees. Because of the soft routing

capabilities of these trees, a sample can be routed in either direction in various ways.

Soft trees become differentiable as a result, enabling gradient-based learning.

TabTransformer [80] transforms categorical characteristics into dimensional embed-

dings by utilizing self-attention-based transformers. Transformer blocks, shown to

produce reasonably precise accuracy, may then be fed with these embeddings.

Self Normalizing Neural Networks (SNNs) [91] propose a unique activation function

that has self-normalizing features and are used in Self Normalizing Neural Networks

(SNNs), which are neural networks that self-normalize. These activations tend to zero

mean and unit variance even in noise and disturbances.

The Neural Oblivious Decision Ensembles (NODE) [128] provide a novel layer-wise

structure comprising differentiable oblivious trees. These trees are decision tables

that divide the input into segments and compare each to a learned threshold. Back-

propagation is then used to teach NODE from beginning to conclusion.

In [56], authors provide a broad overview of the deep architectures for tabular data and

set a baseline for tabular learning by proposing two new structures: The first model

inspires the from model developed in [67]. The latter is an adaption of the transformer

model proposed by authors, which performs better than most of the Sota models on

tabular learning tasks. Proposed models are compared against current architectures on

various tasks using the same training and tuning methodologies. They also compare

the Sota tabular learning models with XGBoost and fail to find a uniformly superior

solution.
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CHAPTER 4

BOOSTED DEEP ENSEMBLES: A NOVEL ARCHITECTURE

BASED ON DEEP ENSEMBLES

In this chapter, we propose a novel structure that uses transfer learning and reduces

the time complexity of deep ensembles. Using various energy datasets, we show

proposed model generates predictions which are statistically equivalent that of deep

ensemble model. Authors of the original paper state that using mse as a cost function

underestimates predictive uncertainty. However, using nll as a cost function nega-

tively affects the model’s accuracy. We further see that if the number of base learn-

ers increases, the predictive distribution could be sufficiently approximated without

compromising accuracy while using mse as a cost function. We provide robustness

results by changing the structure of the model and that of base learners as well. As

ensembling theory states that using decorrelated ensemble members ensures mini-

mizing total variation, we observe that ensemble members with inaccurate prediction

hurt model performance. Simply, leaving those ensemble members with the worst

performance out of the ensembling increases accuracy.

4.1 Introduction

The training process of neural networks depends on minimizing/maximizing proper

cost function with respect to its parameters using gradient-based algorithms. While

the architecture might differ among applications, the stochastic gradient algorithm

(SGD) is the common ground within these applications. Stochasticity is induced by

random initialization of parameters and mini-batch learning during training. With a
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noisy dataset and poor initialization of parameters, SGD might still converge to a local

minima, but results in poor performance. Furthermore, in practice, the same network

structure with different parameter initialization is expected to converge to different

local minima since deep networks typically never converge to global minima [79].

However, this could be exploited by using an ensembling strategy to produce better

and generalized results [64].

Neural network ensembles have been widely studied and applied in machine learn-

ing [92, 126]. Ensemble models are used for increasing the stability of the predictions.

However, these methods can also be exploited to generate prediction uncertainty. ML-

based decision support systems must deliver uncertainty of the output (predictive

intervals) to provide meaningful and integrated information. In many applications,

standard deep learning approaches produce overconfident probabilistic forecasts [59].

Since many practical applications of such systems require uncertainty bounds and un-

certainty estimation becomes a critical issue. However, it is still an open question and

challenging as the works [51] and [95] state.

Bayesian neural networks (BNN) are the primary tool for estimating uncertainty; NNs

are unsuitable for this task. Bayesian models are computationally complex and thus

require long times in standard computer CPUs, even considering the increasing com-

putational performance of modern GPUs. The benefits of ensemble models are not

limited to increasing generalization performance; they allow Bayesian modeling and

model calibration. Using variance decomposition or minimizing for negative log like-

lihood [89]. Moreover, deep ensembles allow for parallel computation and overper-

form BNNs in uncertainty estimation while requiring significantly less computation

power [122, 95] and [60].

The power of ensembling methods is due to diversity by initializing randomly the pa-

rameters of each neural network in the ensemble or bootstrapping the dataset. How-

ever, authors of [95] state that bootstrapping can even hurt the performance of en-

sembles; random initializing is in general sufficient for generating diversity among

base neural networks. However, we observe that when base networks are initialized

randomly, some ensemble members converge to poor local minima that produce in-

accurate predictions and, therefore, reduce the ensemble’s performance. Thus, it is
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necessary to leave those with poor performance out from the ensemble using a vali-

dation set approach.

Boosting is another mechanism for ensembling; instead of running a number of mod-

els, it sequentially fits a base model to residuals of the previous base model until con-

vergence. This idea is similar to pre-built transfer learning in deep learning literature.

In the boosting mechanism, it is assumed that each model transfers the knowledge of

the previous one to the successor model, and the successor adds to this knowledge

by fitting a base model to residuals. Using this insight, we propose transfer learning-

enabled deep ensembles called boosted deep ensembles that run base neural networks

in clusters, and in each cluster, models are sequentially fit to the same training set

by transferring the knowledge from previous base neural networks, and hence, reduc-

ing epoch number to decrease run time which could easily be executed in parallel.

Moreover, by using a validation set, we select the top n best-performing models to

calibrate the ensemble to increase predictive accuracy while deteriorating uncertainty

performance.

Contributions of this chapter are fourfold: first, we investigate ensemble methods in

machine learning and deep learning literature and its probabilistic applications. Then,

we propose a parallelizable transfer learning enabled deep ensemble model that runs

significantly faster than plain deep ensembles and generates distributionally equiv-

alent prediction deep ensembles. Moreover, when trained with a sufficient amount

of base learners, boosted deep ensembles generate normally distributed predictions

when using mse as a loss function, whereas using negative log likelihood hurts point

forecasting accuracy.

Finally, we see that decorrelated predictions are insufficient to generate a superior

model; instead, leaving out poorly-performing base learners generates superior fore-

casts.

4.2 Background

Ensemble methods have been a long-studied topic in machine learning models. In the

literature, there are several ways that combine different models, considered as weak
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or base learners. We focus on bagging and boosting methods, which build our pro-

posed model. Tree-based methods such as random forest [14] and gradient boosting

trees [134] are well-known examples of bagging and boosting methods, respectively.

Another class of models, deep ensembles, uses network architectures as base learners.

These models are shown to be superior over BNNs over quantifying uncertainty [95],

in addition to the requirement of the computational cost of deep ensembles, which are

significantly lower.

The theoretical foundation of ensemble learning with neural networks has been estab-

lished back in the 1990s. The studies in [92, 126] provide theoretical and empirical

evidence that decorrelation across member models can boost ensemble performance,

basically by averaging sets right individual errors from base models. There are two

strategies to generate decorrelated base learners: randomly initializing each base neu-

ral network or training on bootstrapped series. The main idea behind deep ensembles

is that each base network converges to different local minima, which then generate

predictors with various characteristics; thus, combining those base models generates

better results. In order to see how powerful simple averaging ensembling could be,

we define

gbem(x) =
1

M

M∑
i=1

gi(x) = ḡ(x)

and error ei = y − gi(x) for each of the M methods in the ensemble. Then, expected

mean squared error ϵi = E[e2i ] is used to calculate the average mean squared error,

which is,

ϵ̄ =
1

M

M∑
1

E[e2i ].

It is easy to see that mean squared error of gbem is

ϵgbem =
1

M

M∑
i=1

E[ei]2. (4.1)

Rearranging (4.1) as
1

M

M∑
i=1

E[e2i ] +
1

M2

∑
i ̸=j

E[eiej]

and assuming that the ei are mutually independent with zero mean, we have:

1

M2

M∑
i=1

E[e2i ] =
ϵ̄

M
; (4.2)
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and thus,

lim
M→+∞

ϵgbem → 0. (4.3)

This result implies that, as number of base model increases, mean squared error de-

creases. That proves how simple ensembling, in theory, increases stability and the

accuracy of the model.

Moreover, using bias-variance trade off, we can prove that expected mean squared er-

ror of ensemble bounded by average of expected mean squared error of base learners;

this implies that it is always favourable to use ensemble models.

Variation of each base learner gi(x) from ensemble ḡ(x) as follows:

ai(x) = E[ḡ(x)− gi(x)],

and average variation as

ā(x) =
1

M

M∑
i=1

E[ḡ(x)− gi(x)]2. (4.4)

We further define individual base models expected predictive variation from each base

model as

ϵi = E[(y − gi)2],

and predictive variation of ensemble as

ϵens = E[(y − ḡ)2].

Adding and substracting y to (4.4), we get

ā(x) =
1

M

M∑
i=1

E[ḡ(x)− y + y − gi(x)]2

with some algebra, which leads to

ā(x) =
1

M

M∑
i=1

ϵi − ϵens.

Moreover opening the summation and setting ϵ̄ = 1
M

∑M
i=1 ϵi, we obtain

ā = ϵ̄− ϵens, (4.5)

which directly implies that ϵens ≤ ϵ̄, meaning that, total variation of ensemble model

is smaller than average of variations of base models. Moreover, we can observe that,
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as ā variation of base learners increases predictive variation of ensemble ϵ̄ decreases.

Together with (4.3), these strong results state that, decorrelation of base learners is

crucial in model ensembling. In literature, bootstrapping and model training with

random initialization is the core methods for generating diversity amongst base learn-

ers. However, in [53] and [95] it is stated that if necessary randomization is generated

through random initialization, bagging is unnecessary. The explanation by [53] states

that, the models could only see 63% of unique data in dataset. Therefore, it reduces

generalization power of base models and hence reduces that of ensemble. Since,

ensembling methods are computationally expensive, the work [79] proposes another

ensembling approach by saving parameters of a single model during training pro-

cess and then combining these snapshots. It uses cyclic learning rate as α(t) = f(

mod (t−1, [T/M ])), where f is strictly decreasing function to converge local minima

faster. Snapshot model reports that snapshot ensemble methods outperforms models

such as Resnet, and DenseNet.

4.3 Deep Ensembles

Deep ensembles, shown to be promising alternative for both regression and classifica-

tion tasks with tabular datasets [95], are simply inspired by bootstrapping. Randomly

initializing M base neural network or training M neural network with bootstrapped

series, we get deep ensemble estimate of y simply taking average over the base learn-

ers. As we have a list of pairs {ŷi, σ̂2
i }Mi=1, the mean estimate ŷDE is simply

ŷDE =
1

M

M∑
i=1

ŷi. (4.6)

In [95] authors use negative log likelihood as a cost function:

L(y) =
1

D

M∑
i=1

log σ2

2
+

(yi − ŷ)2

2σ2
. (4.7)

4.3.1 Model Structure of Deep Ensembles

The model structure is plain and simple in deep ensembles. Running in parallel the

M models and averaging them will generate deep ensembles. See Algorithm 2. In
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application, each base model is randomly initialized for training on the same training

set; then, model averaging is performed on the test set. The critical part is that, as we

showed, also by [92, 126], that the number of decorrelated models decreases as the

mean squared error goes to zero in theory. The primary strategy for generating decor-

related models is random initialization of model weights. However, we observe that

this strategy weakens the model performance of deep ensembles as some elements of

the ensemble converging to poor local minima, deteriorating the ensemble estimates.

Thus, deep ensembles require model selection on the validation set, for example, by

choosing top-performing base models or hill climbing method [19].

Algorithm 2: Deep Ensembles Algorithm
Input: Dataset D, base neural netowrk g to be fit

Output: Prediction of deep ensembles

for m← 1 to M do
fit base model gi with initialized randomly parameters θ on train set of D

end

return Average of predictions on test dataset

Uncertainty Quantification with Neural Networks

Accurately estimating uncertainty is the backbone of a reliable machine learning

model as a decision support system. Since neural networks are overconfident in un-

certainty estimation, which may lead to catastrophic application problems [68, 131].

Classical Bayesian inference requires complex computations for calculating posterior

distribution, which is usually infeasible in the production environment. Deep ensem-

bles are shown to be a good candidate for this problem as well [95]. Uncertainty is

usually considered in two categories: reducable and unreducable uncertainty. Below,

we discuss the types of uncertainty and estimation uncertainty with ensembles.

Epistemic Uncertainty. Epistemic uncertainty, which could be reduced with addi-

tional data, refers to model uncertainty caused by ignorance or lack of knowledge

about the data-generating process. Therefore, it could be reduced by observing ad-

ditional data. It is governed by employing alternative models for the data-generating

process.
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Aleatoric Uncertainty. Aleatoric uncertainty cannot be reduced by observing ad-

ditional data, which is the natural randomness of the process itself. Noisy data mea-

surements or lack of technology that could measure the actual values is the reason for

this uncertainty. Therefore, it could not be reduced by simply observing additional

data.

Bayesian Inference.

As it is known, most machine learning models generate point forecasts as a single pre-

diction using a stochastic gradient descent algorithm. These models do not consider

the data (aleatoric) and model (epistemic) uncertainty. However, Bayesian models

deal with uncertainty by introducing prior and posterior distribution of model param-

eters, unlike point forecast models. This procedure is called Bayesian inference.

In Bayesian Inference, we have

p(W |Y,X) =
p(Y |X,W )p(W |X)

p(Y |X)
, (4.8)

whereW is the weight parameters of neural network, X, Y input and output variables

correspondingly. p(Y |X,W ) is likelihood of Y given X,W , and p(Y |X) is prior

distribution. Marginalizing over W ,

p(Y |X) =

∫
Ω

p(Y |W,X)p(W |X)dW. (4.9)

We obtain predictive distribution y∗ for given x∗ as

p(y∗|x∗) =
∫
Ω

p(y∗|W,x∗)p(W |x∗)dW. (4.10)

However, in most cases, posterior p(W |Y,X) is analytically intractable, thence one

needs, for instance, variational inference such as Markov chain Monte Carlo (MCMC).

Even this formalism often requires long computational times and therefore is infeasi-

ble in production environment. Thus, ensemble models might be considered a simple

alternative of Bayesian inference.
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Uncertainty Estimation with Monte Carlo Dropout Method

In [51] it is shown that variational inference for posterior P (Y |X,W ) could be ap-

proximated with a simple function q∗(W |X) by Monte Carlo dropout method which

randomly switches off weights in each layer during both in training and test stages.

This procedure could be done by fitting a neural network minimizing cost function

L on dataset with length D where L is defined as in (4.7) with dropout layers after

each weight layer and performing dropout both during training and test periods. This

neural network outputs a list of pairs (ŷ, σ̂2) for each element in the test set. Monte

Carlo inference is performed by forward passing of the neural network M times. Af-

ter performing, we have {ŷi, σ̂2
i }Mi=1, a set with M pairs, each generated by random

sampling from posterior q∗(W |X). Using this we have,

Ep∗ [y
∗|X∗] =

∫
Ω

y∗p(y∗|W,x∗)p(W |x∗)dW
MC
≈ 1

M

M∑
i=1

ŷi, (4.11)

the right-hand side of which is Monte Carlo dropout estimate:

ŷMC =
1

M

M∑
i=1

ŷi. (4.12)

For the variance estimation of y, we use the total law of variance:

Var(y|x) = Var[E(y|W,x)] + E[V ar(y|W,x)], (4.13)

where first term corresponds to epistemic uncertainty and second term represents

aleatoric uncertainty. Using (4.13), Monte Carlo estimate of Var(y|x), denoted by

σ̂2
yMC

, is computed as

σ̂2
yMC

=
1

M

M∑
i=1

(ŷi − ŷMC)
2 +

1

M

M∑
i=1

σ̂2
i . (4.14)

This corresponds to (4.13) as follows

Var[E(y|W,x)] = 1

M

M∑
i=1

(ŷi − ŷMC)
2 (4.15)

and

E[Var(y|W,x)] = 1

M

M∑
i=1

σ̂2
i . (4.16)
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Uncertainty Estimation with Deep Ensembles

As previously defined, having M base estimates, we have a list of pairs {ŷi, σ̂2
i }Mi=1,

and following [51], the variance estimate σ̂2
yDE

of y becomes

σ̂2
yDE

=
1

M

M∑
i=1

(ŷi − ŷDE)
2 +

1

M

M∑
i=1

σ̂2
i , (4.17)

where

ŷDE =
1

M

M∑
i=1

ŷi. (4.18)

Hence, as in (4.13) we have

Var[E(y|W,x)] = 1

M

M∑
i=1

(ŷi − ŷDE)
2 (4.19)

and

E[Var(y|W,x)] = 1

M

M∑
i=1

σ̂2
i . (4.20)

4.3.2 Boosted Deep Ensembles

Deep ensembles, or in general model ensembling, produces superior predictions over

individual models. The main reason is that having multiple models smoothens the

errors of an individual model. However, the main downside of deep ensembles is

that fitting M models instead of a single model requires a longer computational time.

When M gets significantly large, such as 1000 or more, the required computational

time becomes infeasible for the production environment. If base models are shallow

networks, parallelization could manage this problem since each M base model runs

independently. Nevertheless, depending on the problem, using shallow neural net-

works as base learners could be problematic in terms of generalization. Therefore,

arrangements regarding reducing the required time to train the base models, such as

decreasing the number of layers or epochs, might yield problematic consequences.

In order to keep base neural networks relatively large, reducing the number of epochs,

which might affect the learning process of neural networks, is the primary option.

There is a trade-off between epoch number and computing time. However, by trans-

ferring the weights among base neural networks, the model we propose allows us
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to reduce epoch numbers and thus reduce computational time while preserving the

model accuracy of base models. As we mentioned before, relatively complex models,

which require longer computational time, make the production process troublesome

in terms of system load. Thus, it is crucial to have models that run faster in the

production environment. We propose a model based on deep ensembles that runs

significantly faster than plain deep ensembles while preserving accuracy, even im-

proving it slightly. The proposed model runs in parallel on the number of clusters

for base learners. A group of base neural networks boosts consequent base learner

by weight transfer and we drop the epoch number as weight is transferred through

base models; this leads to reducing time requirement significantly while preserving

accuracy. Optionally, weights from a warm-up model could also be used as initializa-

tion for clusters trained on bootstrapped datasets to generate decorrelated predictors.

Hence, on a validation set, we choose top performingN base models and calculate the

boosted deep ensembles predictor by simply taking the average. Pseudocode for pro-

posed algorithm is shown in Algorithm 3 and an illustrative schema of the structure

of the method is presented in Figure 4.1.

Algorithm 3: Boosted Deep Ensembles Algorithm
Input: D = {d1, d2, . . . , dC} base neural network g to be fit, initial

parameters θ∗ from warmup base model, C, N

Output: Prediction of deep ensembles

for c← 1 to C do

for n← 1 to N do
fit base model gc,n with initialized parameters with θ∗c,n−1 on train set

of dc

Reduce number of epochs
end

end

Sort base models in ascending order based on predictive performance

criterion on validation set

return Average of top N base models on test dataset
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Figure 4.1: Model Structure of Boosted Deep Ensembles

Let us give an example of our proposed model by considering a deep ensembles model

with a 100 base learner, each running 200 epochs for training. The corresponding

structure, shown in Figure 4.1, of the boosted deep ensemble for this example is

as follows: We first run a warm-up base model and save its parameters. We then

generate 25 clusters and 25 bootstrapped training datasets. Each cluster has four

base models, which run consequently by transferring parameters from the previous

model. For training, initializing first base learners of each cluster, optionally with a

warm-up base model, and transferring the parameters to consecutive base learners,
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we divide the number of epochs by the square of the cluster level to reduce the time

requirements. For example, after fitting the first layer of the clusters, i.e., the first

25 base models, in the second layer, we divide the number of epochs by 22 = 4.

Consequently, we divide the number of epochs by 32 = 9 in the next cluster level,

and this process continues until the last cluster level. Finally, we get all predictors,

and by evaluating them on a validation set, we pick the top best performingN models

to calculate the average in order to generate ensemble results.

4.3.3 Complexity of Boosted Deep Ensembles

In this section, we analyze and compare the computational complexity of deep ensem-

bles and boosted deep ensembles. Since neural networks are composed of multiple

matrix operations, we can calculate the complexity of a 3 layer neural network with a

number of nodes i, j, k respectively in each layer and having t training size as follows:

Given two matrices Mij and Mjk, we have O(ijk) for matrix mutiplication. For the

feed-forward pass, we have matrix multiplication for going from layer i to j:

Sjt = WijZit,

whereWij is the weight matrix between the input layer and next layer andZit contains

dataset. We have O(ijt) for this operation. Then applying f elementwise,

Zjt = f(Sjt),

which is O(jt). In total, for this operation, we have

O(ijt+ jt) = O(ijt).

Now, iterating through layer j to k, we have

O(ijt+ jkt) = O(t(ij + jk).

For the backpropagation algorithm, starting from layer k to j, we have the derivative

of the error signal Ekt as

Ekt = f ′(St)⊙ (Zkt −Okt),
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where Zkt is the model predictions and Okt is the output data. Note that ⊙ is an

elementwise operation. The complexity of such an operation isO(kt)+O(kt). Then

computing derivatives of Dkj ,

Dkj = EktZtj,

requires O(ktj) operations. For the weight update we have,

Wkt = Wkj −Dkj,

which is O(kj). Then for this totally we have,

O(kj(t+ 1)) = O(kjt).

Similarly, going backwards from j to i, with exact same steps we have,

O(ijt).

In total, we have

O(t(ij + jk)),

which is equal to feed-forward propagation. Thus we have,

O(t(ij + jk)).

finally having e epochs at hand requires

O(et(ij + jk)).

Therefore, it is easy to calculate that, deep ensembles model with M base neural

networks with 3 layers, the complexity is

O(Met(ij + jk)). (4.21)

Having M base learner, with c clusters computational complexity of boosted deep

ensembles model is

O
(
M

c
et(ij + jk)

)
. (4.22)

Indeed, the computational effort for training a boosted deep ensemble is obtained by

summing the number of computation in each clusters, which is
c∑

n=1

M

c

e

n2
t(ij + jk). (4.23)
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Thus, in order to show that boosted deep ensemble has less computational complexity,

we need to show
c∑

n=1

M

c

e

n2
t(ij + jk) ≤Met(ij + jk). (4.24)

Since, we have the trivial identity that

c∑
n=1

1

n2
≤ 1 +

∫ c

1

1

x2
dx, (4.25)

in which the integral can easily be calculated as∫ c

1

1

x2
dx = 1− x−1

∣∣∣∣c
1

= 2− 1

c
≤ 2. (4.26)

Therefore, the relation in (4.24) becomes

Met(ij + jk)

c

c∑
n=1

1

n2
≈

(
2− 1

c

)(
Met(ij + jk)

c

)
. (4.27)

Equivalently, we have that(
2− 1

c

)(
Met(ij + jk)

c

)
≤ 2

Met(ij + jk)

c
≤Met(ij + jk), (4.28)

for c ≥ 2. We note that minimum cluster number is 2 by definition of boosted deep

ensembles. Thus, we obtain

O
(
M

c
et(ij + jk)

)
≤ O(Met(ij + jk)). (4.29)

4.4 Experiments on Public Datasets

We run experiments on three publicly available energy datasets to compare the ac-

curacy and time spent fitting each model defined in the experiment section. Datasets

are available in Kaggle datasets [87]. First dataset [81] contains four years of en-

ergy demand and weather data for Spain. Energy demand data is retrieved from

ENTSO-E [46], a public portal for Transmission Service Operator (TSO) data. As

an input variable, weather data is retrieved from the Open Weather API [121] for the

five largest cities in Spain. However, to be concise, we run experiments with variables

from Valencia. This dataset is used in following papers [4, 130, 133]. Energy demand

(Load forecasting) forecasting is an important task for energy market participants. In
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general, temperature and demand values of previous days are dominant variables for

predicting demand in the next days. The Tables below 4.1, 4.2, 4.3 summarize the

variables and dataset:

Table 4.1: Variables of Load Dataset
Target variable Total actual load

Weather variables Humidity
Rain probability

Temperature
Maximum Temperature

Wind Speed
Calendar Variables Days of week

Hours of day
Lagged Variables 24 hour

Table 4.2: Descriptive Analysis of Load Dataset
Total Load Humidity Rain probability Temperature

count 34946 34946 34946 34946
mean 28695.0174 65.0957 0.0345 290.8064

std 4572.1340 19.6831 0.2640 7.2237
min 18041 8 0 268.8306
25% 24809 51 0 285.15
50% 28900 67 0 290.25
75% 32188 82 0 296.15
max 41015 100 12 311.15

Table 4.3: Descriptive Analysis of Load Dataset
Maximum Temperature Wind Speed Lag 24 Lag 1

count 34946 34946 34946 34946
mean 291.3807 2.6926 28698.8335 28696.5231

std 7.5126 2.5794 4574.9796 4572.5696
min 268.8306 0 18041 18041
25% 285.75 1 24808 24810
50% 291.15 2 28902 28901
75% 297.15 4 32194 32188.75
max 314.82 133 41015 41015

The second dataset is the Texas wind dataset, which consists of hourly wind genera-

tion and related weather variables time-series, simulated using the National Renew-

able Energy Laboratory (NREL) software for a location in Texas, US [129]. This
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dataset is used in following papers [143], [106] and [111]. Accurate wind forecast-

ing is crucial for energy trading and is highly related to wind speed and direction from

the wind farm. The tables below summarize the variables:

Table 4.4: Variables of Wind Dataset
Target variable Power Generated

Weather variables Wind Speed
Wind Direction

Pressure
Temperature

Table 4.5: Descriptive Analysis of Wind Dataset
Power generated Wind speed Wind direction Pressure Air temperature

count 8760 8760 8760 8760 8760
mean 964.4679 7.3761 146.6162 0.9923 22.1472

std 878.5581 3.1382 84.6787 0.0053 4.85529
min 0 0.119 0 0.9745 3.263
25% 215.9515 5.121 99 0.9889 19.463
50% 693.9685 7.3405 135 0.9914 22.763
75% 1562.2875 9.599 169 0.9950 26.063
max 3004.01 19.743 360 1.0145 32.963

We use a radiation forecasting task from Kaggle datasets [41] for the NASA Hackathon,

as the third dataset contains five-minute radiation measurements with weather vari-

ables. This dataset is used in [45].

Table 4.6: Variables of Solar Dataset
Target Variable Radiation
Weather Variables Temperature

Pressure
Humidity
Wind Direction
Wind Speed
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Table 4.7: Descriptive Analysis of Solar Dataset
Radiation Temperature Pressure Humidity WindDirection Wind Speed

count 32686 32686 32686 32686 32686 32686
mean 207.1246 51.1032 30.4228 75.0163 143.4898207 6.243869241
std 315.9163 6.2011 0.0546 25.9902 83.1674 3.4904
min 1.11 34 30.19 8 0.09 0
25% 1.23 46 30.4 56 82.2275 3.37
50% 2.66 50 30.43 85 147.7 5.62
75% 354.235 55 30.46 97 179.31 7.87
max 1601.26 71 30.56 103 359.95 40.5

4.5 Experiments

We compare the model performances on the test set with the error metrics used be-

low. For deep ensembles (nll), deep ensembles (mse), boosted deep ensembles, and

XGBoost model, we compare both mean accuracy and probabilistic accuracy. Imple-

mentation details are given below.

Dataset Preprocessing

We use min-max normalization for both datasets to compare results fairly. Scikit-

learn library [125] is employed for this normalization. For each datasets, both input

and target variables are normalized using

xnorm =
x− xmin

xmax − xmin

. (4.30)

Hyperparameters

Default parameters for XGBoost model are library’s defaults with 200 base learners.

All neural networks, run for 100 epochs, have 4 layer and 32 nodes in each layer

except for final layer. Deep ensembles run with 100 base learners.
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Training

We split both datasets as follows: 65% for training, 10% for validation and 25% for

testing with 5-fold cross validation using a rolling window.

Metrics

For mean accuracy, we use mean square error (MSE) and mean absolute percentage

error (MAPE) for load forecasting and normalized mean absolute error (nMAPE) for

the Texas wind and solar datasets. For probabilistic forecasting, following [34, 73, 54]

we compare calibration error which corresponds to coverage (CV) in a confidence in-

terval. Additionally, we compare widths (W) of intervals and coverage penalised by

width (CPW) since having arbitrarily wide widths, coverage values could be mislead-

ing. The metrics we use are:

MSE(yi, ŷi) =
1

n

n∑
i=1

(yi − ŷi)2, (4.31)

MAPE(yi, ŷi) =
1

n

n∑
i=1

(yi − ŷi)2

yi
, (4.32)

nMAPE(yi, ŷi) =
1

n

n∑
i=1

(yi − ŷi)2

c
, (4.33)

CV(y,Γ(x)) = prob(y ∈ Γ(x)), (4.34)

W(Γ(x)) =
1

n

n∑
i=1

|u(x)i − l(x)i|, (4.35)

CPW(x) =
CV(x)

W(x)
, (4.36)

where y is point to be forecasted, ŷ is the prediction, c is a constant Γ(x) is the

confidence interval, x is input variable u(x), upper bound of confidence interval and

l(x) is lower bound of confidence interval. We use 95% confidence interval for this

experiment.

4.6 Results

We report mean and probabilistic accuracy of predictions of the models and results in
this section.
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Table 4.8: Forecast Results for Load Forecasting
Load dataset MAPE MSE W CV CV/W time

Deep ensembles (mse) 1.4142 616.3317 1961.5604 0.9598 0.0489 446 sec.
Deep ensembles (nll) 2.7778 1316.1332 8160.5977 0.9847 0.0072 482 sec.

XGBoost 1.5191 671.8364 1569.2807 0.9003 0.0529 61 sec.
Boosted deep ensembles 1.4352 618.1924 1830.8610 0.9485 0.0542 212 sec.

Table 4.9: Forecast Results for Wind Generation Forecasting
Wind dataset nMAPE MSE W CV CV/W time

Deep ensembles (mse) 0.9906 1449.4027 275.9436 0.9967 0.3935 206 sec.
Deep ensembles (nll) 1.9267 10647.0216 850.9101864 0.9995 0.1267 228 sec.

XGBoost 0.9420 1114.5431 418.1629 0.9809 0.3101 38 sec.
Boosted deep ensembles 0.9794 2975.6419 265.9313 0.9990 0.4116 78 sec.

Table 4.10: Forecast Results for Radiation Forecasting
Solar dataset nMAPE MSE W CV time
Deep ensembles (mse) 2.3172 360.0010 535.2858 0.96064 392 sec.
Deep ensembles (nll) 4.2782 291.5812 659.9617 0.9877 412 sec.
XGBoost 2.3698 332.7018 462.6163 0.9810 52 sec.
Boosted deep ensembles 2.2468 360.4090 536.0728 0.9592 169 sec.

Figure 4.2: Results of Deep Ensemble (nll) Model
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Figure 4.3: Results of Boosted Deep Ensemble Model

Figure 4.4: Results of Deep Ensemble (mse) Model
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Figure 4.5: Results of XGBoost Model

We can see from Tables 4.8, 4.9, 4.10 that results for point forecasting comparison,

both deep ensembles (mse) and boosted deep ensembles models are, promising mod-

els for predictive tabular energy data tasks, outperforming XGBoost on load fore-

casting task. Even though having calibrated results in probabilstic forecasting deep

ensembles (nll), generates poor mean forecasting results which shows optimizing neg-

ative log likelihood cost function hurts mean prediction ability. Both deep ensembles

and boosted deep ensembles generates well calibrated probabilistic forecasts when

MSE is consisdered as cost function, which could be seen in Figures 4.3, 4.4, 4.5.

4.6.1 Hypothesis Testing

Further following [138], in addition to using the RMSE and MAPE for evaluating the

performance of the models, it is also necessary to assess whether these differences

are statistically significant. Diebold-Mariano test (DM Test) [36] for comparing the

accuracy of two forecasts, a widely used method for testing statistical significance for

comparison of forecast accuracy. In this section, we aim to show that the distribution

of the boosted deep ensembles, which dramatically reduces the computational com-

plexity of the plain deep ensembles model, is statistically the same as that of plain
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deep ensembles. Thus, we compare distributions of boosted deep ensemble and plain

deep ensembles.

Table 4.11: Results of Hypothesis Tests for Datasets
test statistics p-value

Load dataset 1.3291 0.0968
Wind dataset 1.8459 0.9671
Solar dataset 1.1126 0.867

DM test result in Table 4.11 shows that we fail to reject the null hypothesis for each

of the three datasets, as two forecasts have the same accuracy. Thus, we can statis-

tically conclude that the boosted deep ensembles model produces identical forecasts

with plain deep ensembles while dramatically reducing the computational effort. We

also provide plots for comparison of distribution of the predictions from both models

below in Figures 4.6, 4.7.

Figure 4.6: Kernel Density Comparison of Deep Ensemble (mse) and Boosted Deep
Ensemble Model

Figure 4.7: Box Plot Comparison of Deep Ensemble (mse) and Boosted Deep En-
semble Model
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4.7 Robustness Checks

We also conduct experiments by changing hyperparameters of boosted deep ensem-

bles such as the structure of base models (number of nodes, number of base learners,

number of epochs) and structure of boosted deep ensembles such as the number of

clusters (depth of clusters). Details are given in the Table 4.12 below:

Table 4.12: Change of Hyperparameters
Load dataset original version reduced version

number nodes in layers 32 16
number of layers 4 3
number of epoch 100 50

number of clusters (depth of clusters) 25 (4) 50 (2)

Table 4.13: Forecast Results for Load Forecasting with Hyperparameters
Load dataset MAPE MSE W CV CW/W

half node 0.0142 619.4281 1982.6264 0.9693 0.0371
layer drop 0.0142 617.6148 1966.6973 0.9715 0.0360
half epoch 0.01427 619.8332 1910.3554 0.9725 0.0369

cluster structure 0.0141 618.1464 19.18.2803 0.9655 0.0378

We can see that in Table 4.13, in general, boosted deep ensembles is robust against

dramatical hyperparameter changes in neural networks as base learner. However,

we conduct further experiments for several clusters/depth (structure of boosted deep

ensembles) and layer of base learner (structure of base learner). The Table 4.14 shows

how the number of clusters/depth affects the accuracy and time required to fit boosted

deep ensembles.

Table 4.14: Forecast Results for Load Forecasting under Different Model Stuctures
Load dataset MAPE MSE W CV CW/W time
depth 1 1.4142 616.3317 1961.5604 0.9598 0.0489 647 sec.
depth 2 1.4196 618.1464 1918.2803 0.9655 0.0378 478 sec.
depth 4 1.4352 618.1924 1830.8610 0.9485 0.0542 317 sec.
depth 5 1.4303 620.3303 1980.9989 0.9386 0.0460 296 sec.
depth 10 1.4218 618.8671 1957.5921 0.9602 0.0402 249 sec.
depth 20 1.4172 617.4479 1910.2483 0.9587 0.0411 215 sec.
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Figure 4.8: Time and Accuracy Comparison of Different Structure of Boosted Deep
Ensemble

As we can see from the Table 4.14, as the depth of clusters increases, accuracy con-

verges, mape values drop, and the required amount of time reduces. A simple elbow

graph-like approach in Figure 4.8 would suffice to determine the optimal number of

depth of clusters which seem to be 10 in this case. In addition to that, we also in-

vestigate the effect of the structure of base models on model accuracy, and results are

given in the Table 4.15.

Table 4.15: Forecast Results for Load Forecasting under Different Base Model Struc-
tures

Load dataset MAPE MSE W CV CW/W
5 layers 1.3671 611.0906 1909.4167 0.9335 0.0514
7 layers 1.3216 600.5076 1822.2311 0.9292 0.0542
9 layers 1.3120 595.8788 1929.0489 0.9433 0.0519
11 layers 1.3112 597.2265 1944.8873 0.9413 0.0510
13 layers 1.3214 597.3335 2212.0718 0.9593 0.0451

We see that the base model of the boosted deep ensembles model is a tunable param-

eter of the model. We stopp searching the space after mape values dropp sufficiently.

Next, we plot learning curves in Figure 4.9. We take the average loss values of en-
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semble members for each epoch and concatenate learning curves of models at each

level. Boosted deep ensembles models with different structures almost converge to

similar loss values, which shows us that learning transferring works properly, which

we aim to show.

Figure 4.9: Learning Curves of Boosted Deep Ensembles with Different Depths

4.8 Ensemble selection

We also compare whether we can improve results by selecting ensemble members

more sophisticatedly. To test that, we perform a simple model selection on the val-

idation set by combining top-performing ensemble members and comparing it with

ensembling through decorrelated ensemble members. We do it by mean-variance op-

timization (MVO), by which we optimally calculate ensemble weights so that mostly

decorrelated members are selected as in portfolio optimization.

Optimal weighting problem for forecast combination is formally defined below. Given

set of individual forecasts which are predictions from base model f1, f2, . . . , fn, the

goal is finding a set of weights w1, w2, . . . , wn which minimizes the forecast variance

V constrainted to weights sum up to 1. More formally,
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min
w

wΣwT

s.t.
n∑
i

wi = 1

0 ≤ wi ≤ 1, i ∈ 1, 2, . . . , n,

(4.37)

where Σ is the correlation matrix of forecast errors andwΣwT is the variance. Results

are given in Table 4.16:

Table 4.16: Results of Model Selection for Load Forecasting
Load dataset MAPE MSE W CV CW/W

top 10 1.4265 617.8277 1399.4186 0.8488 0.0637
top 20 1.4232 618.0592 1520.6814 0.8862 0.0600
top 30 1.4133 616.5341 1620.7568 0.9079 0.0571
top 40 1.4112 615.7413 1648.6774 0.9159 0.0562
top 50 1.4122 615.9010 1691.4107 0.9242 0.0551
top 60 1.4117 615.9189 1721.2221 0.9293 0.0544
top 70 1.4115 615.8544 1763.7341 0.9369 0.0534
top 80 1.4043 614.9348 1803.6864 0.9442 0.0526
top 90 1.4130 616.7416 1852.4638 0.9484 0.0514
top 100 1.4142 616.3317 1961.5604 0.95984 0.0489
MVO 1.4646 627.7164 1240.5980 0.7852 0.0637

Figure 4.10: Accuracy with Different Number of Ensemble Members
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We see that simple averaging outperforms averaging through MVO, which also has

calibration issues for probabilistic forecasting. We conclude that averaging decorre-

lated members is insufficient to generate superior point and probabilistic forecasts.

Also, we observe that increasing the number of ensemble members calibrates the

forecasts. Moreover, leaving out ensemble members with poor performance increases

the point accuracy. Thus, we conclude that more than ensembling through decorre-

lated members is needed to create superior forecasts. It requires leaving out poor-

performance members to generate superior predictions. As shown in the Figure 4.11,

ensemble members with mape values as high as %2 need to be excluded from ensem-

bling.

Figure 4.11: Distribution of Mape Values of Ensemble Members

Is cost funtion of NLL necessary?

In [95], authors state that cost function as mean squared error results underestimating

predictive uncertainty. Having 200 base learners, we run a boosted deep ensemble

model with a mean square error cost function to test whether predictions are normally

distributed, and we can use empirical distribution to calculate predictive bounds. We

see that 90% of the instance in the test set is normally distributed with having p-

values higher than or equal to 0.1 based on KS test statistics. Moreover, considering

the inferior performance of the mean forecasting result of deep ensembles (NLL),

we see that a relatively more significant number of base learners secures to have
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normally distributed predictions. There is no need for fitting deep ensembles model

with a negative log-likelihood cost function. We observe in Figure 4.12 histograms

of randomly selected instances in the test set have normal distribution shapes.

Figure 4.12: Histograms of Randomly Selected Predictions

4.9 Conclusion and Further Study

The deep ensembles model is a well-designed structure for point and probabilistic

forecasting. In this chapter, we investigate ensemble learning and propose a novel ar-

chitecture boosted deep ensembles, which benefits from transfer learning to decrease

the computational complexity of deep ensembles while preserving model accuracy.

We see that boosted deep ensembles are both theoretically and empirically time effi-

cient than deep ensembles and able to generate predictions with statistically equiva-

lent distributions as deep ensembles. We extensively test the model on tabular energy

learning tasks to explore deep ensembles thoroughly. We see that the model structure

of boosted deep ensembles and the model structure of base models is a tunable hy-

perparameter of the model. Moreover, we discover that a negative loglikelihood loss

function unnecessarily hurts model performance, and the MSE loss function is suf-

ficient to generate well-calibrated forecasts. Finally, we show that more than decor-
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related ensembles are needed to generate superior predictions instead of leaving out

poor performers.
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CHAPTER 5

APPLICATION: COMPARISON OF TABULAR LEARNING

METHODS FOR SHORT-TERM LOAD FORECASTING IN

SPAIN

Several state-of-the-art (SoTA) tabular learning models have emerged as best per-

formers on tabular data tasks in literature. On the contrary, several works show how

traditional ML models, such as XGBoost and the LGBM model, outperform current

SoTA models. We benchmark SoTA tabular learning models with deep ensembles,

XGBoost, and plain CNN on energy load forecasting tasks. Moreover, we observe

that, when pair-wise model ensembling applied, XGBoost model dramatically en-

hances the accuracy of each model it is ensembled with. We further, visualize the

embedding space of the transformer model with t-SNE algorithm, since most SoTA

models are based on transformer architecture. Next. we perform ablation study. We

observe that transformer architecture is not able to generate embeddings in hidden

space propoerly, and thus, it results in poor performance.

5.1 Introduction

Energy demand/load forecasting has received much attention recently and is vital for

governments and private companies. Government agencies use long-term demand

forecasts to plan economic growth efficiently; thus, they could create social benefits.

Moreover, banks and financial institutions utilize long-term forecasts for investment

valuation. Private companies related to the business, such as energy distribution com-

panies and system operators, require both long-term and short-term forecasts to min-
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imize losses and maximize system operation security. Load forecasting is complex

due to dependency on the quality of weather forecasts, exhibiting nonlinearity and

multi-seasonality and social factors like holidays.

Nowadays, tabular learning differs from image, audio, or video processing, where

deep learning architectures have excelled and are receiving attention from scholars.

Several SoTA models have been proposed recently, most based on transformer archi-

tecture. Energy forecasting tasks are a subclass of tabular learning tasks since energy

datasets are structured datasets. In general, most of the energy dataset is time-indexed

sensor measurements. Statistical models (e.g., ARIMA, GARCH) are still used for

load forecasting literature. However, the current load forecasting literature is domi-

nated by deep learning models.

Nevertheless, in literature, there is no consensus on models which produce more ac-

curate forecasts [105]. The deep ensembles model is a well-suited model for pre-

dicting load forecasting since it can also produce point and probabilistic forecasts.

In this chapter, we compare accuracies of recently proposed SoTA tabular learning

models; namely, NODE [128], GANDALF [82], TabNet [3], FT-Transformer [56],

TabTransformer [80] with deep ensembles [95] and well-known Xgboost [26] model

which is reported as best performer in tabular learning tasks [58] and a plain CNN

model. We see that the deep ensemble model, the CNN model, and XGBoost beats

SoTA transformer-based tabular learning models are well suited for load forecasting

tasks. Ensembling with XGBoost significantly boosts the performance of each model.

We further inspect embedding space with the t-SNE algorithm and perform a model

ablation study by which we conclude that transformer-based models are not able to

represent categorical and numerical features as embeddings and hence result in poor

performance.

5.2 Literature on Short Term Load Forecasting

Load Forecasting concerns the prediction of energy demand in different periods. De-

pending on the time scale, load forecasting can be categorized into three types: long-

term, medium-term, and short-term forecasting. Short-term load forecasting predicts
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system load for one hour to one week, medium-term demand forecasting predicts one

week to one year, and long-term load forecasting requires performing longer than one

year. Moreover, very short-term load forecasting, 15 minutes to 1 hour, is usually

made in smart grids to manage peak demand [74]. In general, long-term forecasting

deals with power system planning required by government agencies; medium-term

forecasting is needed for generation expansion planning and bilateral contracting.

Short-term forecasting is vital for maintaining the real-time operation of the power

systems [94]. As stated above, predicting electricity demand for an hour to one week

is called short-term load forecasting (STLF), a vital task for energy companies. This

procedure allows decision makers to maximize the company’s economic benefits and

is essential for demand response (DR) as well [32]. Moreover, a fast-growing liter-

ature on STLF has been dominated by probabilistic forecasting methods lately. The

increasing share of renewable energy sources and sudden price fluctuations made

energy markets more volatile. Decision-makers in the energy industry rely on fore-

casts to manage their market-related risks. Since point forecasts only provide limited

information, i.e., one point as forecast, decision makers would instead use the proba-

bilistic forecast to quantify uncertainties [74]. Probabilistic forecasts, such as density,

interval, or quantile forecasts, by nature, convey richer information than point fore-

casts [74]. Therefore, probabilistic forecast has become more valuable for decision

makers for evaluating and managing risk [47]. On the other hand, Hong [74] states

that probabilistic methods for load forecasting have not received much attention over

the past thirty years.

5.2.1 Point Forecasting

In literature, there is a variety of forecasting models have been applied for electricity

load forecasting. Econometric models such as AR(I)(MA) [27, 23, 72], artificial neu-

ral network and recurrent neural network models [69, 127, 151] and support vector

regression [110, 116] are employed in literature. Multiple Regressions is one of the

most popular methods and widely adopted in forecasting short-term electricity de-

mand problems by researchers [139, 115, 6, 123, 153, 22, 1]. The main input features

for multiple regression models are related variables, observed demand values, and

calendar variables [2]. A wide range of methodologies and models for forecasting are

55



given in the literature, including multiple regression.

Time series models are also common in STLF literature since they could be consid-

ered a pure time series problem. However, only lagged observations of load values

might be insufficient to perform an accurate forecast. Thus, exogenous variables are

used in order to increase accuracy. [63, 25, 136, 84, 124]. [114] provides an exten-

sive review on time series models for load forecast such as exponential smoothing,

regression models, autoregressive models, ARMA, ARIMA and ARMAX models.

Exponential smoothing models are well-known forecasting methods for time series

forecasting. [144] introduced the double seasonal Holt-Winters method (DSHW) for

short-term demand forecasting.

Together with well-established time series models, exponential models are prevalent

in literature [145, 146]. Apart from traditional models, nonparametric models and

machine learning models are prominent in short-term load forecasting. Models in-

cluding SVM [24, 154], fuzzy model [112], grey model [155], and semiparametric

additive model [47] is used for short term load forecasting in literature by researchers.

Lately, tree-based models have become one of the most used models in industry and

academia for regression tasks. Regarding short-term load forecasting literature, Ben

Taieb and Hyndman [9] develop a gradient boosting model for load forecasting in

GEFCom 2012. Lloyd [104] also develops a gradient-boosting model for the same

competition. Apart from GBM, [42] uses random forest to predict short-term elec-

tricity demand.

Machine learning models are extensively investigated in prediction tasks such as fi-

nancial forecasting, supply chain forecasting, and energy price and demand forecast-

ing. Short-term load forecasting has become one of the main tracks for researchers to

improve forecast accuracy with machine learning models. Starting with simple shal-

low networks, RNN, LSTM, ResNet models are used in STLF [31, 17, 70, 29, 37, 10,

158, 149].

Lately, hybrid models have been prominent in STFL. Combining econometric and

machine learning models such as ARIMA-NN [140], or hybrid modeling of different

algorithms are common in STLF [44, 43, 118, 157]. Moreover, with the current adap-
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tation of smart grids, load forecasting at the building level has become an essential

topic for researchers [78, 28, 120, 7, 52, 109].

5.2.2 Probabilistic forecast

There is a growing literature on probabilistic load forecasting. With increasing pop-

ularity of Global energy forecasting competition, probabilistic load forecasting has

become one of the mainstream in load forecasting [9, 74, 76, 100, 142, 38, 88]. In

literature, there are three ways to generate probabilistic forecast [74]: Input scenarios,

Model specification, Residual bootstrapping.

Input scenarios Since STLFs vastly rely on weather forecasts, based on weather

forecast distribution, probabilistic forecast can be generated by bootstrapping from

weather inputs or by selecting some weather scenarios [38, 132, 156, 147]. Having

each scenario assigned equal probability, probabilistic forecast can be generated by

calculating specific quantiles.

Model specification In order to have a probabilistic forecast, another approach is

designing the model to estimate the distribution Fth of yth. In that setting, it comes to

estimating underlying conditional estimation of yth given yt and xth. Conditional den-

sity estimation requires some unrealistic assumption and usually outputs poor results

when the underlying distribution is not normal. Instead of making those assumptions,

one can calculate quantiles for prediction using quantile regression and thereby can

generate probabilistic forecasts [62, 57, 9]. The Bayesian approach is another op-

tion that calculates the predictive probability of the forecasts to generate probabilistic

forecasts [117].

Residual bootstrapping Post-processing point forecast outputs are a method to

create probabilistic forecasts. After the forecast, the error term could be modeled

based on some probability density function [47]. Also, [77] uses the GARCH model

to produce the probabilistic forecast. One could also combine several point forecasts

to produce probabilistic forecasts [100].
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5.3 Analysis of Energy Load Dataset

In this section we examine dataset, variables and stylized facts about short term load

forecasting. We give main variables, check correlations among variables, investigate

time series properties such as periodicity, autocorrelation.

In literature, there are four main variables for STFL, these are:

Weather variables consisting of temperature, lagged values of temperature, tem-

perature values from multiple areas, Daily min-max temperature values, polynomial

transformation of temperature, humidity, wind, and cloud cover.

Calendar variables consisting of day of the week, month of the year, hour of the

day.

Special days consisting of religious and official holidays.

Lagged demand values including demand values from last week, demand values

from the same week of the last year, demand values for the same week from last

month, and min, max, and mean of lagged demand values.

5.3.1 Dataset

We run experiments Spain load dataset [81] contains four years of energy demand

and weather data for Spain. Energy demand data is retrieved from ENTSO-E [46],

a public portal for Transmission Service Operator (TSO) data. As an input variable,

weather data is retrieved from the Open Weather API [121] for the five largest cities

in Spain. However, to be concise, we run experiments with variables from Valencia.

This dataset is used in following papers [4, 130] and [133]. Energy demand (load

forecasting) forecasting is an important task for energy market participants.

Daily distributed energy data contains multiple periodicities. The first one is seasonal
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periodicity, with an increase in demand for electricity in summer and winter and a

decrease in springs. Upward trend could be seen in Figure 5.1 and downward trend

could be seen in Figure 5.2.

Figure 5.1: Upward Trend

Figure 5.2: Downward Trend

The other periodicity in this series is the weekly periodicity. For each Sunday in

each week, there is a significant drop in electricity demand which could be seen in

Figure 5.3.
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Figure 5.3: Weekly Periodicity

The last periodicity is the one that occurs within a day. For each weekday, electricity

demand reaches peak values in midday and just before the evening could be seen in

Figure 5.4.

Figure 5.4: Hourly Periodicity

As mentioned above, weather variables are one of the main covariates of the dis-

tributed energy. In the summer, demand for electricity reaches the top due to air

conditioning needs in the region. Here, we plot the correlation of distributed energy

with weather variables in Figure 5.5.
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Figure 5.5: Correlation of Spain Energy Demand

Another significant challenge in forecasting short-term load is the deviation in special

days. The Figure 5.6 below shows how regime shifts in short-term electricity demand

on New Year’s eve and the next day.

Figure 5.6: New Year’s Week

There is a strong correlation with lagged values of distributed energy series. One

can observe that there is a significant correlation within a month. Therefore, lagged

values of distributed energy series are one of the critical predictors of the series which
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could be seen in Figure 5.7.

Figure 5.7: Partial-autocorrelation within a day

5.4 Experimental Methodology

We benchmark forecasting accuracies of SoTA tabular learning models with XG-

Boost, Boosted Deep Ensembles and, plain the CNN model in short term load fore-

casting. Further, we pairwisely ensemble models. Moreover, we visualize encoder-

decoder space of TabNet model using t-SNE algorithm [152]. Then, using model ab-

lation approach, we assess abiliy of representational power of TabNet’s transformer

architecture and in general transformer architecture.

Machine and Deep Learning Models for Point Forecast

In this section, we define the models used in this study. Namely, XGBoost, Boosted

Deep Ensembles, CNN, TabNet, TabTransformer, NODE, GANDALF, and FTT mod-

els.

Gradient Boosted Tree Regression (GBM)

Gradient boosting regression is a boosting model that fits a decision tree to residuals

from previous base learners, and works in a sequential order to improve results from

base learners.

Consider a GBM with M stages; where for each stage m, we define g(x) base learner
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which is then fitted to em = y−Fm(x), where Fm is the boosting model at step stage

m and the goal is minimize the squared loss function via gradient descent algorithm.

More formally, for {xi, yi} in the training set, we define

F (x) =
M∑
i=1

gi(x) + g0,

where gi some base learner g0 is the constant and ψi is the weight to be determined.

Starting with a constant model g0; at each step m, we compute

Fm(x) = Fm−1(x) + fm(x),

where

fm(x) = argminf

N∑
i=1

L(yi, Fm−1(xi) + f(xi)).

Convolutional Neural Network (CNN)

Convolutional neural network is a powerful tool for image processing and classifica-

tion, video recognition tasks. It is a sub-model, belongs to neural network family.

Similar to multilayer perceptron, CNN is a layered structure, and at each layer it

convolves input space with filters to extract features from it and thereby generates

results.

Tabular Deep Models

We give the latest SoTA (State-of-the-Art) models developed for tabular data tasks.

These models are generally based on a transformer-based, encoder-decoder structure

where the input set is mapped into lower space by the encoder and then reconstructed

by the decoder as embeddings. The main reasoning is that categorical variables might

remain redundant and uninformative when one-hot encoded. Thus, these models

convert categorical and numerical variables into embeddings via an encoder-decoder

structure. Then, they send this information to predictions via complex nonlinear trans-

formations.
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Neural Oblivious Decision Ensembles. The NODE model uses oblivious decision

trees where each tree is linked to a neural network. This augmentation refines pre-

dictions by learning intricate feature interactions and transformations, which enables

capturing diverse facets of data features with decision trees. At the same time, neural

networks uncover complex patterns beyond the trees’ scope. Through training, de-

cision trees leverage gradient boosting, aligning with ensemble residuals, and neural

network modules refine their respective tree predictions, yielding heightened preci-

sion and accuracy compared to using decision trees or neural networks in isolation.

TabNet. Using four transformer structures, TabNet empowers categorical and con-

tinuous features by transforming feature embeddings to generate predictions. It uses

sequential attention mechanisms where attention mechanisms learn weights to select

relevant features while filtering out noise. This architecture comprises alternating

decision points and action layers, orchestrating sequential decisions to process input

progressively. The resultant binary decisions, shaped through attention-guided se-

lection, are concatenated to form a mask indicating active features. The subsequent

action layers execute operations on this masked input, contributing to the model’s

prediction. Notably, TabNet’s interpretability stems from its ability to unveil feature

importance through attention scores.

TabTransformer. TabTransformer, a deep tabular learning model, is used for su-

pervised and semi-supervised learning. Transformers based on self-attention serve as

the foundation of the TabTransformer model. The transformer layers convert cate-

gorical feature embeddings into robust contextual embeddings to increase prediction

accuracy. The design comprises a multi-layer perceptron (MLP), a stack of trans-

former layers, and a column embedding layer. Concatenated continuous features and

the contextual embeddings (produced by the transformer layer) are fed into an MLP.

FT Transformer. A straightforward transformation of the transformer architecture

for the tabular domain is the FT-Transformer (Feature Tokenizer + Transformer). All

features—categorical and numerical—are converted to tokens by the Feature Tok-

enizer component, which then applies a stack of transformer layers to the tokens to
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perform operations at the feature level of a single object for each transformer layer.

GANDALF. Gated Adaptive Network for Deep Automated Learning of Features

(GANDALF) is a novel method with high-performance, interpre , parameter- and

computationally efficient tabular deep learning architecture. GANDALF uses the

Gated Feature Learning Unit (GFLU), a novel tabular processing unit with a gating

mechanism and built-in feature selection, as a feature representation learning unit.

5.5 Experiments

We compare the model performances on the test set with the error metrics used below.

We compare the XGBoost, Boosted Deep Ensembles, and CNN models with recent

SoTA tabular learning models, namely TabNet, TabTransformer, NODE, GANDALF,

and FTT models.

Dataset Preprocessing

We use min-max normalization for both datasets to compare results fairly. Scikit-

learn library [125] is employed for this normalization. For each datasets, both input

and target variables are normalized using

xnorm =
x− xmin

xmax − xmin

. (5.1)

Hyperparameters

Default parameters for XGBoost model are library’s defaults with 200 base learners.

All neural networks, run for 100 epochs, have 4 layer and 32 nodes in each layer

except for final layer. Deep ensembles run with 100 base learners.
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Training

We split both datasets as follows: 65% for training, 10% for validation and 25% for

testing with 5-fold cross validation using a rolling window.

Metrics

For mean accuracy, we use mean square error (MSE) and mean absolute percentage

error (MAPE) and BIAS values.

MSE(yi, ŷi) =
1

n

n∑
i=1

(yi − ŷi)2.

MAPE(yi, ŷi) =
1

n

n∑
i=1

(yi − ŷi)2

yi
.

BIAS(yi, ŷi) =
1

n

n∑
i=1

(yi − ŷi),

where y is point to be forecasted, ŷ is the prediction.

5.6 Results

In this section, we provide point forecasting results for tabular models. In order to

evaluate point forecast results, we use mean absolute percentage error (MAPE), root

mean squared error (RMSE), and BIAS values.

Table 5.1: Results for point forecast
MAPE BIAS MSE Time

XGBoost 1.5191 -47.7980 671.8364 61 sec.
TabTransformer 2.2980 119.8849 866.9491 316 sec.

TabNet 2.7213 -199.1947 1041.8563 245 sec.
NODE 3.2525 -61.7109 1252.9572 418 sec
CNN 1.7743 203.0704 739.4485 114 sec.
FTT 2.1143 -204.7617 803.9376 466 sec.

Boosted Deep Ensemble 1.4352 7.1619 618.1924 212 sec.
GANDALF 2.1216 -1.6584 851.5260 398 sec.
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Results in Table 5.1 state that Deep Ensembles, Xgboost, and CNN outperform SoTA

tabular learning models. Tabular learning models’ performance is generally higher

than MAPE of 3.5% except the TabNet model. |

Parameter Tuning

To investigate further the accuracy of models, we tune the parameters of the models

with grid search. The tuned parameters of each model are given in the Tables 5.2, 5.3

below:

Table 5.2: Parameters tuned
TabNet XGBoost Boosted Deep Ensembles

Learning Rate [1e-02,1e-03, 1e-04] [1e-02,1e-03, 1e-04] [1e-02,1e-03, 1e-04]
Dropout [0.1, 0.2,0.3] - [0.1, 0.2,0.3]
Tree Depth - [3,4,5] -
# Estimators - [50,100,200] [50,100,200]
Batch Size [32,64,128] - [32,64,128]

Table 5.3: Parameters tuned
TabTransformer GANDALF CNN NODE

Learning Rate [1e-02, 1e-04] [1e-02, 1e-04] [1e-02, 1e-04] [1e-02, 1e-04]
Dropout [0.1, 0.2,0.3] [0.1, 0.2,0.3] [0.1, 0.2,0.3] [0.1, 0.2,0.3]
GLFU Stages - {2, 3, . . . 10} - -
Tree Depth - [3,4,5] - [3,4,5]
Batch Size [32,64,128] [32,64,128] [32,64,128] [32,64,128]

Table 5.4: Parameters tuned results for point forecast
MAPE BIAS MSE

XGBoost 1.3976 -36.2315 550.2232
TabTransformer 2.0166 51.7392 652.5389
TabNet 2.3103 -102.5271 835.3379
NODE 3.1012 -58.1046 805.0328
CNN 1.7047 179.6105 513.8560
FTT 2.0011 -106.6344 625.6109
Boosted Deep Ensemble 1.3656 -13.3102 620.9831
GANDALF 1.9816 73.2392 675.6321

In Table 5.4 we see that there are performance improvements in every model, which

is expected, yet still, tabular SoTA models are not able to outperform a basic CNN,
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Xgboost, and deep ensembles model.

5.6.1 Pairwise Model Ensembling

Since each SoTA tabular learning model has a different structure, we would like to
combine each model pairwisely and investigate weather the model ensembling ap-
proach could achieve better than individual results. See Tables 5.5, 5.6, 5.7, 5.8,
5.9, 5.10, 5.11, 5.12.

Table 5.5: Results for ensemble with FTT model
Xgboost TabTransformer TabNet NODE CNN GANDALF Boosted Deep Ensemble

mape 1.6408 1.9464 2.2093 2.3908 1.7609 1.9868 1.5873
bias 104.7799 42.4384 201.9782 133.2363 0.8457 103.2101 102.2978
rmse 684.4035 800.0301 858.0254 932.4225 730.2794 799.4323 666.1030

Table 5.6: Results for ensemble with TabNet model
XGBoost TabTransformer NODE CNN FTT GANDALF Boosted Deep Ensemble

mape 1.9178 2.2045 2.7993 1.9680 2.2093 2.1780 1.8643
bias 101.9963 39.6549 130.4528 -1.9378 201.9782 100.4266 99.5143
rmse 768.5335 887.9737 1066.4400 805.9115 858.0254 866.4673 746.9299

Table 5.7: Results for ensemble with Xgboost model
TabTransformer TabNet NODE CNN FTT GANDALF Boosted Deep Ensemble

mape 1.6566 1.9178 2.1352 1.5454 1.6408 1.6746 1.4061
bias -57.5434 101.9963 33.2544 -99.1362 104.7799 3.2283 2.3160
rmse 706.1316 768.5335 850.1765 664.6759 684.4035 699.1025 613.3829

Table 5.8: Results for ensemble with CNN model
XGBoost TabTransformer TabNet NODE FTT GANDALF Boosted Deep Ensemble

mape 1.5454 1.8572 1.9680 2.2276 1.7609 1.8378 1.5067
bias -99.1362 -161.4776 -1.9378 -70.6798 0.8457 -100.7059 -101.6182
rmse 664.6759 780.1898 805.9115 903.5937 730.2794 760.0651 646.4890

Table 5.9: Results for ensemble with Deep Ensembles model
XGBoost TabTransformer TabNet NODE CNN FTT GANDALF

mape 1.4061 1.6125 1.8643 2.0485 1.5067 1.5873 1.6305
bias 2.3160 -60.0255 99.5143 30.7724 -101.6182 102.2978 0.7462
rmse 613.3829 686.9629 746.9299 819.5848 646.4890 666.1030 680.0367

Table 5.10: Results for ensemble with TabTransformer model
XGBoost TabNet NODE CNN FTT GANDALF Boosted Deep Ensemble

mape 1.6566 2.2045 2.4896 1.8572 1.9464 2.0097 1.6125
bias -57.5434 39.6549 -29.0870 -161.4776 42.4384 -59.1132 -60.0255
rmse 706.1316 887.9737 995.9942 780.1898 800.0301 827.8218 686.9629
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Table 5.11: Results for ensemble with GANDALF model
XGBoost TabTransformer TabNet NODE CNN FTT Boosted Deep Ensemble

mape 1.6746 2.0097 2.1780 2.4031 1.8378 1.9868 1.6305
bias 3.2283 -59.1132 100.4266 31.6847 -100.7059 103.2101 0.7462
rmse 699.1025 827.8218 866.4673 949.7642 760.0651 799.4323 680.0367

Table 5.12: Results for ensemble with NODE model
XGBoost TabTransformer TabNet CNN FTT GANDALF Boosted Deep Ensemble

mape 2.1352 2.4896 2.7993 2.2276 2.3908 2.4031 2.0485
bias 33.2544 -29.0870 130.4528 -70.6798 133.2363 31.6847 30.7724
rmse 850.1765 995.9942 1066.4400 903.5937 932.4225 949.7642 819.5848

We observe that by ensembling with the XGBoost model dramatically enhances the

performance of SoTA tabular data models. Lowering each MAPE value to below 3%.

Xgboost model is the best contributor to ensembles with other models, followed by

the deep ensembles model.

5.7 Model Ablation Study

In order to inspect why transformer-based tabular models have poor performance,

we first visualize embeddings and raw dataset with t-SNE algorithm [152] and then

perform a model ablation in which we ablate the remaining part of the TabNet model

after extracting embeddings. Then, feed both embeddings and raw data into two

straightforward models, linear regression and single layer MLP, and fit models and

compare results to assess how embeddings space represents the raw data set. The

t-SNE algorithm is a dimensionality reduction algorithm for identifying significant

patterns in high-dimension datasets. The capacity to retain local structure is the key

benefit of t-SNE. This, in general, suggests that points near each other in the high-

dimensional data set will likely be close to each other in the lower dimensions. The t-

SNE approximates the probability distribution of neighbors around each point. Using

t-distribution, t-SNE approximates the Gaussian distribution of the original dataset

into 2-dimensional space. This generates a 2-dimensional mapping that minimizes

the distance between these two distributions over the dimensions. Compared to a

Gaussian, the larger tails of a t-distribution distribute the points more uniformly in

the 2-dimensional space. As a powerful tool to visualize data [141, 8], we both map

raw data and embeddings from the TabNet model to 2-dimensional space using the
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Figure 5.8: t-SNE Reducted Raw Dataset Figure 5.9: t-SNE Reducted Embeddings

t-SNE algorithm to observe patterns in lower dimensions.

In Figure 5.8, we see that the raw data set with one hot encoding is concisely clustered

separately where high (darker colors) and lower demand (lighter colors) values are

near each other. On the other hand, in Figure 5.9, there is no clear separation of data

points, which indicates that embedding space is not informative enough. In order

to test, we perform a model ablation study in which we get embedding from the

TabNet model, leave the rest of its architecture, and replace it with simple models.

After getting embeddings from TabNet, we use two plain models to assess whether

categorical embeddings work correctly for load forecasting problems. To do that,

we fit a linear regression with the raw dataset having one hot encoding and fit with

fetched embeddings. To consider nonlinearities, we also used a single-layer MLP

model and fit it in the same manner as in the linear regression model.

Table 5.13: Results of Linear Regression and MLP model
MAPE BIAS RMSE

LinReg with Embedding 3.4955 -26.6617 1320.9116
MLP with Embedding 3.3470 -11.4624 1284.4998
LinReg with Raw Data 2.5764 84.2797 772.8648
MLP with Raw Data 2.2442 24.7444 692.7155

By examining accuracy metrics of models, we see that in Table 5.13, raw data with

one hot encoding works better than transforming variables into embeddings. Con-

sidering this result together with results from Table 5.1 and the visuals generated in

Figures 5.8 and 5.9, we conclude that models using base architecture as transformers

do not work properly for energy load forecasting tasks. Feature embeddings are not

adequately generated; raw data with one hot encoding works better.
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5.8 Conclusion and Further Study

In this chapter of the thesis study, we examine the literature for short-term load fore-

casting, a tabular learning task, and provide stylized facts of the energy load dataset.

We benchmark SoTA tabular learning models against the boosted deep ensembles,

plain CNN, and XGBoost models. Results reveal that the deep ensembles model is

well suited for load forecasting. Together with CNN and XGBoost, deep ensem-

bles outperform SoTA tabular learning models. We then examine embedding space

in two-dimensional space using the t-SNE algorithm and perform a model ablation

study, revealing that transformer-based models are inefficient for load forecasting

tasks compared to the CNN and the XGBoost, the boosted deep ensembles.

71



72



CHAPTER 6

A NOVEL FEATURE SELECTION FRAMEWORK WITH

DEEP ENSEMBLES

Tabular models inherit feature importance results from transformer architecture. As

we show that deep ensembles and boosted deep ensembles perform successfully in

tabular tasks, it can be extended to a feature selection framework since it is based

on ensembling where variable permutation feature importance or variable drop fea-

ture importance could be integrated. In this chapter, we integrate both variable drop

and variable permutation feature selection algorithms into deep ensembles. To mea-

sure the performance of proposed algorithms, we compare weighted mape values of

each model, namely random forest, gradient boosting, and deep ensembles trained

on complete dataset D, with models trained on dimension-reducted datasets based on

both feature importance and feature reduction algorithms.

6.1 Introduction

Accurate wind power generation prediction is required and useful for energy market

participants such as energy generators, trading companies, dispatchers, and system

and market operators. The system operators need accurate predictions to schedule

the reserve capacity and to maintain the grid operations safely. Accurate and reliable

predictions of renewable power generation are essential for electricity transmission

and are also essential for competitive renewable energy supply [90]. Moreover, accu-

rate predictions allow utilities to have favorable trading performance on the electricity

markets [20].
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In literature, physical, statistical, and machine learning-based models and their com-

binations are used to perform wind power predictions. Generally, data-driven wind

power forecasting is performed via numerical weather prediction (NWP), which is

used as input variables to map wind plant generation. NWP is provided from spatially

closest points to the turbines as zonal and meridional components of winds, and nec-

essary calculations are made from NWP data such as wind speed and wind direction.

Generally, more than one point is selected for each turbine to ensure the wind profile

is met for specific locations. However, this might result in redundant input variables

for the model. In order to overcome redundant variables and reduce computational

complexity, feature selection emerges as a critical method for this problem.

Feature selection remains an active research area, though a significant amount of work

has been done due to a significant increase in ML research; it has many benefits:

(i) reducing the complexity of computation for prediction; (ii) removing informa-

tion redundancy (cost savings); (iii) avoiding the issue of overfitting; and (iv) easing

interpretation [148]. Though wind power forecasting and feature selection are well-

studied topics, research on feature selection for wind power forecasting is limited.

In this chapter, we first investigate and then integrate two feature importance algo-

rithms into a deep ensemble model and test the accuracy of feature importance algo-

rithms by comparing them with base models trained on a complete dataset.

This chapter contributes to the following: We integrate variable drop and variable per-

mutation feature importance algorithms into the deep ensemble and test the accuracy

of those algorithms against benchmark models.

6.2 Related Work

Wind forecasting is generally considered as very short-term (few seconds to 30 min),

short-term (30 min to 6 h), medium-term (6–24 h), and long-term (1–7 days) [159].

Short-term predictions would yield higher accuracy due to the deterioration of NWP

in longer terms.

Wind forecasting has been a long-studied topic in literature, and there are several
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very detailed reviews in wind power forecasting to benefit from. In [85], an overview

of existing research on wind speed and power forecasting is provided. State-of-the-

art wind speed and power forecasting approaches and forecasting accuracy based on

variable factors and forecast performance improvements are presented in detail.

Wind forecasting literature is dominated by four approaches: physical methods, sta-

tistical methods, and ML-based methods. In addition to this, their combinations are

considered as hybrid methods.

6.2.1 Physical Model

Using equation below, wind power genetaration could be estimated from the given

variables:

P = σAv3Cp, (6.1)

where P is turbines rated power in (W), σ stands for air density in kg/m3. A is

turbines swept area that could be calculated via A = πr2 ), r is turbins blade length. v

is wind speed in m/s, Cp is the power coefficient and turbine efficiency, and is lower

than 0.45, and its maximum value is called Betz limit equals to 0.59 [18].

6.2.2 Statistical Models

In [35] and [21], detailed literature reviews are provided for statistical models for

wind power prediction. Autoregressive models such as AR, MA, ARMA, ARIMA,

ARMAX are the most used models for this task.

6.2.3 Machine Learning Models

The popularity of using machine learning models is also presented in wind power

forecasting. A literature review [107] and [108] provide mainly used models for wind

power prediction tasks, including MLP, ANN, DNN, CNN, RNN, SVR, CART, RF,

GBM.
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6.2.4 Hybrid Models

Hybrid modeling is a more sophisticated use of several models by combining sta-

tistical and machine learning methods. Recently, hybrid modeling has significantly

increased in wind power prediction. For related review papers, we refer to [107]

and [35].

6.2.5 Deterministic and Probabilistic Models

Probabilistic forecasting has recently become popular in energy forecasting due to the

richer information provided to users. Moreover, competitions in Kaggle and GEF [75]

require predictions with their prediction intervals [160] provides recent developments

in probabilistic wind power forecasting. On the other hand, we refer to [150] for

deterministic wind energy forecasting.

6.2.6 Dimension Reduction

Advances in computational power, big data, and complex models make model train-

ing times longer. Therefore, data size reduction is crucial, especially when run times

are narrower. Dataset size reduction can be performed in two ways: feature set reduc-

tion or sample set reduction [83].

Generally, more input variables carry more discriminating power, but in practice,

excessive variables are prone to cause many problems, such as prolonged training

periods and the curse of dimensionality [61].

Dimension reduction could be performed in feature extraction (FE) and feature selec-

tion (FS). Feature extraction maps input space to a lower dimensional space through

linear or nonlinear mappings such as LDA or NLDR. The main drawback is that new

feature space has no meaningful interpretation [16].

Generally, more input variables carry more discriminating power, but in practice,

excessive variables are prone to cause many problems, such as prolonged training

periods and the curse of dimensionality [61].

76



6.2.7 Feature Extraction

Feature extraction maps input space to a lower dimensional space through linear or

nonlinear mappings such as LDA or NLDR. The main drawback is that new feature

space has no meaningful interpretation [16].

Feature selection is filtering relevant input variables for modeling. It could be grouped

into three classes: Filter methods, Wrapper methods, Embedded and hybrid methods.

Filter methods. Uses relevant metrics such as correlation, fisher score, mutual in-

formation, redundant features filtered through a threshold.

Wrapped methods. Uses a greedy algorithm, the features that yields best results

based on some accuracy metrics are chosen.

Embedded methods. Embedded methods perform feature selection and training of

the algorithm in parallel. In other words, the feature selection process is integral to

the classification/regressor model.

6.2.8 Feature Importance

Feature importance algorithms are generally greedy algorithms that require running

a base model repetitively, which is expensive yet the only solution for model inter-

pretability for now. Other than linear models, which are interpretable, feature impor-

tance algorithms are built on tree-based models such as random forest or gradient-

boosting tree models. Feature importance algorithms evaluate the features by gener-

ating a subset of features given for a problem and then compare the relative increase

or decrease in accuracy with respect to the feature set. Thus, it is a natural extension

for ensemble models. [98] proposes a feature support metric that averages the accu-

racy of single base models whose training set includes specific variables, and then it

sorts each support value as feature importance. [15] proposes the permutation impor-

tance algorithm, based on a random forest model trained on a complete train dataset
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and shuffling the values of features in a test dataset to measure how disturbing the

relation of input and output variable affects accuracy.

6.2.9 Feature Selection in Wind Power Forecasting

Feature selection in wind power forecasting is concentrated on embedded algorithms.

In [99], a proposed method combines wavelet decomposition, neural networks, fea-

ture selection, and regression for the generation forecasting of a wind farm is pro-

posed. In order to choose a compact set of input features, a feature selection tech-

nique based on mutual information is developed for the forecasting model. In [97],

ridgelet transform is considered as a feature selection algorithm, and it is combined

with a neural network-based prediction algorithm. The work in [103] stacks wavelet

transform with PCA and SVM model and uses particle swarm optimization for hyper-

parameter optimization. Also, [137] introduces a novel approach combining feature

selection with recurrent neural networks (RNN). Furthermore, [48] presents a deep

feature selection framework to set input features to neural networks, which produces

both deterministic and probabilistic forecasts.

6.3 Model

This study embeds two feature importance algorithms with the deep ensembles model,

which uses shallow neural networks as base learners. The deep ensembles model

generally does not require a subset selection procedure as for random forest models.

However, to implement variable importance, we univariately drop the variable from

a given feature set to measure the importance of each variable. Firstly, we drop each

feature at a time per base learn training to measure the impact of specific variables on

model accuracy. For this, we build a deep ensemble model with size M where M is

the number of input variables and drop each feature, resulting in a base learner with

M − 1 input variable. Pseudocode of this algorithm could be found in Algorithm 4.

78



Algorithm 4: Calculating feature importance with variable drop
Input: Dataset D with dimension M , base neural network g to be fit, array of

weighted mape values of base deep ensemble model trained on

complete dataset D

Output: Feature importance of variables

for m← 1 to M do
fit base model gm on dataset D −m
wmapegm ← calculate weighted mape values

dm ← wmapegm-wmapeDeepEnsemble

return Average of dm
end

Secondly, we integrate the permutation feature importance algorithm into the deep en-

sembles model. The algorithm is straightforward for this importance procedure. After

training deep ensembles model on training dataset D, values of each input variable

are shuffled so that the relationship between the input variable and output variable is

distorted in the model testing dataset phase. Calculating weighted MAPE values for

each base learner, which uses permutated input variables, generates permutated fea-

ture importance values. Algorithm 5 is the slightly changed version of Algorithm 4

for calculating permutation importance:

Algorithm 5: Calculating feature importance with variable permutation
Input: Dataset D with dimension M , base neural network g to be fit, array of

weighted mape values of base deep ensemble model trained on

complete dataset D

Output: Feature importance of variables

for m← 1 to M do
get model predictions of base model gm on dataset Dmpermutated

wmapegm ← calculate weighted mape values

dm ← wmapegm-wmapeDeepEnsemble

return Average of dm
end
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6.4 Dataset

We run experiments on an anonymous wind power plant in Turkey. The dataset for

this application is open at https://seffaflik.epias.com.tr/, and NWP values as input

variables are gathered from the free API of https://www.meteomatics.com/. Wind ob-

servations in the input dataset have two components, u and v. The zonal component

(or x-coordinate) is denoted as u and has the west–east direction or vice versa. Merid-

ional component (or y-coordinate) follows a flow from north to south, or vice versa,

and is denoted as v. Input variables for the experiments collected from 17 points in

the turbine site. As a result, we have 34 measurement points from the turbine site.

The training set for this experiment covers 2021-04-01/2021-10-31, and the test set

is chosen to be 2021-11-01/2021-11-30. In Tables 6.1 and 6.2 we give a descriptive

table for selected points in the wind field to save space:

Table 6.1: Descriptive statistics of selected variables
wind generated windUComponent867 windUComponent2385 windUComponent2381

count 12270 12270 12270 12270
mean 14593.5420 0.6927 1.0036 2.9002
std 12188.1779 4.4274 3.8221 5.0098
min 0 -19.8537 -16.6407 -15.3224

0.2500 3655 -1.6332 -1.2810 -1.2181
0.5000 12000 2.1831 2.1533 4.6990
0.7500 24000 3.5115 3.4526 6.7279

max 47000 12.2044 12.5481 15.5567

Table 6.2: Descriptive statistics of selected variables
values windUComponent868 windUComponent2389 windUComponent2383 windUComponent2390
count 12270 12270 12270 12270
mean 0.6029 3.7481 1.5956 2.589226673
std 5.3603 5.2665 4.3240 5.553144729
min -23.8693 -14.5255 -16.6661 -16.697449
25% -1.9780 -0.7244 -1.3372 -1.37944875
50% 2.5419 5.5003 3.1143 4.2080
75% 4.0001 7.9950 4.5772 7.0551
max 14.0369 14.7241 14.2109 15.9120

From wind components we calculate, wind magnitude and direction as:

W =
√
u2 + v2,

θ = arctan
(u
v

)
,
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where W is the wind magnitude in m/s., u is the east-west wind component in m/s., v

is the north-south wind component in m/s.

To convert it to degrees and adjust for meteorological conventions (clockwise from

true north):

θdegrees = (90− θ

π
· 180) mod 360,

where

θ is the wind direction in radians and θdegrees is the wind direction in degrees. Table 6.3

below is variables used in this application.

Table 6.3: Names of Variables Used in Application
target variable wind_generated
input variables wind_mag_867 wind_mag_2383 wind_mag_2383 wind_dir_2386 wind_dir_2391

wind_mag_2385 wind_mag_2390 wind_mag_2390 wind_dir_869 wind_dir_2384
wind_mag_2381 wind_mag_2380 wind_mag_2380 wind_dir_2387 wind_dir_2392
wind_mag_2386 wind_mag_2391 wind_mag_2391 wind_dir_2382 wind_dir_866
wind_mag_869 wind_mag_2384 wind_mag_2384 wind_dir_2388 wind_dir_2380
wind_mag_2387 wind_mag_2392 wind_mag_2392 wind_dir_868 wind_dir_2381
wind_mag_2382 wind_mag_866 wind_mag_866 wind_dir_2389 wind_dir_2381
wind_mag_2388 wind_dir_867 wind_dir_867 wind_dir_2383 wind_mag_2389
wind_mag_868 wind_dir_2385 wind_dir_2385 wind_dir_2390

6.5 Application

Models used in this study to investigate feature importance algorithms are defined in

the sequel.

Principal Component Analysis (PCA). Principal component analysis (PCA) is a

statistical model that reduces the dimensionality of a dataset. It reconstructs new

features that are linear combinations of the original features, such that these new

features are uncorrelated and capture the most variance in the data. We first transform

the dataset into 4 dimensional principal components in the application. Then we run

each of three base models on this dimensionally reducted dataset: random forest,

gradient boosted tree, and deep ensembles.
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Singular Value Decomposition (SVD). Singular value decomposition is a method

to solve linear systems. It calculates the pseudoinverse of a matrix. SVD decompose

a matrix A into USV T where U and V are orthogonal matrices with orthonormal

eigenvectors chosen from AAT and ATA respectively. S is a diagonal matrix with r

elements equal to the root of the positive eigenvalues of AAT or ATA. In machine

learning usage, SVD is used for dimension reduction. In this regard, we map the

dataset into four-dimensional space using the first 4 eigenvalues. Then, we input this

into three baseline models.

Random Forest Model. Random forest regression is one of the most popular bag-

ging methods. It re-samples data with replacement to create a bootstrapped series.

For each of these series, it randomly drops some of the input features with uniform

probability and fits a decision tree in order to create decorrelated trees. Then, the

algorithm averages the results over a bootstrapped series. It has an embedded feature

importance algorithm.

Gradient Boosting Trees. Gradient boosting regression is a boosting model that

fits a decision tree to residuals from previous base learners and works sequentially to

improve results from base learners. As an ensemble model, the gradient boosting tree

model provides a feature importance algorithm.

6.6 Results of Feature Importance Algorithms

To measure the proposed algorithms’ performance, we compare each model’s weighted

mape values, namely random forest, gradient boosting, and deep ensembles trained

on complete dataset D, with models trained on dimension-reducted datasets based on

feature importance and feature reduction algorithms.

For this, we report the weighted MAPE values of the models in Table 6.4.
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Table 6.4: Weighted mape comparison of feature importance and reduction algo-
rithms

Complete Dataset Variable Drop Variable Permutation PCA SVD
Boosted Deep Ensemble 0.0685 0.0691 0.0659 0.0712 0.0701
Random Forest 0.0881 0.0819 0.0692 0.0919 0.1014
Gradient Boosting 0.1299 0.1225 0.1362 0.1814 0.1972

As we can see from the Table 6.4, variable drop feature importance has a slight ad-

verse effect on the model accuracy of the boosted deep ensemble model. On the

other hand, the variable permutation method significantly increased the accuracy of

the boosted deep ensemble model and vice versa for the gradient-boosting tree model.

Both variable drop and variable permutation methods have increased the accuracy of

the random forest model. Models trained on PCA and SVD reducted datasets expe-

rienced a slight decrease for each model. The main reason for this might be that the

information lost in the data reduction process might have harmed the performance of

models.

Moreover, we plot correlations in Figure 6.1 , feature drop in Figure 6.2 , and per-

mutation importance results in Figure 6.3, from the boosted deep ensembles model,

enlightening nonlinear relationships.

Figure 6.1: Input Variable Correlations
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Figure 6.2: Variable Drop Feature Importances

Figure 6.3: Variable Permutation Feature Importances
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6.7 Conclusion and Further Study

In this chapter of the thesis study, we investigate and integrate feature importance

algorithms to boosted deep ensembles models. First, we deeply investigate feature

selection methodologies and its applications in the wind forecasting literature. Then,

we integrated both variable drop and variable permutation feature importance algo-

rithms into boosted deep ensemble model. We see that both variable drop and variable

permutation works properly with boosted deep ensemble model. Moreover, we plot

importance results. In order to have a more robust result, several other feature selec-

tion models and various error metrics could be included.
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CHAPTER 7

CONCLUSION

This thesis study focuses on energy forecasting in the energy domain, a subclass of

tabular learning tasks, with deep ensembles model. Energy forecasting is a crucial

action for the energy sector, enabling market participants to manage risks and main-

tain operations properly. Contemporary research in energy forecasting predominantly

employs machine learning and deep learning models.

We investigate and improve the deep ensembles model by proposing the boosted

deep ensembles model, which leverages transfer learning to significantly reduce the

required computation time, which we show theoretically and empirically. The pro-

posed model generates prediction distributions equivalent to those of deep ensembles,

which is statistically tested and is extensively evaluated using open-source energy-

related datasets. We also note that when adequately trained, our boosted deep ensem-

bles yield predictions conforming to a normal distribution when employing the mean

squared error as the loss function. Conversely, the use of negative log-likelihood

detrimentally impacts point forecasting accuracy. Furthermore, we find that superior

forecasts are achieved by generating decorrelated predictions and excluding under-

performing base learners.

We conduct an in-depth investigation as energy forecasting can be categorized as a

subset of tabular learning. We explore state-of-the-art tabular learning models pre-

dominantly built upon transformer architectures and compare these models against

XGBoost, CNN, and boosted deep ensemble models. Notably, the boosted deep en-

sembles model, the CNN model, and the XGBoost outperform transformer-based

tabular learning models in load forecasting tasks. We also observe that notable per-
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formance gains are achieved through ensembling with XGBoost. We also delve into

the embedding space using the t-SNE algorithm and perform a model ablation study.

Our findings show the limitations of transformer-based models in effectively repre-

senting categorical and numerical features as embeddings, thereby leading to inferior

performance.

A natural extension of transformer architecture-based tabular learning models is fea-

ture extraction from datasets. In order to contribute to explainable AI, we develop

a feature selection framework for the boosted deep ensembles model. We integrate

variable drop and variable permutation feature importance algorithms into the deep

ensemble framework and rigorously assess the accuracy of these algorithms in com-

parison to benchmark models.

In this study, we improve deep ensembles models using transfer learning. Next, we

benchmark SoTA tabular learning models and traditional machine learning models

with deep ensembles, where we further investigate why transformer-based models are

underperforming. Lastly, we contribute to explainable AI by developing a framework

for feature selection with deep ensembles. We embed variable drop and variable

premutation feature importance algorithm into boosted deep ensembles. For future

study, a more comprehensive comparison of feature selection methodologies could

be done by including more feature selection models and various error metrics to have

more robust results.
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